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0.1 PREFACE

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something different and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If I remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space CP2 are completely unique in the sense that they allow
twistor space with Kähler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (CP2) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an effective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the CP2

projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kähler-Dirac assigned with
Kähler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
“world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with CP2 factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became difficult to say where physics ends and
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consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
“Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and different from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

• One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about effective value of Planck constant
heff = n × h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kähler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, effective p-adic topology, and non-determinism of Kähler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.
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From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

• With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW
Kähler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kähler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kähler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like
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“wormhole throats” suggests that virtual particle do not differ from on mass shell particles
only in that the four- and three- momenta of wormhole throats fail to be parallel. The two
throats of the wormhole contact defining virtual particle would contact carry on mass shell
quantum numbers but for virtual particles the four-momenta need not be parallel and can
also have opposite signs of energy.

The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly
also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy
variant of twistor formalism with string world sheets having interpretation as 2-braids. In
TGD framework fermionic variant of twistor Grassmann formalism leads to a stringy variant
of twistor diagrammatics in which basic fermions can be said to be on mass-shell but carry
non-physical helicities in the internal lines. This suggests the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Karkkila, October, 30, Finland

Matti Pitkänen
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Chapter 1

Introduction

1.1 Basic Ideas Of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged 37 years
ago - would emerge now it would be seen as an attempt trying to solve the difficulties of these
approaches to unification.

The basic physical picture behind TGD corresponds to a fusion of two rather disparate
approaches: namely TGD as a Poincare invariant theory of gravitation and TGD as a generalization
of the old-fashioned string model.

1.1.1 Basic Vision Very Briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of
basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K1].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional imbedding space H = M4×
CP2, where M4 is 4-dimensional (4-D) Minkowski space and CP2 is 4-D complex projective
space (see Appendix).

2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to
geometrize various fields. Space-time metric characterizing gravitational fields corresponds to
the induced metric obtained by projecting the metric tensor of H to the space-time surface.
Electroweak gauge potentials are identified as projections of the components of CP2 spinor
connection to the space-time surface, and color gauge potentials as projections ofCP2 Killing
vector fields representing color symmetries. Also spinor structure can be induced: induced
spinor gamma matrices are projections of gamma matrices of H and induced spinor fields
just H spinor fields restricted to space-time surface. Spinor connection is also projected.
The interpretation is that distances are measured in imbedding space metric and parallel
translation using spinor connection of imbedding space.

The induction procedure applies to octonionic structure and the conjecture is that for pre-
ferred extremals the induced octonionic structure is quaternionic: again one just projects the
octonion units. I have proposed that one can lift space-time surfaces in H to the Cartesian
product of the twistor spaces of M4 and CP2, which are the only 4-manifolds allowing twistor
space with Kähler structure. Now the twistor structure would be induced in some sense, and
should co-incide with that associated with the induced metric. Clearly, the 2-spheres defining

1
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the fibers of twistor spaces of M4 and CP2 must allow identification: this 2-sphere defines the
S2 fiber of the twistor space of space-time surface. This poses constraint on the imbedding of
the twistor space of space-time surfaces as sub-manifold in the Cartesian product of twistor
spaces.

3. Geometrization of quantum numbers is achieved. The isometry group of the geometry of
CP2 codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of CP2 geometry so that
standard model gauge group results. There are also important deviations from standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in CP2 scale. In contrast to GUTs, quark and
lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M4 and CP2 are unique choices for many other reasons. For instance, they are the unique 4-
D space-times allowing twistor space with Kähler structure. M4 light-cone boundary allows
a huge extension of 2-D conformal symmetries. Imbedding space H has a number theoretic
interpretation as 8-D space allowing octonionic tangent space structure. M4 and CP2 al-
low quaternionic structures. Therefore standard model symmetries have number theoretic
meaning.

4. Induced gauge potentials are expressible in terms of imbedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions in
the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particle in space-time can be identified as a topological inhomogenuity in background space-
time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distance of about 104 Planck lengths (CP2 size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore
a microscopic theory from which standard model and general relativity follow as a topolog-
ical simplification however forcing to increase dramatically the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These effects
are indeed observed but only in living matter. A possible resolution of problem is implied by
the condition that the modes of the induced spinor fields have well-defined electromagnetic
charge. This forces their localization to 2-D string world sheets in the generic case having
vanishing weak gauge fields so that parity breaking effects emerge just as they do in standard
model. Also string model like picture emerges from TGD and one ends up with a rather
concrete view about generalized Feynman diagrammatics. A possible objection is that the
Kähler-Dirac gamma matrices do not define an integrable distribution of 2-planes defining
string world sheet.
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An even strong condition would be that the induced classical gauge fields at string world sheet
vanish: this condition is allowed by the topological description of particles. The CP2 pro-
jection of string world sheet would be 1-dimensional. Also the number theoretical condition
that octonionic and ordinary spinor structures are equivalent guaranteeing that fermionic
dynamics is associative leads to the vanishing of induced gauge fields.

The natural action would be given by string world sheet area, which is present only in the
space-time regions with Minkowskian signature. Gravitational constant would be present
as a fundamental constant in string action and the ratio ~/G/R2 would be determined by
quantum criticality condition. The hierarchy of Planck constants heff/h = n assigned to
dark matter in TGD framework would allow to circumvent the objection that only objects of
length of order Planck length are possible since string tension given by T = 1/~effG apart
from numerical factor could be arbitrary small. This would make possible gravitational
bound states as partonic 2-surfaces as structures connected by strings and solve the basic
problem of super string theories. This option allows the natural interpretation of M4 type
vacuum extremals with CP2 projection, which is Lagrange manifold as good approximations
for space-time sheets at macroscopic length scales. String area does not contribute to the
Kähler function at all.

Whether also induced spinor fields associated with Kähler-Dirac action and de-localized in-
side entire space-time surface should be allowed remains an open question: super-conformal
symmetry strongly suggests their presence. A possible interpretation for the corresponding
spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants.

It is perhaps useful to make clear what TGD is not and also what new TGD can give to
physics.

1. TGD is not just General Relativity made concrete by using imbeddings: the 4-surface prop-
erty is absolutely essential for unifying standard model physics with gravitation and to cir-
cumvent the incurable conceptual problems of General Relativity. The many-sheeted space-
time of TGD gives rise only at macroscopic limit to GRT space-time as a slightly curved
Minkowski space. TGD is not a Kaluza-Klein theory although color gauge potentials are
analogous to gauge potentials in these theories.

TGD space-time is 4-D and its dimension is due to completely unique conformal properties of
light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary
conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry
fundamental fermions at 1-D boundaries of string world sheets. TGD is not obtained by
performing Poincare gauging of space-time to introduce gravitation and plagued by profound
conceptual problems.

2. TGD is not a particular string model although string world sheets emerge in TGD very
naturally as loci for spinor modes: their 2-dimensionality makes among other things possible
quantum deformation of quantization known to be physically realized in condensed matter,
and conjectured in TGD framework to be crucial for understanding the notion of finite
measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this
obviously means analogy with branes of super-string models.

TGD is not one more item in the collection of string models of quantum gravitation relying
on Planck length mystics. Dark matter becomes an essential element of quantum gravitation
and quantum coherence in astrophysical scales is predicted just from the assumption that
strings connecting partonic 2-surfaces serve are responsible for gravitational bound states.

TGD is not a particular string model although AdS/CFT duality of super-string models
generalizes due to the huge extension of conformal symmetries and by the identification
of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a
natural conformal structure.

3. TGD is not a gauge theory. In TGD framework the counterparts of also ordinary gauge
symmetries are assigned to super-symplectic algebra (and its Yangian [A27] [B39, B30, B31]),
which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a
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fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is not one
more quantum field theory like structure based on path integral formalism: path integral
is replaced with functional integral over 3-surfaces, and the notion of classical space-time
becomes exact part of the theory. Quantum theory becomes formally a purely classical
theory of WCW spinor fields: only state function reduction is something genuinely quantal.

4. TGD view about spinor fields is not the standard one. Spinor fields appear at three levels.
Spinor modes of the imbedding space are analogs of spinor modes charactering incoming
and outgoing states in quantum field theories. Induced second quantized spinor fields at
space-time level are analogs of stringy spinor fields. Their modes are localized by the well-
definedness of electro-magnetic charge and by number theoretic arguments at string world
sheets. Kähler-Dirac action is fixed by supersymmetry implying that ordinary gamma ma-
trices are replaced by what I call Kähler-Dirac gamma matrices - this something new. WCW
spinor fields, which are classical in the sense that they are not second quantized, serve as
analogs of fields of string field theory and imply a geometrization of quantum theory.

5. TGD is in some sense an extremely conservative geometrization of entire quantum physics:
no additional structures such as gauge fields as independent dynamical degrees of freedom
are introduced: Kähler geometry and associated spinor structure are enough. “Topological”
in TGD should not be understood as an attempt to reduce physics to torsion (see for instance
[B29]) or something similar. Rather, TGD space-time is topologically non-trivial in all scales
and even the visible structures of everyday world represent non-trivial topology of space-time
in TGD Universe.

6. Twistor space - or rather, a generalization of twistor approach replacing masslessness in 4-D
sense with masslessness in 8-D sense and thus allowing description of also massive particles
- emerges as a technical tool, and its Kähler structure is possible only for H = M4 × CP2.
What is genuinely new is the infinite-dimensional character of the Kähler geometry making
it highly unique, and its generalization to p-adic number fields to describe correlates of
cognition. Also the hierarchies of Planck constants heff = n × h reducing to the quantum
criticality of TGD Universe and p-adic length scales and Zero Energy Ontology represent
something genuinely new.

The great challenge is to construct a mathematical theory around these physically very
attractive ideas and I have devoted the last thirty seven years for the realization of this dream
and this has resulted in eight online books about TGD and nine online books about TGD inspired
theory of consciousness and of quantum biology.

1.1.2 Two Vision About TGD And Their Fusion

As already mentioned, TGD can be interpreted both as a modification of general relativity and
generalization of string models.

TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
is regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski
space and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A53,
A62, A43, A58].

The identification of the space-time as a sub-manifold [A54, A75] of M4 × CP2 leads to
an exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in struc-
ture than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of
CP2 explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors
correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
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concept results. The projections of the CP2 spinor connection, Killing vector fields of CP2 and of
H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries.
Also number theoretical vision selects H = M4 × CP2 uniquely. M4 and CP2 are also unique
spaces allowing twistor space with Kähler structure.

TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds
the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Quite recently, it has turned out that fermionic strings inside space-time surfaces define an
exact part of quantum TGD and that this is essential for understanding gravitation in long length
scales. Also the analog of AdS/CFT duality emerges in that the Kähler metric can be defined
either in terms of Kähler function identifiable as Kähler action assignable to Euclidian space-time
regions or Kähler action + string action assignable to Minkowskian regions.

The recent view about construction of scattering amplitudes is very “stringy”. By strong
form of holography string world sheets and partonic 2-surfaces provide the data needed to con-
struct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical
correspondence necessary to understand the classical correlates of quantum measurement. There
is a huge generalization of the duality symmetry of hadronic string models. Scattering amplitudes
can be regarded as sequences of computational operations for the Yangian of super-symplectic al-
gebra. Product and co-product define the basic vertices and realized geometrically as partonic
2-surfaces and algebraically as multiplication for the elements of Yangian identified as super-
symplectic Noether charges assignable to strings. Any computational sequences connecting given
collections of algebraic objects at the opposite boundaries of causal diamond (CD) produce identical
scattering amplitudes.

Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a “topological condensate” containing matter as
particle like 3-surfaces “glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
“topological condensate” there could be “vapor phase” that is a “gas” of particle like 3-surfaces
and string like objects (counterpart of the “baby universes” of GRT) and the non-conservation of
energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possibly existence vapour phase.

What one obtains is what I have christened as many-sheeted space-time (see Fig. http:

//tgdtheory.fi/appfigures/manysheeted.jpg or Fig. ?? in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory system does not
possess this kind of field identity. The notion of magnetic body is one of the key players in TGD
inspired theory of consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The
basic notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP2 and of the
intersection of future and past directed light-cones and having scale coming as an integer multiple
of CP2 size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to
products of positive and negative energy parts assignable to the opposite boundaries of CD defining
the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology
is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the
opposite light-like boundaries of CD. Since the extremals of Kähler action connect these, one can
say that by holography the basic dynamical objects are the space-time surface connecting these
3-surfaces. This changes totally the vision about notions like self-organization: self-organization
by quantum jumps does not take for a 3-D system but for the entire 4-D field pattern associated
with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-
like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-
time surface is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at
which the signature of the induced metric changes from Minkowskian to Euclidian and interpreted
as lines of generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar
interpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of Kähler action. In finite
length scale resolution these effects can be neglected below UV cutoff and above IR cutoff. One
can also speak about strong form of holography.

1.1.3 Basic Objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four imbedding space
coordinates only- essentially CP2 coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-
sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particle topologically condenses to several space-time sheets simultaneously and experiences the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory
the number of primary field variables is countered in hundreds if not thousands, now it is just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-
time due to the imbeddability to 8-D imbedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation allows
to understand the relationship to GRT space-time and how Equivalence Principle (EP) follows
from Poincare invariance of TGD. The interpretation of GRT space-time is as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective metric
determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of
space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for
the GRT limit in long length scales at least. One can consider also other kinds of limits such as the
analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case
deformations of CP2 metric define a natural starting point and CP2 indeed defines a gravitational
instanton with very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials
of standard model correspond classically to superpositions of induced gauge potentials over space-
time sheets.
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Topological field quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 P-Adic Variants Of Space-Time Surfaces

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. One might say that TGD space-time is adelic. Also the hierarchy of Planck constants forces
a generalization of the notion of space-time but this generalization can be understood in terms of
the failure of strict determinism for Kähler action defining the fundamental variational principle
behind the dynamics of space-time surfaces.

A very concise manner to express how TGD differs from Special and General Relativities
could be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and
Equivalence Principle remain true. What is new is the notion of sub-manifold geometry: this allows
to realize Poincare Invariance and geometrize gravitation simultaneously. This notion also allows
a geometrization of known fundamental interactions and is an essential element of all applications
of TGD ranging from Planck length to cosmological scales. Sub-manifold geometry is also crucial
in the applications of TGD to biology and consciousness theory.

1.1.5 The Threads In The Development Of Quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

The theoretical framework involves several threads.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name “TGD as
a generalized number theory”. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful
revision of the basic views about what the final form and physical content of quantum TGD
might be. Together with the vision about the fusion of p-adic and real physics to a larger
coherent structure these sub-threads fused to the “physics as generalized number theory”
thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
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of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
primes as sub-threads of a thread which might be called “physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to four.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as
physics of cognitive representations. The eight online books [K83, K62, K50, K101, K71, K100,
K99, K69] about TGD and nine online books about TGD inspired theory of consciousness and of
quantum biology [K75, K9, K56, K8, K33, K38, K40, K68, K96] are warmly recommended to the
interested reader.

Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was “Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH (“world of classical worlds”, WCW)
consisting of all possible 3-surfaces in H. “All possible” means that surfaces with arbitrary
many disjoint components and with arbitrary internal topology and also singular surfaces
topologically intermediate between two different manifold topologies are included. Particle
reactions are identified as topology changes [A69, A81, A93]. For instance, the decay of a
3-surface to two 3-surfaces corresponds to the decay A→ B+C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle
sector to two-particle sector. All coupling constants should result as predictions of the theory
since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong
form of General Coordinate Invariance has led to a rather detailed and in many respects un-
expected visions. This picture forces to give up the idea about smooth space-time surfaces
and replace space-time surface with a generalization of Feynman diagram in which vertices
represent the failure of manifold property. I have also introduced the word “world of classical
worlds” (WCW) instead of rather formal “configuration space”. I hope that “WCW” does
not induce despair in the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric
related differential operators, say Dirac operator, appearing in the field equations of the
theory 1

4. WCW Dirac operator appearing in Super-Virasoro conditions, imbedding space Dirac oper-
ator whose modes define the ground states of Super-Virasoro representations, Kähler-Dirac
operator at space-time surfaces, and the algebraic variant of M4 Dirac operator appearing in

1There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kähler metric
definable either in terms of Kähler function identified as Kähler action for Euclidian space-time regions or as anti-
commutators for WCW gamma matrices identified as conformal Noether super-charges associated with the second
quantized modified Dirac action consisting of string world sheet term and possibly also Kähler Dirac action in
Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT duality.
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propagators. The most ambitious dream is that zero energy states correspond to a complete
solution basis for the Dirac operator of WCW so that this classical free field theory would
dictate M-matrices defined between positive and negative energy parts of zero energy states
which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy
states. Given M-matrix in turn would decompose to a product of a hermitian square root of
density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative en-
ergy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in well-defined sense a square root of thermodynamics. The or-
thogonality and hermiticity of the M-matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quan-
tum TGD would reduce to group theory in well-defined sense.

In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained
by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also
the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and
would correspond to a hierarchy of CDs with the temporal distances between tips coming as
integer multiples of the CP2 time.

The M-matrices associated with CDs are obtained by a discrete scaling from the minimal
CD and characterized by integer n are naturally proportional to a representation matrix of
scaling: S(n) = Sn, where S is unitary S-matrix associated with the minimal CD [K91]. This
conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized
to integer power of S and represented as scaling with respect to the logarithm of the proper
time distance between the tips of CD.

U-matrix elements between M-matrices for various CDs are proportional to the inner products
Tr[S−n1 ◦HiHj ◦Sn2λ], where λ represents unitarily the discrete Lorentz boost relating the
moduli of the active boundary of CD and Hi form an orthonormal basis of Hermitian square
roots of density matrices. ◦ tells that S acts at the active boundary of CD only. It turns out
possible to construct a general representation for the U-matrix reducing its construction to
that of S-matrix. S-matrix has interpretation as exponential of the Virasoro generator L−1

of the Virasoro algebra associated with super-symplectic algebra.

5. By quantum classical correspondence the construction of WCW spinor structure reduces to
the second quantization of the induced spinor fields at space-time surface. The basic action
is so called modified Dirac action (or Kähler-Dirac action) in which gamma matrices are
replaced with the modified (Kähler-Dirac) gamma matrices defined as contractions of the
canonical momentum currents with the imbedding space gamma matrices. In this manner
one achieves super-conformal symmetry and conservation of fermionic currents among other
things and consistent Dirac equation. The Kähler-Dirac gamma matrices define as anti-
commutators effective metric, which might provide geometrization for some basic observables
of condensed matter physics. One might also talk about bosonic emergence in accordance
with the prediction that the gauge bosons and graviton are expressible in terms of bound
states of fermion and anti-fermion.

6. An important result relates to the notion of induced spinor connection. If one requires
that spinor modes have well-defined em charge, one must assume that the modes in the
generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic
2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed
neutrino generating super-symmetries forms an exception. The vanishing of also Z0 field is
possible for Kähler-Dirac action and should hold true at least above weak length scales. This
implies that string model in 4-D space-time becomes part of TGD. Without these conditions
classical weak fields can vanish above weak scale only for the GRT limit of TGD for which
gauge potentials are sums over those for space-time sheets.

The localization simplifies enormously the mathematics and one can solve exactly the Kähler-
Dirac equation for the modes of the induced spinor field just like in super string models.
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At the light-like 3-surfaces at which the signature of the induced metric changes from Eu-
clidian to Minkowskian so that

√
g4 vanishes one can pose the condition that the algebraic

analog of massless Dirac equation is satisfied by the nodes so that Kähler-Dirac action gives
massless Dirac propagator localizable at the boundaries of the string world sheets.

The evolution of these basic ideas has been rather slow but has gradually led to a rather
beautiful vision. One of the key problems has been the definition of Kähler function. Kähler
function is Kähler action for a preferred extremal assignable to a given 3-surface but what this
preferred extremal is? The obvious first guess was as absolute minimum of Kähler action but
could not be proven to be right or wrong. One big step in the progress was boosted by the idea
that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in
finite measurement resolution, which could be inherent property of the theory itself and imply
discretization at partonic 2-surfaces with discrete points carrying fermion number.

It took long time to realize that there is no discretization in 4-D sense - this would lead to
difficulties with basic symmetries. Rather, the discretization occurs for the parameters character-
izing co-dimension 2 objects representing the information about space-time surface so that they
belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic
2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself
approximates itself, one might say! This is of course nothing but strong form of holography.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the

√
g4 factorc coming from metric would be imaginary

so that one would obtain sum of real term identifiable as Kähler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of
Coulomb contribution to Kähler action is required and is true for all known extremals if one
makes a general ansatz about the form of classical conserved currents. The so called weak
form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D
terms to Chern-Simons terms. In this manner almost topological QFT results. But only
“almost” since the Lagrange multiplier term forcing electric-magnetic duality implies that
Chern-Simons action for preferred extremals depends on metric.

TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional config-
uration space (“world of classical worlds”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name “TGD as a gen-
eralized number theory”. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already, the
formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified
as sub-spaces of complexified classical number fields with Minkowskian signature of the metric
defined by the complexified inner product, and the notion of infinite prime.

1. p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers
might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical
identification mapping reals to p-adics and vice versa. The breakthrough came with the successful
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p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group.
Although the details of the calculations have varied from year to year, it was clear that p-adic
physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics,
but all elementary particle mass scales, to number theory if one assumes that primes near prime
powers of two are in a physically favored position. Why this is the case, became one of the key
puzzles and led to a number of arguments with a common gist: evolution is present already at
the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the
fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired “Universe as Computer” vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.

In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades
central problem in the frontier of mathematics and a lot of profound work has been done
along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly
the notion of algebraic continuation from the world of rationals belonging to the intersection
of real world and various p-adic worlds.

Despite various uncertainties, the number of the applications of the poorly defined p-adic
physics has grown steadily and the applications turned out to be relatively stable so that it was
clear that the solution to these problems must exist. It became only gradually clear that the
solution of the problems might require going down to a deeper level than that represented by reals
and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept
and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time,
imbedding space, and WCW.

The notion of p-adic manifold [K104] identified as p-adic space-time surface solving p-adic
analogs of field equations and having real space-time sheet as chart map provided a possible
solution of the basic challenge of relating real and p-adic classical physics. One can also speak of
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real space-time surfaces having p-adic space-time surfaces as chart maps (cognitive maps, “thought
bubbles” ). Discretization required having interpretation in terms of finite measurement resolution
is unavoidable in this approach and this leads to problems with symmetries: canonical identification
does not commute with symmetries.

It is now clear that much more elegant approach based on abstraction exists [K111]. The
map of real preferred extremals to p-adic ones is not induced from a local correspondence between
points but is global. Discretization occurs only for the parameters characterizing string world sheets
and partonic 2-surfaces so that they belong to some algebraic extension of rationals. Restriction to
these 2-surfaces is possible by strong form of holography. Adelization providing number theoretical
universality reduces to algebraic continuation for the amplitudes from this intersection of reality
and various p-adicities - analogous to a back of a book - to various number fields. There are no
problems with symmetries but canonical identification is needed: various group invariant of the
amplitude are mapped by canonical identification to various p-adic number fields. This is nothing
but a generalization of the mapping of the p-adic mass squared to its real counterpart in p-adic
mass calculations.

This leads to surprisingly detailed predictions and far reaching conjectures. For instance,
the number theoretic generalization of entropy concept allows negentropic entanglement central
for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or
Fig. ?? in the appendix of this book). One can also understand how preferred p-adic primes could
emerge as so called ramified primes of algebraic extension of rationals in question and characterizing
string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for
extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces
(imaginations) allowing also real continuation (realization of imagination) would be especially
large. These ramifications would be winners in the fight for number theoretical survival. Also a
generalization of p-adic length scale hypothesis emerges from NMP [K41].

The characteristic non-determinism of the p-adic differential equations suggests strongly that
p-adic regions correspond to “mind stuff”, the regions of space-time where cognitive representations
reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is
probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the
cognitive representations to derive information about the real physics. This view encouraged by
TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear
interpretation for the predictions of p-adic physics.

2. The role of classical number fields

The vision about the physical role of the classical number fields relies on certain speculative
questions inspired by the idea that space-time dynamics could be reduced to associativity or co-
associativity condition. Associativity means here associativity of tangent spaces of space-time
region and co-associativity associativity of normal spaces of space-time region.

1. Could space-time surfaces X4 be regarded as associative or co-associative (“quaternionic”
is equivalent with “associative” ) surfaces of H endowed with octonionic structure in the
sense that tangent space of space-time surface would be associative (co-associative with
normal space associative) sub-space of octonions at each point of X4 [K74]. This is certainly
possible and an interesting conjecture is that the preferred extremals of Kähler action include
associative and co-associative space-time regions.

2. Could the notion of compactification generalize to that of number theoretic compactifica-
tion in the sense that one can map associative (co-associative) surfaces of M8 regarded as
octonionic linear space to surfaces in M4 × CP2 [K74] ? This conjecture - M8 −H duality
- would give for M4 × CP2 deep number theoretic meaning. CP2 would parametrize asso-
ciative planes of octonion space containing fixed complex plane M2 ⊂ M8 and CP2 point
would thus characterize the tangent space of X4 ⊂M8. The point of M4 would be obtained
by projecting the point of X4 ⊂ M8 to a point of M4 identified as tangent space of X4.
This would guarantee that the dimension of space-time surface in H would be four. The
conjecture is that the preferred extremals of Kähler action include these surfaces.

3. M8−H duality can be generalized to a duality H → H if the images of the associative surface
in M8 is associative surface in H. One can start from associative surface of H and assume

http://tgdtheory.fi/appfigures/cat.jpg
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that it contains the preferred M2 tangent plane in 8-D tangent space of H or integrable
distribution M2(x) of them, and its points to H by mapping M4 projection of H point to
itself and associative tangent space to CP2 point. This point need not be the original one! If
the resulting surface is also associative, one can iterate the process indefinitely. WCW would
be a category with one object.

4. G2 defines the automorphism group of octonions, and one might hope that the maps of
octonions to octonions such that the action of Jacobian in the tangent space of associative
or co-associative surface reduces to that of G2 could produce new associative/co-associative
surfaces. The action of G2 would be analogous to that of gauge group.

5. One can also ask whether the notions of commutativity and co-commutativity could have
physical meaning. The well-definedness of em charge as quantum number for the modes of
the induced spinor field requires their localization to 2-D surfaces (right-handed neutrino is
an exception) - string world sheets and partonic 2-surfaces. This can be possible only for
Kähler action and could have commutativity and co-commutativity as a number theoretic
counterpart. The basic vision would be that the dynamics of Kähler action realizes number
theoretical geometrical notions like associativity and commutativity and their co-notions.

The notion of number theoretic compactification stating that space-time surfaces can be
regarded as surfaces of either M8 or M4 × CP2. As surfaces of M8 identifiable as space of hyper-
octonions they are hyper-quaternionic or co-hyper-quaternionic- and thus maximally associative
or co-associative. This means that their tangent space is either hyper-quaternionic plane of M8

or an orthogonal complement of such a plane. These surface can be mapped in natural manner to
surfaces in M4×CP2 [K74] provided one can assign to each point of tangent space a hyper-complex
plane M2(x) ⊂M4 ⊂M8. One can also speak about M8 −H duality.

This vision has very strong predictive power. It predicts that the preferred extremals of
Kähler action correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that
one can assign to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⊂
M4. As a consequence, the M4 projection of space-time surface at each point contains M2(x) and
its orthogonal complement. These distributions are integrable implying that space-time surface
allows dual slicings defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of
this kind of slicing was earlier deduced from the study of extremals of Kähler action and christened
as Hamilton-Jacobi structure. The physical interpretation of M2(x) is as the space of non-physical
polarizations and the plane of local 4-momentum.

Number theoretical compactification has inspired large number of conjectures. This includes
dual formulations of TGD as Minkowskian and Euclidian string model type theories, the precise
identification of preferred extremals of Kähler action as extremals for which second variation van-
ishes (at least for deformations representing dynamical symmetries) and thus providing space-time
correlate for quantum criticality, the notion of number theoretic braid implied by the basic dynam-
ics of Kähler action and crucial for precise construction of quantum TGD as almost-topological
QFT, the construction of WCW metric and spinor structure in terms of second quantized induced
spinor fields with modified Dirac action defined by Kähler action realizing the notion of finite
measurement resolution and a connection with inclusions of hyper-finite factors of type II1 about
which Clifford algebra of WCW represents an example.

The two most important number theoretic conjectures relate to the preferred extremals of
Kähler action. The general idea is that classical dynamics for the preferred extremals of Kähler
action should reduce to number theory: space-time surfaces should be either associative or co-
associative in some sense.

Associativity (co-associativity) would be that tangent (normal) spaces of space-time surfaces
associative (co-associative) in some sense and thus quaternionic (co-quaternionic). This can be
formulated in two manners.

1. One can introduce octonionic tangent space basis by assigning to the “free” gamma matri-
ces octonion basis or in terms of octonionic representation of the imbedding space gamma
matrices possible in dimension D = 8.

2. Associativity (quaternionicity) would state that the projections of octonionic basic vectors or
induced gamma matrices basis to the space-time surface generates associative (quaternionic)
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sub-algebra at each space-time point. Co-associativity is defined in analogous manner and
can be expressed in terms of the components of second fundamental form.

3. For gamma matrix option induced rather than Kähler-Dirac gamma matrices must be in
question since Kähler-Dirac gamma matrices can span lower than 4-dimensional space and
are not parallel to the space-time surfaces as imbedding space vectors.

3. Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy
defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for
the speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly repre-
sentable as surfaces geometrically, it was clear how TGD might be formulated as a generalized
number theory with infinite primes forming the bridge between classical and quantum such that
real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from alge-
braic physics as various completions of the algebraic extensions of rational (hyper-)quaternions and
(hyper-)octonions. Complete algebraic, topological and dimensional democracy would characterize
the theory.

The infinite primes at the first level of hierarchy, which represent analogs of bound states,
can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of
rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields.
The products of infinite primes in turn define more general algebraic extensions of rationals. The
interesting question concerns the physical interpretation of the higher levels in the hierarchy of
infinite primes and integers mappable to polynomials of n > 1 variables.

1.1.6 Hierarchy Of Planck Constants And Dark Matter Hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phases

D. Da Rocha and Laurent Nottale [E1] have proposed that Schrödinger equation with Planck
constant ~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c =

1). v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4.
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of v0 seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hy-
drodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some
levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets
in question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hgr. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hgr would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K66].

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
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carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative “pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Certain experimental findings suggest the identification heff = n× = hgr. The large value
of hgr can be seen as a manner to reduce the string tension of fermionic strings so that gravitational
(in fact all!) bound states can be described in terms of strings connecting the partonic 2-surfaces
defining particles (analogous to AdS/CFT description). The values heff/h = n can be interpreted
in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal
generators act as gauge symmetries only for a sub-algebras with conformal weights coming as
multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kähler-
Dirac action is present, part of the interior degrees of freedom associated with the Kähler-Dirac
part of conformal algebra become physical. A possible is that tfermionic oscillator operators
generate super-symmetries and sparticles correspond almost by definition to dark matter with
heff/h = n > 1. One implication would be that at least part if not all gravitons would be dark and
be observed only through their decays to ordinary high frequency graviton (E = hfhigh = heffflow)
of bunch of n low energy gravitons.

Hierarchy of Planck constants from the anomalies of neuroscience and biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10−10 times
lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck
constant that the energy of photons is above the thermal energy. The proposed interpretation was
as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter
with non-standard value of Planck constant. If only particles with the same value of Planck
constant can appear in the same vertex of Feynman diagram, the phases with different value of
Planck constant are dark relative to each other. The phase transitions changing Planck constant
can however make possible interactions between phases with different Planck constant but these
interactions do not manifest themselves in particle physics. Also the interactions mediated by
classical fields should be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis heff = hgr - at least for microscopic particles - implies that cyclotron
energies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
heff reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K57, K58, K93] ) support the view that dark
matter might be a key player in living matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple ~ = n~0 of the ordinary Planck constant ~0 is assigned with a multiple singular covering
of the imbedding space [K22]. One ends up to an identification of dark matter as phases with
non-standard value of Planck constant having geometric interpretation in terms of these coverings
providing generalized imbedding space with a book like structure with pages labelled by Planck
constants or integers characterizing Planck constant. The phase transitions changing the value of
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Planck constant would correspond to leakage between different sectors of the extended imbedding
space. The question is whether these coverings must be postulated separately or whether they are
only a convenient auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective.
Many-sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The
huge vacuum degeneracy of Kähler action implies that the relationship between gradients of the
imbedding space coordinates and canonical momentum currents is many-to-one: this was the very
fact forcing to give up all the standard quantization recipes and leading to the idea about physics
as geometry of the “world of classical worlds”. If one allows space-time surfaces for which all sheets
corresponding to the same values of the canonical momentum currents are present, one obtains
effectively many-sheeted covering of the imbedding space and the contributions from sheets to the
Kähler action are identical. If all sheets are treated effectively as one and the same sheet, the value
of Planck constant is an integer multiple of the ordinary one. A natural boundary condition would
be that at the ends of space-time at future and past boundaries of causal diamond containing the
space-time surface, various branches co-incide. This would raise the ends of space-time surface in
special physical role.

A more precise formulation is in terms of presence of large number of space-time sheets
connecting given space-like 3-surfaces at the opposite boundaries of causal diamond. Quantum
criticality presence of vanishing second variations of Kähler action and identified in terms of confor-
mal invariance broken down to to sub-algebras of super-conformal algebras with conformal weights
divisible by integer n is highly suggestive notion and would imply that n sheets of the effective
covering are actually conformal equivalence classes of space-time sheets with same Kähler action
and same values of conserved classical charges (see Fig. http://tgdtheory.fi/appfigures/

planckhierarchy.jpg or Fig. ?? the appendix of this book). n would naturally correspond the
value of heff and its factors negentropic entanglement with unit density matrix would be between
the n sheets of two coverings of this kind. p-Adic prime would be largest prime power factor of n.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)ew
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kähler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z0

field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like heff .

1.1.7 Twistors And TGD

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K76]. The
reason is that M4 and CP2 are completely exceptional in the sense that they are the only 4-D
manifolds allowing twistor space with Kähler structure [A63]. The twistor space of M4 × CP2 is
Cartesian product of those of M4 and CP2. The obvious idea is that space-time surfaces allowing
twistor structure if they are orientable are representable as surfaces in H such that the properly
induced twistor structure co-incides with the twistor structure defined by the induced metric. This
condition would define the dynamics, and the conjecture is that this dynamics is equivalent with
the identification of space-time surfaces as preferred extremals of Kähler action. The dynamics of
space-time surfaces would be lifted to the dynamics of twistor spaces, which are sphere bundles
over space-time surfaces. What is remarkable that the powerful machinery of complex analysis
becomes available.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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The condition that the basic formulas for the twistors in M8 serving as tangent space of
imbedding space generalize. This is the case if one introduces octonionic sigma matrices allow-
ing twistor representation of 8-momentum serving as dual for four-momentum and color quantum
numbers. The conditions that octonionic spinors are equivalent with ordinary requires that the
induced gamma matrices generate quaternionic sub-algebra at given point of string world sheet.
This is however not enough: the charge matrices defined by sigma matrices can also break asso-
ciativity and induced gauge fields must vanish: the CP2 projection of string world sheet would be
one-dimensional at most. This condition is symplectically invariant. Note however that for the
interior dynamics of induced spinor fields octonionic representations of Clifford algebra cannot be
equivalent with the ordinary one.

One can assign 4-momentum both to the spinor harmonics of the imbedding space rep-
resenting ground states of superconformal representations and to light-like boundaries of string
world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identifical by
quantum classical correspondence: this is nothing but a concretization of Equivalence Principle.
Also a connection with string model emerges.

Twistor approach developed rapidly during years. Witten’s twistor string theory general-
izes: the most natural counterpart of Witten’s twistor strings is partonic 2-surface. The notion
of positive Grassmannian has emerged and TGD provides a possible generalization and number
theoretic interpretation of this notion. TGD generalizes the observation that scattering amplitudes
in twistor Grassmann approach correspond to representations for permutations. Since 2-vertex is
the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering amplitudes
are representations for braidings. Braid interpretation gives further support for the conjecture that
non-planar diagrams can be reduced to ordinary ones by a procedure analogous to the construction
of braid (knot) invariants by gradual un-braiding (un-knotting).

1.2 Bird’s Eye Of View About The Topics Of The Book

This book is devoted to a detailed representation of what quantum TGD in its recent form. Quan-
tum TGD relies on two different views about physics: physics as an infinite-dimensional spinor
geometry and physics as a generalized number theory. The most important guiding principle is
quantum classical correspondence whose most profound implications follow almost trivially from
the basic structure of the classical theory forming an exact part of quantum theory. A further
mathematical guideline is the mathematics associated with hyper-finite factors of type II1 about
which the spinors of the world of classical worlds represent a canonical example.

1. Quantum classical correspondence

Quantum classical correspondence has turned out to be the most important guiding principle
concerning the interpretation of the theory.

1. Quantum classical correspondence and the properties of the simplest extremals of Kähler
action have served as the basic guideline in the attempts to understand the new physics
predicted by TGD. The most dramatic predictions follow without even considering field
equations in detail by using quantum classical correspondence and form the backbone of
TGD and TGD inspired theory of living matter in particular.

The notions of many-sheeted space-time, topological field quantization and the notion of
field/magnetic body, follow from simple topological considerations. The observation that
space-time sheets can have arbitrarily large sizes and their interpretation as quantum co-
herence regions forces to conclude that in TGD Universe macroscopic and macro-temporal
quantum coherence are possible in arbitrarily long scales.

2. Also long ranged classical color and electro-weak fields are an unavoidable prediction It
however took a considerable time to make the obvious conclusion: TGD Universe is fractal
containing fractal copies of standard model physics at various space-time sheets and labeled
by the collection of p-adic primes assignable to elementary particles and by the level of dark
matter hierarchy characterized partially by the value of Planck constant labeling the pages of
the book like structure formed by singular covering spaces of the imbedding space M4×CP2

glued together along a four-dimensional back. Particles at different pages are dark relative to
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each other since purely local interactions defined in terms of the vertices of Feynman diagram
involve only particles at the same page.

3. The new view about energy and time finding a justification in the framework of zero energy
ontology means that the sign of the inertial energy depends on the time orientation of the
space-time sheet and that negative energy space-time sheets serve as correlates for communi-
cations to the geometric future. This alone leads to profoundly new views about metabolism,
long term memory, and realization of intentional action.

4. The general properties of Kähler action, in particular its vacuum degeneracy and the failure
of the classical determinism in the conventional sense, have also strong implications. Space-
time surface as a generalization of Bohr orbit provides not only a representation of quantum
states but also of sequences of quantum jumps and thus contents of consciousness. Vacuum
degeneracy implies spin glass degeneracy in 4-D sense reflecting quantum criticality which is
the fundamental characteristic of TGD Universe.

5. The detailed study of the simplest extremals of Kähler action interpreted as correlates for
asymptotic self organization patterns provides additional insights. CP2 type extremals repre-
senting elementary particles, cosmic strings, vacuum extremals, topological light rays (“mass-
less extremal”, ME), flux quanta of magnetic and electric fields represent the basic extremals.
Pairs of wormhole throats identifiable as parton pairs define a completely new kind of particle
carrying only color quantum numbers in ideal case and I have proposed their interpretation
as quantum correlates for Boolean cognition. MEs and flux quanta of magnetic and electric
fields are of special importance in living matter.

Topological light rays have interpretation as space-time correlates of “laser beams” of ordi-
nary or dark photons or their electro-weak and gluonic counterparts. Neutral MEs carrying
em and Z0 fields are ideal for communication purposes and charged W MEs ideal for quan-
tum control. Magnetic flux quanta containing dark matter are identified as intentional agents
quantum controlling the behavior of the corresponding biological body parts utilizing nega-
tive energy W MEs. Bio-system in turn is populated by electrets identifiable as electric flux
quanta.

2. Physics as infinite-dimensional geometry in the “world of classical worlds”

Physics as infinite-dimensional Kähler geometry of the “world of classical worlds” with
classical spinor fields representing the quantum states of the universe and gamma matrix algebra
geometrizing fermionic statistics is the first vision.

The mere existence of infinite-dimensional non-flat Kähler geometry has impressive impli-
cations. Configuration space must decompose to a union of infinite-dimensional symmetric spaces
labelled by zero modes having interpretation as classical dynamical degrees of freedom assumed
in quantum measurement theory. Infinite-dimensional symmetric space has maximal isometry
group identifiable as a generalization of Kac Moody group obtained by replacing finite-dimensional
group with the group of canonical transformations of δM4

+ ×CP2, where δM4
+ is the boundary of

4-dimensional future light-cone. The infinite-dimensional Clifford algebra of configuration space
gamma matrices in turn can be expressed as direct sum of von Neumann algebras known as hyper-
finite factors of type II1 having very close connections with conformal field theories, quantum and
braid groups, and topological quantum field theories.

3. Physics as a generalized number theory

Second vision is physics as a generalized number theory. This vision forces to fuse real
physics and various p-adic physics to a single coherent whole having rational physics as their
intersection and poses extremely strong conditions on real physics.

A further aspect of this vision is the reduction of the classical dynamics of space-time sheets
to number theory with space-time sheets identified as what I have christened hyper-quaternionic
sub-manifolds of hyper-octonionic imbedding space. Field equations would state that space-time
surfaces are Kähler calibrations with Kähler action density reducing to a closed 4-form at space-time
surfaces. Hence TGD would define a generalized topological quantum field theory with conserved
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Noether charges (in particular rest energy) serving as generalized topological invariants having
extremum in the set of topologically equivalent 3-surfaces.

Infinite primes, integers, and rationals define the third aspect of this vision. The construction
of infinite primes is structurally similar to a repeated second quantization of an arithmetic quantum
field theory and involves also bound states. Infinite rationals can be also represented as space-time
surfaces somewhat like finite numbers can be represented as space-time points.

4. The organization of the book

The first part of the book describes basic quantum TGD in its recent form.

1. The properties of the preferred extremals of Kähler action are crucial for the construction
and the discussion of known extremals is therefore included.

2. General coordinate invariance and generalized super-conformal symmetries - the latter present
only for 4-dimensional space-time surfaces and for 4-D Minkowski space - define the basic
symmetries of quantum TGD.

3. In zero energy ontology S-matrix is replaced with M-matrix and identified as time-like en-
tanglement coefficients between positive and negative energy parts of zero energy states
assignable to the past and future boundaries of 4-surfaces inside causal diamond defined as
intersection of future and past directed light-cones. M-matrix is a product of diagonal den-
sity matrix and unitary S-matrix and there are reasons to believe that S-matrix is universal.
Generalized Feynman rules based on the generalization of Feynman diagrams obtained by
replacing lines with light-like 3-surfaces and vertices with 2-D surfaces at which the lines
meet.

4. A category theoretical formulation of quantum TGD is considered. Finite measurement
resolution realized in terms of a fractal hierarchy of causal diamonds inside causal diamonds
leads to a stringy formulation of quantum TGD involving effective replacement of the 3-
D light-like surface with a collection of braid strands representing the ends of strings. A
formulation in terms of category theoretic concepts is proposed and leads to a hierarchy of
algebras forming what is known as operads.

5. Twistors emerge naturally in TGD framework and could allow the formulation of low energy
limit of the theory in the approximation that particles are massless. The replacement of
massless plane waves with states for which amplitudes are localized are light-rays is suggestive
in twistor theoretic framework. Twistors could allow also a dual representation of space-time
surfaces in terms of surfaces of X ×CP2, where X is 8-D twistor space or its 6-D projective
variant. These surfaces would have dimension higher than four in non-perturbative phases
meaning an analogy with branes. In full theory a massive particles must be included but
represent a problem in approach based on standard twistors. The interpretation of massive
particles in 4-D sense as massless particles in 8-D sense would resolve the problem and requires
a generalization of twistor concept involving in essential manner the triality of vector and
spinor representations of SO(7, 1).

6. In TGD Universe bosons are in well-defined sense bound states of fermion and anti-fermion.
This leads to the notion of bosonic emergence meaning that the fundamental action is just
Dirac action coupled to gauge potentials and bosonic action emerges as part of effective
action as one functionally integrates over the spinor fields. This kind of approach predicts
the evolution of all coupling constants if one is able to fix the necessary UV cutoffs of mass
and hyperbolic angle in loop integrations. The guess for the hyperbolic cutoff motivated by
the geometric view about finite measurement resolution predicts coupling constant evolution
which is consistent with that predicted by standard model. The condition that all N-vertices
defined by fermiomic loops vanish for N > 3 when incoming particles are massless gives
hopes of fixing completely the hyperbolic cutoff from fundamental principles.
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1.3 Sources

The eight online books about TGD [K83, K62, K101, K71, K50, K100, K99, K69] and nine online
books about TGD inspired theory of consciousness and quantum biology [K75, K9, K56, K8, K33,
K38, K40, K68, K96] are warmly recommended for the reader willing to get overall view about
what is involved.

My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In
particular, a TGD glossary at http://tinyurl.com/yd6jf3o7).

I have published articles about TGD and its applications to consciousness and living mat-
ter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in
Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and
Exploration (http://tinyurl.com/yba4f672), and DNA Decipher Journal (http://tinyurl.
com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles pub-
lished at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing
a communication channel, whose importance one cannot overestimate.

1.4 The contents of the book

1.4.1 Part I: The recent view about field equations

Basic extremals of the Kähler action

The physical interpretation of the Kähler function and the TGD based space-time concept are
the basic themes of this book. The aim is to develop what might be called classical TGD at
fundamental level. The strategy is simple: try to guess the general physical consequences of the
geometry of the “world of classical worlds” (WCW) and of the TGD based gauge field concept
and study the simplest extremals of Kähler action and try to abstract general truths from their
properties.

The fundamental underlying assumptions are the following:

1. The notion of preferred extremals emerged during the period when I believed that positive en-
ergy ontology applies in TGD. In this framework the 4-surface associated with given 3-surface
defined by Kähler function K as a preferred extremal of the Kähler action is identifiable as
a classical space-time. Number theoretically preferred extremals would decompose to asso-
ciative and co-associative regions. The reduction of the classical theory to the level of the
Kähler-Dirac action implies that the preferred extremals are critical in the sense of allowing
infinite number of deformations for which the second variation of Kähler action vanishes [?]
It is not clear whether criticality and associativeity are consistent with each other. A further
natural conjecture is that these critical deformations should act as conformal symmetries
of light-like wormhole contacts at which the signature of the induced metric changes and
preserve their light-likeness.

Due to the preferred extremal property classical space-time can be also regarded as a general-
ized Bohr orbit - at least in positive energy ontology - so that the quantization of the various
parameters associated with a typical extremal of the Kähler action is expected to take place
in general. In TGD quantum states corresponds to quantum superpositions of these classical
space-times so that this classical space-time is certainly not some kind of effective quantum
average space-time.

2. In ZEO one can also consider the possibility that there is no selection of preferred extremal at
all! The two space-like 3-surfaces at the ends of CD define the space-time surface connecting
them apart from conformal symmetries acting as critical deformations. If 3-surface is iden-
tified as union of both space-like 3-surfaces and the light-like surfaces defining parton orbits
connecting then, the conformal equivalence class of the preferred extremal is unique without
any additional conditions! This conforms with the view about hierarchy of Planck constants
requiring that the conformal equivalence classes of light-like surfaces must be counted as
physical degrees of freedom and also with the idea that these surface together define ana-
log for the Wilson loop. Actually all the discussions of this chapter are about extremals in
general so that the attribute “preferred” is not relevant for them.

http://tinyurl.com/ybv8dt4n
http://tinyurl.com/yd6jf3o7
http://tinyurl.com/ycyrxj4o
http://tinyurl.com/ycvktjhn
http://tinyurl.com/yba4f672
http://tinyurl.com/y9z52khg
http://tinyurl.com/y9z52khg
http://tinyurl.com/ybv8dt4n
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3. The bosonic vacuum functional of the theory is the exponent of the Kähler function ΩB =
exp(K). This assumption is the only assumption about the dynamics of the theory and is
necessitated by the requirement of divergence cancellation in perturbative approach.

4. Renormalization group invariance and spin glass analogy. The value of the Kähler coupling
strength is such that the vacuum functional exp(K) is analogous to the exponent exp(H/T )
defining the partition function of a statistical system at critical temperature. This allows
Kähler coupling strength to depend on zero modes of the configuration space metric and as
already found there is very attractive hypothesis determining completely the dependence of
the Kähler coupling strength on the zero modes based on p-adic considerations motivated
by the spin glass analogy. Coupling constant evolution would be replaced by effective dis-
crete evolution with respect to p-adic length scale and angle variable defined by the phases
appearing in the algebraic extension of p-adic numbers in question.

5. In spin degrees of freedom the massless Dirac equation for the induced spinor fields with
Kähler-Dirac action defines classical theory: this is in complete accordance with the proposed
definition of the WCW spinor structure.

The geometrization of the classical gauge fields in terms of the induced gauge field concept is
also important concerning the physical interpretation. Electro-weak gauge potentials correspond
to the space-time projections of the spinor connection of CP2, gluonic gauge potentials to the
projections of the Killing vector fields of CP2 and gravitational field to the induced metric. The
topics to be discussed in this part of the book are summarized briefly in the following.

What the selection of preferred extremals of Kähler action might mean has remained a long
standing problem and real progress occurred only quite recently (I am writing this towards the
end of year 2003).

1. The vanishing of Lorentz 4-force for the induced Kähler field means that the vacuum 4-
currents are in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions
of field equations which inspires the hypothesis that all preferred extremals of Kähler action
satisfy the condition. The vanishing of the Lorentz 4-force in turn implies local conserva-
tion of the ordinary energy momentum tensor. The corresponding condition is implied by
Einstein’s equations in General Relativity. The hypothesis would mean that the solutions of
field equations are what might be called generalized Beltrami fields. The condition implies
that vacuum currents can be non-vanishing only provided the dimension DCP2

of the CP2

projection of the space-time surface is less than four so that in the regions with DCP2
= 4,

Maxwell’s vacuum equations are satisfied.

2. The hypothesis that Kähler current is proportional to a product of an arbitrary function ψ
of CP2 coordinates and of the instanton current generalizes Beltrami condition and reduces
to it when electric field vanishes. Instanton current has a vanishing divergence for DCP2

<
4, and Lorentz 4-force indeed vanishes. Four 4-dimensional projection the scalar function
multiplying the instanton current can make it divergenceless. The remaining task would be
the explicit construction of the imbeddings of these fields and the demonstration that field
equations can be satisfied.

3. By quantum classical correspondence the non-deterministic space-time dynamics should
mimic the dissipative dynamics of the quantum jump sequence. Beltrami fields appear in
physical applications as asymptotic self organization patterns for which Lorentz force and
dissipation vanish. This suggests that preferred extemals of Kähler action correspond to
space-time sheets which at least asymptotically satisfy the generalized Beltrami conditions
so that one can indeed assign to the final 3-surface a unique 4-surface apart from effects
related to non-determinism. Preferred extremal property abstracted to purely algebraic gen-
eralized Beltrami conditions makes sense also in the p-adic context.

This chapter is mainly devoted to the study of the basic extremals of the Kähler action
besides the detailed arguments supporting the view that the preferred extrema satisfy generalized
Beltrami conditions at least asymptotically.
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The newest results discussed in the last section about the weak form of electric-magnetic
duality suggest strongly that Beltrami property is general and together with the weak form of
electric-magnetic duality allows a reduction of quantum TGD to almost topological field theory
with Kähler function allowing expression as a Chern-Simons term.

The surprising implication of the duality is that Kähler form of CP2 must be replaced with
that for S2×CP2 in order to obtain a WCW metric which is non-trivial in M4 degrees of freedom.
This modification implies much richer vacuum structure than the original Kähler action which is a
good news as far as the description of classical gravitational fields in terms of small deformations
of vacuum extremals with the four-momentum density of the topologically condensed matter given
by Einstein’s equations is considered. The breaking of Lorentz invariace from SO(3, 1) to SO(3) is
implied already by the geometry of CD but is extremely small for a given causal diamond (CD).
Since a wave function over the Lorentz boosts and translates of CD is allowed, there is no actual
breaking of Poincare invariance at the level of the basic theory. Beltrami property leads to a
rather explicit construction of the general solution of field equations based on the hydrodynamic
picture implying that single particle quantum numbers are conserved along flow lines defined by
the instanton current. The construction generalizes also to the fermionic sector.

About Identification of the Preferred extremals of Kähler Action

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD.
There are pressing motivations for understanding what the attribute “preferred” really means.
Symmetries give a clue to the problem. The conformal invariance of string models naturally
generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody
type algebra) characterized by two complex coordinates and therefore explaining naturally the
effective 2-dimensionality [K89]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two
space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A
natural looking condition is that the symplectic Noether charges associated with a sub-algebra
of symplectic algebra with conformal weights n-multiples of the weights of the entire algebra
vanish for preferred extremals. These conditions would be classical counterparts the the condition
that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of
super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of
hierarchy of Planck constants heff = n × h identified as a hierarchy of dark matter. n could be
interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets
connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean
or imply. The weak form of electric-magnetic duality combined with the assumption that the
contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals
implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at
the light-like orbits of wormhole throats at which the signature of the induced metric changes
its signature from Minkowskian to Euclidian. In regions with 4-D CP2 projection (wormhole
contacts) also a 3-D contribution not assignable to the boundary of the region might be possible.
These conditions pose strong physically feasible conditions on extremals and might be true for
preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space
of given point of space-time surface is associative and thus quaternionic. Also the formulation in
terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So
called M8−H duality is a variant of this vision and would mean that one can map associative/co-
associative space-time surfaces from M8 to H and also iterate this mapping from H to H to
generate entire category of preferred extremals. The signature of M4 is a general technical prob-
lem. For instance, the holomorphy in 2 complex variables could correspond to what I have called
Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in
Minkowskian signature.

In this chapter various views about preferred extremal property are discussed.
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1.4.2 WCW Spinor Structure

Quantum TGD should be reducible to the classical spinor geometry of the configuration space
(“world of classical worlds” (WCW)). The possibility to express the components of WCW Kähler
metric as anti-commutators of WCW gamma matrices becomes a practical tool if one assumes
that WCW gamma matrices correspond to Noether super charges for super-symplectic algebra of
WCW. The possibility to express the Kähler metric also in terms of Kähler function identified as
Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT duality.

Physical states should correspond to the modes of the WCW spinor fields and the identifi-
cation of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW
spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion
number. Concerning the construction of the WCW spinor structure there are some important
clues.

1. Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can
be understood geometrically in terms of the WCW spinor structure in the sense that the anti-
commutation relations for WCW gamma matrices require anti-commutation relations for the os-
cillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely re-
lated to the WCW spinor structure. Ramond model has as its basic field the anti-commuting
field Γk(x), whose Fourier components are analogous to the gamma matrices of the WCW
and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that
the complexified gamma matrices of the WCW are analogous to spin 3/2 fields and therefore
expressible in terms of the fermionic oscillator operators so that their anti-commutativity
naturally derives from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the “orbital” degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition of
the WCW spinor structure somehow. The properties of the modified massless Dirac operator
associated with the induced spinor structure are indeed very physical. The modified massless
Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton
numbers. The differences between quarks and leptons result from the different couplings to
the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and/or its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
the success of 10-dimensional super string models for which the physical degrees of freedom
effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB , where JAB denotes the matrix elements of the Kähler form of the WCW.
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The presence of the Hermitian conjugation is necessary because WCW gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in
the complex coordinates. The realization of this delicacy is necessary in order to understand
how the square of the WCW Dirac operator comes out correctly.

2. Kähler-Dirac equation for induced spinor fields

Super-symmetry between fermionic and and WCW degrees of freedom dictates that Kähler-
Dirac action is the unique choice for the Dirac action

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking effects since induce W fields and possibly also Z0 field above weak scale, vahish at
these surfaces.

The condition that also spinor dynamics is associative suggests strongly that the localization
to 2-D surface occurs always (for right-handed neutrino the above conditions does not apply
this). The induced gauge potentials are the possible source of trouble but the holomorphy of
spinor modes completely analogous to that encountered in string models saves the situation.
Whether holomorphy could be replaced with its quaternionic counterpart in Euclidian regions
is not clear (this if W fields vanish at the entire space-time surface so that 4-D modes are
possible). Neither it is clear whether the localization to 2-D surfaces occurs also in Euclidian
regions with 4-D CP2 projection.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac
equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the Kähler-Dirac operator generate badly broken super-symmetries.

3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets.
Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing CP2 part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the CP2 part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry. This super-symmetry seems however to differ from the ordinary
one in that νR is expected to behave like a passive spectator in the scattering. Also for
the left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or CP2 like inside the world sheet.

awcwspin
Quantum TGD should be reducible to the classical spinor geometry of the configuration

space (“world of classical worlds” (WCW)). The possibility to express the components of WCW
Kähler metric as anti-commutators of WCW gamma matrices becomes a practical tool if one
assumes that WCW gamma matrices correspond to Noether super charges for super-symplectic
algebra of WCW. The possibility to express the Kähler metric also in terms of Kähler function
identified as Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT
duality.
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Physical states should correspond to the modes of the WCW spinor fields and the identifi-
cation of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW
spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion
number. Concerning the construction of the WCW spinor structure there are some important
clues.

1. Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can
be understood geometrically in terms of the WCW spinor structure in the sense that the anti-
commutation relations for WCW gamma matrices require anti-commutation relations for the os-
cillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely re-
lated to the WCW spinor structure. Ramond model has as its basic field the anti-commuting
field Γk(x), whose Fourier components are analogous to the gamma matrices of the WCW
and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that
the complexified gamma matrices of the WCW are analogous to spin 3/2 fields and therefore
expressible in terms of the fermionic oscillator operators so that their anti-commutativity
naturally derives from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the “orbital” degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition of
the WCW spinor structure somehow. The properties of the modified massless Dirac operator
associated with the induced spinor structure are indeed very physical. The modified massless
Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton
numbers. The differences between quarks and leptons result from the different couplings to
the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and/or its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
the success of 10-dimensional super string models for which the physical degrees of freedom
effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB , where JAB denotes the matrix elements of the Kähler form of the WCW.
The presence of the Hermitian conjugation is necessary because WCW gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in
the complex coordinates. The realization of this delicacy is necessary in order to understand
how the square of the WCW Dirac operator comes out correctly.

2. Kähler-Dirac equation for induced spinor fields

Super-symmetry between fermionic and and WCW degrees of freedom dictates that Kähler-
Dirac action is the unique choice for the Dirac action
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There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking effects since induce W fields and possibly also Z0 field above weak scale, vahish at
these surfaces.

The condition that also spinor dynamics is associative suggests strongly that the localization
to 2-D surface occurs always (for right-handed neutrino the above conditions does not apply
this). The induced gauge potentials are the possible source of trouble but the holomorphy of
spinor modes completely analogous to that encountered in string models saves the situation.
Whether holomorphy could be replaced with its quaternionic counterpart in Euclidian regions
is not clear (this if W fields vanish at the entire space-time surface so that 4-D modes are
possible). Neither it is clear whether the localization to 2-D surfaces occurs also in Euclidian
regions with 4-D CP2 projection.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac
equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the Kähler-Dirac operator generate badly broken super-symmetries.

3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets.
Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing CP2 part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the CP2 part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry. This super-symmetry seems however to differ from the ordinary
one in that νR is expected to behave like a passive spectator in the scattering. Also for
the left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or CP2 like inside the world sheet.

1.4.3 Recent View about Kähler Geometry and Spin Structure of ”World
of Classical Worlds”

The construction of Kähler geometry of WCW (“world of classical worlds”) is fundamental to
TGD program. I ended up with the idea about physics as WCW geometry around 1985 and made
a breakthrough around 1990, when I realized that Kähler function for WCW could correspond
to Kähler action for its preferred extremals defining the analogs of Bohr orbits so that classical
theory with Bohr rules would become an exact part of quantum theory and path integral would be
replaced with genuine integral over WCW. The motivating construction was that for loop spaces
leading to a unique Kähler geometry. The geometry for the space of 3-D objects is even more
complex than that for loops and the vision still is that the geometry of WCW is unique from the
mere existence of Riemann connection.

This chapter represents the updated version of the construction providing a solution to the
problems of the previous construction. The basic formulas remain as such but the expressions for
WCW super-Hamiltonians defining WCW Hamiltonians (and matrix elements of WCW metric)
as their anticommutator are replaced with those following from the dynamics of the Kähler-Dirac
action.
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Can one apply Occam’s razor as a general purpose debunking argument to TGD?

Occarm’s razor have been used to debunk TGD. The following arguments provide the information
needed by the reader to decide himself. Considerations are at three levels.

The level of “world of classical worlds” (WCW) defined by the space of 3-surfaces endowed
with Kähler structure and spinor structure and with the identification of WCW space spinor fields
as quantum states of the Universe: this is nothing but Einstein’s geometrization program applied
to quantum theory. Second level is space-time level.

Space-time surfaces correspond to preferred extremals of Käction in M4×CP2. The number
of field like variables is 4 corresponding to 4 dynamically independent imbedding space coordinates.
Classical gauge fields and gravitational field emerge from the dynamics of 4-surfaces. Strong
form of holography reduces this dynamics to the data given at string world sheets and partonic
2-surfaces and preferred extremals are minimal surface extremals of Kähler action so that the
classical dynamics in space-time interior does not depend on coupling constants at all which are
visible via boundary conditions only. Continuous coupling constant evolution is replaced with a
sequence of phase transitions between phases labelled by critical values of coupling constants: loop
corrections vanish in given phase. Induced spinor fields are localized at string world sheets to
guarantee well-definedness of em charge.

At imbedding space level the modes of imbedding space spinor fields define ground states
of super-symplectic representations and appear in QFT-GRT limit. GRT involves post-Newtonian
approximation involving the notion of gravitational force. In TGD framework the Newtonian force
correspond to a genuine force at imbedding space level.

I was also asked for a summary about what TGD is and what it predicts. I decided to add
this summary to this chapter although it is goes slightly outside of its title.

1.4.4 Part II: General Theory

Construction of Quantum Theory: Symmetries

This chapter provides a summary about the role of symmetries in the construction of quantum
TGD. In fact, the general definition of geometry is as a structure characterized by given symmetries.
The discussions are based on the general vision that quantum states of the Universe correspond to
the modes of classical spinor fields in the “world of the classical worlds” (WCW) identified as the
infinite-dimensional WCW of light-like 3-surfaces of H = M4×CP2 (more or less-equivalently, the
corresponding 4-surfaces defining generalized Bohr orbits). The following topics are discussed on
basis of this vision.

1. Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to WCW geometry and spinor
structure. The geometrization of loop spaces inspires the idea that the mere existence of
Riemann connection fixes WCW Kähler geometry uniquely. Accordingly, WCW can be
regarded as a union of infinite-dimensional symmetric spaces labeled by zero modes labeling
classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the WCW geometry deriving from the light-likeness of 3-surfaces and
from the special conformal properties of the boundary of 4-D light-cone would guarantee the
maximal isometry group necessary for the symmetric space property. Quantum criticality is
the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of TGD
uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution of
coupling constants.

2. WCW spinors correspond to Fock states and anti-commutation relations for fermionic os-
cillator operators correspond to anti-commutation relations for the gamma matrices of the
WCW. WCW gamma matrices contracted with Killing vector fields give rise to a super-
symplectic algebra which together with Hamiltonians of the WCW forms what I have used
to call super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have
no electroweak couplings. In the case of hadrons super-symplectic quanta correspond to what
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has been identified as non-perturbative sector of QCD: they define TGD correlate for the
degrees of freedom assignable to hadronic strings. They are responsible for the most of the
mass of hadron and resolve spin puzzle of proton.

3. Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to
light-like 3-surfaces and together these algebras extend the conformal symmetries of string
models to dynamical conformal symmetries instead of mere gauge symmetries. The con-
struction of the representations of these symmetries is one of the main challenges of quantum
TGD. Modular invariance is one aspect of conformal symmetries and plays a key role in
the understanding of elementary particle vacuum functionals and the description of family
replication phenomenon in terms of the topology of partonic 2-surfaces.

4. Kähler-Dirac equation (or Kähler-Dirac equation) gives also rise to a hierarchy super-conformal
algebras assignable to zero modes. These algebras follow from the existence of conserved
fermionic currents. The corresponding deformations of the space-time surface correspond to
vanishing second variations of Kähler action and provide a realization of quantum criticality.
This led to a breakthrough in the understanding of the Kähler-Dirac action via the addi-
tion of a measurement interaction term to the action allowing to obtain among other things
stringy propagator and the coding of quantum numbers of super-conformal representations
to the geometry of space-time surfaces required by quantum classical correspondence.

A crucial feature of the Kähler-Dirac equation is the localization of the modes to 2-D surfaces
with vanishing induced W fields (this in generic situation and for all modes but covariantly
constant right-handed neutrino): this is needed in order to have modes with well-defined em
charge. Also Z0 fields can be vanish and is expected to do so - at least above weak scale.
This implies that all elementary particles are string like objects in very concrete sense.

2. p-adic physics and p-adic variants of basic symmetries

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding
of elementary particle masses using only super-conformal symmetries and p-adic thermodynamics.
The need to fuse real physics and various p-adic physics to single coherent whole led to a gen-
eralization of the notion of number obtained by gluing together reals and p-adics together along
common rationals and algebraics. The interpretation of p-adic space-time sheets is as correlates for
cognition and intentionality. p-Adic and real space-time sheets intersect along common rationals
and algebraics and the subset of these points defines what I call number theoretic braid in terms of
which both WCW geometry and S-matrix elements should be expressible. Thus one would obtain
number theoretical discretization which involves no adhoc elements and is inherent to the physics
of TGD.

3. Hierarchy of Planck constants and dark matter hierarchy

The realization for the hierarchy of Planck constants proposed as a solution to the dark
matter puzzle leads to a profound generalization of quantum TGD through a generalization of the
notion of imbedding space to characterize quantum criticality. The resulting space has a book like
structure with various almost-copies of the imbedding space representing the pages of the book
meeting at quantum critical sub-manifolds. A particular page of the book can be seen as an n-
fold singular covering or factor space of CP2 or of a causal diamond (CD) of M4 defined as an
intersection of the future and past directed light-cones. Therefore the cyclic groups Zn appear as
discrete symmetry groups. The extension of imbedding space can be seen as a formal tool allowing
an elegant description of the multi-sheetednes due to the non-determinism of Kähler action. At
the space-like ends the sheets fuse together so that a singular covering is in question.

The original intuition was the the space-time would be n-sheeted for heff = n. Quantum
criticality expected on basis of the vacuum degeneracy of Kähler action suggests that conformal
symmetries act as critical deformations respecting the light-likeness of partonic orbits at which the
signature of the induced metric changes from Minkowskian to Euclidian. Therefore one would have
n conformal equivalence classes of physically equivalent space-time sheets. A hierarchy of breakings
of conformal symmetry is expected on basis of ordinary catastrophe theory. These breakings would
correspond to the hierarchy defined by the sub-algebras of conformal algebra or associated algebra
for which conformal weights are divisible by n. This defines infinite number of inclusion hierarchies
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.. ⊂ C(n1) ⊂ C(n3)... such that ni+1 divides ni. These hierarchies could correspond to inclusion
hierarchies of hyper-finite factors and conformal algebra acting as gauge transformations would
naturally define the notion of finite measurement resolution.

4. Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical
symmetries are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids - ends of string
world sheets - can be assigned with the roots of a polynomial with suggests the interpretation
corresponding Galois groups as purely number theoretical symmetries of quantum TGD.
Galois groups are subgroups of the permutation group S∞ of infinitely manner objects acting
as the Galois group of algebraic numbers. The group algebra of S∞ is HFF which can be
mapped to the HFF defined by configuration space spinors. This picture suggest a number
theoretical gauge invariance stating that S∞ acts as a gauge group of the theory and that
global gauge transformations in its completion correspond to the elements of finite Galois
groups represented as diagonal groups of G×G× .... of the completion of S∞.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields, actu-
ally their complexifications. In particular, SU(3) acts as subgroup of octonion automorphisms
leaving invariant preferred imaginary unit. If space-time surfaces are hyper-quaternionic
(meaning that the octonionic counterparts of the Kähler-Dirac gamma matrices span com-
plex quaternionic sub-algebra of octonions) and contain at each point a preferred plane M2

of M4, one ends up with M8 − H duality stating that space-time surfaces can be equiv-
alently regarded as surfaces in M8 or M4 × CP2. One can actually generalize M2 to a
two-dimensional Minkowskian sub-manifold of M4. One ends up with quantum TGD by
considering associative sub-algebras of the local octonionic Clifford algebra of M8 or H. so
that TGD could be seen as a generalized number theory.

Zero Energy Ontology and Matrices

During years the basic mathematical and conceptual building bricks of quantum TGD have become
rather obvious.

One important building brick is Zero Energy Ontology (ZEO). ZEO forces to generalize the
notion of S-matrix by introducing M-matrices and U-matrix and allows a new view about observer
based on TGD inspired theory of consciousness.

Second building brick consists of various hierarchies and connections between them. There
is the hierarchy of quantum criticalities for super-symplectic algebra and its Yangian extension
acting as a spectrum generating algebra. This hierarchy is closely related to the hierarchy of
Planck constants heff = n×h. The hierarchies of criticalities correspond also to fractal hierarchies
of breakings of super-symplectic gauge conformal symmetry: only the sub-algebra isomorphic to
the original gauge algebra acts as gauge algebra after the breaking. At each step one criticality
is reduced and the number of physical degrees of freedom increases. There is also a natural
connection between these hierarchies with hierarchies of hyperfinite factors of type II1 (HFFs)
and their inclusions providing a description for the notion of measurement resolution. Also the
construction of zero energy states using super-symplectic Yangian provides a concrete realization
for the notion of finite measurement resolution in the structure of zero energy states and manifesting
in the structure of space-time surfaces serving as classical correlates of quantum states.

There are also other important building bricks but in this chapter only ZEO and hyper-finite
factors are discussed.

What Scattering Amplitudes Should Look Like?

During years I have spent a lot of time and effort in attempts to imagine various options for the
construction of S-matrix - in Zero Energy Ontology (ZEO) M - and U -matrices - and it seems
that there are quite many strong constraints, which might lead to a more or less unique final
result if some young analytically blessed brain decided to transform these assumptions to concrete
calculational recipes.
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The realization that WCW spinors correspond to von Neumann algebras known as hyper-
finite factors of type II1 meant a turning point also in the attempts to construct S-matrix. A
sequence of trials and errors led rapidly to the generalization of the quantum measurement theory
and re-interpretation of S-matrix elements as entanglement coefficients of zero energy states in
accordance with the ZEO applied already earlier in TGD inspired cosmology. ZEO motivated the
replacement of the term “S-matrix” with “M -matrix”.

The general mathematical concepts are not enough to get to the level of concrete scattering
amplitudes. The notion of preferred extremal inspiring the notion of generalized Feynman diagram
is central in bringing in this concretia. The very notion of preferred extremals means that ordinary
Feynman diagrams providing a visualization of path integral are not in question. Generalized
Feynman diagrams have 4-D Euclidian space-time regions (wormhole contacts) as lines, and light-
like partonic orbits of 2-surfaces as 3-D lines. String world sheets carrying fermions are also present
and have 1-D boundaries at the light-like orbits of partonic 2-surfaces carrying fermion number
and light-like 8-momenta suggesting strongly 8-D generalization of twistor approach.

The resulting objects could be indeed seen as generalizations of twistor diagrams rather than
Feynman diagrams. The preferred extremal property strongly encourages the old and forgotten
TGD inspried idea as sequences of algebraic operations with product and co-product representing
3-vertices. The sequences connect given states at the opposite boundaries of CD and have minimal
length. The algebraic structure in question would be the Yangian of the super-symplectic algebra
with generators identified as super-symplectic charges assignable to strings connecting partonic
2-surfaces.

The purpose of this chapter is to collect to single chapter various general ideas about the
construction of M -matrix and give a brief summary about intuitive picture behind various matri-
ces. Also a general vision about generalized Feynman diagrams is formulated. A more detailed
construction requires the introduction of generalization of twistor approach to 8-D context.

Does Riemann Zeta Code for Generic Coupling Constant Evolution?

A general model for the coupling constant evolution is proposed. The analogy of Riemann zeta
and fermionic zeta ζF (s)/ζF (2s) with complex square root of a partition function natural in Zero
Energy Ontology suggests that the the poles of ζF (ks), k = 1/2, correspond to complexified
critical temperatures identifiable as inverse of Kähler coupling strength itself having interpretation
as inverse of critical temperature. One can actually replace the argument s of ζF with Möbius
transformed argument w = (as+ b)/(cs+d) with a, b, c, d real numbers, rationals, or even integers.
For αK w = (s + b)/2 is proper choices and gives zeros of ζ(s) and s = 2 − b as poles. The
identification αK = αU(1) leads to a prediction for αem, which deviates by .7 per cent from the
experimental value at low energies (atomic scale) if the experimental value of the Weinberg angle
is used. The conjecture generalizes also to weak, color and gravitational interactions when general
Möbius transformation leaving upper half-plane invariant is allowed. One ends up with a general
model predicting successfully the entire electroweak coupling constant evolution successfully from
the values of fine structure constant at atomic or electron scale and in weak scale.

Could N = 2 Super-conformal Theories Be Relevant For TGD?

TGD has as is symmetries super-conformal symmetry (SCS), which is a huge extension of the
ordinary SCS. For instance, the infinite-dimensional symplectic group plays the role of finite-
dimension Lie-group as Kac-Moody group and the conformal weights for the generators of algebra
corresponds to the zeros of fermionic zeta and their number of generators is therefore infinite.

The relationship of TGD SCS to super-conformal field theories (SCFTs) known as minimal
models has remained without definite answer. The most general super-conformal algebra (SCA)
assignable to string world sheets by strong form of holography has N equal to the number of spin
states of leptonic and quark type fundamental spinors but the space-time SUSY is badly broken
for it. Covariant constancy of the generating spinor modes is replaced with holomorphy - kind of
“half covariant constancy”. Right-handed neutrino and antineutrino are excellent candidates for
generating N = 2 SCS with a minimal breaking of the corresponding space-time SUSY.

N = 2 SCS has also some inherent problems. The critical space-time dimension is D =
4 but the existence of complex structure seems to require the space-time has metric signature
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different from Minkowskian: here TGD suggests a solution. N = 2 SCFTs are claimed also to
reduce to topological QFTs under some conditions: this need not be a problem since TGD can
be characterized as almost topological QFT. What looks like a further problem is that p-adic
mass calculations require half-integer valued negative conformal weight for the ground state (and
vanishing weight for massless states). One can however shift the scaling generator L0 to get rid of
problem: the shift has physical interpretation in TGD framework and must be half integer valued
which poses the constraint h = K/2, K = 0, 1, 2.. on the representations of SCA.

N = 2 SCA allows a spectral flow taking Ramond representations to Neveu-Scwartz variant
of algebra. The physical interpretation is as super-symmetry mapping fermionic states to bosonic
states. The representations of N = 2 SCA allowing degenerate states with positive central charge
c and non-vanishing ground state conformal weight h give rise to minimal models allowing ADE
classification, construction of partition functions, and even of n-point functions. This could make
S-matrix of TGD exactly solvable in the fermionic sector. The ADE hierarchy suggests a direct
interpretation in terms of orbifold hierarchy assignable to the hierarchy of Planck constants asso-
ciated with the super-symplectic algebra: primary fields would correspond to orbifolds identified
as coset spaces of ADE groups. Also an interpretation in terms of inclusions of hyper-finite factors
is highly suggestive.

1.4.5 Part III: Twistors and TGD

TGD Variant of Twistor Story

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough
is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of
twistor structure to that for 8-D imbedding space H = M4 ×CP2 is necessary. M4 (and S4 as its
Euclidian counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces
allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1) × U(1) and F3 defines
twistor space for the imbedding space H and one can ask whether this generalized twistor structure
could allow to understand both quantum TGD and classical TGD defined by the extremals of
Kähler action. In the following I summarize the background and develop a proposal for how to
construct extremals of Kähler action in terms of the generalized twistor structure. One ends up
with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so
that the twistor spaces give an alternative representation for generalized Feynman diagrams.

There is also a very closely analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds and the modification recipe for Calabi-Yau manifolds by removal of singularities can
be applied to remove self-intersections of twistor spaces and mirror symmetry emerges naturally.
The overall important implication is that the methods of algebraic geometry used in super-string
theories should apply in TGD framework.

The physical interpretation is totally different in TGD. The landscape is replaced with
twistor spaces of space-time surfaces having interpretation as generalized Feynman diagrams and
twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor strings.

The classical view about twistorialization of TGD makes possible a more detailed formula-
tion of the previous ideas about the relationship between TGD and Witten’s theory and twistor
Grassmann approach. Furthermore, one ends up to a formulation of the scattering amplitudes in
terms of Yangian of the super-symplectic algebra relying on the idea that scattering amplitudes are
sequences consisting of algebraic operations (product and co-product) having interpretation as ver-
tices in the Yangian extension of super-symplectic algebra. These sequences connect given initial
and final states and having minimal length. One can say that Universe performs calculations.

From Principles to Diagrams

The recent somewhat updated view about the road from general principles to diagrams is discussed.
A more explicit realization of twistorialization as lifting of the preferred extremal X4 of Kähler
action to corresponding 6-D twistor space X6 identified as surface in the 12-D product of twistor
spaces of M4 and CP2 allowing Kähler structure suggests itself. Contrary to the original expecta-
tions, the twistorial approach is not mere reformulation but leads to a first principle identification
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of cosmological constant and perhaps also of gravitational constant and to a modification of the
dynamics of Kähler action however preserving the known extremals and basic properties of Kähler
action and allowing to interpret induced Kähler form in terms of preferred imaginary unit defining
twistor structure.

Second new element is the fusion of twistorial approach with the vision that diagrams are rep-
resentations for computations. This as also quantum criticality demands that the diagrams should
allow huge symmetries allowing to transform them to braided generalizations of tree-diagrams.
Several guiding principles are involved and what is new is the observation that they indeed seem
to form a coherent whole.

About Twistor Lift of TGD

The twistor lift of classical TGD is attractive physically but it is still unclear whether it satisfies
all constraints. The basic implication of twistor lift would be the understanding of gravitational
and cosmological constants. Cosmological constant removes the infinite vacuum degeneracy of
Kähler action but because of the extreme smallness of cosmological constant Λ playing the role of
inverse of gauge coupling strength, the situation for nearly vacuum extremals of Kähler action in
the recent cosmology is non-perturbative. Cosmological constant and thus twistor lift make sense
only in zero energy ontology (ZEO) involving causal diamonds (CDs) in an essential manner.

One motivation for introducing the hierarchy of Planck constants was that the phase transi-
tion increasing Planck constant makes possible perturbation theory in strongly interacting system.
Nature itself would take care about the converge of the perturbation theory by scaling Kähler
coupling strength αK to αK/n, n = heff/h. This hierarchy might allow to construct gravita-
tional perturbation theory as has been proposed already earlier. This would for gravitation to be
quantum coherent in astrophysical and even cosmological scales.

In this chapter twistor lift is studied in detail.

1. The first working hypothesis is that the values of αK(M4) and αK(CP2) are widely different
with αK(M4) being extremely large so that M4 part of the 6-D Kähler action gives in
dimensional reduction extremely small cosmological term. The first interesting finding is
that allowing Kähler coupling strength αK(CP2) to correspond to zeros of zeta implies that
for complex zeros the preferred extremals for αK(M4) having different phase are mimimal
surface extremals of Kähler action so that the values of coupling constants do not matter and
extremals depend on couplings only through the boundary conditions stating the vanishing
of certain super-symplectic conserved charges.

2. The other working hypothesis is αK(M4) = αK(CP2). The small effective value of cosmo-
logical constant is obtained if the Kähler action and volume term tend to cancel each other.
In this case minimal surface extremals of Kähler action correspond naturally to asymptotic
dynamics near the boundaries of CDs. This option looks more natural.

Both options lead to a generalization of Chladni mechanism to a “dynamics of avoidance”
meaning that at least asymptotically the two dynamics decouple. This leads to an interpretation
with profound implications for the views about what happens in particle physics experiment and
in quantum measurement, for consciousness theory and for quantum biology.

A related observation is that a fundamental length scale of biology - size scale of neuron and
axon - would correspond to the p-adic length scale assignable to vacuum energy density assignable
to cosmological constant and be therefore a fundamental physics length scale.

Some Questions Related to the Twistor Lift of TGD

In this chapter I consider questions related to both classical and quantum aspects of twistorializa-
tion.

1. The first group of questions relates to the twistor lift of classical TGD. What does the
induction of the twistor structure really mean? Can the analog of Kähler form assignable
to M4 suggested by the symmetry between M4 and CP2 and by number theoretical vision
appear in the theory. What would be the physical implications? How does gravitational
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coupling emerge at fundamental level? Could one regard the localization of spinor modes
to string world sheets as a localization to Lagrangian sub-manifolds of space-time surface
with vanishing induced Kähler form. Lagrangian sub-manifolds would be commutative in
the sense of Poisson bracket. How this relates to the idea that string world sheets correspond
complex (commutative) surfaces of quaternionic space-time surface in octonionic imbedding
space?

During the re-processing of the details related to twistor lift, it became clear that the earlier
variant for the twistor lift can be criticized and allows an alternative. This option led to
a much simpler view about twistor lift, to the conclusion that minimal surface extremals
of Kähler action represent only asymptotic situation (external particles in scattering), and
also to a re-interpretation for the p-adic evolution of the cosmological constant: cosmological
term would correspond to the entire 4-D action and the cancellation of Kähler action and
cosmological term would lead to the small value of the effective cosmological constant.

2. Second group of questions relates to the construction of scattering amplitudes. The idea is
to generalize the usual construction for massless states. In TGD all single particle states are
massless in 8-D sense and this gives excellent hopes about the applicability of 8-D twistor
approach. M8−H duality turns out to be the key to the construction. Also the holomorphy
of twistor amplitudes in helicity spinors λi and independence on λ̃i is crucial. The basic
vertex corresponds to 4-fermion vertex for which the simplest expression can be written
immediately. n > 4-fermion scattering amplitudes can be also written immediately.

If scattering diagrams correspond to computations as number theoretic vision suggests, the di-
agrams should be reducible to tree diagrams by moves generalizing the old-fashioned hadronic
duality. This condition reduces to the vanishing of loops which in terms of BCFW recursion
formula states that the twistor diagrams correspond to closed objects in what might be called
WCFW homology.

The Recent View about Twistorialization in TGD Framework

The recent view about the twistorialization in TGD framework is discussed.

1. A proposal made already earlier is that scattering diagrams as analogs of twistor diagrams are
constructible as tree diagrams for CDs connected by free particle lines. Loop contributions
are not even well-defined in zero energy ontology (ZEO) and are in conflict with number
theoretic vision. The coupling constant evolution would be discrete and associated with the
scale of CDs (p-adic coupling constant evolution) and with the hierarchy of extensions of
rationals defining the hierarchy of adelic physics.

2. Logarithms appear in the coupling constant evolution in QFTs. The identification of their
number theoretic versions as rational number valued functions required by number-theoretical
universality for both the integer characterizing the size scale of CD and for the hierarchy of
Galois groups leads to an answer to a long-standing question what makes small primes and
primes near powers of them physically special. The primes p ∈ {2, 3, 5} indeed turn out to
be special from the point of view of number theoretic logarithm.

3. The reduction of the scattering amplitudes to tree diagrams is in conflict with unitarity
in 4-D situation. The imaginary part of the scattering amplitude would have discontinuity
proportional to the scattering rate only for many-particle states with light-like total momenta.
Scattering rates would vanish identically for the physical momenta for many-particle states.

In TGD framework the states would be however massless in 8-D sense. Massless pole cor-
responds now to a continuum for M4 mass squared and one would obtain the unitary cuts
from a pole at P 2 = 0! Scattering rates would be non-vanishing only for many-particle states
having light-like 8-momentum, which would pose a powerful condition on the construction
of many-particle states.

This idea does not make sense for incoming/outgoing particles, which light-like momenta
unless they are parallel: their total momentum cannot be light-like in the general case.
Rather, P 2 = 0 applies to the states formed inside CDs from groups of incoming and outgoing
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particles. BCFW deformation pi → pi + zri describes what happens for the single-particle
momenta: they cease to be light-like but the total momenta for subgroups of particles in
factorization channels are complex and light-like. This strong form of conformal symmetry
has highly non-trivial implications concerning color confinement.

4. The key idea is number theoretical discretization in terms of “cognitive representations” as
space-time time points with M8-coordinates in an extension of rationals and therefore shared
by both real and various p-adic sectors of the adele. Discretization realizes measurement
resolution, which becomes an inherent aspect of physics rather than something forced by
observed as outsider. This fixes the space-time surface completely as a zero locus of real or
imaginary part of octonionic polynomial.

This must imply the reduction of “world of classical worlds” (WCW) corresponding to a fixed
number of points in the extension of rationals to a finite-dimensional discretized space with
maximal symmetries and Kähler structure.

The simplest identification for the reduced WCW would be as complex Grassmannian - a
more general identification would be as a flag manifold. More complex options can of course
be considered. The Yangian symmetries of the twistor Grassmann approach known to act
as diffeomorphisms respecting the positivity of Grassmannian and emerging also in its TGD
variant would have an interpretation as general coordinate invariance for the reduced WCW.
This would give a completely unexpected connection with supersymmetric gauge theories
and TGD.

5. M8 picture implies the analog of SUSY realized in terms of polynomials of super-octonions
whereas H picture suggests that supersymmetry is broken in the sense that many-fermion
states as analogs of components of super-field at partonic 2-surfaces are not local. This
requires breaking of SUSY. At M8 level the breaking could be due to the reduction of Galois
group to its subgroup G/H, where H is normal subgroup leaving the point of cognitive
representation defining space-time surface invariant. As a consequence, local many-fermion
composite in M8 would be mapped to a non-local one in H by M8 −H correspondence.

1.4.6 Part IV: Category theory and TGD

Category Theory and Quantum TGD

Possible applications of category theory to quantum TGD are discussed. The so called 2-plectic
structure generalizing the ordinary symplectic structure by replacing symplectic 2-form with 3-form
and Hamiltonians with Hamiltonian 1-forms has a natural place in TGD since the dynamics of the
light-like 3-surfaces is characterized by Chern-Simons type action. The notion of planar operad
was developed for the classification of hyper-finite factors of type II1 and its mild generalization
allows to understand the combinatorics of the generalized Feynman diagrams obtained by gluing 3-
D light-like surfaces representing the lines of Feynman diagrams along their 2-D ends representing
the vertices.

The fusion rules for the symplectic variant of conformal field theory, whose existence is
strongly suggested by quantum TGD, allow rather precise description using the basic notions of
category theory and one can identify a series of finite-dimensional nilpotent algebras as discretized
versions of field algebras defined by the fusion rules. These primitive fusion algebras can be used to
construct more complex algebras by replacing any algebra element by a primitive fusion algebra.
Trees with arbitrary numbers of branches in any node characterize the resulting collection of fusion
algebras forming an operad. One can say that an exact solution of symplectic scalar field theory
is obtained.

Conformal fields and symplectic scalar field can be combined to form symplecto-formal fields.
The combination of symplectic operad and Feynman graph operad leads to a construction of Feyn-
man diagrams in terms of n-point functions of conformal field theory. M-matrix elements with a
finite measurement resolution are expressed in terms of a hierarchy of symplecto-conformal n-point
functions such that the improvement of measurement resolution corresponds to an algebra homo-
morphism mapping conformal fields in given resolution to composite conformal fields in improved
resolution. This expresses the idea that composites behave as independent conformal fields. Also
other applications are briefly discussed.
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Years after writing this chapter a very interesting new TGD related candidate for a cate-
gory emerged. The preferred extremals of Kähler action would form a category if the proposed
duality mapping associative (co-associative) 4-surfaces of imbedding space respects associativity
(co-associativity). The duality would allow to construct new preferred extremals of Kähler action.

Could categories, tensor networks, and Yangians provide the tools for handling the
complexity of TGD?

TGD Universe is extremely simple locally but the presence of various hierarchies make it to look
extremely complex globally. Category theory and quantum groups, in particular Yangian or its
TGD generalization are most promising tools to handle this complexity. The arguments developed
in the sequel suggest the following overall view.

1. Positive and negative energy parts of zero energy states can be regarded as tensor networks
identifiable as categories. The new element is that one does not have only particles (objects)
replaced with partonic 2-surfaces but also strings connecting them (morphisms). Morphisms
and functors provide a completely new element not present in standard model. For instance,
S-matrix would be a functor between categories. Various hierarchies of of TGD would in
turn translate to hierarchies of categories.

2. TGD view about generalized Feynman diagrams relies on two general ideas. First, the
twistor lift of TGD replaces space-time surfaces with their twistor-spaces getting their twistor
structure as induced twistor structure from the product of twistor spaces of M4 and CP2.
Secondly, topological scattering diagrams are analogous to computations and can be reduced
to tree diagrams with braiding. This picture fits very nicely with the picture suggested
by fusion categories. At fermionic level the basic interaction is 2+2 scattering of fermions
occurring at the vertices identifiable as partonic 2-surface and re-distributes the fermion lines
between partonic 2-surfaces. This interaction is highly analogous to what happens in braiding
interaction but vertices expressed in terms of twistors depend on momenta of fermions.

3. Braiding transformations take place inside the light-like orbits of partonic 2-surfaces defin-
ing boundaries of space-time regions with Minkowskian and Euclidian signature of induced
metric respectively permuting two braid strands. R-matrix satisfying Yang-Baxter equation
characterizes this operation algebraically.

4. Reconnections of fermionic strings connecting partonic 2-surfaces are possible and suggest
interpretation in terms of 2-braiding generalizing ordinary braiding: string world sheets get
knotted in 4-D space-time forming 2-knots and strings form 1-knots in 3-D space. Recon-
nection induces an exchange of braid strands defined by the boundaries of the string world
sheet and therefore exchange of fermion lines defining boundaries of string world sheets. A
generalization of quantum algebras to include also algebraic representation for reconnection
is needed. Also reconnection might reduce to a braiding type operation.

Yangians look especially natural quantum algebras from TGD point of view. They are
bi-algebras with co-product ∆. This makes the algebra multi-local raising hopes about the under-
standing of bound states. ∆-iterates of single particle system would give many-particle systems
with non-trivial interactions reducing to kinematics.

One should assign Yangian to various Kac-Moody algebras (SKMAs) involved and even with
super-conformal algebra (SSA), which however reduces effectively to SKMA for finite-dimensional
Lie group if the proposed gauge conditions meaning vanishing of Noether charges for some sub-
algebra H of SSA isomorphic to it and for its commutator [SSA,H] with the entire SSA. Strong
form of holography (SH) implying almost 2-dimensionality motivates these gauge conditions. Each
SKMA would define a direct summand with its own parameter defining coupling constant for the
interaction in question.

Are higher structures needed in the categorification of TGD?

The notion of higher structures promoted by John Baez looks very promising notion in the attempts
to understand various structures like quantum algebras and Yangians in TGD framework. The



36 Chapter 1. Introduction

stimulus for this article came from the nice explanations of the notion of higher structure by Urs
Screiber. The basic idea is simple: replace “=” as a blackbox with an operational definition with
a proof for A = B. This proof is called homotopy generalizing homotopy in topological sense.
n-structure emerges when one realizes that also the homotopy is defined only up to homotopy in
turn defined only up...

In TGD framework the notion of measurement resolution defines in a natural manner various
kinds of “=”s and this gives rise to resolution hierarchies. Hierarchical structures are characteristic
for TGD: hierarchy of space-time sheet, hierarchy of p-adic length scales, hierarchy of Planck
constants and dark matters, hierarchy of inclusions of hyperfinite factors, hierarchy of extensions
of rationals defining adeles in adelic TGD and corresponding hierarchy of Galois groups represented
geometrically, hierarchy of infinite primes, self hierarchy, etc...

In this article the idea of n-structure is studied in more detail. A rather radical idea is a
formulation of quantum TGD using only cognitive representations consisting of points of space-
time surface with imbedding space coordinates in extension of rationals defining the level of adelic
hierarchy. One would use only these discrete points sets and Galois groups. Everything would
reduce to number theoretic discretization at space-time level perhaps reducing to that at partonic
2-surfaces with points of cognitive representation carrying fermion quantum numbers.

Even the “world of classical worlds ” (WCW) would discretize: cognitive representation
would define the coordinates of WCW point. One would obtain cognitive representations of scat-
tering amplitudes using a fusion category assignable to the representations of Galois groups: some-
thing diametrically opposite to the immense complexity of the WCW but perhaps consistent with
it. Also a generalization of McKay’s correspondence suggests itself: only those irreps of the Lie
group associated with Kac-Moody algebra that remain irreps when reduced to a subgroup defined
by a Galois group of Lie type are allowed as ground states. Also the relation to number theoretic
Langlands correspondence is very interesting.

Is Non-associative Physics and Language Possible Only in Many-Sheeted Space-Time?

Language is an essentially non-associative structure as the necessity to parse linguistic expressions
essential also for computation using the hierarchy of brackets makes obvious. Hilbert space oper-
ators are associative so that non-associative quantum physics does not seem plausible without an
extension of what one means with physics. Associativity of the classical physics at the level of sin-
gle space-time sheet in the sense that tangent or normal spaces of space-time sheets are associative
as sub-spaces of the octonionic tangent space of 8-D imbedding space M4 ×CP2 is one of the key
conjectures of TGD. But what about many-sheeted space-time? The sheets of the many-sheeted
space-time form hierarchies labelled by p-adic primes and values of Planck constants heff = n×h.
Could these hierarchies provide space-time correlates for the parsing hierarchies of language and
music, which in TGD framework can be seen as kind of dual for the spoken language? For instance,
could the braided flux tubes inside larger braided flux tubes inside... realize the parsing hierarchies
of language, in particular topological quantum computer programs? And could the great differ-
ences between organisms at very different levels of evolution but having very similar genomes be
understood in terms of widely different numbers of levels in the parsing hierarchy of braided flux
tubes- that is in terms of magnetic bodies as indeed proposed. If the intronic portions of DNA
connected by magnetic flux tubes to the lipids of lipid layers of nuclear and cellular membranes
make them topological quantum computers, the parsing hierarchy could be realized at the level of
braided magnetic bodies of DNA. The mathematics needed to describe the breaking of associativ-
ity at fundamental level seems to exist. The hierarchy of braid group algebras forming an operad
combined with the notions of quasi-bialgebra and quasi-Hopf algebra discovered by Drinfeld are
highly suggestive concerning the realization of weak breaking of associativity.

1.4.7 Part V: Miscellaneous topics

Does the QFT Limit of TGD Have Space-Time Super-Symmetry?

Contrary to the original expectations, TGD seems to allow a generalization of the space-time
super-symmetry. This became clear with the increased understanding of the Kähler-Dirac action.
The introduction of a measurement interaction term to the action allows to understand how stringy
propagator results and provides profound insights about physics predicted by TGD.
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The appearance of the momentum (and possibly also color quantum numbers) in the mea-
surement interaction couples space-time degrees of freedom to quantum numbers and allows also
to define SUSY algebra at fundamental level as anti-commutation relations of fermionic oscillator
operators. Depending on the situation a finite-dimensional SUSY algebra or the fermionic part of
super-conformal algebra with an infinite number of oscillator operators results. The addition of
a fermion in particular mode would define particular super-symmetry. Zero energy ontology im-
plies that fermions as wormhole throats correspond to chiral super-fields assignable to positive or
negative energy SUSY algebra whereas bosons as wormhole contacts with two throats correspond
to the direct sum of positive and negative energy algebra and fields which are chiral or antichi-
ral with respect to both positive and negative energy theta parameters. This super-symmetry is
badly broken due to the dynamics of the Kähler-Dirac operator which also mixes M4 chiralities
inducing massivation. Since righthanded neutrino has no electro-weak couplings the breaking of
the corresponding super-symmetry should be weakest.

The question is whether this SUSY has a realization as a SUSY algebra at space-time level
and whether the QFT limit of TGD could be formulated as a generalization of SUSY QFT. There
are several problems involved.

1. In TGD framework super-symmetry means addition of fermion to the state and since the
number of spinor modes is larger states with large spin and fermion numbers are obtained.
This picture does not fit to the standard view about super-symmetry. In particular, the iden-
tification of theta parameters as Majorana spinors and super-charges as Hermitian operators
is not possible.

2. The belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry is how-
ever only a belief. Weyl spinors meaning complex theta parameters are also possible. Theta
parameters can also carry fermion number meaning only the supercharges carry fermion
number and are non-hermitian. The general classification of super-symmetric theories indeed
demonstrates that for D = 8 Weyl spinors and complex and non-hermitian super-charges are
possible. The original motivation for Majorana spinors might come from MSSM assuming
that right handed neutrino does not exist. This belief might have also led to string theories
in D=10 and D=11 as the only possible candidates for TOE after it turned out that chiral
anomalies cancel.

3. The massivation of particles is basic problem of both SUSYs and twistor approach. The
fact that particles which are massive in M4 sense can be interpreted as massless particles in
M4 × CP2 suggests a manner to understand super-symmetry breaking and massivation in
TGD framework. The octonionic realization of twistors is one possibility in this framework
and quaternionicity condition guaranteing associativity leads to twistors which are almost
equivalent with ordinary 4-D twistors.

4. The first approach is based on an approximation assuming only the super-multiplets gen-
erated by right-handed neutrino or both right-handed neutrino and its antineutrino. The
assumption that right-handed neutrino has fermion number opposite to that of the fermion
associated with the wormhole throat implies that bosons correspond to N = (1, 1) SUSY
and fermions to N = 1 SUSY identifiable also as a short representation of N = (1, 1) SUSY
algebra trivial with respect to positive or negative energy algebra. This means a deviation
from the standard view but the standard SUSY gauge theory formalism seems to apply in
this case.

5. A more ambitious approach would put the modes of induced spinor fields up to some cutoff
into super-multiplets. At the level next to the one described above the lowest modes of the
induced spinor fields would be included. The very large value of N means that N ≤ 3∈
SUSY cannot define the QFT limit of TGD for higher cutoffs. One must generalize SUSYs
gauge theories to arbitrary value of N but there are reasons to expect that the formalism
becomes rather complex. More ambitious approach working at TGD however suggest a more
general manner to avoid this problem.

(a) One of the key predictions of TGD is that gauge bosons and Higgs can be regarded
as bound states of fermion and antifermion located at opposite throats of a wormhole
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contact. This implies bosonic emergence meaning that it QFT limit can be defined in
terms of Dirac action. The resulting theory was discussed in detail in [K54] and it was
shown that bosonic propagators and vertices can be constructed as fermionic loops so
that all coupling constant follow as predictions. One must however pose cutoffs in mass
squared and hyperbolic angle assignable to the momenta of fermions appearing in the
loops in order to obtain finite theory and to avoid massivation of bosons. The resulting
coupling constant evolution is consistent with low energy phenomenology if the cutoffs
in hyperbolic angle as a function of p-adic length scale is chosen suitably.

(b) The generalization of bosonic emergence that the TGD counterpart of SUSY is obtained
by the replacement of Dirac action with action for chiral super-field coupled to vector
field as the action defining the theory so that the propagators of bosons and all their
super-counterparts would emerge as fermionic loops.

(c) The huge super-symmetries give excellent hopes about the cancelation of infinities so
that this approach would work even without the cutoffs in mass squared and hyperbolic
angle assignable to the momenta of fermions appearing in the loops. Cutoffs have a
physical motivation in zero energy ontology but it could be an excellent approxima-
tion to take them to infinity. Alternatively, super-symmetric dynamics provides cutoffs
dynamically.

6. The condition that N = ∞ variants for chiral and vector superfields exist fixes completely
the identification of these fields in zero energy ontology.

(a) In this framework chiral fields are generalizations of induced spinor fields and vector
fields those of gauge potentials obtained by replacing them with their super-space coun-
terparts. Chiral condition reduces to analyticity in theta parameters thanks to the
different definition of hermitian conjugation in zero energy ontology (θ is mapped to a
derivative with respect to theta rather than to θ) and conjugated super-field acts on the
product of all theta parameters.

(b) Chiral action is a straightforward generalization of the Dirac action coupled to gauge
potentials. The counterpart of YM action can emerge only radiatively as an effective
action so that the notion emergence is now unavoidable and indeed basic prediction of
TGD.

(c) The propagators associated with the monomials of n theta parameters behave as 1/pn

so that only J = 0, 1/2, 1 states propagate in normal manner and correspond to normal
particles. The presence of monomials with number of thetas higher than 2 is necessary
for the propagation of bosons since by the standard argument fermion and scalar loops
cancel each other by super-symmetry. This picture conforms with the identification of
graviton as a bound state of wormhole throats at opposite ends of string like object.

(d) This formulation allows also to use Kähler-Dirac gamma matrices in the measurement
interaction defining the counterpart of super variant of Dirac operator. Poincare in-
variance is not lost since momenta and color charges act on the tip of CD rather than
the coordinates of the space-time sheet. Hence what is usually regarded as a quantum
theory in the background defined by classical fields follows as exact theory. This feeds
all data about space-time sheet associated with the maximum of Kähler function. In
this approach WCW as a Kähler manifold is replaced by a cartesian power of CP2,
which is indeed quaternionic Kähler manifold. The replacement of light-like 3-surfaces
with number theoretic braids when finite measurement resolution is introduced, leads
to a similar replacement.

(e) Quantum TGD as a “complex square root” of thermodynamics approach suggests that
one should take a superposition of the amplitudes defined by the points of a coherence
region (identified in terms of the slicing associated with a given wormhole throat) by
weighting the points with the Kähler action density. The situation would be highly
analogous to a spin glass system since the Kähler-Dirac gamma matrices defining the
propagators would be analogous to the parameters of spin glass Hamiltonian allowed
to have a spatial dependence. This would predict the proportionality of the coupling
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strengths to Kähler coupling strength and bring in the dependence on the size of CD
coming as a power of 2 and give rise to p-adic coupling constant evolution. Since TGD
Universe is analogous to 4-D spin glass, also a sum over different preferred extremals
assignable to a given coherence regions and weighted by exp(K) is probably needed.

(f) In TGD Universe graviton is necessarily a bi-local object and the emission and ab-
sorption of graviton are bi-local processes involving two wormhole contacts: a pair of
particles rather than single particle emits graviton. This is definitely something new
and defies a description in terms of QFT limit using point like particles. Graviton like
states would be entangled states of vector bosons at both ends of stringy curve so that
gravitation could be regarded as a square of YM interactions in rather concrete sense.
The notion of emergence would suggest that graviton propagator is defined by a bosonic
loop. Since bosonic loop is dimensionless, IR cutoff defined by the largest CD present
must be actively involved. At QFT limit one can hope a description as a bi-local process
using a bi-local generalization of the QFT limit. It turns out that surprisingly simple
candidate for the bi-local action exists.

This statement has become somewhat misleading. It has turned out that all elementary
particle in TGD framework are bi-local objects: one can assign to them both closed
magnetic flux tubes behaving like strings and closed strings carrying fermion number.
For other elementary particles than graviton second wormhole contact carries only neu-
trino pair neutralizing electroweak-isospin so that above weak scale they correspond to
single em charged wormhole contact.

Coupling Constant Evolution in Quantum TGD

How to calculate or at least “understand” the correlation functions and coupling constant evolution
has remained a basic unresolved challenge. Basically the unability to calculate is of course due to
the lack of understanding.

Zero energy ontology, the construction of M -matrix as time like entanglement coefficients
defining Connes tensor product characterizing finite measurement resolution in terms of inclusion
of hyper-finite factors of type II1, the realization that symplectic invariance of N-point functions
providing a detailed mechanism eliminating UV divergences, and the understanding of the relation-
ship between super-symplectic and super Kac-Moody symmetries. p-Adic length scale hypothesis
suggests that continuous coupling constant evolution is replaced by discrete p-adic coupling con-
stant evolution and that number theoretical constraints are of crucial importance. These are the
pieces of the puzzle whose combination makes possible a rather concrete vision about coupling con-
stant evolution in TGD Universe and one can even speak about rudimentary form of generalized
Feynman rules. This was the picture behind previous updating.

Several steps of progress have however occurred since then.

1. A crucial step in progress has been the understanding of how GRT space-time emerges from
the many-sheeted space-time of TGD. At classical level Equivalence Principle (EP) follows
from the interpretation of GRT space-time as effective space-time obtained by replacing
many-sheeted space-time with Minkowski space with effective metric determined as a sum of
Minkowski metric and sum over the deviations of the induced metrices of space-time sheets
from Minkowski metric. Poincare invariance suggests strongly classical EP for the GRT limit
in long length scales at least. One can consider also other kinds of limits such as the analog
of GRT limit for Euclidian space-time regions assignable to elementary particles. In this
case deformations of CP2 metric define a natural starting point and CP2 indeed defines a
gravitational instanton with very large cosmological constant in Einstein-Maxwell theory.
Also gauge potentials of standard model correspond classically to superpositions of induced
gauge potentials over space-time sheets.

2. Second powerful idea is quantum classical correspondence in statistical sense stating that the
statistical properties of a preferred extremal in quantum superposition of them are same as
those of the zero energy state in question. This principle would be quantum generalization
of ergodic theorem stating that the time evolution of a single member of ensemble represents
the ensemble statistically. This principle would allow to deduce correlation functions and
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S-matrix from the statistical properties of single preferred extremal alone using classical
intuition. Also coupling constant evolution would be coded by the statistical properties of
the representative preferred extremal.

This idea can be formulated more convincingly in terms of a generalization of the AdS/CFT
duality to TGD framework motivated by the generalization of conformal symmetry. In full
generality this principle would state that all predictions of the theory can be expressed
either in terms of classical fields in the interior of the space-time surface or in terms of
scattering amplitudes formulated in terms of fundamental fermions defining the building
bricks of elementary particles. The implication would that correlation functions can be also
identified as those for classical induce gauge and gravitational fields.

3. Third powerful vision inspired by the notion of preferred extremal - I gave up the vision for
years as too crazy - is that scattering amplitudes correspond to sequences of computations
and that all computations connecting collectings of algebraic objects produce same scattering
amplitudes [K76]. All scattering amplitudes could be reduced to minimal tree diagrams by
moving the ends of the lines and snipping away the loops. The 8-D generalization of twistor
approach to TGD allows to identify the arithmetics as that of super-symplectic Yangian and
basic vertices in the construction correspond to product and co-product in Yangian.

4. The fourth new ingredient is the dramatic increase in the understanding of the hierarchy
of Planck constants heff = n × h. The hierarchy corresponds to hierarchy of quantum
criticalities at which the sub-algebra of super-symplectic algebra with natural conformal
structure changes. Sub-algebras are labelled by integer n: the conformal weights of the sub-
algebra come as multiples of n. One has infinite number of hierarchies ni+1 =

∏
k<i+1mk

which relate naturally to the hierarchies of inclusions of hyper-finite factors. The sub-algebra
acts as gauge symmetries whereas the other generators of the full algebra fail to do so.
Therefore the increase of n means that gauge degrees of freedom become physical ones. One
can assign coupling constant evolution also with these hierarchies and the natural conjecture
is that coupling constants for given value of n are renormalization group invariances.

Especially intereting are the implications for the understanding of gravitational binding as-
suming that strings connecting partonic 2-surfaces are responsible for the formation of bound
states. This leads together with the generalization of AdS/CFT corresponds and localiza-
tion of fermions to string world sheets to a prediction that Kähler action is expressible as
string area in the effective metric defined by the anti-commutators of Kähler-Dirac gamma
matrices. This predicts that the size scale of bound states scales as heff and it is possible to
obtain bound states of macroscopic size unlike for ordinary string area action for which their
sizes would be given by Planck length.
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Chapter 2

Basic Extremals of the Kähler
Action

2.1 Introduction

In this chapter the classical field equations associated with the Kähler action are studied. The study
of the extremals of the Kähler action has turned out to be extremely useful for the development
of TGD. Towards the end of year 2003 quite dramatic progress occurred in the understanding of
field equations and it seems that field equations might be in well-defined sense exactly solvable.
The progress made during next five years led to a detailed understanding of quantum TGD at
the fundamental parton level and this provides considerable additional insights concerning the
interpretation of field equations.

2.1.1 About The Notion Of Preferred Extremal

The notion of preferred extremal has been central in classical TGD although the known solutions
could be preferred or not: the main challenge has been to understand what “preferred” could mean.

In zero energy ontology (ZEO) one can also consider the releaving possibility that all ex-
tremals are preferred ones! The two space-like 3-surfaces at the ends of CD define the space-time
surface connecting them apart from conformal symmetries acting as critical deformations. If 3-
surface is identified as union of both space-like 3-surfaces and the light-like surfaces defining parton
orbits connecting then, the conformal equivalence class of the preferred extremal is unique with-
out any additional conditions! This conforms with the view about hierarchy of Planck constants
requiring that the conformal equivalence classes of light-like surfaces must be counted as physical
degrees of freedom and also with the idea that these surface together define analog for the Wilson
loop. The non-determinism of Kähler action suggests that “preferred” could be obsolete in given
length scale resolution.

Actually all the discussions of this chapter are about known extremals in general so that the
attribute “preferred” is not relevant for them.

2.1.2 Beltrami Fields And Extremals

The vanishing of Lorentz 4-force for the induced Kähler field means that the vacuum 4-currents
are in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions of field equations
which inspires the hypothesis that preferred extremals satisfy the condition. The vanishing of the
Lorentz 4-force in turn implies a local conservation of the ordinary energy momentum tensor. The
corresponding condition is implied by Einstein’s equations in General Relativity. The hypothesis
would mean that the solutions of field equations are what might be called generalized Beltrami
fields. If Kähler action is defined by CP2 Kähler form alone, the condition implies that vacuum
currents can be non-vanishing only provided the dimension DCP2

of the CP2 projection of the
space-time surface is less than four so that in the regions with DCP2 = 4, Maxwell’s vacuum
equations are satisfied.
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The hypothesis that Kähler current is proportional to a product of an arbitrary function ψ
of CP2 coordinates and of the instanton current generalizes Beltrami condition and reduces to it
when electric field vanishes. Instanton current has vanishing divergence for DCP2 < 4, and Lorentz
4-force indeed vanishes. The remaining task would be the explicit construction of the imbeddings
of these fields and the demonstration that field equations can be satisfied.

Under additional conditions magnetic field reduces to what is known as Beltrami field.
Beltrami fields are known to be extremely complex but highly organized structures. The natural
conjecture is that topologically quantized many-sheeted magnetic and Z0 magnetic Beltrami fields
and their generalizations serve as templates for the helical molecules populating living matter, and
explain both chirality selection, the complex linking and knotting of DNA and protein molecules,
and even the extremely complex and self-organized dynamics of biological systems at the molecular
level.

Field equations can be reduced to algebraic conditions stating that energy momentum tensor
and second fundamental form have no common components (this occurs also for minimal surfaces
in string models) and only the conditions stating that Kähler current vanishes, is light-like, or
proportional to instanton current, remain and define the remaining field equations. The conditions
guaranteeing topologization to instanton current can be solved explicitly. Solutions can be found
also in the more general case when Kähler current is not proportional to instanton current. On
basis of these findings there are strong reasons to believe that classical TGD is exactly solvable.

An important outcome is the notion of Hamilton-Jacobi structure meaning dual slicings of
M4 projection of preferred extremals to string world sheets and partonic 2-surfaces. The necessity
of this slicing was discovered years later from number theoretic compactification and is now a
key element of quantum TGD allowing to deduce Equivalence Principle in its stringy form from
quantum TGD and formulate and understand quantum TGD in terms of Kähler-Dirac action
assignable to Kähler action. The conservation of Noether charges associated with Kähler-Dirac
action requires the vanishing of the second second variation of Kähler action for preferred extremals.
Preferred extremals would thus define space-time representation for quantum criticality. Infinite-
dimensional variant for the hierarchy of criticalities analogous to the hierarchy assigned to the
extrema of potential function with levels labeled by the rank of the matrix defined by the second
derivatives of the potential function in catastrophe theory would suggest itself.

A natural interpretation for deformations would be as conformal gauge symmetries due to
the non-determinism of Kähler action. They would transform to each other preferred extremals
having fixed 3-surfaces as ends at the boundaries of the causal diamond. They would preserve the
value of Kähler action and those of conserved charges. The assumption is that there are n gauge
equivalence classes of these surfaces and that n defines the value of the effective Planck constant
heff = n× h in the effective GRT type description replacing many-sheeted space-time with single
sheeted one.

2.1.3 In What Sense Field Equations Could Mimic Dissipative Dynam-
ics?

By quantum classical correspondence the non-deterministic space-time dynamics should mimic the
dissipative dynamics of the quantum jump sequence. The nontrivial question is what this means
in TGD framework.

1. Beltrami fields appear in physical applications as asymptotic self organization patterns for
which Lorentz force and dissipation vanish. This suggests that preferred extremals of Kähler
action correspond to space-time sheets which at least asymptotically satisfy generalized Bel-
trami conditions so that one can indeed assign to the final (rather than initial!) 3-surface a
unique 4-surface apart from effects related to non-determinism. Preferred extremal property
of Kähler action abstracted to purely algebraic generalized Beltrami conditions would make
sense also in the p-adic context. The general solution ansatz discussed in the last section
of the chapter assumes that all conserved isometry currents are proportional to instanton
current so that various charges are conserved separately for all flow lines: this means es-
ssentially the integrability of the theory. This ansatz is forced by the hypothesis that TGD
reduces to almost topological QFT and this idea. The basic consequence is that dissipation
is impossible classically.
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2. A more radical view inspired by zero energy ontology is that the light-like 3-surfaces and
corresponding space-time regions with Euclidian signature defining generalized Feynman di-
agrams provide a space-time representation of dissipative dynamics just as they provide this
representation in quantum field theory. Minkowskian regions would represent empty space
so that the vanishing of Lorentz 4-force and absence of dissipation would be natural. This
would mean very precise particle field duality and the topological pattern associated with
the generalized Feynman diagram would represent dissipation. One could also interprete
dissipation as transfer of energy between sheets of the many-sheeted space time and thus as
an essentially topological phenomenon. This option seems to be the only viable one.

2.1.4 The Dimension Of CP2 Projection As Classifier For The Funda-
mental Phases Of Matter

The dimension DCP2
of CP2 projection of the space-time sheet encountered already in p-adic mass

calculations classifies the fundamental phases of matter. For DCP2
= 4 empty space Maxwell

equations hold true. The natural guess would be that this phase is chaotic and analogous to
de-magnetized phase. DCP2

= 2 phase is analogous to ferromagnetic phase: highly ordered and
relatively simple. It seems however that preferred extremals can correspond only to small pertur-
bations of these extremals resulting by topological condensation of CP2 type vacuum extremals
and through topological condensation to larger space-time sheets. DCP2

= 3 is the analog of spin
glass and liquid crystal phases, extremely complex but highly organized by the properties of the
generalized Beltrami fields. This phase could be seen as the boundary between chaos and order and
corresponds to life emerging in the interaction of magnetic bodies with bio-matter. It is possible
only in a finite temperature interval (note however the p-adic hierarchy of critical temperatures)
and characterized by chirality just like life.

The original proposal was that D(CP2) = 4 phase is completely chaotic. This is not true if
the reduction to almost topological QFT takes place. This phase must correspond to Maxwellian
phase with a vanishing Kähler current as concluded already earlier. Various isometry currents are
however proportional to the instanton current and conserved along the flow lines of the instanton
current whose flow parameter extends to a global coordinate. Hence a completely chaotic phase is
not in question even in this case.

2.1.5 Specific Extremals Of Kähler Action

The study of extremals of Kähler action represents more than decade old layer in the development
of TGD.

1. The huge vacuum degeneracy is the most characteristic feature of Kähler action (any 4-
surface having CP2 projection which is Legendre sub-manifold is vacuum extremal, Legendre
sub-manifolds of CP2 are in general 2-dimensional). This vacuum degeneracy is behind the
spin glass analogy and leads to the p-adic TGD. As found in the second part of the book,
various particle like vacuum extremals also play an important role in the understanding of
the quantum TGD.

2. The so called CP2 type vacuum extremals have finite, negative action and are therefore an
excellent candidate for real particles whereas vacuum extremals with vanishing Kähler action
are candidates for the virtual particles. These extremals have one dimensional M4 projection,
which is light like curve but not necessarily geodesic and locally the metric of the extremal
is that of CP2: the quantization of this motion leads to Virasoro algebra. Space-times with
topology CP2#CP2#...CP2 are identified as the generalized Feynman diagrams with lines
thickened to 4-manifolds of “thickness” of the order of CP2 radius. The quantization of the
random motion with light velocity associated with the CP2 type extremals in fact led to the
discovery of Super Virasoro invariance, which through the construction of the configuration
space geometry, becomes a basic symmetry of quantum TGD.

3. There are also various non-vacuum extremals.
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(a) String like objects, with string tension of same order of magnitude as possessed by the
cosmic strings of GUTs, have a crucial role in TGD inspired model for the galaxy for-
mation and in the TGD based cosmology.

(b) The so called massless extremals describe non-linear plane waves propagating with the
velocity of light such that the polarization is fixed in given point of the space-time
surface. The purely TGD:eish feature is the light like Kähler current: in the ordinary
Maxwell theory vacuum gauge currents are not possible. This current serves as a source
of coherent photons, which might play an important role in the quantum model of
bio-system as a macroscopic quantum system.

(c) In the so called Maxwell phase, ordinary Maxwell equations for the induced Kähler
field would be satisfied in an excellent approximation. It is however far from clear
whether this kind of extremals exist. Their non-existence would actually simplify the
theory enormously since all extremals would have quantal character. The recent view
indeed is that Maxwell phase makes sense only as as genuinely many-sheeted structure
and solutions of Maxwell’s equation appear only at the level of effective space-time
obtained by replacing many-sheeted space-time with Minkowski space with effective
metric determined as a sum of Minkowski metric and sum over the deviations of the
induced metrices of space-time sheets from Minkowski metric. Gauge potentials in
effective space-time are determined in the same manner. Since the gauge potentials sum
up, it is possible to understand how field configurations of Maxwell’s theory emerge at
this limit.

2.1.6 The Weak Form Of Electric-Magnetic Duality And Modification
Of Kähler Action

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-
magnetic duality allows a reduction of quantum TGD to almost topological field theory with Kähler
function allowing expression as a Chern-Simons term.

Generalized Beltrami property leads to a rather explicit construction of the general solution
of field equations based on the hydrodynamic picture implying that single particle quantum num-
bers are conserved along flow lines defined by the instanton current. The construction generalizes
also to the fermionic sector and there are reasons to hope that TGD is completely integrable theory.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L12].

2.2 General Considerations

The solution families of field equations studied in this chapter were found already during eighties.
The physical interpretation turned out to be the really tough problem. What is the principle
selecting preferred extremals of Kähler action as analogs of Bohr orbits assigning to 3-surface X3

a unique space-time surface X4(X3)? Does Equivalence Principle hold true and if so, in what
sense? These have been the key questions. The realization that light-like 3-surfaces X3

l associated
with the light-like wormhole throats at which the signature of the induced metric changes from
Minkowskian to Euclidian led to the formulation of quantum TGD in terms of second quantized
induced spinor fields at these surfaces. Together with the notion of number theoretical compact-
ification this approach allowed to identify the conditions characterizing the preferred extremals.
What is remarkable that these conditions are consistent with what is known about extremals.

Also a connection with string models emerges and partial understanding of the space-time
realization of Equivalence Principle suggests itself. However, much more general argument allows
to understand how GRT space-time appears from the many-sheeted space-time of TGD (see Fig.
http://tgdtheory.fi/appfigures/manysheeted.jpg or Fig. 9 in the appendix of this book) as
effective concept [K79]: this more general view is not in conflict with the much earlier proposal
discussed below.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/appfigures/manysheeted.jpg
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In this section the theoretical background behind field equations is briefly summarized. I
will not repeat the discussion of previous two chapters [K29, K30] summarizing the general vision
about many-sheeted space-time, and consideration will be restricted to those aspects of vision
leading to direct predictions about the properties of preferred extremals of Kähler action.

2.2.1 Number Theoretical Compactification And M8 −H Duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-
complex subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2.
Hence each hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of
M4×CP2. One can loosely say that the number-theoretic analog of spontaneous compactification
occurs: this of course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kähler
action contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces
X3
l (wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-

quaternionic and contain fixed M2 or its light-like line in their tangent space. Hyper-
quaternionic regions would naturally correspond to space-time regions with Minkowskian
signature of the induced metric and their co-counterparts to the regions for which the signa-
ture is Euclidian. What is of special importance is that this assumption solves the problem
of identifying the boundary conditions fixing the preferred extremals of Kähler action since
in the generic case the intersection of M2 with the 3-D tangent space of X3

l is 1-dimensional.
The surfaces X4(X3

l ) ⊂M8 would be hyper-quaternionic or co-hyper-quaternionic but would
not allow a local mapping between the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes
the local choice of M2 in the interior of X4. This leads to a quite nice view about strong
geometric form of M8 − H duality in which M8 is interpreted as tangent space of H and
X4(X3

l ) ⊂ M8 has interpretation as tangent for a curve defined by light-like 3-surfaces at
X3
l and represented by X4(X3

l ) ⊂ H. Space-time surfaces X4(X3
l ) ⊂ M8 consisting of

hyper-quaternionic and co-hyper-quaternionic regions would naturally represent a preferred
extremal of E4 Kähler action. The value of the action would be same as CP2 Kähler action.
M8−H duality would apply also at the induced spinor field and at the level of WCW . The
possibility to assign M2(x) ⊂M4 to each point of M4 projection PM4(X4(X3

l )) is consistent
with what is known about extremals of Kähler action with only one exception: CP2 type
vacuum extremals. In this case M2 can be assigned to the normal space.

3. Strong form of M8 − H duality satisfies all the needed constraints if it represents Kähler
isometry between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is

mapped to light-like 3-surface and induced metrics and Kähler forms are identical so that
also Kähler action and field equations are identical. The only differences appear at the level
of induced spinor fields at the light-like boundaries since due to the fact that gauge potentials
are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂ M8 would be crucial for the realization of the number theo-
retical universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates
in which the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is
algebraic if it is mapped to algebraic point of M8 in number theoretic compactification. This
of course restricts the symmetry groups to their rational/algebraic variants but this does not
have practical meaning. Number theoretical compactification could thus be motivated by
the number theoretical universality.
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5. The possibility to use either M8 or H picture might be extremely useful for calculational
purposes. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could
perturbative description of low energy hadron physics. The strong SO(4) symmetry of low
energy hadron physics can be indeed seen direct experimental support for the M8−H duality.

Number theoretical compactification has quite deep implications for quantum TGD and is
actually responsible for most of the progress in the understanding of the mathematical structure
of quantum TGD. A very powerful prediction is that preferred extremals should allow slicings to
either stringy world sheets or dual partonic 2-surfaces as well as slicing by light-like 3-surfaces.
Both predictions are consistent with what is known about extremals.

1. If the distribution of planes M2(x) is integrable, it is possible to slice X4(X3) to a union of
2-dimensional surfaces having interpretation as string world sheets and dual 2-dimensional
copies of partonic surfaces X2. This decomposition defining 2+2 Kaluza-Klein type structure
could realize quantum gravitational holography and might allow to understand Equivalence
Principle at space-time level in the sense that dimensional reduction defined by the integral
of Kähler action over the 2-dimensional space labeling stringy world sheets gives rise to the
analog of stringy action and one obtains string model like description of quantum TGD as
dual for a description based on light-like partonic 3-surfaces. String tension is not however
equal to the inverse of gravitational constant as one might naively expect but the connection
is more delicate. As already mentioned, TGD-GRT connection and EP can be understood
at general level only from very general arguments [K79].

2. Second implication is the slicing of X4(X3
l ) to light-like 3-surfaces Y 3

l “parallel” to X3
l . Also

this slicing realizes quantum gravitational holography if one requires General Coordinate
Invariance in the sense that the Dirac determinant differs for two 3-surfaces Y 3

l in the slicing
only by an exponent of a real part of a holomorphic function of WCW complex coordinates
giving no contribution to the Kähler metric.

3. The square of the Dirac determinant would be equal to the modulus squared for the exponent
of vacuum functional and would be formally defined as the product of conformal weights
assignable to the modes of the Dirac operator at string world sheets at the ends of strings
at partonic 2-surfaces defining the ends of Y 3

l . The detailed definition requires to specify
what one means with the conformal weights assignable with the modes of the Kähler-Dirac
operator.

4. The localization of the modes of Kähler-Dirac operator to 2-D surfaces (string world sheets
and possibly partonic 2-surfaces) [K88] following from the condition that electromagnetic
charges of the modes is well-defined is very strong restriction and reduces Dirac determinant
to a product of Dirac determinants assignable with these 2-surfaces.

2.2.2 Preferred Extremal Property As Classical Correlate For Quantum
Criticality, Holography, And Quantum Classical Correspondence

The Noether currents assignable to the Kähler-Dirac equation are conserved only if the first vari-
ation of the Kähler-Dirac operator DK defined by Kähler action vanishes. This is equivalent with
the vanishing of the second variation of Kähler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore effectively gauge symmetries. The natural identification
would be as conformal symmetries. The weaker condition would mean that the inner product de-
fined by the integral of Dα∂LK/∂h

k
αδh

k over the space-time surface vanishes for the deformations
defining dynamical symmetries but the field equations are not satisfied completely generally. The
weaker condition would mean that the inner product defined by the integral of Dα∂LK/∂h

k
αδh

k

over the space-time surface vanishes for the deformations defining dynamical symmetries but the
field equations are not satisfied completely generally.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly

to quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago!
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For instance, the natural expectation is that the number of critical deformations is infinite
and corresponds to conformal symmetries naturally assignable to criticality. The number n of
conformal equivalence classes of the deformations can be finite and n would naturally relate to
the hierarchy of Planck constants heff = n × h (see Fig. http://tgdtheory.fi/appfigures/

planckhierarchy.jpg or Fig. ??in the appendix of this book).
The vanishing of second variations of preferred extremals -at least for deformations repre-

senting dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the
rank of the matrix defined by the second derivatives of potential function defines a hierarchy of
criticalities with the tip of bifurcation set of the catastrophe representing the complete vanishing
of this matrix. In the recent case this theory would be generalized to infinite-dimensional context.
There are three kind of variables now but quantum classical correspondence (holography) allows
to reduce the types of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the “tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l

with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kähler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D “causal boundary” X2 of X3(X2) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X3

l involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.

The basic question is whether number theoretic view about preferred extremals imply ab-
solute minimization or something analogous to it.

1. The number theoretic conditions defining preferred extremals are purely algebraic and make
sense also p-adically and this is enough since p-adic variants of field equations make sense
although the notion of Kähler action does not make sense as integral. Despite this the
identification of the vacuum functional as exponent of Kähler function as Dirac determinant
allows to define the exponent of Kähler function as a p-adic number [K88].

2. The general objection against all extremization principles is that they do not make sense
p-adically since p-adic numbers are not well-ordered.

3. These observations do not encourage the idea about equivalence of the two approaches. On
the other hand, real and p-adic sectors are related by algebraic continuation and it could be
quite enough if the equivalence were true in real context alone.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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The finite-dimensional analogy allows to compare absolute minimization and criticality with
each other.

1. Absolute minimization would select the branch of Thom’s catastrophe surface with the small-
est value of potential function for given values of control variables. In general this value would
not correspond to criticality since absolute minimization says nothing about the values of
control variables (zero modes).

2. Criticality forces the space-time surface to belong to the bifurcation set and thus fixes the
values of control variables, that is the interior of 3-surface assignable to the partonic 2-
surface, and realized holography. If the catastrophe has more than N = 3 sheets, several
preferred extremals are possible for given values of control variables fixing X3(X2) unless one
assumes that absolute minimization or some other criterion is applied in the bifurcation set.
In this sense absolute minimization might make sense in the real context and if the selection
is between finite number of alternatives is in question, it should be possible carry out the
selection in number theoretically universal manner.

It must be emphasized that there are several proposals for what preferred extremal property
could mean. For instance, one can consider the identification of space-time surface as quaternionic
sub-manifold meaning that tangent space of space-time surface can be regarded as quaternionic
sub-manifold of complexified octonions defining tangent space of imbedding space. One manner
to define “quaternionic sub-manifold” is by introducing octonionic representation of imbedding
space gamma matrices identified as tangent space vectors. It must be also assumed that the
tangent space contains a preferred complex (commutative) sub-space at each point and defining
an integrable distribution having identification as string world sheet (also slicing of space-time
sheet by string world sheets can be considered). Associativity and commutativity would define
the basic dynamical principle. A closely related approach is based on so called Hamilton-Jacobi
structure [K7] defining also this kind of slicing and the approaches could be equivalent. A further
approach is based on the identification of preferred extremal property as quantum criticality [K7].

2.2.3 Can One Determine Experimentally The Shape Of The Space-
Time Surface?

The question “Can one determine experimentally the shape of the space-time surface?” does
not relate directly to the topic of this chapter in technical sense, and the only excuse for its
inclusion is the title of this section plus the fact that the general conceptual framework behind
quantum TGD assumes an affirmative answer to this question. If physics were purely classical
physics, operationalism in the strong sense of the word would require that one can experimentally
determine the shape of the space-time as a surface of the imbedding space with arbitrary accuracy
by measuring suitable classical observables. In quantum physics situation is considerably more
complex and quantum effects are both a blessing and a curse.

Measuring classically the shape of the space-time surface

Consider first the purely classical situation to see what is involved.

1. All classical gauge fields are expressible in terms of CP2 coordinates and their space-time
gradients so that the measurement of four field quantities with some finite resolution in some
space-time volume could in principle give enough information to deduce the remaining field
quantities. The requirement that space-time surface corresponds to an extremal of Kähler
action gives a further strong consistency constraint and one can in principle test whether this
constraint is satisfied. A highly over-determined system is in question.

2. The freedom to choose the space-time coordinates freely causes complications and it seems
that one must be able to determine also the distances between the points at which the field
quantities are determined. At purely classical Riemannian level this boils down to the mea-
surement of the induced metric defining classical gravitational field. In macroscopic length
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scales one could base the approach to iterative procedure in which one starts from the as-
sumption that the coordinates used are Minkowski coordinates and gravitational corrections
are very weak.

3. The measurement of induced Kähler form in some space-time volume determines space-time
surface only modulo canonical transformations of CP2 and isometries of the imbedding space.
If one measures classical electromagnetic field, which is not canonical invariant in general case,
with some precision, one can determine to what kind of surface space-time region corresponds
apart from the action of the isometries of H.

Quantum measurement of the shape of the space-time surface

In practice the measurement of the shape of the space-time surface is necessarily a bootstrap
procedure based on the model for space-time region and on the requirement of internal consistency.
Many-sheeted space-time and quantum phenomena produce considerable complications but also
provide universal measurement standards.

Consider first how quantum effects could help to measure classical fields and distances.

1. The measurement of distances by measuring first induced metric at each point of space-time
sheet is rather unpractical procedure. Many-sheeted space-time however comes in rescue here.
p-Adic length scale hypothesis provides a hierarchy of natural length scales and one can use
p-adic length and time scales as natural units of length and time: space-time sheets serve
as meter sticks. For instance, length measurement reduces in principle to a finite number of
operations using various space-time sheets with standardized lengths given by p-adic length
scales. Also various transition frequencies and corresponding wavelengths provide universal
time and length units. Atomic clock provides a standard example of this kind of time unit.
A highly nontrivial implication is the possibility to deduce the composition of distant star
from its spectral lines. Without p-adic length scale hypothesis the scales for the mass spectra
of the elementary particles would be variable and atomic spectra would vary from point to
point in TGD universe.

Do the p-adic length scales correspond to the length units of the induced metric or of M4
+

metric? If the topological condensation a meter stick space-time sheet at a larger space-time
sheet does not stretch the meter stick but only bends it, the length topologically condensed
meter stick in the induced metric equals to its original length measured using M4

+ metric.

2. If superconducting order parameters are expressible in terms of the CP2 coordinates (there is
evidence for this, see the chapter “Macroscopic quantum phenomena and CP2 geometry” ),
one might determine directly the CP2 coordinates as functions of Minkowski coordinates and
this would allow to estimate all classical fields directly and thus to deduce strong consistency
constraints.

3. At quantum level only the fluxes of the classical fields through surface areas with some
minimum size determined by the length scale resolution can be measured. In case of magnetic
fields the quantization of the magnetic flux simplifies the situation dramatically. Topological
field quantization quite generally modifies the measurement of continuous field variables to
the measurement of fluxes. Interestingly, the construction of WCW geometry uses as WCW
coordinates various electric and magnetic fluxes over 2-dimensional cross sections of 3-surface.

Quantum effects introduce also difficulties and restrictions.

1. Canonical transformations localized with respect to the boundary of the light cone or more
general light like surfaces act as isometries of WCW and one can determine the space-time
surface only modulo these isometries. Even more, only the values of the non-quantum fluctu-
ating zero modes characterizing the shape and size of the space-time surface are measurable
with arbitrary precision in quantum theory. At the level of conscious experience quantum
fluctuating degrees of freedom correspond to sensory qualia like color having no classical
geometric content.
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2. Space-time surface is replaced by a new one in each quantum jump (or rather the superpo-
sition of perceptively equivalent space-time surfaces). Only in the approximation that the
change of the space-time region in single quantum jump is negligible, the measurement of the
shape of space-time surface makes sense. The physical criterion for this is that dissipation
is negligible. The change of the space-time region in single quantum jump can indeed be
negligible if the measurement is performed with a finite resolution.

3. Conscious experience of self is an average over quantum jumps defining moments of con-
sciousness. In particular, only the average increment of the zero modes is experienced and
this means that one cannot fix the space-time surface apart from canonical transformation
affecting the zero modes. Again the notion of measurement resolution comes in rescue.

4. The possibility of coherent states of photons and gravitons brings in a further quantum com-
plication since the effective classical em and gravitational fields are superpositions of classical
field and the order parameter describing the coherent state. In principle the extremely strong
constraints between the classical field quantities allow to measure both the order parameters
of the coherent phases and classical fields.

Quantum holography and the shape of the space-time surface

If the Dirac determinant asssognable to the mass squared eigenvalue spectrum of the Kähler-Dirac
operator DK(X2) equals to the exponent of Kähler action of a preferred extremal, it is fair to say
that a lot of information about the shape of the space-time surface is coded to physical observables,
which eigenvalues indeed represent. Quantum gravitational holography due to the Bohr orbit like
character of space-time surface reduces the amount of information needed. Only a finite number of
eigenvalues is involved and the eigen modes are associated with the 3-D light-like wormhole throats
rather than with the space-time surface itself. If the eigenvalues were known or could be measured
with infinite accuracy, one could in principle fix the boundary conditions at X3

l and solve field
equations determining the preferred extremal of Kähler action.

What is of course needed is the complete knowledge of the light-like 3-surfaces X3
l . Needless

to say, in practice a complete knowledge of X3
l is impossible since measurement resolution is

finite. The notion number theoretic braid provides a precise realization for the finite measurement
accuracy at space-time level. At the level of WCW spinors fields (world of classical worlds) just
the fact that the number of eigenvalues is finite is correlate for the finite measurement accuracy.
Furthermore, quantum states are actually quantum superpositions of 3-surfaces, which means that
one can only speak about quantum average space-time surface for which the phase factors coding
for the quantum numbers of elementary particles assigned to the strands of number theoretic
braids are stationary so that correlation of classical gauge charges with quantum gauge charges is
obtained.

2.3 The Vanishing Of Super-Conformal Charges As A Gauge
Conditions Selecting Preferred Extremals Of Kähler Ac-
tion

Classical TGD [K7] involves several key questions waiting for clearcut answers.

1. The notion of preferred extremal emerges naturally in positive energy ontology, where Kähler
metric assigns a unique (apart from gauge symmetries) preferred extremal to given 3-surface
at M4 time= constant section of imbedding space H = M4 ×CP2. This would quantize the
initial values of the time derivatives of imbedding coordinates and this could correspond to
the Bohr orbitology in quantum mechanics.

2. In zero energy ontology (ZEO) initial conditions are replaced by boundary conditions. One
fixes only the 3-surfaces at the opposite boundaries of CD and in an ideal situation there
would exist a unique space-time surface connecting them. One must however notice that
the existence of light-like wormhole throat orbits at which the signature of the induced
metric changes (det(g4) = 0) its signature might change the situation. Does the attribute
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”preferred” become obsolete and does one lose the beautiful Bohr orbitology, which looks
intuitively compelling and would realize quantum classical correspondence?

3. Intuitively it has become clear that the generalization of super-conformal symmetries by
replacing 2-D manifold with metrically 2-D but topologically 3-D light-like boundary of
causal diamond makes sense. Generalized super-conformal symmetries should apply also to
the wormhole throat orbits which are also metrically 2-D and for which conformal symme-
tries respect detg(g4) = 0 condition. Quantum classical correspondence demands that the
generalized super-confornal invariance has a classical counterpart. How could this classical
counterpart be realized?

4. Holography is one key aspect of TGD and mean that 3-surfaces dictate everything. In
positive energy ontology the content of this statement would be rather obvious and reduce to
Bohr orbitology but in ZEO situation is different. On the other hand, TGD strongly suggests
strong form of holography based stating that partonic 2-surfaces (the ends of wormhole throat
orbits at boundaries of CD) and tangent space data at them code for quantum physics of
TGD. General coordinate invariance would be realized in strong sense: one could formulate
the theory either in terms of space-like 3-surfaces at the ends of CD or in terms of light-like
wormhole throat orbits. This would realize Bohr orbitology also in ZEO by reducing the
boundary conditions to those at partonic 2-surfaces. How to realize this explicitly at the
level of field equations? This has been the challenge.

Answering questions is extremely useful activity. During last years Hamed has posed con-
tinually questions related to the basic TGD. At this time Hamed asked about the derivation of
field equations of TGD. In ”simple” field theories involving some polynomial non-linearities the
deduction of field equations is of course totally trivial process but in the extremely non-linear
geometric framework of TGD situation is quite different.

While answering the questions I made what I immediately dare to call a breakthrough
discovery in the mathematical understanding of TGD. To put it concisely: one can assume that
the variations at the light-like boundaries of CD vanish for all conformal variations which are
not isometries. For isometries the contributions from the ends of CD cancel each other so that
the corresponding variations need not vanish separately at boundaries of CD! This is extremely
simple and profound fact. This would be nothing but the realisation of the analogs of conformal
symmetries classically and give precise content for the notion of preferred external, Bohr orbitology,
and strong form of holography. And the condition makes sense only in ZEO!

I attach below the answers to the questions of Hamed almost as such apart from slight
editing and little additions, re-organization, and correction of typos.

2.3.1 Field Equations For Kähler Action

Hamed made some questions relating to the derivation of field equations for the extremals of Kähler
action which led to the recent progress. I comment first these questions since they lead naturally
to the basic new idea.

The physical interpretation of the canonical momentum current

Hamed asked about the physical meaning of Tnk ≡ ∂L/∂(∂nh
k) - normal components of canonical

momentum labelled by the label k of imbedding space coordinates - it is good to start from the
physical meaning of a more general vector field

Tαk ≡
∂L

∂(∂αhk)

with both imbedding space indices k and space-time indices α - canonical momentum currents. L
refers to Kähler action.

1. One can start from the analogy with Newton’s equations derived from action principle (La-
grangian). Now the analogs are the partial derivatives ∂L/∂(dxk/dt). For a particle in
potential one obtains just the momentum. Therefore the term canonical momentum cur-
rent/density: one has kind of momentum current for each imbedding space coordinate.
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2. By contracting with generators of imbedding space isometries (Poincare and color) one indeed
obtains conserved currents associated with isometries by Noether’s theorem:

jAα = Tαk j
Ak .

By field equations the divergences of these currents vanish and one obtains conserved charged-
classical four-momentum and color charges:

DαT
Aα = 0 .

3. The normal component of conserved current must vanish at boundaries with one time-like
direction if one has such:

TAn = 0.

Now one has wormhole throat orbits which are not genuine boundaries albeit analogous
to them and one must be very careful. The quantity Tnk determines the values of normal
components of currents and must vanish at possible space-like boundaries.

Note that in TGD field equations reduce to the conservation of isometry currents as in
hydrodynamics where basic equations are just conservation laws.

The basic steps in the derivation of field equations

First a general recipe for deriving field equations from Kähler action - or any action as a matter
of fact.

1. At the first step one writes an expression of the variation of the Kähler action as sum of
variations with respect to the induced metric g and induced Kähler form J . The partial
derivatives in question are energy momentum tensor and contravariant Kähler form.

2. After this the variations of g and J are expressed in terms of variations of imbedding space
coordinates, which are the primary dynamical variables.

3. The integral defining the variation can be decomposed to a total divergence plus a term
vanishing for extremals for all variations: this gives the field equations. Total divergence
term gives a boundary term and it vanishes by boundary conditions if the boundaries in
question have time-like direction.

If the boundary is space-like, the situation is more delicate in TGD framework: this will
be considered in the sequel. In TGD situation is also delicate also because the light-like
3-surfaces which are common boundaries of regions with Minkowskian or Euclidian signature
of the induced metric are not ordinary topological boundaries. Therefore a careful treatment
of both cases is required in order to not to miss important physics.

Expressing this summary more explicitly, the variation of the Kahler action with respect to
the gradients of the imbedding space coordinates reduces to the integral of

Tαk ∂αδh
k +

∂K

∂hk
δhk .

The latter term comes only from the dependence of the imbedding space metric and Kähler form on
imbedding space coordinates. One can use a simple trick. Assume that they do not depend at all on
imbedding space coordinates, derive field equations, and replaced partial derivatives by covariant
derivatives at the end. Covariant derivative means covariance with respect to both space-time
and imbedding space vector indices for the tensorial quantities involved. The trick works because
imbedding space metric and Kähler form are covariantly constant quantities.

The integral of the first term Tαk ∂αδh
k decomposes to two parts.
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1. The first term, whose vanishing gives rise to field equations, is integral of

DαT
α
k δh

k .

2. The second term is integral of

∂α(Tαk δh
k) .

This term reduces as a total divergence to a 3-D surface integral over the boundary of the
region of fixed signature of the induced metric consisting of the ends of CD and wormhole
throat orbits (boundary of region with fixed signature of induced metric). This term vanishes
if the normal components Tnk of canonical momentum currents vanishes at the boundary like
region.

In the sequel the boundary terms are discussed explicitly and it will be found that their
treatment indeed involves highly non-trivial physics.

Complex isometry charges and twistorialization

TGD space-time contains regions of both Minkowskian and Euclidian signature of metric. This
has some highly non-trivial consequences.

1. Should one assume that
√
det(g4) is imaginary in Minkowskian and real in Euclidian region?

For Kähler action this is sensible and Euclidian region would give a real negative contribution
giving rise to exponent of Kähler function of WCW (“world of classical worlds”) making the
functional integral convergent. Minkowskian regions would give imaginary contribution to
the exponent causing interference effects absolutely essential in quantum field theory. This
contribution would correspond to Morse function for WCW .

The implication would be that the classical four-momenta in Euclidian/Minkowskian regions
are imaginary/real. What could the interpretation be? Should one accept as a fact that
four-momenta are complex.

2. Twistor approach to TGD is now in quite good shape [K76]. M4×CP2 is the unique choice
is one requires that the Cartesian factors allow twistor space with Kähler structure [A63] and
classical TGD allows twistor formulation.

In the recent formulation the fundamental fermions are assumed to propagate with light-like
momenta along wormhole throats. At gauge theory limit particles must have massless or
massive four-momenta. One can however also consider the possibility of complex massless
momenta and in the standard twistor approach on mass shell massless particles appearing in
graphs indeed have complex momenta. These complex momenta should by quantum classical
correspondence correspond directly to classical complex momenta.

3. A funny question popping in mind is whether the massivation of particles could be such
that the momenta remain massless in complex sense! The complex variant of light-likeness
condition would be

p2
re = p2

Im , pre · pIm = 0 .

Could one interpret p2
Im as the mass squared of the particle? Or could p2

Im code for the
decay width of an unstable particle? This option does not look feasible.

4. The complex momenta could provide an elegant 4-D space-time level representation for the
isometry quantum numbers at the level of imbedding space. The ground states of the super-
conformal representations have as building bricks the spinor harmonics of the imbedding
space which correspond to the analogs of massless particles in 8-D sense [K39]. Indeed, the
condition giving mass squared eigenvalues for the spinor harmonics is just massless condition
in M4 × CP2.
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At the space-time level these conditions must be replaced by 4-D conditions and complex
masslessness would be the elegant manner to realizes this. Also the massivation of massless
states by p-adic thermodynamics could have similar description.

This interpretation would also conform with M8 −M4 × CP2 duality [K111] at the level of
momentum space.

2.3.2 Boundary Conditions At Boundaries Of CD

In positive energy ontology one would formulate boundary conditions as initial conditions by fixing
both the 3-surface and associated canonical momentum densities at either end of CD (positions
and momenta of particles in mechanics). This would bring asymmetry between boundaries of CD.
In ZEO the basic boundary condition is that space-time surfaces have as their ends the members
of pairs of surfaces at the ends of CD. Besides this one can have additional boundary conditions
and the notion of preferred extremal suggests this.

Do boundary conditions realize quantum classical correspondence?

In TGD framework one must carefully consider the boundary conditions at the boundaries of CDs.
What is clear that the time-like boundary contributions from the boundaries of CD to the variation
must vanish.

1. This is true if the variations are assumed to vanish at the ends of CD. This might be however
too strong a condition.

2. One cannot demand the vanishing of T tk (t refers to time coordinate as normal coordinate)
since this would give only vacuum extremals. One could however require quantum classical
correspondence for any Cartan sub-algebra of isometries whose elements define maximal set
of isometry generators. The eigenvalues of quantal variants of isometry charge assignable to
second quantized induced spinors at the ends of space-time surface are equal to the classical
charges. Is this actually a formulation of Equivalence Principle, is not quite clear to me.

Do boundary conditions realize preferred extremal property as a choice of conformal
gauge?

While writing this a completely new idea popped to my mind. What if one poses the vanishing
of the boundary terms at boundaries of CDs as additional boundary conditions for all variations
except isometries ? Of perhaps for all conformal variations (conformal in TGD sense)? This would
not imply vanishing of isometry charges since the variations coming from the opposite ends of CD
cancel each other! It soon became clear that this would allow to meet all the challenges listed in
the beginning!

1. These conditions would realize Bohr orbitology also to ZEO approach and define what ”pre-
ferred extremal” means.

2. The conditions would be very much like super-Virasoro conditions stating that the supercon-
formal generators with non-vanishing conformal weight annihilate states or create zero norm
states but no conditions are posed on generators with vanishing conformal weight (now isome-
tries). One could indeed assume only deformations, which are local isometries assignable to
the generalised conformal algebra of the δM4

+/−×CP2. For arbitrary variations one would
not require the vanishing. This could be the long sought for precise formulation of super-
conformal invariance at the level of classical field equations!

It is enough co consider the weaker conditions that the conformal charges defined as integrals
of corresponding Noether currents vanish. These conditions would be direct equivalents of
quantal conditions.

3. The natural interpretation would be as a fixing of conformal gauge. This fixing would be
motivated by the fact that WCW Kähler metric must possess isometries associated with the
conformal algebra and can depend only on the tangent data at partonic 2-surfaces as became
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clear already for more than two decades ago. An alternative, non-practical option would be
to allow all 3-surfaces at the ends of CD: this would lead to the problem of eliminating the
analog of the volume of gauge group from the functional integral.

4. The conditions would also define precisely the notion of holography and its reduction to
strong form of holography in which partonic 2-surfaces and their tangent space data code for
the dynamics.

Needless to say, the modification of this approach could make sense also at partonic orbits.

2.3.3 Boundary Conditions At Parton Orbits

The contributions from the orbits of wormhole throats are singular since the contravariant form of
the induced metric develops components which are infinite (det(g4) = 0). The contributions are
real at Euclidian side of throat orbit and imaginary at the Minkowskian side so that they must be
treated as independently.

Conformal gauge choice, preferred extremal property, hierarchy of Planck constants,
and TGD as almost topological QFT

The generalization of the boundary conditions as a classical realization conformal gauge invariance
is natural.

1. One can consider the possibility that under rather general conditions the normal components
Tnk
√
det(g4) approach to zero at partonic orbits since det(g4) is vanishing. Note however the

appearance of contravariant appearing twice as index raising operator in Kähler action. If so,
the vanishing of Tnk

√
det(g4) need not fix completely the ”boundary” conditions. In fact, I

assign to the wormhole throat orbits conformal gauge symmetries so that just this is expected
on physical grounds.

2. Generalized conformal invariance would suggest that the variations defined as integrals of
Tnk
√
det(g4)δhk vanish in a non-trivial manner for the conformal algebra associated with the

light-like wormhole throats with deformations respecting det(g4) = 0 condition. Also the
variations defined by infinitesimal isometries (zero conformal weight sector) should vanish
since otherwise one would lose the conservation laws for isometry charges. The conditions for
isometries might reduce to Tnk

√
det(g4)→ 0 at partonic orbits. Also now the interpretation

would be in terms of fixing of conformal gauge.

3. Even Tnk
√
g = 0 condition need not fix the partonic orbit completely. The Gribov ambiguity

meaning that gauge conditions do not fix uniquely the gauge potential could have counterpart
in TGD framework. It could be that there are several conformally non-equivalent space-time
surfaces connecting 3-surfaces at the opposite ends of CD.

If so, the boundary values at wormhole throats orbits could matter to some degree: very
natural in boundary value problem thinking but new in initial value thinking. This would
conform with the non-determinism of Kähler action implying criticality and the possibility
that the 3-surfaces at the ends of CD are connected by several space-time surfaces which are
physically non-equivalent.

4. The hierarchy of Planck [K22] constants assigned to dark matter, quantum criticality and
even criticality indeed relies on the assumption that heff = n × h corresponds to n-fold
coverings having n space-time sheets which coincide at the ends of CD and that conformal
symmetries act on the sheets as gauge symmetries. One would have as Gribov copies n
conformal equivalence classes of wormhole throat orbits and corresponding space-time sur-
faces. Depending on whether one fixes the conformal gauge one has n equivalence classes of
space-time surfaces or just one representative from each conformal equivalent class.

5. There is also the question about the correspondence with the weak form of electric magnetic
duality [K7]. This duality plus the condition that jαAα = 0 in the interior of space-time
surface imply the reduction of Kähler action to Chern-Simons terms. This would suggest
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that the boundary variation of the Kähler action reduces to that for Chern-Simons action
which is indeed well-defined for light-like 3-surfaces.

If so, the gauge fixing would reduce to variational equations for Chern-Simons action! A
weaker condition is that classical conformal charges vanish. This would give a nice connection
to the vision about TGD as almost topological QFT. In TGD framework these conditions
do not imply the vanishing of Kähler form at boundaries. The conditions are satisfied if the
CP2 projection of the partonic orbit is 2-D: the reason is that Chern-Simons term vanishes
identically in this case.

Fractal hierarchy of conformal symmetry breakings

A further intuitively natural hypothesis is that there is a fractal hierarchy of breakings of conformal
symmetry.

1. Only the generators of conformal sub-algebra with conformal weight multiple of n act as
gauge symmetries. This would give infinite hierarchies of breakings of conformal symmetry
interpreted in terms of criticality: in the hierarchy ni divides ni+1.

Similar degeneracy would be associated with both the parton orbits and the space-like ends
at CD boundaries and I have considered the possibility that the integer n appearing in heff
has decomposition n = n1n2 corresponding to the degeneracies associated with the two kinds
of boundaries. Alternatively, one could have just n = n1 = n2 from the condition that the
two conformal symmetries are 3-dimensional manifestations of single 4-D analog of conformal
symmetry.

2. In the symmetry breaking ni → ni+1 the conformal charges, which vanished earlier, would
become non-vanishing. Could one require that they are conserved that is the contributions
of the boundary terms at the ends of CD cancel each other? If so, one would have dynamical
conformal symmetry.

What could the proper interpretation of the conformal hierarchies ni → ni+1?

1. Could one interpret the hierarchy in terms of increasing measurement resolution? Conformal
degrees of freedom below measurement resolution would be gauge degrees of freedom and the
conformal hierarchies would correspond to an inclusion hierarchies for hyper-finite factors of
type II1 [K87]. If heff = n × h defines the conformal gauge sub-algebra, the improvement
of the resolution would scale up the Compton scales and would quite concretely correspond
to a zoom analogous to that done for Mandelbrot fractal to get new details visible. From
the point of view of cognition the improving resolution would fit nicely with the recent view
about heff/h as a kind of intelligence quotient.

This interpretation might make sense for the symplectic algebra of δM4
±×CP2 for which the

light-like radial coordinate rM of light-cone boundary takes the role of complex coordinate.
The reason is that symplectic algebra acts as isometries.

2. Suppose that the Kähler action has vanishing variation under deformations defined by the
broken conformal symmetries so that the corresponding conformal charges As a consequence,
Kähler function would be critical with respect to the corresponding variations. The compo-
nents of WCW Kähler metric expressible in terms of second derivatives of Kähler function
can be however non-vanishing and have also components, which correspond to WCW co-
ordinates associated with different partonic 2-surfaces. This conforms with the idea that
conformal algebras extend to Yangian algebras generalizing the Yangian symmetry of N = 4
symmetric gauge theories.

In this kind of situation one could consider the interpretation in terms of criticality: the
lower the criticality, the larger then value of heff and h and the higher the resolution.

3. n gives also the number of space-time sheets in the singular covering. Could the interpretation
be in terms measurement resolution for counting the number of space-time sheets. Our recent
quantum physics would only see single space-time sheet representing visible manner and dark
matter would become visible only for n > 1.
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As should have become clear, the derivation of field equations in TGD framework is not just
an application of a formal recipe as in field theories and a lot of non-trivial physics is involved!

2.4 General View About Field Equations

In this section field equations are deduced and discussed in general level. The fact that the di-
vergence of the energy momentum tensor, Lorentz 4-force, does not vanish in general, in principle
makes possible the mimicry of even dissipation and of the second law. For asymptotic self orga-
nization patterns for which dissipation is absent the Lorentz 4-force must vanish. This condition
is guaranteed if Kähler current is proportional to the instanton current in the case that CP2

projection of the space-time sheet is smaller than four and vanishes otherwise. An attractive iden-
tification for the vanishing of Lorentz 4-force is as a condition equivalent with the selection of
preferred extremal of Kähler action. This condition implies that covariant divergence of energy
momentum tensor vanishes and in General Relativity context this leads to Einstein’s equations. If
preferred extremals correspond to absolute minima this principle would be essentially equivalent
with the second law of thermodynamics. There are however could reasons to keep the identification
of preferred extremely property open.

2.4.1 Field Equations

The requirement that Kähler action is stationary leads to the following field equations in the
interior of the four-surface

Dβ(Tαβhkα) − jαJkl∂αh
l = 0 ,

Tαβ = JναJ β
ν −

1

4
gαβJµνJµν . (2.4.1)

Here Tαβ denotes the traceless canonical energy momentum tensor associated with the Kähler
action. An equivalent form for the first equation is

TαβHk
αβ − jα(J β

α hkβ + Jkl∂αh
l) = 0 .

Hk
αβ = Dβ∂αh

k . (2.4.2)

Hk
αβ denotes the components of the

second fundamental form and jα = DβJ
αβ is the gauge current associated with the Kähler

field.
On the boundaries of X4 and at wormhole throats the field equations are given by the

expression

∂LK
∂nhk

= Tnβ∂βh
k − Jnα(J β

α ∂βh
k + Jkl)∂αh

k) = 0 . (2.4.3)

At wormhole throats problems are caused by the vanishing of metric determinant implying that
contravariant metric is singular.

For M4 coordinates boundary conditions are satisfied if one assumes

Tnβ = 0 (2.4.4)

stating that there is no flow of four-momentum through the boundary component or wormhole
throat. This means that there is no energy exchange between Euclidian and Minkowskian regions
so that Euclidian regions provide representations for particles as autonomous units. This is in
accordance with the general picture [K30]. Note that momentum transfer with external world
necessarily involves generalized Feynman diagrams also at classical level.
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For CP2 coordinates the boundary conditions are more delicate. The construction of WCW
spinor structure [K88] led to the conditions

gni = 0 , Jni = 0 . (2.4.5)

Jni = 0 does not and should not follow from this condition since contravariant metric is singular.
It seems that limiting procedure is necessary in order to see what comes out.

The condition that Kähler electric charge defined as a gauge flux is non-vanishing would
require that the quantity Jnr

√
g is finite (here r refers to the light-like coordinate of X3

l ). Also
gnr
√
g4 which is analogous to gravitational flux if n is interpreted as time coordinate could be

non-vanishing. These conditions are consistent with the above condition if one has

Jni = 0 , gni = 0 , Jir = 0 , gir = 0 ,

Jnk = 0 k 6= r , gnk = 0 k 6= r , Jnr
√
g4 6= 0 , gnr

√
g4 6= 0 .

(2.4.6)

The interpretation of this conditions is rather transparent.

1. The first two conditions state that covariant form of the induced Kähler electric field is
in direction normal to X3

l and metric separate into direct sum of normal and tangential
contributions. Fifth and sixth condition state the same in contravariant form for k 6= n.

2. Third and fourth condition state that the induced Kähler field at X3
l is purely magnetic and

that the metric of x3
l reduces to a block diagonal form. The reduction to purely magnetic

field is of obvious importance as far as the understanding of the generalized eigen modes of
the Kähler-Dirac operator is considered [K88].

3. The last two conditions must be understood as a limit and 6= means only the possibility of
non-vanishing Kähler gauge flux or analog of gravitational flux through X3

l .

4. The vision inspired by number theoretical compactification allows to identify r and n in terms
of the light-like coordinates assignable to an integrable distribution of planes M2(x) assumed
to be assignable to M4 projection of X4(X3

l ). Later it will be found that Hamilton-Jacobi
structure assignable to the extremals indeed means the existence of this kind of distribution
meaning slicing of X4(X3

l ) both by string world sheets and dual partonic 2-surfaces as well
as by light-like 3-surfaces Y 3

l .

5. The physical analogy for the situation is the surface of an ideal conductor. It would not be
surprising that these conditions are satisfied by all induced gauge fields.

2.4.2 Topologization And Light-Likeness Of The Kähler Current As Al-
ternative Manners To Guarantee Vanishing Of Lorentz 4-Force

The general solution of 4-dimensional Einstein-Yang Mills equations in Euclidian 4-metric relies on
self-duality of the gauge field, which topologizes gauge charge. This topologization can be achieved
by a weaker condition, which can be regarded as a dynamical generalization of the Beltrami
condition. An alternative manner to achieve vanishing of the Lorentz 4-force is light-likeness of
the Kähler 4-current. This does not require topologization.

Topologization of the Kähler current for DCP2
= 3: covariant formulation

The condition states that Kähler 4-current is proportional to the instanton current whose diver-
gence is instanton density and vanishes when the dimension of CP2 projection is smaller than
four: DCP2

< 4. For DCP2
= 2 the instanton 4-current vanishes identically and topologization is

equivalent with the vanishing of the Kähler current.
If the simplest vision about light-like 3-surfaces as basic dynamical objects is accepted

DCP2 = 2, corresponds to a non-physical situation and only the deformations of these surfaces
- most naturally resulting by gluing of CP2 type vacuum extremals on them - can represent
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preferred extremals of Kähler action. One can however speak about DCP2
= 2 phase if 4-surfaces

are obtained are obtained in this manner.

jα ≡ DβJ
αβ = ψ × jαI = ψ × εαβγδJβγAδ . (2.4.7)

Here the function ψ is an arbitrary function ψ(sk) of CP2 coordinates sk regarded as functions of
space-time coordinates. It is essential that ψ depends on the space-time coordinates through the
CP2 coordinates only. Hence the representation as an imbedded gauge field is crucial element of
the solution ansatz.

The field equations state the vanishing of the divergence of the 4-current. This is trivially
true for instanton current for DCP2 < 4. Also the contraction of ∇ψ (depending on space-time co-
ordinates through CP2 coordinates only) with the instanton current is proportional to the winding
number density and therefore vanishes for DCP2

< 4.
The topologization of the Kähler current guarantees the vanishing of the Lorentz 4-force.

Indeed, using the self-duality condition for the current, the expression for the Lorentz 4-force
reduces to a term proportional to the instanton density:

jαJαβ = ψ × jαI Jαβ
= ψ × εαµνδJµνAδJαβ . (2.4.8)

Since all vector quantities appearing in the contraction with the four-dimensional permutation
tensor are proportional to the gradients of CP2 coordinates, the expression is proportional to the
instanton density, and thus winding number density, and vanishes for DCP2

< 4.
Remarkably, the topologization of the Kähler current guarantees also the vanishing of the

term jαJkl∂αs
k in the field equations for CP2 coordinates. This means that field equations reduce

in both M4
+ and CP2 degrees of freedom to

TαβHk
αβ = 0 . (2.4.9)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The earlier proposal that quaternion conformal invariance
in a suitable sense might provide a general solution of the field equations could be seen as a
generalization of the ordinary conformal invariance of string models. If the topologization of the
Kähler current implying effective dimensional reduction in CP2 degrees of freedom is consistent
with quaternion conformal invariance, the quaternion conformal structures must differ for the
different dimensions of CP2 projection.

Topologization of the Kähler current for DCP2
= 3: non-covariant formulation

In order to gain a concrete understanding about what is involved it is useful to repeat these
arguments using the 3-dimensional notation. The components of the instanton 4-current read in
three-dimensional notation as

jI = E ×A+ φB , ρI = B ·A . (2.4.10)

The self duality conditions for the current can be written explicitly using 3-dimensional notation
and read

∇×B − ∂tE = j = ψjI = ψ
(
φB + E ×A

)
,

∇ · E = ρ = ψρI . (2.4.11)

For a vanishing electric field the self-duality condition for Kähler current reduces to the Beltrami
condition
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∇×B = αB , α = ψφ . (2.4.12)

The vanishing of the divergence of the magnetic field implies that α is constant along the field lines
of the flow. When φ is constant and A is time independent, the condition reduces to the Beltrami
condition with α = φ = constant, which allows an explicit solution [B16].

One can check also the vanishing of the Lorentz 4-force by using 3-dimensional notation.
Lorentz 3-force can be written as

ρIE + j ×B = ψB ·AE + ψ
(
E ×A+ φB

)
×B = 0 . (2.4.13)

The fourth component of the Lorentz force reads as

j · E = ψB · E + ψ
(
E ×A+ φB

)
· E = 0 . (2.4.14)

The remaining conditions come from the induction law of Faraday and could be guaranteed by
expressing E and B in terms of scalar and vector potentials.

The density of the Kähler electric charge of the vacuum is proportional to the the helicity
density of the so called helicity charge ρ = ψρI = ψB ·A. This charge is topological charge in the
sense that it does not depend on the induced metric at all. Note the presence of arbitrary function
ψ of CP2 coordinates.

Further conditions on the functions appearing in the solution ansatz come from the 3 inde-
pendent field equations for CP2 coordinates. What is remarkable that the generalized self-duality
condition for the Kähler current allows to understand the general features of the solution ansatz
to very high degree without any detailed knowledge about the detailed solution. The question
whether field equations allow solutions consistent with the self duality conditions of the current
will be dealt later. The optimistic guess is that the field equations and topologization of the Kähler
current relate to each other very intimately.

Vanishing or light likeness of the Kähler current guarantees vanishing of the Lorentz
4-force for DCP2

= 2

For DCP2
= 2 one can always take two CP2 coordinates as space-time coordinates and from this

it is clear that instanton current vanishes so that topologization gives a vanishing Kähler current.
In particular, the Beltrami condition ∇×B = αB is not consistent with the topologization of the
instanton current for DCP2

= 2.
DCP2

= 2 case can be treated in a coordinate invariant manner by using the two coordinates
of CP2 projection as space-time coordinates so that only a magnetic or electric field is present
depending on whether the gauge current is time-like or space-like. Light-likeness of the gauge
current provides a second manner to achieve the vanishing of the Lorentz force and is realized
in case of massless extremals having DCP2

= 2: this current is in the direction of propagation
whereas magnetic and electric fields are orthogonal to it so that Beltrami conditions is certainly
not satisfied.

Under what conditions topologization of Kähler current yields Beltrami conditions?

Topologization of the Kähler 4-current gives rise to magnetic Beltrami fields if either of the following
conditions is satisfied.

1. The E × A term contributing besides φB term to the topological current vanishes. This
requires that E and A are parallel to each other

E = ∇Φ− ∂tA = βA (2.4.15)
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This condition is analogous to the Beltrami condition. Now only the 3-space has as its
coordinates time coordinate and two spatial coordinatesandB is replaced with A. Since E
and B are orthogonal, this condition implies B · A = 0 so that Kähler charge density is
vanishing.

2. The vector E ×A is parallel to B.

E ×A = βB (2.4.16)

The condition is consistent with the orthogonality of E and B but implies the orthogonality
of A and B so that electric charge density vanishes

In both cases vector potential fails to define a contact structure since B · A vanishes (contact
structures are discussed briefly below), and there exists a global coordinate along the field lines
of A and the full contact structure is lost again. Note however that the Beltrami condition for
magnetic field means that magnetic field defines a contact structure irrespective of whether B ·A
vanishes or not. The transition from the general case to Beltrami field would thus involve the
replacement

(A,B)→∇× (B, j)

induced by the rotor.
One must of course take these considerations somewhat cautiously since the inner product

depends on the induced 4-metric and it might be that induced metric could allow small vacuum
charge density and make possible genuine contact structure.

Hydrodynamic analogy

The field equations of TGD are basically hydrodynamic equations stating the local conservation of
the currents associated with the isometries of the imbedding space. Therefore it is intriguing that
Beltrami fields appear also as solutions of ideal magnetohydrodynamics equations and as steady
solutions of non-viscous incompressible flow described by Euler equations [B66].

In hydrodynamics the role of the magnetic field is taken by the velocity field. This raises
the idea that the incompressible flow could occur along the field lines of some natural vector field.
The considerations of the last section show that the instanton current defines a universal candidate
as far as the general solution of the field equations is considered. All conserved currents defined
by the isometry charges would be parallel to the instanton current: one can say each flow line
of instanton current is a carrier of conserved quantum numbers. Perhaps even the flow lines of
an incompressible hydrodynamic flow could in reasonable approximation correspond to those of
instanton current.

The conservation laws are satisfied for each flow line separately and therefore it seems that
one cannot have the analog of viscous hydrodynamic flow in this framework. One the other hand,
quantum classical correspondence requires that also dissipative effects have space-time correlates.
Does something go badly wrong?

The following argument suggests a way out of the problem. Dissipation is certaily due to
the quantum jumps at scales below that associated with causal diamond (CD) associated with the
observer and is thus assignable to sub-CDs. The quantum jumps for sub-CDs would eventually
lead to a thermal ensemble of sub-CDs.

The usual description of dissipation in terms of viscocity and similar parameters emerges at
the GRT-QFT limit of TGD replacing in long length scales the many-sheeted space-time (see Fig.
http://tgdtheory.fi/appfigures/manysheeted.jpg or Fig. 9 in the appendix of this book)
with a piece of Minkowski space with effective metric defined by the sum of Minkowski metric
and deviations of the induced metrics of space-time sheets from Minkowski metric. This lumping
of space-time sheets means that induced gauge fields and gravitational fields from various space-
time sheet sum up and become random (by central limit theorems). Thus locally the dynamics
is dissipation free for individual space-time sheets and dissipation emerges at the level of GRT
space-time carrying effective metric and effective gauge fields.

http://tgdtheory.fi/appfigures/manysheeted.jpg
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The stability of generalized Beltrami fields

The stability of generalized Beltrami fields is of high interest since unstable points of space-time
sheets are those around which macroscopic changes induced by quantum jumps are expected to be
localized.

1. Contact forms and contact structures

The stability of Beltrami flows has been studied using the theory of contact forms in three-
dimensional Riemann manifolds contact. Contact form is a one-form A (that is covariant vector
field Aα) with the property A∧ dA 6= 0. In the recent case the induced Kähler gauge potential Aα
and corresponding induced Kähler form Jαβ for any 3-sub-manifold of space-time surface define
a contact form so that the vector field Aα = gαβAβ is not orthogonal with the magnetic field
Bα = εαβδJβγ . This requires that magnetic field has a helical structure. Induced metric in turn
defines the Riemann structure.

If the vector potential defines a contact form, the charge density associated with the topol-
ogized Kähler current must be non-vanishing. This can be seen as follows.

1. The requirement that the flow lines of a one-form Xµ defined by the vector field Xµ as
its dual allows to define a global coordinate x varying along the flow lines implies that
there is an integrating factor φ such that φX = dx and therefore d(φX) = 0. This implies
dlog(φ)∧X = −dX. From this the necessary condition for the existence of the coordinate x
is X ∧ dX = 0. In the three-dimensional case this gives X · (∇×X) = 0.

2. This condition is by definition not satisfied by the vector potential defining a contact form
so that one cannot identify a global coordinate varying along the flow lines of the vector
potential. The condition B ·A 6= 0 states that the charge density for the topologized Kähler
current is non-vanishing. The condition that the field lines of the magnetic field allow a
global coordinate requires B · ∇ × B = 0. The condition is not satisfied by Beltrami fields
with α 6= 0. Note that in this case magnetic field defines a contact structure.

Contact structure requires the existence of a vector ξ satisfying the condition A(ξ) = 0. The
vector field ξ defines a plane field, which is orthogonal to the vector field Aα. Reeb field in turn
is a vector field for which A(X) = 1 and dA(X; ) = 0 hold true. The latter condition states the
vanishing of the cross product X × B so that X is parallel to the Kähler magnetic field Bα and
has unit projection in the direction of the vector field Aα. Any Beltrami field defines a Reeb field
irrespective of the Riemannian structure.

2. Stability of the Beltrami flow and contact structures

Contact structures are used in the study of the topology and stability of the hydrodynamical
flows [B44], and one might expect that the notion of contact structure and its proper generalization
to the four-dimensional context could be useful in TGD framework also. An example giving some
idea about the complexity of the flows defined by Beltrami fields is the Beltrami field in R3

possessing closed orbits with all possible knot and link types simultaneously [B44] !
Beltrami flows associated with Euler equations are known to be unstable [B44]. Since the

flow is volume preserving, the stationary points of the Beltrami flow are saddle points at which
also vorticity vanishes and linear instabilities of Navier-Stokes equations can develop. From the
point of view of biology it is interesting that the flow is stabilized by vorticity which implies also
helical structures. The stationary points of the Beltrami flow correspond in TGD framework to
points at which the induced Kähler magnetic field vanishes. They can be unstable by the vacuum
degeneracy of Kähler action implying classical non-determinism. For generalized Beltrami fields
velocity and vorticity (both divergence free) are replaced by Kähler current and instanton current.

More generally, the points at which the Kähler 4-current vanishes are expected to represent
potential instabilities. The instanton current is linear in Kähler field and can vanish in a gauge
invariant manner only if the induced Kähler field vanishes so that the instability would be due to
the vacuum degeneracy also now. Note that the vanishing of the Kähler current allows also the
generation of region with DCP2 = 4. The instability of the points at which induce Kähler field
vanish is manifested in quantum jumps replacing the generalized Beltrami field with a new one
such that something new is generated around unstable points. Thus the regions in which induced
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Kähler field becomes weak are the most interesting ones. For example, unwinding of DNA could
be initiated by an instability of this kind.

2.4.3 How To Satisfy Field Equations?

The topologization of the Kähler current guarantees also the vanishing of the term jαJkl∂αs
k in

the field equations for CP2 coordinates. This means that field equations reduce in both M4
+ and

CP2 degrees of freedom to

TαβHk
αβ = 0 . (2.4.17)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The following approach utilizes the properties of Hamilton
Jacobi structures of M4

+ introduced in the study of massless extremals and contact structures of
CP2 emerging naturally in the case of generalized Beltrami fields.

String model as a starting point

String model serves as a starting point.

1. In the case of Minkowskian minimal surfaces representing string orbit the field equations
reduce to purely algebraic conditions in light cone coordinates (u, v) since the induced met-
ric has only the component guv, whereas the second fundamental form has only diagonal
components Hk

uu and Hk
vv.

2. For Euclidian minimal surfaces (u, v) is replaced by complex coordinates (w,w) and field
equations are satisfied because the metric has only the component gww and second funda-

mental form has only components of type Hk
ww and Hk

ww. The mechanism should generalize
to the recent case.

The general form of energy momentum tensor as a guideline for the choice of coordi-
nates

Any 3-dimensional Riemann manifold allows always a orthogonal coordinate system for which the
metric is diagonal. Any 4-dimensional Riemann manifold in turn allows a coordinate system for
which 3-metric is diagonal and the only non-diagonal components of the metric are of form gti. This
kind of coordinates might be natural also now. When E and B are orthogonal, energy momentum
tensor has the form

T =


E2+B2

2 0 0 EB

0 E2+B2

2 0 0

0 0 −E2+B2

2 0

EB 0 0 E2−B2

2

 (2.4.18)

in the tangent space basis defined by time direction and longitudinal direction E×B, and transver-
sal directions E and B. Note that T is traceless.

The optimistic guess would be that the directions defined by these vectors integrate to
three orthogonal coordinates of X4 and together with time coordinate define a coordinate system
containing only gti as non-diagonal components of the metric. This however requires that the fields
in question allow an integrating factor and, as already found, this requires ∇×X ·X = 0 and this
is not the case in general.

Physical intuition suggests however that X4 coordinates allow a decomposition into longitu-
dinal and transversal degrees freedom. This would mean the existence of a time coordinate t and
longitudinal coordinate z the plane defined by time coordinate and vector E × B such that the
coordinates u = t−z and v = t+z are light like coordinates so that the induced metric would have
only the component guv whereas gvv and guu would vanish in these coordinates. In the transversal
space-time directions complex space-time coordinate coordinate w could be introduced. Metric
could have also non-diagonal components besides the components gww and guv.
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Hamilton Jacobi structures in M4
+

Hamilton Jacobi structure in M4
+ can understood as a generalized complex structure combing

transversal complex structure and longitudinal hyper-complex structure so that notion of holo-
morphy and Kähler structure generalize.

1. Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2) denote local
coordinates of M4

+ defining a local decomposition of the tangent space M4 of M4
+ into a direct,

not necessarily orthogonal, sum M4 = M2 ⊕ E2 of spaces M2 and E2. This decomposition
has an interpretation in terms of the longitudinal and transversal degrees of freedom defined
by local light-like four-velocities v± = ∇S± and polarization vectors εi = ∇Ei assignable to
light ray. Assume that E2 allows complex coordinates w = E1 + iE2 and w = E1− iE2. The
simplest decomposition of this kind corresponds to the decomposition (S+ ≡ u = t+z, S− ≡
v = t− z, w = x+ iy, w = x− iy).

2. In accordance with this physical picture, S+ and S− define light-like curves which are normals
to light-like surfaces and thus satisfy the equation:

(∇S±)2 = 0 .

The gradients of S± are obviously analogous to local light like velocity vectors v = (1, v) and
ṽ = (1,−v). These equations are also obtained in geometric optics from Hamilton Jacobi
equation by replacing photon’s four-velocity with the gradient ∇S: this is consistent with
the interpretation of massless extremals as Bohr orbits of em field. S± = constant surfaces
can be interpreted as expanding light fronts. The interpretation of S± as Hamilton Jacobi
functions justifies the term Hamilton Jacobi structure.

The simplest surfaces of this kind correspond to t = z and t = −z light fronts which are
planes. They are dual to each other by hyper complex conjugation u = t − z → v = t + z.
One should somehow generalize this conjugation operation. The simplest candidate for the
conjugation S+ → S− is as a conjugation induced by the conjugation for the arguments:
S+(t − z, t + z, x, y) → S−(t − z, t + z, x, y) = S+(t + z, t − z, x,−y) so that a dual pair
is mapped to a dual pair. In transversal degrees of freedom complex conjugation would be
involved.

3. The coordinates (S±, w, w) define local light cone coordinates with the line element having
the form

ds2 = g+−dS
+dS− + gwwdwdw

+ g+wdS
+dw + g+wdS

+dw

+ g−wdS
−dw + g−wdS

−dw . (2.4.19)

Conformal transformations of M4
+ leave the general form of this decomposition invariant.

Also the transformations which reduces to analytic transformations w → f(w) in transver-
sal degrees of freedom and hyper-analytic transformations S+ → f(S+), S− → f(S−) in
longitudinal degrees of freedom preserve this structure.

4. The basic idea is that of generalized Kähler structure meaning that the notion of Kähler
function generalizes so that the non-vanishing components of metric are expressible as

gww = ∂w∂wK , g+− = ∂S+∂S−K ,

gw± = ∂w∂S±K , gw± = ∂w∂S±K .
(2.4.20)

for the components of the metric. The expression in terms of Kähler function is coordinate
invariant for the same reason as in case of ordinary Kähler metric. In the standard light-cone
coordinates the Kähler function is given by
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K = w0w0 + uv , w0 = x+ iy , u = t− z , v = t+ z . (2.4.21)

The Christoffel symbols satisfy the conditions

{ kw w} = 0 , { k+−} = 0 . (2.4.22)

If energy momentum tensor has only the components Tww and T+−, field equations are
satisfied in M4

+ degrees of freedom.

5. The Hamilton Jacobi structures related by these transformations can be regarded as being
equivalent. Since light-like 3- surface is, as the dynamical evolution defined by the light
front, fixed by the 2-surface serving as the light source, these structures should be in one-one
correspondence with 2-dimensional surfaces with two surfaces regarded as equivalent if they
correspond to different time=constant snapshots of the same light front, or are related by
a conformal transformation of M4

+. Obviously there should be quite large number of them.
Note that the generating two-dimensional surfaces relate also naturally to quaternion con-
formal invariance and corresponding Kac Moody invariance for which deformations defined
by the M4 coordinates as functions of the light-cone coordinates of the light front evolution
define Kac Moody algebra, which thus seems to appear naturally also at the level of solutions
of field equations.

The task is to find all possible local light cone coordinates defining one-parameter families 2-
surfaces defined by the condition Si = constant, i = + or = −, dual to each other and expanding
with light velocity. The basic open questions are whether the generalized Kähler function indeed
makes sense and whether the physical intuition about 2-surfaces as light sources parameterizing
the set of all possible Hamilton Jacobi structures makes sense.

Hamilton Jacobi structure means the existence of foliations of the M4 projection of X4 by
2-D surfaces analogous to string word sheets labeled by w and the dual of this foliation defined
by partonic 2-surfaces labeled by the values of Si. Also the foliation by light-like 3-surfaces Y 3

l

labeled by S± with S∓ serving as light-like coordinate for Y 3
l is implied. This is what number

theoretic compactification and M8 − H duality predict when space-time surface corresponds to
hyper-quaternionic surface of M8 [K30, K74].

Contact structure and generalized Kähler structure of CP2 projection

In the case of 3-dimensional CP2 projection it is assumed that one can introduce complex coordi-
nates (ξ, ξ) and the third coordinate s. These coordinates would correspond to a contact structure
in 3-dimensional CP2 projection defining transversal symplectic and Kähler structures. In these
coordinates the transversal parts of the induced CP2 Kähler form and metric would contain only
components of type gww and Jww. The transversal Kähler field Jww would induce the Kähler
magnetic field and the components Jsw and Jsw the Kähler electric field.

It must be emphasized that the non-integrability of the contact structure implies that J
cannot be parallel to the tangent planes of s = constant surfaces, s cannot be parallel to neither
A nor the dual of J , and ξ cannot vary in the tangent plane defined by J . A further important
conclusion is that for the solutions with 3-dimensional CP2 projection topologized Kähler charge
density is necessarily non-vanishing by A ∧ J 6= 0 whereas for the solutions with DCP2

= 2
topologized Kähler current vanishes.

Also the CP2 projection is assumed to possess a generalized Kähler structure in the sense
that all components of the metric except sss are derivable from a Kähler function by formulas
similar to M4

+ case.

sww = ∂w∂wK , sws = ∂w∂sK , sws = ∂w∂sK . (2.4.23)
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Generalized Kähler property guarantees that the vanishing of the Christoffel symbols of CP2 (rather
than those of 3-dimensional projection), which are of type { k

ξ ξ
}.

{ k
ξ ξ
} = 0 . (2.4.24)

Here the coordinates of CP2 have been chosen in such a manner that three of them correspond to
the coordinates of the projection and fourth coordinate is constant at the projection. The upper
index k refers also to the CP2 coordinate, which is constant for the CP2 projection. If energy
momentum tensor has only components of type T+− and Tww, field equations are satisfied even
when if non-diagonal Christoffel symbols of CP2 are present. The challenge is to discover solution
ansatz, which guarantees this property of the energy momentum tensor.

A stronger variant of Kähler property would be that also sss vanishes so that the co-
ordinate lines defined by s would define light like curves in CP2. The topologization of the
Kähler current however implies that CP2 projection is a projection of a 3-surface with strong
Kähler property. Using (s, ξ, ξ, S−) as coordinates for the space-time surface defined by the ansatz
(w = w(ξ, s), S+ = S+(s)) one finds that gss must be vanishing so that stronger variant of the
Kähler property holds true for S− = constant 3-surfaces.

The topologization condition for the Kähler current can be solved completely generally in
terms of the induced metric using (ξ, ξ, s) and some coordinate of M4

+, call it x4, as space-time
coordinates. Topologization boils down to the conditions

∂β(Jαβ
√
g) = 0 for α ∈ {ξ, ξ, s} ,

g4i 6= 0 . (2.4.25)

Thus 3-dimensional empty space Maxwell equations and the non-orthogonality of X4 coordinate
lines and the 3-surfaces defined by the lift of the CP2 projection.

A solution ansatz yielding light-like current in DCP2
= 3 case

The basic idea is that of generalized Kähler structure and solutions of field equations as maps or
deformations of canonically imbedded M4

+ respecting this structure and guaranteeing that the only
non-vanishing components of the energy momentum tensor are T ξξ and T s− in the coordinates
(ξ, ξ, s, S−).

1. The coordinates (w, S+) are assumed to holomorphic functions of the CP2 coordinates (s, ξ)

S+ = S+(s) , w = w(ξ, s) . (2.4.26)

Obviously S+ could be replaced with S−. The ansatz is completely symmetric with respect
to the exchange of the roles of (s, w) and (S+, ξ) since it maps longitudinal degrees of freedom
to longitudinal ones and transverse degrees of freedom to transverse ones.

2. Field equations are satisfied if the only non-vanishing components of the energy momentum

tensor are of type T ξξ and T s−. The reason is that the CP2 Christoffel symbols for projection
and projections of M4

+ Christoffel symbols are vanishing for these lower index pairs.

3. By a straightforward calculation one can verify that the only manner to achieve the required
structure of energy momentum tensor is to assume that the induced metric in the coordinates
(ξ, ξ, s, S−) has as non-vanishing components only gξξ and gs−

gss = 0 , gξs = 0 , gξs = 0 . (2.4.27)

Obviously the space-time surface must factorize into an orthogonal product of longitudinal
and transversal spaces.
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4. The condition guaranteeing the product structure of the metric is

sss = m+w∂sw(ξ, s)∂sS
+(s) +m+w∂sw(ξ, s)∂sS

+(s) ,
ssξ = m+w∂ξw(ξ)∂sS

+(s) ,

ssξ = m+w∂ξw(ξ)∂sS
+(s) .

(2.4.28)

Thus the function of dynamics is to diagonalize the metric and provide it with strong Kähler
property. Obviously the CP2 projection corresponds to a light-like surface for all values of
S− so that space-time surface is foliated by light-like surfaces and the notion of generalized
conformal invariance makes sense for the entire space-time surface rather than only for its
boundary or elementary particle horizons.

5. The requirement that the Kähler current is proportional to the instanton current means that
only the j− component of the current is non-vanishing. This gives the following conditions

jξ
√
g = ∂β(Jξβ

√
g) = 0 , jξ

√
g = ∂β(Jξβ

√
g) = 0 ,

j+√g = ∂β(J+β√g) = 0 .

(2.4.29)

Since J+β vanishes, the condition

√
gj+ = ∂β(J+β√g) = 0 (2.4.30)

is identically satisfied. Therefore the number of field equations reduces to three.

The physical interpretation of the solution ansatz deserves some comments.

1. The light-like character of the Kähler current brings in mind CP2 extremals for which CP2

projection is light like. This suggests that the topological condensation of CP2 type extremal
occurs on DCP2

= 3 helical space-time sheet representing zitterbewegung. In the case of
many-body system light-likeness of the current does not require that particles are massless if

particles of opposite charges can be present. Field tensor has the form (Jξξ, Jξ−, Jξ−). Both
helical magnetic field and electric field present as is clear when one replaces the coordinates
(S+, S−) with time-like and space-like coordinate. Magnetic field dominates but the presence
of electric field means that genuine Beltrami field is not in question.

2. Since the induced metric is product metric, 3-surface is metrically product of 2-dimensional
surface X2 and line or circle and obeys product topology. If preferred extremals correspond
to asymptotic self-organization patterns, the appearance of the product topology and even
metric is not so surprising. Thus the solutions can be classified by the genus of X2. An
interesting question is how closely the explanation of family replication phenomenon in terms
of the topology of the boundary component of elementary particle like 3-surface relates to
this. The heaviness and instability of particles which correspond to genera g > 2 (sphere
with more than two handles) might have simple explanation as absence of (stable) DCP2

= 3
solutions of field equations with genus g > 2.

3. The solution ansatz need not be the most general. Kähler current is light-like and already
this is enough to reduce the field equations to the form involving only energy momentum
tensor. One might hope of finding also solution ansätze for which Kähler current is time-
like or space-like. Space-likeness of the Kähler current might be achieved if the complex
coordinates (ξ, ξ) and hyper-complex coordinates (S+, S−) change the role. For this solution
ansatz electric field would dominate. Note that the possibility that Kähler current is always
light-like cannot be excluded.
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4. Suppose that CP2 projection quite generally defines a foliation of the space-time surface
by light-like 3-surfaces, as is suggested by the conformal invariance. If the induced metric
has Minkowskian signature, the fourth coordinate x4 and thus also Kähler current must be
time-like or light-like so that magnetic field dominates. Already the requirement that the
metric is non-degenerate implies gs4 6= 0 so that the metric for the ξ = constant 2-surfaces
has a Minkowskian signature. Thus space-like Kähler current does not allow the lift of the
CP2 projection to be light-like.

Are solutions with time-like or space-like Kähler current possible in DCP2
= 3 case?

As noticed in the section about number theoretical compactification, the flow of gauge currents
along slices Y 3

l of X4(X3
l ) “parallel” to X3

l requires only that gauge currents are parallel to Y 3
l and

can thus space-like. The following ansatz gives good hopes for obtaining solutions with space-like
and perhaps also time-like Kähler currents.

1. Assign to light-like coordinates coordinates (T,Z) by the formula T = S+ + S− and Z =
S+ − S−. Space-time coordinates are taken to be (ξ, ξ, s) and coordinate Z. The solution
ansatz with time-like Kähler current results when the roles of T and Z are changed. It will
however found that same solution ansatz can give rise to both space-like and time-like Kähler
current.

2. The solution ansatz giving rise to a space-like Kähler current is defined by the equations

T = T (Z, s) , w = w(ξ, s) . (2.4.31)

If T depends strongly on Z, the gZZ component of the induced metric becomes positive and
Kähler current time-like.

3. The components of the induced metric are

gZZ = mZZ +mTT∂ZT∂sT , gZs = mTT∂ZT∂sT ,

gss = sss +mTT∂sT∂sT , gww = sww +mww∂ξw∂ξw ,

gsξ = ssξ , gsξ = ssξ .

(2.4.32)

Topologized Kähler current has only Z-component and 3-dimensional empty space Maxwell’s
equations guarantee the topologization.

In CP2 degrees of freedom the contractions of the energy momentum tensor with Christoffel
symbols vanish if T ss, T ξs and T ξξ vanish as required by internal consistency. This is guaranteed
if the condition

Jξs = 0 (2.4.33)

holds true. Note however that JξZ is non-vanishing. Therefore only the components T ξξ and TZξ,

TZξ of energy momentum tensor are non-vanishing, and field equations reduce to the conditions

∂ξ(J
ξξ√g) + ∂Z(JξZ

√
g) = 0 ,

∂ξ(J
ξξ√g) + ∂Z(JξZ

√
g) = 0 . (2.4.34)

In the special case that the induced metric does not depend on z-coordinate equations reduce to
holomorphicity conditions. This is achieve if T depends linearly on Z: T = aZ.
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The contractions with M4
+ Christoffel symbols come from the non-vanishing of TZξ and

vanish if the Hamilton Jacobi structure satisfies the conditions

{ kT w} = 0 , { kT w} = 0 ,

{ kZ w} = 0 , { kZ w} = 0
(2.4.35)

hold true. The conditions are equivalent with the conditions

{ k± w} = 0 , { k± w} = 0 . (2.4.36)

These conditions possess solutions (standard light cone coordinates are the simplest example). Also
the second derivatives of T (s, Z) contribute to the second fundamental form but they do not give
rise to non-vanishing contractions with the energy momentum tensor. The cautious conclusion is
that also solutions with time-like or space-like Kähler current are possible.

DCP2
= 4 case

The preceding discussion was for DCP2 = 3 and one should generalize the discussion to DCP2 = 4
case.

1. Hamilton Jacobi structure for M4
+ is expected to be crucial also now.

2. One might hope that for DCP2 = 4 the Kähler structure of CP2 defines a foliation of CP2 by
3-dimensional contact structures. This requires that there is a coordinate varying along the
field lines of the normal vector field X defined as the dual of the three-form A∧ dA = A∧ J .
By the previous considerations the condition for this reads as dX = d(logφ)∧X and implies
X ∧dX = 0. Using the self duality of the Kähler form one can express X as Xk = JklAl. By
a brief calculation one finds that X ∧dX ∝ X holds true so that (somewhat disappointingly)
a foliation of CP2 by contact structures does not exist.

For DCP2
= 4 case Kähler current vanishes and this case corresponds to what I have called

earlier Maxwellian phase since empty space Maxwell’s equations would be indeed satisfied, provided
this phase exists at all. It however seems that Maxwell phase is probably realized differently.

1. Solution ansatz with a 3-dimensional M4
+ projection

The basic idea is that the complex structure of CP2 is preserved so that one can use complex
coordinates (ξ1, ξ2) for CP2 in which CP2 Christoffel symbols and energy momentum tensor have
automatically the desired properties. This is achieved the second light like coordinate, say v, is
non-dynamical so that the induced metric does not receive any contribution from the longitudinal
degrees of freedom. In this case one has

S+ = S+(ξ1, ξ2) , w = w(ξ1, ξ2) , S− = constant . (2.4.37)

The induced metric does possesses only components of type gij if the conditions

g+w = 0 , g+w = 0 . (2.4.38)

This guarantees that energy momentum tensor has only components of type T ij in coordi-
nates (ξ1, ξ2) and their contractions with the Christoffel symbols of CP2 vanish identically. In M4

+

degrees of freedom one must pose the conditions

{ kw+} = 0 , { kw+} = 0 , { k++} = 0 . (2.4.39)

on Christoffel symbols. These conditions are satisfied if the the M4
+ metric does not depend on

S+:
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∂+mkl = 0 . (2.4.40)

This means that m−w and m−w can be non-vanishing but like m+− they cannot depend on S+.

The second derivatives of S+ appearing in the second fundamental form are also a source
of trouble unless they vanish. Hence S+ must be a linear function of the coordinates ξk:

S+ = akξ
k + akξ

k
. (2.4.41)

Field equations are the counterparts of empty space Maxwell equations jα = 0 but with M4
+

coordinates (u,w) appearing as dynamical variables and entering only through the induced metric.
By holomorphy the field equations can be written as

∂j(J
ji√g) = 0 , ∂j(J

ji√g) = 0 , (2.4.42)

and can be interpreted as conditions stating the holomorphy of the contravariant Kähler form.

What is remarkable is that the M4
+ projection of the solution is 3-dimensional light like

surface and that the induced metric has Euclidian signature. Light front would become a concrete
geometric object with one compactified dimension rather than being a mere conceptualization.
One could see this as topological quantization for the notion of light front or of electromagnetic
shock wave, or perhaps even as the realization of the particle aspect of gauge fields at classical
level.

If the latter interpretation is correct, quantum classical correspondence would be realized
very concretely. Wave and particle aspects would both be present. One could understand the
interactions of charged particles with electromagnetic fields both in terms of absorption and emis-
sion of topological field quanta and in terms of the interaction with a classical field as particle
topologically condenses at the photonic light front.

For CP2 type extremals for which M4
+ projection is a light like curve correspond to a special

case of this solution ansatz: transversal M4
+ coordinates are constant and S+ is now arbitrary

function of CP2 coordinates. This is possible since M4
+ projection is 1-dimensional.

2. Are solutions with a 4-dimensional M4
+ projection possible?

The most natural solution ansatz is the one for which CP2 complex structure is preserved
so that energy momentum tensor has desired properties. For four-dimensional M4

+ projection
this ansatz does not seem to make promising since the contribution of the longitudinal degrees
of freedom implies that the induced metric is not anymore of desired form since the components
gij = m+−(∂ξiS

+∂ξjS
− +m+−∂ξiS

−∂ξjS
+) are non-vanishing.

1. The natural dynamical variables are still Minkowski coordinates (w,w, S+, S−) for some
Hamilton Jacobi structure. Since the complex structure of CP2 must be given up, CP2

coordinates can be written as (ξ, s, r) to stress the fact that only “one half” of the Kähler
structure of CP2 is respected by the solution ansatz.

2. The solution ansatz has the same general form as in DCP2
= 3 case and must be symmetric

with respect to the exchange of M4
+ and CP2 coordinates. Transverse coordinates are mapped

to transverse ones and longitudinal coordinates to longitudinal ones:

(S+, S−) = (S+(s, r), S−(s, r)) , w = w(ξ) . (2.4.43)

This ansatz would describe ordinary Maxwell field in M4
+ since the roles of M4

+ coordinates
and CP2 coordinates are interchangeable.
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It is however far from obvious whether there are any solutions with a 4-dimensional M4
+

projection. That empty space Maxwell’s equations would allow only the topologically quantized
light fronts as its solutions would realize quantum classical correspondence very concretely.

The recent view conforms with this intuition. The Maxwell phase is certainly physical
notion but would correspond effective fields experience by particle in many-sheeted space-time.
Test particle topological condenses to all the space-time sheets with projection to a given region
of Minkowski space and experiences essentially the sum of the effects caused by the induced gauge
fields at different sheets. This applies also to gravitational fields interpreted as deviations from
Minkowski metric.

The transition to GRT and QFT picture means the replacement of many-sheeted space-
time with piece of Minkowski space with effective metric defined as the sum of Minkowski metric
and deviations of the induced metrics of space-time sheets from Minkowski metric. Effective
gauge potentials are sums of the induced gauge potentials. Hence the rather simple topologically
quantized induced gauge fields associated with space-time sheets become the classical fields in the
sense of Maxwell’s theory and gauge theories.

DCP2
= 2 case

Hamilton Jacobi structure for M4
+ is assumed also for DCP2 = 2, whereas the contact structure for

CP2 is in DCP2
= 2 case replaced by the induced Kähler structure. Topologization yields vanishing

Kähler current. Light-likeness provides a second manner to achieve vanishing Lorentz force but
one cannot exclude the possibility of time- and space-like Kähler current.

1. Solutions with vanishing Kähler current

1. String like objects, which are products X2× Y 2 ⊂M4
+×CP2 of minimal surfaces Y 2 of M4

+

with geodesic spheres S2 of CP2 and carry vanishing gauge current. String like objects allow
considerable generalization from simple Cartesian products of X2 × Y 2 ⊂ M4 × S2. Let
(w,w, S+, S−) define the Hamilton Jacobi structure for M4

+. w = constant surfaces define
minimal surfaces X2 of M4

+. Let ξ denote complex coordinate for a sub-manifold of CP2 such
that the imbedding to CP2 is holomorphic: (ξ1, ξ2) = (f1(ξ), f2(ξ)). The resulting surface
Y 2 ⊂ CP2 is a minimal surface and field equations reduce to the requirement that the Kähler

current vanishes: ∂ξ(J
ξξ√g2) = 0. One-dimensional strings are deformed to 3-dimensional

cylinders representing magnetic flux tubes. The oscillations of string correspond to waves
moving along string with light velocity, and for more general solutions they become TGD
counterparts of Alfven waves associated with magnetic flux tubes regarded as oscillations of
magnetic flux lines behaving effectively like strings. It must be emphasized that Alfven waves
are a phenomenological notion not really justified by the properties of Maxwell’s equations.

2. Also electret type solutions with the role of the magnetic field taken by the electric field are
possible. (ξ, ξ, u, v) would provide the natural coordinates and the solution ansatz would be
of the form

(s, r) = (s(u, v), r(u, v)) , ξ = constant , (2.4.44)

and corresponds to a vanishing Kähler current.

3. Both magnetic and electric fields are necessarily present only for the solutions carrying non-
vanishing electric charge density (proportional to B · A). Thus one can ask whether more
general solutions carrying both magnetic and electric field are possible. As a matter fact, one
must first answer the question what one really means with the magnetic field. By choosing
the coordinates of 2-dimensional CP2 projection as space-time coordinates one can define
what one means with magnetic and electric field in a coordinate invariant manner. Since the
CP2 Kähler form for the CP2 projection with DCP2 = 2 can be regarded as a pure Kähler
magnetic field, the induced Kähler field is either magnetic field or electric field.
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The form of the ansatz would be

(s, r) = (s, r) (u, v, w,w) , ξ = constant . (2.4.45)

As a matter fact, CP2 coordinates depend on two properly chosen M4 coordinates only.

1. Solutions with light-like Kähler current

There are large classes of solutions of field equations with a light-like Kähler current and
2-dimensional CP2 projection.

1. Massless extremals for which CP2 coordinates are arbitrary functions of one transversal
coordinate e = f(w,w) defining local polarization direction and light like coordinate u of
M4

+ and carrying in the general case a light like current. In this case the holomorphy does
not play any role.

2. The string like solutions thickened to magnetic flux tubes carrying TGD counterparts of
Alfven waves generalize to solutions allowing also light-like Kähler current. Also now Kähler
metric is allowed to develop a component between longitudinal and transversal degrees of
freedom so that Kähler current develops a light-like component. The ansatz is of the form

ξi = f i(ξ) , w = w(ξ) , S− = s− , S+ = s+ + f(ξ, ξ) .

Only the components g+ξ and g+ξ of the induced metric receive contributions from the

modification of the solution ansatz. The contravariant metric receives contributions to g−ξ

and g−ξ whereas g+ξ and g+ξ remain zero. Since the partial derivatives ∂ξ∂+h
k and ∂ξ∂+h

k

and corresponding projections of Christoffel symbols vanish, field equations are satisfied.
Kähler current develops a non-vanishing component j−. Apart from the presence of the
electric field, these solutions are highly analogous to Beltrami fields.

Could DCP2
= 2→ 3 transition occur in rotating magnetic systems?

I have studied the imbeddings of simple cylindrical and helical magnetic fields in various applica-
tions of TGD to condensed matter systems, in particular in attempts to understand the strange
findings about rotating magnetic systems [K77].

Let S2 be the homologically non-trivial geodesic sphere of CP2 with standard spherical
coordinates (U ≡ cos(θ),Φ) and let (t, ρ, φ, z) denote cylindrical coordinates for a cylindrical
space-time sheet. The simplest possible space-time surfaces X4 ⊂M4

+×S2 carrying helical Kähler
magnetic field depending on the radial cylindrical coordinate ρ, are given by:

U = U(ρ) , Φ = nφ+ kz ,
Jρφ = n∂ρU , Jρz = k∂ρU .

(2.4.46)

This helical field is not Beltrami field as one can easily find. A more general ansatz corresponding
defined by

Φ = ωt+ kz + nφ

would in cylindrical coordinates give rise to both helical magnetic field and radial electric field
depending on ρ only. This field can be obtained by simply replacing the vector potential with its
rotated version and provides the natural first approximation for the fields associated with rotating
magnetic systems.

A non-vanishing vacuum charge density is however generated when a constant magnetic field
is put into rotation and is implied by the condition E = v × B stating vanishing of the Lorentz
force. This condition does not follow from the induction law of Faraday although Faraday observed
this effect first. This is also clear from the fact that the sign of the charge density depends on the
direction of rotation.
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The non-vanishing charge density is not consistent with the vanishing of the Kähler 4-current
and requires a 3-dimensional CP2 projection and topologization of the Kähler current. Beltrami
condition cannot hold true exactly for the rotating system. The conclusion is that rotation induces
a phase transition DCP2

= 2→ 3. This could help to understand various strange effects related to
the rotating magnetic systems [K77]. For instance, the increase of the dimension of CP2 projection
could generate join along boundaries contacts/flux tubes and wormhole contacts leading to the
transfer of charge between different space-time sheets. The possibly resulting flow of gravitational
flux to larger space-time sheets might help to explain the claimed antigravity effects.

2.4.4 DCP2 = 3 Phase Allows Infinite Number Of Topological Charges
Characterizing The Linking Of Magnetic Field Lines

When space-time sheet possesses a D = 3-dimensional CP2 projection, one can assign to it a non-
vanishing and conserved topological charge characterizing the linking of the magnetic field lines
defined by Chern-Simons action density A ∧ dA/4π for induced Kähler form. This charge can be
seen as classical topological invariant of the linked structure formed by magnetic field lines.

The topological charge can also vanish for DCP2
= 3 space-time sheets. In Darboux coordi-

nates for which Kähler gauge potential reads as A = PkdQ
k, the surfaces of this kind result if one

has Q2 = f(Q1) implying A = fdQ1, f = P1 + P2∂Q1
Q2, which implies the condition A∧ dA = 0.

For these space-time sheets one can introduce Q1 as a global coordinate along field lines of A and
define the phase factor exp(i

∫
Aµdx

µ) as a wave function defined for the entire space-time sheet.
This function could be interpreted as a phase of an order order parameter of super-conductor like
state and there is a high temptation to assume that quantum coherence in this sense is lost for
more general DCP2

= 3 solutions.
Chern-Simons action is known as helicity in electrodynamics [B47]. Helicity indeed describes

the linking of magnetic flux lines as is easy to see by interpreting magnetic field as incompressible
fluid flow having A as vector potential: B = ∇× A. One can write A using the inverse of ∇× as
A = (1/∇×)B. The inverse is non-local operator expressible as

1

∇×
B(r) =

∫
dV ′

(r − r′)
|r − r′|3

×B(r′) ,

as a little calculation shows. This allows to write
∫
A ·B as∫

dV A ·B =

∫
dV dV ′B(r) ·

(
(r − r′)
|r − r′|3

×B(r′)

)
,

which is completely analogous to the Gauss formula for linking number when linked curves are
replaced by a distribution of linked curves and an average is taken.

For DCP2
= 3 field equations imply that Kähler current is proportional to the helicity current

by a factor which depends on CP2 coordinates, which implies that the current is automatically
divergence free and defines a conserved charge for D = 3-dimensional CP2 projection for which
the instanton density vanishes identically. Kähler charge is not equal to the helicity defined by the
inner product of magnetic field and vector potential but to a more general topological charge.

The number of conserved topological charges is infinite since the product of any function
of CP2 coordinates with the helicity current has vanishing divergence and defines a topological
charge. A very natural function basis is provided by the scalar spherical harmonics of SU(3) defin-
ing Hamiltonians of CP2 canonical transformations and possessing well defined color quantum
numbers. These functions define and infinite number of conserved charges which are also classical
knot invariants in the sense that they are not affected at all when the 3-surface interpreted as a map
from CP2 projection to M4

+ is deformed in M4
+ degrees of freedom. Also canonical transformations

induced by Hamiltonians in irreducible representations of color group affect these invariants via
Poisson bracket action when the U(1) gauge transformation induced by the canonical transforma-
tion corresponds to a single valued scalar function. These link invariants are additive in union
whereas the quantum invariants defined by topological quantum field theories are multiplicative.

Also non-Abelian topological charges are well-defined. One can generalize the topological
current associated with the Kähler form to a corresponding current associated with the induced
electro-weak gauge fields whereas for classical color gauge fields the Chern-Simons form vanishes
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identically. Also in this case one can multiply the current by CP2 color harmonics to obtain an
infinite number of invariants in DCP2 = 3 case. The only difference is that A ∧ dA is replaced by
Tr(A ∧ (dA+ 2A ∧A/3)).

There is a strong temptation to assume that these conserved charges characterize colored
quantum states of the conformally invariant quantum theory as a functional of the light-like 3-
surface defining boundary of space-time sheet or elementary particle horizon surrounding wormhole
contacts. They would be TGD analogs of the states of the topological quantum field theory defined
by Chern-Simons action as highest weight states associated with corresponding Wess-Zumino-
Witten theory. These charges could be interpreted as topological counterparts of the isometry
charges of WCW defined by the algebra of canonical transformations of CP2.

The interpretation of these charges as contributions of light-like boundaries to WCW Hamil-
tonians would be natural. The dynamics of the induced second quantized spinor fields relates to
that of Kähler action by a super-symmetry, so that it should define super-symmetric counterparts
of these knot invariants. The anti-commutators of these super charges cannot however contribute
to WCW Kähler metric so that topological zero modes are in question. These Hamiltonians and
their super-charge counterparts would be responsible for the topological sector of quantum TGD.

2.4.5 Preferred Extremal Property And The Topologization/Light-Likeness
Of Kähler Current?

The basic question is under what conditions the Kähler current is either topologized or light-like
so that the Lorentz force vanishes. Does this hold for all preferred extremals of Kähler action? Or
only asymptotically as suggested by the fact that generalized Beltrami fields can be interpreted as
asymptotic self-organization patterns, when dissipation has become insignificant. Or does topolo-
gization take place in regions of space-time surface having Minkowskian signature of the induced
metric? And what asymptotia actually means? Do absolute minima of Kähler action correspond
to preferred extremals?

One can challenge the interpretation in terms of asymptotic self organization patterns as-
signed to the Minkowskian regions of space-time surface.

1. Zero energy ontology challenges the notion of approach to asymptotia in Minkowskian sense
since the dynamics of light-like 3-surfaces is restricted inside finite volume CD ⊂M4 since the
partonic 2-surfaces representing their ends are at the light-like boundaries of causal diamond
in a given p-adic time scale.

2. One can argue that generic non-asymptotic field configurations have DCP2 = 4, and would
thus carry a vanishing Kähler four-current if Beltrami conditions were satisfied universally
rather than only asymptotically. jα = 0 would obviously hold true also for the asymptotic
configurations, in particular those with DCP2

< 4 so that empty space Maxwell’s field equa-
tions would be universally satisfied for asymptotic field configurations with DCP2

< 4. The
weak point of this argument is that it is 3-D light-like 3-surfaces rather than space-time
surfaces which are the basic dynamical objects so that the generic and only possible case cor-
responds to DCP2 = 3 for X3

l . It is quite possible that preferred extremal property implies
that DCP2

= 3 holds true in the Minkowskian regions since these regions indeed represent
empty space. Geometrically this would mean that the CP2 projection does not change as
the light-like coordinate labeling Y 3

l varies. This conforms nicely with the notion of quantum
gravitational holography.

3. The failure of the generalized Beltrami conditions would mean that Kähler field is completely
analogous to a dissipative Maxwell field for which also Lorentz force vanishes since j · E is
non-vanishing (note that isometry currents are conserved although energy momentum tensor
is not). Quantum classical correspondence states that classical space-time dynamics is by its
classical non-determinism able to mimic the non-deterministic sequence of quantum jumps
at space-time level, in particular dissipation in various length scales defined by the hierarchy
of space-time sheets. Classical fields would represent “symbolically” the average dynamics,
in particular dissipation, in shorter length scales. For instance, vacuum 4-current would be
a symbolic representation for the average of the currents consisting of elementary particles.
This would seem to support the view that DCP2 = 4 Minkowskian regions are present. The
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weak point of this argument is that there is fractal hierarchy of length scales represented
by the hierarchy of causal diamonds (CDs) and that the resulting hierarchy of generalized
Feynman graphs might be enough to represent dissipation classically.

4. One objection to the idea is that second law realized as an asymptotic vanishing of Lorentz-
Kähler force implies that all space-like 3-surfaces approaching same asymptotic state have
the same value of Kähler function assuming that the Kähler function assignable to space-
like 3-surface is same for all space-like sections of X4(X3

l ) (assuming that one can realize
general coordinate invariance also in this sense). This need not be the case. In any case,
this need not be a problem since it would mean an additional symmetry extending general
coordinate invariance. The exponent of Kähler function would be highly analogous to a
partition function defined as an exponent of Hamiltonian with Kähler coupling strength
playing the role of temperature.

It seems that asymptotic self-organization pattern need not be correct interpretation for non-
dissipating regions, and the identification of light-like 3-surfaces as generalized Feynman diagrams
encourages an alternative interpretation.

1. M8 −H duality states that also the H counterparts of co-hyper-hyperquaternionic surfaces
of M8 are preferred extremals of Kähler action. CP2 type vacuum extremals represent the
basic example of these and a plausible conjecture is that the regions of space-time with
Euclidian signature of the induced metric represent this kind of regions. If this conjecture is
correct, dissipation could be assigned with regions having Euclidian signature of the induced
metric. This makes sense since dissipation has quantum description in terms of Feynman
graphs and regions of Euclidian signature indeed correspond to generalized Feynman graphs.
This argument would suggest that generalized Beltrami conditions or light-likeness hold true
inside Minkowskian regions rather than only asymptotically.

2. One could of course play language games and argue that asymptotia is with respect to the
Euclidian time coordinate inside generalized Feynman graps and is achieved exactly when the
signature of the induced metric becomes Minkowskian. This is somewhat artificial attempt
to save the notion of asymptotic self-organization pattern since the regions outside Feynman
diagrams represent empty space providing a holographic representations for the matter at
X3
l so that the vanishing of jαFαβ is very natural.

3. What is then the correct identification of asymptotic self-organization pattern. Could corre-
spond to the negative energy part of the zero energy state at the upper light-like boundary
δM4
− of CD? Or in the case of phase conjugate state to the positive energy part of the state

at δM4
+? An identification consistent with the fractal structure of zero energy ontology and

TGD inspired theory of consciousness is that the entire zero energy state reached by a se-
quence of quantum jumps represents asymptotic self-organization pattern represented by the
asymptotic generalized Feynman diagram or their superposition. Biological systems repre-
sent basic examples about self-organization, and one cannot avoid the questions relating to
the relationship between experience and geometric time. A detailed discussion of these points
can be found in [K4].

Absolute minimization of Kähler action was the first guess for the criterion selecting preferred
extremals. Absolute minimization in a strict sense of the word does not make sense in the p-adic
context since p-adic numbers are not well-ordered, and one cannot even define the action integral
as a p-adic number. The generalized Beltrami conditions and the boundary conditions defining
the preferred extremals are however local and purely algebraic and make sense also p-adically. If
absolute minimization reduces to these algebraic conditions, it would make sense.

2.4.6 Generalized Beltrami Fields And Biological Systems

The following arguments support the view that generalized Beltrami fields play a key role in living
systems, and that DCP2 = 2 corresponds to ordered phase, DCP2 = 3 to spin glass phase and
DCP2 = 4 to chaos, with DCP2 = 3 defining life as a phenomenon at the boundary between order
and chaos. If the criteria suggested by the number theoretic compactification are accepted, it is not
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clear whether DCP2
extremals can define preferred extremals of Kähler action. For instance, cosmic

strings are not preferred extremals and the Y 3
l associated with MEs allow only covariantly constant

right handed neutrino eigenmode of DK(X2). The topological condensation of CP2 type vacuum
extremals around DCP2

= 2 type extremals is however expected to give preferred extremals and if
the density of the condensate is low enough one can still speak about DCP2

= 2 phase. A natural
guess is also that the deformation of DCP2

= 2 extremals transforms light-like gauge currents to
space-like topological currents allowed by DCP2

= 3 phase.

Why generalized Beltrami fields are important for living systems?

Chirality, complexity, and high level of organization make DCP2
= 3 generalized Beltrami fields

excellent candidates for the magnetic bodies of living systems.

1. Chirality selection is one of the basic signatures of living systems. Beltrami field is charac-
terized by a chirality defined by the relative sign of the current and magnetic field, which
means parity breaking. Chirality reduces to the sign of the function ψ appearing in the
topologization condition and makes sense also for the generalized Beltrami fields.

2. Although Beltrami fields can be extremely complex, they are also extremely organized. The
reason is that the function α is constant along flux lines so that flux lines must in the case of
compact Riemann 3-manifold belong to 2-dimensional α = constant closed surfaces, in fact
two-dimensional invariant tori [B66] .

For generalized Beltrami fields the function ψ is constant along the flow lines of the Kähler
current. Space-time sheets with 3-dimensional CP2 projection serve as an illustrative example.
One can use the coordinates for the CP2 projection as space-time coordinates so that one space-
time coordinate disappears totally from consideration. Hence the situation reduces to a flow
in a 3-dimensional sub-manifold of CP2. One can distinguish between three types of flow lines
corresponding to space-like, light-like and time-like topological current. The 2-dimensional ψ =
constant invariant manifolds are sub-manifolds of CP2. Ordinary Beltrami fields are a special
case of space-like flow with flow lines belonging to the 2-dimensional invariant tori of CP2. Time-
like and light-like situations are more complex since the flow lines need not be closed so that the
2-dimensional ψ = constant surfaces can have boundaries.

For periodic self-organization patterns flow lines are closed and ψ = constant surfaces of CP2

must be invariant tori. The dynamics of the periodic flow is obtained from that of a steady flow by
replacing one spatial coordinate with effectively periodic time coordinate. Therefore topological
notions like helix structure, linking, and knotting have a dynamical meaning at the level of CP2

projection. The periodic generalized Beltrami fields are highly organized also in the temporal
domain despite the potentiality for extreme topological complexity.

For these reasons topologically quantized generalized Beltrami fields provide an excellent
candidate for a generic model for the dynamics of biological self-organization patterns. A natural
guess is that many-sheeted magnetic and Z0 magnetic fields and their generalizations serve as
templates for the helical molecules populating living matter, and explain both chiral selection, the
complex linking and knotting of DNA and protein molecules, and even the extremely complex and
self-organized dynamics of biological systems at the molecular level.

The intricate topological structures of DNA, RNA, and protein molecules are known to
have a deep significance besides their chemical structure, and they could even define something
analogous to the genetic code. Usually the topology and geometry of bio-molecules is believed to
reduce to chemistry. TGD suggests that space-like generalized Beltrami fields serve as templates
for the formation of bio-molecules and bio-structures in general. The dynamics of bio-systems
would in turn utilize the time-like Beltrami fields as templates. There could even exist a mapping
from the topology of magnetic flux tube structures serving as templates for bio-molecules to the
templates of self-organized dynamics. The helical structures, knotting, and linking of bio-molecules
would thus define a symbolic representation, and even coding for the dynamics of the bio-system
analogous to written language.

DCP2 = 3 systems as boundary between DCP2 = 2 order and DCP2 = 4 chaos

The dimension of CP2 projection is basic classifier for the asymptotic self-organization patterns.
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1. DCP2
= 4 phase, dead matter, and chaos

DCP2 = 4 corresponds to the ordinary Maxwellian phase in which Kähler current and charge
density vanish and there is no topologization of Kähler current. By its maximal dimension this
phase would naturally correspond to disordered phase, ordinary “dead matter”. If one assumes
that Kähler charge corresponds to either em charge or Z0 charge then the signature of this state
of matter would be em neutrality or Z0 neutrality.

2. DCP2 = 2 phase as ordered phase

By the low dimension of CP2 projection DCP2
= 2 phase is the least stable phase possible

only at cold space-time sheets. Kähler current is either vanishing or light-like, and Beltrami fields
are not possible. This phase is highly ordered and much like a topological quantized version of
ferro-magnet. In particular, it is possible to have a global coordinate varying along the field lines
of the vector potential also now. The magnetic and Z0 magnetic body of any system is a candidate
for this kind of system. Z0 field is indeed always present for vacuum extremals having DCP2

= 2
and the vanishing of em field requires that that sin2(θW ) (θW is Weinberg angle) vanishes.

3. DCP2 = 3 corresponds to living matter

DCP2
= 3 corresponds to highly organized phase characterized in the case of space-like

Kähler current by complex helical structures necessarily accompanied by topologized Kähler charge
density ∝ A ·B 6= 0 and Kähler current E×A+φB. For time like Kähler currents the helical struc-
tures are replaced by periodic oscillation patterns for the state of the system. By the non-maximal
dimension of CP2 projection this phase must be unstable against too strong external perturbations
and cannot survive at too high temperatures. Living matter is thus excellent candidate for this
phase and it might be that the interaction of the magnetic body with living matter makes possible
the transition from DCP2

= 2 phase to the self-organizing DCP2
= 3 phase.

Living matter which is indeed populated by helical structures providing examples of space-
like Kähler current. Strongly charged lipid layers of cell membrane might provide example of time-
like Kähler current. Cell membrane, micro-tubuli, DNA, and proteins are known to be electrically
charged and Z0 charge plays key role in TGD based model of catalysis discussed in [K25]. For
instance, denaturing of DNA destroying its helical structure could be interpreted as a transition
leading from DCP2

= 3 phase to DCP2
= 4 phase. The prediction is that the denatured phase

should be electromagnetically (or Z0) neutral.
Beltrami fields result when Kähler charge density vanishes. For these configurations mag-

netic field and current density take the role of the vector potential and magnetic field as far as
the contact structure is considered. For Beltrami fields there exist a global coordinate along the
field lines of the vector potential but not along those of the magnetic field. As a consequence,
the covariant consistency condition (∂s − qeAs)Ψ = 0 frequently appearing in the physics of super
conducting systems would make sense along the flow lines of the vector potential for the order
parameter of Bose-Einstein condensate. If Beltrami phase is super-conducting, then the state of
the system must change in the transition to a more general phase. It is impossible to assign slicing
of 4-surface by 3-D surfaces labeled by a coordinate t varying along the flow lines. This means that
one cannot speak about a continuous evolution of Schrödinger amplitude with t playing the role of
time coordinate. One could perhaps say that the entire space-time sheet represents single quan-
tum event which cannot be decomposed to evolution. This would conform with the assignment of
macroscopic and macro-temporal quantum coherence with living matter.

The existence of these three phases brings in mind systems allowing chaotic de-magnetized
phase above critical temperature Tc, spin glass phase at the critical point, and ferromagnetic phase
below Tc. Similar analogy is provided by liquid phase, liquid crystal phase possible in the vicinity of
the critical point for liquid to solid transition, and solid phase. Perhaps one could regard DCP2

= 3
phase and life as a boundary region between DCP2 = 2 order and DCP2 = 4 chaos. This would
naturally explain why life as it is known is possible in relatively narrow temperature interval.

Can one assign a continuous Schrödinger time evolution to light-like 3-surfaces?

Alain Connes wrote [A30] about factors of various types using as an example Schrödinger equation
for various kinds of foliations of space-time to time=constant slices. If this kind of foliation does
not exist, one cannot speak about time evolution of Schrödinger equation at all. Depending on the
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character of the foliation one can have factor of type I, II, or III. For instance, torus with slicing
dx = ady in flat coordinates, gives a factor of type I for rational values of a and factor of type II
for irrational values of a.

1. 3-D foliations and type III factors

Connes mentioned 3-D foliations V which give rise to type III factors. Foliation property
requires a slicing of V by a one-form v to which slices are orthogonal (this requires metric).

1. The foliation property requires that v multiplied by suitable scalar is gradient. This gives
the integrability conditions dv = w ∧ v, w = −dψ/ψ = −dlog(ψ). Something proportional
to log(ψ) can be taken as a third coordinate varying along flow lines of v: the flow defines a
continuous sequence of maps of 2-dimensional slice to itself.

2. If the so called Godbillon-Vey invariant defined as the integral of dw ∧ w over V is non-
vanishing, factor of type III is obtained using Schrödinger amplitudes for which the flow lines
of foliation define the time evolution. The operators of the algebra in question are transversal
operators acting on Schrödinger amplitudes at each slice. Essentially Schrödinger equation in
3-D space-time would be in question with factor of type III resulting from the exotic choice
of the time coordinate defining the slicing.

2. What happens in case of light-like 3-surfaces?

In TGD light-like 3-surfaces are natural candidates for V and it is interesting to look what
happens in this case. Light-likeness is of course a disturbing complication since orthogonality
condition and thus contravariant metric is involved with the definition of the slicing. Light-likeness
is not however involved with the basic conditions.

1. The one-form v defined by the induced Kähler gauge potential A defining also a braiding is a
unique identification for v. If foliation exists, the braiding flow defines a continuous sequence
of maps of partonic 2-surface to itself.

2. Physically this means the possibility of a super-conducting phase with order parameter sat-
isfying covariant constancy equation Dψ = (d/dt− ieA)ψ = 0. This would describe a supra
current flowing along flow lines of A.

3. If the integrability fails to be true, one cannot assign Schrödinger time evolution with the
flow lines of v. One might perhaps say that 3-surface behaves like single quantum event not
allowing slicing by a continuous Schrödinger time evolution.

4. The condition that the modes of the induced spinor field have well-defined em charge implies
that CP2 projection for the region of space-time in which induced spinor field is non-vanishing
is 2-dimensional. In the generic case a localization to 2-surfaces - string world sheets and
possibly partonic 2-surface. At light-like 3-surfaces this implies that modes are localized at
1-D curves so that the hydrodynamic picture is realized [K88].

3. Extremals of Kähler action

Some comments relating to the interpretation of the classification of the extremals of Kähler
action by the dimension of their CP2 projection are in order. It has been already found that the
extremals can be classified according to the dimension D of the CP2 projection of space-time sheet
in the case that Aa = 0 holds true.

1. For DCP2
= 2 integrability conditions for the vector potential can be satisfied for Aa = 0 so

that one has generalized Beltrami flow and one can speak about Schrödinger time evolution
associated with the flow lines of vector potential defined by covariant constancy condition
Dψ = 0 makes sense. Kähler current is vanishing or light-like. This phase is analogous to a
super-conductor or a ferromagnetic phase. For non-vanishing Aa the Beltrami flow property
is lost but the analogy with ferromagnetism makes sense still.
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2. For DCP2
= 3 foliations are lost. The phase is dominated by helical structures. This phase

is analogous to spin glass phase around phase transition point from ferromagnetic to non-
magnetized phase and expected to be important in living matter systems.

3. DCP2 = 4 is analogous to a chaotic phase with vanishing Kähler current and to a phase
without magnetization. The interpretation in terms of non-quantum coherent “dead” matter
is suggestive.

An interesting question is whether the ordinary 8-D imbedding space which defines one
sector of the generalized imbedding space could correspond to Aa = 0 phase. If so, then all states
for this sector would be vacua with respect to M4 quantum numbers. M4-trivial zero energy states
in this sector could be transformed to non-trivial zero energy states by a leakage to other sectors.

2.4.7 About Small Perturbations Of Field Equations

The study of small perturbations of the known solutions of field equations is a standard manner
to get information about the properties of the solutions, their stability in particular. Fourier
expansion is the standard manner to do the perturbation theory. In the recent case an appropriate
modification of this ansatz might make sense if the solution in question is representable as a map
M4

+ → CP2, and the perturbations are rapidly varying when compared to the components of the
induced metric and Kähler form so that one can make adiabatic approximation and approximate
them as being effectively constant. Presumably also restrictions on directions of wave 4-vectors
kµ = (ω, k)) are necessary so that the direction of wave vector adapts to the slowly varying
background as in ray optics. Also Hamilton Jacobi structure is expected to modify the most
straightforward approach. The four CP2 coordinates are the dynamical variables so that the
situation is relatively simple.

A completely different approach is inspired by the physical picture. In this approach one
glues CP2 type vacuum extremal to a known extremal and tries to deduce the behavior of the
deformed extremal in the vicinity of wormhole throat by posing the general conditions on the
slicing by light-like 3-surfaces Y 3

l . This approach is not followed now.

Generalized plane waves

Individual plane waves are geometrically very special since they represent a deformation of the
space-time surface depending on single coordinate only. Despite this one might hope that plane
waves or their appropriate modifications allowing to algebraize the treatment of small perturbations
could give useful information also now.

1. Lorentz invariance plus the translational invariance due to the assumption that the induced
metric and Kähler form are approximately constant encourage to think that the coordinates
reduce Minkowski coordinates locally with the orientation of the local Minkowski frame de-
pending slowly on space-time position. Hamilton Jacobi (S+, S−, w, w) are a good candidate
for this kind of coordinates. The properties of the Hamilton Jacobi structure and of the
solution ansatz suggest that excitations are generalized plane waves in longitudinal degrees
of freedom only so that four-momentum would be replaced by the longitudinal momentum.
In transverse degrees of freedom one might expect that holomorphic plane-waves exp(ikTw),
where kT is transverse momentum, make algebraization possible.

For time-like longitudinal momenta one can choose the local M4 coordinates in such a manner
that longitudinal momentum reduces to (ω0, 0), where ω0 plays the role of rest mass and is
analogous to the plasma frequency serving as an infrared cutoff for plasma waves. In these
coordinates the simplest candidates for excitations with time-like momentum would be of
form ∆sk = εakexp(iω0u), where sk are some real coordinates for CP2, ak are Fourier
coefficients, and time-like coordinate is defined as u = S+ + S−. The excitations moving
with light velocity correspond to ω0 = 0, and one must treat this case separately using plane
wave exp(iωS±), where ω has continuum of values.

2. It is possible that only some preferred CP2 coordinates are excited in longitudinal degrees
of freedom. For DCP2 = 3 ansatz the simplest option is that the complex CP2 coordinate
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ξ depends analytically on w and the longitudinal CP2 coordinate s obeys the plane wave
ansatz. ξ(w) = a× exp(ikTw), where kT is transverse momentum allows the algebraization
of the solution ansatz also in the transversal degrees of freedom so that a dispersion relation
results. For imaginary values of kT and ω the equations are real.

2. General form for the second variation of the field equations

For time-like four-momentum the second variation of field equations contains three kinds of
terms. There are terms quadratic in ω0 and coming from the second derivatives of the deforma-
tion, terms proportional to iω0 coming from the variation with respect to the derivatives of CP2

coordinates, and terms which do not depend on ω0 and come from the variations of metric and
Kähler form with respect to the CP2 coordinates.

In standard perturbation theory the terms proportional to iω0 would have interpretation
as analogs of dissipative terms. This forces to assume that ω0 is complex: note that in purely
imaginary ω0 the equations are real. The basic assumption is that Kähler action is able to mimic
dissipation despite the fact that energy and momentum are conserved quantities. The vanishing
of the Lorentz force has an interpretation as the vanishing of the dissipative effects. This would
suggest that the terms proportional to iω0 vanish for the perturbations of the solution preserving
the non-dissipative character of the asymptotic solutions. This might quite well result from the
vanishing of the contractions with the deformation of the energy momentum tensor with the second
fundamental form and of energy momentum tensor with the deformation of the second fundamental
form coming from first derivatives.

Physical intuition would suggest that dissipation-less propagation is possible only along
special directions. Thus the vanishing of the linear terms should occur only for special directions
of the longitudinal momentum vector, say for light-like four-momenta in the direction of coordinate
lines of S+ or S−. Quite generally, the sub-space of allowed four-momenta is expected to depend
on position since the components of metric and Kähler form are slowly varying. This dependence
is completely analogous with that appearing in the Hamilton Jacobi (ray-optics) approach to the
approximate treatment of wave equations and makes sense if the phase of the plane wave varies
rapidly as compared to the variation of CP2 coordinates for the unperturbed solution.

Complex values of ω0 are also possible, and would allow to deduce important information
about the rate at which small deviations from asymptotia vanish as well as about instabilities of the
asymptotic solutions. In particular, for imaginary values of ω0 one obtains completely well-defined
solution ansatz representing exponentially decaying or increasing perturbation.

High energy limit

One can gain valuable information by studying the perturbations at the limit of very large four-
momentum. At this limit the terms which are quadratic in the components of momentum dominate
and come from the second derivatives of the CP2 coordinates appearing in the second fundamental
form. The resulting equations reduce for all CP2 coordinates to the same condition

Tαβkαkβ = 0 .

This condition is generalization of masslessness condition with metric replaced by the energy mo-
mentum tensor, which means that light velocity is replaced by an effective light velocity. In fact,
energy momentum tensor effectively replaces metric also in the modified Dirac equation whose
form is dictated by super symmetry. Light-like four momentum is a rather general solution to the
condition and corresponds to ω0 = 0 case.

Reduction of the dispersion relation to the graph of swallowtail catastrophe

Also the general structure of the equations for small perturbations allows to deduce highly non-
trivial conclusions about the character of perturbations.

1. The equations for four CP2 coordinates are simultaneously satisfied if the determinant as-
sociated with the equations vanishes. This condition defines a 3-dimensional surface in the
4-dimensional space defined by ω0 and coordinates of 3-space playing the role of slowly vary-
ing control parameters. 4× 4 determinant results and corresponds to a polynomial which is
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of order d = 8 in ω0. If the determinant is real, the polynomial can depend on ω2
0 only so

that a fourth order polynomial in w = ω2
0 results.

2. Only complex roots are possible in the case that the terms linear in iω0 are non-vanishing.
One might hope that the linear term vanishes for certain choices of the direction of slowly
varying four-momentum vector kµ(x) at least. For purely imaginary values of ω0 the equa-
tions determinant are real always. Hence catastrophe theoretic description applies in this
case at least, and the so called swallow tail [A52] with three control parameters applies to
the situation.

3. The general form of the vanishing determinant is

D(w, a, b, c) = w4 − ew3 − cw2 − bw − a .

The transition from the oscillatory to purely dissipative case changes only the sign of w. By
the shift w = ŵ + e/4 the determinant reduces to the canonical form

D(ŵ, a, b, c) = ŵ4 − cŵ2 − bŵ − a

of the swallowtail catastrophe. This catastrophe has three control variables, which basically
correspond to the spatial 3-coordinates on which the induced metric and Kähler form depend.
The variation of these coefficients at the space-time sheet of course covers only a finite
region of the parameter space of the swallowtail catastrophe. The number of real roots for
w = ω2

0 is four, two, or none since complex roots appear in complex conjugate pairs for a
real polynomial. The general shape of the region of 3-space is that for a portion of swallow
tail catastrophe (see Fig. 2.1 ).

Figure 2.1: The projection of the bifurcation set of the swallowtail catastrophe to the 3-
dimensional space of control variables. The potential function has four extrema in the interior
of the swallowtail bounded by the triangles, no extrema in the valley above the swallowtail, and 2
extrema elsewhere.

4. The dispersion relation for the “rest mass” ω0 (decay rate for the imaginary value of ω0)
has at most four real branches, which conforms with the fact that there are four dynamical
variables. In real case ω0 is analogous to plasma frequency acting as an infrared cutoff for the
frequencies of plasma excitations. To get some grasp on the situation notice that for a = 0
the swallowtail reduces to ŵ = 0 and
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ŵ3 − cŵ − b = 0 ,

which represents the cusp catastrophe easy to illustrate in 3-dimensional space. Cusp (see
Fig. 2.2 ) in turn reduces for b = 0 to ŵ = 0 and fold catastrophe ŵ = ±

√
c. Thus the

catastrophe surface becomes 4-sheeted for c ≥ 0 for sufficiently small values of the parameters
a and b. The possibility of negative values of ŵ in principle allows ω2 = ŵ+e/4 < 0 solutions
identifiable as exponentially decaying or amplified perturbations. At the high frequency limit
the 4 branches degenerate to a single branch Tαβkαkβ = 0, which as a special case gives light-
like four-momenta corresponding to ω0 = 0 and the origin of the swallowtail catastrophe.

Figure 2.2: Cusp catastrophe. Vertical direction corresponds to the behavior variable and or-
thogonal directions to control variables.

5. It is quite possible that the imaginary terms proportional to iω0 cannot be neglected in the
time-like case. The interpretation would be as dissipative effects. If these effects are not
too large, an approximate description in terms of butterfly catastrophe makes still sense.
Note however that the second variation contains besides gravitational terms potentially large
dissipative terms coming from the variation of the induced Kähler form and from the variation
of CP2 Christoffel symbols.

6. Additional complications are encountered at the points, where the induced Kähler field van-
ishes since the second variation vanishes identically at these points. By the arguments rep-
resented earlier, these points quite generally represent instabilities.

2.5 Vacuum Extremals

Vacuum extremals come as two basic types: CP2 type vacuum extremals for which the induced
Kähler field and Kähler action are non-vanishing and the extremals for which the induced Kähler
field vanishes. The deformations of both extremals are expected to be of fundamental importance
in TGD universe. Vacuum extremals are not gravitational vacua and they are indeed fundamental
in TGD inspired cosmology.

2.5.1 CP2 Type Extremals

CP2 type vacuum extremals

These extremals correspond to various isometric imbeddings of CP2 to M4
+ × CP2. One can also

drill holes to CP2. Using the coordinates of CP2 as coordinates for X4 the imbedding is given by
the formula
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mk = mk(u) ,

mklṁ
kṁl = 0 , (2.5.1)

where u(sk) is an arbitrary function of CP2 coordinates. The latter condition tells that the curve
representing the projection of X4 to M4 is light like curve. One can choose the functions mi, i =
1, 2, 3 freely and solve m0 from the condition expressing light likeness so that the number of this
kind of extremals is very large.

The induced metric and Kähler field are just those of CP2 and energy momentum tensor
Tαβ vanishes identically by the self duality of the Kähler form of CP2. Also the canonical current
jα = DβJ

αβ associated with the Kähler form vanishes identically. Therefore the field equations in
the interior of X4 are satisfied. The field equations are also satisfied on the boundary components of
CP2 type extremal because the non-vanishing boundary term is, besides the normal component of
Kähler electric field, also proportional to the projection operator to the normal space and vanishes
identically since the induced metric and Kähler form are identical with the metric and Kähler form
of CP2.

As a special case one obtains solutions for which M4 projection is light like geodesic. The
projection of m0 = constant surfaces to CP2 is u = constant 3-sub-manifold of CP2. Geometrically
these solutions correspond to a propagation of a massless particle. In a more general case the
interpretation as an orbit of a massless particle is not the only possibility. For example, one can
imagine a situation, where the center of mass of the particle is at rest and motion occurs along a
circle at say (m1,m2) plane. The interpretation as a massive particle is natural. Amusingly, there
is nice analogy with the classical theory of Dirac electron: massive Dirac fermion moves also with
the velocity of light (zitterbewegung). The quantization of this random motion with light velocity
leads to Virasoro conditions and this led to a breakthrough in the understanding of the p-adic
QFT limit of TGD. Furthermore, it has turned out that Super Virasoro invariance is a general
symmetry of WCW geometry and quantum TGD and appears both at the level of imbedding space
and space-time surfaces.

The action for all extremals is same and given by the Kähler action for the imbedding of
CP2. The value of the action is given by

S = − π

8αK
. (2.5.2)

To derive this expression we have used the result that the value of Lagrangian is constant: L =
4/R4, the volume of CP2 is V (CP2) = π2R4/2 and the definition of the Kähler coupling strength
k1 = 1/16παK (by definition, πR is the length of CP2 geodesics). Four-momentum vanishes for
these extremals so that they can be regarded as vacuum extremals. The value of the action is
negative so that these vacuum extremals are indeed favored by the minimization of the Kähler
action.

The absolute minimization of Kähler action was the original suggestion for what preferred
extremal property could mean, and suggested that ordinary vacuums with vanishing Kähler action
density are unstable against the generation of CP2 type extremals. The same conclusion however
follows also from the mere vacuum degeneracy of Käbler action. There are even reasons to expect
that CP2 type extremals are for TGD what black holes are for GRT. This identification seems
reasonable: the 4-D lines of generalized Feynman graphs [K32] would be regions with Euclidian
signature of induced metric and identifiable as deformations of CP2 type vacuum extremals, and
even TGD counterparts of blackholes would be analogous to lines of Feynman diagrams. Their
M4 projection would be of course arbitrarily of macroscopic size. The nice generalization of the
area law for the entropy of black hole [K28] supports this view.

In accordance with the basic ideas of TGD topologically condensed vacuum extremals should
somehow correspond to massive particles. The properties of the CP2 type vacuum extremals are
in accordance with this interpretation. Although these objects move with a velocity of light, the
motion can be transformed to a mere zitterbewegung so that the center of mass motion is trivial.
Even the generation of the rest mass could might be understood classically as a consequence of
the minimization of action. Long range Kähler fields generate negative action for the topologically
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condensed vacuum extremal (momentum zero massless particle) and Kähler field energy in turn is
identifiable as the rest mass of the topologically condensed particle.

An interesting feature of these objects is that they can be regarded as gravitational instantons
[A58]. A further interesting feature of CP2 type extremals is that they carry nontrivial classical
color charges. The possible relationship of this feature to color confinement raises interesting
questions. Could one model classically the formation of the color singlets to take place through the
emission of “colorons”: states with zero momentum but non-vanishing color? Could these peculiar
states reflect the infrared properties of the color interactions?

Are CP2 type non-vacuum extremals possible?

The isometric imbeddings of CP2 are all vacuum extremals so that these extremals as such cannot
correspond to physical particles. One obtains however non-vacuum extremals as deformations of
these solutions. There are several types of deformations leading to non-vacuum solutions. In
order to describe some of them, recall the expressions of metric and Kähler form of CP2 in the
coordinates (r,Θ,Ψ,Φ) [A53] are given by

ds2

R2
=

dr2

(1 + r2)2
+

r

2(1 + r2))2
(dΨ + cos(Θ)dΦ)2

+
r2

(4(1 + r2)
(dΘ2 + sin2ΘdΦ2) ,

J =
r

(1 + r2)
dr ∧ (dΨ + cos(Θ)dΦ)

− r2

(2(1 + r2)
sin(Θ)dΘ ∧ dΦ . (2.5.3)

The scaling of the line element is defined so that πR is the length of the CP2 geodesic line. Note that
Φ and Ψ appear as “cyclic” coordinates in metric and Kähler form: this feature plays important
role in the solution ansatze to be described.

Let M4 = M2×E2 denote the decomposition of M4 to a product of 2-dimensional Minkowski
space and 2-dimensional Euclidian plane. This decomposition corresponds physically to the de-
composition of momentum degrees of freedom for massless particle: E2 corresponds to polarization
degrees of freedom.

There are several types of non-vacuum extremals.

“Virtual particle” extremals: the mass spectrum is continuous (also Euclidian momenta are
allowed) but these extremals reduce to vacuum extremals in the massless limit.

2. Massless extremals.

Consider first an example of virtual particle extremal. The simplest extremal of this type is
obtained in the following form

mk = akΨ + bkΦ . (2.5.4)

Here ak and bk are some constant quantities. Field equations are equivalent to the conditions
expressing four-momentum conservation and are identically satisfied the reason being that induced
metric and Kähler form do not depend on the coordinates Ψ and Φ.

Extremal describes 3-surface, which moves with constant velocity in M4. Four-momentum
of the solution can be both space and time like. In the massless limit solution however reduces
to a vacuum extremal. Therefore the interpretation as an off mass shell massless particle seems
appropriate.

Massless extremals are obtained from the following solution ansatz.

m0 = m3 = aΨ + bΦ ,

(m1,m2) = (m1(r,Θ),m2(r,Θ)) . (2.5.5)
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Only E2 degrees of freedom contribute to the induced metric and the line element is obtained from

ds2 = ds2
CP2
− (dm1)2 − (dm2)2 . (2.5.6)

Field equations reduce to conservation condition for the componenents of four-momentum in E2

plane. By their cyclicity the coordinates Ψ and Φ disappear from field equations and one obtains
essentially current conservation condition for two-dimensional field theory defined in space spanned
by the coordinates r and Θ.

(J ia),i = 0 ,

J ia = T ijfa,j
√
g . (2.5.7)

Here the index i and a refer to r and Θ and to E2 coordinates m1 and m2 respectively. T ij

denotes the canonical energy momentum tensor associated with Kähler action. One can express
the components of T ij in terms of induced metric and CP2 metric in the following form

T ij = (−gikgjl + gijgkl/2)skl . (2.5.8)

This expression holds true for all components of the energy momentum tensor.
Since field equations are essentially two-dimensional conservation conditions they imply that

components of momentum currents can be regarded as vector fields of some canonical transforma-
tions

J ia = εijHa
,j , (2.5.9)

where εij denotes two-dimensional constant symplectic form. An open problem is whether one
could solve field equations exactly and whether there exists some nonlinear superposition principle
for the solutions of these equations. Solutions are massless since transversal momentum densities
vanish identically.

Consider as a special case the solution obtained by assuming that one E2 coordinate is
constant and second coordinate is function f(r) of the variable r only. Field equations reduce to
the following form

f,r = ± k

(1 + r2)1/3

√
r2 − k2(1 + r2)4/3 . (2.5.10)

The solution is well defined only for sufficiently small values of the parameter k appearing as
integration constant and becomes ill defined at two singular values of the variable r. Boundary
conditions are identically satisfied at the singular values of r since the radial component of induced
metric diverges at these values of r. The result leads to suspect that the generation of boundary
components dynamically is a general phenomenon so that all non-vacuum solutions have boundary
components in accordance with basic ideas of TGD.

CP2#CP2#...#CP2: s as generalized Feynman graphs

There are reasons to believe that point like particles might be identified as CP2 type extremals in
TGD approach. Also the geometric counterparts of the massless on mass shell particles and virtual
particles have been identified. It is natural to extend this idea to the level of particle interactions:
the lines of Feynman diagrams of quantum field theory are thickened to four-manifolds, which are
in a good approximation CP2 type vacuum extremals. This would mean that generalized Feynman
graphs are essentially connected sums of CP2: s (see Fig. 2.3 ): X4 = CP2#CP2....#CP2).

Unfortunately, this picture seems to be oversimplified. First, it is questionable whether the
cross sections for the scattering of CP2 type extremals have anything to do with the cross sections
associated with the standard gauge interactions. A naive geometric argument suggests that the
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Figure 2.3: Topological sum of CP2: s as Feynman graph with lines thickened to four-manifolds

cross section should reflect the geometric size of the scattered objects and therefore be of the order
of CP2 radius for topologically non-condensed CP2 type extremals. The observed cross sections
would result at the first level of condensation, where particles are effectively replaced by surfaces
with size of order Compton length. Secondly, the hvac = −D rule, considered in the previous
chapter, suggests that only real particles correspond to the CP2 type extremals whereas virtual
particles in general correspond to the vacuum extremals with a vanishing Kähler action. The
reason is that the negative exponent of the Kähler action reduces the contribution of the CP2

type extremals to the functional integral very effectively. Therefore the exchanges of CP2 type
extremals are suppressed by the negative exponent of the Kähler action very effectively so that
geometric scattering cross section is obtained.

2.5.2 Vacuum Extremals With Vanishing Kähler Field

Vacuum extremals correspond to 4-surfaces with vanishing Kähler field and therefore to gauge field
zero configurations of gauge field theory. These surfaces have CP2 projection, which is Legendre
manifold. The condition expressing Legendre manifold property is obtained in the following man-
ner. Kähler potential of CP2 can be expressed in terms of the canonical coordinates (Pi, Qi) for
CP2 as

A =
∑
k

PkdQ
k . (2.5.11)

The conditions

Pk = ∂Qkf(Qi) , (2.5.12)

where f(Qi) is arbitrary function of its arguments, guarantee that Kähler potential is pure gauge.
It is clear that canonical transformations, which act as local U(1) gauge transformations, transform
different vacuum configurations to each other so that vacuum degeneracy is enormous. Also M4

+

diffeomorphisms act as the dynamical symmetries of the vacuum extremals. Some sub-group of
these symmetries extends to the isometry group of the WCW in the proposed construction of the
configuration space metric. The vacuum degeneracy is still enhanced by the fact that the topology
of the four-surface is practically free.

Vacuum extremals are certainly not absolute minima of the action. For the induced metric
having Minkowski signature the generation of Kähler electric fields lowers the action. For Euclidian
signature both electric and magnetic fields tend to reduce the action. Therefore the generation of
Euclidian regions of space-time is expected to occur. CP2 type extremals, identifiable as real (as
contrast to virtual) elementary particles, can be indeed regarded as these Euclidian regions.
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Particle like vacuum extremals can be classified roughly by the number of the compactified
dimensions D having size given by CP2 length. Thus one has DCP2 = 3 for CP2 type extremals,
DCP2 = 2 for string like objects, DCP2 = 1 for membranes and DCP2 = 0 for pieces of M4.
As already mentioned, the rule hvac = −D relating the vacuum weight of the Super Virasoro
representation to the number of compactified dimensions of the vacuum extremal is very suggestive.
D < 3 vacuum extremals would correspond in this picture to virtual particles, whose contribution
to the generalized Feynman diagram is not suppressed by the exponential of Kähler action unlike
that associated with the virtual CP2 type lines.

M4 type vacuum extremals (representable as maps M4
+ → CP2 by definition) are also

expected to be natural idealizations of the space-time at long length scales obtained by smoothing
out small scale topological inhomogenuities (particles) and therefore they should correspond to
space-time of GRT in a reasonable approximation.

In both cases the vanishing of Kähler action per volume in long length scales makes vacuum
extremals excellent idealizations for the smoothed out space-time surface. Robertson-Walker cos-
mologies provide a good example in this respect. As a matter fact the smoothed out space-time
is not a mere fictive concept since larger space-time sheets realize it as a essential part of the
Universe.

Several absolute minima could be possible and the non-determinism of the vacuum extremals
is not expected to be reduced completely. The remaining degeneracy could be even infinite. A
good example is provided by the vacuum extremals representable as maps M4

+ → D1, where D1 is
one-dimensional curve of CP2. This degeneracy could be interpreted as a space-time correlate for
the non-determinism of quantum jumps with maximal deterministic regions representing quantum
states in a sequence of quantum jumps.

2.6 Non-Vacuum Extremals

2.6.1 Cosmic Strings

Cosmic strings are extremals of type X2 × S2, where X2 is minimal surface in M4
+ (analogous

to the orbit of a bosonic string) and S2 is the homologically non-trivial geodesic sphere of CP2.
The action of these extremals is positive and thus absolute minima are certainly not in question.
One can however consider the possibility that these extremals are building blocks of the absolute
minimum space-time surfaces since the absolute minimization of the Kähler action is global rather
than a local principle. A more general approach gives up absolute minimization as definition of
preferred extremal property and there are indeed several proposals for what preferred extremal
property could mean. Cosmic strings can contain also Kähler charged matter in the form of small
holes containing elementary particle quantum numbers on their boundaries and the negative Kähler
electric action for a topologically condensed cosmic string could cancel the Kähler magnetic action.

The string tension of the cosmic strings is given by

T =
1

8αKR2
' .2210−6 1

G
, (2.6.1)

where αK ' αem has been used to get the numerical estimate. The string tension is of the same
order of magnitude as the string tension of the cosmic strings of GUTs and this leads to the model
of the galaxy formation providing a solution to the dark matter puzzle as well as to a model for
large voids as caused by the presence of a strongly Kähler charged cosmic string. Cosmic strings
play also fundamental role in the TGD inspired very early cosmology.

2.6.2 Massless Extremals

Massless extremals (or topological light rays) are characterized by massless wave vector p and
polarization vector ε orthogonal to this wave vector. Using the coordinates of M4 as coordinates



90 Chapter 2. Basic Extremals of the Kähler Action

for X4 the solution is given as

sk = fk(u, v) ,
u = p ·m , v = ε ·m ,
p · ε = 0 , p2 = 0 .

CP2 coordinates are arbitrary functions of p ·m and ε ·m. Clearly these solutions correspond to
plane wave solutions of gauge field theories. It is important to notice however that linear super
position doesn’t hold as it holds in Maxwell phase. Gauge current is proportional to wave vector
and its divergence vanishes as a consequence. Also cylindrically symmetric solutions for which the
transverse coordinate is replaced with the radial coordinate ρ =

√
m2

1 +m2
2 are possible. In fact,

v can be any function of the coordinates m1,m2 transversal to the light like vector p.

Boundary conditions on the boundaries of the massless extremal are satisfied provided the
normal component of the energy momentum tensor vanishes. Since energy momentum tensor is of
the form Tαβ ∝ pαpβ the conditions Tnβ = 0 are satisfied if the M4 projection of the boundary is
given by the equations of form

H(p ·m, ε ·m, ε1 ·m) = 0 ,
ε · p = 0 , ε1 · p = 0 , ε · ε1 = 0 .

(2.6.2)

where H is arbitrary function of its arguments. Recall that for M4 type extremals the boundary
conditions are also satisfied if Kähler field vanishes identically on the boundary.

The following argument suggests that there are not very many manners to satisfy boundary
conditions in case ofM4 type extremals. The boundary conditions, when applied toM4 coordinates
imply the vanishing of the normal component of energy momentum tensor. Using coordinates,
where energy momentum tensor is diagonal, the requirement boils down to the condition that at
least one of the eigen values of Tαβ vanishes so that the determinant det(Tαβ) must vanish on
the boundary: this condition defines 3-dimensional surface in X4. In addition, the normal of this
surface must have same direction as the eigen vector associated with the vanishing eigen value:
this means that three additional conditions must be satisfied and this is in general true in single
point only. The boundary conditions in CP2 coordinates are satisfied provided that the conditions

JnβJkl∂βs
l = 0

are satisfied. The identical vanishing of the normal components of Kähler electric and magnetic
fields on the boundary of massless extremal property provides a manner to satisfy all boundary
conditions but it is not clear whether there are any other manners to satisfy them.

The characteristic feature of the massless extremals is that in general the Kähler gauge
current is non-vanishing. In ordinary Maxwell electrodynamcis this is not possible. This means
that these extremals are accompanied by vacuum current, which contains in general case both
weak and electromagnetic terms as well as color part.

A possible interpretation of the solution is as the exterior space-time to a topologically
condensed particle with vanishing mass described by massless CP2 type extremal, say photon or
neutrino. In general the surfaces in question have boundaries since the coordinates sk are bounded
this is in accordance with the general ideas about topological condensation. The fact that massless
plane wave is associated with CP2 type extremal combines neatly the wave and particle aspects at
geometrical level.

The fractal hierarchy of space-time sheets implies that massless extremals should interesting
also in long length scales. The presence of a light like electromagnetic vacuum current implies the
generation of coherent photons and also coherent gravitons are generated since the Einstein tensor
is also non-vanishing and light like (proportional to kαkβ). Massless extremals play an important
role in the TGD based model of bio-system as a macroscopic quantum system. The possibility
of vacuum currents is what makes possible the generation of the highly desired coherent photon
states.
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2.6.3 Does GRT really allow gravitational radiation: could cosmological
constant save the situation?

In Facebook discussion Nils Grebäck mentioned Weyl tensor and I learned something that I should
have noticed long time ago. Wikipedia article (see http://tinyurl.com/y7fsnzk8) lists the basic
properties of Weyl tensor as the traceless part of curvature tensor, call it R. Weyl tensor C is
vanishing for conformally flat space-times. In dimensions D=2,3 Weyl tensor vanishes identically
so that they are always conformally flat: this obviously makes the dimension D = 3 for space very
special. Interestingly, one can have non-flat space-times with nonvanishing Weyl tensor but the
vanishing Schouten/Ricci/Einstein tensor and thus also with vanishing energy momentum tensor.

The rest of curvature tensor R can be expressed in terms of so called Kulkarni-Nomizu
product P · g of Schouten tensor P and metric tensor g: R = C + P · g, which can be also
transformed to a definition of Weyl tensor using the definition of curvature tensor in terms of
Christoffel symbols as the fundamental definition. Kulkarni-Nomizu product · is defined as tensor
product of two 2-tensors with symmetrization with respect to first and second index pairs plus
antisymmetrization with respect to second and fourth indices.

Schouten tensor P is expressible as a combination of Ricci tensor Ric defined by the trace
of R with respect to the first two indices and metric tensor g multiplied by curvature scalar s
(rather than R in order to use index free notation without confusion with the curvature tensor).
The expression reads as

P =
1

D − 2

[
Ric− s

2(D − 1)
g

]
.

Note that the coefficients of Ric and g differ from those for Einstein tensor. Ricci tensor and
Einstein tensor are proportional to energy momentum tensor by Einstein equations relate to the
part.

Weyl tensor is assigned with gravitational radiation in GRT. What I see as a serious inter-
pretational problem is that by Einstein’s equations gravitational radiation would carry no energy
and momentum in absence of matter. One could argue that there are no free gravitons in GRT if
this interpretation is adopted! This could be seen as a further argument against GRT besides the
problems with the notions of energy and momentum: I had not realized this earlier.

Interestingly, in TGD framework so called massless extremals (MEs) [K7, K112, K52] are
four-surfaces, which are extremals of Kähler action, have Weyl tensor equal to curvature tensor
and therefore would have interpretation in terms of gravitons. Now these extremals are however
non-vacuum extremals.

1. Massless extremals correspond to graphs of possibly multi-valued maps from M4 to CP2.
CP2 coordinates are arbitrary functions of variables u = k cotm and w = ε ·m. k is light-like
wave vector and ε space-like polarization vector orthogonal to k so that the interpretation in
terms of massless particle with polarization is possible. ME describes in the most general case
a wave packet preserving its shape and propagating with maximal signal velocity along a kind
of tube analogous to wave guide so that they are ideal for precisely targeted communications
and central in TGD inspired quantum biology. MEs do not have Maxwellian counterparts.
For instance, MEs can carry light-like gauge currents parallel to them: this is not possible in
Maxwell’s theory.

2. I have discussed a generalization of this solution ansatz so that the directions defined by
light-like vector k and polarization vector ε orthogonal to it are not constant anymore but
define a slicing of M4 by orthogonal curved surfaces (analogs of string world sheets and space-
like surfaces orthogonal to them). MEs in their simplest form at least are minimal surfaces
and actually extremals of practically any general coordinate invariance action principle. For
instance, this is the case if the volume term suggested by the twistor lift of Kähler action [L22]
and identifiable in terms of cosmological constant is added to Kähler action.

3. MEs carry non-trivial induced gauge fields and gravitational fields identified in terms of the
induced metric. I have identified them as correlates for particles, which correspond to pairs
of wormhole contacts between two space-times such that at least one of them is ME. MEs

http://tinyurl.com/y7fsnzk8
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would accompany to both gravitational radiation and other forms or radiation classically and
serve as their correlates. For massless extremals the metric tensor is of form

g = m+ aε⊗ ε+ bk ⊗ k + c(ε⊗ kv + k ⊗ ε) ,

where m is the metric of empty Minkowski space. The curvature tensor is necessarily quadri-
linear in polarization vector ε and light-like wave vector k (light-like ifor both M4 and ME
metric) and from the general expression of Weyl tensor C in terms of R and g it is equal to
curvature tensor: C = R.

Hence the interpretation as graviton solution conforms with the GRT interpretation. Now
however the energy momentum tensor for the induced Kähler form is non-vanishing and
bilinear in velocity vector k and the interpretational problem is avoided.

What is interesting that also at GRT limit cosmological constant saves gravitons from re-
ducing to vacuum solutions. The deviation of the energy density given by cosmological term from
that for Minkowski metric is identifiable as gravitonic energy density. The mysterious cosmological
constant would be necessary for making gravitons non-vacuum solutions. The value of graviton
amplitude would be determined by the continuity conditions for Einstein’s equations with cosmo-
logical term. The p-adic evolution of cosmological term predicted by TGD is however difficult to
understand in GRT framework.

2.6.4 Generalization Of The Solution Ansatz Defining Massless Extremals
(MEs)

The solution ansatz for MEs has developed gradually to an increasingly general form and the
following formulation is the most general one achieved hitherto. Rather remarkably, it rather
closely resembles the solution ansatz for the CP2 type extremals and has direct interpretation
in terms of geometric optics. Equally remarkable is that the latest generalization based on the
introduction of the local light cone coordinates was inspired by quantum holography principle.

The solution ansatz for MEs has developed gradually to an increasingly general form and
the following formulation is the most general one achieved hitherto. Rather remarkably, it rather
closely resembles the solution ansatz for the CP2 type extremals and has direct interpretation
in terms of geometric optics. Equally remarkable is that the latest generalization based on the
introduction of the local light cone coordinates was inspired by quantum holography principle.

Local light cone coordinates

The solution involves a decomposition ofM4
+ tangent space localizing the decomposition of Minkowski

space to an orthogonal direct sum M2⊕E2 defined by light-like wave vector and polarization vector
orthogonal to it. This decomposition defines what might be called local light cone coordinates.

1. Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2) denote local
coordinates of M4

+ defining a local decomposition of the tangent space M4 of M4
+ into a direct

orthogonal sum M4 = M2⊕E2 of spaces M2 and E2. This decomposition has interpretation
in terms of the longitudinal and transversal degrees of freedom defined by local light-like
four-velocities v± = ∇S± and polarization vectors εi = ∇Ei assignable to light ray.

2. With these assumptions the coordinates (S±, E
i) define local light cone coordinates with the

metric element having the form

ds2 = 2g+−dS
+dS− + g11(dE1)2 + g22(dE2)2 . (2.6.3)

If complex coordinates are used in transversal degrees of freedom one has g11 = g22.

3. This family of light cone coordinates is not the most general family since longitudinal and
transversal spaces are orthogonal. One can also consider light-cone coordinates for which
one non-diagonal component, say m1+, is non-vanishing if the solution ansatz is such that
longitudinal and transversal spaces are orthogonal for the induced metric.
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A conformally invariant family of local light cone coordinates

The simplest solutions to the equations defining local light cone coordinates are of form S± = k ·m
giving as a special case S± = m0 ±m3. For more general solutions of from

S± = m0 ± f(m1,m2,m3) , (∇3f)2 = 1 ,

where f is an otherwise arbitrary function, this relationship reads as

S+ + S− = 2m0 .

This condition defines a natural rest frame. One can integrate f from its initial data at some
two-dimensional f = constant surface and solution describes curvilinear light rays emanating from
this surface and orthogonal to it. The flow velocity field v = ∇f is irrotational so that closed flow
lines are not possible in a connected region of space and the condition v2 = 1 excludes also closed
flow line configuration with singularity at origin such as v = 1/ρ rotational flow around axis.

One can identify E2 as a local tangent space spanned by polarization vectors and orthog-
onal to the flow lines of the velocity field v = ∇f(m1,m2,m3). Since the metric tensor of any
3-dimensional space allows always diagonalization in suitable coordinates, one can always find coor-
dinates (E1, E2) such that (f,E1, E2) form orthogonal coordinates for m0 = constant hyperplane.
Obviously one can select the coordinates E1 and E2 in infinitely many manners.

Closer inspection of the conditions defining local light cone coordinates

Whether the conformal transforms of the local light cone coordinates {S± = m0±f(m1,m2,m3), Ei}
define the only possible compositions M2⊕E2 with the required properties, remains an open ques-
tion. The best that one might hope is that any function S+ defining a family of light-like curves
defines a local decomposition M4 = M2 ⊕ E2 with required properties.

1. Suppose that S+ and S− define light-like vector fields which are not orthogonal (proportional
to each other). Suppose that the polarization vector fields εi = ∇Ei tangential to local E2

satisfy the conditions εi · ∇S+ = 0. One can formally integrate the functions Ei from these
condition since the initial values of Ei are given at m0 = constant slice.

2. The solution to the condition ∇S+ · εi = 0 is determined only modulo the replacement

εi → ε̂i = εi + k∇S+ ,

where k is any function. With the choice

k = −∇E
i · ∇S−

∇S+ · ∇S−

one can satisfy also the condition ε̂i · ∇S− = 0.

3. The requirement that also ε̂i is gradient is satisfied if the integrability condition

k = k(S+)

is satisfiedin this case ε̂i is obtained by a gauge transformation from εi. The integrability
condition can be regarded as an additional, and obviously very strong, condition for S− once
S+ and Ei are known.

4. The problem boils down to that of finding local momentum and polarization directions de-
fined by the functions S+, S− and E1 and E2 satisfying the orthogonality and integrability
conditions

(∇S+)2 = (∇S−)2 = 0 , ∇S+ · ∇S− 6= 0 ,

∇S+ · ∇Ei = 0 , ∇Ei·∇S−
∇S+·∇S− = ki(S

+) .
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The number of integrability conditions is 3+3 (all derivatives of ki except the one with respect
to S+ vanish): thus it seems that there are not much hopes of finding a solution unless some
discrete symmetry relating S+ and S− eliminates the integrability conditions altogether.

A generalization of the spatial reflection f → −f working for the separable Hamilton Jacobi
function S± = m0 ± f ansatz could relate S+ and S− to each other and trivialize the integrabil-
ity conditions. The symmetry transformation of M4

+ must perform the permutation S+ ↔ S−,
preserve the light-likeness property, map E2 to E2, and multiply the inner products between M2

and E2 vectors by a mere conformal factor. This encourages the conjecture that all solutions are
obtained by conformal transformations from the solutions S± = m0 ± f .

General solution ansatz for MEs for given choice of local light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decom-
position of M4

+ tangent space has been found.

1. Let E(S+, E1, E2) be an arbitrary function of its arguments: the gradient ∇E defines at each
point of E2 an S+-dependent (and thus time dependent) polarization direction orthogonal
to the direction of local wave vector defined by ∇S+. Polarization vector depends on E2

position only.

2. Quite a general family of MEs corresponds to the solution family of the field equations having
the general form

sk = fk(S+, E) ,

where sk denotes CP2 coordinates and fk is an arbitrary function of S+ and E. The solution
represents a wave propagating with light velocity and having definite S+ dependent polar-
ization in the direction of ∇E. By replacing S+ with S− one obtains a dual solution. Field
equations are satisfied because energy momentum tensor and Kähler current are light-like so
that all tensor contractions involved with the field equations vanish: the orthogonality of M2

and E2 is essential for the light-likeness of energy momentum tensor and Kähler current.

3. The simplest solutions of the form S± = m0±m3, (E1, E2) = (m1,m2) and correspond to a
cylindrical MEs representing waves propagating in the direction of the cylinder axis with light
velocity and having polarization which depends on point (E1, E2) and S+ (and thus time).
For these solutions four-momentum is light-like: for more general solutions this cannot be
the case. Polarization is in general case time dependent so that both linearly and circularly
polarized waves are possible. If m3 varies in a finite range of length L, then “free” solution
represents geometrically a cylinder of length L moving with a light velocity. Of course, ends
could be also anchored to the emitting or absorbing space-time surfaces.

4. For the general solution the cylinder is replaced by a three-dimensional family of light like
curves and in this case the rectilinear motion of the ends of the cylinder is replaced with
a curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing
space-time surfaces. The non-rotational character of the velocity flow suggests that the freely
moving particle like 3-surface defined by ME cannot remain in a infinite spatial volume. The
most general ansatz for MEs should be useful in the intermediate and nearby regions of a
radiating object whereas in the far away region radiation solution is excepted to decompose
to cylindrical ray like MEs for which the function f(m1,m2,m2) is a linear function of mi.

5. One can try to generalize the solution ansatz further by allowing the metric of M4
+ to have

components of type gi+ or gi− in the light cone coordinates used. The vanishing of T 11,
T+1, and T−− is achieved if gi± = 0 holds true for the induced metric. For sk = sk(S+, E1)
ansatz neither g2± nor g1− is affected by the imbedding so that these components of the
metric must vanish for the Hamilton Jacobi structure:

ds2 = 2g+−dS
+dS− + 2g1+dE

1dS+ + g11(dE1)2 + g22(dE2)2 . (2.6.4)
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g1+ = 0 can be achieved by an additional condition

m1+ = skl∂1s
k∂+s

k . (2.6.5)

The diagonalization of the metric seems to be a general aspect of preferred extremals. The
absence of metric correlations between space-time degrees of freedom for asymptotic self-
organization patterns is somewhat analogous to the minimization of non-bound entanglement
in the final state of the quantum jump.

Are the boundaries of space-time sheets quite generally light like surfaces with Hamil-
ton Jacobi structure?

Quantum holography principle naturally generalizes to an approximate principle expected to hold
true also in non-cosmological length and time scales.

1. The most general ansatz for topological light rays or massless extremals (MEs) inspired by
the quantum holographic thinking relies on the introduction of the notion of local light cone
coordinates S+, S−, E1, E2. The gradients ∇S+ and ∇S− define two light like directions
just like Hamilton Jacobi functions define the direction of propagation of wave in geometric
optics. The two polarization vector fields ∇E1 and ∇E2 are orthogonal to the direction of
propagation defined by either S+ or S−. Since also E1 and E2 can be chosen to be orthogonal,
the metric ofM4

+ can be written locally as ds2 = g+−dS+dS−+g11dE
2
1+g22dE

2
2 . In the earlier

ansatz S+ and S− where restricted to the variables k ·m and k̃ ·m, where k and k̃ correspond
to light like momentum and its mirror image and m denotes linear M4 coordinates: these
MEs describe cylindrical structures with constant direction of wave propagation expected to
be most important in regions faraway from the source of radiation.

2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light like
direction (S+ or S− is constant). This means that the boundary of ME has metric dimension
d = 2 and is characterized by an infinite-dimensional super-symplectic and super-conformal
symmetries just like the boundary of the imbedding space M4

+ × CP2: The boundaries are
like moments for mini big bangs (in TGD based fractal cosmology big bang is replaced with
a silent whisper amplified to not necessarily so big bang).

3. These observations inspire the conjecture that boundary conditions for M4 like space-time
sheets fixed by the absolute minimization of Kähler action quite generally require that space-
time boundaries correspond to light like 3-surfaces with metric dimension equal to d = 2.
This does not yet imply that light like surfaces of imbedding space would take the role of the
light cone boundary: these light like surface could be seen only as a special case of causal
determinants analogous to event horizons.

2.6.5 Maxwell Phase

“Maxwell phase” corresponds to small deformations of the M4 type vacuum extremals. Since
energy momentum tensor is quadratic in Kähler field the term proportional to the contraction of
the energy momentum tensor with second fundamental form drops from field equations and one
obtains in lowest order the following field equations

jαJkls
l
,α = 0 . (2.6.6)

These equations are satisfied if Maxwell’s equations

jα = 0 (2.6.7)

hold true. Massless extremals and Maxwell phase clearly exclude each other and it seems that
they must corresponds to different space-time sheets.
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The explicit construction of these extremals reduces to the task of finding an imbedding for
an arbitrary free Maxwell field to H. One can also allow source terms corresponding to the presence
of the point like charges: these should correspond to the regions of the space-time, where the flat
space-time approximation of the space-time fails. The regions where the approximation defining
the Maxwell phase fails might correspond to a topologically condensed CP2 type extremals, for
example. As a consequence, Kähler field is superposition of radiation type Kähler field and of
Coulomb term. A second possibility is the generation of “hole” with similar Coulombic Kähler
field.

An important property of the Maxwell phase (also of massless extremals) is its approximate
canonical invariance. Canonical transformations do not spoil the extremal property of the four-
surface in the approximation used, since it corresponds to a mere U(1) gauge transformation. This
implies the counterpart of the vacuum degeneracy, that is, the existence of an enormous number of
four-surfaces with very nearly the same action. Also there is an approximate Diff(M4

+) invariance.
The canonical degeneracy has some very interesting consequences concerning the under-

standing of the electro-weak symmetry breaking and color confinement. Kähler field is canonical
invariant and satisfies Maxwells equations. This is in accordance with the identification of Kähler
field as U(1) part of the electro-weak gauge field. Electromagnetic gauge field is a superposition
of Kähler field and Z0 fieldγ = 3J − sin2(θW )Z0/2 so that also electromagnetic gauge field is long
ranged assuming that Z0 and W+ fields are short ranged. These fields are not canonical invariants
and their behavior seems to be essentially random, which implies short range correlations and the
consequent massivation.

There is an objection against this argument. For the knownD < 4 solutions of field equations
weak fields are not random at all. These situations could represent asymptotic configurations
assignable to space-time sheets. This conforms with the interpretation that weak gauge fields are
essentially massless within the asymptotic space-time sheets representing weak bosons. Gauge
fields are however transferred between space-time sheets through # contacts modellable as pieces
of CP2 type extremals having DCP2 = 4. In contrast to Kähler and color gauge fluxes, weak
gauge fluxes are not conserved in the Euclidian time evolution between the 3-D causal horizons
separating the Euclidian # contact from space-time sheets with Minkowskian signature. This non-
conservation implying the loss of coherence in the transfer of fields between space-time sheets is a
plausible mechanism for the loss of correlations and massivation of the weak gauge fields.

Classical gluon fields are proportional to Kähler field and to the Hamiltonians associated
with the color isometry generators.

gAαβ = kHAJαβ . (2.6.8)

This implies that the direction of gluon fields in color algebra is random. One can always perform
a canonical transformation, which reduces to a global color rotation in some arbitrary small region
of space-time and reduces to identity outside this region. The proportionality of a gluon field to
Kähler form implies that there is a classical long range correlation in X4 degrees of freedom: in
this sense classical gluon fields differ from massive electro-weak fields in Maxwell phase.

2.6.6 Stationary, Spherically Symmetric Extremals

The stationary, spherically symmetric extremals of the Kähler action imbeddable in M4×S2, where
S2 is geodesic sphere, are the simplest extremals, which one can study as models for the space-time
surrounding a topologically condensed particle, say CP2 type vacuum extremal. In the region near
the particle the spherical symmetry is an unrealistic assumption since it excludes the presence
of magnetic fields needed to cancel the total Kähler action. The stationarity is also unrealistic
assumption since zitterbewegung seems to provide a necessary mechanism for generating Kähler
magnetic field and for satisfying boundary conditions. Also the imbeddability to M4 × S2 implies
unrealistic relationship between Z0 and photon charges.

According to the general wisdom, the generation of a Kähler electric field must take place in
order to minimize the action and it indeed turns out that the extremal is characterized by essentially
1/r2 Kähler electric field. The necessary presence of a hole or of a topologically condensed object
is also demonstrated: it is impossible to find extremals well defined in the region surrounding the
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origin. It is impossible to satisfy boundary conditions at a hole: this is in accordance with the
idea that Euclidian region corresponding to a CP2 type extremal performing zitterbewegung is
generated. In case of CP2 extremal radius is of the order of the Compton length of the particle
and in case of a “hole” of the order of Planck length. The value of the vacuum frequency ω is of
order of particle mass whereas for macroscopic vacuum extremals it must be of the order of 1/R.
This does not lead to a contradiction if the concept of a many-sheeted space-time is accepted.

The Poincare energy of the exterior region is considerably smaller than the gravitational
mass; this conforms with the interpretation that gravitational mass is sum of absolute values of
positive and negative inertial masses associated with matter and negative energy antimatter. It
is quite possible that classical considerations cannot provide much understanding concerning the
inertial masses of topologically condensed particles. Electro-weak gauge forces are considerably
weaker than the gravitational force at large distances, when the value of the frequency parameter
ω is of order 1/R. Both these desirable properties fail to be true if CP2 radius is of order Planck
length as believed earlier.

In light of the general ideas about topological condensation it is clear that in planetary
length scales these kind of extremals cannot provide a realistic description of space-time. Indeed,
spherically symmetric extremals predict a wrong rate for the precession of the perihelion of Mercury.
Scwhartschild and Reissner-Nordström metric do this and indeed allow imbedding as vacuum
extremals for which the inertial masses of positive energy matter and negative energy antimatter
sum up to zero.

This does not yet resolve the interpretational challenge due to the unavoidable long range
color and weak gauge fields. A dark matter hierarchy giving rise to a hierarchy of color and
electro-weak physics characterized by increasing values of weak and confinement scales explains
these fields. # contacts involve a pair of causal horizons at which the Euclidian metric signature of
# contact transforms to Minkowskian one. These causal horizons have interpretation as partons
so that # contact can be regarded as a bound state of partons bound together by a gravitational
instanton (CP2 type extremal). # contacts provide basic example of dark matter creating long
ranged weak fields.

An important result is the correlation between the sign of the vacuum frequency ω and that
of the Kähler charge, which is of opposite sign for fermions and anti-fermions. This suggests an
explanation for matter-antimatter asymmetry. Matter and antimatter condense stably on disjoint
regions of the space-time surface at different space-time sheets. Stable antimatter could correspond
to negative time orientation and negative energy. This leads to a model for the primordial gen-
eration of matter as spontaneous generation of zero energy # contacts between space-time sheets
of opposite time orientations. If CP conjugation is not exact symmetry, # contacts and their CP
conjugates are created with slightly different rates and this gives rise to CP asymmetry at each
of the two space-time sheets involved. After the splitting of # contacts and subsequent annihila-
tion of particles and antiparticles at each space-time sheet, the two space-time sheets contain only
positive energy matter and negative energy antimatter.

General solution ansatz

The general form of the solution ansatz is obtained by assuming that the space-time surface in
question is a sub-manifold of M4 × S2, where S2 is the homologically non-trivial geodesic sphere
of CP2. S2 is most conveniently realized as r = ∞ surface of CP2, for which all values of the
coordinate Ψ correspond to same point of CP2 so that one can use Θ and Φ as the coordinates of
S2.

The solution ansatz is given by the expression

cos(Θ) = u(r) ,

Φ = ωt ,

m0 = λt ,

rM = r , θM = θ , φM = φ . (2.6.9)

The induced metric is given by the expression
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ds2 =

[
λ2 − R2

4
ω2(1− u2)

]
dt2 − (1 +

R2

4
θ2
,r)dr

2 − r2dΩ2 .

(2.6.10)

The value of the parameter λ is fixed by the condition gtt(∞) = 1:

λ2 − R2

4
ω2(1− u(∞)2) = 1 . (2.6.11)

From the condition e0∧e3 = 0 the non-vanishing components of the induced Kähler field are given
by the expression

Jtr =
ω

4
u,r . (2.6.12)

Geodesic sphere property implies that Z0 and photon fields are proportional to Kähler field:

γ = (3− p/2)J ,

Z0 = J . (2.6.13)

From this formula one obtains the expressions

Qem =
(3− p/2)

4παem
QK , QZ =

1

4παZ
Q ,

Q ≡ Jtr4πr
2

√
−grrgtt

. (2.6.14)

for the electromagnetic and Z0 charges of the solution using e and gZ as unit.
Field equations can be written as conditions for energy momentum conservation (two equa-

tions is in principle all what is needed in the case of geodesic sphere). Energy conservation holds
identically true and conservation of momentum, say, in z-direction gives the equation

(T rrz,r),r + (T θθz,θ),θ = 0 . (2.6.15)

Using the explicit expressions for the components of the energy momentum tensor

T rr = grrL/2 ,

T θθ = −gθθL/2 ,

L = gttgrr(Jtr)
2√g/2 , (2.6.16)

and the following notations

A = gttgrrr2√−gttgrr ,

X ≡ (Jtr)
2 , (2.6.17)

the field equations reduce to the following form

(grrAX),r −
2AX

r
= 0 . (2.6.18)

In the approximation grr = 1 this equation can be readily integrated to give AX = C/r2. Inte-
grating Eq. (3.2.7 ), one obtains integral equation for X
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Jtr =
q

rc
(|grr|3gtt)1/4exp(

∫ r

rc

dr
grr
r

)
1

r
, (2.6.19)

where q is integration constant, which is related to the charge parameter of the long range Kähler
electric field associated with the solution. rc denotes the critical radius at which the solution ceases
to be well defined.

The inspection of this formula shows that Jtr behaves essentially as 1/r2 Coulomb field.
This behavior doesn’t depend on the detailed properties of the solution ansatz (for example the
imbeddability to M4 × S2): stationarity and spherical symmetry is what matters only. The
compactness of CP2 means that stationary, spherically symmetric solution is not possible in the
region containing origin. This is in concordance with the idea that either a hole surrounds the
origin or there is a topologically condensed CP2 extremal performing zitterbewegung near the
origin and making the solution non-stationary and breaking spherical symmetry.

Second integration gives the following integral equation for CP2 coordinate u = cos(Θ)

u(r) = u0 +
4q

ω

∫ r

rc

(−g3
rrgtt)

1/4 1

r
exp(

∫ r

rc

dr
grr
r

) . (2.6.20)

Here u0 denotes the value of the coordinate u at r = r0.

The form of the field equation suggests a natural iterative procedure for the numerical
construction of the solution for large values of r.

un(r) = Tn−1 , (2.6.21)

where Tn−1 is evaluated using the induced metric associated with un−1. The physical content of
the approximation procedure is clear: estimate the gravitational effects using lower order solution
since these are expected to be small.

A more convenient manner to solve u is based on Taylor expansion around the point V ≡
1/r = 0. The coefficients appearing in the power series expansion u =

∑
n unA

nV n : A = q/ω can
be solved by calculating successive derivatives of the integral equation for u.

The lowest order solution is simply

u0 = u∞ , (2.6.22)

and the corresponding metric is flat metric. In the first order one obtains for u(r) the expression

u = u∞ −
4q

ωr
, (2.6.23)

which expresses the fact that Kähler field behaves essentially as 1/r2 Coulomb field. The behavior
of u as a function of r is identical with that obtained for the imbedding of the Reissner-Nordström
solution.

To study the properties of the solution we fix the signs of the parameters in the following
manner:

u∞ < 0 , q < 0 , ω > 0 (2.6.24)

(reasons become clear later).

Concerning the behavior of the solution one can consider two different cases.
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1. The condition gtt > 0 hold true for all values of Θ. In this case u decreases and the rate of
decrease gets faster for small values of r. This means that in the lowest order the solution
becomes certainly ill defined at a critical radius r = rc given by the the condition u = 1: the
reason is that u cannot get values large than one. The expression of the critical radius is
given by

rc ≥ 4q

(|u∞|+ 1)ω

=
4αQem

(3− p/2)

1

(|u∞|+ 1)ω
. (2.6.25)

The presence of the critical radius for the actual solution is also a necessity as the inspection
of the expression for Jtr shows: ∂rθ grows near the origin without bound and u = 1 is reached
at some finite value of r. Boundary conditions require that the quantity X = T rr

√
g vanishes

at critical radius (no momentum flows through the boundary). Substituting the expression
of Jtr from the field equation to T rr the expression for X reduces to a form, from which it is
clear that X cannot vanish. The cautious conclusion is that boundary conditions cannot be
satisfied and the underlying reason is probably the stationarity and spherical symmetry of the
solution. Physical intuition suggests that that CP2 type extremal performing zitterbewegung
is needed to satisfy the boundary conditions.

2. gtt vanishes for some value of Θ. In this case the radial derivative of u together with gtt can
become zero for some value of r = rc. Boundary conditions can be satisfied only provided

rc = 0. Thus it seems that for the values of ω satisfying the condition ω2 = 4λ2

R2sin2(Θ0) it

might be possible to find a globally defined solution. The study of differential equation for u
however shows that the ansatz doesn’t work. The conclusion is that although the boundary
is generated it is not possible to satisfy boundary conditions.

A direct calculation of the coefficients un from power series expansion gives the following
third order polynomial approximation for u (V = 1/r)

u =
∑
n

unA
nV n ,

u0 = u∞(< 0) , u1 = 1 ,

u2 = K|u∞| , u3 = K(1 + 4K|u∞|) ,

A ≡ 4q

ω
, K ≡ ω2R

2

4
.

(2.6.26)

The coefficients u2 and u3 are indeed positive which means that the value of the critical radius
gets larger at least in these orders.

Solution contains three parameters: Kähler electric flux Q = 4πq, parameter ωR and param-
eter u∞. The latter parameters can be regarded as parameters describing the properties of a flat
vacuum extremal (lowest order solution) to which particle like solution is glued and are analogous
to the parameters describing symmetry broken vacuum in gauge theories.

Solution is not a realistic model for topological condensation

The solution does not provide realistic model for topological condensation although it gives indirect
support for some essential assumptions of TGD based description of Higgs mechanism.

1. When the value of ω is of the order of CP2 mass the solution could be interpreted as the
“exterior metric” of a “hole”.
i) The radius of the hole is of the order of CP2 length and its mass is of the order of CP2

mass.
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ii) Kähler electric field is generated and charge renormalization takes place classically at CP2

length scales as is clear from the expression of Q(r): Q(r) ∝ (−grrgtt
)1/4 and charge increases

at short distances.
iii) The existence of the critical radius is unavoidable but boundary conditions cannot be
satisfied. The failure to satisfy boundary conditions might be related to stationarity or to
the absence of magnetic field. The motion of the boundary component with velocity of light
might be the only manner to satisfy boundary conditions. Second possibility is the breaking
of spherical symmetry by the generation of a static magnetic field.
iv) The absence of the Kähler magnetic field implies that the Kähler action has an infinite
magnitude and the probability of the configuration is zero. A more realistic solution ansatz
would break spherical symmetry containing dipole type magnetic field in the nearby region of
the hole. The motion of the boundary with a velocity of light could serves as an alternative
mechanism for the generation of magnetic field. The third possibility, supported by physical
intuition, is that one must give up “hole” type extremal totally.

2. For sufficiently large values of r and for small values of ω (of the order of elementary particle
mass scale), the solution might provide an approximate description for the region surrounding
elementary particle. Although it is not possible to satisfy boundary conditions the order of
magnitude estimate for the size of critical radius (rc ' α/ω) should hold true for more realistic
solutions, too. The order of magnitude for the critical radius is smaller than Compton length
or larger if the vacuum parameter ω is larger than the mass of the particle. In macroscopic
length scales the value of ω is of order 1/R. This does not lead to a contradiction if the many-
sheeted space-time concept is accepted so that ω < m corresponds to elementary particle
space-time sheet. An unrealistic feature of the solution is that the relationship between Z0

and em charges is not correct: Z0 charge should be very small in these length scales.

Exterior solution cannot be identified as a counterpart of Schwartshild solution

The first thing, which comes into mind is to ask whether one might identify exterior solution as the
TGD counterpart of the Schwartshild solution. The identification of gravitational mass as absolute
value of inertial mass which is negative for antimatter implies that vacuum extremals are vacua
only with respect to the inertial four-momentum and have a non-vanishing gravitational four-
momentum. Hence, in the approximation that the net density of inertial mass vanishes, vacuum
extremals provide the proper manner to model matter, and the identification of the ansatz for a
spherically symmetric extremal as the counterpart of Scwhartschild metric is certainly not possible.
It is however useful to show explicitly that the identification is indeed unrealistic. The solution is
consistent with Equivalence Principle but the electro-weak gauge forces are considerably weaker
than gravitational forces. A wrong perihelion shift is also predicted so that the identification as
an exterior metric of macroscopic objects is out of question.

1. Is Equivalence Principle respected?

The following calculation demonstrates that Equivalence Principle might not be satisfied for
the solution ansatz (which need not actually define a preferred extremal!).

The gravitational mass of the solution is determined from the asymptotic behavior of gtt
and is given by

Mgr =
R2

G
ωqu∞ , (2.6.27)

and is proportional to the Kähler charge q of the solution.
One can estimate the gravitational mass density also by applying Newtonian approximation

to the time component of the metric gtt = 1 − 2Φgr. One obtains Φgr corresponds in the lowest
order approximation to a solution of Einstein’s equations with the source consisting of a mass point
at origin and the energy density of the Kähler electric field. The effective value of gravitational
constant is however Geg = 8R2αK . Thus the only sensible interpretation is that the density of
Kähler (inertial) energy is only a fraction G/Geq ≡ ε ' .22 × 10−6 of the density of gravitational
mass. Hence the densities of positive energy matter and negative energy antimatter cancel each
other in a good approximation.
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The work with cosmic strings lead to a possible interpretation of the solution as a space-time
sheet containing topologically condensed magnetic flux tube idealizable as a point. The negative
Kähler electric action must cancel the positive Kähler magnetic action. The resulting structure in
turn can condense to a vacuum extremal and Schwartshild metric is a good approximation for the
metric.

One can estimate the contribution of the exterior region (r > rc) to the inertial mass of the
system and Equivalence principle requires this to be a fraction of order ε about the gravitational
mass unless the region r < rc contains negative inertial mass density, which is of course quite
possible. Approximating the metric with a flat metric and using first order approximation for u(r)
the energy reduces just to the standard Coulomb energy of charged sphere with radius rc

MI(ext) =
1

32παK

∫
r>rc

E2√gd3x

' λq2

2αKrc
,

λ =

√
1 +

R2

4
ω2(1− u2

∞) (> 1) . (2.6.28)

Approximating the metric with flat metric the contribution of the region r > rc to the energy of
the solution is given by

MI(ext) =
1

8αK
λqω(1 + |u∞|) . (2.6.29)

The contribution is proportional to Kähler charge as expected. The ratio of external inertial and
gravitational masses is given by the expression

MI(ext)

Mgr
=

G

4R2αK
x ,

x =
(1 + |u∞|)
|u∞|

> 1 . (2.6.30)

In the approximation used the ratio of external inertial and gravitational masses is of order 10−6

for R ∼ 104
√
G implied by the p-adic length scale hypothesis and for x ∼ 1. The result conforms

with the above discussed interpretation.
The result forces to challenge the underlying implicit assumptions behind the calculation.

1. Many-sheeted space-time means that single space-time sheet need not be a good approxi-
mation for astrophysical systems. The GRT limit of TGD can be interpreted as obtained
by lumping many-sheeted space-time time to Minkowski space with effective metric defined
as sum M4 metric and sum of deviations from M4 metric for various space-time sheets
involved [K79]. This effective metric should correspond to that of General Relativity and
Einstein’s equations reflect the underlying Poincare invariance. Gravitational and cosmolog-
ical constants follow as predictions and EP is satisfied.

2. The systems considered need not be preferred extremals of Kähler action so that one cannot
take the results obtained too seriously. For vacuum extremals one does not encounter this
problem at all and it could be that vacuum extremals with induced metric identified as
GRT metric are a good approximation in astrophysical systems. This requires that single-
sheetedness is a good approximation. TGD based single-sheeted models for astrophysical
and cosmological systems rely on this assumption.

2. Z0 and electromagnetic forces are much weaker than gravitational force

The extremal in question carries Kähler charge and therefore also Z0 and electromagnetic
charge. This implies long range gauge interactions, which ought to be weaker than gravitational
interaction in the astrophysical scales. This is indeed the case as the following argument shows.
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Expressing the Kähler charge using Planck mass as unit and using the relationships between
gauge fields one obtains a direct measure for the strength of the Z0 force as compared with the
strength of gravitational force.

QZ ≡ εZMgr

√
G .

(2.6.31)

The value of the parameter εZ should be smaller than one. A transparent form for this condition
is obtained, when one writes Φ = ωt = Ωm0 : Ω = λω:

εZ =
αK
αZ

1

π(1 + |u∞|)ΩR

√
G

R
. (2.6.32)

The order of magnitude is determined by the values of the parameters
√

G
R2 ∼ 10−4 and ΩR.

Global Minkowskian signature of the induced metric implies the condition ΩR < 2 for the allowed
values of the parameter ΩR. In macroscopic length scales one has ΩR ∼ 1 so that Z0 force is by
a factor of order 10−4 weaker than gravitational force. In elementary particle length scales with
ω ∼ m situation is completely different as expected.

3. The shift of the perihelion is predicted incorrectly

The grr component of Reissner-Nordström and TGD metrics are given by the expressions

grr = − 1

(1− 2GM
r )

, (2.6.33)

and

grr ' 1−
Rq
ω2[

1− (u∞ − 4q
ωr )2

]
r4

, (2.6.34)

respectively. For reasonable values of q, ω and u∞ the this terms is extremely small as compared
with 1/r term so that these expressions differ by 1/r term.

The absence of the 1/r term from grr-component of the metric predicts that the shift of
the perihelion for elliptic plane orbits is about 2/3 times that predicted by GRT so that the
identification as a metric associated with objects of a planetary scale leads to an experimental
contradiction. Reissner-Nordström solutions are obtained as vacuum extremals so that standard
predictions of GRT are obtained for the planetary motion.

One might hope that the generalization of the form of the spherically symmetric ansatz by
introducing the same modification as needed for the imbedding of Reissner-Nordstrm̈ metric might
help. The modification would read as

cos(Θ) = u(r) ,

Φ = ωt+ f(r) ,

m0 = λt+ h(r) ,

rM = r , θM = θ , φM = φ . (2.6.35)

The vanishing of the gtr component of the metric gives the condition

λ∂rh−
R2

4
sin2(Θ)ω∂rf = 0 . (2.6.36)

The expression for the radial component of the metric transforms to



104 Chapter 2. Basic Extremals of the Kähler Action

grr ' ∂rh
2 − 1− R2

4
(∂rΘ)2 − R2

4
sin2(Θ)∂rf

2 , (2.6.37)

Essentially the same perihelion shift as for Schwartschild metric is obtained if grr approaches
asymptotically to its expression for Schwartschild metric. This is guaranteed if the following
conditions hold true:

f(r)r→∞ → ωr , Λ2 − 1 =
R2ω2

4
sin2(Θ∞)� 2GM

〈r〉
. (2.6.38)

In the second equation 〈r〉 corresponds to the average radius of the planetary orbit.
The field equations for this ansatz can be written as conditions for energy momentum and

color charge conservation. Two equations are enough to determine the functions Θ(r) and f(r).
The equation for momentum conservation is same as before. Second field equation corresponds to
the conserved isometry current associated with the color isometry Φ → Φ + ε and gives equation
for f .

[T rrf,rsΦΦ
√
g],r = 0 . (2.6.39)

The conservation laws associated with other infinitesimal SU(2) rotations of S2
I should be satisfied

identically. This equation can be readily integrated to give

T rrf,rsΦΦ
√
gttgrr =

C

r2
. (2.6.40)

Unfortunately, the result is inconsistent with the 1/r4 behavior of T rr and f → ωr implies by
correct red shift.

It seems that the only possible way out of the difficulty is to replace spherical symmetry
with a symmetry with respect to the rotations around z-axis. The simplest modification of the
solution ansatz is as follows:

m0 = λt+ h(ρ) , Φ = ωt+ kρ .

Thanks to the linear dependence of Φ on ρ, the conservation laws for momentum and color isospin
reduce to the same condition. The ansatz induces a small breaking of spherical symmetry by
adding to gρρ the term

(∂ρh)2 − R2

4
sin2(Θ)k2 .

One might hope that in the plane θ = π/2, where r = ρ holds true, the ansatz could behave like
Schwartschild metric if the conditions discussed above are posed (including the condition k = ω).
The breaking of the spherical symmetry in the planetary system would be coded already to the
gravitational field of Sun.

Also the study of the imbeddings of Reissner-Nordström metric as vacuum extremals and
the investigation of spherically symmetric (inertial) vacuum extremals for which gravitational four-
momentum is conserved [K79] leads to the conclusion that the loss of spherical symmetry due to
rotation is inevitable characteristic of realistic solutions.

2.6.7 Maxwell Hydrodynamics As A Toy Model For TGD

The field equations of TGD are extremely non-linear and all known solutions have been discov-
ered by symmetry arguments. Chern-Simons term plays essential role also in the construction of
solutions of field equations and at partonic level defines braiding for light-like partonic 3-surfaces
expected to play key role in the construction of S-matrix. The inspiration for this section came
from Terence Tao’s blog posting 2006 ICM: Etienne Ghys, “Knots and dynamics” [A87] giving
an elegant summary about amazing mathematical results related to knots, links, braids and hy-
drodynamical flows in dimension D = 3. Posting tells about really amazing mathematical results
related to knots.
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Chern-Simons term as helicity invariant

Tao mentions helicity as an invariant of fluid flow. Chern-Simons action defined by the induced
Kähler gauge potential for light-like 3-surfaces has interpretation as helicity when Kähler gauge
potential is identified as fluid velocity. This flow can be continued to the interior of space-time
sheet. Also the dual of the induced Kähler form defines a flow at the light-like partonic surfaces
but not in the interior of space-time sheet. The lines of this flow can be interpreted as magnetic
field lines. This flow is incompressible and represents a conserved charge (Kähler magnetic flux).

The question is which of these flows should define number theoretical braids. Perhaps both
of them can appear in the definition of S-matrix and correspond to different kinds of partonic
matter (electric/magnetic charges, quarks/leptons?, ...). Second kind of matter could not flow in
the interior of space-time sheet. Or could interpretation in terms of electric magnetic duality make
sense?

Helicity is not gauge invariant and this is as it must be in TGD framework since CP2

symplectic transformations induce U(1) gauge transformation, which deforms space-time surface an
modifies induced metric as well as classical electroweak fields defined by induced spinor connection.
Gauge degeneracy is transformed to spin glass degeneracy.

Maxwell hydrodynamics

In TGD Maxwell’s equations are replaced with field equations which express conservation laws and
are thus hydrodynamical in character. With this background the idea that the analogy between
gauge theory and hydrodynamics might be applied also in the reverse direction is natural. Hence
one might ask what kind of relativistic hydrodynamics results if assumes that the action principle
is Maxwell action for the four-velocity uα with the constraint term saying that light velocity is
maximal signal velocity.

1. For massive particles the length of four-velocity equals to 1: uαuα = 1. In massless case one
has uαuα = 0. Geometrically this means that one has sigma model with target space which
is 3-D Lobatschevski space or at light-cone boundary. This condition means the addition of
constraint term

λ(uαuα − ε) (2.6.41)

to the Maxwell action. ε = 1/0 holds for massive/massless flow. In the following the notation
of electrodynamics is used to make easier the comparison with electrodynamics.

2. The constraint term destroys gauge invariance by allowing to express A0 in terms of Ai

but in general the constraint is not equivalent to a choice of gauge in electrodynamics since
the solutions to the field equations with constraint term are not solutions of field equations
without it. One obtains field equations for an effectively massive em field with Lagrange
multiplier λ having interpretation as photon mass depending on space-time point:

jα = ∂βF
αβ = λAα ,

Aα ≡ uα , Fαβ = ∂βAα − ∂αAβ . (2.6.42)

3. In electrodynamic context the natural interpretation would be in terms of spontaneous mas-
sivation of photon and seems to occur for both values of ε. The analog of em current given
by λAα is in general non-vanishing and conserved. This conservation law is quite strong
additional constraint on the hydrodynamics. What is interesting is that breaking of gauge
invariance does not lead to a loss of charge conservation.
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4. One can solve λ by contracting the equations with Aα to obtain

λ = jαAα

for ε = 1. For ε = 0 one obtains

jαAα = 0

stating that the field does not dissipate energy: λ can be however non-vanishing unless field
equations imply jα = 0. One can say that for ε = 0 spontaneous massivation can occur.
For ε = 1 massivation is present from the beginning and dissipation rate determines photon
mass: a natural interpretation for ε = 1 would be in terms of thermal massivation of photon.
Non-tachyonicity fixes the sign of the dissipation term so that the thermodynamical arrow
of time is fixed by causality.

5. For ε = 0 massless plane wave solutions are possible and one has

∂α∂βA
β = λAα .

λ = 0 is obtained in Lorentz gauge which is consistent with the condition ε = 0. Also super-
positions of plane waves with same polarization and direction of propagation are solutions
of field equations: these solutions represent dispersionless precisely targeted pulses. For su-
perpositions of plane waves λ with 4-momenta, which are not all parallel λ is non-vanishing
so that non-linear self interactions due to the constraint can be said to induce massivation.
In asymptotic states for which gauge symmetry is not broken one expects a decomposition
of solutions to regions of space-time carrying this kind of pulses, which brings in mind final
states of particle reactions containing free photons with fixed polarizations.

6. Gradient flows satisfying the conditions

Aα = ∂αΦ , AαAα = ε (2.6.43)

give rise to identically vanishing hydrodynamical gauge fields and λ = 0 holds true. These
solutions are vacua since energy momentum tensor vanishes identically. There is huge number
of this kind of solutions and spin glass degeneracy suggests itself. Small deformations of these
vacuum flows are expected to give rise to non-vacuum flows.

7. The counterparts of charged solutions are of special interest. For ε = 0 the solution (u0, ur) =
(Q/r)(1, 1) is a solution of field equations outside origin and corresponds to electric field of a
point charge Q. In fact, for ε = 0 any ansatz (u0, ur) = f(r)(1, 1) satisfies field equations for a
suitable choice of λ(r) since the ratio of equations associate with j0 and jr gives an equation
which is trivially satisfied. For ε = 1 the ansatz (u0, ur) = (cosh(u), sinh(u)) expressing
solution in terms of hyperbolic angle linearizes the field equation obtained by dividing the
equations for j0 and jr to eliminate λ. The resulting equation is

∂2
ru+

2∂ru

r
= 0

for ordinary Coulomb potential and one obtains (u0, ur) = (cosh(u0 + k/r), sinh(u0 + k/r)).
The charge of the solution at the limit r → ∞ approaches to the value Q = sinh(u0)k and
diverges at the limit r → 0. The charge increases exponentially as a function of 1/r near
origin rather than logarithmically as in QED and the interpretation in terms of thermal
screening suggests itself. Hyperbolic ansatz might simplify considerably the field equations
also in the general case.
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Similarities with TGD

There are strong similarities with TGD which suggests that the proposed model might provide a
toy model for the dynamics defined by Kähler action.

1. Also in TGD field equations are essentially hydrodynamical equations stating the conserva-
tion of various isometry charges. Gauge invariance is broken for the induced Kähler field
although Kähler charge is conserved. There is huge vacuum degeneracy corresponding to
vanishing of induced Kähler field and the interpretation is in terms of spin glass degeneracy.

2. Also in TGD dissipation rate vanishes for the known solutions of field equations and a possible
interpretation is as space-time correlates for asymptotic non-dissipating self organization
patterns.

3. In TGD framework massless extremals represent the analogs for superpositions of plane waves
with fixed polarization and propagation direction and representing targeted and dispersion-
less propagation of signal. Gauge currents are light-like and non-vanishing for these solutions.
The decomposition of space-time surface to space-time sheets representing particles is much
more general counterpart for the asymptotic solutions of Maxwell hydrodynamics with van-
ishing λ.

4. In TGD framework one can consider the possibility that the four-velocity assignable to a
macroscopic quantum phase is proportional to the induced Kähler gauge potential. In this
kind of situation one could speak of a quantal variant of Maxwell hydrodynamics, at least
for light-like partonic 3-surfaces. For instance, the condition

DαDαΨ = 0 , DαΨ = (∂α − iqKAα)Ψ

for the order parameter of the quantum phase corresponds at classical level to the condition
pα = qKQ

α + lα, where qK is Kähler charge of fermion and lα is a light-like vector field
naturally assignable to the partonic boundary component. This gives uα = (qKQ

α + lα)/m,
m2 = pαpα, which is somewhat more general condition. The expressibility of uα in terms of
the vector fields provided by the induced geometry is very natural.

The value ε depends on space-time region and it would seem that also ε = −1 is possible
meaning tachyonicity and breaking of causality. Kähler gauge potential could however have
a time-like pure gauge component in M4 possibly saving the situation. The construction
of quantum TGD at parton level indeed forces to assume that Kähler gauge potential has
Lorentz invariant M4 component Aa = constant in the direction of the light-cone proper time
coordinate axis a. Note that the decomposition of WCW to sectors consisting of space-time
sheets inside future or past light-cone of M4 is an essential element of the construction of
WCW geometry and does not imply breaking of Poincare invariance. Without this component
uαu

α could certainly be negative. The contribution of M4 component could prevent this for
preferred extremals.

If TGD is taken seriously, these similarities force to ask whether Maxwell hydrodynamics might
be interpreted as a nonlinear variant of electrodynamics. Probably not: in TGD em field is
proportional to the induced Kähler form only in special cases and is in general non-vanishing also
for vacuum extremals.



Chapter 3

About Identification of the
Preferred extremals of Kähler
Action

3.1 Introduction

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD.
There are pressing motivations for understanding what the attribute “preferred” really means.
Symmetries give a clue to the problem. The conformal invariance of string models naturally
generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody
type algebra) characterized by two complex coordinates and therefore explaining naturally the
effective 2-dimensionality [K76]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two
space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A
natural looking condition is that the symplectic Noether charges associated with a sub-algebra
of symplectic algebra with conformal weights n-multiples of the weights of the entire algebra
vanish for preferred extremals. These conditions would be classical counterparts the the condition
that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of
super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of
hierarchy of Planck constants heff = n × h identified as a hierarchy of dark matter. n could be
interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets
connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean
or imply. The weak form of electric-magnetic duality combined with the assumption that the
contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals
implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at
the light-like orbits of wormhole throats at which the signature of the induced metric changes
its signature from Minkowskian to Euclidian. In regions with 4-D CP2 projection (wormhole
contacts) also a 3-D contribution not assignable to the boundary of the region might be possible.
These conditions pose strong physically feasible conditions on extremals and might be true for
preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space
of given point of space-time surface is associative and thus quaternionic. Also the formulation in
terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So
called M8−H duality is a variant of this vision and would mean that one can map associative/co-
associative space-time surfaces from M8 to H and also iterate this mapping from H to H to
generate entire category of preferred extremals. The signature of M4 is a general technical prob-
lem. For instance, the holomorphy in 2 complex variables could correspond to what I have called
Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in
Minkowskian signature.

108
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In this chapter various views about preferred extremal property are discussed.

3.1.1 Preferred Extremals As Critical Extremals

The study of the Kähler-Dirac equation leads to a detailed view about criticality. Quantum
criticality [D5] fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular cover-
ing spaces of CD × CP2 can be understood in terms of the extremely non-linear dynamics of
Kähler action implying 1-to-many correspondence between canonical momentum densities and
time derivatives of the imbedding space coordinates led to a further very concrete understanding
of the criticality at space-time level and its relationship to zero energy ontology [K34].

Criticality is accompanied by conformal invariance and this leads to the proposal that critical
deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the
partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with
conformal weights divisible by integer n would act as gauge symmetries and these algebras would
form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize
the value of Planck constant heff = n× h assignable to various phases of dark matter.

3.1.2 Construction Of Preferred Extremals

There has been considerable progress in the understanding of both preferred extremals and Kähler-
Dirac equation.

1. For preferred extremals the generalization of conformal invariance to 4-D situation is very
attractive idea and leads to concrete conditions formally similar to those encountered in
string model [K7]. In particular, Einstein’s equations with cosmological constant would solve
consistency conditions and field equations would reduce to a purely algebraic statements
analogous to those appearing in equations for minimal surfaces if one assumes that space-
time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure
(Appendix). The older approach based on basic heuristics for massless equations, on effective
3-dimensionality, weak form of electric magnetic duality, and Beltrami flows is also promising.
An alternative approach is inspired by number theoretical considerations and identifies space-
time surfaces as associative or co-associative sub-manifolds of octonionic imbedding space
[K74].

The basic step of progress was the realization that the known extremals of Kähler action -
certainly limiting cases of more general extremals - can be deformed to more general extremals
having interpretation as preferred extremals.

(a) The generalization boils down to the condition that field equations reduce to the condi-
tion that the traces Tr(THk) for the product of energy momentum tensor and second
fundamental form vanish. In string models energy momentum tensor corresponds to
metric and one obtains minimal surface equations. The equations reduce to purely
algebraic conditions stating that T and Hk have no common components. Complex
structure of string world sheet makes this possible.

Stringy conditions for metric stating gzz = gzz = 0 generalize. The condition that
field equations reduce to Tr(THk) = 0 requires that the terms involving Kähler gauge
current in field equations vanish. This is achieved if Einstein’s equations hold true
(one can consider also more general manners to satisfy the conditions). The conditions
guaranteeing the vanishing of the trace in turn boil down to the existence of Hermitian
structure in the case of Euclidian signature and to the existence of its analog - Hamilton-
Jacobi structure - for Minkowskian signature (Appendix). These conditions state that
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certain components of the induced metric vanish in complex coordinates or Hamilton-
Jacobi coordinates.

In string model the replacement of the imbedding space coordinate variables with quan-
tized ones allows to interpret the conditions on metric as Virasoro conditions. In the
recent case a generalization of classical Virasoro conditions to four-dimensional ones
would be in question. An interesting question is whether quantization of these con-
ditions could make sense also in TGD framework at least as a useful trick to deduce
information about quantum states in WCW degrees of freedom.

The interpretation of the extended algebra as Yangian [A27] [B30] suggested previ-
ously [K76] to act as a generalization of conformal algebra in TGD Universe is at-
tractive. There is also the conjecture that preferred extremals could be interpreted as
quaternionic of co-quaternionic 4-surface of the octonionic imbedding space with oc-
tonionic representation of the gamma matrices defining the notion of tangent space
quanternionicity.

3.2 Weak Form Electric-Magnetic Duality And Its Im-
plications

The notion of electric-magnetic duality [B5] was proposed first by Olive and Montonen and
is central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and
ordinary particles are two different phases of theory and that the description in terms of
monopoles can be applied at the limit when the running gauge coupling constant becomes
very large and perturbation theory fails to converge. The notion of electric-magnetic self-
duality is more natural since for CP2 geometry Kähler form is self-dual and Kähler magnetic
monopoles are also Kähler electric monopoles and Kähler coupling strength is by quantum
criticality renormalization group invariant rather than running coupling constant. The no-
tion of electric-magnetic (self-)duality emerged already two decades ago in the attempts to
formulate the Kähler geometric of world of classical worlds. Quite recently a considerable
step of progress took place in the understanding of this notion [K15] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces.
What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this
concept leads to precise predictions. The point is that elementary particles do not generate
monopole fields in macroscopic length scales: at least when one considers visible matter. The
first question is whether elementary particles could have vanishing magnetic charges: this
turns out to be impossible. The next question is how the screening of the magnetic charges
could take place and leads to an identification of the physical particles as string like objects
identified as pairs magnetic charged wormhole throats connected by magnetic flux tubes.

(a) The first implication is a new view about electro-weak massivation reducing it to weak
confinement in TGD framework. The second end of the string contains particle having
electroweak isospin neutralizing that of elementary fermion and the size scale of the
string is electro-weak scale would be in question. Hence the screening of electro-weak
force takes place via weak confinement realized in terms of magnetic confinement.

(b) This picture generalizes to the case of color confinement. Also quarks correspond to pairs
of magnetic monopoles but the charges need not vanish now. Rather, valence quarks
would be connected by flux tubes of length of order hadron size such that magnetic
charges sum up to zero. For instance, for baryonic valence quarks these charges could
be (2,−1,−1) and could be proportional to color hyper charge.

(c) The highly non-trivial prediction making more precise the earlier stringy vision is that
elementary particles are string like objects: this could become manifest at LHC energies.

(d) The weak form electric-magnetic duality together with Beltrami flow property of Kähler
leads to the reduction of Kähler action to Chern-Simons action so that TGD reduces
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to almost topological QFT and that Kähler function is explicitly calculable. This has
enormous impact concerning practical calculability of the theory.

(e) One ends up also to a general solution ansatz for field equations from the condition that
the theory reduces to almost topological QFT. The solution ansatz is inspired by the idea
that all isometry currents are proportional to Kähler current which is integrable in the
sense that the flow parameter associated with its flow lines defines a global coordinate.
The proposed solution ansatz would describe a hydrodynamical flow with the property
that isometry charges are conserved along the flow lines (Beltrami flow). A general
ansatz satisfying the integrability conditions is found.

The strongest form of the solution ansatz states that various classical and quantum
currents flow along flow lines of the Beltrami flow defined by Kähler current. Intuitively
this picture is attractive. A more general ansatz would allow several Beltrami flows
meaning multi-hydrodynamics. The integrability conditions boil down to two scalar
functions: the first one satisfies massless d’Alembert equation in the induced metric
and the gradients of the scalar functions are orthogonal. The interpretation in terms of
momentum and polarization directions is natural.

3.2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the
wormhole throats at which the signature of the induced metric changes. A stronger condition
allows all partonic 2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and
string world sheets. Number theoretical vision suggests that hyper-quaternionicity resp. co-
hyperquaternionicity constraint could be enough to fix the initial values of time derivatives of
the imbedding space coordinates in the space-time regions with Minkowskian resp. Euclidian
signature of the induced metric. This is a condition on modified gamma matrices and hyper-
quaternionicity states that they span a hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The
argument goes as follows.

(a) The expression of the matrix elements of the metric and Kähler form of WCW in terms
of the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2

looks very attractive. These expressions however carry no information about the 4-D
tangent space of the partonic 2-surfaces so that the theory would reduce to a genuinely
2-dimensional theory, which cannot hold true. One would like to code to the WCW
metric also information about the electric part of the induced Kähler form assignable
to the complement of the tangent space of X2 ⊂ X4.

(b) Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes.
The presence of the induced metric is however troublesome since the presence of the
induced metric means that the simple transformation properties of flux Hamiltonians
under symplectic transformations -in particular color rotations- are lost.

(c) A less trivial formulation of electric-magnetic duality would be as an initial condition
which eliminates the induced metric from the electric flux. In the Euclidian version of
4-D YM theory this duality allows to solve field equations exactly in terms of instantons.
This approach involves also quaternions. These arguments suggest that the duality in
some form might work. The full electric magnetic duality is certainly too strong and
implies that space-time surface at the partonic 2-surface corresponds to piece of CP2

type vacuum extremal and can hold only in the deep interior of the region with Euclidian
signature. In the region surrounding wormhole throat at both sides the condition must
be replaced with a weaker condition.
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(d) To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordi-
nates labeling partonic 2-surfaces in the slicing of the space-time surface by partonic
2-surfaces and string world sheets making sense in the regions of space-time sheet with
Minkowskian signature. The assumption about the slicing allows to preserve general
coordinate invariance. The weakest condition is that the generalized Kähler electric
fluxes are apart from constant proportional to Kähler magnetic fluxes. This requires
the condition

J03√g4 = KJ12 . (3.2.1)

A more general form of this duality is suggested by the considerations of [K34] reducing
the hierarchy of Planck constants to basic quantum TGD and also reducing Kähler
function for preferred extremals to Chern-Simons terms [B1] at the boundaries of CD
and at light-like wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (3.2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either
boundary of CD or for light-like wormhole throat. ε is a sign factor which is opposite
for the two ends of CD. It could be also opposite of opposite at the opposite sides of the
wormhole throat. Note that the dependence on induced metric disappears at the right
hand side and this condition eliminates the potentials singularity due to the reduction
of the rank of the induced metric at wormhole throat.

(e) Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition
are used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (3.2.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial
WCW metric even for K = 0, which could correspond to the ends of a cosmic string
like solution carrying only Kähler magnetic fields. This condition suggests that it can
depend only on Kähler magnetic flux and other symplectic invariants. Whether local
symplectic coordinate invariants are possible at all is far from obvious, If the slicing
itself is symplectic invariant then K could be a non-constant function of X2 depending
on string world sheet coordinates. The light-like radial coordinate of the light-cone
boundary indeed defines a symplectically invariant slicing and this slicing could be
shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints
are obtained if one assumes that the quantization of electro-weak charges reduces to this
condition at classical level?

(a) The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.
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(b) The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L2]
, [L2] read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (3.2.4)

Here R03 is one of the components of the curvature tensor in vielbein representation
and Fem and FZ correspond to the standard field tensors. From this expression one can
deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (3.2.5)

(c) The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (3.2.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L +

sin2(θW )Qem appears. The reason is that only the vectorial isospin is same for left and
right handed components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (3.2.7)

(d) There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic
2-surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned
to the partonic 2-surface. The assumption of standard quantized values for Qem and
QZ would be also seen as the identification of the fine structure constants αem and αZ .
This however requires weak isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

(a) The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler
electric field equals to the Kähler charge gK would give the condition K = g2

K/~, where
gK is Kähler coupling constant which should invariant under coupling constant evolution
by quantum criticality. Within experimental uncertainties one has αK = g2

K/4π~0 =
αem ' 1/137, where αem is finite structure constant in electron length scale and ~0 is
the standard value of Planck constant.

(b) The quantization of Planck constants makes the condition highly non-trivial. The most
general quantization of r is as rationals but there are good arguments favoring the
quantization as integers corresponding to the allowance of only singular coverings of CD
andn CP2. The point is that in this case a given value of Planck constant corresponds
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to a finite number pages of the “Big Book”. The quantization of the Planck constant
implies a further quantization of K and would suggest that K scales as 1/r unless the
spectrum of values of Qem and QZ allowed by the quantization condition scales as r.
This is quite possible and the interpretation would be that each of the r sheets of the
covering carries (possibly same) elementary charge. Kind of discrete variant of a full
Fermi sphere would be in question. The interpretation in terms of anyonic phases [K55]
supports this interpretation.

(c) The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/αK and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2

K/4π becomes very small and large fluctuations
are suppressed in the functional integral. The basic motivation for introducing the
hierarchy of Planck constants was indeed that the scaling α → α/r allows to achieve
the convergence of perturbation theory: Nature itself would solve the problems of the
theoretician. This of course does not mean that the physical states would remain as
such and the replacement of single particles with anyonic states in order to satisfy the
condition for K would realize this concretely.

(d) The conditionK = g2
K/~ implies that the Kähler magnetic charge is always accompanied

by Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (3.2.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition
that abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the
wormhole throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (3.2.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian
side of the wormhole throat. Also the fact that one cannot distinguish between electric and
magnetic charges in Euclidian region since all charges are magnetic can be used to argue in
favor of this form. The same constraint arises from the condition that the action for CP2

type vacuum extremal has the value required by the argument leading to a prediction for
gravitational constant in terms of the square of CP2 radius and αK the effective replacement
g2
K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form
at the Euclidian side of the wormhole throat inspires the question whether all Euclidian
regions could be self-dual so that the density of Kähler action would be just the instanton
density. Self-duality follows if the deformation of the metric induced by the deformation
of the canonically imbedded CP2 is such that in CP2 coordinates for the Euclidian region
the tensor (gαβgµν − gανgµβ)/

√
g remains invariant. This is certainly the case for CP2 type

vacuum extremals since by the light-likeness of M4 projection the metric remains invariant.
Also conformal scalings of the induced metric would satisfy this condition. Conformal scaling
is not consistent with the degeneracy of the 4-metric at the wormhole.

Reduction of the quantization of Kähler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality
based on the induced Kähler form.
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(a) Physically it would seem more sensible to pose the duality on electromagnetic charge
rather than Kähler charge. This would replace induced Kähler form with electromag-
netic field, which is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (3.2.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L2]. For a
vanishing Weinberg angle the condition reduces to that for Kähler form.

(b) For the Euclidian space-time regions having interpretation as lines of generalized Feyn-
man diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Wein-
berg angle could however vanish. If so, the condition guaranteeing that electromagnetic
charge of the partonic 2-surfaces equals to the above condition stating that the em
charge assignable to the fermion content of the partonic 2-surfaces reduces to the classi-
cal Kähler electric flux at the Minkowskian side of the wormhole throat. One can argue
that Weinberg angle must increase smoothly from a vanishing value at both sides of
wormhole throat to its value in the deep interior of the Euclidian region.

(c) The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are
effectively absent. Only in phases with a large value of Planck constant classical Z0

field and other classical weak fields and color gauge field could make themselves visible.
Cell membrane could be one such system [K60]. This conforms with the general picture
about color confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

(a) The value of the Kähler coupling strength mut be very near to the value of the fine
structure constant in electron length scale and these constants can be assumed to be
equal.

(b) GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is
non-vanishing only in Euclidian regions of space-time so that both Reissner-Nordström
metric and CP2 are allowed as simplest possible solutions of field equations [K79]. The
extremely small value of the observed cosmological constant needed in GRT type cos-
mology could be equal to the large cosmological constant associated with CP2 metric
multiplied with the 3-volume fraction of Euclidian regions.

(c) Also at GRT limit quantum theory would reduce to almost topological QFT since
Einstein-Maxwell action reduces to 3-D term by field equations implying the vanish-
ing of the Maxwell current and of the curvature scalar in Minkowskian regions and
curvature scalar + cosmological constant term in Euclidian regions. The weak form of
electric-magnetic duality would guarantee also now the preferred extremal property and
prevent the reduction to a mere topological QFT.

(d) GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian re-
gions. A non-vanishing Weinberg angle would make sense in the deep interior of the
Euclidian regions where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

3.2.2 Magnetic Confinement, The Short Range Of Weak Forces,
And Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one com-
bines it with some very general empirical facts such as the non-existence of magnetic monopole
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fields in macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length
scale and one should have a mechanism neutralizing the monopole charge. How electroweak
interactions become short ranged in TGD framework is still a poorly understood problem.
What suggests itself is the neutralization of the weak isospin above the intermediate gauge
boson Compton length by neutral Higgs bosons. Could the two neutralization mechanisms
be combined to single one?

(a) In the case of fermions and their super partners the opposite magnetic monopole would
be a wormhole throat. If the magnetically charged wormhole contact is electromagneti-
cally neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the
fermion only the electromagnetic charge of the fermion is visible on longer length scales.
The distance of this wormhole throat from the fermionic one should be of the order weak
boson Compton length. An interpretation as a bound state of fermion and a wormhole
throat state with the quantum numbers of a neutral Higgs boson would therefore make
sense. The neutralizing throat would have quantum numbers of X−1/2 = νLνR or
X1/2 = νLνR. νLνR would not be neutral Higgs boson (which should correspond to
a wormhole contact) but a super-partner of left-handed neutrino obtained by adding a
right handed neutrino. This mechanism would apply separately to the fermionic and
anti-fermionic throats of the gauge bosons and corresponding space-time sheets and
leave only electromagnetic interaction as a long ranged interaction.

(b) One can of course wonder what is the situation situation for the bosonic wormhole
throats feeding gauge fluxes between space-time sheets. It would seem that these worm-
hole throats must always appear as pairs such that for the second member of the pair
monopole charges and I3

V cancel each other at both space-time sheets involved so that
one obtains at both space-time sheets magnetic dipoles of size of weak boson Comp-
ton length. The proposed magnetic character of fundamental particles should become
visible at TeV energies so that LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is
very natural constraint and not trivially satisfied because classical W boson fields are present.
As a matter fact, all weak fields should be effectively absent above weak scale. How this is
possible classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time
region in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced
W boson fields are vanishing. The vanishing of classical Z0 field can be poses as additional
condition - at least in scales above weak scale. In the generic case this requires that the spinor
mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface.
This implies that TGD reduces to string model in fermionic sector. Even for preferred
extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces.
This localization is possible only for Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced met-
rics of space-time sheets from Minkowski metric. For gauge potentials a similar identification
applies. YM-Einstein equations coupled with matter and with non-vanishing cosmological
constant are expected on basis of Poincare invariance. One cannot exclude the possibility
that the sums of weak gauge potentials from different space-time sheet tend to vanish above
weak scale and that well-definedness of em charge at classical level follows from the effective
absence of classical weak gauge fields.
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Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider
also the situation in which the magnetic charges of quarks (more generally, of color excited
leptons and quarks) do not vanish and they form color and magnetic singles in the hadronic
length scale. This would mean that magnetic charges of the state q±1/2−X∓1/2 representing
the physical quark would not vanish and magnetic confinement would accompany also color
confinement. This would explain why free quarks are not observed. To how degree then
quark confinement corresponds to magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the
spectrum of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether
color hyper-charge correlates with the Kähler magnetic charge. The geometric picture would
be three strings connected to single vertex. Amusingly, the idea that color hypercharge could
be proportional to color hyper charge popped up during the first year of TGD when I had
not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak
physics. For p-adically scaled up variants the mass scales would be scaled by a power of√

2 in the most general case. The dark variants of the particle would have the same mass
as the original one. In particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes
MG,k = (1 + i)k − 1 has been proposed to define zoomed copies of these physics. At the
level of magnetic confinement this would mean hierarchy of length scales for the magnetic
confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The
size scale of color confinement for this physics would be same as the weal length scale. It
would look more natural that the weak confinement for the quarks of M89 physics takes place
in some shorter scale and M61 is the first Mersenne prime to be considered. The mass scale of
M61 weak bosons would be by a factor 2(89−61)/2 = 214 higher and about 1.6×104 TeV. M89

quarks would have virtually no weak interactions but would possess color interactions with
weak confinement length scale reflecting themselves as new kind of jets at collisions above
TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as
many as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with

Gaussian Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence
of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale
in this range. There are recent claims about experimental evidence for magnetic monopole
pairs [D3] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that
the descriptions in terms of particles and monopoles are in some sense dual descriptions.
Fermions would be replaced by string like objects defined by the magnetic flux tubes and
bosons as pairs of wormhole contacts would correspond to pairs of the flux tubes. Therefore
the sharp distinction between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole
contacts is that one cannot construct spin two objects using only single fermion states at
wormhole throats. Of course, also super partners of these states with higher spin obtained
by adding fermions and anti-fermions at the wormhole throat but these do not give rise to
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graviton like states [K24] . The upper and lower wormhole throat pairs would be quantum
superpositions of fermion anti-fermion pairs with sum over all fermions. The reason is that
otherwise one cannot realize graviton emission in terms of joining of the ends of light-like
3-surfaces together. Also now magnetic monopole charges are necessary but now there is no
need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below
this length scale the charges of the fermions become visible. Mersenne hypothesis suggests
that some Mersenne prime is in question. One proposal is that gravitonic size scale is given
by electronic Mersenne prime M127. It is however difficult to test whether graviton has a
structure visible below this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at
all clear how closely they relate to ordinary Feynman diagrams. All depends on what one
is ready to assume about what happens in the vertices. One could of course hope that zero
energy ontology could allow some very simple description allowing perhaps to get rid of the
problematic aspects of Feynman diagrams.

(a) Consider first the recent view about generalized Feynman diagrams which relies ZEO.
A highly attractive assumption is that the particles appearing at wormhole throats are
on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass
shell momenta. For virtual bosons they the wormhole throats would have opposite
sign of energy and the sum of on mass shell states would give virtual net momenta.
This would make possible twistor description of virtual particles allowing only massless
particles (in 4-D sense usually and in 8-D sense in TGD framework). The notion of
virtual fermion makes sense only if one assumes in the interaction region a topological
condensation creating another wormhole throat having no fermionic quantum numbers.

(b) The addition of the particles X± replaces generalized Feynman diagrams with the
analogs of stringy diagrams with lines replaced by pairs of lines corresponding to fermion
and X±1/2. The members of these pairs would correspond to 3-D light-like surfaces glued
together at the vertices of generalized Feynman diagrams. The analog of 3-vertex would
not be splitting of the string to form shorter strings but the replication of the entire
string to form two strings with same length or fusion of two strings to single string along
all their points rather than along ends to form a longer string. It is not clear whether
the duality symmetry of stringy diagrams can hold true for the TGD variants of stringy
diagrams.

(c) How should one describe the bound state formed by the fermion and X±? Should
one describe the state as superposition of non-parallel on mass shell states so that the
composite state would be automatically massive? The description as superposition of
on mass shell states does not conform with the idea that bound state formation requires
binding energy. In TGD framework the notion of negentropic entanglement has been
suggested to make possible the analogs of bound states consisting of on mass shell
states so that the binding energy is zero [K41] . If this kind of states are in question the
description of virtual states in terms of on mass shell states is not lost. Of course, one
cannot exclude the possibility that there is infinite number of this kind of states serving
as analogs for the excitations of string like object.

(d) What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell
excitations are possible. If this picture is correct, the situation would not change in an
essential manner from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become
manifest at LHC energies. This adds one further item to the list of non-trivial predictions of
TGD about physics at LHC energies [K42] .
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3.2.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD
reduces to almost topological quantum theory in the sense that the counterpart of Chern-
Simons action assigned with the wormhole throats somehow dictates the dynamics. This
proposal can be formulated also for the Kähler-Dirac action action. I gave up this proposal
but the following argument shows that Kähler action with weak form of electric-magnetic
duality effectively reduces to Chern-Simons action plus Coulomb term.

(a) Kähler action density can be written as a 4-dimensional integral of the Coulomb term
jαKAα plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats

and of the quantity J0βAβ
√
g4 over the ends of the 3-surface.

(b) If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-

Simons action evaluated at the ends and throats. It would have same value for each
branch and the replacement h → n × h would effectively describe this. Boundary
conditions would however give 1/n factor so that ~ would disappear from the Kähler
function! It is somewhat surprising that Kähler action gives Chern-Simons action in the
vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would
reduce to an almost topological QFT. The attribute “almost” would come from the fact
that one has non-vanishing classical Noether charges defined by Kähler action and non-
trivial quantum dynamics in M4 degrees of freedom. One could also assign to space-time
surfaces conserved four-momenta which is not possible in topological QFTs. For this reason
the conditions guaranteeing the vanishing of Coulomb interaction term deserve a detailed
analysis.

(a) For the known extremals jαK either vanishes or is light-like (“massless extremals” for
which weak self-duality condition does not make sense [K7] ) so that the Coulomb term
vanishes identically in the gauge used. The addition of a gradient to A induces terms
located at the ends and wormhole throats of the space-time surface but this term must
be cancelled by the other boundary terms by gauge invariance of Kähler action. This
implies that the M4 part of WCW metric vanishes in this case. Therefore massless
extremals as such are not physically realistic: wormhole throats representing particles
are needed.

(b) The original naive conclusion was that since Chern-Simons action depends on CP2

coordinates only, its variation with respect to Minkowski coordinates must vanish so
that the WCW metric would be trivial in M4 degrees of freedom. This conclusion is in
conflict with quantum classical correspondence and was indeed too hasty. The point is
that the allowed variations of Kähler function must respect the weak electro-magnetic
duality which relates Kähler electric field depending on the induced 4-metric at 3-surface
to the Kähler magnetic field. Therefore the dependence on M4 coordinates creeps via
a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβ gamma)

√
g4d

3x . (3.2.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

(c) This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that
for rM = constant sphere - call it J1. The generalization of the weak form of self-
duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary
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term gives a non-trivial contribution to the M4 part of the WCW metric even without
the constraint from electric-magnetic duality. Kähler charge is not affected unless the
partonic 2-surface contains the tip of CD in its interior. In this case the value of Kähler
charge is shifted by a topological contribution. Whether this term can survive depends
on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

(d) The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (3.2.12)

This differential equation can be reduced to an ordinary differential equation along
the flow lines jK by using dxα/dt = jαK . Global solution is obtained only if one can
combine the flow parameter t with three other coordinates- say those at the either end
of CD to form space-time coordinates. The condition is that the parameter defining the
coordinate differential is proportional to the covariant form of Kähler current: dt = φjK .
This condition in turn implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying
jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (3.2.13)

jK is a four-dimensional counterpart of Beltrami field [B16] and could be called gener-
alized Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K7] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton
current: jK = φjI , where jI = ∗(J ∧A) is the instanton current, which is not conserved
for 4-D CP2 projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ
and from this φ can be integrated if the integrability condition jI ∧ djI = 0 holds true
implying the same condition for jK . By introducing at least 3 or CP2 coordinates as
space-time coordinates, one finds that the contravariant form of jI is purely topological
so that the integrability condition fixes the dependence on M4 coordinates and this
selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated
with the critical deformations of the space-time surface.

(e) There are gauge transformations respecting the vanishing of the Coulomb term. The
vanishing condition for the Coulomb term is gauge invariant only under the gauge
transformations A→ A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces

to a total divergence a giving an integral over various 3-surfaces at the ends of CD and at
throats vanishes. This is satisfied if the allowed gauge transformations define conserved
currents

Dα(jαφ) = 0 . (3.2.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-
Simons type term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA

over wormhole throats is conserved. The existence of an infinite number of conserved
weighted magnetic fluxes is in accordance with the electric-magnetic duality. How these
fluxes relate to the flux Hamiltonians central for WCW geometry is not quite clear.
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(f) The gauge transformations respecting the reduction to almost topological QFT should
have some special physical meaning. The measurement interaction term in the Kähler-
Dirac interaction corresponds to a critical deformation of the space-time sheet and is
realized as an addition of a gauge part to the Kähler gauge potential of CP2. It would
be natural to identify this gauge transformation giving rise to a conserved charge so
that the conserved charges would provide a representation for the charges associated
with the infinitesimal critical deformations not affecting Kähler action. The gauge
transformed Kähler gauge potential couples to the Kähler-Dirac equation and its effect
could be visible in the value of Kähler function and therefore also in the properties of
the preferred extremal. The effect on WCW metric would however vanish since K would
transform only by an addition of a real part of a holomorphic function.

(g) A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1)
gauge transformation induced by a transformation of δCD×CP2 generating the gauge
transformation represented by φ. This interpretation makes sense if the fluxes defined
by Qmφ and corresponding Hamiltonians affect only zero modes rather than quantum
fluctuating degrees of freedom.

(h) Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic or-
bits and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged.
Measurement interaction terms would correspond to Lagrange multiplier terms at the
ends of space-time surface fixing the values of classical conserved charges to their quan-
tum values. Super-symmetry requires the assignment of this kind of term also to Kähler-
Dirac action as boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direc-
tion annihilates the spinor modes. The normal vector would be light-like and the value
of the incoming on mass shell four-momentum would be coded to the geometry of the
space-time surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition
would be that the action of C-S-D operator equals to that of massless M4 Dirac operator.
C-S-D Dirac action would give rise to massless Dirac propagator. Twistor Grassmann
approach suggests that also the virtual fermions reduce effectively to massless on-shell
states but have non-physical helicity.

To sum up, one could understand the basic properties of WCW metric in this framework.
Effective 2-dimensionality would result from the existence of an infinite number of conserved
charges in two different time directions (genuine conservation laws plus gauge fixing). The
infinite-dimensional symmetric space for given values of zero modes corresponds to the Carte-
sian product of the WCWs associated with the partonic 2-surfaces at both ends of CD and
the generalized Chern-Simons term decomposes into a sum of terms from the ends giving
single particle Kähler functions and to the terms from light-like wormhole throats giving
interaction term between positive and negative energy parts of the state. Hence Kähler func-
tion could be calculated without any knowledge about the interior of the space-time sheets
and TGD would reduce to almost topological QFT as speculated earlier. Needless to say this
would have immense boost to the program of constructing WCW Kähler geometry.

3.3 An attempt to understand preferred extremals of
Kähler action

Preferred extremal of Kähler action is one of the basic poorly defined notions of TGD. There
are pressing motivations for understanding what ”preferred” really means. For instance,
the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two
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complex coordinates and therefore explaining naturally the effective 2-dimensionality [K89].
The problem is however how to assign a complex coordinate with the string world sheet
having Minkowskian signature of metric. One can hope that the understanding of preferred
extremals could allow to identify two preferred complex coordinates whose existence is also
suggested by number theoretical vision giving preferred role for the rational points of partonic
2-surfaces in preferred coordinates. The best one could hope is a general solution of field
equations in accordance with the hints that TGD is integrable quantum theory.

3.3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

(a) In positive energy ontology preferred extremal would be a space-time surface assignable
to given 3-surface and unique in the ideal situation: since one cannot pose conditions
to the normal derivatives of imbedding space coordinates at 3-surface, there is infinity
of extremals. Some additional conditions are required and space-time surface would
be analogous to Bohr orbit: hence the attribute “preferred”. The problem would be
to understand what “preferred” could mean. The non-determinism of Kähler action
however destroyed this dream in its original form and led to zero energy ontology (ZEO).

(b) In ZEO one considers extremals as space-time surfaces connecting two space-like 3-
surfaces at the boundaries. One might hope that these 4-surfaces are unique. The
non-determinism of Kähler action suggests that this is not the case. At least there is
conformal invariance respecting the light-likeness of the 3-D parton orbits at which the
signature of the induced metric changes: the conformal transformations would leave
the space-like 3-D ends or at least partonic 2-surfaces invariant. This non-determinism
would correspond to quantum criticality.

(c) Effective 2-dimensionality follows from strong form of general coordinate invariance
(GCI) stating that light-like partonic orbits and space-like 3-surfaces at the ends of
space-time surface are equivalent physically: partonic 2-surfaces and their 4-D tangent
space data would determine everything. One can however worry about how effective 2-
dimensionality relates to the fact that the modes of the induced spinor field are localized
at string world sheets and partonic 2-surface. Are the tangent space data equivalent with
the data characterizing string world sheets as surfaces carrying vanishing electroweak
fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires
that the conformal equivalence classes of light-like surfaces must be counted as physical
degrees of freedom so that either space-like or light-like surfaces do not seem to be quite
enough.

Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the
conformal equivalence class of the preferred extremal be unique without any additional
conditions? If so, one could get rid of the attribute “preferred”. The fractal character of
the many-sheeted space-time however suggests that one can have this kind of uniqueness
only in given length scale resolution and that “radiative corrections” due to the non-
determinism are always present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute “preferred” is needed. If not then the
question is what are the extremals of Kähler action.

3.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are
heuristic and rely heavily on physical intuition. The following considerations relate to the
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space-time regions having Minkowskian signature of the induced metric. The attempt to
generalize the construction also to Euclidian regions could be very rewarding. Only a humble
attempt to combine various ideas to a more coherent picture is in question.

The core observations and visions are following.

(a) Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred
coordinates for Minkowskian space-time sheet and might allow to identify string world
sheets for X4 as those for M4. Hamilton-Jacobi coordinates consist of light-like coordi-
nate m and its dual defining local 2-plane M2 ⊂M4 and complex transversal complex
coordinates (w,w) for a plane E2

x orthogonal to M2
x at each point of M4. Clearly,

hyper-complex analyticity and complex analyticity are in question.

(b) Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

(c) The quaternionic planes of octonion space containing preferred hyper-complex plane
are labelled by CP2, which might be called CPmod2 [K74]. The identification CP2 =
CPmod2 motivates the notion of M8 − −M4 × CP2 duality [K14]. It also inspires a
concrete solution ansatz assuming the equivalence of two different identifications of the
quaternionic tangent space of the space-time sheet and implying that string world sheets
can be regarded as strings in the 6-D coset space G2/SU(3). The group G2 of octonion
automorphisms has already earlier appeared in TGD framework.

(d) The duality between partonic 2-surfaces and string world sheets in turn suggests that
the CP2 = CPmod2 conditions reduce to string model for partonic 2-surfaces in CP2 =
SU(3)/U(2). String model in both cases could mean just hypercomplex/complex an-
alyticity for the coordinates of the coset space as functions of hyper-complex/complex
coordinate of string world sheet/partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

(a) To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I
is an octonionic imaginary unit in the complement of fixed a quaternionic sub-space of
octonions. Map preferred coordinates of H = M4×CP2 to octonionic coordinate, form
an arbitrary octonion analytic function having expansion with real Taylor or Laurent
coefficients to avoid problems due to non-commutativity and non-associativity. Map
the outcome to a point of H to get a map H → H. This procedure is nothing but a
generalization of Wick rotation to get an 8-D generalization of analytic map.

(b) Identify the preferred extremals of Kähler action as surfaces obtained by requiring the
vanishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and
string world sheets would correspond to commutative sub-manifolds of the space-time
surface and of imbedding space and would emerge naturally. The ends of braid strands
at partonic 2-surface would naturally correspond to the poles of the octonion analytic
functions. This would mean a huge generalization of conformal invariance of string
models to octonionic conformal invariance and an exact solution of the field equations
of TGD and presumably of quantum TGD itself.

3.3.3 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world
sheets. The challenge is to formulate this more precisely at the level of the preferred extremals
of Kähler action.

(a) Almost topological QFT property means that the Kähler action reduces to Chern-
Simons terms assignable to 3-surfaces. This is guaranteed by the vanishing of the
Coulomb term in the action density implied automatically if conserved Kähler current
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is proportional to the instanton current with proportionality coefficient some scalar
function.

(b) The field equations reduce to the conservation of isometry currents. An attractive ansatz
is that the flow lines of these currents define global coordinates. This means that these
currents are Beltrami flows [B16] so that corresponding 1-forms J satisfy the condition
J ∧ dJ = 0. These conditions are satisfied if

J = Φ∇Ψ

hold true for conserved currents. From this one obtains that Ψ defines global coordinate
varying along flow lines of J .

(c) A possible interpretation is in terms of local polarization and momentum directions
defined by the scalar functions involved and natural additional conditions are that the
gradients of Ψ and Φ are orthogonal:

∇Φ · ∇Ψ = 0 ,

and that the Ψ satisfies massless d’Alembert equation

∇2Ψ = 0

as a consequence of current conservation. If Ψ defines a light-like vector field - in other
words

∇Ψ · ∇Ψ = 0 ,

the light-like dual of Φ -call it Φc- defines a light-like like coordinate and Φ and Φc
defines a light-like plane at each point of space-time sheet.

If also Φ satisfies d’Alembert equation

∇2Φ = 0 ,

also the current

K = Ψ∇Φ

is conserved and its flow lines define a global coordinate in the polarization plane or-
thogonal to time-lik plane defined by local light-like momentum direction.

If Φ allows a continuation to an analytic function of the transversal complex coordi-
nate, one obtains a coordinatization of space-time surface by Ψ and its dual (defining
hyper-complex coordinate) and w,w. Complex analyticity and its hyper-complex vari-
ant would allow to provide space-time surface with four coordinates very much analogous
with Hamilton-Jacobi coordinates of M4.

This would mean a decomposition of the tangent space of space-time surface to orthog-
onal planes defined by light-like momentum and plane orthogonal to it. If the flow
lines of J defined Beltrami flow it seems that the distribution of momentum planes is
integrable.

(d) General arguments suggest that the space-time sheets allow a slicing by string world
sheets parametrized by partonic 2-surfaces or vice versa. This would mean a inti-
mate connection with the mathematics of string models. The two complex coordinates
assignable to the Yangian of affine algebra would naturally relate to string world sheets
and partonic 2-surfaces and the highly non-trivial challenge is to identify them appro-
priately.
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Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K7] led to the realization that so
called Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets
parametrized by partonic 2-surfaces. m would be pair of light-like conjugate coordinates
associated with an integrable distribution of planes M2 and w would define a complex co-
ordinate for the integrable distribution of 2-planes E2 orthogonal to M2. There is a great
temptation to assume that these coordinates define preferred coordinates for M4.

(a) The slicing is very much analogous to that for space-time sheets and the natural question
is how these slicings relate. What is of special interest is that the momentum plane M2

can be defined by massless momentum. The scaling of this vector does not matter
so that these planes are labelled by points z of sphere S2 telling the direction of the
line M2 ∩ E3, when one assigns rest frame and therefore S2 with the preferred time
coordinate defined by the line connecting the tips of CD. This direction vector can be
mapped to a twistor consisting of a spinor and its conjugate. The complex scalings of the
twistor (u, u)→ λu, u/λ) define the same plane. Projective twistor like entities defining
CP1 having only one complex component instead of three are in question. This complex
number defines with certain prerequisites a local coordinate for space-time sheet and
together with the complex coordinate of E2 could serve as a pair of complex coordinates
(z, w) for space-time sheet. This brings strongly in mind the two complex coordinates
appearing in the expansion of the generators of quantum Yangian of quantum affine
algebra [K89].

(b) The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining
M2 distribution. Its hyper-complex conjugate would define Ψc and conjugate light-
like direction. An attractive possibility is that Φ allows analytic continuation to a
holomorphic function of w. In this manner one would have four coordinates for M4 also
for space-time sheet.

(c) The general vision is that at each point of space-time surface one can decompose the
tangent space to M2(x) ⊂M4 = M2

x ×E2
x representing momentum plane and polariza-

tion plane E2 ⊂ E2
x × T (CP2). The moduli space of planes E2 ⊂ E6 is 8-dimensional

and parametrized by SO(6)/SO(2) × SO(4) for a given E2
x. How can one achieve this

selection and what conditions it must satisfy? Certainly the choice must be integrable
but this is not the only condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

(a) Octonionic structure is defined in terms of the octonionic representaton of gamma ma-
trices of the imbedding space existing only in dimension D = 8 since octonion units
are in one-one correspondence with tangent vectors of the tangent space. Octonionic
real unit corresponds to a preferred time axes (and rest frame) identified naturally as
that connecting the tips of CD. What modified gamma matrices mean depends on vari-
ational principle for space-time surface. For volume action one would obtain induced
gamma matrices. For Kähler action one obtains something different. In particular, the
modified gamma matrices do not define vector basis identical with tangent vector basis
of space-time surface.

(b) Quaternionicity means that the modified gamma matrices defined as contractions of
gamma matrices of H with canonical momentum densities for Kähler action span quater-
nionic sub-space of the octonionic tangent space [K88, ?]. A further condition is that
each quaternionic space defined in this manner contains a preferred hyper-complex sub-
space of octonions.
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(c) The sub-space defined by the modified gamma matrices does not co-incide with the tan-
gent space of space-time surface in general so that the interpretation of this condition is
far from obvious. The canonical momentum densities need not define four independent
vectors at given point. For instance, for massless extremals these densities are propor-
tional to light-like vector so that the situation is degenerate and the space in question
reduces to 2-D hyper-complex sub-space since light-like vector defines plane M2.

The obvious questions are following.

(a) Does the analog of tangent space defined by the octonionic modified gammas contain
the local tangent space M2 ⊂M4 for preferred extremals? For massless extremals [K7]
this condition would be true. The orthogonal decomposition T (X4) = M2 ⊕⊥ E2 can
be defined at each point if this is true. For massless extremals also the functions Ψ and
Φ can be identified.

(b) One should answer also the following delicate question. Can M2 really depend on point
x of space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2

is same everywhere. It however seems that one should allow an integrable distribution
of M2

x such that M2
x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time
sheet even when M2

x varies?

i. Note first that G2 (see http://tinyurl.com/y9rrs7un) defines the Lie group of
octonionic automorphisms and G2 action is needed to change the preferred hyper-
octonionic sub-space. Various SU(3) subgroups of G2 are related by G2 auto-
morphism. Clearly, one must assign to each point of a string world sheet in the
slicing parameterizing the partonic 2-surfaces an element of G2. One would have
Minkowskian string model with G2 as a target space. As a matter fact, this string
model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

ii. This would allow to identify at each point of the string world sheet standard quater-
nionic basis - say in terms of complexified basis vectors consisting of two hyper-
complex units and octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color
hypercharge” Y = −1/3 and its conjugate q1 with opposite color isospin and hy-
percharge.

iii. The CP2 point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually cor-
respond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is
the basic property of the solutions of the field equations representing Minkowskian
string world sheets. Also now the same assumption is highly natural. In the case
of string models in Minkowski space, the reduction of the induced metric to stan-
dard form implies Virasoro conditions and similar conditions are expected also now.
There is no need to introduce action principle -just the hyper-complex analycitity
is enough-since Kähler action already defines it.

(c) The WZW model (see http://tinyurl.com/ydxcvfhv) inspired approach to the situ-
ation would be following. The parameterization corresponds to a map g : X2 → G2 for
which g defines a flat G2 connection at string world sheet. WZW type action would
give rise to this kind of situation. The transition G2 → G2/SU(3) would require that
one gauges SU(3) degrees of freedom by bringing in SU(3) connection. Similar proce-
dure for CP2 = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2) gauge
field. Instead of introducing these connections one can simply introduce G2/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed
predicts gluons and electroweak gauge bosons assignable to string like objects so that
the mathematical picture would be consistent with physical intuition.

The two interpretations of CP2

An old observation very relevant for what I have called M8 − H duality [K14] is that the
moduli space of quaternionic sub-spaces of octonionic space (identifiable as M8) containing

http://tinyurl.com/y9rrs7un
http://tinyurl.com/ydxcvfhv
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preferred hyper-complex plane is CP2. Or equivalently, the space of two planes whose ad-
dition extends hyper-complex plane to some quaternionic subspace can be parametrized by
CP2. This CP2 can be called it CPmod2 to avoid confusion. In the recent case this would
mean that the space E2(x) ⊂ E2

x × T (CP2) is represented by a point of CPmod2 . On the
other hand, the imbedding of space-time surface to H defines a point of ”real” CP2. This
gives two different CP2s.

(a) The highly suggestive idea is that the identification CPmod2 = CP2 (apart from isometry)
is crucial for the construction of preferred extremals. Indeed, the projection of the space-
time point to CP2 would fix the local polarization plane completely. This condition for
E2(x) would be purely local and depend on the values of CP2 coordinates only. Second
condition for E2(x) would involve the gradients of imbedding space coordinates including
those of CP2 coordinates.

(b) The conditions that the planes M2
x form an integrable distribution at space-like level

and that M2
x is determined by the modified gamma matrices. The integrability of this

distribution for M4 could imply the integrability for X2. X4 would differ from M4 only
by a deformation in degrees of freedom transversal to the string world sheets defined by
the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2

coordinates and makes them non-constant but allows to depend only on transversal
degrees of freedom? This condition is too strong even for simplest massless extremals
for which CP2 coordinates depend on transversal coordinates defined by ε ·m and ε · k.
One could however allow dependence of CP2 coordinates on light-like M4 coordinate
since the modification of the induced metric is light-like so that light-like coordinate
remains light-like coordinate in this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of CP2 points on the light-like coordinates assignable to the distri-
bution of M2

x would be dependence on either of the light-like coordinates of Hamilton-
Jacobi coordinates but not both.

3.3.4 What could be the construction recipe for the preferred ex-
tremals assuming CP2 = CPmod

2 identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod2

identification and by the tangent space of E2
x×CP2 are same. The challenge is to transform

this condition to an explicit form. CP2 = CPmod2 identification should be general coordinate
invariant. This requires that also the representation of E2 as (e2, e3) plane is general coor-
dinate invariant suggesting that the use of preferred CP2 coordinates - presumably complex
Eguchi-Hanson coordinates - could make life easy. Preferred coordinates are also suggested
by number theoretical vision. A careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space
of X4 but not in general identical with the tangent space: this would be the case only if
the action were 4-volume. I will use the notation Tmx (X4) about the modified tangent space
and call the vectors of Tmx (X4) modified tangent vectors. I hope that this would not cause
confusion.

CP2 = CPmod2 condition

Quaternionic property of the counterpart of Tmx (X4) allows an explicit formulation using the
tangent vectors of Tmx (X4).

(a) The unit vector pair (e2, e3) should correspond to a unique tangent vector of H de-
fined by the coordinate differentials dhk in some natural coordinates used. Complex
Eguchi-Hanson coordinates [L2] are a natural candidate for CP2 and require complex-
ified octonionic imaginary units. If octonionic units correspond to the tangent vector
basis of H uniquely, this is possible.
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(b) The pair (e2, e3) as also its complexification (q1 = e2+ie3, q1 = e2−ie3) is expressible as
a linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod2 =
CP2 in canonical manner. This mapping is what should be expressed explicitly. One
should express given (e2, e3) in terms of SU(3) rotation applied to a standard vector.
After that one should define the corresponding CP2 point by the bundle projection
SU(3)→ CP2.

(c) The tangent vector pair

(∂wh
k, ∂wh

k)

defines second representation of the tangent space of E2(x). This pair should be equiv-
alent with the pair (q1, q1). Here one must be however very cautious with the choice of
coordinates. If the choice of w is unique apart from constant the gradients should be
unique. One can use also real coordinates (x, y) instead of (w = x+ iy, w = x− iy) and
the pair (e2, e3). One can project the tangent vector pair to the standard vielbein basis
which must correspond to the octonionic basis

(∂xh
k, ∂yh

k)→ (∂xh
keAk eA, ∂yh

keAk )eA)↔ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of
CP2 projection.

Formulation of quaternionicity condition in terms of octonionic structure con-
stants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3)
expressed in terms of octonionic units deducible from the condition that unit vectors obey
quaternionic algebra. The expressions for octonionic (see http://tinyurl.com/5m5lqr)
resp. quaternionic (see http://tinyurl.com/3rr79p9) structure constants can be found
at [A14] resp. [A18].

(a) The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ≡

7∑
k=2

E2ke
k , E3 = E3ke

k ≡
7∑
k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (3.3.1)

(b) The multiplication table for octonionic units expressible in terms of octonionic triangle
(see http://tinyurl.com/5m5lqr) [A14] gives

f1klE2k = E3l , f1klE3k = −E2l , fklrE2kE3l = δr1 . (3.3.2)

Here the indices are raised by unit metric so that there is no difference between lower
and upper indices. Summation convention is assumed. Also the contribution of the real
unit is present in the structure constants of third equation but this contribution must
vanish.

(c) The conditions are linear and quadratic in the coefficients E2k and E3k and are expected
to allow an explicit solution. The first two conditions define homogenous equations
which must allow solution. The coefficient matrix acting on (E2, E3) is of the form(

f1 1
−1 f1

)
,

http://tinyurl.com/5m5lqr
http://tinyurl.com/3rr79p9
http://tinyurl.com/5m5lqr
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where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be
due to the highly symmetric properties of the structure constants. In fact the equations
can be written as eigen conditions

f1 ◦ (E2 ± iE3) = ∓i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator
defined by I1 analogous to color hyper charge. Both values of color hyper charged are
obtained.

Explicit expression for the CP2 = CPmod2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

(a) One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write com-
plexified basis as (1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis
elements are

(q1, q2, q3) =
1√
2

(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all
lines containing 3 units defined associative triple: any pair of octonion units at this kind
of line can be used to form pair of complexified unit and its conjugate. In the tangent
space of M4 × CP2 the basis vectors q1, and q2 are mixtures of E2

x and CP2 tangent
vectors. q3 involves only CP2 tangent vectors and there is a temptation to interpret it
as the analog of the quark having no color isospin.

(b) The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any
quark in the triplet and q1 its conjugate in antitriplet. Having fixed some basis one
can perform SU(3) rotations to get a new basis. The action of the rotation is by 3× 3
special unitary matrix. The over all phases of its rows do not matter since they induce
only a rotation in (e2, e3) plane not affecting the plane itself. The action of SU(3) on
q1 is simply the action of its first row on (q1, q2, q3) triplet:

q1 → (Uq)1 = U11q1 + U12q2 + U13q3 ≡ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (3.3.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall
phase does not matter a point of CP2 is in question. The new real octonion units are
given by the formulas

e2 → Re(z1)e2 +Re(z2)e4 +Re(z3)e6 − Im(z1)e3 − Im(z2)e5 − Im(z3)e7 ,

e3 → Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(3.3.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with
z3 6= 0 are obtained as (ξ1, ξ2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod2 equivalence
can be expressed explicitly as first order differential equations. The conditions state the
equivalence

(e2, e3) ↔ (∂xh
keAk eA, ∂yh

keAk eA) , (3.3.5)
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where eA denote octonion units. The comparison of two pairs of vectors requires normal-
ization of the tangent vectors on the right hand side to unit vectors so that one takes unit
vector in the direction of the tangent vector. After this the vectors can be equated. This
allows to expresses the contractions of the partial derivatives with vielbein vectors with the
6 components of e2 and e3. Each condition gives 6+6 first order partial differential equations
which are non-linear by the presence of the overal normalization factor for the right hand
side. The equations are invariant under scalings of (x, y). The very special form of these
equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: or-
dinary Minkowski coordinates and Hamilton-Jacobi coordinates for M4 and Eguchi-Hanson
complex coordinates in which SU(2)×U(1) is represented linearly for CP2. These coordinates
are preferred because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 =
CPmod2 conditions one has what one might call string model with 6-dimensional G2/SU(3) as
targent space. The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable
as a point of G2/SU(3) defining what one means with standard quaternionic plane at given
point of string world sheet. The hypothesis is that hyper-complex analyticity solves these
equations.

The conjectured electric-magnetic duality implies duality between string world sheet and
partonic 2-surfaces central for the proposed mathematical applications of TGD [K35, K36,
K72, K90]. This duality suggests that the solutions to the CP2 = CPmod2 conditions could
reduce to holomorphy with respect to the coordinate w for partonic 2-surface plus the analogs
of Virasoro conditions. The dependence on light-like coordinate would appear as a parametric
dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models in G2/SU(3) and SU(3)/U(2) and also to string model in M4 and X4! In
the previous arguments one ends up to string models in moduli spaces of string world sheets
and partonic 2-surfaces. TGD seems to yield an inflation of string models! This not actually
surprising since the slicing of space-time sheets by string world sheets and partonic 2-surfaces
implies automatically various kinds of maps having interpretation in terms of string orbits.

3.4 In What Sense TGD Could Be An Integrable The-
ory?

During years evidence supporting the idea that TGD could be an integrable theory in some
sense has accumulated. The challenge is to show that various ideas about what integrability
means form pieces of a bigger coherent picture. Of course, some of the ideas are doomed to
be only partially correct or simply wrong. Since it is not possible to know beforehand what
ideas are wrong and what are right the situation is very much like in experimental physics
and it is easy to claim (and has been and will be claimed) that all this argumentation is
useless speculation. This is the price that must be paid for real thinking.

Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for
a linear system. In TGD framework this translates to quantum classical correspondence. The
solutions of Kähler-Dirac equation define the scattering data. This data should define a real
analytic function whose octonionic extension defines the space-time surface as a surface for
which its imaginary part in the representation as bi-quaternion vanishes. There are excellent
hopes about this thanks to the reduction of the Kähler-Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories,
list some bits of evidence for integrability in TGD framework, discuss once again the question
whether the different pieces of evidence are consistent with other and what one really means
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with various notions. An an outcome I represent what I regard as a more coherent view
about integrability of TGD. The notion of octonion analyticity developed in the previous
section is essential for the for what follows.

3.4.1 What Integrable Theories Are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable
theories.

Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Soli-
tons and various other particle like structures are the characteristic phenomenon in these the-
ories. Scattering matrix is trivial in the sense that the particles go through each other in the
scattering and suffer only a phase change. In particular, momenta are conserved. Korteveg-
de Vries equation (see http://tinyurl.com/3cyt8hk) [B3] was motivated by the attempt
to explain the experimentally discovered shallow water wave preserving its shape and moving
with a constant velocity. Sine-Gordon equation (see http://tinyurl.com/yafl243x) [B8]
describes geometrically constant curvature surfaces and defines a Lorentz invariant non-linear
field theory in 1+1-dimensional space-time, which can be applied to Josephson junctions (in
TGD inspired quantum biology it is encountered in the model of nerve pulse [K60] ). Non-
linear Schrödinger equation (see http://tinyurl.com/y88efbo7) [B6] having applications
to optics and water waves represents a further example. All these equations have various
variants.

From TGD point of view conformal field theories represent an especially interesting example
of integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by
its infinite-dimensional character implies infinite number of conserved quantities. The con-
struction of the theory reduces to the construction of the representations of (super-)conformal
algebra. One can solve 2-point functions exactly and characterize them in terms of (possibly
anomalous) scaling dimensions of conformal fields involved and the coefficients appearing in
3-point functions can be solved in terms of fusion rules leading to an associative algebra for
conformal fields. The basic applications are to 2-dimensional critical thermodynamical sys-
tems whose scaling invariance generalizes to conformal invariance. String models represent
second application in which a collection of super-conformal field theories associated with var-
ious genera of 2-surface is needed to describe loop corrections to the scattering amplitudes.
Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories (see http://tinyurl.com/lsvx7g3) are also examples of
integrable theories. Because of its independence on the metric Chern-Simons action (see
http://tinyurl.com/ydgsqm2c) is in 3-D case the unique action defining a topological
quantum field theory. The calculations of knot invariants (for TGD approach see [K35] ),
topological invariants of 3-manifolds and 4-manifolds, and topological quantum computation
(see http://tinyurl.com/dkpo4y) (for a model of DNA as topological quantum computer
see [K20] ) represent applications of this approach. TGD as almost topological QFT means
that the Kähler action for preferred extremals reduces to a surface term by the vanishing of
Coulomb term in action and by the weak form of electric-magnetic duality reduces to Chern-
Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.

N = 4 SYM is the a four-dimensional and very nearly realistic candidate for an integral
quantum field theory. The observation that twistor amplitudes allow also a dual of the 4-D
conformal symmetry motivates the extension of this symmetry to its infinite-dimensional
Yangian variant [A27]. Also the enormous progress in the construction of scattering ampli-
tudes suggests integrability. In TGD framework Yangian symmetry would emerge naturally
by extending the symplectic variant of Kac-Moody algebra from light-cone boundary to the
interior of causal diamond and the Kac-Moody algebra from light-like 3-surface representing
wormhole throats at which the signature of the induced metric changes to the space-time
interior [K76].

http://tinyurl.com/3cyt8hk
http://tinyurl.com/yafl243x
http://tinyurl.com/y88efbo7
http://tinyurl.com/lsvx7g3
http://tinyurl.com/ydgsqm2c
http://tinyurl.com/dkpo4y
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About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed
to the development of the modern mathematical physics. Mention only quantum groups,
conformal algebras, and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical
problem for which the interaction is characterized by a potential function or its analog to
a linear scattering problem depending on time. For instance, for the ordinary Schrödinger
function one can solve potential once single solution of the equation is known. This does
not work in practice. One can however gather information about the asymptotic states in
scattering to deduce the potential. One cannot do without information about bound state
energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like
boundaries of CD (more precisely: the largest CD involved and defining the IR resolution for
momenta). From the scattering data coding information about scattering for various values
of energy of the incoming particle one deduced the potential function or its analog.

(a) The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan
(GML) transform (see http://tinyurl.com/y9f7ybln) described in simple terms in
[B13].

i. In 1+1 dimensional case the S-matrix characterizing scattering is very simple since
the only thing that can take place in scattering is reflection or transmission. There-
fore the S-matrix elements describe either of these processes and by unitarity the
sum of corresponding probabilities equals to 1. The particle can arrive to the poten-
tial either from left or right and is characterized by a momentum. The transmission
coefficient can have a pole meaning complex (imaginary in the simplest case) wave
vector serving as a signal for the formation of a bound state or resonance. The
scattering data are represented by the reflection and transmission coefficients as
function of time.

ii. One can deduce an integral equation for a propagator like functionK(t, x) describing
how delta pulse moving with light velocity is scattered from the potential and is
expressible in terms of time integral over scattering data with contributions from
both scattering states and bound states. The derivation of GML transform [B13]
uses time reversal and time translational invariance and causality defined in terms
of light velocity. After some tricks one obtains the integral equation as well as an
expression for the time independent potential as V (x) = K(x, x). The argument
can be generalized to more complex problems to deduce the GML transform.

(b) The so called Lax pair (see http://tinyurl.com/yc93nw53) is one manner to describe
integrable systems [B4]. Lax pair consists of two operators L and M . One studies what
might be identified as “energy” eigenstates satisfying L(x, t)Ψ = λΨ. λ does not depend
on time and one can say that the dynamics is associated with x coordinate whereas as t
is time coordinate parametrizing different variants of eigenvalue problem with the same
spectrum for L. The operator M(t) does not depend on x at all and the independence
of λ on time implies the condition

∂tL = [L,M ] .

This equation is analogous to a quantum mechanical evolution equation for an operator
induced by time dependent “Hamiltonian” M and gives the non-linear classical evolu-
tion equation when the commutator on the right hand side is a multiplicative operator
(so that it does not involve differential operators acting on the coordinate x). Non-
linear classical dynamics for the time dependent potential emerges as an integrability
condition.

One could say that M(t) introduces the time evolution of L(t, x) as an automorphism
which depends on time and therefore does not affect the spectrum. One has L(t, x) =

http://tinyurl.com/y9f7ybln
http://tinyurl.com/yc93nw53
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U(t)L(0, x)U−1(t) with dU(t)/dt = M(t)U(t). The time evolution of the analog of the
quantum state is given by a similar equation.

(c) A more refined view about Lax pair is based on the observation that the above equation
can be generalized so that M depends also on x. The generalization of the basic equation
for M(x, t) reads as

∂tL− ∂xM − [L,M ] = 0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential
having components Ax = L,At = M . This generalization allows a beautiful geometric
formulation of the integrability conditions and extends the applicability of the inverse
scattering transform. The monodromy of the flat connection becomes important in
this approach. Flat connections in moduli spaces are indeed important in topological
quantum field theories and in conformal field theories.

(d) There is also a connection with the so called Riemann-Hilbert problem (see http:

//tinyurl.com/ybay4qjg) [A20]. The monodromies of the flat connection define mon-
odromy group and Riemann-Hilbert problem concerns the existence of linear differential
equations having a given monodromy group. Monodromy group emerges in the analytic
continuation of an analytic function and the action of the element of the monodromy
group tells what happens for the resulting many-valued analytic function as one turns
around a singularity once (“mono-” ). The linear equations obviously relate to the linear
scattering problem. The flat connection (M,L) in turn defines the monodromy group.
What is needed is that the functions involved are analytic functions of (t, x) replaced
with a complex or hyper-complex variable. Again Wick rotation is involved. Similar
approach generalizes also to higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of math-
ematical apparatus could be used. An interesting possibility is that finite measurement
resolution could be realized in terms of a gauge group or Kac-Moody type group rep-
resented by trivial gauge potential defining a monodromy group for n-point functions.
Monodromy invariance would hold for the full n-point functions constructed in terms of
analytic n-point functions and their conjugates. The ends of braid strands are natural
candidates for the singularities around which monodromies are defined.

3.4.2 Why TGD Could Be Integrable Theory In Some Sense?

There are many indications that TGD could be an integrable theory in some sense. The
challenge is to see which ideas are consistent with each other and to build a coherent picture
where everything finds its own place.

(a) 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for
integrability. Effective 2-dimensionality is suggested by the strong form of General
Coordinate Invariance implying also holography and generalized conformal invariance
predicting infinite number of conservation laws. The dual roles of partonic 2-surfaces and
string world sheets supports a four-dimensional generalization of conformal invariance.
Twistor considerations [K86] indeed suggest that Yangian invariance and Kac-Moody
invariances combine to a 4-D analog of conformal invariance induced by 2-dimensional
one by algebraic continuation.

(b) Octonionic representation of imbedding space Clifford algebra and the identification of
the space-time surfaces as quaternionic space-time surfaces would define a number the-
oretically natural generalization of conformal invariance. The reason for using gamma
matrix representation is that vector field representation for octonionic units does not
exist. The problem concerns the precise meaning of the octonionic representation of
gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is
analytically continued from string curve to 8-D space by octonion real-analyticity. The

http://tinyurl.com/ybay4qjg
http://tinyurl.com/ybay4qjg
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question is whether the Clifford algebra based notion of tangent space quaternionicity
is equivalent with octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must con-
sider seriously the possibility that associativity-co-associativity dichotomy corresponds
to Minkowskian-Euclidian dichotomy.

(c) Field equations define hydrodynamic Beltrami flows satisfying integrability conditions
of form J ∧ dJ = 0.

i. One can assign local momentum and polarization directions to the preferred ex-
tremals and this gives a decomposition of Minkowskian space-time regions to mass-
less quanta analogous to the 1+1-dimensional decomposition to solitons. The linear
superposition of modes with 4-momenta with different directions possible for free
Maxwell action does not look plausible for the preferred extremals of Kähler action.
This rather quantal and solitonic character is in accordance with the quantum clas-
sical correspondence giving very concrete connection between quantal and classical
particle pictures. For 4-D volume action one does not obtain this kind of decom-
position. In 2-D case volume action gives superposition of solutions with different
polarization directions so that the situation is nearer to that for free Maxwell action
and is not like soliton decomposition.

ii. Beltrami property in strong sense allows to identify 4 preferred coordinates for
the space-time surface in terms of corresponding Beltrami flows. This is possible
also in Euclidian regions using two complex coordinates instead of hyper-complex
coordinate and complex coordinate. The assumption that isometry currents are
parallel to the same light-like Beltrami flow implies hydrodynamic character of
the field equations in the sense that one can say that each flow line is analogous to
particle carrying some quantum numbers. This property is not true for all extremals
(say cosmic strings).

iii. The tangent bundle theoretic view about integrability is that one can find a Lie
algebra of vector fields in some manifold spanning the tangent space of a lower-
dimensional manifolds and is expressed in terms of Frobenius theorem (see http:

//tinyurl.com/of6vfz5) [A5]. The gradients of scalar functions defining Beltrami
flows appearing in the ansatz for preferred exremals would define these vector fields
and the slicing. Partonic 2-surfaces would correspond to two complex conjugate
vector fields (local polarization direction) and string world sheets to light-like vector
field and its dual (light-like momentum directions). This slicing generalizes to the
Euclidian regions.

(d) Infinite number of conservation laws is the signature of integrability. Classical field
equations follow from the condition that the vector field defined by Kähler-Dirac gamma
matrices has vanishing divergence and can be identified an integrability condition for
the Kähler-Dirac equation guaranteeing also the conservation of super currents so that
one obtains an infinite number of conserved charges.

(e) Quantum criticality is a further signal of integrability. 2-D conformal field theories
describe critical systems so that the natural guess is that quantum criticality in TGD
framework relates to the generalization of conformal invariance and to integrability.
Quantum criticality implies that Kähler coupling strength is analogous to critical tem-
perature. This condition does affects classical field equations only via boundary condi-
tions expressed as weak form of electric magnetic duality at the wormhole throats at
which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined
by the second derivatives of potential is similar signature and applies in catastrophe
theory. Therefore the existence of vanishing second variations of Kähler action should
characterize criticality and define a property of preferred extremals. The vanishing of
second variations indeed leads to an infinite number of conserved currents [K23, K7]
following the conditions that the deformation of Kähler-Dirac gamma matrix is also
divergenceless and that the Kähler-Dirac equation associated with it is satisfied.

http://tinyurl.com/of6vfz5
http://tinyurl.com/of6vfz5
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3.4.3 Could TGD Be An Integrable Theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical corre-
spondence could be seen as a correspondence between linear quantum dynamics and non-
linear classical dynamics. Integrability would realize this correspondence. In integrable
models such as Sine-Gordon equation particle interactions are described by potential in 1+1
dimensions. This too primitive for the purposes of TGD. The vertices of generalized Feyn-
man diagrams take care of this. At lines one has free particle dynamics so that the situation
could be much simpler than in integrable models if one restricts the considerations to the
lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized
Feynman diagram should be obtainable from the linear dynamics for the induced spinor fields
defined by Kähler-Dirac operator. There are two options.

(a) Strong form of the quantum classical correspondence states that each solution for the
linear dynamics of spinor fields corresponds to space-time sheet. This is analogous to
solving the potential function in terms of a single solution of Schrödinger equation.
Coupling of space-time geometry to quantum numbers via measurement interaction
term is a proposal for realizing this option. It is however the quantum numbers of
positive/negative energy parts of zero energy state which would be visible in the classical
dynamics rather than those of induced spinor field modes.

(b) Only overall dynamics characterized by scattering data- the counterpart of S-matrix for
the Kähler-Dirac operator- is mapped to the geometry of the space-time sheet. This is
much more abstract realization of quantum classical correspondence.

(c) Can these two approaches be equivalent? This might be the case since quantum numbers
of the state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying Kähler-Dirac equa-
tion?

(a) If the solution of field equation has hydrodynamic character, the solutions of the Kähler-
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow.
These correspond to basic solutions and the general solution is a superposition of these.
There is no dispersion and the dynamics is that of geometric optics at the basic level.
This means geometric optics like character of the spinor dynamics.

Solutions of the Kähler-Dirac equation are completely analogous to the pulse solutions
defining the fundamental solution for the wave equation in the argument leading from
wave equation with external time independent potential to Marchenko-Gelfand-Levitan
equation allowing to identify potential in terms of scattering data. There is however no
potential present now since the interactions are described by the vertices of Feynman
diagram where the particle lines meet. Note that particle like regions are Euclidian and
that this picture applies only to the Minkowskian exteriors of particles.

(b) Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected
by flow lines. Partonic 2-surfaces at which the signature of the induced metric changes
are in a special position. Only the imaginary part of the bi-quaternionic value of the
octonion valued map is non-vanishing at these surfaces which can be said to be co-
complex 2-surfaces. By geometric optics behavior the scattering data correspond to a
diffeomorphism mapping initial partonic 2-surface to the final one in some preferred
complex coordinates common to both ends of the line.

(c) What could be these preferred coordinates? Complex coordinates for S2 at light-cone
boundary define natural complex coordinates for the partonic 2-surface. With these co-
ordinates the diffeomorphism defining scattering data is diffeomorphism of S2. Suppose
that this map is real analytic so that maps “real axis” of S2 to itself. This map would
be same as the map defining the octonionic real analyticity as algebraic extension of
the complex real analytic map. By octonionic analyticity one can make large number
of alternative choices for the coordinates of partonic 2-surface.
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(d) There can be non-uniqueness due to the possibility of G2/SU(3) valued map character-
izing the local octonionic units. The proposal is that the choice of octonionic imaginary
units can depend on the point of string like orbit: this would give string model in
G2/SU(3). Conformal invariance for this string model would imply analyticity and
helps considerably but would not probably fix the situation completely since the ele-
ment of the coset space would constant at the partonic 2-surfaces at the ends of CD. One
can of course ask whether the G2/SU(3) element could be constant for each propagator
line and would change only at the 2-D vertices?

This would be the inverse scattering problem formulated in the spirit of TGD. There could
be also dependence of space-time surface on quantum numbers of quantum states but not
on individual solution for the induced spinor field since the scattering data of this solution
would be purely geometric.

3.5 Do Geometric Invariants Of Preferred Extremals De-
fine Topological Invariants Of Space-time Surface And
Code For Quantumphysics?

The recent progress in the understanding of preferred extremals [K7] led to a reduction of the
field equations to conditions stating for Euclidian signature the existence of Kähler metric.
The resulting conditions are a direct generalization of corresponding conditions emerging for
the string world sheet and stating that the 2-metric has only non-diagonal components in
complex/hypercomplex coordinates. Also energy momentum of Kähler action and has this
characteristic (1, 1) tensor structure. In Minkowskian signature one obtains the analog of
4-D complex structure combining hyper-complex structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmological
term follow as a consistency condition guaranteeing that the covariant divergence of the
Maxwell’s energy momentum tensor assignable to Kähler action vanishes. This gives T =
kG+ Λg. By taking trace a further condition follows from the vanishing trace of T :

R =
4Λ

k
. (3.5.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological
constant is very strong prediction. Note that the accelerating expansion of the Universe would
support positive value of Λ. Note however that both Λ and k ∝ 1/G are both parameters
characterizing one particular preferred extremal. One could of course argue that the dynamics
allowing only constant curvature space-times is too simple. The point is however that particle
can topologically condense on several space-time sheets meaning effective superposition of
various classical fields defined by induced metric and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canoni-
cal representatives for the constant curvature manifolds playing central role in Thurston’s
geometrization theorem (see http://tinyurl.com/y8bbzlnr) [A24] known also as hyper-
bolization theorem implying that geometric invariants of space-time surfaces transform to
topological invariants. The generalization of the notion of Ricci flow to Maxwell flow in the
space of metrics and further to Kähler flow for preferred extremals in turn gives a rather
detailed vision about how preferred extremals organize to one-parameter orbits. It is quite
possible that Kähler flow is actually discrete. The natural interpretation is in terms of dissi-
pation and self organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for
space-time topology but also for quantum physics? How to calculate the correlation func-
tions and coupling constant evolution has remained a basic unresolved challenge of quantum

http://tinyurl.com/y8bbzlnr
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TGD. Could the correlation functions be reduced to statistical geometric invariants of pre-
ferred extemals? The latest (means the end of 2012) and perhaps the most powerful idea
hitherto about coupling constant evolution is quantum classical correspondence in statistical
sense stating that the statistical properties of a preferred extremal in quantum superposition
of them are same as those of the zero energy state in question. This principle would be quan-
tum generalization of ergodic theorem stating that the time evolution of a single member of
ensemble represents the ensemble statistically. This principle would allow to deduce correla-
tion functions and S-matrix from the statistical properties of single preferred extremal alone
using classical intuition. Also coupling constant evolution would be coded by the statistical
properties of the representative preferred extremal.

3.5.1 Preferred Extremals Of Kähler Action As Manifolds With
Constant Ricci Scalar Whose Geometric Invariants Are Topological-
Invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants
of space-time surface serve as topological invariants. The reduction of Kähler action to 3-
D Chern-Simons terms (see http://tinyurl.com/ybp86sho) [K7] gives support for this
conjecture as a classical counterpart for the view about TGD as almost topological QFT.
The following arguments give a more precise content to this conjecture in terms of existing
mathematics.

(a) It is not possible to represent the scaling of the induced metric as a deformation of the
space-time surface preserving the preferred extremal property since the scale of CP2

breaks scale invariance. Therefore the curvature scalar cannot be chosen to be equal to
one numerically. Therefore also the parameter R = 4Λ/k and also Λ and k separately
characterize the equivalence class of preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains con-
stant along the orbits of the flow and thus characterizes the space-time surface. Λ and
even k ∝ 1/G can indeed depend on space-time sheet and p-adic length scale hypoth-
esis suggests a discrete spectrum for Λ/k expressible in terms of p-adic length scales:
Λ/k ∝ 1/L2

p with p ' 2k favored by p-adic length scale hypothesis. During cosmic evo-
lution the p-adic length scale would increase gradually. This would resolve the problem
posed by cosmological constant in GRT based theories.

(b) One could also see the preferred extremals as 4-D counterparts of constant curvature
3-manifolds in the topology of 3-manifolds. An interesting possibility raised by the
observed negative value of Λ is that most 4-surfaces are constant negative curvature
4-manifolds. By a general theorem coset spaces (see http://tinyurl.com/y8d3udpr)
H4/Γ, where H4 = SO(1, 4)/SO(4) is hyperboloid of M5 and Γ a torsion free discrete
subgroup of SO(1, 4) [A8]. It is not clear to me, whether the constant value of Ricci
scalar implies constant sectional curvatures and therefore hyperbolic space property. It
could happen that the space of spaces with constant Ricci curvature contain a hyperbolic
manifold as an especially symmetric representative. In any case, the geometric invariants
of hyperbolic metric are topological invariants.

By Mostow rigidity theorem (see http://tinyurl.com/yacbu8sk) [A12] finite-volume
hyperbolic manifold is unique for D > 2 and determined by the fundamental group
of the manifold. Since the orbits under the Kähler flow preserve the curvature scalar
the manifolds at the orbit must represent different imbeddings of one and hyperbolic
4-manifold. In 2-D case the moduli space for hyperbolic metric for a given genus g >
0 is defined by Teichmueller parameters and has dimension 6(g − 1). Obviously the
exceptional character of D = 2 case relates to conformal invariance. Note that the
moduli space in question (see http://tinyurl.com/ybowqm5v) plays a key role in p-
adic mass calculations [K12].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions
and maybe generalize also to Minkowskian regions. If so then both “topological” and

http://tinyurl.com/ybp86sho
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“geometro” in “Topological GeometroDynamics” would be fully justified. The fact that
geometric invariants become topological invariants also conforms with “TGD as almost
topological QFT” and allows the notion of scale to find its place in topology. Also
the dream about exact solvability of the theory would be realized in rather convincing
manner.

These conjectures are the main result independent of whether the generalization of the Ricci
flow discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates
in the space of preferred extremals of Kähler action. My sincere hope is that the reader could
grasp how far reaching these result really are.

3.5.2 Is There A Connection Between Preferred Extremals And
AdS4/CFT Correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and
have negative scalar curvature for negative value of Λ. 4-D space-times with hyperbolic metric
provide canonical representation for a large class of four-manifolds and an interesting question
is whether these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This suggests
at connection with AdS4/CFT correspondence of M-theory. The boundary of AdS would
be now replaced with 3-D light-like orbit of partonic 2-surface at which the signature of
the induced metric changes. The metric 2-dimensionality of the light-like surface makes
possible generalization of 2-D conformal invariance with the light-like coordinate taking the
role of complex coordinate at light-like boundary. AdS could represent a special case of a
more general family of space-time surfaces with constant Ricci scalar satistying Einstein-
Maxwell equations and generalizing the AdS4/CFT correspondence. There is however a
strong objection from cosmology: the accelerated expansion of the Universe requires positive
value of Λ and favors De Sitter Space dS4 instead of AdS4.

These observations provide motivations for finding whether AdS4 and/or dS4 allows an
imbedding as a vacuum extremal to M4 × S2 ⊂ M4 × CP2, where S2 is a homologically
trivial geodesic sphere of CP2. It is easy to guess the general form of the imbedding by
writing the line elements of, M4, S2, and AdS4.

(a) The line element of M4 in spherical Minkowski coordinates (m, rM , θ, φ) reads as

ds2 = dm2 − dr2
M − r2

MdΩ2 . (3.5.2)

(b) Also the line element of S2 is familiar:

ds2 = −R2(dΘ2 + sin2(θ)dΦ2) . (3.5.3)

(c) By visiting in Wikipedia (see http://tinyurl.com/y9hw95ql) one learns that in spher-
ical coordinate the line element of AdS4/dS4 is given by

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dΩ2 ,

A(r) = 1 + εy2 , y =
r

r0
,

ε = 1 for AdS4 , ε = −1 for dS4 . (3.5.4)

(d) From these formulas it is easy to see that the ansatz is of the same general form as for
the imbedding of Schwartschild-Nordstöm metric:

m = Λt+ h(y) , rM = r ,
Θ = s(y) , Φ = ω(t+ f(y)) .

(3.5.5)

http://tinyurl.com/y9hw95ql
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The non-trivial conditions on the components of the induced metric are given by

gtt = Λ2 − x2sin2(Θ) = A(r) ,

gtr =
1

r0

[
Λ
dh

dy
− x2sin2(θ)

df

dr

]
= 0 ,

grr =
1

r2
0

[
(
dh

dy
)2 − 1− x2sin2(θ)(

df

dy
)2 −R2(

dΘ

dy
)2

]
= − 1

A(r)
,

x = Rω . (3.5.6)

By some simple algebraic manipulations one can derive expressions for sin(Θ), df/dr and
dh/dr.

(a) For Θ(r) the equation for gtt gives the expression

sin(Θ) = ±P
1/2

x
,

P = Λ2 −A = Λ2 − 1− εy2 . (3.5.7)

The condition 0 ≤ sin2(Θ) ≤ 1 gives the conditions

(Λ2 − x2 − 1)1/2 ≤ y ≤ (Λ2 − 1)1/2 for ε = 1 (AdS4) ,
(−Λ2 + 1)1/2 ≤ y ≤ (x2 + 1− Λ2)1/2 for ε = −1 (dS4) .

(3.5.8)

Only a spherical shell is possible in both cases. The model for the final state of star
considered in [K79] predicted similar layer layer like structure and inspired the proposal
that stars quite generally have an onion-like structure with radii of various shells char-
acterize by p-adic length scale hypothesis and thus coming in some powers of

√
2. This

brings in mind also Titius-Bode law.

(b) From the vanishing of gtr one obtains

dh

dy
=

P

Λ

df

dy
.

(3.5.9)

(c) The condition for grr gives

(
df

dy
)2 =

r2
0

AP
[A−1 −R2(

dΘ

dy
)2] . (3.5.10)

Clearly, the right-hand side is positive if P ≥ 0 holds true and RdΘ/dy is small. One
can express dΘ/dy using chain rule as

(
dΘ

dy
)2 = x2y2

P (P−x2) . (3.5.11)

One obtains

(
df

dy
)2 = Λr2

0

y2

AP

[
1

1 + y2
− x2(

R

r0
)2 1

P (P − x2)

]
.

(3.5.12)

The right hand side of this equation is non-negative for certain range of parameters
and variable y. Note that for r0 � R the second term on the right hand side can be
neglected. In this case it is easy to integrate f(y).
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The conclusion is that both AdS4 and dS4 allow a local imbedding as a vacuum extremal.
Whether also an imbedding as a non-vacuum preferred extremal to M4×S2, S2 a homolog-
ically non-trivial geodesic sphere is possible, is an interesting question.

3.5.3 Generalizing Ricci Flow To Maxwell Flow For 4-Geometries
And Kähler Flow For Space-Time Surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants
of Riemann manifolds. I certainly did not have this in mind when I choose to call my
unification attempt “Topological Geometrodynamics” but this title strongly suggests that a
suitable generalization of Ricci flow could play a key role in the understanding of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a
generalization of the well-known volume preserving Ricci flow (see http://tinyurl.com/

2cwlzh9l) [A19] introduced by Richard Hamilton. Ricci flow is defined in the space of
Riemann metrics as

dgαβ
dt

= −2Rαβ + 2
Ravg
D

gαβ . (3.5.13)

Here Ravg denotes the average of the scalar curvature, and D is the dimension of the Riemann
manifold. The flow is volume preserving in average sense as one easily checks (〈gαβdgαβ/dt〉 =
0). The volume preserving property of this flow allows to intuitively understand that the
volume of a 3-manifold in the asymptotic metric defined by the Ricci flow is topological
invariant. The fixed points of the flow serve as canonical representatives for the topological
equivalence classes of 3-manifolds. These 3-manifolds (for instance hyperbolic 3-manifolds
with constant sectional curvatures) are highly symmetric. This is easy to understand since
the flow is dissipative and destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called
Maxwell flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

(a) First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for
the volume preserving character of the flow defined as

dgαβ
dt

= Tαβ . (3.5.14)

Taking covariant divergence on both sides and assuming that d/dt and Dα commute,
one obtains that Tαβ is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgαβ
dt

= kGαβ + Λgαβ = kRαβ + (−kR
2

+ Λ)gαβ . (3.5.15)

The trace of this equation gives that the curvature scalar is constant. Note that the
value of the Kähler coupling strength plays a highly non-trivial role in these equations
and it is quite possible that solutions exist only for some critical values of αK . Quantum
criticality should fix the allow value triplets (G,Λ, αK) apart from overall scaling

(G,Λ, αK)→ (xG,Λ/x, xαK .

Fixing the value of G fixes the values remaining parameters at critical points. The
rescaling of the parameter t induces a scaling by x.

http://tinyurl.com/2cwlzh9l
http://tinyurl.com/2cwlzh9l
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(b) By taking trace one obtains the already mentioned condition fixing the curvature to be
constant, and one can write

dgαβ
dt

= kRαβ − Λgαβ . (3.5.16)

Note that in the recent case Ravg = R holds true since curvature scalar is constant.
The fixed points of the flow would be Einstein manifolds (see http://tinyurl.com/

ybrnakuu) [A4, A35] satisfying

Rαβ =
Λ

k
gαβ (3.5.17)

.

(c) It is by no means obvious that continuous flow is possible. The condition that Einstein-
Maxwell equations are satisfied might pick up from a completely general Maxwell flow
a discrete subset as solutions of Einstein-Maxwell equations with a cosmological term.
If so, one could assign to this subset a sequence of values tn of the flow parameter t.

(d) I do not know whether 3-dimensionality is somehow absolutely essential for getting the
topological classification of closed 3-manifolds using Ricci flow. This ignorance allows
me to pose some innocent questions. Could one have a canonical representation of 4-
geometries as spaces with constant Ricci scalar? Could one select one particular Einstein
space in the class four-metrics and could the ratio Λ/k represent topological invariant if
one normalizes metric or curvature scalar suitably. In the 3-dimensional case curvature
scalar is normalized to unity. In the recent case this normalization would give k = 4Λ in
turn giving Rαβ = gαβ/4. Does this mean that there is only single fixed point in local
sense, analogous to black hole toward which all geometries are driven by the Maxwell
flow? Does this imply that only the 4-volume of the original space would serve as a
topological invariant?

Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be
the appropriate term and provides families of preferred extremals. Since space-time surfaces
inside CD are the basic physical objects are in TGD framework, a possible interpretation
of these families would be as flows describing physical dissipation as a four-dimensional
phenomenon polishing details from the space-time surface interpreted as an analog of Bohr
orbit.

(a) The flow is now induced by a vector field jk(x, t) of the space-time surface having values
in the tangent bundle of imbedding space M4 ×CP2. In the most general case one has
Kähler flow without the Einstein equations. This flow would be defined in the space
of all space-time surfaces or possibly in the space of all extremals. The flow equations
reduce to

hklDαj
k(x, t)Dβh

l =
1

2
Tαβ . (3.5.18)

The left hand side is the projection of the covariant gradient Dαj
k(x, t) of the flow

vector field jk(x, t) to the tangent space of the space-time surface. Dalpha is covariant
derivative taking into account that jk is imbedding space vector field. For a fixed point
space-time surface this projection must vanish assuming that this space-time surface
reachable. A good guess for the asymptotia is that the divergence of Maxwell energy
momentum tensor vanishes and that Einstein’s equations with cosmological constant
are well-defined.

http://tinyurl.com/ybrnakuu
http://tinyurl.com/ybrnakuu
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Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vacuum
extremals and in Minkowskian regions to any space-time surface in any 6-D sub-manifold
M4 × Y 2, where Y 2 is Lagrangian sub-manifold of CP2 having therefore vanishing in-
duced Kähler form. Symplectic transformations of CP2 combined with diffeomorphisms
of M4 give new Lagrangian manifolds. One would expect that vacuum extremals are
approached but never reached at second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals
must be Einstein manifolds. For CP2 type vacuum extremals this is the case. It is quite
possible that these fixed points do not actually exist in Minkowskian sector, and could
be replaced with more complex asymptotic behavior such as limit, chaos, or strange
attractor.

(b) The flow could be also restricted to the space of preferred extremals. Assuming that
Einstein Maxwell equations indeed hold true, the flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
(kRαβ − Λgαβ) . (3.5.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the
space of all 4-surfaces.

(c) One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining a
flow in the entire imbedding space. This assumption is probably too restrictive. In this
case the equations reduce to

(Drjl(x, t) +Dljr)∂αh
r∂βh

l = kRαβ − Λgαβ . (3.5.20)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl +Dkjl
becomes orthogonal to the space-time surface. Note for that Killing vector fields of H
the left hand side vanishes identically. Killing vector fields are indeed symmetries of
also asymptotic states.

It must be made clear that the existence of a continuous flow in the space of preferred
extremals might be too strong a condition. Already the restriction of the general Maxwell
flow in the space of metrics to solutions of Einstein-Maxwell equations with cosmological
term might lead to discretization, and the assumption about reprentability as 4-surface in
M4 × CP2 would give a further condition reducing the number of solutions. On the other
hand, one might consiser a possibility of a continuous flow in the space of constant Ricci
scalar metrics with a fixed 4-volume and having hyperbolic spaces as the most symmetric
representative.

Dissipation, self organization, transition to chaos, and coupling constant evolu-
tion

A beautiful connection with concepts like dissipation, self-organization, transition to chaos,
and coupling constant evolution suggests itself.

(a) It is not at all clear whether the vacuum extremal limits of the preferred extremals can
correspond to Einstein spaces except in special cases such as CP2 type vacuum extremals
isometric with CP2. The imbeddability condition however defines a constraint force
which might well force asymptotically more complex situations such as limit cycles and
strange attractors. In ordinary dissipative dynamics an external energy feed is essential
prerequisite for this kind of non-trivial self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces
due to the imbeddability condition. It is not too difficult to imagine that the flow (if
it exists!) could define something analogous to a transition to chaos taking place in
a stepwise manner for critical values of the parameter t. Alternatively, these discrete
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values could correspond to those values of t for which the preferred extremal property
holds true for a general Maxwell flow in the space of 4-metrics. Therefore the preferred
extremals of Kähler action could emerge as one-parameter (possibly discrete) families
describing dissipation and self-organization at the level of space-time dynamics.

(b) For instance, one can consider the possibility that in some situations Einstein’s equations
split into two mutually consistent equations of which only the first one is independent

xJανJ
νβ = Rαβ ,

LK = xJανJ
νβ = 4Λ ,

x =
1

16παK
. (3.5.21)

Note that the first equation indeed gives the second one by tracing. This happens for
CP2 type vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a con-
tinuous spectrum if this happens always. A more plausible alternative is that this holds
true only asymptotically. In this case the flow equation could not lead arbitrary near to
vacuum extremal, and one can think of situation in which LK = 4Λ defines an analog of
limiting cycle or perhaps even strange attractor. In any case, the assumption would al-
low to deduce the asymptotic value of the action density which is of utmost importance
from calculational point of view: action would be simply SK = 4ΛV4 and one could also
say that one has minimal surface with Λ taking the role of string tension.

(c) One of the key ideas of TGD is quantum criticality implying that Kähler coupling
strength is analogous to critical temperature. Second key idea is that p-adic coupling
constant evolution represents discretized version of continuous coupling constant evo-
lution so that each p-adic prime would correspond a fixed point of ordinary coupling
constant evolution in the sense that the 4-volume characterized by the p-adic length
scale remains constant. The invariance of the geometric and thus geometric parameters
of hyperbolic 4-manifold under the Kähler flow would conform with the interpretation
as a flow preserving scale assignable to a given p-adic prime. The continuous evolution
in question (if possible at all!) might correspond to a fixed p-adic prime. Also the hier-
archy of Planck constants relates to this picture naturally. Planck constant ~eff = n~
corresponds to a multi-furcation generating n-sheeted structure and certainly affecting
the fundamental group.

(d) One can of course question the assumption that a continuous flow exists. The property
of being a solution of Einstein-Maxwell equations, imbeddability property, and preferred
extremal property might allow allow only discrete sequences of space-time surfaces per-
haps interpretable as orbit of an iterated map leading gradually to a fractal limit. This
kind of discrete sequence might be also be selected as preferred extremals from the orbit
of Maxwell flow without assuming Einstein-Maxwell equations. Perhaps the discrete
p-adic coupling constant evolution could be seen in this manner and be regarded as an
iteration so that the connection with fractality would become obvious too.

Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost
constancy of LK suggest an interpretation in terms of 4-D variant of thermodynamics natural
in zero energy ontology (ZEO), where physical states are analogs for pairs of initial and final
states of quantum event are quantum superpositions of classical time evolutions. Quantum
theory becomes a “square root” of thermodynamics so that 4-D analog of thermodynamics
might even replace ordinary thermodynamics as a fundamental description. If so this 4-D
thermodynamics should be qualitatively consistent with the ordinary 3-D thermodynamics.

(a) The first naive guess would be the interpretation of the action density LK as an analog
of energy density e = E/V3 and that of R as the analog to entropy density s = S/V3.
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The asymptotic states would be analogs of thermodynamical equilibria having constant
values of LK and R.

(b) Apart from an overall sign factor ε to be discussed, the analog of the first law de =
Tds− pdV/V would be

dLK = kdR+ Λ
dV4

V4
.

One would have the correspondences S → εRV4, e → εLK and k → T , p → −Λ.
k ∝ 1/G indeed appears formally in the role of temperature in Einstein’s action defining
a formal partition function via its exponent. The analog of second law would state the
increase of the magnitude of εRV4 during the Kähler flow.

(c) One must be very careful with the signs and discuss Euclidian and Minkowskian regions
separately. Concerning purely thermodynamic aspects at the level of vacuum functional
Euclidian regions are those which matter.

i. For CP2 type vacuum extremals LK ∝ E2 + B2, R = Λ/k, and Λ are positive. In
thermodynamical analogy for ε = 1 this would mean that pressure is negative.

ii. In Minkowskian regions the value of R = Λ/k is negative for Λ < 0 suggested by the
large abundance of 4-manifolds allowing hyperbolic metric and also by cosmological
considerations. The asymptotic formula LK = 4Λ considered above suggests that
also Kähler action is negative in Minkowskian regions for magnetic flux tubes dom-
inating in TGD inspired cosmology: the reason is that the magnetic contribution
to the action density LK ∝ E2 −B2 dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the evolution by quantum jumps has Kähler flow as a space-time cor-
relate.

(a) In Euclidian regions the choice ε = 1 seems to be more reasonable one. In Euclidian
regions −Λ as the analog of pressure would be negative, and asymptotically (that is for
CP2 type vacuum extremals) its value would be proportional to Λ ∝ 1/GR2, where R
denotes CP2 radius defined by the length of its geodesic circle.

A possible interpretation for negative pressure is in terms of string tension effectively
inducing negative pressure (note that the solutions of the Kähler-Dirac equation indeed
assign a string to the wormhole contact). The analog of the second law would require
the increase of RV4 in quantum jumps. The magnitudes of LK , R, V4 and Λ would
be reduced and approach their asymptotic values. In particular, V4 would approach
asymptotically the volume of CP2.

(b) In Minkowskian regions Kähler action contributes to the vacuum functional a phase
factor analogous to an imaginary exponent of action serving in the role of Morse function
so that thermodynamics interpretation can be questioned. Despite this one can check
whether thermodynamic interpretation can be considered. The choice ε = −1 seems
to be the correct choice now. −Λ would be analogous to a negative pressure whose
gradually decreases. In 3-D thermodynamics it is natural to assign negative pressure
to the magnetic flux tube like structures as their effective string tension defined by the
density of magnetic energy per unit length. −R ≥ 0 would entropy and −LK ≥ 0 would
be the analog of energy density.

R = Λ/k and the reduction of Λ during cosmic evolution by quantum jumps suggests
that the larger the volume of CD and thus of (at least) Minkowskian space-time sheet
the smaller the negative value of Λ.

Assume the recent view about state function reduction explaining how the arrow of
geometric time is induced by the quantum jump sequence defining experienced time [K4].
According to this view zero energy states are quantum superpositions over CDs of
various size scales but with common tip, which can correspond to either the upper or
lower light-like boundary of CD. The sequence of quantum jumps the gradual increase of
the average size of CD in the quantum superposition and therefore that of average value
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of V4. On the other hand, a gradual decrease of both −LK and −R looks physically
very natural. If Kähler flow describes the effect of dissipation by quantum jumps in
ZEO then the space-time surfaces would gradually approach nearly vacuum extremals
with constant value of entropy density −R but gradually increasing 4-volume so that
the analog of second law stating the increase of −RV4 would hold true.

(c) The interpretation of −R > 0 as negentropy density assignable to entanglement is
also possible and is consistent with the interpretation in terms of second law. This
interpretation would only change the sign factor ε in the proposed formula. Otherwise
the above arguments would remain as such.

3.5.4 Could Correlation Functions, S-Matrix, And Coupling Con-
stant Evolution Be Coded The Statistical Properties Of Preferred
Extremals?

How to calculate the correlation functions and coupling constant evolution has remained a
basic unresolved challenge. Generalized Feynman diagrams provide a powerful vision which
however does not help in practical calculations. Some big idea has been lacking.

Quantum classical correspondence states that all aspects of quantum states should have
correlates in the geometry of preferred extremals. In particular, various elementary particle
propagators should have a representation as properties of preferred extremals. This would
allow to realize the old dream about being able to say something interesting about coupling
constant evolution although it is not yet possible to calculate the M-matrices and U-matrix.
The general structure of U-matrix is however understood [K91]. Hitherto everything that has
been said about coupling constant evolution has been rather speculative arguments except
for the general vision that it reduces to a discrete evolution defined by p-adic length scales.
General first principle definitions are however much more valuable than ad hoc guesses even
if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum
state should code for its properties. By quantum classical correspondence these correlation
functions should have counterparts in the geometry of preferred extremals. Even more: these
classical counterparts for a given preferred extremal ought to be identical with the quantum
correlation functions for the superposition of preferred extremals. This correspondence could
be called quantum ergodicity by its analogy with ordinary ergodicity stating that the member
of ensemble becomes representative of ensemble.

This principle would be a quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This symmetry
principle analogous to holography might allow to fix S-matrix uniquely even in the case that
the hermitian square root of the density matrix appearing in the M-matrix would lead to a
breaking of quantum ergodicity as also 4-D spin glass degeneracy suggests.

This principle would allow to deduce correlation functions from the statistical properties of
single preferred extremal alone using just classical intuition. Also coupling constant evolu-
tion would be coded by the statistical properties of preferred extremals. Quantum ergodicity
would mean an enormous simplification since one could avoid the horrible conceptual com-
plexities involved with the functional integrals over WCW .

This might of course be too optimistic guess. If a sub-algebra of symplectic algebra acts
as gauge symmmetries of the preferred extremals in the sense that corresponding Noether
charges vanish, it can quite well be that correlations functions correspond to averages for
extremals belonging to single conformal equivalence class.

(a) The marvellous implication of quantum ergodicity would be that one could calculate
everything solely classically using the classical intuition - the only intuition that we
have. Quantum ergodicity would also solve the paradox raised by the quantum classical
correspondence for momentum eigenstates. Any preferred extremal in their superposi-
tion defining momentum eigenstate should code for the momentum characterizing the
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superposition itself. This is indeed possible if every extremal in the superposition codes
the momentum to the properties of classical correlation functions which are identical
for all of them.

(b) The only manner to possibly achieve quantum ergodicity is in terms of the statistical
properties of the preferred extremals. It should be possible to generalize the ergodic
theorem stating that the properties of statistical ensemble are represented by single
space-time evolution in the ensemble of time evolutions. Quantum superposition of
classical worlds would effectively reduce to single classical world as far as classical cor-
relation functions are considered. The notion of finite measurement resolution suggests
that one must state this more precisely by adding that classical correlation functions are
calculated in a given UV and IR resolutions meaning UV cutoff defined by the smallest
CD and IR cutoff defined by the largest CD present.

(c) The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that
this quantum ergodic theorem must be broken. In the case of the ordinary spin classes
one has not only statistical average for a fixed Hamiltonian but a statistical average
over Hamiltonians. There is a probability distribution over the coupling parameters
appearing in the Hamiltonian. Maybe the quantum counterpart of this is needed to
predict the physically measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with
different classical correlation functions? This kind of average is indeed taken in density
matrix formalism. Or could it be that the square root of thermodynamics defined by
ZEO actually gives automatically rise to this average? The eigenvalues of the “hermitian
square root” of the density matrix would code for components of the state characterized
by different classical correlation functions. One could assign these contributions to
different “phases”.

(d) Quantum classical correspondence in statistical sense would be very much like holog-
raphy (now individual classical state represents the entire quantum state). Quantum
ergodicity would pose a rather strong constraint on quantum states. This symmetry
principle could actually fix the spectrum of zero energy states to a high degree and
fix therefore the M-matrices given by the product of hermitian square root of density
matrix and unitary S-matrix and unitary U-matrix constructible as inner products of
M-matrices associated with CDs with various size scales [K91].

(e) In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the
postulate that the space-time geometry provides a symbolic representation for the quan-
tum states and also for the contents of consciousness assignable to quantum jumps be-
tween quantum states. Quantum ergodicity would realize this strongly self-referential
looking condition. The positive and negative energy parts of zero energy state would be
analogous to the initial and final states of quantum jump and the classical correlation
functions would code for the contents of consciousness like written formulas code for the
thoughts of mathematician and provide a sensory feedback.

How classical correlation functions should be defined?

(a) General Coordinate Invariance and Lorentz invariance are the basic constraints on the
definition. These are achieved for the space-time regions with Minkowskian signature
and 4-D M4 projection if linear Minkowski coordinates are used. This is equivalent
with the contraction of the indices of tensor fields with the space-time projections of
M4 Killing vector fields representing translations. Accepting ths generalization, there is
no need to restrict oneself to 4-D M4 projection and one can also consider also Euclidian
regions identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2

Killing vector fields can be projected to space-time surface and give a representation
for classical gluon fields. These in turn can be contracted with M4 Killing vectors giv-
ing rise to gluon fields as analogs of graviton fields but with second polarization index
replaced with color index.
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(b) The standard definition for the correlation functions associated with classical time evolu-
tion is the appropriate starting point. The correlation function GXY (τ) for two dynam-
ical variables X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t + τ)dt/T

over an interval of length T , and one can also consider the limit T →∞. In the recent
case one would replace τ with the difference m1 −m2 = m of M4 coordinates of two
points at the preferred extremal and integrate over the points of the extremal to get
the average. The finite time interval T is replaced with the volume of causal diamond
in a given length scale. Zero energy state with given quantum numbers for positive and
negative energy parts of the state defines the initial and final states between which the
fields appearing in the correlation functions are defined.

(c) What correlation functions should be considered? Certainly one could calculate corre-
lation functions for the induced spinor connection given electro-weak propagators and
correlation functions for CP2 Killing vector fields giving correlation functions for gluon
fields using the description in terms of Killing vector fields. If one can uniquely separate
from the Fourier transform uniquely a term of form Z/(p2 − m2) by its momentum
dependence, the coefficient Z can be identified as coupling constant squared for the
corresponding gauge potential component and one can in principle deduce coupling
constant evolution purely classically. One can imagine of calculating spinorial propa-
gators for string world sheets in the same manner. Note that also the dependence on
color quantum numbers would be present so that in principle all that is needed could be
calculated for a single preferred extremal without the need to construct QFT limit and
to introduce color quantum numbers of fermions as spin like quantum numbers (color
quantum numbers corresponds to CP2 partial wave for the tip of the CD assigned with
the particle).

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The
notion of quantum ergodicity could however be one of the really deep ideas about coupling
constant evolution comparable to the notion of p-adic coupling constant evolution. Quantum
Ergodicity (briefly QE) would also state something extremely non-trivial also about the
construction of correlation functions and S-matrix. Because this principle is so new, the rest
of the chapter does not yet contain any applications of QE. This should not lead the reader
to under-estimate the potential power of QE.

3.6 About Deformations Of Known Extremals Of Kähler
Action

I have done a considerable amount of speculative guesswork to identify what I have used to
call preferred extremals of Kähler action. The difficulty is that the mathematical problem at
hand is extremely non-linear and that I do not know about existing mathematical literature
relevant to the situation. One must proceed by trying to guess the general constraints on
the preferred extremals which look physically and mathematically plausible. The hope is
that this net of constraints could eventually chrystallize to Eureka! Certainly the recent
speculative picture involves also wrong guesses. The need to find explicit ansatz for the
deformations of known extremals based on some common principles has become pressing.
The following considerations represent an attempt to combine the existing information to
achieve this.

3.6.1 What Might Be The Common Features Of The Deformations
Of Known Extremals

The dream is to discover the deformations of all known extremals by guessing what is common
to all of them. One might hope that the following list summarizes at least some common
features.
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Effective three-dimensionality at the level of action

(a) Holography realized as effective 3-dimensionality also at the level of action requires that
it reduces to 3-dimensional effective boundary terms. This is achieved if the contraction
jαAα vanishes. This is true if jα vanishes or is light-like, or if it is proportional to
instanton current in which case current conservation requires that CP2 projection of
the space-time surface is 3-dimensional. The first two options for j have a realization
for known extremals. The status of the third option - proportionality to instanton
current - has remained unclear.

(b) As I started to work again with the problem, I realized that instanton current could
be replaced with a more general current j = ∗B ∧ J or concretely: jα = εαβγδBβJγδ,
where B is vector field and CP2 projection is 3-dimensional, which it must be in any
case. The contractions of j appearing in field equations vanish automatically with this
ansatz.

(c) Almost topological QFT property in turn requires the reduction of effective boundary
terms to Chern-Simons terms: this is achieved by boundary conditions expressing weak
form of electric magnetic duality. If one generalizes the weak form of electric-magnetic
duality to J = Φ ∗ J one has B = dΦ and j has a vanishing divergence for 3-D CP2

projection. This is clearly a more general solution ansatz than the one based on pro-
portionality of j with instanton current and would reduce the field equations in concise
notation to Tr(THk) = 0.

(d) Any of the alternative properties of the Kähler current implies that the field equations
reduce to Tr(THk) = 0, where T and Hk are shorthands for Maxwellian energy mo-
mentum tensor and second fundamental form and the product of tensors is obvious
generalization of matrix product involving index contraction.

Could Einstein’s equations emerge dynamically?

For jα satisfying one of the three conditions, the field equations have the same form as the
equations for minimal surfaces except that the metric g is replaced with Maxwell energy
momentum tensor T .

(a) This raises the question about dynamical generation of small cosmological constant Λ:
T = Λg would reduce equations to those for minimal surfaces. For T = Λg Kähler-Dirac
gamma matrices would reduce to induced gamma matrices and the Kähler-Dirac oper-
ator would be proportional to ordinary Dirac operator defined by the induced gamma
matrices. One can also consider weak form for T = Λg obtained by restricting the con-
sideration to a sub-space of tangent space so that space-time surface is only “partially”
minimal surface but this option is not so elegant although necessary for other than CP2

type vacuum extremals.

(b) What is remarkable is that T = Λg implies that the divergence of T which in the
general case equals to jβJαβ vanishes. This is guaranteed by one of the conditions for
the Kähler current. Since also Einstein tensor has a vanishing divergence, one can ask
whether the condition to T = κG + Λg could the general condition. This would give
Einstein’s equations with cosmological term besides the generalization of the minimal
surface equations. GRT would emerge dynamically from the non-linear Maxwell’s theory
although in slightly different sense as conjectured [K79] ! Note that the expression for
G involves also second derivatives of the imbedding space coordinates so that actually a
partial differential equation is in question. If field equations reduce to purely algebraic
ones, as the basic conjecture states, it is possible to have Tr(GHk) = 0 and Tr(gHk) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents.
The recent proposal would give the analog of ordinary Einstein equations as a dynamical
constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.
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(c) Minimal surface property is physically extremely nice since field equations can be inter-
preted as a non-linear generalization of massless wave equation: something very natural
for non-linear variant of Maxwell action. The theory would be also very “stringy” al-
though the fundamental action would not be space-time volume. This can however hold
true only for Euclidian signature. Note that for CP2 type vacuum extremals Einstein
tensor is proportional to metric so that for them the two options are equivalent. For
their small deformations situation changes and it might happen that the presence of G
is necessary. The GRT limit of TGD discussed in [K79] [L10] indeed suggests that CP2

type solutions satisfy Einstein’s equations with large cosmological constant and that the
small observed value of the cosmological constant is due to averaging and small volume
fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

(d) For massless extremals and their deformations T = Λg cannot hold true. The reason is
that for massless extremals energy momentum tensor has component T vv which actually
quite essential for field equations since one has Hk

vv = 0. Hence for massless extremals
and their deformations T = Λg cannot hold true if the induced metric has Hamilton-
Jacobi structure meaning that guu and gvv vanish. A more general relationship of
form T = κG+ ΛG can however be consistent with non-vanishing T vv but require that
deformation has at most 3-D CP2 projection (CP2 coordinates do not depend on v).

(e) The non-determinism of vacuum extremals suggest for their non-vacuum deformations
a conflict with the conservation laws. In, also massless extremals are characterized by
a non-determinism with respect to the light-like coordinate but like-likeness saves the
situation. This suggests that the transformation of a properly chosen time coordinate
of vacuum extremal to a light-like coordinate in the induced metric combined with
Einstein’s equations in the induced metric of the deformation could allow to handle the
non-determinism.

Are complex structure of CP2 and Hamilton-Jacobi structure of M4 respected by
the deformations?

The complex structure of CP2 and Hamilton-Jacobi structure of M4 could be central for the
understanding of the preferred extremal property algebraically.

(a) There are reasons to believe that the Hermitian structure of the induced metric ((1, 1)
structure in complex coordinates) for the deformations of CP2 type vacuum extremals
could be crucial property of the preferred extremals. Also the presence of light-like
direction is also an essential elements and 3-dimensionality of M4 projection could
be essential. Hence a good guess is that allowed deformations of CP2 type vacuum
extremals are such that (2, 0) and (0, 2) components the induced metric and/or of the
energy momentum tensor vanish. This gives rise to the conditions implying Virasoro
conditions in string models in quantization:

gξiξj = 0 , g
ξ
i
ξ
j = 0 , i, j = 1, 2 . (3.6.1)

Holomorphisms of CP2 preserve the complex structure and Virasoro conditions are
expected to generalize to 4-dimensional conditions involving two complex coordinates.
This means that the generators have two integer valued indices but otherwise obey an
algebra very similar to the Virasoro algebra. Also the super-conformal variant of this
algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for CP2 type vacuum extremals.
One expects similar conditions hold true also in field space, that is for M4 coordinates.

(b) The integrable decompositionM4(m) = M2(m)+E2(m) ofM4 tangent space to longitu-
dinal and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi
structure- could be a very general property of preferred extremals and very natural since
non-linear Maxwellian electrodynamics is in question. This decomposition led rather
early to the introduction of the analog of complex structure in terms of what I called
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Hamilton-Jacobi coordinates (u, v, w,w) for M4. (u, v) defines a pair of light-like co-
ordinates for the local longitudinal space M2(m) and (w,w) complex coordinates for
E2(m). The metric would not contain any cross terms between M2(m) and E2(m):
guw = gvw = guw = gvw = 0.

A good guess is that the deformations of massless extremals respect this structure.
This condition gives rise to the analog of the constraints leading to Virasoro conditions
stating the vanishing of the non-allowed components of the induced metric. guu = gvv =
gww = gww = guw = gvw = guw = gvw = 0. Again the generators of the algebra would
involve two integers and the structure is that of Virasoro algebra and also generalization
to super algebra is expected to make sense. The moduli space of Hamilton-Jacobi
structures would be part of the moduli space of the preferred extremals and analogous
to the space of all possible choices of complex coordinates. The analogs of infinitesimal
holomorphic transformations would preserve the modular parameters and give rise to a
4-dimensional Minkowskian analog of Virasoro algebra. The conformal algebra acting
on CP2 coordinates acts in field degrees of freedom for Minkowskian signature.

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically
conditions stating that the Maxwellian energy momentum tensor has no common index pairs
with the second fundamental form. For the deformations of CP2 type vacuum extremals T
is a complex tensor of type (1, 1) and second fundamental form Hk a tensor of type (2, 0)
and (0, 2) so that Tr(THk) = is true. This requires that second light-like coordinate of
M4 is constant so that the M4 projection is 3-dimensional. For Minkowskian signature of
the induced metric Hamilton-Jacobi structure replaces conformal structure. Here the depen-
dence of CP2 coordinates on second light-like coordinate of M2(m) only plays a fundamental
role. Note that now T vv is non-vanishing (and light-like). This picture generalizes to the
deformations of cosmic strings and even to the case of vacuum extremals.

3.6.2 What Small Deformations Of CP2 Type Vacuum Extremals
Could Be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which
would have 4-D CP2 and M4 projections - the Maxwell phase analogous to the solutions
of Maxwell’s equations that I conjectured long time ago. It however turned out that the
dimensions of the projections can be (DM4 ≤ 3, DCP2 = 4) or (DM4 = 4, DCP2 ≤ 3).
What happens is essentially breakdown of linear superposition so that locally one can have
superposition of modes which have 4-D wave vectors in the same direction. This is actually
very much like quantization of radiation field to photons now represented as separate space-
time sheets and one can say that Maxwellian superposition corresponds to union of separate
photonic space-time sheets in TGD.

Approximate linear superposition of fields is fundamental in standard physics framework and
is replaced in TGD with a linear superposition of effects of classical fields on a test particle
topologically condensed simultaneously to several space-time sheets. One can say that linear
superposition is replaced with a disjoint union of space-time sheets. In the following I shall
restrict the consideration to the deformations of CP2 type vacuum extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

(a) Effective 3-dimensionality for action (holography) requires that action decomposes to
vanishing jαAα term + total divergence giving 3-D “boundary” terms. The first term
certainly vanishes (giving effective 3-dimensionality) for
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DβJ
αβ = jα = 0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed
GRT limit these equations are true.

(b) How to obtain empty space Maxwell equations jα = 0? The answer is simple: assume
self duality or its slight modification:

J = ∗J

holding for CP2 type vacuum extremals or a more general condition

J = k ∗ J ,

In the simplest situation k is some constant not far from unity. * is Hodge dual involving
4-D permutation symbol. k = constant requires that the determinant of the induced
metric is apart from constant equal to that of CP2 metric. It does not require that
the induced metric is proportional to the CP2 metric, which is not possible since M4

contribution to metric has Minkowskian signature and cannot be therefore proportional
to CP2 metric.

One can consider also a more general situation in which k is scalar function as a gen-
eralization of the weak electric-magnetic duality. In this case the Kähler current is
non-vanishing but divergenceless. This also guarantees the reduction to Tr(THk) = 0.
In this case however the proportionality of the metric determinant to that for CP2

metric is not needed. This solution ansatz becomes therefore more general.

(c) Field equations reduce with these assumptions to equations differing from minimal sur-
faces equations only in that metric g is replaced by Maxwellian energy momentum tensor
T . Schematically:

Tr(THk) = 0 ,

where T is the Maxwellian energy momentum tensor and Hk is the second fundamental
form - asymmetric 2-tensor defined by covariant derivative of gradients of imbedding
space coordinates.

How to satisfy the condition Tr(THk) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization
of massless wave equations. It would be also nice to have the vanishing of the terms involving
Kähler current in field equations as a consequence of this condition. Indeed, T = κG + Λg
implies this. In the case of CP2 vacuum extremals one cannot distinguish between these
options since CP2 itself is constant curvature space with G ∝ g. Furthermore, if G and g
have similar tensor structure the algebraic field equations for G and g are satisfied separately
so that one obtains minimal surface property also now. In the following minimal surface
option is considered.

(a) The first opton is achieved if one has

T = Λg .

Maxwell energy momentum tensor would be proportional to the metric! One would have
dynamically generated cosmological constant! This begins to look really interesting since
it appeared also at the proposed GRT limit of TGD [L10] (see http://tinyurl.com/

hzkldnb). Note that here also non-constant value of Λ can be considered and would
correspond to a situation in which k is scalar function: in this case the the determinant
condition can be dropped and one obtains just the minimal surface equations.

http://tinyurl.com/hzkldnb
http://tinyurl.com/hzkldnb
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(b) Very schematically and forgetting indices and being sloppy with signs, the expression
for T reads as

T = JJ − g/4Tr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should
be proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on
metric and is constant.

For CP2 type vacuum extremals one obtains

T = −g + g = 0 .

Cosmological constant would vanish in this case.

(c) Could it happen that for deformations a small value of cosmological constant is gener-
ated?

The condition would reduce to

JJ = (Λ− 1)g .

Λ must relate to the value of parameter k appearing in the generalized self-duality
condition. For the most general ansatz Λ would not be constant anymore.

This would generalize the defining condition for Kähler form

JJ = −g (i2 = −1 geometrically)

stating that the square of Kähler form is the negative of metric. The only modification
would be that index raising is carried out by using the induced metric containing also
M4 contribution rather than CP2 metric.

(d) Explicitly:

JαµJ
µ
β = (Λ− 1)gαβ .

Cosmological constant would measure the breaking of Kähler structure. By writing
g = s + m and defining index raising of tensors using CP2 metric and their product
accordingly, this condition can be also written as

Jm = (Λ− 1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional
to the CP2 metric. If k is scalar function, this condition can be dropped. Cosmological
constant would not be constant anymore but the dependence on k would drop out from
the field equations and one would hope of obtaining minimal surface equations also now. It
however seems that the dimension of M4 projection cannot be four. For 4-D M4 projection
the contribution of the M2 part of the M4 metric gives a non-holomorphic contribution to
CP2 metric and this spoils the field equations.

For T = κG+ Λg option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K79] [L10]. The interpretation in this case is that the average
value of cosmological constant is small since the portion of space-time volume containing
generalized Feynman diagrams is very small.
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More detailed ansatz for the deformations of CP2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the
induced metric is apart from constant conformal factor the metric of CP2. This would guar-
antee self-duality apart from constant factor and jα = 0. Metric would be in complex CP2

coordinates tensor of type (1, 1) whereas CP2 Riemann connection would have only purely
holomorphic or anti-holomorphic indices. Therefore CP2 contributions in Tr(THk) would
vanish identically. M4 degrees of freedom however bring in difficulty. The M4 contribution
to the induced metric should be proportional to CP2 metric and this is impossible due to the
different signatures. The M4 contribution to the induced metric breaks its Kähler property
but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of CP2 type vacuum
extremals is following.

(a) Physical intuition suggests that M4 coordinates can be chosen so that one has inte-
grable decomposition to longitudinal degrees of freedom parametrized by two light-like
coordinates u and v and to transversal polarization degrees of freedom parametrized by
complex coordinate w and its conjugate. M4 metric would reduce in these coordinates
to a direct sum of longitudinal and transverse parts. I have called these coordinates
Hamilton-Jacobi coordinates.

(b) w would be holomorphic function of CP2 coordinates and therefore satisfy the analog
of massless wave equation. This would give hopes about rather general solution ansatz.
u and v cannot be holomorphic functions of CP2 coordinates. Unless wither u or
v is constant, the induced metric would receive contributions of type (2, 0) and (0, 2)
coming from u and v which would break Kähler structure and complex structure. These
contributions would give no-vanishing contribution to all minimal surface equations.
Therefore either u or v is constant: the coordinate line for non-constant coordinate -say
u- would be analogous to the M4 projection of CP2 type vacuum extremal.

(c) With these assumptions the induced metric would remain (1, 1) tensor and one might
hope that Tr(THk) contractions vanishes for all variables except u because the there
are no common index pairs (this if non-vanishing Christoffel symbols for H involve only
holomorphic or anti-holomorphic indices in CP2 coordinates). For u one would obtain
massless wave equation expressing the minimal surface property.

(d) If the value of k is constant the determinant of the induced metric must be proportional
to the determinant of CP2 metric. The induced metric would contain only the contri-
bution from the transversal degrees of freedom besides CP2 contribution. Minkowski
contribution has however rank 2 as CP2 tensor and cannot be proportional to CP2

metric. It is however enough that its determinant is proportional to the determinant of
CP2 metric with constant proportionality coefficient. This condition gives an additional
non-linear condition to the solution. One would have wave equation for u (also w and its
conjugate satisfy massless wave equation) and determinant condition as an additional
condition.

The determinant condition reduces by the linearity of determinant with respect to its
rows to sum of conditions involved 0, 1, 2 rows replaced by the transversal M4 con-
tribution to metric given if M4 metric decomposes to direct sum of longitudinal and
transversal parts. Derivatives with respect to derivative with respect to particular CP2

complex coordinate appear linearly in this expression they can depend on u via the
dependence of transversal metric components on u. The challenge is to show that this
equation has (or does not have) non-trivial solutions.

(e) If the value of k is scalar function the situation changes and one has only the minimal
surface equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations
are in question, equations reduces to non-linear generalizations of Euclidian massless wave
equations, and possibly space-time dependent cosmological constant pops up dynamically.
These properties are true also for the GRT limit of TGD [L10] (see http://tinyurl.com/

hzkldnb).

http://tinyurl.com/hzkldnb
http://tinyurl.com/hzkldnb
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3.6.3 Hamilton-Jacobi Conditions In Minkowskian Signature

The maximally optimistic guess is that the basic properties of the deformations of CP2

type vacuum extremals generalize to the deformations of other known extremals such as
massless extremals, vacuum extremals with 2-D CP2 projection which is Lagrangian manifold,
and cosmic strings characterized by Minkowskian signature of the induced metric. These
properties would be following.

(a) The recomposition of M4 tangent space to longitudinal and transversal parts giving
Hamilton-Jacobi structure. The longitudinal part has hypercomplex structure but the
second light-like coordinate is constant: this plays a crucial role in guaranteeing the
vanishing of contractions in Tr(THk). It is the algebraic properties of g and T which
are crucial. T can however have light-like component T vv. For the deformations of CP2

type vacuum extremals (1, 1) structure is enough and is guaranteed if second light-like
coordinate of M4 is constant whereas w is holomorphic function of CP2 coordinates.

(b) What could happen in the case of massless extremals? Now one has 2-D CP2 projection
in the initial situation and CP2 coordinates depend on light-like coordinate u and single
real transversal coordinate. The generalization would be obvious: dependence on single
light-like coordinate u and holomorphic dependence on w for complex CP2 coordinates.
The constraint is T = Λg cannot hold true since T vv is non-vanishing (and light-like).
This property restricted to transversal degrees of freedom could reduce the field equa-
tions to minimal surface equations in transversal degrees of freedom. The transversal
part of energy momentum tensor would be proportional to metric and hence covariantly
constant. Gauge current would remain light-like but would not be given by j = ∗dφ∧J .
T = κG+ Λg seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T = κG+ λg ,

which has structure (1, 1) in both M2(m) and E2(m) degrees of freedom apart from the
presence of T vv component with deformations having no dependence on v. If the second
fundamental form has (2, 0)+(0, 2) structure, the minimal surface equations are satisfied
provided Kähler current satisfies on of the proposed three conditions and if G and g have
similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints
leading to Virasoro conditions in quantization to give

guu = 0 , gvv = 0 , gww = 0 , gww = 0 . (3.6.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for
which an identification in terms of non-local Yangian symmetry [A27] [B39, B30, B31] has
been proposed [K76]. The number of conditions is four and the same as the number of inde-
pendent field equations. One can consider similar conditions also for the energy momentum
tensor T but allowing non-vanishing component T vv if deformations has no v-dependence.
This would solve the field equations if the gauge current vanishes or is light-like. On this case
the number of equations is 8. First order differential equations are in question and they can
be also interpreted as conditions fixing the coordinates used since there is infinite number of
manners to choose the Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations
in the linear case by writing the solution as a superposition of left and right propagating
solutions:

ξk = fk+(u,w) + fk+(v, w) . (3.6.3)
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This could guarantee that second fundamental form is of form (2, 0)+(0, 2) in both M2 and
E2 part of the tangent space and these terms if Tr(THk) vanish identically. The remaining
terms involve contractions of Tuw, Tuw and T vw, T vw with second fundamental form. Also
these terms should sum up to zero or vanish separately. Second fundamental form has
components coming from fk+ and fk−

Second fundamental form Hk has as basic building bricks terms Ĥk given by

Ĥk
αβ = ∂α∂βh

k +
(
k
l m

)
∂αh

l∂βh
m . (3.6.4)

For the proposed ansatz the first terms give vanishing contribution to Hk
uv. The terms

containing Christoffel symbols however give a non-vanishing contribution and one can allow
only fk+ or fk− as in the case of massless extremals. This reduces the dimension of CP2

projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type Jww
whose contravariant counterpart gives rise to space-like current component. Juw and Juw give
rise to light-like currents components. The condition would state that the Jww is covariantly
constant. Solutions would be characterized by a constant Kähler magnetic field. Also electric
field is represent. The interpretation both radiation and magnetic flux tube makes sense.

3.6.4 Deformations Of Cosmic Strings

In the physical applications it has been assumed that the thickening of cosmic strings to
Kähler magnetic flux tubes takes place. One indeed expects that the proposed construction
generalizes also to the case of cosmic strings having the decomposition X4 = X2 × Y 2 ⊂
M4 × CP2, where X2 is minimal surface and Y 2 a complex homologically non-trivial sub-
manifold of CP2. Now the starting point structure is Hamilton-Jacobi structure for M2

m×Y 2

defining the coordinate space.

(a) The deformation should increase the dimension of either CP2 or M4 projection or both.
How this thickening could take place? What comes in mind that the string orbits X2 can
be interpreted as a distribution of longitudinal spaces M2(x) so that for the deformation
w coordinate becomes a holomorphic function of the natural Y 2 complex coordinate so
that M4 projection becomes 4-D but CP2 projection remains 2-D. The new contribution
to the X2 part of the induced metric is vanishing and the contribution to the Y 2 part
is of type (1, 1) and the ansatz T = κG+ Λg might be needed as a generalization of the
minimal surface equations The ratio of κ and G would be determined from the form
of the Maxwellian energy momentum tensor and be fixed at the limit of undeformed
cosmic strong to T = (ag(Y 2) − bg(Y 2). The value of cosmological constant is now
large, and overall consistency suggests that T = κG+ Λg is the correct option also for
the CP2 type vacuum extremals.

(b) One could also imagine that remaining CP2 coordinates could depend on the complex
coordinate of Y 2 so that also CP2 projection would become 4-dimensional. The induced
metric would receive holomorphic contributions in Y 2 part. As a matter fact, this option
is already implied by the assumption that Y 2 is a complex surface of CP2.

3.6.5 Deformations Of Vacuum Extremals?

What about the deformations of vacuum extremals representable as maps from M4 to CP2?

(a) The basic challenge is the non-determinism of the vacuum extremals. One should per-
form the deformation so that conservation laws are satisfied. For massless extremals
there is also non-determinism but it is associated with the light-like coordinate so that
there are no problems with the conservation laws. This would suggest that a properly
chosen time coordinate consistent with Hamilton-Jacobi decomposition becomes light-
like coordinate in the induced metric. This poses a conditions on the induced metric.
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(b) Physical intuition suggests that one cannot require T = Λg since this would mean that
the rank of T is maximal whereas the original situation corresponds to the vanishing of
T . For small deformations rank two for T looks more natural and one could think that
T is proportional to a projection of metric to a 2-D subspace. The vision about the
long length scale limit of TGD is that Einstein’s equations are satisfied and this would
suggest T = kG or T = κG + Λg. The rank of T could be smaller than four for this
ansatz and this conditions binds together the values of κ and G.

(c) These extremals have CP2 projection which in the generic case is 2-D Lagrangian sub-
manifold Y 2. Again one could assume Hamilton-Jacobi coordinates for X4. For CP2

one could assume Darboux coordinates (Pi, Qi), i = 1, 2, in which one has A = PidQ
i,

and that Y 2 ⊂ CP2 corresponds to Qi = constant. In principle Pi would depend on
arbitrary manner on M4 coordinates. It might be more convenient to use as coordinates
(u, v) for M2 and (P1, P2) for Y 2. This covers also the situation when M4 projection
is not 4-D. By its 2-dimensionality Y 2 allows always a complex structure defined by its
induced metric: this complex structure is not consistent with the complex structure of
CP2 (Y 2 is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y 2 is a 2-dimensional
sub-manifold X2 of X4 and defines also 2-D sub-manifold of M4. The following pic-
ture suggests itself. The projection of X2 to M4 can be seen for a suitable choice of
Hamilton-Jacobi coordinates as an analog of Lagrangian sub-manifold in M4 that is as
surface for which v and Im(w) vary and u and Re(w) are constant. X2 would be ob-
tained by allowing u and Re(w) to vary: as a matter fact, (P1, P2) and (u,Re(w)) would
be related to each other. The induced metric should be consistent with this picture.
This would requires guRe(w) = 0.

For the deformations Q1 and Q2 would become non-constant and they should depend
on the second light-like coordinate v only so that only guu and guw and guw gw,w and
gw,w receive contributions which vanish. This would give rise to the analogs of Virasoro
conditions guaranteeing that T is a tensor of form (1, 1) in both M2 and E2 indices and
that there are no cross components in the induced metric. A more general formulation
states that energy momentum tensor satisfies these conditions. The conditions on T
might be equivalent with the conditions for g and G separately.

(d) Einstein’s equations provide an attractive manner to achieve the vanishing of effective
3-dimensionality of the action. Einstein equations would be second order differential
equations and the idea that a deformation of vacuum extremal is in question suggests
that the dynamics associated with them is in directions transversal to Y 2 so that only
the deformation is dictated partially by Einstein’s equations.

(e) Lagrangian manifolds do not involve complex structure in any obvious manner. One
could however ask whether the deformations could involve complex structure in a natural
manner in CP2 degrees of freedom so that the vanishing of gww would be guaranteed
by holomorphy of CP2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the
complex structure should relate to the geometry of CP2 somehow. The complex co-
ordinate defined by say z = P1 + iQ1 for the deformation suggests itself. This would
suggest that at the limit when one puts Q1 = 0 one obtains P1 = P1(Re(w)) for the
vacuum extremals and the deformation could be seen as an analytic continuation of
real function to region of complex plane. This is in spirit with the algebraic approach.
The vanishing of Kähler current requires that the Kähler magnetic field is covariantly
constant: DzJ

zz = 0 and DzJ
zz = 0 .

(f) One could consider the possibility that the resulting 3-D sub-manifold of CP2 can be
regarded as contact manifold with induced Kähler form non-vanishing in 2-D section
with natural complex coordinates. The third coordinate variable- call it s- of the contact
manifold and second coordinate of its transversal section would depend on time space-
time coordinates for vacuum extremals. The coordinate associated with the transversal
section would be continued to a complex coordinate which is holomorphic function of w
and u.
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(g) The resulting thickened magnetic flux tubes could be seen as another representation of
Kähler magnetic flux tubes: at this time as deformations of vacuum flux tubes rather
than cosmic strings. For this ansatz it is however difficult to imagine deformations
carrying Kähler electric field.

3.6.6 About The Interpretation Of The Generalized Conformal Al-
gebras

The long-standing challenge has been finding of the direct connection between the super-
conformal symmetries assumed in the construction of the geometry of the “world of classical
worlds” ( WCW ) and possible conformal symmetries of field equations. 4-dimensionality
and Minkowskian signature have been the basic problems. The recent construction provides
new insights to this problem.

(a) In the case of string models the quantization of the Fourier coefficients of coordinate
variables of the target space gives rise to Kac-Moody type algebra and Virasoro algebra
generators are quadratic in these. Also now Kac-Moody type algebra is expected. If one
were to perform a quantization of the coefficients in Laurents series for complex CP2

coordinates, one would obtain interpretation in terms of su(3) = u(2)+t decomposition,
where t corresponds to CP3: the oscillator operators would correspond to generators in t
and their commutator would give generators in u(2). SU(3)/SU(2) coset representation
for Kac-Moody algebra would be in question. Kac-Moody algebra would be associated
with the generators in both M4 and CP2 degrees of freedom. This kind of Kac-Moody
algebra appears in quantum TGD.

(b) The constraints on induced metric imply a very close resemblance with string models
and a generalization of Virasoro algebra emerges. An interesting question is how the two
algebras acting on coordinate and field degrees of freedom relate to the super-conformal
algebras defined by the symplectic group of δM4

+ ×CP2 acting on space-like 3-surfaces
at boundaries of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It
has been conjectured that these algebras allow a continuation to the interior of space-
time surface made possible by its slicing by 2-surfaces parametrized by 2-surfaces. The
proposed construction indeed provides this kind of slicings in both M4 and CP2 factor.

(c) In the recent case, the algebras defined by the Fourier coefficients of field variables
would be Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would
be expressed in terms of the Kac-Moody algebra in the standard Sugawara construction
applied in string models. The algebra acting on field space would be analogous to the
conformal algebra assignable to the symplectic algebra so that also symplectic algebra
is present. Stringy pragmatist could imagine quantization of symplectic algebra by
replacing CP2 coordinates in the expressions of Hamiltonians with oscillator operators.
This description would be counterpart for the construction of spinor harmonics in WCW
and might provide some useful insights.

(d) For given type of space-time surface either CP2 or M4 corresponds to Kac-Moody
algebra but not both. From the point of view of quantum TGD it looks as that something
were missing. An analogous problem was encountered at GRT limit of TGD [L10].
When Euclidian space-time regions are allowed Einstein-Maxwell action is able to mimic
standard model with a surprising accuracy but there is a problem: one obtains either
color charges or M4 charges but not both. Perhaps it is not enough to consider either
CP2 type vacuum extremal or its exterior but both to describe particle: this would give
the direct product of the Minkowskian and Euclidian algebras acting on tensor product.
This does not however seem to be consistent with the idea that the two descriptions are
duality related (the analog of T-duality).

3.7 Appendix: Hamilton-Jacobi Structure

In the following the definition of Hamilton-Jacobi structure is discussed in detail.
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3.7.1 Hermitian And Hyper-Hermitian Structures

The starting point is the observation that besides the complex numbers forming a number
field there are hyper-complex numbers. Imaginary unit i is replaced with e satisfying e2 = 1.
One obtains an algebra but not a number field since the norm is Minkowskian norm x2− y2,
which vanishes at light-cone x = y so that light-like hypercomplex numbers x ± e) do not
have inverse. One has “almost” number field.

Hyper-complex numbers appear naturally in 2-D Minkowski space since the solutions of a
massless field equation can be written as f = g(u = t−ex)+h(v = t+ex) whith e2 = 1 realized
by putting e = 1. Therefore Wick rotation relates sums of holomorphic and antiholomorphic
functions to sums of hyper-holomorphic and anti-hyper-holomorphic functions. Note that u
and v are hyper-complex conjugates of each other.

Complex n-dimensional spaces allow Hermitian structure. This means that the metric has
in complex coordinates (z1, ...., zn) the form in which the matrix elements of metric are non-
vanishing only between zi and complex conjugate of zj . In 2-D case one obtains just ds2 =
gzzdzdz. Note that in this case metric is conformally flat since line element is proportional
to the line element ds2 = dzdz of plane. This form is always possible locally. For complex
n-D case one obtains ds2 = gijdz

idzj . gij = gji guaranteeing the reality of ds2. In 2-D case
this condition gives gzz = gzz.

How could one generalize this line element to hyper-complex n-dimensional case. In 2-D case
Minkowski space M2 one has ds2 = guvdudv, guv = 1. The obvious generalization would
be the replacement ds2 = guivjdu

idvj . Also now the analogs of reality conditions must hold
with respect to ui ↔ vi.

3.7.2 Hamilton-Jacobi Structure

Consider next the path leading to Hamilton-Jacobi structure.

4-D Minkowski space M4 = M2 × E2 is Cartesian product of hyper-complex M2 with com-
plex plane E2, and one has ds2 = dudv + dzdz in standard Minkowski coordinates. One
can also consider more general integrable decompositions of M4 for which the tangent space
TM4 = M4 at each point is decomposed to M2(x) × E2(x). The physical analogy would
be a position dependent decomposition of the degrees of freedom of massless particle to lon-
gitudinal ones (M2(x): light-like momentum is in this plane) and transversal ones (E2(x):
polarization vector is in this plane). Cylindrical and spherical variants of Minkowski coordi-
nates define two examples of this kind of coordinates (it is perhaps a good exercise to think
what kind of decomposition of tangent space is in question in these examples). An interesting
mathematical problem highly relevant for TGD is to identify all possible decompositions of
this kind for empty Minkowski space.

The integrability of the decomposition means that the planes M2(x) are tangent planes for
2-D surfaces of M4 analogous to Euclidian string world sheet. This gives slicing of M4 to
Minkowskian string world sheets parametrized by euclidian string world sheets. The question
is whether the sheets are stringy in a strong sense: that is minimal surfaces. This is not the
case: for spherical coordinates the Euclidian string world sheets would be spheres which are
not minimal surfaces. For cylindrical and spherical coordinates howeverr M2(x) integrate to
plane M2, which is minimal surface.

Integrability means in the case of M2(x) the existence of light-like vector field J whose flow
lines define a global coordinate. Its existence implies also the existence of its conjugate
and together these vector fields give rise to M2(x) at each point. This means that one has
J = Ψ∇Φ: Φ indeed defines the global coordinate along flow lines. In the case of M2 either
the coordinate u or v would be the coordinate in question. This kind of flows are called
Beltrami flows. Obviously the same holds for the transversal planes E2.

One can generalize this metric to the case of general 4-D space with Minkowski signature of
metric. At least the elements guv and gzz are non-vanishing and can depend on both u, v
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and z, z. They must satisfy the reality conditions gzz = gzz and guv = gvu where complex
conjugation in the argument involves also u↔ v besides z ↔ z.

The question is whether the components guz, gvz, and their complex conjugates are non-
vanishing if they satisfy some conditions. They can. The direct generalization from complex
2-D space would be that one treats u and v as complex conjugates and therefore requires a
direct generalization of the hermiticity condition

guz = gvz , gvz = guz .

This would give complete symmetry with the complex 2-D (4-D in real sense) spaces. This
would allow the algebraic continuation of hermitian structures to Hamilton-Jacobi structures
by just replacing i with e for some complex coordinates.



Chapter 4

WCW Spinor Structure

4.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration
space (“world of classical worlds” (WCW)). The possibility to express the components of
WCW Kähler metric as anti-commutators of WCW gamma matrices becomes a practical
tool if one assumes that WCW gamma matrices correspond to Noether super charges for
super-symplectic algebra of WCW. The possibility to express the Kähler metric also in terms
of Kähler function identified as Kähler for Euclidian space-time regions leads to a duality
analogous to AdS/CFT duality.

4.1.1 Basic Principles

Physical states should correspond to the modes of the WCW spinor fields and the identifi-
cation of the fermionic oscillator operators as super-symplectic charges is highly attractive.
WCW spinor fields cannot, as one might naively expect, be carriers of a definite spin and
unit fermion number. Concerning the construction of the WCW spinor structure there are
some important clues.

Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can be
understood geometrically in terms of the WCW spinor structure in the sense that the anti-
commutation relations for WCW gamma matrices require anti-commutation relations for the
oscillator operators for free second quantized induced spinor fields.

(a) One must identify the counterparts of second quantized fermion fields as objects closely
related to the configuration space spinor structure. [B56] has as its basic field the anti-
commuting field Γk(x), whose Fourier components are analogous to the gamma matrices
of the configuration space and which behaves like a spin 3/2 fermionic field rather than
a vector field. This suggests that the are analogous to spin 3/2 fields and therefore
expressible in terms of the fermionic oscillator operators so that their naturally derives
from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there
would be hopes of describing the whole physics in terms of WCW spinor field. Clearly,
fermionic oscillator operators would act in degrees of freedom analogous to the spin
degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in
degrees of freedom analogous to the “orbital” degrees of freedom of the ordinary spinor
field.

160
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(b) The classical theory for the bosonic fields is an essential part of the WCW geometry.
It would be very nice if the classical theory for the spinor fields would be contained in
the definition of the WCW spinor structure somehow. The properties of the associated
with the induced spinor structure are indeed very physical. The modified massless Dirac
equation for the induced spinors predicts a separate conservation of baryon and lepton
numbers. Contrary to the long held belief it seems that covariantly constant right
handed neutrino does not generate . The differences between quarks and leptons result
from the different couplings to the CP2 Kähler potential. In fact, these properties are
shared by the solutions of massless Dirac equation of the imbedding space.

(c) Since TGD should have a close relationship to the ordinary quantum field theories it
would be highly desirable that the second quantized free induced spinor field would
somehow appear in the definition of the WCW geometry. This is indeed true if the
complexified WCW gamma matrices are linearly related to the oscillator operators as-
sociated with the second quantized induced spinor field on the space-time surface and
its boundaries. There is actually no deep reason forbidding the gamma matrices of the
WCW to be spin half odd-integer objects whereas in the finite-dimensional case this
is not possible in general. In fact, in the finite-dimensional case the equivalence of the
spinorial and vectorial vielbeins forces the spinor and vector representations of the viel-
bein group SO(D) to have same dimension and this is possible for D = 8-dimensional
Euclidian space only. This coincidence might explain the success of 10-dimensional su-
per string models for which the physical degrees of freedom effectively correspond to an
8-dimensional Euclidian space.

(d) It took a long time to realize that the ordinary definition of the gamma matrix algebra
in terms of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced
with

{γ†A, γB} = iJAB .

where JAB denotes the matrix elements of the Kähler form of the WCW. The presence
of the Hermitian conjugation is necessary because WCW gamma matrices carry fermion
number. This definition is numerically equivalent with the standard one in the complex
coordinates. The realization of this delicacy is necessary in order to understand how
the square of the WCW Dirac operator comes out correctly.

(e) TGD as a generalized number theory vision leads to the understanding of how the second
quantization of the induced spinor fields should be carried out and space-time conformal
symmetries allow to explicitly solve the Dirac equation associated with the Kähler-Dirac
action in the interior and at the 3-D light like causal determinants. An essentially new
element is the notion of number theoretic braid forced by the fact that the Kähler-Dirac
operator allows only finite number of generalized eigen modes so that the number of
fermionic oscillator operators is finite. As a consequence, anti-commutation relations
can be satisfied only for a finite set of points defined by the number theoretic braid,
which is uniquely identifiable. The interpretation is in terms of finite measurement
resolution. The finite Clifford algebra spanned by the fermionic oscillator operators is
interpreted as the factor space M/N of infinite hyper-finite factors of type II1 defined
by WCW Clifford algebra N and included Clifford algebra M ⊂ N interpreted as
the characterizer of the finite measurement resolution. Note that the finite number
of eigenvalues guarantees that Dirac determinant identified as the exponent of Kähler
function is finite. Finite number of eigenvalues is also essential for number theoretic
universality.

Identification of WCW gamma matrices as super Hamiltonians and expression
of WCW Kähler metric

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded
as a generalization N super algebras by replacing N with the number of solutions of the
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Kähler-Dirac equation which can be infinite. This leads to QFT SUSY limit of TGD different
in many respects crucially from standard SUSYs.

WCW gamma matrices are identified as super generators of super-symplectic and are ex-
pressible in terms of these oscillator operators. In the original proposal super-symplectic
and super charges were assumed to be expressible as integrals over 2-dimensional partonic
surfaces X2 and interior degrees of freedom of X4 can be regarded as zero modes represent-
ing classical variables in one-one correspondence with quantal degrees of freedom at X3

l as
indeed required by quantum measurement theory.

It took quite long time to realize that it is possible to second quantize induced spinor fields by
using just the standard canonical quantization. The only new element is the replacement of
the ordinary gamma matrices with K-D gamma matrices identified as canonical momentum
currents contracted with the imbedding space gamma matrices. This allows to deduce super-
generators of super-symplectic algebra as Noether supercharges assignable to the fermionic
strings connecting partonic 2-surfaces. Their anti-commutators giving the matrix elements
of WCW Kähler metric can be deduced explicitly. This is a decisive calculational advantage
since the formal expression of the matrix elements in terms of second derivatives of Kähler
function is not possible to calculate with the recent understanding. WCW gamma matrices
provide also a natural identification for the counterparts of fermionic oscillator operators
creating physical states.

One can also deduce the fermionic Hamiltonians as conserved Noether charges. The expres-
sions for Hamiltonians generalized the earlier expressions as Hamiltonian fluxes in the sense
that the imbedding space Hamiltonian is replaced with the corresponding fermionic Noether
charge. This replacement is analogous to a transition from field theory to string models
requiring the replacement of points of partonic 2-surfaces with stringy curves connecting the
points of two partonic 2-surfaces. One can consider also several strings emanating from a
given partonic 2-surface. This leads to an extension of the super-symplectic algebra to a Yan-
gian, whose generators are multi-local (multi-stringy) operators. This picture does not mean
loss of effective 2-dimensionality implied by strong form of general coordinate invariance but
allows genuine generalization of super-conformal invariance in 4-D context.

4.1.2 Kähler-Dirac Action

Supersymmetry fixes the interior part of Kähler-Dirac uniquely. The K-D gamma matrices
are contractions of the canonical momentum currents of Kähler action with the imbedding
space gamma matrices and this gives field equations consistent with hermitian conjugation.
The modes of K-D equation must be restricted to 2-D string world sheets with vanishing
induced W boson fields in order that they have a well-defined em charge. It is not yet clear
whether this restriction is part of variational principle or whether it is a property of spinor
modes. For the latter option modes one can have 4-D modes if the space-time surface has CP2

projection carrying vanishing W gauge potentials. Also covariantly constant right-handed
neutrino defines this kind of mode.

The boundary terms of Kähler action and Kähler-Dirac action

A long standing question has been whether Kähler action could contain Chern-Simons term
cancelling the Chern-Simons contribution of Kähler action at space-time interior at partonic
orbit reducing to Chern-Simons terms so that only the contribution at space-like ends of
space-time surface at the boundaries of causal diamond (CD) remains. This is however not
necessary and super-symmetry would require Chern-Simons-Dirac term as boundary term in
Dirac action. This however has unphysical implications since C-S-D Dirac operator acts on
CP2 coordinates only.

The intuitive expectation is that fermionic propagators assignable to string boundaries at
light-like partonic orbits are needed in the construction of the scattering amplitudes. These
boundaries can be locally space-like or light-like. One could add 1-D massles Dirac action with
gamma matrices defined in the induced metric, which is by supersymmetry accompanied by
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the action defined by geodesic length, which however vanishes for light-like curves. Massless
Dirac equation at the boundary of string world sheet fixes the boundary conditions for the
spinor modes at the string world sheet. This option seems to be the most plausible at this
moment.

Kähler-Dirac equation for induced spinor fields

It has become clear that Kähler-Dirac action with induced spinor fields localized at string
world sheets carrying vanishing classical W fields, and the light-like boundaries of the string
world sheets at light-like orbits of partonic 2-surfaces carrying massless Dirac operator for
induced gamma matrices is the most natural looking option.

The light-like momentum associated with the boundary is a light-like curve of imbedding
space and defines light-like 8-momentum, whose M4 projection is in general time-like. This
leads to an 8-D generalization of twistor formalism. The squares of the M4 and CP2 parts
of the 8-momentum could be identified as mass squared for the imbedding space spinor
mode assignable to the ground state of super-symplectic representation. This would realize
quantum classical correspondence for fermions. The four-momentum assignable to fermion
line would have identification as gravitational four-momentum and that associated with the
mode of imbedding space spinor field as inertial four-momentum.

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

(a) The most promising approach assumes that the solutions are restricted on 2-D stringy
world sheets and/or partonic 2-surfaces. This strange looking view is a rather natural
consequence of both strong form of holography and of number theoretic vision, and
also follows from the notion of finite measurement resolution having discretization at
partonic 2-surfaces as a geometric correlate. Furthermore, the conditions stating that
electric charge is well-defined for preferred extremals forces the localization of the modes
to 2-D surfaces in the generic case. This also resolves the interpretational problems
related to possibility of strong parity breaking effects since induce W fields and possibly
also Z0 field above weak scale, vanish at these surfaces.

(b) One expects that stringy approach based on 4-D generalization of conformal invari-
ance or its 2-D variant at 2-D preferred surfaces should also allow to understand the
Kähler-Dirac equation. Conformal invariance indeed allows to write the solutions ex-
plicitly using formulas similar to encountered in string models. In accordance with
the earlier conjecture, all modes of the Kähler-Dirac operator generate badly broken
super-symmetries.

(c) Well-definedness of em charge is not enough to localize spinor modes at string world
sheets. Covariantly constant right-handed neutrino certainly defines solutions de-localized
inside entire space-time sheet. This need not be the case if right-handed neutrino is not
covarianty constant since the non-vanishing CP2 part for the induced gamma matri-
ces mixes it with left-handed neutrino. For massless extremals (at least) the CP2 part
however vanishes and right-handed neutrino allows also massless holomorphic modes
de-localized at entire space-time surface and the de-localization inside Euclidian re-
gion defining the line of generalized Feynman diagram is a good candidate for the
right-handed neutrino generating the least broken super-symmetry.This super-symmetry
seems however to differ from the ordinary one in that νR is expected to behave like a
passive spectator in the scattering. Also for the left-handed neutrino solutions localized
inside string world sheet the condition that coupling to right-handed neutrino vanishes
is guaranteed if gamma matrices are either purely Minkowskian or CP2 like inside the
world sheet.

Quantum criticality and K-D action

A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. The recent
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formulation of quantum criticality states the existence of hierarchy of sub-algebras of super-
symplectic algebras isomorphic with the original algebra. The conformal weights of given
sub-algebra are n-multiples of those of the full algebra. n would also characterize the value
of Planck constant heff = n × h assignable to various phases of dark matter. These sub-
algebras correspond to a hierarchy of breakings of super-symplectic gauge symmetry to a
sub-algebra. Accordingly the super-symplectic Noether charges of the sub-algebra annihilate
physical states and the corresponding classical Noether charges vanish for Kähler action at
the ends of space-time surfaces. This defines the notion of preferred extremal. These sub-
algebras form an inclusion hierarchy defining a hierarchy of symmetry breakings. n would
also characterize the value of Planck constant heff = n × h assignable to various phases of
dark matter.

Quantum criticality implies that second variation of Kähler action vanishes for critical defor-
mations defined by the sub-algebra and vanishing of the corresponding Noether charges and
super-charges for physical stats. It is not quite clear whether the charges corresponding to
broken super-symplectic symmetries are conserved. If this is the case, Kähler action is invari-
ant under brokent symplectic transformations although the second variation is non-vanishing
so these deformations contribute to Kähler metric and are thus quantum fluctuating dynam-
ical degrees of freedom.

Quantum classical correspondence

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory.
The big question mark is how to realize this coupling.

(a) As already described, the massless Dirac equation for induced gamma matrices at the
boundary of string world sheets gives as solutions for which local 8-momentum is light-
like. The M4 part of this momentum is in general time-like and can be identified as the
8-momentum of incoming fermion assignable to an imbedding space spinor mode. The
interpretation is as equivalence of gravitational and inertial masses.

(b) QCC can be realized at the level of WCW Dirac operator and Kähler-Dirac operator
contains only interior term. The vanishing of the normal component of fermion cur-
rent replaces Chern-Simons Dirac operator at various boundary like surfaces. I have
proposed that WCW spinor fields with given quantum charges in Cartan algebra are
superpositions of space-time surfaces with same classical charges. A stronger form of
QCC at the level of WCW would be that classical correlation functions for various
geometric observables are identical with quantal correlation functions.

QCC could be realized at the level of WCW by putting it in by hand. One can of
course consider also the possibility that the equality of quantal and classical Cartan
charges is realized by adding constraint terms realized using Lagrange multipliers at the
space-like ends of space-time surface at the boundaries of CD. This procedure would
be very much like the thermodynamical procedure used to fix the average energy or
particle number of the the system with Lagrange multipliers identified as temperature
or chemical potential. Since quantum TGD in zero energy ontology (ZEO) can be
regarded as square root of thermodynamics, the procedure looks logically sound.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L12].

4.2 WCW Spinor Structure: General Definition

The basic problem in constructing WCW spinor structure is clearly the construction of the
explicit representation for the gamma matrices of WCW . One should be able to identify
the space, where these gamma matrices act as well as the counterparts of the “free” gamma

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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matrices, in terms of which the gamma matrices would be representable using generalized
vielbein coefficients.

4.2.1 Defining Relations For Gamma Matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{γA, γB} = 2gAB .

This definition served implicitly also as a basic definition of the gamma matrix algebra
in TGD context until the difficulties related to the understanding of WCW d’Alembertian
defined in terms of the square of the Dirac operator forced to reconsider the definition. If
WCW allows Kähler structure, the most general definition allows to replace the metric any
covariantly constant Hermitian form. In particular, gAB can be replaced with

{Γ†A,ΓB} = iJAB , (4.2.1)

where JAB denotes the matrix element of the Kähler form of WCW . The reason is that
gamma matrices carry fermion number and are non-hermitian in all coordinate systems. This
definition is numerically equivalent with the standard one in the complex coordinates but
in arbitrary coordinates situation is different since in general coordinates iJkl is a nontrivial
positive square root of gkl. The realization of this delicacy is necessary in order to understand
how the square of WCW Dirac operator comes out correctly. Obviously, what one must do
is the equivalent of replacing D2 = (ΓkDk)2 with DD̂ with D̂ defined as

D̂ = iJklΓ†lDk .

4.2.2 General Vielbein Representations

There are two ideas, which make the solution of the problem obvious.

(a) Since the classical time development in bosonic degrees of freedom (induced gauge fields)
is coded into the geometry of WCW it seems natural to expect that same applies in the
case of the spinor structure. The time development of the induced spinor fields dictated
by TGD counterpart of the massless Dirac action should be coded into the definition of
the WCW spinor structure. This leads to the challenge of defining what classical spinor
field means.

(b) Since classical scalar field in WCW corresponds to second quantized boson fields of the
imbedding space same correspondence should apply in the case of the fermions, too.
The spinor fields of WCW should correspond to second quantized fermion field of the
imbedding space and the space of the configuration space spinors should be more or less
identical with the Fock space of the second quantized fermion field of imbedding space
or X4(X3). Since classical spinor fields at space-time surface are obtained by restricting
the spinor structure to the space-time surface, one might consider the possibility that
life is really simple: the second quantized spinor field corresponds to the free spinor field
of the imbedding space satisfying the counterpart of the massless Dirac equation and
more or less standard anti-commutation relations. Unfortunately life is not so simple
as the construction of WCW spinor structure demonstrates: second quantization must
be performed for induced spinor fields.

It is relatively simple to fill in the details once these basic ideas are accepted.
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(a) The only natural candidate for the second quantized spinor field is just the on X4.
Since this field is free field, one can indeed perform second quantization and construct
fermionic oscillator operator algebra with unique anti-commutation relations. The space
of WCW spinors can be identified as the associated with these oscillator operators. This
space depends on 3-surface and strictly speaking one should speak of the Fock bundle
having WCW as its base space.

(b) The gamma matrices of WCW (or rather fermionic Kac Moody generators) are repre-
sentable as super positions of the fermionic oscillator algebra generators:

Γ+
A = EnAa

†
n

Γ−A = ĒnAan

iJAB̄ =
∑
n

EnAĒ
n
B (4.2.2)

where EnA are the vielbein coefficients. Induced spinor fields can possess zero modes and
there is no oscillator operators associated with these modes. Since oscillator operators
are spin 1/2 objects, WCW gamma matrices are analogous to spin 3/2 spinor fields (in
a very general sense). Therefore the generalized vielbein and WCW metric is analogous
to the pair of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the
contractions jAkΓk of the complexified gamma matrices with the isometry generators are
genuine spin 1/2 objects labeled by the quantum numbers labeling isometry generators.
In particular, in CP2 degrees of freedom these fermions are color octets.

(c) A further great idea inspired by the symplectic and Kähler structures of WCW is that
configuration gamma matrices are actually generators of super-symplectic symmetries.
This simplifies enormously the construction allows to deduce explicit formulas for the
gamma matrices.

4.2.3 Inner Product For WCW Spinor Fields

The conjugation operation for WCW spinor s corresponds to the standard ket→ bra opera-
tion for the states of the Fock space:

Ψ ↔ |Ψ〉
Ψ̄ ↔ 〈Ψ| (4.2.3)

The inner product for WCW spinor s at a given point of WCW is just the standard Fock
space inner product, which is unitary.

Ψ̄1(X3)Ψ2(X3) = 〈Ψ1|Ψ2〉|X3 (4.2.4)

WCW inner product for two WCW spinor fields is obtained as the integral of the Fock space
inner product over the whole WCW using the vacuum functional exp(K) as a weight factor

〈Ψ1|Ψ2〉 =

∫
〈Ψ1|Ψ2〉|X3exp(K)

√
GdX3 (4.2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by
including the factor exp(K/2) in the definition of the spinor field. In fact, the construction
of the central extension for the isometry algebra leads automatically to the appearance of
this factor in vacuum spinor field.
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The inner product differs from the standard inner product for, say, Minkowski space spinors in
that integration is over the entire WCW rather than over a time= constant slice of the WCW
. Also the presence of the vacuum functional makes it different from the finite dimensional
inner product. These are not un-physical features. The point is that (apart from classical
non-determinism forcing to generalized the concept of 3-surface) Diff4 invariance dictates the
behavior of WCW spinor field completely: it is determined form its values at the moment of
the big bang. Therefore there is no need to postulate any Dirac equation to determine the
behavior and therefore no need to use the inner product derived from dynamics.

4.2.4 Holonomy Group Of The Vielbein Connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical ob-
servables is that they do not depend at all on the gauge chosen to represent the gamma ma-
trices. This is indeed achieved using vielbein connection, which is now quadratic in fermionic
oscillator operators. The holonomy group of the vielbein connection is the WCW counterpart
of the electro-weak gauge group and its algebra is expected to have same general structure
as the algebra of the WCW isometries. In particular, the generators of this algebra should
be labeled by conformal weights like the elements of Kac Moody algebras. In present case
however conformal weights are complex as the construction of WCW geometry demonstrates.

4.2.5 Realization Of WCW Gamma Matrices In Terms Of Super
Symmetry Generators

In string models super symmetry generators behave effectively as gamma matrices and it is
very tempting to assume that WCW gamma matrices can be regarded as generators of the
symplectic algebra extended to super-symplectic Kac Moody type algebra. The experience
with string models suggests also that radial Virasoro algebra extends to Super Virasoro
algebra. There are good reasons to expect that WCW Dirac operator and its square give
automatically a realization of this algebra. It this is indeed the case, then WCW spinor
structure as well as Dirac equation reduces to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a direct
generalization of the ordinary super Kac Moody algebra. The complexified super generators
SA are identifiable as WCW gamma matrices:

ΓA = SA . (4.2.6)

The anti-commutators {Γ†A,ΓB}+ = i2JA,B define a Hermitian matrix, which is proportional
to the Kähler form of the configuration space rather than metric as usually. Only in complex
coordinates the anti-commutators equal to the metric numerically. This is, apart from the
multiplicative constant n, is expressible as the Poisson bracket of the WCW Hamiltonians HA

and HB . Therefore one should be able to identify super generators SA(rM ) for each values
of rM as the counterparts of fluxes. The anti-commutators between the super generators SA
and their Hermitian conjugates should read as

{SA, S†B}+ = iQm(H[A,B]) . (4.2.7)

and should be induced directly from the anti-commutation relations of free second quantized
spinor fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transfor-
mation properties of the super generators under symplectic transformations, which are same
as for the Hamiltonians themselves
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{HAm, SBn}− = S[Am,Bn] , (4.2.8)

and are of the same form as in the case of Super-Kac-Moody algebra.

The task is to derive an explicit representation for the super generators SA in both cases.
For obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary
δM4

+ × CP2 can be used. Leptonic/quark like oscillator operators are used to construct
Ramond/NS type algebra.

What is then the strategy that one should follow?

(a) WCW Hamiltonians correspond to either magnetic or electric flux Hamiltonians and
the conjecture is that these representations are equivalent. It turns out that this
electric-magnetic duality generalizes to the level of super charges. It also turns out
that quark representation is the only possible option whereas leptonic super charges
super-symmetrize the ordinary function algebra of the light cone boundary.

(b) The simplest option would be that second quantized imbedding space spinors could be
used in the definition of super charges. This turns out to not work and one must second
quantize the induced spinor fields.

(c) The task is to identify a super-symmetric variational principle for the induced spinors:
ordinary Dirac action does not work. It turns out that in the most plausible scenario
the Kähler-Dirac action varied with respect to both imbedding space coordinates and
spinor fields is the fundamental action principle. The c-number parts of the conserved
symplectic charges associated with this action give rise to bosonic conserved charges
defining WCW Hamiltonians. The second quantization of the spinor fields reduces to
the requirement that super charges and Hamiltonians generate super-symplectic algebra
determining the anti-commutation relations for the induced spinor fields.

4.2.6 Central Extension As Symplectic Extension At WCW Level

The earlier attempts to understand the emergence of central extension of super-symplectic
algebra were based on the notion of symplectic extension. This general view is not given
up although it seems that this abstract approach is not very practical. Symplectic exten-
sion emerged originally in the attempts to construct formal expression for the WCW Dirac
equation. The rather obvious idea was that the Dirac equation reduces to super Virasoro
conditions with Super Virasoro generators involving the Dirac operator of the imbedding
space. The basic difficulty was the necessity to assign to the gamma matrices of the imbed-
ding space fermion number. In the recent formulation the Dirac operator of H does not
appear in in the Super Virasoro conditions so that this problem disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that
the commutator of super-symplectic and super Kac-Moody algebras annihilates physical
states, looks rather feasible. One could call these conditions as WCW Dirac equation but at
this moment I feel that this would be just play with words and mask the group theoretical
content of these conditions. In any case, the formulas for the symplectic extension and action
of isometry generators on WCW spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple
trick. Replace the ordinary derivatives appearing in the definition of, say spinorial isometry
generator, by the covariant derivatives defined by a coupling to a multiple of the Kähler
potential.
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jAk∂k → jAkDk ,

Dk = ∂k + ikAk/2 . (4.2.9)

where Ak denotes Kähler potential. The reality of the parameter k is dictated by the Her-
miticity requirement and also by the requirement that Abelian extension reduces to the
standard form in Cartan algebra. k is expected to be integer also by the requirement that
covariant derivative corresponds to connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators JA read:

[JA, JB ] = J [A,B] + ikjAkJklj
Bl ≡ J [A,B] + ikJAB . (4.2.10)

Since Kähler form defines symplectic structure in WCW one can express Abelian extension
term as a Poisson bracket of two Hamiltonians

JAB ≡ jAkJklj
Bl = {HA, HB} . (4.2.11)

Notice that Poisson bracket is well defined also when Kähler form is degenerate.

The extension indeed has acceptable properties:

(a) Jacobi-identities reduce to the form

∑
cyclic

H [A,[B,C]] = 0 , (4.2.12)

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian repre-
sentation.

(b) In the Cartan algebra Abelian extension reduces to a constant term since the Poisson
bracket for two commuting generators must be a multiple of a unit matrix. This feature
is clearly crucial for the non-triviality of the Abelian extension and is encountered
already at the level of ordinary (q, p) Poisson algebra: although the differential operators
∂p and ∂q commute the Poisson bracket of the corresponding Hamiltonians p and q is
nontrivial: {p, q} = 1. Therefore the extension term commutes with the generators of
the Cartan subalgebra. Extension is also local U(1) extension since Poisson algebra
differs from the Lie-algebra of the vector fields in that it contains constant Hamiltonian
(”1” in the commutator), which commutes with all other Hamiltonians and corresponds
to a vanishing vector field.

(c) For the generators not belonging to Cartan sub-algebra of CH isometries Abelian ex-
tension term is not annihilated by the generators of the original algebra and in this
respect the extension differs from the standard central extension for the loop algebras.
It must be however emphasized that for the super-symplectic algebra generators cor-
respond to products of δM4

+ and CP2 Hamiltonians and this means that generators of
say δM4

+-local SU(3) Cartan algebra are non-commuting and the commutator is com-
pletely analogous to central extension term since it is symmetric with respect to SU(3)
generators.

(d) The proposed method yields a trivial extension in the case of Diff4. The reason is the
(four-dimensional!) Diff degeneracy of the Kähler form. Abelian extension term is given
by the contraction of the Diff4 generators with the Kähler potential
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jAkJklj
Bl = 0 , (4.2.13)

which vanishes identically by the Diff degeneracy of the Kähler form. Therefore neither
3- or 4-dimensional Diff invariance is not expected to cause any difficulties. Recall
that 4-dimensional Diff degeneracy is what is needed to eliminate time like vibrational
excitations from the spectrum of the theory. By the way, the fact that the loop space
metric is not Diff degenerate makes understandable the emergence of Diff anomalies in
string models [B56, B49] .

(e) The extension is trivial also for the other zero norm generators of the tangent space
algebra, in particular for the k2 = Im(k) = 0 symplectic generators possible present so
that these generators indeed act as genuine U(1) transformations.

(f) Concerning the solution of WCW Dirac equation the maximum of Kähler function
is expected to be special, much like origin of Minkowski space and symmetric space
property suggests that the construction of solutions reduces to this point. At this point
the generators and Hamiltonians of the algebra h in the defining Cartan decomposition
g = h + t should vanish. h corresponds to integer values of k1 = Re(k) for Cartan
algebra of super-symplectic algebra and integer valued conformal weights n for Super
Kac-Moody algebra. The algebra reduces at the maximum to an exceptionally simple
form since only central extension contributes to the metric and Kähler form. In the
ideal case the elements of the metric and Kähler form could be even diagonal. The
degeneracy of the metric might of course pose additional complications.

Super symplectic action on WCW spinor s

The generators of symplectic transformations are obtained in the spinor representation of the
isometry group of WCW by the following formal construction. Take isometry generator in the
spinor representation and add to the covariant derivative Dk defined by vielbein connection
the coupling to the multiple of the Kähler potential: Dk → Dk + ikAk/2.

JA = jAkDk +DljkΣkl/2 ,

→ ĴA = jAk(Dk + ikAk/2) +Dlj
A
k Σkl/2 ,

(4.2.14)

This induces the required central term to the commutation relations. Introduce complex
coordinates and define bosonic creation and annihilation operators as (1, 0) and (0, 1) parts
of the modified isometry generators

B†A = JA+ = jAk(Dk + ... ,

BA = JA− = jAk̄(Dk̄ + ... .

(4.2.15)

where ”k” refers now to complex coordinates and ”k̄” to their conjugates.

Fermionic generators are obtained as the contractions of the complexified gamma matrices
with the isometry generators

Γ†A = jAkΓk ,

ΓA = jAk̄Γk̄ . (4.2.16)
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Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commu-
tation relations and annihilate fermionic Cartan algebra generators. Hermiticity condition
holds in the sense that creation type generators are hermitian conjugates of the annihilation
operator type generators. There are two kinds of representations depending on whether one
uses leptonic or quark like oscillator operators to construct the gammas. These will be as-
sumed to correspond to Ramond and NS type generators with the radial plane waves being
labeled by integer and half odd integer indices respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by
the matrix elements of the Kähler form in the basis of formed by the isometry generators

[B†A, BB ] = J(jA†, jB) ≡ JĀB . (4.2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not
belonging to Cartan algebra are just those of the local gauge algebra with Abelian extension
term added.

The anti-commutators between the fermionic generators are given by the elements of the
metric (as opposed to Kähler form in the case of bosonic generators) in the basis formed by
the isometry generators

{ΓA†,ΓB} = 2g(jA†, jB) ≡ 2gĀB . (4.2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators
differ only the presence of the imaginary unit and the scale factor R relating the metric and
Kähler form to each other (the factor R is same for CP2 metric and Kähler form).

The commutators between bosonic and fermionic generators are given by

[BA,ΓB ] = Γ[A,B] . (4.2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is
essential for obtaining these nice commutations relations. The commutators vanish identically
for Cartan algebra generators. From the commutation relations it is clear that Super Kac
Moody algebra structure is directly related to the Kähler structure of WCW : the anti-
commutator of fermionic generators is proportional to the metric and the commutator of
the bosonic generators is proportional to the Kähler form. It is this algebra, which should
generate the solutions of the field equations of the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the
fermionic oscillator operators and this suggests the interpretation as the fermionic contribu-
tion to the isometry currents. This means that the action of the bosonic generators is es-
sentially non-perturbative since it creates fermion anti-fermion pairs besides exciting bosonic
degrees of freedom.

4.2.7 WCW Clifford Algebra As AHyper-Finite Factor Of Type II1

The naive expectation is that the trace of the unit matrix associated with the Clifford algebra
spanned by WCW sigma matrices is infinite and thus defines an excellent candidate for a
source of divergences in perturbation theory. This potential source of infinities remained un-
noticed until it became clear that there is a connection with von Neumann algebras [A67]. In
fact, for a separable Hilbert space defines a standard representation for so called [A55]. This
guarantees that the trace of the unit matrix equals to unity and there is no danger about
divergences.
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Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables.
The basic ideas behind the von Neumann algebra are dictated by physics. The algebra
elements allow Hermitian conjugation ∗ and observables correspond to Hermitian operators.
Any measurable function f(A) of operator A belongs to the algebra and one can say that
non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection
of states of infinite state system must make sense. Since quantum mechanical expectation
values are expressible in terms of operator traces, this requires that unit operator has unit
trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections
to 1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of
projection to 1-dimensional sub-space vanishes if each state is equally probable. The notion of
observable must thus be modified by excluding 1-dimensional minimal projections, and allow
only projections for which the trace would be infinite using the straightforward generalization
of the matrix algebra trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one
is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing
projection probabilities. Quantum measurements can lead with a finite probability only
to mixed states with a density matrix which is projection operator to infinite-dimensional
subspace. The simple von Neumann algebras for which unit operator has unit trace are
known as factors of type II1 [A55].

The definitions of adopted by von Neumann allow however more general algebras. Type
In algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞
associated with a separable infinite-dimensional Hilbert space does not allow bounded traces.
For algebras of type III non-trivial traces are always infinite and the notion of trace becomes
useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify
matrix mechanism with wave mechanics. Note however that the assumption about continuous
momentum state basis is in conflict with separability but the particle-in-box idealization
allows to circumvent this problem (the notion of space-time sheet brings the box in physics
as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as funda-
mental and factors of type III as pathological. The highly pragmatic and successful approach
of Dirac based on the notion of delta function, plus the emergence of Feynman graphs, the
possibility to formulate the notion of delta function rigorously in terms of distributions, and
the emergence of path integral approach meant that von Neumann approach was forgotten
by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum
field theories [A86, A50] allowing to deduce invariants of knots, links and 3-manifolds. Also
algebraic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A41, A59]
relate closely to type II1 factors. In topological quantum computation [B45] based on braid
groups [A95] modular S-matrices they play an especially important role.

Clifford algebra of WCW as von Neumann algebra

The Clifford algebra of WCW provides a school example of a hyper-finite factor of type II1,
which means that fermionic sector does not produce divergence problems. Super-symmetry
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means that also “orbital” degrees of freedom corresponding to the deformations of 3-surface
define similar factor. The general theory of hyper-finite factors of type II1 is very rich
and leads to rather detailed understanding of the general structure of S-matrix in TGD
framework. For instance, there is a unitary evolution operator intrinsic to the von Neumann
algebra defining in a natural manner single particle time evolution. Also a connection with
3-dimensional topological quantum field theories and knot theory, conformal field theories,
braid groups, quantum groups, and quantum counterparts of quaternionic and octonionic
division algebras emerges naturally. These aspects are discussed in detail in [K87].

4.3 Under What Conditions Electric Charge Is Con-
served For The Kähler-Dirac Equation?

One might think that talking about the conservation of electric charge at 21st century is a
waste of time. In TGD framework this is certainly not the case.

(a) In quantum field theories there are two manners to define em charge: as electric flux
over 2-D surface sufficiently far from the source region or in the case of spinor field
quantum mechanically as combination of fermion number and vectorial isospin. The
latter definition is quantum mechanically more appropriate.

(b) There is however a problem. In standard approach to gauge theory Dirac equation in
presence of charged classical gauge fields does not conserve electric charge as quantum
number: electron is transformed to neutrino and vice versa. Quantization solves the
problem since the non-conservation can be interpreted in terms of emission of gauge
bosons. In TGD framework this does not work since one does not have path integral
quantization anymore. Preferred extremals carry classical gauge fields and the question
whether em charge is conserved arises. Heuristic picture suggests that em charge must
be conserved.

It seems that one should pose the well-definedness of spinorial em charge as an additional
condition. Well-definedness of em charge is not the only problem. How to avoid large parity
breaking effects due to classical Z0 fields? How to avoid the problems due to the fact that
color rotations induced vielbein rotation of weak fields? Does this require that classical weak
fields vanish in the regions where the modes of induced spinor fields are non-vanishing?

This condition might be one of the conditions defining what it is to be a preferred ex-
tremal/solution of Kähler Dirac equation. It is not however trivial whether this kind of
additional condition can be posed unless it follows automatically from the recent formula-
tion for Kähler action and Kähler Dirac action. The common answer to these questions
is restriction of the modes of induced spinor field to 2-D string world sheets (and possibly
also partonic 2-surfaces) such that the induced weak fields vanish. This makes string/parton
picture part of TGD. The vanishing of classical weak fields has also number theoretic inter-
pretation: space-time surfaces would have quaternionic (hyper-complex) tangent space and
the 2-surfaces carrying spinor fields complex (hyper-complex) tangent space.

4.3.1 Conservation Of EM Charge For Kähler Dirac Equation

What does the conservation of em charge imply in the case of the Kähler-Dirac equation?
The obvious guess that the em charged part of the Kähler-Dirac operator must annihilate
the solutions, turns out to be correct as the following argument demonstrates.

(a) Em charge as coupling matrix can be defined as a linear combination Q = aI + bI3,
I3 = JklΣ

kl, where I is unit matrix and I3 vectorial isospin matrix, Jkl is the Kähler form
of CP2, Σkl denotes sigma matrices, and a and b are numerical constants different for
quarks and leptons. Q is covariantly constant in M4×CP2 and its covariant derivatives
at space-time surface are also well-defined and vanish.
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(b) The modes of the Kähler-Dirac equation should be eigen modes of Q. This is the case
if the Kähler-Dirac operator D commutes with Q. The covariant constancy of Q can be
used to derive the condition

[D,Q] Ψ = D1Ψ = 0 ,

D = Γ̂µDµ , D1 = [D,Q] = Γ̂µ1Dµ , Γ̂µ1 =
[
Γ̂µ, Q

]
. (4.3.1)

Covariant constancy of J is absolutely essential: without it the resulting conditions
would not be so simple.

It is easy to find that also [D1, Q]Ψ = 0 and its higher iterates [Dn, Q]Ψ = 0, Dn =
[Dn−1, Q] must be true. The solutions of the Kähler-Dirac equation would have an
additional symmetry.

(c) The commutator D1 = [D,Q] reduces to a sum of terms involving the commutators of
the vectorial isospin I3 = JklΣ

kl with the CP2 part of the gamma matrices:

D1 = [Q,D] = [I3,Γr]∂µs
rTαµDα . (4.3.2)

In standard complex coordinates in which U(2) acts linearly the complexified gamma
matrices can be chosen to be eigenstates of vectorial isospin. Only the charged flat space
complexified gamma matrices ΓA denoted by Γ+ and Γ− possessing charges +1 and -1
contribute to the right hand side. Therefore the additional Dirac equation D1Ψ = 0
states

D1Ψ = [Q,D]Ψ = I3(A)eArΓ
A∂µs

rTαµDαΨ

= (e+rΓ
+ − e−rΓ−)∂µs

rTαµDαΨ = 0 . (4.3.3)

The next condition is

D2Ψ = [Q,D]Ψ = (e+rΓ
+ + e−rΓ

−)∂µs
rTαµDαΨ = 0 . (4.3.4)

Only the relative sign of the two terms has changed. The remaining conditions give
nothing new.

(d) These equations imply two separate equations for the two charged gamma matrices

D+Ψ = Tα+Γ+DαΨ = 0 ,

D−Ψ = Tα−Γ−DαΨ = 0 ,

Tα± = e±r∂µs
rTαµ . (4.3.5)

These conditions state what one might have expected: the charged part of the Kähler-
Dirac operator annihilates separately the solutions. The reason is that the classical W
fields are proportional to er±.

The above equations can be generalized to define a decomposition of the energy mo-
mentum tensor to charged and neutral components in terms of vierbein projections.
The equations state that the analogs of the Kähler-Dirac equation defined by charged
components of the energy momentum tensor are satisfied separately.

(e) In complex coordinates one expects that the two equations are complex conjugates of
each other for Euclidian signature. For the Minkowskian signature an analogous condi-
tion should hold true. The dynamics enters the game in an essential manner: whether
the equations can be satisfied depends on the coefficients a and b in the expression
T = aG + bg implied by Einstein’s equations in turn guaranteeing that the solution
ansatz generalizing minimal surface solutions holds true [K7].



4.3. Under What Conditions Electric Charge Is Conserved For The Kähler-Dirac
Equation? 175

(f) As a result one obtains three separate Dirac equations corresponding to the neutral part
D0Ψ = 0 and charged parts D±Ψ = 0 of the Kähler-Dirac equation. By acting on the
equations with these Dirac operators one obtains also that the commutators [D+, D−],
[D0, D±] and also higher commutators obtained from these annihilate the induced spinor
field model. Therefore entire -possibly- infinite-dimensional algebra would annihilate the
induced spinor fields. In string model the counterpart of Dirac equation when quantized
gives rise to Super-Virasoro conditions. This analogy would suggest that Kähler-Dirac
equation gives rise to the analog of Super-Virasoro conditions in 4-D case. But what
the higher conditions mean? Could they relate to the proposed generalization to Yan-
gian algebra [A27] [B39, B30, B31]? Obviously these conditions resemble structurally
Virasoro conditions Ln|phys〉 = 0 and their supersymmetric generalizations, and might
indeed correspond to a generalization of these conditions just as the field equations for
preferred extremals could correspond to the Virasoro conditions if one takes seriously
the analogy with the quantized string.

What could this additional symmetry mean from the point of view of the solutions of the
Kähler-Dirac equation? The field equations for the preferred extremals of Kähler action
reduce to purely algebraic conditions in the same manner as the field equations for the
minimal surfaces in string model. Could this happen also for the Kähler-Dirac equation and
could the condition on charged part of the Dirac operator help to achieve this?

This argument was very general and one can ask for simple manners to realize these condi-
tions. Obviously the vanishing of classical W fields in the region where the spinor mode is
non-vanishing defines this kind of condition.

4.3.2 About The Solutions Of Kähler Dirac Equation For Known
Extremals

To gain perpective consider first Dirac equation in in H. Quite generally, one can construct
the solutions of the ordinary Dirac equation in H from covariantly constant right-handed
neutrino spinor playing the role of fermionic vacuum annihilated by the second half of com-
plexified gamma matrices. Dirac equation reduces to Laplace equation for a scalar function
and solution can be constructed from this “vacuum” by multiplying with the spherical har-
monics of CP2 and applying Dirac operator [K39]. Similar construction works quite generally
thanks to the existence of covariantly constant right handed neutrino spinor. Spinor har-
monics of CP2 are only replaced with those of space-time surface possessing either hermitian
structure or Hamilton-Jacobi structure (corresponding to Euclidian and Minkowskian signa-
tures of the induced metric [K7, K88] ). What is remarkable is that these solutions possess
well-defined em charge although classical W boson fields are present.

This in sense that H d’Alembertian commutes with em charge matrix defined as a linear
combination of unit matrix and the covariantly constant matrix JklΣkl since the commutators
of the covariant derivatives give constant Ricci scalar and JklΣkl term to the d’Alembertian
besides scalar d’Alembertian commuting with em charge. Dirac operator itself does not
commute with em charge matrix since gamma matrices not commute with em charge matrix.

Consider now Kähler Dirac operator. The square of Kähler Dirac operator contains commu-
tator of covariant derivatives which contains contraction [Γµ,Γν ]Fweakµν which is quadratic
in sigma matrices of M4 × CP2 and does not reduce to a constant term commuting which
em charge matrix. Therefore additional condition is required even if one is satisfies with the
commutativity of d’Alembertian with em charge. Stronger condition would be commutativity
with the Kähler Dirac operator and this will be considered in the following.

To see what happens one must consider space-time regions with Minkowskian and Euclid-
ian signature. What will be assumed is the existence of Hamilton-Jacobi structure [K7]
meaning complex structure in Euclidian signature and hyper-complex plus complex struc-
ture in Minkowskian signature. The goal is to get insights about what the condition that
spinor modes have a well-defined em charge eigenvalue requires. Or more concretely: is the
localization at string world sheets guaranteeing well-defined value of em charge predicted
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by Kähler Dirac operator or must one introduce this condition separately? One can also
ask whether this condition reduces to commutativity/co-commutativity in number theoretic
vision.

(a) CP2 type vacuum extremals serve as a convenient test case for the Euclidian signature.
In this case the Kähler-Dirac equation reduces to the massless ordinary Dirac equation
in CP2 allowing only covariantly constant right-handed neutrino as solution. Only part
of CP2 so that one give up the constraint that the solution is defined in the entire CP2.
In this case holomorphic solution ansatz obtained by assuming that solutions depend on
the coordinates ξi, i = 1, 2 but not on their conjugates and that the gamma matrices Γi,
i = 1, 2, annihilate the solutions, works. The solutions ansatz and its conjugate are of
exactly the same form as in case string models where one considers string world sheets
instead of CP2 region.

The solutions are not restricted to 2-D string world sheets and it is not clear whether
one can assign to them a well-defined em charge in any sense. Note that for massless
Dirac equation in H one obtains all CP2 harmonics as solutions, and it is possible to
talk about em charge of the solution although solution itself is not restricted to 2-D
surface of CP2.

(b) For massless extremals and a very wide class of solutions produced by Hamilton-Jacobi
structure - perhaps all solutions representable locally as graphs for map M4 → CP2 -
canonical momentum densities are light-like and solutions are hyper-holomorphic in the
coordinates associated with with string world sheet and annihilated by the conjugate
gamma and arbitrary functions in transversal coordinates. This allows localization to
string world sheets. The localization is now strictly dynamical and implied by the
properties of Kähler Dirac operator.

(c) For string like objects one obtains massless Dirac equation in X2 × Y 2 ⊂ M4 × Y 2,
Y 2 a complex 2-surface in CP2. Homologically trivial geodesic sphere corresponds to
the simplest choice for Y 2. Modified Dirac operator reduces to a sum of massless
Dirac operators associated with X2 and Y 2. The most general solutions would have Y 2

mass. Holomorphic solutions reduces to product of hyper-holomorphic and holomorphic
solutions and massless 2-D Dirac equation is satisfied in both factors.

For instance, for S2 a geodesic sphere and X2 = M2 one obtains M2 massivation
with mass squared spectrum given by Laplace operator for S2. Conformal and hyper-
conformal symmetries are lost, and one might argue that this is quite not what one
wants. One must be however resist the temptation to make too hasty conclusions since
the massivation of string like objects is expected to take place. The question is whether
it takes place already at the level of fundamental spinor fields or only at the level of
elementary particles constructed as many-fermion states of them as twistor Grassmann
approach assuming massless M4 propagators for the fundamental fermions strongly
suggests [K76].

(d) For vacuum extremals the Kähler Dirac operator vanishes identically so that it does not
make sense to speak about solutions.

What can one conclude from these observations?

(a) The localization of solutions to 2-D string world sheets follows from Kähler Dirac equa-
tion only for the Minkowskian regions representable as graphs of map M4 → CP2

locally. For string like objects and deformations of CP2 type vacuum extremals this is
not expected to take place.

(b) It is not clear whether one can speak about well-defined em charge for the holomorphic
spinors annihilated by the conjugate gamma matrices or their conjugates. As noticed,
for imbedding space spinor harmonics this is however possible.

(c) Strong form of conformal symmetry and the condition that em charge is well-defined
for the nodes suggests that the localization at 2-D surfaces at which the charged parts
of induced electroweak gauge fields vanish must be assumed as an additional condition.
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Number theoretic vision would suggest that these surfaces correspond to 2-D commu-
tative or co-commutative surfaces. The string world sheets inside space-time surfaces
would not emerge from theory but would be defined as basic geometric objects.

This kind of condition would also allow duals of string worlds sheets as partonic 2-
surfaces identified number theoretically as co-commutative surfaces. Commutativity
and co-commutativity would become essential elemenents of the number theoretical
vision.

(d) The localization of solutions of the Kähler-Dirac action at string world sheets and par-
tonic 2-surfaces as a constraint would mean induction procedure for Kähler-Dirac ma-
trices from SX4 to X2 - that is projection. The resulting em neutral gamma matrices
would correspond to tangent vectors of the string world sheet. The vanishing of the
projections of charged parts of energy momentum currents would define these surfaces.
The conditions would apply both in Minkowskian and Euclidian regions. An alterna-
tive interpretation would be number theoretical: these surface would be commutative
or co-commutative.

4.3.3 Concrete Realization Of The Conditions Guaranteeing Well-
Defined Em Charge

Well-definedness of the em charge is the fundamental condiiton on spinor modes. Physical
intuition suggests that also classical Z0 field should vanish - at least in scales longer than
weak scale. Above the condition guaranteeing vanishing of em charge has been discussed at
very general level. It has however turned out that one can understand situation by simply
posing the simplest condition that one can imagine: the vanishing of classical W and possibly
also Z0 fields inducing mixing of different charge states.

(a) Induced W fields mean that the modes of Kähler-Dirac equation do not in general have
well-defined em charge. The problem disappears if the induced W gauge fields vanish.
This does not yet guarantee that couplings to classical gauge fields are physical in long
scales. Also classical Z0 field should vanish so that the couplings would be purely
vectorial. Vectoriality might be true in long enough scales only. If W and Z0 fields
vanish in all scales then electroweak forces are due to the exchanges of corresponding
gauge bosons described as string like objects in TGD and represent non-trivial space-
time geometry and topology at microscopic scale.

(b) The conditions solve also another long-standing interpretational problem. Color ro-
tations induce rotations in electroweak-holonomy group so that the vanishing of all
induced weak fields also guarantees that color rotations do not spoil the property of
spinor modes to be eigenstates of em charge.

One can study the conditions quite concretely by using the formulas for the components of
spinor curvature [L2] (http://tinyurl.com/z86o5qk ).

(a) The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(4.3.6)

R01 = R23 and R03 = −R31 combine to form purely left handed classical W boson fields
and Z0 field corresponds to Z0 = 2R03.

Kähler form is given by

J = 2(e0 ∧ e3 + e1 ∧ e2) . (4.3.7)

http://tinyurl.com/z86o5qk
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(b) The vanishing of classical weak fields is guaranteed by the conditions

e0 ∧ e1 − e2 ∧ e3 = 0 ,

e0 ∧ e2 − e3 ∧ e1 ,

4e0 ∧ e3 + 2e1 ∧ e2 .

(4.3.8)

(c) There are many manners to satisfy these conditions. For instance, the condition e1 =
a× e0 and e2 = −a× e3 with arbitrary a which can depend on position guarantees the
vanishing of classical W fields. The CP2 projection of the tangent space of the region
carrying the spinor mode must be 2-D.

Also classical Z0 vanishes if a2 = 2 holds true. This guarantees that the couplings
of induced gauge potential are purely vectorial. One can consider other alternaties.
For instance, one could require that only classical Z0 field or induced Kähler form is
non-vanishing and deduce similar condition.

(d) The vanishing of the weak part of induced gauge field implies that the CP2 projection
of the region carrying spinor mode is 2-D. Therefore the condition that the modes of
induced spinor field are restricted to 2-surfaces carrying no weak fields sheets guarantees
well-definedness of em charge and vanishing of classical weak couplings. This condition
does not imply string world sheets in the general case since the CP2 projection of the
space-time sheet can be 2-D.

How string world sheets could emerge?

(a) Additional consistency condition to neutrality of string world sheets is that Kähler-Dirac
gamma matrices have no components orthogonal to the 2-surface in question. Hence
various fermionic would flow along string world sheet.

(b) If the Kähler-Dirac gamma matrices at string world sheet are expressible in terms of
two non-vanishing gamma matrices parallel to string world sheet and sheet and thus
define an integrable distribution of tangent vectors, this is achieved. What is important
that modified gamma matrices can indeed span lower than 4-D space and often do so
as already described. Induced gamma matrices defined always 4-D space so that the
restriction of the modes to string world sheets is not possible.

(c) String models suggest that string world sheets are minimal surfaces of space-time surface
or of imbedding space but it might not be necessary to pose this condition separately.

In the proposed scenario string world sheets emerge rather than being postulated from be-
ginning.

(a) The vanishing conditions for induced weak fields allow also 4-D spinor modes if they are
true for entire spatime surface. This is true if the space-time surface has 2-D projection.
One can expect that the space-time surface has foliation by string world sheets and the
general solution of K-D equation is continuous superposition of the 2-D modes in this
case and discrete one in the generic case.

(b) If the CP2 projection of space-time surface is homologically non-trivial geodesic sphere
S2, the field equations reduce to those in M4 × S2 since the second fundamental form
for S2 is vanishing. It is possible to have geodesic sphere for which induced gauge field
has only em component?

(c) If the CP2 projection is complex manifold as it is for string like objects, the vanishing
of weak fields might be also achieved.

(d) Does the phase of cosmic strings assumed to dominate primordial cosmology correspond
to this phase with no classical weak fields? During radiation dominated phase 4-D string
like objects would transform to string world sheets.Kind of dimensional transmutation
would occur.
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Right-handed neutrino has exceptional role in K-D action.

(a) Electroweak gauge potentials do not couple to νR at all. Therefore the vanishing of W
fields is un-necessary if the induced gamma matrices do not mix right handed neutrino
with left-handed one. This is guaranteed if M4 and CP2 parts of Kähler-Dirac oper-
ator annihilate separately right-handed neutrino spinor mode. Also νR modes can be
interpreted as continuous superpositions of 2-D modes and this allows to define overlap
integrals for them and induced spinor fields needed to define WCW gamma matrices
and super-generators.

(b) For covariantly constant right-handed neutrino mode defining a generator of super-
symmetries is certainly a solution of K-D. Whether more general solutions of K-D exist
remains to be checked out.

4.3.4 Connection With Number Theoretic Vision?

The interesting potential connection of the Hamilton-Jacobi vision to the number theoretic
vision about field equations has been already mentioned.

(a) The vision that associativity/co-associativity defines the dynamics of space-time surfaces
boils down to M8 − H duality stating that space-time surfaces can be regarded as
associative/co-associative surfaces either in M8 or H [K74, K111]. Associativity reduces
to hyper-quaternionicity implying that that the tangent/normal space of space-time
surface at each point contains preferred sub-space M2(x) ⊂ M8 and these sub-spaces
forma an integrable distribution. An analogous condition is involved with the definition
of Hamilton-Jacobi structure.

(b) The octonionic representation of the tangent space of M8 and H effectively replaces
SO(7, 1) as tangent space group with its octonionic analog obtained by the replacement
of sigma matrices with their octonionic counterparts defined by anti-commutators of
gamma matrices. By non-associativity the resulting algebra is not ordinary Lie-algebra
and exponentiates to a non-associative analog of Lie group. The original wrong belief
was that the reduction takes place to the group G2 of octonionic automorphisms acting
as a subgroup of SO(7). One can ask whether the conditions on the charged part of
energy momentum tensor could relate to the reduction of SO(7, 1)

(c) What puts bells ringing is that the Kähler-Dirac equation for the octonionic repre-
sentation of gamma matrices allows the conservation of electromagnetic charge in the
proposed sense. The reason is that the left handed sigma matrices (W charges are left-
handed) in the octonionic representation of gamma matrices vanish identically! What
remains are vectorial=right-handed em and Z0 charge which becomes proportional to
em charge since its left-handed part vanishes. All spinor modes have a well-defined em
charge in the octonionic sense defined by replacing imbedding space spinor locally by its
octonionic variant? Maybe this could explain why H spinor modes can have well-defined
em charge contrary to the naive expectations.

(d) The non-associativity of the octonionic spinors is however a problem. Even non-commutativity
poses problems - also at space-time level if one assumes quaternion-real analyticity for
the spinor modes. Could one assume commutativity or co-commutativity for the induced
spinor modes? This would mean restriction to associative or co-associative 2-surfaces
and (hyper-)holomorphic depends on its (hyper-)complex coordinate. The outcome
would be a localization to a hyper-commutative of commutative 2-surface, string world
sheet or partonic 2-surface.

(e) These conditions could also be interpreted by saying that for the Kähler Dirac operator
the octonionic induced spinors assumed to be commutative/co-commutative are equiv-
alent with ordinary induced spinors. The well-definedness of em charge for ordinary
spinors would correspond to commutativity/co-commutativity for octonionic spinors.
Even the Dirac equations based on induced and Kähler-Dirac gamma matrices could be
equivalent since it is essentially holomorphy which matters.
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To sum up, these considerations inspire to ask whether the associativity/co-associativity of
the space-time surface is equivalent with the reduction of the field equations to stringy field
equations stating that certain components of the induced metric in complex/Hamilton-Jacobi
coordinates vanish in turn guaranteeing that field equations reduce to algebraic identifies fol-
lowing from the fact that energy momentum tensor and second fundamental form have no
common components? Commutativity/co-commutativity would characterize fermionic dy-
namics and would have physical representation as possibility to have em charge eigenspinors.
This should be the case if one requires that the two solution ansätze are equivalent.

4.4 Representation Of WCW Metric As Anti-Commutators
Of Gamma Matrices Identified As Symplectic Super-Charges

WCW gamma matrices identified as symplectic super Noether charges suggest an elegant
representation of WCW metric and Kähler form, which seems to be more practical than
the representations in terms of Kähler function or representations guessed by symmetry
arguments.

This representation is equivalent with the somewhat dubious representation obtained using
symmetry arguments - that is by assuming that that the half Poisson brackets of imbedding
space Hamiltonians defining Kähler form and metric can be lifted to the level of WCW, if the
conformal gauge conditions hold true for the spinorial conformal algebra, which is the TGD
counterpart of the standard Kac-Moody type algebra of the ordinary strings models. For
symplectic algebra the hierarchy of breakings of super-conformal gauge symmetry is possible
but not for the standard conformal algebras associated with spinor modes at string world
sheets.

4.4.1 Expression For WCW Kähler Metric As Anticommutators As
Symplectic Super Charges

During years I have considered several variants for the representation of symplectic Hamil-
tonians and WCW gamma matrices and each of these proposals have had some weakness.
The key question has been whether the Noether currents assignable to WCW Hamiltonians
should play any role in the construction or whether one can use only the generalization of
flux Hamiltonians.

The original approach based on flux Hamiltonians did not use Noether currents.

(a) Magnetic flux Hamiltonians do not refer to the space-time dynamics and imply genuine
rather than only effective 2-dimensionality, which is more than one wants. If the sum
of the magnetic and electric flux Hamiltonians and the weak form of self duality is
assumed, effective 2-dimensionality might be achieved.

The challenge is to identify the super-partners of the flux Hamiltonians and postu-
late correct anti-commutation relations for the induced spinor fields to achieve anti-
commutation to flux Hamiltonians. It seems that this challenge leads to ad hoc con-
structions.

(b) For the purposes of generalization it is useful to give the expression of flux Hamiltonian.
Apart from normalization factors one would have

Q(HA) =

∫
X2

HAJµνdx
µ ∧ dxν .

Here A is a label for the Hamiltonian of δM4
±×CP2 decomposing to product of δM4

± and
CP2 Hamiltonians with the first one decomposing to a product of function of the radial
light-like coordinate rM and Hamiltonian depending on S2 coordinates. It is natural
to assume that Hamiltonians have well- defined SO(3) and SU(3) quantum numbers.
This expressions serves as a natural starting point also in the new approach based on
Noether charges.
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The approach identifying the Hamiltonians as symplectic Noether charges is extremely nat-
ural from physics point of view but the fact that it leads to 3-D expressions involving the
induced metric led to the conclusion that it cannot work. In hindsight this conclusion seems
wrong: I had not yet realized how profound that basic formulas of physics really are. If
the generalization of AdS/CFT duality works, Kähler action can be expressed as a sum of
string area actions for string world sheets with string area in the effective metric given as the
anti-commutator of the Kähler-Dirac gamma matrices for the string world sheet so that also
now a reduction of dimension takes place. This is easy to understand if the classical Noether
charges vanish for a sub-algebra of symplectic algebra for preferred extremals.

(a) If all end points for strings are possible, the recipe for constructing super-conformal
generators would be simple. The imbedding space Hamiltonian HA appearing in the
expression of the flux Hamiltonian given above would be replaced by the corresponding
symplectic quantum Noether charge Q(HA) associated with the string defined as 1-D
integral along the string. By replacing Ψ or its conjugate with a mode of the induced
spinor field labeled by electroweak quantum numbers and conformal weight nm one
would obtain corresponding super-charged identifiable as WCW gamma matrices. The
anti-commutators of the super-charges would give rise to the elements of WCW metric
labelled by conformal weights n1, n2 not present in the naive guess for the metric. If
one assumes that the fermionic super-conformal symmetries act as gauge symmetries
only ni = 0 gives a non-vanishing matrix element.

Clearly, one would have weaker form of effective 2-dimensionality in the sense that
Hamiltonian would be functional of the string emanating from the partonic 2-surface.
The quantum Hamiltonian would also carry information about the presence of other
wormhole contacts- at least one- when wormhole throats carry Kähler magnetic monopole
flux. If only discrete set for the end points for strings is possible one has discrete sum
making possible easy p-adicization. It might happen that integrability conditions for
the tangent spaces of string world sheets having vanishing W boson fields do not allow
all possible strings.

(b) The super charges obtained in this manner are not however entirely satisfactory. The
problem is that they involve only single string emanating from the partonic 2-surface.
The intuitive expectation is that there can be an arbitrarily large number of strings:
as the number of strings is increased the resolution improves. Somehow the super-
conformal algebra defined by Hamiltonians and super-Hamiltonians should generalize
to allow tensor products of the strings providing more physical information about the
3-surface.

(c) Here the idea of Yangian symmetry [K76] suggests itself strongly. The notion of Yangian
emerges from twistor Grassmann approach and should have a natural place in TGD. In
Yangian algebra one has besides product also co-product, which is in some sense ”time-
reversal” of the product. What is essential is that Yangian algebra is also multi-local.

The Yangian extension of the super-conformal algebra would be multi-local with respect
to the points of partonic surface (or multi-stringy) defining the end points of string. The
basic formulas would be schematically

OA1 = fABCT
B ⊗ TB ,

where a summation of B,C occurs and fABC are the structure constants of the algebra.
The operation can be iterated and gives a hierarchy of n-local operators. In the recent
case the operators are n-local symplectic super-charges with unit fermion number and
symplectic Noether charges with a vanishing fermion number. It would be natural
to assume that also the n-local gamma matrix like entities contribute via their anti-
commutators to WCW metric and give multi-local information about the partonic 2-
surface and 3-surface.

The operation generating the algebra well-defined if one an assumes that the second
quantization of induced spinor fields is carried out using the standard canonical quanti-
zation. One could even assume that the points involved belong to different partonic 2-
surfaces belonging even at opposite boundaries of CD. The operation is also well-defined
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if one assumes that induced spinor fields at different space-time points at boundaries
of CD always anti-commute. This could make sense at boundary of CD but lead to
problems with imbedding space-causality if assumed for the spinor modes at opposite
boundaries of CD.

4.4.2 Handful Of Problems With A Common Resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle.
It is essential to make trials, even if one is aware that they are probably wrong. When stares
long enough to the letters which do not quite fit, one suddenly realizes what one particular
crossword must actually be and it is soon clear what those other crosswords are. In the
following I describe an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma matrices
and propose Kähler-Dirac action as their solution.

Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of
Kähler-Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to
a complex-analytic map. This implies that induced metric is hermitian so that it has no
diagonal components in complex coordinates (z, z) and the second fundamental form has
only diagonal components of type Hk

zz. This implies that minimal surface is in question since
the trace of the second fundamental form vanishes. At first it seems that the same must
happen also in the more general case with the consequence that the space-time surface is a
minimal surface. Although many basic extremals of Kähler action are minimal surfaces, it
seems difficult to believe that minimal surface property plus extremization of Kähler action
could really boil down to the absolute minimization of Kähler action or some other general
principle selecting preferred extremals as Bohr orbits [K15, K74].

This brings in mind a similar long-standing problem associated with the Dirac equation for
the induced spinors. The problem is that right-handed neutrino generates super-symmetry
only provided that space-time surface and its boundary are minimal surfaces. Although one
could interpret this as a geometric symmetry breaking, there is a strong feeling that something
goes wrong. Induced Dirac equation and super-symmetry fix the variational principle but
this variational principle is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors is
consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kähler action also induced spinor fields represent vacua.
This is however not the case. This super-symmetry is however assumed in the construction
of WCW geometry so that there is internal inconsistency.

Super-symmetry forces Kähler-Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-
handed neutrino and finding a Dirac action which is consistent with this super-symmetry.
Field equations can be written as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (4.4.1)
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Here Tαk is canonical momentum current of Kähler action. If super-symmetry is present one
can assign to this current its super-symmetric counterpart

Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (4.4.2)

having a vanishing divergence. The isometry currents currents and super-currents are ob-
tained by contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note
also that the super current

Jα = νRT
α
l ΓlΨ (4.4.3)

has a vanishing divergence.

By using the covariant constancy of the right-handed neutrino spinor, one finds that the
divergence of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(4.4.4)

The requirement that this current vanishes is guaranteed if one assumes that Kähler-Dirac
equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (4.4.5)

This equation must be derivable from a Kähler-Dirac action. It indeed is. The action is given
by

L = ΨΓ̂αDαΨ . (4.4.6)

Thus the variational principle exists. For this variational principle induced gamma matrices
are replaced with Kähler-Dirac gamma matrices and the requirement

DµΓ̂µ = 0 (4.4.7)

guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are
satisfied. For the ordinary Dirac action this condition would lead to the minimal surface
property. What sounds strange that the essentially hydrodynamical equations defined by
Kähler action have fermionic counterpart: this is very far from intuitive expectations raised
by ordinary Dirac equation and something which one might not guess without taking super-
symmetry very seriously.

As a matter fact, any mode of Kähler-Dirac equation contracted with second quantized
induced spinor field or its conjugate defines a conserved super charge. Also super-symplectic
Noether charges and their super counterparts can be assigned to symplectic generators as
Noether charges but they need not be conserved.
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Second quantization of the K-D action

Second quantization of Kähler-Dirac action is crucial for the construction of the Kähler
metric of world of classical worlds as anti-commutators of gamma matrices identified as
super-symplectic Noether charges. To get a unique result, the anti-commutation relations
must be fixed uniquely. This has turned out to be far from trivial.

1. Canonical quantization works after all

The canonical manner to second quantize fermions identifies spinorial canonical momentum
densities and their conjugates as Π = ∂LKD/∂Ψ = ΨΓt and their conjugates. The vanishing
of Γt at points, where the induced Kähler form J vanishes can cause problems since anti-
commutation relations are not internally consistent anymore. This led me to give up the
canonical quantization and to consider various alternatives consistent with the possibility
that J vanishes. They were admittedly somewhat ad hoc. Correct (anti-)commutation
relations for various fermionic Noether currents seem however to fix the anti-commutation
relations to the standard ones. It seems that it is better to be conservative: the canonical
method is heavily tested and turned out to work quite nicely.

The canonical manner to second quantize fermions identifies spinorial canonical momentum
densities and their conjugates as Π = ∂LKD/∂Ψ = ΨΓt and their conjugates. The vanishing
of Γt at points, where the induced Kähler form J vanishes can cause problems since anti-
commutation relations are not internally consistent anymore. This led originally to give up
the canonical quantization and to consider various alternatives consistent with the possibility
that J vanishes. They were admittedly somewhat ad hoc. Correct commutation relations
for various fermionic Noether currents seem however to fix the anti-commutation relations
to the standard ones.

Consider first the 4-D situation without the localization to 2-D string world sheets. The
canonical anti-commutation relations would state {Π,Ψ} = δ3(x, y) at the space-like bound-
aries of the string world sheet at either boundary of CD. At points where J and thus T t

vanishes, canonical momentum density vanishes identically and the equation seems to be
inconsistent.

If fermions are localized at string world sheets assumed to always carry a non-vanishing J
at their boundaries at the ends of space-time surfaces, the situation changes since Γt is non-
vanishing. The localization to string world sheets, which are not vacua saves the situation.
The problem is that the limit when string approaches vacuum could be very singular and
discontinuous. In the case of elementary particle strings are associated with flux tubes
carrying monopole fluxes so that the problem disappears.

It is better to formulate the anti-commutation relations for the modes of the induced spinor
field. By starting from

{Π(x),Ψ(y)} = δ1(x, y)

(4.4.8)

and contracting with Ψ(x) and Π(y) and integrating, one obtains using orthonormality of
the modes of Ψ the result

{b†m, bn} = γ0δm,n

(4.4.9)

holding for the nodes with non-vanishing norm. At the limit J → 0 there are no modes with
non-vanishing norm so that one avoids the conflict between the two sides of the equation.
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The proposed anti-commutator would realize the idea that the fermions are massive. The
following alternative starts from the assumption of 8-D light-likeness.

2. Does one obtain the analogy of SUSY algebra? In super Poincare algebra anti-commutators

of super-generators give translation generator: anti-commutators are proportional to pkσk.
Could it be possible to have an anti-commutator proportional to the contraction of Dirac
operator pkσk of 4-momentum with quaternionic sigma matrices having or 8-momentum with
octonionic 8-matrices?

This would give good hopes that the GRT limit of TGD with many-sheeted space-time
replaced with a slightly curved region of M4 in long length scales has large N SUSY as an
approximate symmetry: N would correspond to the maximal number of oscillator operators
assignable to the partonic 2-surface. If conformal invariance is exact, it is just the number
of fermion states for single generation in standard model.

(a) The first promising sign is that the action principle indeed assigns a conserved light-like
8-momentum to each fermion line at partonic 2-surface. Therefore octonionic represen-
tation of sigma matrices makes sense and the generalization of standard twistorialization
of four-momentum also. 8-momentum can be characterized by a pair of octonionic 2-
spinors (λ, λ) such that one has λλ) = pkσk.

(b) Since fermion line as string boundary is 1-D curve, the corresponding octonionic sub-
spaces is just 1-D complex ray in octonion space and imaginary axes is defined by the
associated imaginary octonion unit. Non-associativity and non-commutativity play no
role and it is as if one had light like momentum in say z-direction.

(c) One can select the ininitial values of spinor modes at the ends of fermion lines in such
a manner that they have well-defined spin and electroweak spin and one can also form
linear superpositions of the spin states. One can also assume that the 8-D algebraic
variant of Dirac equation correlating M4 and CP2 spins is satisfied.

One can introduce oscillator operators b†m,α and bn,α with α denoting the spin. The
motivation for why electroweak spin is not included as an index is due to the correlation
between spin and electroweak spin. Dirac equation at fermion line implies a complete
correlation between directions of spin and electroweak spin: if the directions are same
for leptons (convention only), they are opposite for antileptons and for quarks since the
product of them defines imbedding space chirality which distinguishes between quarks
and leptons. Instead of introducing electroweak isospin as an additional correlated index
one can introduce 4 kinds of oscillator operators: leptonic and quark-like and fermionic
and antifermionic.

(d) For definiteness one can consider only fermions in leptonic sector. In hope of getting
the analog of SUSY algebra one could modify the fermionic anti-commutation relations
such that one has

{b†m,α, bn,β} = ±iεαβδm,n .

(4.4.10)

Here α is spin label and ε is the standard antisymmetric tensor assigned to twistors.
The anti-commutator is clearly symmetric also now. The anti-commmutation relations
with different signs ± at the right-hand side distinguish between quarks and leptons and
also between fermions and anti-fermions. ± = 1 could be the convention for fermions
in lepton sector.

(e) One wants combinations of oscillator operators for which one obtains anti-commutators
having interpretation in terms of translation generators representing in terms of 8-
momentum. The guess would be that the oscillator operators are given by

B†n = b†m,αλ
α , Bn = λ

α
bm,α .

(4.4.11)
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The anti-commutator would in this case be given by

{B†m, Bn} = iλ
α
εαβλ

βδm,n
= Tr(pkσk)δm,n = 2p0δm,n .

(4.4.12)

The inner product is positive for positive value of energy p0. This form of anti-
commutator obviously breaks Lorentz invariance and this us due the number theoretic
selection of preferred time direction as that for real octonion unit. Lorentz invariance
is saved by the fact that there is a moduli space for the choices of the quaternion units
parameterized by Lorentz boosts for CD.

The anti-commutator vanishes for covariantly constant antineutrino so that it does not
generate sparticle states. Only fermions with non-vanishing four-momentum do so and
the resulting algebra is very much like that associated with a unitary representation of
super Poincare algebra.

(f) The recipe gives one helicity state for lepton in given mode m (conformal weight). One
has also antilepton with opposite helicity with ± = −1 in the formula defining the
anti-commutator. In the similar manner one obtains quarks and antiquarks.

(g) Contrary to the hopes, one did not obtain the anti-commutator pkσk but Tr(p0σ0). 2p0

is however analogous to the action of Dirac operator pkσk to a massless spinor mode
with ”wrong” helicity giving 2p0σ0. Massless modes with wrong helicity are expected
to appear in the fermionic propagator lines in TGD variant of twistor approach. Hence
one might hope that the resulting algebra is consistent with SUSY limit.

The presence of 8-momentum at each fermion line would allow also to consider the
introduction of anti-commutators of form pk(8)σk directly making N = 8 SUSY at
parton level manifest. This expression restricts for time-like M4 momenta always to
quaternion and one obtains just the standard picture.

(h) Only the fermionic states with vanishing conformal weight seem to be realized if the con-
formal symmetries associated with the spinor modes are realized as gauge symmetries.
Super-generators would correspond to the fermions of single generation standard model:
4+4 =8 states altogether. Interestingly, N = 8 correspond to the maximal SUSY for
super-gravity. Right-handed neutrino would obviously generate the least broken SUSY.
Also now mixing of M4 helicities induces massivation and symmetry breaking so that
even this SUSY is broken. One must however distinguish this SUSY from the super-
symplectic conformal symmetry. The space in which SUSY would be realized would be
partonic 2-surfaces and this distinguishes it from the usual SUSY. Also the conservation
of fermion number and absence of Majorana spinors is an important distinction.

3. What about quantum deformations of the fermionic oscillator algebra?

Quantum deformation introducing braid statistics is of considerable interest. Quantum de-
formations are essentially 2-D phenomenon, and the experimental fact that it indeed occurs
gives a further strong support for the localization of spinors at string world sheets. If the
existence of anyonic phases is taken completely seriously, it supports the existence of the
hierarchy of Planck constants and TGD view about dark matter. Note that the localization
also at partonic 2-surfaces cannot be excluded yet.

I have wondered whether quantum deformation could relate to the hierarchy of Planck con-
stants in the sense that n = heff/h corresponds to the value of deformation parameter
q = exp(i2π/n).

A q-deformation of Clifford algebra of WCW gamma matrices is required. Clifford algebra is
characterized in terms of anti-commutators replaced now by q-anticommutators. The natu-
ral identification of gamma matrices is as complexified gamma matrices. For q-deformation
q-anti-commutators would define WCW Kähler metric. The commutators of the supergenera-
tors should still give anti-symmetric sigma matrices. The q-anticommutation relations should
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be same in the entire sector of WCW considered and be induced from the q-anticommutation
relations for the oscillator operators of induced spinor fields at string world sheets, and reflect
the fact that permutation group has braid group as covering group in 2-D case so that braid
statistics becomes possible.

In [A56] (http://tinyurl.com/y9e6pg4d) the q-deformations of Clifford algebras are dis-
cussed, and this discussion seems to apply in TGD framework.

(a) It is assumed that a Lie-algebra g has action in the Clifford algebra. The q-deformations
of Clifford algebra is required to be consistent with the q-deformation of the universal
enveloping algebra Ug.

(b) The simplest situation corresponds to group su(2) so that Clifford algebra elements are
labelled by spin ±1/2. In this case the q-anticommutor for creation operators for spin
up states reduces to an anti-commutator giving q-deformation Iq of unit matrix but
for the spin down states one has genuine q-anti-commutator containing besides Iq also
number operator for spin up states at the right hand side.

(c) The undeformed anti-commutation relations can be witten as

P+kl
ij akal = 0 , P+kl

ij a†ka
†
l = 0 , aia†j + P ihjka

†
ha
k = δij1 .

(4.4.13)

Here P klij = δilδ
j
k is the permutator and P+kl

ij = (1+P )/2 is projector. The q-deformation
reduces to a replacement of the permutator and projector with q-permutator Pq and
q-projector and P+

q , which are both fixed by the quantum group.

(d) Also the condition that deformed algebra has same Poincare series as the original one is
posed. This says that the representation content is not changed that is the dimensions
of summands in a representation as direct sum of graded sub-spaces are same for algebra
and its q-deformation. If one has quantum group in a strict sense of the word (quasi-
triangularity (genuine braid group) rather that triangularity requiring that the square
of the deformed permutator Pq is unit matrix, one can have two situations.

i. g = sl(N) (special linear group such as SL(2, F ), F = R,C) or g = Sp(N = 2n)
(symplectic group such as Sp(2) = SL(2, R)), which is subgroup of sl(N). Creation
(annihilation-) operators must form the N -dimensional defining representation of
g.

ii. g = sl(N) and one has direct sum of M N -dimensional defining representations
of g. The M copies of representation are ordered so that they can be identified as
strands of braid so that the deformation makes sense at the space-like ends of string
world sheet naturally. q-projector is proportional to so called universal R-matrix.

(e) It is also shown that q-deformed oscillator operators can be expressed as polynomials
of the ordinary ones.

The following argument suggest that the g must correspond to the minimal choices sl(2, R)
(or su(2)) in TGD framework.

(a) The q-Clifford algebra structure of WCW should be induced from that for the fermionic
oscillator algebra. g cannot correspond to su(2)spin×su(2)ew since spin and weak isospin
label fermionic oscillator operators beside conformal weights but must relate closely to
this group. The physical reason is that the separate conservation of quark and lepton
numbers and light-likeness in 8-D sense imply correlations between the components of
the spinors and reduce g.

(b) For a given H-chirality (quark/ lepton) 8-D light-likeness forced by massless Dirac equa-
tion at the light-like boundary of the string world sheet at parton orbit implies corre-
lation between M4 and CP2 chiralities. Hence there are 4+4 spinor components corre-
sponding to fermions and antifermions with physical (creation oeprators) and unphysi-
cal (annihilation operators) polarizations. This allows two creation operators with given

http://tinyurl.com/y9e6pg4d
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H-chirality (quark or lepton) and fermion number. Same holds true for antifermions.
By fermion number conservation one obtains a reduction to SU(2) doublets and the
quantum group would be sl(2) = sp(2) for which “special linear” implies “symplectic”.

4.5 Quantum Criticality And Kähler-Dirac Action

The precise mathematical formulation of quantum criticality has remained one of the basic
challenges of quantum TGD. The belief has been that the existence of conserved current for
Kähler-Dirac equation are possible if Kähler action is critical for the 3-surface in question
in the sense that the deformation in question corresponds to vanishing of second variation
of Kähler action. The vanishing of the second variation states that the deformation of the
Kähler-Dirac gamma matrix is divergence free just like the Kähler-Dirac gamma matrix itself
and is therefore very natural.

2-D conformal invariance accompanies 2-D criticality and allows to satisfy these conditions
for spinor modes localized at 2-D surfaces - string world sheets and possibly also partonic
2-surfaces. This localization is in the generic case forced by the conditions that em charge
is well-defined for the spinor modes: this requires that classical W fields vanish and also the
vanishing of classical Z0 field is natural -at least above weak scale. Only 2 Kähler-Dirac
gamma matrices can be non-vanishing and this is possible only for Kähler-Dirac action.

4.5.1 What Quantum Criticality Could Mean?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means
mathematically is however far from clear and one can imagine several meanings for it.

(a) What is obvious is that quantum criticality implies quantization of Kähler coupling
strength as a mathematical analog of critical temperature so that the theory becomes
mathematically unique if only single critical temperature is possible. Physically this
means the presence of long range fluctuations characteristic for criticality and perhaps
assignable to the effective hierarchy of Planck constants having explanation in terms
of effective covering spaces of the imbedding space. This hierarchy follows from the
vacuum degeneracy of Kähler action, which in turn implies 4-D spin-glass degeneracy.
It is easy to interpret the degeneracy in terms of criticality.

(b) At more technical level one would expect criticality to correspond to deformations of a
given preferred extremal defining a vanishing second variation of Kähler Khler function
or Kähler action.

i. For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would
be naturally zero modes not contribution to Kähler metric of WCW but appearing
as parameters in it. The bevavior variables correspond to quantum fluctuating
degrees of freedom and according to catastrophe theory a big change can in quantum
fluctuating degrees of freedom at criticality for zero modes. This would be control of
quantum state by varying classical variables. Cusp catastrophe is standard example
of this. One can imagined also a situation in which the roles of zero modes and
behavior variables change and big jump in the values of zero modes is induced by
small variation in behavior variables. This would mean quantum control of classical
variables.

ii. Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum
in certain directions so that the matrix defined by second derivatives does not
have maximum rank. Entire hierarchy of criticalities is expected and a good finite-
dimensional model is provided by the catastrophe theory of Thom [A52]. Cusp
catastrophe (see http://tinyurl.com/yddpfdgo) [A3] is the simplest catastrophe

http://tinyurl.com/yddpfdgo
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one can think of, and here the folds of cusp where discontinuous jump occurs cor-
respond to criticality with respect to one control variable and the tip to criticality
with respect to both control variables.

(c) Quantum criticality makes sense also for Kähler action.

i. Now one considers space-time surface connecting which 3-surfaces at the boundaries
of CD. The non-determinism of Kähler action allows the possibility of having sev-
eral space-time sheets connecting the ends of space-time surface but the conditions
that classical charges are same for them reduces this number so that it could be
finite. Quantum criticality in this sense implies non-determinism analogous to that
of critical systems since preferred extremals can co-incide and suffer this kind of
bifurcation in the interior of CD. This quantum criticality can be assigned to the
hierarchy of Planck constants and the integer n in heff = n×h [K22] corresponds to
the number of degenerate space-time sheets with same Kähler action and conserved
classical charges.

ii. Also now one expects a hierarchy of criticalitiesandsince criticality and conformal
invariance are closely related, a natural conjecture is that the fractal hierarchy of
sub-algebras of conformal algebra isomorphic to conformal algebra itself and having
conformal weights coming as multiples of n corresponds to the hierarchy of Planck
constants. This hierarchy would define a hierarchy of symmetry breakings in the
sense that only the sub-algebra would act as gauge symmetries.

iii. The assignment of this hierarchy with super-symplectic algebra having conformal
structure with respect to the light-like radial coordinate of light-cone boundary
looks very attractive. An interesting question is what is the role of the super-
conformal algebra associated with the isometries of light-cone boundary R+ × S2

which are conformal transformations of sphere S2 with a scaling of radial coordinate
compensating the scaling induced by the conformal transformation. Does it act as
dynamical or gauge symmetries?

(d) I have discussed what criticality could mean for Kähler-Dirac action [K88].

i. I have conjectured that it leads to the existence of additional conserved currents
defined by the variations which do not affect the value of Kähler action. These
arguments are far from being mathematically rigorous and the recent view about
the solutions of the Kähler-Dirac equation predicting that the spinor modes are
restricted to 2-D string world sheets requires a modification of these arguments.

ii. The basic challenge is to understand the mechanism making this kind of currents
conserved: the same challenge is met already in the case of isometries since imbed-
ding space coordinates appear as parameters in Kähler-Dirac action. Kähler-Dirac
equation is satisfied if the first variation of the canonical momentum densities con-
tracted with the imbedding space gamma matrices annihilates the spinor mode.
Situation is analogous to massless Dirac equation: it does not imply the vanishing
of four-momentum, only the vanishing of mass. One obtains conserved fermion
current associated with deformations only if the deformation of the Kähler-Dirac
gamma matrix is divergenceless just like the Kähler-Dirac gamma matrix itself.
This conditions requires the vanishing of the second variation of Kähler action.

iii. It is far from obvious that these conditions can be satisfied. The localization of
the spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the
generic case that em charge is well-defined for spinor modes implies holomorphy
allowing to formulate current conservation for the deformations of the space-time
surface for second quantized induced spinor field. The crux is that the deformation
respects the holomorphy properties of the Kähler-Dirac gamma matrices at string
world sheet and thus does not mix Γz with Γz. The deformation of Γz has only
z-component and also annihilates the holomorphic spinor.
This mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac
gamma matrices in directions orthogonal to the 2-surface must vanish and this is
not possible for other actions. This also means that energy momentum tensor has
rank 2 as a matrix. Cosmic string solutions are an exception since in this case
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CP2 projection of space-time surface is 2-D and conditions guaranteing vanishing
of classical W fields can be satisfied without the restriction to 2-surface.

The vacuum degeneracy of Kähler action strongly suggests that the number of critical defor-
mations is always infinite and that these deformations define an infinite inclusion hierarchy of
super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy
of breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies
of gauge theories. These super-conformal inclusion hierarchies would realize the inclusion
hierarchies for hyper-finite factors of type II1.

4.5.2 Quantum Criticality And Fermionic Representation Of Con-
served Charges Associated With Second Variations Of Kähler Action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The
development of the understanding of conservation laws has been however slow. Kähler-Dirac
action provides excellent candidates for quantum counterparts of Noether charges. The
problem is that the imbedding space coordinates are in the role of classical external fields
and induces spinor fields are second quantized so that it is not at all clear whether one obtains
conserved charges.

What does the conservation of the fermionic Noether current require?

The obvious anser to the question of the title is that the conservation of the fermionic current
requires the vanishing of the first variation of Kähler-Dirac action with respect to imbedding
space coordinates. This is certainly true but need not mean vanishing of the second variation
of Kähler action as thought first. Hence fermionic conserved currents might be obtained for
much more general variations than critical ones.

(a) The Kähler-Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation
of the Kähler-Dirac action under this deformation vanishes.

The vanishing of the first variation for the Kähler-Dirac action is equivalent with the
vanishing of the second variation for the Kähler action. This can be seen by the explicit
calculation of the second variation of the Kähler-Dirac action and by performing partial
integration for the terms containing derivatives of Ψ and Ψ to give a total divergence
representing the difference of the charge at upper and lower boundaries of the causal
diamond plus a four-dimensional integral of the divergence term defined as the integral
of the quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (4.5.1)

Here hkβ denote partial derivative of the imbedding space coordinates with respect to
space-time coordinates. ∆SD vanishes if this term vanishes:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of
course occur only for preferred deformations of X4. One could consider the possibility
that these deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note
that covariant divergence is in question so that Jαk does not define conserved classical
charge in the general case.
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(b) This condition is however un-necessarily strong. It is enough that that the deformation
of Dirac operator anihilates the spinor mode, which can also change in the deformation.
It must be possible to compensate the change of the covariant derivative in the defor-
mation by a gauge transformation which requires that deformations act as gauge trans-
formations on induce gauge potentials. This gives additional constraint and strongly
suggests Kac-Moody type algebra for the deformations. Conformal transformations
would satisfy this constraint and are suggested by quantum criticality.

(c) It is essential that the Kähler-Dirac equation holds true so that the Kähler-Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from
the determinant of the induced metric. The condition that the Kähler-Dirac equation is
satisfied for the deformed space-time surface requires that also Ψ suffers a transformation
determined by the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (4.5.2)

Here 1/D is the inverse of the Kähler-Dirac operator defining the counterpart of the
fermionic propagator.

(d) The fermionic conserved currents associated with the deformations are obtained from
the standard conserved fermion current

Jα = ΨΓαΨ . (4.5.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler
action: this is also needed to guarantee Hermiticity and same form for the Kähler-
Dirac equation for Ψ and its conjugate as well as absence of mass term essential for
super-conformal invariance. Note also that ordinary divergence rather only covariant
divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained
by replacing Kähler-Dirac gamma matrices with their increments in the deformation
keeping Ψ and its conjugate constant. Second term is obtained by replacing Ψ with its
increment δΨ. The third term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (4.5.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra.

(e) Also conserved super charges corresponding to super-conformal invariance are obtained.
The first class of super currents are obtained by replacing Ψ or Ψ right handed neutrino
spinor or its conjugate in the expression for the conserved fermion current and per-
forming the above procedure giving two terms since nothing happens to the covariantly
constant right handed-neutrino spinor. Second class of conserved currents is defined by
the solutions of the Kähler-Dirac equation interpreted as c-number fields replacing Ψ or
Ψ and the same procedure gives three terms appearing in the super current.

(f) The existence of vanishing of second variations is analogous to criticality in systems
defined by a potential function for which the rank of the matrix defined by second
derivatives of the potential function vanishes at criticality. Quantum criticality becomes
the prerequisite for the existence of quantum theory since fermionic anti-commutation
relations in principle can be fixed from the condition that the algebra in question is
equivalent with the algebra formed by the vector fields defining the deformations of
the space-time surface defining second variations. Quantum criticality in this sense
would also select preferred extremals of Kähler action as analogs of Bohr orbits and
the spectrum of preferred extremals would be more or less equivalent with the expected
existence of infinite-dimensional symmetry algebras.
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It is far from obvious that the criticality conditions or even the weaker conditions guaranteing
the existence of (say) isometry charges can be satisfied. It seems that the restriction of spinor
modes to 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - implied by
the condition that em charge is well-define for them, is the manner to achieve this. The reason
is that conformal invariance allows complexification of the Kähler-Dirac gamma matrices and
allows to construct spinor modes as holomorphic modes and their conjugates. Holomorphy
reduces K-D equation to algebraic condition that Γz annihilates the spinor mode. If this is
true also the deformation of Γz then the existince of conserved current follows. It is essential
that only two Kähler-Dirac gamma matrices are non-vanishing and this is possible only for
Kähler-Dirac action.

About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

(a) Any Cartan algebra of the isometry group P × SU(3) (there are two types of them
for P corresponding to linear and cylindrical Minkowski coordinates) defines critical
deformations (one could require that the isometries respect the geometry of CD). The
corresponding second order charges for Kähler action are conserved but vanish since the
corresponding conjugate coordinates are cyclic for the Kähler metric and Kähler form
so that the conserved current is proportional to the gradient of a Killing vector field
which is constant in these coordinates.

(b) Contrary to the original conclusion, the corresponding fermionic charges expressible as
fermionic bilinears are first order in deformation and do not vanish! Four-momentum
and color quantum numbers are defined for Kähler action as classical conserved quan-
tities and for Kähler-Dirac action as quantal charges.

Critical manifold is infinite-dimensional for Kähler action

Some examples might help to understand what is involved.

(a) The action defined by four-volume gives a first glimpse about what one can expect. In
this case Kähler-Dirac gamma matrices reduce to the induced gamma matrices. Second
variations satisfy d’Alembert type equation in the induced metric so that the analogs
of massless fields are in question. Mass term is present only if some dimensions are
compact. The vanishing of excitations at light-like boundaries is a natural boundary
condition and might well imply that the solution spectrum could be empty. Hence it is
quite possible that four-volume action leads to a trivial theory.

(b) For the vacuum extremals of Kähler action the situation is different. There exists an
infinite number of second variations and the classical non-determinism suggests that
deformations vanishing at the light-like boundaries exist. For the canonical imbedding
of M4 the equation for second variations is trivially satisfied. If the CP2 projection of
the vacuum extremal is one-dimensional, the second variation contains a non-vanishing
term and an equation analogous to massless d’Alembert equation for the increments of
CP2 coordinates is obtained. Also for the vacuum extremals of Kähler action with 2-D
CP2 projection all terms involving induced Kähler form vanish and the field equations
reduce to d’Alembert type equations for CP2 coordinates. A possible interpretation is
as the classical analog of Higgs field. For the deformations of non-vacuum extremals
this would suggest the presence of terms analogous to mass terms: these kind of terms
indeed appear and are proportional to δsk. M4 degrees of freedom decouple completely
and one obtains QFT type situation.

(c) The physical expectation is that at least for the vacuum extremals the critical manifold
is infinite-dimensional. The notion of finite measurement resolution suggests infinite hi-
erarchies of inclusions of hyper-finite factors of type II1 possibly having interpretation in
terms of inclusions of the super conformal algebras defined by the critical deformations.
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(d) The properties of Kähler action give support for this expectation. The critical manifold
is infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4

would correspond to maximal criticality analogous to that encountered at the tip of
the cusp catastrophe. The natural guess would be that as one deforms the vacuum
extremal the previously critical degrees of freedom are transformed to non-critical ones.
The dimension of the critical manifold could remain infinite for all preferred extremals
of the Kähler action. For instance, for cosmic string like objects any complex manifold
of CP2 defines cosmic string like objects so that there is a huge degeneracy is expected
also now. For CP2 type vacuum extremals M4 projection is arbitrary light-like curve
so that also now infinite degeneracy is expected for the deformations.

This leads to the conjecture that the critical deformations correspond to sub-algebras of
super-conformal algebras with conformal weights coming as integer multiples of fixed integer
m. One would have infinite hierarchy of breakings of conformal symmetry labelled by m.
The super-conformal algebras would be effectively m-dimensional. Since all commutators
with the critical sub-algebra would create zero energy states. In ordinary conformal field
theory one have maximal criticality corresponding to m = 1.

Critical super-algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

(a) The vanishing of the second variation plus the identification of Kähler function as a
Kähler action for preferred extremals means that the critical variations are orthogonal
to all deformations of the space-time surface with respect to the WCW metric.

The original expectation was that critical deformations correspond to zero modes but
this interpretation need not be correct since critical deformations can leave 3-surface
invariant but affect corresponding preferred extremal: this would conform with the
non-deterministic character of the dynamics which is indeed the basic signature of crit-
icality. Rather, critical deformations are limiting cases of ordinary deformations acting
in quantum fluctuating degrees of freedom.

This conforms with the fact that WCW metric vanishes identically for canonically
imbedded M4 and that Kähler action has fourth order terms as first non-vanishing
terms in perturbative expansion (for Kähler-Dirac the expansion is quadratic in defor-
mation).

Therefore the super-conformal algebra associated with the critical deformations has
genuine physical content.

(b) Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in

quantum fluctuating degrees of freedom, critical deformations cannot correspond to
this kind of Hamiltonians.

(c) The notion of finite measurement resolution suggests that the degrees of freedom which
are below measurement resolution correspond to vanishing gauge charges. The sub-
algebras of critical super-conformal algebra for which charges annihilate physical states
could correspond to this kind of gauge algebras.

(d) The conserved super charges associated with the vanishing second variations cannot
give WCW metric as their anti-commutator. This would also lead to a conflict with
the effective 2-dimensionality stating that WCW line-element is expressible as sum of
contribution coming from partonic 2-surfaces as also with fermionic anti-commutation
relations.

Connection with quantum criticality

The notion of quantum criticality of TGD Universe was originally inspired by the question
how to make TGD unique if Kähler function for WCW is defined by the Kähler action
for a preferred extremal assignable to a given 3-surface. Vacuum functional defined by the
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exponent of Kähler function is analogous to thermodynamical weight and the obviou idea
with Kähler coupling strength taking the role of temperature. The obvious idea was that the
value of Kähler coupling strength is analogous to critical temperature so that TGD would
be more or less uniquely defined.

To understand the delicacies it is convenient to consider various variations of Kähler action
first.

(a) The variation can leave 3-surface invariant but modify space-time surface such that
Kähler action remains invariant. In this case infinitesimal deformation reduces to a dif-
feomorphism at space-like 3-surface and perhaps also at light-like 3-surfaces. In this case
the correspondence between X3 and X4(X3) would not be unique and one would have
non-deterministic dynamics characteristic for critical systems. This criticality would
correspond to criticality of Kähler action at X3. Note that the original working hypoth-
esis was that X4(X3) is unique. The failure of the strict classical determinism implying
spin glass type vacuum degeneracy indeed suggets that this is the case.

(b) The variation could act on zero modes which do not affect Kähler metric which corre-
sponds to (1, 1) part of Hessian in complex coordinates for WCW . Only the zero modes
characterizing 3-surface appearing as parameters in the metric WCW would be affected
and the result would be a generalization of conformal transformation. Kähler function
would change but only due to the change in zero modes. These transformations do not
seem to correspond to critical transformations since Kähler function changes.

(c) The variation could act on 3-surface both in zero modes and dynamical degrees of
freedom represented by complex coordinates. It would of course affect also the space-
time surface. Criticality for Kähler function would mean that Kähler metric has zero
modes at X3 meaning that (1, 1) part of Hessian is degenerate. This could mean that
in the vicinity of X3 the Kähler form has non-definite signature: physically this is
unacceptable since inner product in Hilbert space would not be positive definite.

Critical transformations might relate closely to the coset space decomposition of WCW to a
union of coset spaces G/H labelled by zero modes.

(a) The critical deformations leave 3-surface X3 invariant as do also the transformations of
H associated with X3. If H affects X4(X3) and corresponds to critical transformations
then critical transformation would extend WCW to a bundle for which 3-surfaces would
be base points and preferred extremals X4(X3) would define the fiber. Gauge invariance
with respect to H would generalize the assumption that X4(X3) is unique.

(b) Critical deformations could correspond to H or sub-group of H (which dependes on
X3). For other 3-surfaces than X3 the action of H is non-trivial as the case of CP2 =
SU(3)/U(2) makes easy to understand.

(c) A possible identification of Lie-algebra of H is as a sub-algebra of Virasoro algebra asso-
ciated with the symplectic transformations of δM4×CP2 and acting as diffeomorphisms
for the light-like radial coordinate of δM4

+. The sub-algebras of Virasoro algebra have
conformal weights coming as integer multiplies of a given conformal weight m and form
inclusion hierarchies suggesting a direct connection with finite measurement resolution
realized in terms of inclusions of hyperfinite factors of type II1. For m > 1 one would
have breaking of maximal conformal symmetry. The action of these Virasoro algebra on
symplectic algebra would make the corresponding sub-algebras gauge degrees of free-
dom so that the number of symplectic generators generating non-gauge transformations
would be finite. This result is not surprising since also for 2-D critical systems criticality
corresponds to conformal invariance acting as local scalings.

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. Quantum criticality realized as the vanishing of the second variation gives hopes
about a more or less unique identification of preferred extremals and considered alternative
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identifications such as absolute minimization of Kähler action which is just the opposite of
criticality.

One must be very cautious here: there are two criticalities: one for the extremals of Kähler
action with respect to deformations of four-surface and second for the Kähler function itself
with respect to deformations of 3-surface: these criticalities are not equivalent since in the
latter case variation respects preferred extremal property unlike in the first case.

(a) The criticality for preferred extremals would make 4-D criticality a property of all phys-
ical systems.

(b) The criticality for Kähler function would be 3-D and might hold only for very special
systems. In fact, the criticality means that some eigenvalues for the Hessian of Kähler
function vanish and for nearby 3-surfaces some eigenvalues are negative. On the other
hand the Kähler metric defined by (1, 1) part of Hessian in complex coordinates must
be positive definite. Thus criticality might imply problems.

This allows and suggests non-criticality of Kähler function coming from Kähler action
for Euclidian space-time regions: this is mathematically the simplest situation since
in this case there are no zero modes causing troubles in Gaussian approximation to
functional integral. The Morse function coming from Kähler action in Minkowskian as
imaginary contribution analogous to that appearing in path integral could be critical
and allow non-definite signature in principle. In fact this is expected by the defining
properties of Morse function.

(c) The almost 2-dimensionality implied by strong form of holography suggests that the
interior degrees of freedom of 3-surface can be regarded almost gauge degrees of free-
dom and that this relates directly to generalised conformal symmetries associated with
symplectic isometries of WCW . These degrees of freedom are not critical in the sense
inspired by G/H decomposition. The only plausible interaction seems to be that these
degrees of freedom correspond to deformations in zero modes.

Both the super-symmetry of DK and conservation Dirac Noether currents for Kähler-Dirac
action have thus a connection with quantum criticality.

(a) Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are char-
acterized by the matrix defined by the second derivatives of the potential function and
the rank of system classifies the levels in the hierarchy of criticalities. Maximal critical-
ity corresponds to the complete vanishing of this matrix. Thom’s catastrophe theory
classifies these hierarchies, when the numbers of behavior and control variables are small
(smaller than 5). In the recent case the situation is infinite-dimensional and the critical-
ity conditions give additional field equations as existence of vanishing second variations
of Kähler action.

(b) The vacuum degeneracy of Kähler action allows to expect that this kind infinite hier-
archy of criticalities is realized. For a general vacuum extremal with at most 2-D CP2

projection the matrix defined by the second variation vanishes because Jαβ = 0 vanishes

and also the matrix (Jαk + J α
k )(Jβl + J β

l ) vanishes by the antisymmetry Jαk = −J α
k .

The formulation of quantal version of Equivalence Principle (EP) in string picture
demonstrates that the conservation of of fermionic Noether currents defining gravi-
tational four-momentum and other Poincare quantum numbers requires that the defor-
mation of the Kähler-Dirac equation obtained by replacing Kähler-Dirac gamma ma-
trices with their deformations is also satisfied. Holomorphy can guarantee this. The
original wrong conclusion was that this condition is equivalent with much stronger con-
dition stating the vanishing of the second variation of Kähler action, which it is not.
There is analogy for this: massless Dirac equation does not imply the vanishing of
four-momentum.

(c) Conserved bosonic and fermionic Noether charges would characterize quantum criti-
cality. In particular, the isometries of the imbedding space define conserved currents
represented in terms of the fermionic oscillator operators if the second variations de-
fined by the infinitesimal isometries vanish for the Kähler-Dirac action. For vacuum
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extremals the dimension of the critical manifold is infinite: maybe there is hierarchy of
quantum criticalities for which this dimension decreases step by step but remains always
infinite. This hierarchy could closely relate to the hierarchy of inclusions of hyper-finite
factors of type II1. Also the conserved charges associated with super-symplectic and
Super Kac-Moody algebras would require infinite-dimensional critical manifold defined
by the spectrum of second variations.

(d) Phase transitions are characterized by the symmetries of the phases involved with the
transitions, and it is natural to expect that dynamical symmetries characterize the
hierarchy of quantum criticalities. The notion of finite quantum measurement resolution
based on the hierarchy of Jones inclusions indeed suggests the existence of a hierarchy
of dynamical gauge symmetries characterized by gauge groups in ADE hierarchy [K22]
with degrees of freedom below the measurement resolution identified as gauge degrees
of freedom.

(e) Does this criticality have anything to do with the criticality against the phase transitions
changing the value of Planck constant? If the geodesic sphere S2

I for which induced
Kähler form vanishes corresponds to the back of the CP2 book (as one expects), this
could be the case. The homologically non-trivial geodesic sphere S12II is as far as
possible from vacuum extremals. If it corresponds to the back of CP2 book, cosmic
strings would be quantum critical with respect to phase transition changing Planck
constant. They cannot however correspond to preferred extremals.

4.5.3 Preferred Extremal Property As Classical Correlate For Quan-
tum Criticality, Holography, And Quantum Classical Correspondence

The Noether currents assignable to the Kähler-Dirac equation are conserved only if the first
variation of the Kähler-Dirac operator DK defined by Kähler action vanishes. This is equiv-
alent with the vanishing of the second variation of Kähler action -at least for the variations
corresponding to dynamical symmetries having interpretation as dynamical degrees of free-
dom which are below measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to

quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should
have noticed for more than decade ago! The question whether these extremals correspond to
absolute minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations rep-
resenting dynamical symmetries, suggests a generalization of catastrophe theory of Thom,
where the rank of the matrix defined by the second derivatives of potential function defines
a hierarchy of criticalities with the tip of bifurcation set of the catastrophe representing the
complete vanishing of this matrix. In the recent case this theory would be generalized to
infinite-dimensional context. There are three kind of variables now but quantum classical
correspondence (holography) allows to reduce the types of variables to two.

(a) The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like
boundaries of causal diamonds CD would represent behavior variables. At least the
vacuum extremals of Kähler action would represent extremals for which the second
variation vanishes identically (the “tip” of the multi-furcation set).

(b) The zero modes of Kähler function would define the control variables interpreted as
classical degrees of freedom necessary in quantum measurement theory. By effective 2-
dimensionality (or holography or quantum classical correspondence) meaning that the
configuration space metric is determined by the data coming from partonic 2-surfaces
X2 at intersections of X3

l with boundaries of CD, the interiors of 3-surfaces X3 at the
boundaries of CDs in rough sense correspond to zero modes so that there is indeed huge
number of them. Also the variables characterizing 2-surface, which cannot be complex-
ified and thus cannot contribute to the Kähler metric of WCW represent zero modes.
Fixing the interior of the 3-surface would mean fixing of control variables. Extremum
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property would fix the 4-surface and behavior variables if boundary conditions are fixed
to sufficient degree.

(c) The complex variables characterizing X2 would represent third kind of variables iden-
tified as quantum fluctuating degrees of freedom contributing to the WCW metric.
Quantum classical correspondence requires 1-1 correspondence between zero modes and
these variables. This would be essentially holography stating that the 2-D “causal
boundary” X2 of X3(X2) codes for the interior. Preferred extremal property identified
as criticality condition would realize the holography by fixing the values of zero modes
once X2 is known and give rise to the holographic correspondence X2 → X3(X2). The
values of behavior variables determined by extremization would fix then the space-time
surface X4(X3

l ) as a preferred extremal.

(d) Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred ex-
tremal property would all represent more or less the same thing. One must of course be
very cautious since the boundary conditions at X3

l involve normal derivative and might
bring in delicacies forcing to modify the simplest heuristic picture.

(e) There is a possible connection with the notion of self-organized criticality [B7] intro-
duced to explain the behavior of systems like sand piles. Self-organization in these
systems tends to lead “to the edge”. The challenge is to understand how system ends
up to a critical state, which by definition is unstable. Mechanisms for this have been
discovered and based on phase transitions occurring in a wide range of parameters so
that critical point extends to a critical manifold. In TGD Universe quantum criticality
suggests a universal mechanism of this kind. The criticality for the preferred extremals
of Kähler action would mean that classically all systems are critical in well-defined sense
and the question is only about the degree of criticality. Evolution could be seen as a
process leading gradually to increasingly critical systems. One must however distinguish
between the criticality associated with the preferred extremals of Kähler action and the
criticality caused by the spin glass like energy landscape like structure for the space of
the maxima of Kähler function.

4.5.4 Quantum Criticality And Electroweak Symmetries

In the following quantum criticali and electroweak symmetries are discussed for Kähler-Dirac
action.

What does one mean with quantum criticality?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means
mathematically is however far from clear and one can imagine several meanings for it.

(a) What is obvious is that quantum criticality implies quantization of Kähler coupling
strength as a mathematical analog of critical temperature so that the theory becomes
mathematically unique if only single critical temperature is possible. Physically this
means the presence of long range fluctuations characteristic for criticality and perhaps
assignable to the effective hierarchy of Planck constants having explanation in terms
of effective covering spaces of the imbedding space. This hierarchy follows from the
vacuum degeneracy of Kähler action, which in turn implies 4-D spin-glass degeneracy.
It is easy to interpret the degeneracy in terms of criticality.

(b) At more technical level one would expect criticality to corresponds to deformations of a
given preferred extremal defining a vanishing second variation of Kähler Khler function
or Kähler action.

i. For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would
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be naturally zero modes not contribution to Kähler metric of WCW but appearing
as parameters in it. The bevavior variables correspond to quantum fluctuating
degrees of freedom and according to catastrophe theory a big change can in quantum
fluctuating degrees of freedom at criticality for zero modes. This would be control of
quantum state by varying classical variables. Cusp catastrophe is standard example
of this. One can imagined also a situation in which the roles of zero modes and
behavior variables change and big jump in the values of zero modes is induced by
small variation in behavior variables. This would mean quantum control of classical
variables.

ii. Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum
in certain directions so that the matrix defined by second derivatives does not
have maximum rank. Entire hierarchy of criticalities is expected and a good finite-
dimensional model is provided by the catastrophe theory of Thom [A52]. Cusp
catastrophe (see http://tinyurl.com/yddpfdgo) [A3] is the simplest catastrophe
one can think of, and here the folds of cusp where discontinuous jump occurs cor-
respond to criticality with respect to one control variable and the tip to criticality
with respect to both control variables.

(c) Quantum criticality makes sense also for Kähler action.

i. Now one considers space-time surface connecting which 3-surfaces at the boundaries
of CD. The non-determinism of Kähler action allows the possibility of having sev-
eral space-time sheets connecting the ends of space-time surface but the conditions
that classical charges are same for them reduces this number so that it could be
finite. Quantum criticality in this sense implies non-determinism analogous to that
of critical systems since preferred extremals can co-incide and suffer this kind of
bifurcation in the interior of CD. This quantum criticality can be assigned to the
hierarchy of Planck constants and the integer n in heff = n×h [K22] corresponds to
the number of degenerate space-time sheets with same Kähler action and conserved
classical charges.

ii. Also now one expects a hierarchy of criticalitiesandsince criticality and conformal
invariance are closely related, a natural conjecture is that the fractal hierarchy of
sub-algebras of conformal algebra isomorphic to conformal algebra itself and having
conformal weights coming as multiples of n corresponds to the hierarchy of Planck
constants. This hierarchy would define a hierarchy of symmetry breakings in the
sense that only the sub-algebra would act as gauge symmetries.

iii. The assignment of this hierarchy with super-symplectic algebra having conformal
structure with respect to the light-like radial coordinate of light-cone boundary
looks very attractive. An interesting question is what is the role of the super-
conformal algebra associated with the isometries of light-cone boundary R+ × S2

which are conformal transformations of sphere S2 with a scaling of radial coordinate
compensating the scaling induced by the conformal transformation. Does it act as
dynamical or gauge symmetries?

(d) I have discussed what criticality could mean for Kähler-Dirac action [K88].

i. I have conjectured that it leads to the existence of additional conserved currents
defined by the variations which do not affect the value of Kähler action. These
arguments are far from being mathematically rigorous and the recent view about
the solutions of the Kähler-Dirac equation predicting that the spinor modes are
restricted to 2-D string world sheets requires a modification of these arguments.

ii. The basic challenge is to understand the mechanism making this kind of currents
conserved: the same challenge is met already in the case of isometries since imbed-
ding space coordinates appear as parameters in Kähler-Dirac action. The existence
of conserved currents does not actually require the vanishing of the second varia-
tion of Kähler action as claimed earlier. It is enough that the first variation of the
canonical momentum densities contracted with the imbedding space gamma matri-
ces annihilates the spinor mode. Situation is analogous to massless Dirac equation:

http://tinyurl.com/yddpfdgo
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it does not imply the vanishing of four-momentum, only the vanishing of mass.
Hence conserved currents are obtained also outside the quantum criticality.

iii. It is far from obvious that these conditions can be satisfied. The localization of
the spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the
generaic case that em charge is well-defined for spinor modes implies holomorphy
allowing to formulate current conservation for currents associated with the deforma-
tions of the space-time surface for second quantized induced spinor field. The crux
is that the deformation respects the holomorphy properties of the modified gamma
matrices at string world sheet and thus does not mix Γz with Γz. The deforma-
tion of Γz has only z-component and also annihilates the holomorphic spinor. This
mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma
matrices in directions orthogonal to the 2-surface must vanish and this is not possi-
ble for other actions. This also means that energy momentum tensor has rank 2 as
matrix. Cosmic string solutions are an exception since in this case CP2 projection
of space-time surface is 2-D and conditions guaranteing vanishing of classical W
fields can be satisfied.

In the following these arguments are formulated more precisely. The unexpected result is
that critical deformations induce conformal scalings of the modified metric and electro-weak
gauge transformations of the induced spinor connection at X2. Therefore holomorphy brings
in the Kac-Moody symmetries associated with isometries of H (gravitation and color gauge
group) and quantum criticality those associated with the holonomies of H (electro-weak-
gauge group) as additional symmetries.

The variation of modes of the induced spinor field in a variation of space-time
surface respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface re-
specting the preferred extremal property. The deformation must be such that the deformed
Kähler-Dirac operator D annihilates the modified mode. By writing explicitly the varia-
tion of the Kähler-Dirac action (the action vanishes by Kähler-Dirac equation) one obtains
deformations and requiring its vanishing one obtains

δΨ = D−1(δD)Ψ . (4.5.5)

D−1 is the inverse of the Kähler-Dirac operator defining the analog of Dirac propagator and
δD defines vertex completely analogous to γkδAk in gauge theory context. The functional
integral over preferred extremals can be carried out perturbatively by expressing δD in terms
of δhk and one obtains stringy perturbation theory around X2 associated with the preferred
extremal defining maximum of Kähler function in Euclidian region and extremum of Kähler
action in Minkowskian region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions
at the ends of braid strands located at partonic 2-surfaces and representing intersections of
string world sheets and partonic 2-surfaces at the light-like boundaries of CDs. δD- or more
precisely, its partial derivatives with respect to functional integration variables - appear atthe
vertices located anywhere in the interior of X2 with outgoing fermions at braid ends. Bosonic
propagators are replaced with correlation functions for δhk. Fermionic propagator is defined
by D−1.

After 35 years or hard work this provides for the first time a reasonably explicit formula
for the N-point functions of fermions. This is enough since by bosonic emergence these
N-point functions define the basic building blocks of the scattering amplitudes. Note that
bosonic emergence states that bosons corresponds to wormhole contacts with fermion and
anti-fermion at the opposite wormhole throats.
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What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and
partonic 2-surfaces. The problematic part seems to be the variation of the Kähler-Dirac
operator since it involves gradient. One cannot require that covariant derivative remains
invariant since this would require that the components of the induced spinor connection
remain invariant and this is quite too restrictive condition. Right handed neutrino solutions
de-localized into entire X2 are however an exception since they have no electro-weak gauge
couplings and in this case the condition is obvious: Kähler-Dirac gamma matrices suffer a
local scaling for critical deformations:

δΓµ = Λ(x)Γµ . (4.5.6)

This guarantees that the Kähler-Dirac operator D is mapped to ΛD and still annihilates the
modes of νR labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is
obvious. Ψ suffers an electro-weak gauge transformation as does also the induced spinor
connection so that Dµ is not affected at all. Criticality condition states that the deformation
of the space-time surfaces induces a conformal scaling of Γµ at X2. It might be possible to
continue this conformal scaling of the entire space-time sheet but this might be not necessary
and this would mean that all critical deformations induced conformal transformations of the
effective metric of the space-time surface defined by {Γµ,Γν} = 2Gµν . Thus it seems that
effective metric is indeed central concept (recall that if the conjectured quaternionic structure
is associated with the effective metric, it might be possible to avoid problem related to the
Minkowskian signature in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of
the induced spinor field would be mixed together in the infinitesimal deformation besides
infinitesimal electroweak gauge transformation, which is same for all modes. This would ex-
tend electroweak gauge symmetry. Kähler-Dirac equation holds true also for these deforma-
tions. One might wonder whether the conjectured dynamically generated gauge symmetries
assignable to finite measurement resolution could be generated in this manner.

The infinitesimal generator of a critical deformation JM can be expressed as tensor product of
matrix AM acting in the space of zero modes and of a generator of infinitesimal electro-weak
gauge transformation TM (x) acting in the same manner on all modes: JM = AM ⊗ TM (x).
AM is a spatially constant matrix and TM (x) decomposes to a direct sum of left- and right-
handed SU(2) × U(1) Lie-algebra generators. Left-handed Lie-algebra generator can be
regarded as a quaternion and right handed as a complex number. One can speak of a direct
sum of left-handed local quaternion qM,L and right-handed local complex number cM,R. The
commutator [JM , JN ] is given by [JM , JN ] = [AM , AN ] ⊗ {TM (x), TN (x)} + {AM , AN} ⊗
[TM (x), TN (x)]. One has {TM (x), TN (x)} = {qM,L(x), qN,L(x)} ⊕ {cM,R(x), cN,R(x)} and
[TM (x), TN (x)] = [qM,L(x), qN,L(x)]. The commutators make sense also for more general
gauge group but quaternion/complex number property might have some deeper role.

Thus the critical deformations would induce conformal scalings of the effective metric and
dynamical electro-weak gauge transformations. Electro-weak gauge symmetry would be a
dynamical symmetry restricted to string world sheets and partonic 2-surfaces rather than
acting at the entire space-time surface. For 4-D de-localized right-handed neutrino modes
the conformal scalings of the effective metric are analogous to the conformal transformations
of M4 for N = 4 SYMs. Also ordinary conformal symmetries of M4 could be present for
string world sheets and could act as symmetries of generalized Feynman graphs since even
virtual wormhole throats are massless. An interesting question is whether the conformal
invariance associated with the effective metric is the analog of dual conformal invariance in
N = 4 theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents.
By using standard Noetherian formulas one can write
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Jµi = ΨΓµδiΨ + δiΨΓµΨ . (4.5.7)

Here δΨi denotes derivative of the variation with respect to a group parameter labeled by
i. Since δΨi reduces to an infinitesimal gauge transformation of Ψ induced by deformation,
these currents are the analogs of gauge currents. The integrals of these currents along the
braid strands at the ends of string world sheets define the analogs of gauge charges. The
interpretation as Kac-Moody charges is also very attractive and I have proposed that the
2-D Hodge duals of gauge potentials could be identified as Kac-Moody currents. If so, the
2-D Hodge duals of J would define the quantum analogs of dynamical electro-weak gauge
fields and Kac-Moody charge could be also seen as non-integral phase factor associated with
the braid strand in Abelian approximation (the interpretation in terms of finite measurement
resolution is discussed earlier).

One can also define super currents by replacing Ψ or Ψ by a particular mode of the induced
spinor field as well as c-number valued currents by performing the replacement for both Ψ
or Ψ. As expected, one obtains a super-conformal algebra with all modes of induced spinor
fields acting as generators of super-symmetries restricted to 2-D surfaces. The number of
the charges which do not annihilate physical states as also the effective number of fermionic
modes could be finite and this would suggest that the integer N for the supersymmetry
in question is finite. This would conform with the earlier proposal inspired by the notion
of finite measurement resolution implying the replacement of the partonic 2-surfaces with
collections of braid ends.

Note that Kac-Moody charges might be associated with “long” braid strands connecting
different wormhole throats as well as short braid strands connecting opposite throats of
wormhole contacts. Both kinds of charges would appear in the theory.

What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge
transformations are induced by the deformations of preferred extremals and a good guess is
that they correspond to holomorphic gauge group elements as in theories with Kac-Moody
symmetry. What is the physical character of this dynamical gauge symmetry?

(a) Do the gauge charges vanish? Do they annihilate the physical states? Do only their
positive energy parts annihilate the states so that one has a situation characteristic for
the representation of Kac-Moody algebras. Or could some of these charges be analo-
gous to the gauge charges associated with the constant gauge transformations in gauge
theories and be therefore non-vanishing in the absence of confinement. Now one has
electro-weak gauge charges and these should be non-vanishing. Can one assign them
to deformations with a vanishing conformal weight and the remaining deformations to
those with non-vanishing conformal weight and acting like Kac-Moody generators on
the physical states?

(b) The simplest option is that the critical Kac-Moody charges/gauge charges with non-
vanishing positive conformal weight annihilate the physical states. Critical degrees of
freedom would not disappear but make their presence known via the states labelled
by different gauge charges assignable to critical deformations with vanishing conformal
weight. Note that constant gauge transformations can be said to break the gauge
symmetry also in the ordinary gauge theories unless one has confinement.

(c) The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak
Kac-Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings
in which the number of Kac-Moody generators not annihilating the physical states
gradually increases as also modes with a higher value of positive conformal weight fail
to annihilate the physical state?
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The only manner to have a hierarchy of algebras is by assuming that only the generators
satisfying n mod N = 0 define the sub-Kac-Moody algebra annihilating the physical
states so that the generators with n mod N 6= 0 would define the analogs of gauge
charges. I have suggested for long time ago the relevance of kind of fractal hierarchy of
Kac-Moody and Super-Virasoro algebras for TGD but failed to imagine any concrete
realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in
the sense that the actions of generators Qn and Qn+kN are identical. This would corre-
spond to periodic boundary conditions in the space of conformal weights. The notion of
finite measurement resolution suggests that the number of independent fermionic oscil-
lator operators is proportional to the number of braid ends so that an effective reduction
to a finite algebra is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about
electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives
rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian gener-
ators associated with gravitation also SU(3) generators associated with color symmetries.
Vanishing second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by de-
composing it to an integral over zero modes for which deformations of X4 induce only an
electro-weak gauge transformation of the induced spinor field and to an integral over moduli
corresponding to the remaining degrees of freedom.

4.5.5 The Emergence Of Yangian Symmetry And Gauge Potentials
As Duals Of Kac-Moody Currents

Yangian symmetry plays a key role in N = 4 super-symmetric gauge theories. What is
special in Yangian symmetry is that the algebra contains also multi-local generators. In
TGD framework multi-locality would naturally correspond to that with respect to partonic
2-surfaces and string world sheets and the proposal has been that the Super-Kac-Moody
algebras assignable to string worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B30]. Yangian is generated by
two kinds of generators JA and QA by a repeated formation of commutators. The number
of commutations tells the integer characterizing the multi-locality and provides the Yan-
gian algebra with grading by natural numbers. Witten describes a 2-dimensional QFT like
situation in which one has 2-D situation and Kac-Moody currents assignable to real axis
define the Kac-Moody charges as integrals in the usual manner. It is also assumed that the
gauge potentials defined by the 1-form associated with the Kac-Moody current define a flat
connection:

∂µj
A
ν − ∂νjAν + [jAµ , j

A
ν ] = 0 . (4.5.8)

This condition guarantees that the generators of Yangian are conserved charges. One can
however consider alternative manners to obtain the conservation.

(a) The generators of first kind - call them JA - are just the conserved Kac-Moody charges.
The formula is given by

JA =

∫ ∞
−∞

dxjA0(x, t) . (4.5.9)
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(b) The generators of second kind contain bi-local part. They are convolutions of generators
of first kind associated with different points of string described as real axis. In the basic
formula one has integration over the point of real axis.

QA = fABC

∫ ∞
−∞

dx

∫ ∞
x

dyjB0(x, t)jC0(y, t)− 2

∫ ∞
−∞

jAx dx . (4.5.10)

These charges are indeed conserved if the curvature form is vanishing as a little calcu-
lation shows.

How to generalize this to the recent context?

(a) The Kac-Moody charges would be associated with the braid strands connecting two par-
tonic 2-surfaces - Strands would be located either at the space-like 3-surfaces at the ends
of the space-time surface or at light-like 3-surfaces connecting the ends. Kähler-Dirac
equation would define Super-Kac-Moody charges as standard Noether charges. Super
charges would be obtained by replacing the second quantized spinor field or its conju-
gate in the fermionic bilinear by particular mode of the spinor field. By replacing both
spinor field and its conjugate by its mode one would obtain a conserved c-number charge
corresponding to an anti-commutator of two fermionic super-charges. The convolution
involving double integral is however not number theoretically attractive whereas single
1-D integrals might make sense.

(b) An encouraging observation is that the Hodge dual of the Kac-Moody current defines
the analog of gauge potential and exponents of the conserved Kac-Moody charges could
be identified as analogs for the non-integrable phase factors for the components of this
gauge potential. This identification is precise only in the approximation that genera-
tors commute since only in this case the ordered integral P (exp(i

∫
Adx)) reduces to

P (exp(i
∫
Adx)).Partonic 2-surfaces connected by braid strand would be analogous to

nearby points of space-time in its discretization implying that Abelian approximation
works. This conforms with the vision about finite measurement resolution as discretiza-
tion in terms partonic 2-surfaces and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms
of gauge symmetries. For isometries one would obtain color gauge potentials and the
analogs of gauge potentials for graviton field (in TGD framework the contraction with
M4 vierbein would transform tensor field to 4 vector fields). For Kac-Moody generators
corresponding to holonomies one would obtain electroweak gauge potentials. Note that
super-charges would give rise to a collection of spartners of gauge potentials automat-
ically. One would obtain a badly broken SUSY with very large value of N defined by
the number of spinor modes as indeed speculated earlier [K24].

(c) The condition that the gauge field defined by 1-forms associated with the Kac-Moody
currents are trivial looks unphysical since it would give rise to the analog of topological
QFT with gauge potentials defined by the Kac-Moody charges. For the duals of Kac-
Moody currents defining gauge potentials only covariant divergence vanishes implying
that curvature form is

Fαβ = εαβ [jµ, j
µ] , (4.5.11)

so that the situation does not reduce to topological QFT unless the induced metric is
diagonal. This is not the case in general for string world sheets.

(d) It seems however that there is no need to assume that jµ defines a flat connection.
Witten mentions that although the discretization in the definition of JA does not seem
to be possible, it makes sense for QA in the case of G = SU(N) for any representation
of G. For general G and its general representation there exists no satisfactory definition
of Q. For certain representations, such as the fundamental representation of SU(N),
the definition of QA is especially simple. One just takes the bi-local part of the previous
formula:
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QA = fABC
∑
i<j

JBi J
C
j . (4.5.12)

What is remarkable that in this formula the summation need not refer to a discretized
point of braid but to braid strands ordered by the label i by requiring that they form a
connected polygon. Therefore the definition of JA could be just as above.

(e) This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian
would be identified as the algebra generated by the logarithms of non-integrable phase
factors in Abelian approximation assigned with pairs of partonic 2-surfaces defined in
terms of Kac-Moody currents assigned with the Kähler-Dirac action. Partonic 2-surfaces
connected by braid strand would be analogous to nearby points of space-time in its
discretization. This would fit nicely with the vision about finite measurement resolution
as discretization in terms partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

[
JA, JB

]
= fABC JC ,

[
JA, QB

]
= fABC QC . (4.5.13)

plus the rather complex Serre relations described in [B30].

4.6 Kähler-Dirac Equation And Super-Symmetries

The previous considerations concerning super-conformal symmetries and space-time SUSY
have been based on general arguments. The new vision about preferred extremals and
Kähler-Dirac equation however leads to a rather detailed understanding of super-conformal
symmetries at the level of field equations and is bound to modify the existing vision about
super-conformal symmetries.

Whether TGD predicts some variant of space-time SUSY or not has been a long-standing
issue: the reason is that TGD does not allow Majorana spinors since fermion number con-
servation is exact. The more precise formulation of field equations made possible by the
realization that spinor modes are localized at string world sheets allows to conclude that the
analog of broken N = 8 SUSY is predicted at parton level and that right-handed neutrino
generates the minimally broken N = 2 sub-SUSY.

One important outcome of criticality is the identification of gauge potentials as duals of
Kac-Moody currents at the boundaries of string world sheets: quantum gauge potentials are
defined only where they are needed that is string curves defining the non-integrable phase
factors. This gives also rise to the realization of the conjectured Yangian in terms of the
Kac-Moody charges and commutators in accordance with the earlier conjecture.

4.6.1 Super-Conformal Symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD
allows two kinds of super-conformal symmetries.

(a) The first super-conformal symmetry is associated with δM4
± ×CP2 and corresponds to

symplectic symmetries of δM4
± × CP2. The reason for extension of conformal symme-

tries is metric 2-dimensionality of the light-like boundary δM4
± defining upper/lower

boundary of causal diamond (CD). This super-conformal symmetry is something new
and corresponds to replacing finite-dimensional Lie-group G for Kac-Moody symme-
try with infinite-dimensional symplectic group. The light-like radial coordinate of δM4

±
takes the role of the real part of complex coordinate z for ordinary conformal symmetry.
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Together with complex coordinate of S2 it defines 3-D restriction of Hamilton-Jacobi
variant of 4-D super-conformal symmetries. One can continue the conformal symme-
tries from light-cone boundary to CD by forming a slicing by parallel copies of δM4

±.
There are two possible slicings corresponding to the choices δM4

+ and δM4
− assignable

to the upper and lower boundaries of CD. These two choices correspond to two arrows
of geometric time for the basis of zero energy states in ZEO.

(b) Super-symplectic degrees of freedom determine the electroweak and color quantum num-
bers of elementary particles. Bosonic emergence implies that ground states assignable
to partonic 2-surfaces correspond to partial waves in δM4

± and one obtains color partial
waves in particular. These partial waves correspond to the solutions for the Dirac equa-
tion in imbedding space and the correlation between color and electroweak quantum
numbers is not quite correct. Super-Kac-Moody generators give the compensating color
for massless states obtained from tachyonic ground states guaranteeing that standard
correlation is obtained. Super-symplectic degrees are therefore directly visible in par-
ticle spectrum. One can say that at the point-like limit the WCW spinors reduce to
tensor products of imbedding space spinors assignable to the center of mass degrees of
freedom for the partonic 2-surfaces defining wormhole throats.

I have proposed a physical interpretation of super-symplectic vibrational degrees of free-
dom in terms of degrees of freedom assignable to non-perturbative QCD. These degrees
of freedom would be responsible for most of the baryon masses but their theoretical
understanding is lacking in QCD framework.

(c) The second super-conformal symmetry is assigned light-like 3-surfaces and to the isome-
tries and holonomies of the imbedding space and is analogous to the super-Kac-Moody
symmetry of string models. Kac-Moody symmetries could be assigned to the light-
like deformations of light-like 3-surfaces. Isometries give tensor factor E2 × SU(3)
and holonomies factor SU(2)L × U(1). Altogether one has 5 tensor factors to super-
conformal algebra. That the number is just five is essential for the success p-adic mass
calculations [K100, K39].

The construction of solutions of the Kähler-Dirac equation suggests strongly that the
fermionic representation of the Super-Kac-Moody algebra can be assigned as conserved
charges associated with the space-like braid strands at both the 3-D space-like ends of
space-time surfaces and with the light-like (or space-like with a small deformation) asso-
ciated with the light-like 3-surfaces. The extension to Yangian algebra involving higher
multi-linears of super-Kac Moody generators is also highly suggestive. These charges
would be non-local and assignable to several wormhole contacts simultaneously. The
ends of braids would correspond points of partonic 2-surfaces defining a discretization of
the partonic 2-surface having interpretation in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to grav-
itation. The duals of the currents giving rise to Kac-Moody charges would define the
counterparts of gauge potentials and the conserved Kac-Moody charges would define
the counterparts of non-integrable phase factors in gauge theories. The higher Yangian
charges would define generalization of non-integrable phase factors. This would suggest
a rather direct connection with the twistorial program for calculating the scattering
amplitudes implies also by zero energy ontology.

Quantization recipes have worked in the case of super-string models and one can ask whether
the application of quantization to the coefficients of powers of complex coordinates or Hamilton-
Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal sym-
metries and give detailed information about the representations of the Kac-Moody algebra
too.

4.6.2 WCW Geometry And Super-Conformal Symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps
of progress induce to it only small modifications if any.
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(a) Kähler geometry is forced by the condition that hermitian conjugation allows geometriza-
tion. Kähler function is given by the Kähler action coming from space-time regions with
Euclidian signature of the induced metric identifiable as lines of generalized Feynman
diagrams. Minkowskian regions give imaginary contribution identifiable as the analog
of Morse function and implying interference effects and stationary phase approximation.
The vision about quantum TGD as almost topological QFT inspires the proposal that
Kähler action reduces to 3-D terms reducing to Chern-Simons terms by the weak form
of electric-magnetic duality. The recent proposal for preferred extremals is consistent
with this property realizing also holography implied by general coordinate invariance.
Strong form of general coordinate invariance implying effective 2-dimensionality in turn
suggests that Kähler action is expressible string world sheets and possibly also areas of
partonic 2-surfaces.

(b) The complexified gamma matrices of WCW come as hermitian conjugate pairs and
anti-commute to the Kähler metric of WCW . Also bosonic generators of symplectic
transformations of δM4

± × CP2 a assumed to act as isometries of WCW geometry can
be complexified and appear as similar pairs. The action of isometry generators co-
incides with that of symplectic generators at partonic 2-surfaces and string world sheets
but elsewhere inside the space-time surface it is expected to be deformed from the
symplectic action. The super-conformal transformations of δM4

± × CP2 acting on the
light-like radial coordinate of δM4

± act as gauge symmetries of the geometry meaning
that the corresponding WCW vector fields have zero norm.

(c) WCW geometry has also zero modes which by definition do not contribute to WCW
metric expect possibly by the dependence of the elements of WCW metric on zero
modes through a conformal factor. In particular, induced CP2 Kähler form and its
analog for sphere rM = constant of light cone boundary are symplectic invariants, and
one can define an infinite number of zero modes as invariants defined by Kähler fluxes
over partonic 2-surfaces and string world sheets. This requires however the slicing of
CD parallel copies of δM4

+ or δM4
−. The physical interpretation of these non-quantum

fluctuating degrees of freedom is as classical variables necessary for the interpretation
of quantum measurement theory. Classical variable would metaphorically correspond
the position of the pointer of the measurement instrument.

(d) The construction receives a strong philosophical inspiration from the geometry of loop
spaces. Loop spaces allow a unique Kähler geometry with maximal isometry group
identifiable as Kac-Moody group. The reason is that otherwise Riemann connection
does not exist. The only problem is that curvature scalar diverges since the Riemann
tensor is by constant curvature property proportional to the metric. In 3-D case one
would have union of constant curvature spaces labelled by zero modes and the situation
is expected to be even more restrictive. The conjecture indeed is that WCW geometry
exists only for H = M4 × CP2: infinite-D Kähler geometric existence and therefore
physics would be unique. One can also hope that Ricci scalar is finite and therefore zero
by the constant curvature property so that Einstein’s equations are satisfied.

(e) The matrix elements of WCW Kähler metric are given in terms of the anti-commutators
of the fermionic Noether super-charges associated with symplectic isometry currents. A
given mode of induced spinor field characterized by imbedding space chirality (quark
or lepton), by spin and weak spin plus conformal weight n. If the super-conformal
transformations for string modes act gauge transformations only the spinor modes with
vanishing conformal weight correspond to non-zero modes of the WCW metric and the
situation reduces essentially to the analog of N = 8 SUSY.

The WCW Hamiltonians generating symplectic isometries correspond to the Hamilto-
nians spanning the symplectic group of δM4

± × CP2. One can say that the space of
quantum fluctuating degrees of freedom is this symplectic group of δM4

± × CP2 or its
subgroup or coset space: this must have very deep implications for the structure of the
quantum TGD.

An interesting possibility is that the radial conformal weights of the symplectic algebra
are linear combinations of the zeros of Riemann Zeta with integer coefficients. Also this
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option allows to realize the hierarchy of super-symplectic conformal symmetry breakings
in terms of sub-algebras isomorphic to the entire super-symplectic algebra. WCW would
have fractal structure corresponding to a hierarchy of quantum criticalities.

(f) The localization of the induced spinors to string world sheets means that the super-
symplectic Noether charges are associated with strings connecting partonic 2-surfaces.
The physically obvious fact that given partonic surface can be accompanied by an ar-
bitrary number of strings, forces a generalization of the super-symplectic algebra to
a Yangian containing infinite number of n-local variants of various super-symplectic
Noether charges. For instance, four -momentum is accompanied by multi-stringy vari-
ants involving four-momentum PA0 and angular momentum generators. At the first level
of the hierarchy one has PA1 = fABCP

B
0 ⊗ JC . This hierarchy might play crucial role in

understanding of the four-momenta of bound states.

(g) Zero energy ontology brings in additional delicacies. Basic objects are now unions of
partonic 2-surfaces at the ends of CD. One can generalize the expressions for the isometry
generators in a straightforward manner by requiring that given isometry restricts to a
symplectic transformation at partonic 2-surfaces and string world sheets.

(h) One could criticize the effective metric 2-dimensionality forced by the general consistency
arguments as something non-physical. The WCW Hamiltonians are expressed using
only the data at partonic 2-surfaces and string string world sheets: this includes also
4-D tangent space data via the weak form of electric-magnetic duality so that one
has only effective 2-dimensionality. Obviously WCW geometry must huge large gauge
symmetries besides zero modes. The hierarchy of super-symplectic symmetries indeed
represent gauge symmetries of this kind.

Effective 2-dimensionality realizing strong form of holography in turn is induced by the
strong form of general coordinate invariance. Light-like 3-surfaces at which the signature
of the induced metric changes must be equivalent with the 3-D space-like ends of space-
time surfaces at the light-boundaries of space-time surfaces as far as WCW geometry is
considered. This requires that the data from their 2-D intersections defining partonic
2-surfaces should dictate the WCW geometry. Note however that Super-Kac-Moody
charges giving information about the interiors of 3-surfaces appear in the construction
of the physical states.

4.6.3 The Relationship Between Inertial Gravitational Masses

The relationship between inertial and gravitational masses and Equivalence Principle have
been on of the longstanding problems in TGD. Not surprisingly, the realization how GRT
space-time relates to the many-sheeted space-time of TGD finally allowed to solve the prob-
lem.

ZEO and non-conservation of Poincare charges in Poincare invariant theory of
gravitation

In positive energy ontology the Poincare invarance of TGD is in sharpt contrast with the fact
that GRT based cosmology predicts non-conservation of Poincare charges (as a matter fact,
the definition of Poincare charges is very questionable for general solutions of field equations).

In zero energy ontology (ZEO) all conserved (that is Noether-) charges of the Universe vanish
identically and their densities should vanish in scales below the scale defining the scale for
observations and assignable to causal diamond (CD). This observation allows to imagine a
ways out of what seems to be a conflict of Poincare invariance with cosmological facts.

ZEO would explain the local non-conservation of average energies and other conserved quan-
tum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations.
Classical gravitation should have a thermodynamical description if this interpretation is cor-
rect. The average values of the quantum numbers assignable to a space-time sheet would
depend on the size of CD and possibly also its location in M4. If the temporal distance be-
tween the tips of CD is interpreted as a quantized variant of cosmic time, the non-conservation
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of energy-momentum defined in this manner follows. One can say that conservation laws hold
only true in given scale defined by the largest CD involved.

Equivalence Principle at quantum level

The interpretation of EP at quantum level has developed slowly and the recent view is that
it reduces to quantum classical correspondence meaning that the classical charges of Kähler
action can be identified with eigen values of quantal charges associated with Kähler-Dirac
action.

(a) At quantum level I have proposed coset representations for the pair of super-symplectic
algebras assignable to the light-like boundaries of CD and the Super Kac-Moody alge-
bra assignable to the light-like 3-surfaces defining the orbits of partonic 2-surfaces as
realization of EP. For coset representation the differences of super-conformal generators
would annihilate the physical states so that one can argue that the corresponding four-
momenta are identical. One could even say that one obtains coset representation for
the “vibrational” parts of the super-conformal algebras in question. It is now clear that
this idea does not work. Note however that coset representations occur naturally for
the subalgebras of symplectic algebra and Super Kac-Moody algebra and are naturally
induced by finite measurement resolution.

(b) The most recent view (2014) about understanding how EP emerges in TGD is de-
scribed in [K79] and relies heavily on superconformal invariance and a detailed reali-
sation of ZEO at quantum level. In this approach EP corresponds to quantum clas-
sical correspondence (QCC): four-momentum identified as classical conserved Noether
charge for space-time sheets associated with Käbler action is identical with quantal four-
momentum assignable to the representations of super-symplectic and super Kac-Moody
algebras as in string models and having a realisation in ZEO in terms of wave functions
in the space of causal diamonds (CDs).

(c) The latest realization is that the eigenvalues of quantal four-momentum can be identified
as eigenvalues of the four-momentum operator assignable to the Kähler-Dirac equation.
This realisation seems to be consistent with the p-adic mass calculations requiring that
the super-conformal algebra acts in the tensor product of 5 tensor factors.

Equivalence Principle at classical level

How Einstein’s equations and General Relativity in long length scales emerges from TGD
has been a long-standing interpretational problem of TGD.

The first proposal making sense even when one does not assume ZEO is that vacuum ex-
tremals are only approximate representations of the physical situation and that small fluc-
tuations around them give rise to an inertial four-momentum identifiable as gravitational
four-momentum identifiable in terms of Einstein tensor. EP would hold true in the sense
that the average gravitational four-momentum would be determined by the Einstein tensor
assignable to the vacuum extremal. This interpretation does not however take into account
the many-sheeted character of TGD spacetime and is therefore questionable.

The resolution of the problem came from the realization that GRT is only an effective theory
obtained by endowing M4 with effective metric.

(a) The replacement of superposition of fields with superposition of their effects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the effects caused by the classical fields at the space-time
sheets (see Fig. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ??
in the appendix of this book).

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define

http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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effective metric as sum of M4 metric and deviations. This effective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the effective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the effective space-time.

(d) The breaking of Poincare invariance could have interpretation as effective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K103].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color
charges and the charges defined by the conserved currents associated with color isometries
would define “inertial” color charges. Since the induced color fields are proportional to color
Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in
accordance with “gravitational” color confinement.

Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core ele-
ment of p-adic mass calculations.

(a) The first thing that one can get worried about relates to the extension of conformal
symmetries. If the conformal symmetries generalize to D = 4, how can one take seriously
the results of p-adic mass calculations based on 2-D conformal invariance? There is
no reason to worry. The reduction of the conformal invariance to 2-D one for the
preferred extremals takes care of this problem. This however requires that the fermionic
contributions assignable to string world sheets and/or partonic 2-surfaces - Super- Kac-
Moody contributions - should dictate the elementary particle masses. For hadrons also
symplectic contributions should be present. This is a valuable hint in attempts to
identify the mathematical structure in more detail.

(b) ZEO suggests that all particles, even virtual ones correspond to massless wormhole
throats carrying fermions. As a consequence, twistor approach would work and the
kinematical constraints to vertices would allow the cancellation of divergences. This
would suggest that the p-adic thermal expectation value is for the longitudinal M2

momentum squared (the definition of CD selects M1 ⊂M2 ⊂M4 as also does number
theoretic vision). Also propagator would be determined by M2 momentum. Lorentz
invariance would be obtained by integration of the moduli for CD including also Lorentz
boosts of CD.

(c) In the original approach one allows states with arbitrary large values of L0 as physical
states. Usually one would require that L0 annihilates the states. In the calculations how-
ever mass squared was assumed to be proportional L0 apart from vacuum contribution.
This is a questionable assumption. ZEO suggests that total mass squared vanishes
and that one can decompose mass squared to a sum of longitudinal and transversal
parts. If one can do the same decomposition to longitudinal and transverse parts also
for the Super Virasoro algebra then one can calculate longitudinal mass squared as a
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p-adic thermal expectation in the transversal super-Virasoro algebra and only states
with L0 = 0 would contribute and one would have conformal invariance in the standard
sense.

(d) In the original approach the assumption motivated by Lorentz invariance has been that
mass squared is replaced with conformal weight in thermodynamics, and that one first
calculates the thermal average of the conformal weight and then equates it with mass
squared. This assumption is somewhat ad hoc. ZEO however suggests an alternative
interpretation in which one has zero energy states for which longitudinal mass squared of
positive energy state derive from p-adic thermodynamics. Thermodynamics - or rather,
its square root - would become part of quantum theory in ZEO. M -matrix is indeed
product of hermitian square root of density matrix multiplied by unitary S-matrix and
defines the entanglement coefficients between positive and negative energy parts of zero
energy state.

(e) The crucial constraint is that the number of super-conformal tensor factors is N = 5:
this suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom
assignable to string world sheets is enough, when one is interested in the masses of
fermions and gauge bosons. Super-symplectic degrees of freedom can also contribute and
determine the dominant contribution to baryon masses. Should also this contribution
obey p-adic thermodynamics in the case when it is present? Or does the very fact
that this contribution need not be present mean that it is not thermal? The symplectic
contribution should correspond to hadronic p-adic length prime rather the one assignable
to (say ) u quark. Hadronic p-adic mass squared and partonic p-adic mass squared
cannot be summed since primes are different. If one accepts the basic rules [K47],
longitudinal energy and momentum are additive as indeed assumed in perturbative
QCD.

(f) Calculations work if the vacuum expectation value of the mass squared must be assumed
to be tachyonic. There are two options depending on whether one whether p-adic
thermodynamics gives total mass squared or longitudinal mass squared.

i. One could argue that the total mass squared has naturally tachyonic ground state
expectation since for massless extremals longitudinal momentum is light-like and
transversal momentum squared is necessary present and non-vanishing by the lo-
calization to topological light ray of finite thickness of order p-adic length scale.
Transversal degrees of freedom would be modeled with a particle in a box.

ii. If longitudinal mass squared is what is calculated, the condition would require
that transversal momentum squared is negative so that instead of plane wave like
behavior exponential damping would be required. This would conform with the
localization in transversal degrees of freedom.

4.6.4 Realization Of Space-Time SUSY In TGD

The generators of super-conformal algebras are obtained by taking fermionic currents for sec-
ond quantized fermions and replacing either fermion field or its conjugate with its particular
mode. The resulting super currents are conserved and define super charges. By replacing
both fermion and its conjugate with modes one obtains c-number valued currents. In this
manner one also obtains the analogs of super-Poincare generators labelled by the conformal
weight and other spin quantum numbers as Noether charges so that space-time SUSY is
suggestive.

The super-conformal invariance in spinor modes is expected to be gauge symmetry so that
only the generators with vanishing string world sheet conformal weight create physical states.
This would leave only the conformal quantum numbers characterizing super-symplectic gen-
erators (radial conformal weight included) under consideration and the hierarchy of its sub-
algebras acting as gauge symmetries giving rise to a hierarchy of criticalities having interpre-
tation in terms of dark matter.

As found in the earlier section, the proposed anti-commutation relations for fermionic oscilla-
tor operators at the ends of string world sheets can be formulated so that they are analogous
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to those for Super Poincare algebra. The reason is that field equations assign a conserved
8-momentum to the light-like geodesic line defining the boundary of string at the orbit of
partonic 2-surface. Octonionic representation of sigma matrices making possible generaliza-
tion of twistor formalism to 8-D context is also essential. As a matter, the final justification
for the analog of space-time came from the generalization of twistor approach to 8-D context.

By counting the number of spin and weak isospin components of imbedding space spinors sat-
isfying massless algebraic Dirac equation one finds that broken N = 8 SUSY is the expected
space-time SUSY. N = 2 SUSY assignable to right-handed neutrino is the least broken sub-
SUSY and one is forced to consider the possibility that spartners correspond to dark matter
with heff = n×h and therefore remaining undetected in recent particle physics experiments.

Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coor-
dinates as a formal tool. Many mathematicians are not enthusiastic about this approach
because of the purely formal nature of anti-commuting coordinates. Also I regard them as
a non-sense geometrically and there is actually no need to introduce them as the following
little argument shows.

Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann al-
gebra and the natural object replacing super-space is this Grassmann algebra with coefficients
of Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just
an ordinary space with additional algebraic structure: the mysterious anti-commuting coor-
dinates are not needed. To me this notion is one of the conceptual monsters created by the
over-pragmatic thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely well-
defined object mathematically, and leave space-time untouched. Linear field space is simply
replaced with its Grassmann algebra. For non-linear field space this replacement does not
work. This allows to formulate the notion of linear super-field just in the same manner as it
is done usually.

The generators of super-symmetries in super-space formulation reduce to super translations,
which anti-commute to translations. The super generators Qα and Qβ̇ of super Poincare
algebra are Weyl spinors commuting with momenta and anti-commuting to momenta:

{Qα, Qβ̇} = 2σµ
α ˙beta

Pµ . (4.6.1)

One particular representation of super generators acting on super fields is given by

Dα = i
∂

∂θα
,

Dα̇ = i
∂

∂θ ˙alpha

+ θβσµβα̇∂µ (4.6.2)

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor εαβ . Super-
space interpretation is not necessary since one can interpret this action as an action on
Grassmann algebra valued field mixing components with different fermion numbers.

Chiral superfields are defined as fields annihilated by Dα̇. Chiral fields are of form Ψ(xµ +
iθσµθ, θ). The dependence on θα̇ comes only from its presence in the translated Minkowski
coordinate annihilated by Dα̇. Super-space enthusiast would say that by a translation of M4

coordinates chiral fields reduce to fields, which depend on θ only.
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The space of fermionic Fock states at partonic 2-surface as TGD counterpart of
chiral super field

As already noticed, another manner to realize SUSY in terms of representations the super
algebra of conserved super-charges. In TGD framework these super charges are naturally as-
sociated with the modified Dirac equation, and anti-commuting coordinates and super-fields
do not appear anywhere. One can however ask whether one could identify a mathematical
structure replacing the notion of chiral super field.

In [K24] it was proposed that generalized chiral super-fields could effectively replace induced
spinor fields and that second quantized fermionic oscillator operators define the analog of
SUSY algebra. One would have N = ∞ if all the conformal excitations of the induced
spinor field restricted on 2-surface are present. For right-handed neutrino the modes are
labeled by two integers and de-localized to the interior of Euclidian or Minkowskian regions
of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components
many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in
one-one correspondence with fermionic creation operators and their hermitian conjugates.

(a) Fermionic creation operators - in classical theory corresponding anti-commuting Grass-
mann parameters - replace theta parameters. Theta parameters and their conjugates are
not in one-one correspondence with spinor components but with the fermionic creation
operators and their hermitian conjugates. One can say that the super-field in question is
defined in the “world of classical worlds” ( WCW ) rather than in space-time. Fermionic
Fock state at the partonic 2-surface is the value of the chiral super field at particular
point of WCW .

(b) The matrix defined by the σµ∂µ is replaced with a matrix defined by the Kähler-Dirac
operator D between spinor modes acting in the solution space of the Kähler-Dirac
equation. Since Kähler-Dirac operator annihilates the modes of the induced spinor
field, super covariant derivatives reduce to ordinary derivatives with respect the theta
parameters labeling the modes. Hence the chiral super field is a field that depends on
θm or conjugates θm only. In second quantization the modes of the chiral super-field
are many-fermion states assigned to partonic 2-surfaces and string world sheets. Note
that this is the only possibility since the notion of super-coordinate does not make sense
now.

(c) It would seem that the notion of super-field does not bring anything new. This is not
the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that
one cannot assign to the fermions of the many-fermion states separate non-parallel or
even parallel four-momenta. The many-fermion state behaves like elementary particle.
This has non-trivial implications for propagators and a simple argument [K24] leads
to the proposal that propagator for N-fermion partonic state is proportional to 1/pN .
This would mean that only the states with fermion number equal to 1 or 2 behave like
ordinary elementary particles.

4.6.5 Comparison Of TGD And Stringy Views About Super-Conformal
Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison
with the conformal symmetries of super string models.

Basic differences between the realization of super conformal symmetries in TGD
and in super-string models

The realization super conformal symmetries in TGD framework differs from that in string
models in several fundamental aspects.
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(a) In TGD framework super-symmetry generators acting as configuration space gamma
matrices carry either lepton or quark number. Majorana condition required by the
hermiticity of super generators which is crucial for super string models would be in
conflict with the conservation of baryon and lepton numbers and is avoided. This is
made possible by the realization of bosonic generators represented as Hamiltonians of
X2-local symplectic transformations rather than vector fields generating them [K15].
This kind of representation applies also in Kac-Moody sector since the local transver-
sal isometries localized in X3

l and respecting light-likeness condition can be regarded
as X2 local symplectic transformations, whose Hamiltonians generate also isometries.
Localization is not complete: the functions of X2 coordinates multiplying symplectic
and Kac-Moody generators are functions of the symplectic invariant J = εµνJµν so that
effective one-dimensionality results but in different sense than in conformal field theo-
ries. This realization of super symmetries is what distinguishes between TGD and super
string models and leads to a totally different physical interpretation of super-conformal
symmetries. The fermionic representations of super-symplectic and super Kac-Moody
generators can be identified as Noether charges in standard manner.

(b) A long-standing problem of quantum TGD was that stringy propagator 1/G does not
make sense if G carries fermion number. The progress in the understanding of second
quantization of the modified Dirac operator made it however possible to identify the
counterpart of G as a c-number valued operator and interpret it as different represen-
tation of G [K13].

(c) The notion of super-space is not needed at all since Hamiltonians rather than vector
fields represent bosonic generators, no super-variant of geometry is needed. The distinc-
tion between Ramond and N-S representations important for N = 1 super-conformal
symmetry and allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2
super-conformal symmetry it is already possible to generate spectral flow transforming
these Ramond and N-S representations to each other (Gn is not Hermitian anymore).

(d) If Kähler action defines the Kähler-Dirac operator, the number of spinor modes could be
finite. One must be here somewhat cautious since bound state in the Coulomb potential
associated with electric part of induced electro-weak gauge field might give rise to an
infinite number of bound states which eigenvalues converging to a fixed eigenvalue (as
in the case of hydrogen atom). Finite number of generalized eigenmodes means that the
representations of super-conformal algebras reduces to finite-dimensional ones in TGD
framework. Also the notion of number theoretic braid indeed implies this. The physical
interpretation would be in terms of finite measurement resolution. If Kähler action is
complexified to include imaginary part defined by CP breaking instanton term, the num-
ber of stringy mass square eigenvalues assignable to the spinor modes becomes infinite
since conformal excitations are possible. This means breakdown of exact holography
and effective 2-dimensionality of 3-surfaces. It seems that the inclusion of instanton
term is necessary for several reasons. The notion of finite measurement resolution forces
conformal cutoff also now. There are arguments suggesting that only the modes with
vanishing conformal weight contribute to the Dirac determinant defining vacuum func-
tional identified as exponent of Kähler function in turn identified as Kähler action for
its preferred extremal.

(e) What makes spinor field mode a generator of gauge super-symmetry is that is c-number
and not an eigenmode ofDK(X2) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of DK(X2) is indeed finite means that most of spinor field
modes represent super gauge degrees of freedom.

The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro
representations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason
is that WCW gamma matrices possess a well defined fermion number. The hermiticity of
the WCW gamma matrices Γ and of the Super Virasoro current G could be achieved by
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posing Majorana conditions on the second quantized H-spinors. Majorana conditions can
be however realized only for space-time dimension D mod 8 = 2 so that super string type
approach does not work in TGD context. This kind of conditions would also lead to the
non-conservation of baryon and lepton numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the
general situation corresponds to super symmetric operators S, S†, whose anti-commutator
is Hamiltonian: {S, S†} = H. One can define a simpler system by considering a Hermitian
operator S0 = S+S† satisfying S2

0 = H: this relation is completely analogous to the ordinary
Super Virasoro relation GG = L. On basis of this observation it is clear that one should
replace ordinary Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the
doubling of super generators and super generators carry U(1) charge having an interpretation
as fermion number in recent context. The so called short representations of N = 2 super-
symmetry algebra can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix Γn, n > 0 corresponds to an operator creating fermion whereas Γn,
n < 0 annihilates anti-fermion. For the Hermitian conjugate Γ†n the roles of fermion and anti-
fermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian
conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian
and are constructed as bilinears of the gamma matrices and their Hermitian conjugates and,
just like conserved currents of the ordinary quantum theory, contain parts proportional to
a†a, b†b, a†b† and ab (a and b refer to fermionic and anti-fermionic oscillator operators).
The commutators between Kac Moody generators and Kac Moody generators and gamma
matrices remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0 annihilates anti-
fermions. Analogous result holds for G†n. Virasoro generators remain Hermitian and decom-
pose just like Kac Moody generators do. Thus the usual anti-commutation relations for the
super Virasoro generators must be replaced with anti-commutations between Gm and G†n
and one has

{Gm, G†n} = 2Lm+n + c
3 (m2 − 1

4 )δm,−n ,
{Gm, Gn} = 0 ,
{G†m, G†n} = 0 .

(4.6.3)

The commutators of type [Lm, Ln] are not changed. Same applies to the purely kinematical
commutators between Ln and Gm/G†m.

The Super Virasoro conditions satisfied by the physical states are as before in case of Ln
whereas the conditions for Gn are doubled to those of Gn, n < 0 and G†n, n > 0.

What could be the counterparts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with
the complex coordinates of X2 as a candidate for conformal super-symmetries. One can
imagine two counterparts of the stringy coordinate z in TGD framework.

(a) Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the
sense that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather

than being completely free [K15]. Thus the real variable J replaces complex (or hyper-
complex) stringy coordinate and effective 1-dimensionality holds true also now but in
different sense than for conformal field theories.

(b) The slicing of X4 by string world sheets Y 2 and partonic 2-surfaces X2 implied by
number theoretical compactification implies string-parton duality and involves the super
conformal fermionic gauge symmetries associated with the coordinates u and w in the
dual dimensional reductions to stringy and partonic dynamics. These coordinates define
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the natural analogs of stringy coordinate. The effective reduction of X3
l to braid by finite

measurement resolution implies the effective reduction of X4(X3) to string world sheet.
This implies quite strong resemblance with string model. The realization that spinor
modes with well- define em charge must be localized at string world sheets makes the
connection with strings even more explicit [K88].

One can understand how Equivalence Principle emerges in TGD framework at space-
time level when many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/
manysheeted.jpg or Fig. 9 in the appendix of this book) is replaced with effective
space-time lumping together the space-time sheets to M4 endowed with effective met-
ric. The quantum counterpart EP has most feasible interpretation in terms of Quantum
Classical Correspondence (QCC): the conserved Kähler four-momentum equals to an
eigenvalue of conserved Kähler-Dirac four-momentum acting as operator.

(c) The conformal fields of string model would reside at X2 or Y 2 depending on which
description one uses and complex (hyper-complex) string coordinate would be identified
accordingly. Y 2 could be fixed as a union of stringy world sheets having the strands
of number theoretic braids as its ends. The proposed definition of braids is unique
and characterizes finite measurement resolution at space-time level. X2 could be fixed
uniquely as the intersection of X3

l (the light-like 3-surface at which induced metric of
space-time surface changes its signature) with δM4

± × CP2. Clearly, wormhole throats
X3
l would take the role of branes and would be connected by string world sheets defined

by number theoretic braids.

(d) An alternative identification for TGD parts of conformal fields is inspired by M8 −H
duality. Conformal fields would be fields in WCW . The counterpart of z coordinate
could be the hyper-octonionic M8 coordinate m appearing as argument in the Laurent
series of WCW Clifford algebra elements. m would characterize the position of the tip
of CD and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford
algebras and thus inclusions of hyper-finite factors of type II1. Reduction to hyper-
quaternionic field -that is field in M4 center of mass degrees of freedom- would be
needed to obtained associativity. The arguments m at various level might correspond
to arguments of N-point function in quantum field theory.

4.7 Still about induced spinor fields and TGD counter-
part for Higgs

The understanding of the modified Dirac equation and of the possible classical counterpart
of Higgs field in TGD framework is not completely satisfactory. The emergence of twistor
lift of Kähler action [L22] [L24] inspired a fresh approach to the problem and it turned out
that a very nice understanding of the situation emerges.

More precise formulation of the Dirac equation for the induced spinor fields is the first
challenge. The well-definedness of em charge has turned out to be very powerful guideline in
the understanding of the details of fermionic dynamics. Although induced spinor fields have
also a part assignable space-time interior, the spinor modes at string world sheets determine
the fermionic dynamics in accordance with strong form of holography (SH).

The well-definedness of em charged is guaranteed if induced spinors are associated with 2-D
string world sheets with vanishing classical W boson fields. It turned out that an alternative
manner to satisfy the condition is to assume that induced spinors at the boundaries of
string world sheets are neutrino-like and that these string world sheets carry only classical
W fields. Dirac action contains 4-D interior term and 2-D term assignable to string world
sheets. Strong form of holography (SH) allows to interpret 4-D spinor modes as continuations
of those assignable to string world sheets so that spinors at 2-D string world sheets determine
quantum dynamics.

Twistor lift combined with this picture allows to formulate the Dirac action in more detail.
Well-definedness of em charge implies that charged particles are associated with string world

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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sheets assignable to the magnetic flux tubes assignable to homologically non-trivial geodesic
sphere and neutrinos with those associated with homologically trivial geodesic sphere. This
explains why neutrinos are so light and why dark energy density corresponds to neutrino
mass scale, and provides also a new insight about color confinement.

A further important result is that the formalism works only for imbedding space dimension
D = 8. This is due the fact that the number of vector components is the same as the number
of spinor components of fixed chirality for D = 8 and corresponds directly to the octonionic
triality.

p-Adic thermodynamics predicts elementary particle masses in excellent accuracy without
Higgs vacuum expectation: the problem is to understand fermionic Higgs couplings. The
observation that CP2 part of the modified gamma matrices gives rise to a term mixing M4

chiralities contain derivative allows to understand the mass-proportionality of the Higgs-
fermion couplings at QFT limit.

4.7.1 More precise view about modified Dirac equation

Consistency conditions demand that modified Dirac equation with modified gamma matrices
Γα defined as contractions Γα = Tαkγk of canonical momentum currents Tαk associated
with the bosonic action with imbedding space gamma matrices γk [K88, K110]. The Dirac
operator is not hermitian in the sense that the conjugation for the Dirac equation for Ψ
does not give Dirac equation for Ψ unless the modified gamma matrices have vanishing
covariant divergence as vector at space-time surface. This says that classical field equations
are satisfied. This consistency condition holds true also for spinor modes possibly localized at
string world sheets to which one can perhaps assign area action plus topological action defined
by Kähler magnetic flux. The interpretation is in terms of super-conformal invariance.

The challenge is to formulate this picture more precisely and here I have not achieved a
satisfactory formulation. The question has been whether interior spinor field Ψ are present
at all, whether only Ψ is present and somehow becomes singular at string world sheets, or
whether both stringy spinors Ψs and interior spinors Ψ are present. Both Ψ and Ψs could
be present and Ψs could serve as source for interior spinors with the same H-chirality.

The strong form of holography (SH) suggests that interior spinor modes Ψn are obtained as
continuations of the stringy spinor modes Ψs,n and one has Ψ = Ψs at string world sheets.
Dirac action would thus have a term localized at strong world sheets and bosonic action would
contain similar term by the requirement of super-conformal symmetry. Can one realize this
intuition?

(a) Suppose that Dirac action has interior and stringy parts. For the twistor lift of TGD
[L24] the interior part with gamma matrices given by the modified gamma matrices
associated with the sum of Kähler action and volume action proportional to cosmological
constant Λ. The variation with respect to the interior spinor field Ψ gives modified Dirac
equation in the interior with source term from the string world sheet. The H-chiralites
of Ψ and Psis would be same. Quark like and leptonic H-chiralities have different
couplings to Kähler gauge potential and mathematical consistency strongly encourages
this.

What is important is that the string world sheet part, which is bilinear in interior and
string world sheet spinor fields Ψ and Ψs and otherwise has the same form as Dirac
action. The natural assumption is that the stringy Dirac action corresponds to the
modified gamma matrices assignable to area action.

(b) String world sheet must be minimal surface: otherwise hermiticity is lost. This can be
achieved either by adding to the Kähler action string world sheet area term. Whatever
the correct option is, quantum criticality should determine the value of string tension.
The first string model inspired guess is that the string tension is proportional to grav-
itational constant 1/G = 1/l2P defining the radius fo M4 twistor sphere or to 1/R2, R
CP2 radius. This would however allow only strings not much longer than lP or R. A
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more natural estimate is that string tension is proportional to the cosmological con-
stant Λ and depends on p-adic length scale as 1/p so that the tension becomes small in
long length scales. Since Λ coupling contant type parameter, this estimate looks rather
reasonable.

(c) The variation of stringy Dirac action with action density

L = [ΨsD
→
s Ψ−ΨsD

←
s Ψ]
√
g2 + h.c. (4.7.1)

with respect to stringy spinor field Ψs gives for Ψ Dirac equation DsΨ = 0 if there are no
Lagrange multiplier terms (see below). The variation in interior gives DΨ = S = DsΨs

, where the source term S is located at string world sheets. Ψ satisfies at string world
sheet the analog of 2-D massless Dirac equation associated with the induced metric.
This is just what stringy picture suggests.

The stringy source term for D equals to DsΨs localized at string world sheets: the
construction of solutions would require the construction of propagator for D, and this
does not look an attractive idea. For DsΨs = 0 the source term vanishes. Holomorphy
for Ψs indeed implies DsΨ = 0.

(d) Ψs = Ψ would realize SH as a continuation of Ψs from string world sheet to Ψ in the
interior. Could one introduce Lagrange multiplier term

L1 = Λ(Ψ−Ψs) + h.c.

to realize Ψs = Ψ? Lagrange multiplier spinor field Λ would serve a source in the Dirac
equation for Ψ = Ψs and Ψ should be constructed at string world sheet in terms of
stringy fermionic propagator with Λ as source. The solution for Ψs would require the
construction of 2-D stringy propagator for Ψs but in principle this is not a problem
since the modes can be solved by holomorphy in hypercomplex stringy coordinate. The
problem of this option is that the H-chiralities of Λ and Ψ would be opposite and the
coupling of opposite H-chiralities is not in spirit with H-chirality conservation.

A possible cure is to replace the Lagrange multiplier term with

L1 = Λ
k
γk(Ψ−Ψs) + h.c. . (4.7.2)

The variation with respect to the spin 3/2 field Λk would give 8 conditions - just the
number of spinor components for given H-chirality - forcing Ψ = Ψs! D = 8 would be
in crucial role! In other imbedding space dimensions the number of conditions would
be too high or too low.

One would however obtain

DsΨ = DsΨs = Λkγk . (4.7.3)

One could of course solve Ψ at string world sheet from Λkγk by constructing the 2-
D propagator associated with Ds. Conformal symmetry for the modes however implies
DsΨ = 0 so that one has actually Λk = 0 and Λk remains mere formal tool to realize the
constraint Ψ = Ψs in mathematically rigorous manner for imbedding space dimension
D = 8. This is a new very powerful argument in favor of TGD.

(e) At the string world sheets Ψ would be annihilated both by D and Ds. The simplest
possibility is that the actions of D and Ds are proportional to each other at string
world sheets. This poses conditions on string world sheets, which might force the CP2

projection of string world sheet to belong to a geodesic sphere or circle of CP2. The
idea that string world sheets and also 3-D surfaces with special role in TGD could
correspond to singular manifolds at which trigonometric functions representing CP2

coordinates tend to go outside their allowed value range supports this picture. This will
be discussed below.
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i. For the geodesic sphere of type II induced Kähler form vanishes so that the action of
4-D Dirac massless operator would be determined by the volume term (cosmological
constant). Could the action of D reduce to that of Ds at string world sheets? Does
this require a reduction of the metric to an orthogonal direct sum from string world
sheet tangent space and normal space and that also normal part of D annihilates
the spinors at the string world sheet? The modes of Ψ at string world sheets are
locally constant with respect to normal coordinates.

ii. For the geodesic sphere of type I induced Kähler form is non-vanishing and brings
an additional term to D coming from CP2 degrees of freedom. This might lead
to trouble since the gamma matrix structures of D and Ds would be different.
One could however add to string world sheet bosonic action a topological term as
Kähler magnetic flux. Although its contribution to the field equations is trivial,
the contribution to the modified gamma matrices is non-vanishing and equal to the
contraction Jαkγk of half projection of the Kähler form with CP2 gamma matrices.
The presence of this term could allow the reduction of DΨs = 0 and DsΨs = 0 to
each other also in this case.

4.7.2 A more detailed view about string world sheets

In TGD framework gauge fields are induced and what typically occurs for the space-time
surfaces is that they tend to “go out” from CP2. Could various lower-D surfaces of space-
time surface correspond to sub-manifolds of space-time surface?

(a) To get a concrete idea about the situation it is best to look what happens in the case
of sphere S2 = CP1. In the case of sphere S2 the Kähler form vanishes at South and
North poles. Here the dimension is reduced by 2 since all values of φ correspond to
the same point. sin(Θ) equals to 1 at equator - geodesic circle - and here Kähler form
is non-vanishing. Here dimension is reduced by 1 unit. This picture conforms with
the expectations in the case of CP2 These two situations correspond to 1-D and 2-D
geodesic sub-manifolds.

(b) CP2 coordinates can be represented as cosines or sines of angles and the modules of
cosine or sine tends to become larger than 1 (see http://tinyurl.com/z3coqau). In
Eguchi-Hanson coordinates (r,Θ,Φ,Ψ) the coordinates r and Θ give rise to this kind
of trigonometric coordinates. For the two cyclic angle coordinates (Φ,Ψ) one does not
encounter this problem.

(c) In the case of CP2 only geodesic sub-manifolds with dimensions D = 0, 1, 2 are possible.
1-D geodesic submanifolds carry vanishing induce spinor curvature. The impossibility
of 3-D geodesic sub-manifolds would suggest that 3-D surfaces are not important. CP2

has two geodesic spheres: S2
I is homologically non-trivial and S2

II homologically trivial
(see http://tinyurl.com/z3coqau).

i. Let us consider S2
I first. CP2 has 3 poles, which obviously relates to SU(3), and

in Eguchi Hanson coordinates (r, θ,Φ,Ψ) the surface r = ∞ is one of them and
corresponds - not to a 3-sphere - but homologically non-trivial geodesic 2- sphere,
which is complex sub-manifold and orbits of SU(2)×U(1) subgroup. Various values
of the coordinate Ψ correspond to same point as those of Φ at the poles of S2. The
Kähler form J and classical Z0 and γ fields are non-vanishing whereas W gauge
fields vanish leaving only induced γ and Z0 field as one learns by studying the
detailed expressions for the curvature of spinor curvature and vierbein of CP2.
String world sheet could have thus projection to S2

I but both γ and Z0 would be
vanishing except perhaps at the boundaries of string world sheet, where Z0 would
naturally vanish in the picture provided by standard model. One can criticize the
presence of Z0 field since it would give a parity breaking term to the modified
Dirac operator. SH would suggest that the reduction to electromagnetism at string
boundaries might make sense as counterpart for standard model picture. Note that
the original vision was that besides induced Kähler form and em field also Z0 field
could vanish at string world sheets.

http://tinyurl.com/z3coqau
http://tinyurl.com/z3coqau
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ii. The homologically trivial geodesic sphere S2
II is the orbit of SO(3) subgroup and

not a complex manifold. By looking the standard example about S2
I , one finds that

the both J , Z0, and γ vanish and only the W components of spinor connection are
non-vanishing. In this case the notion of em charge would not be well-defined for
S2
II without additional conditions. Partonic 2-surfaces, their light-like orbits, and

boundaries of string world sheets could do so since string world sheets have 1-D
intersection with with the orbits. This picture would make sense for the minimal
surfaces replacing vacuum extremals in the case of twistor lift of TGD.
Since em fields are not present, the presence of classical W fields need not cause
problems. The absence of classical em fields however suggests that the modes of
induced spinor fields at boundaries of string worlds sheets must be em neutral and
represent therefore neutrinos. The safest but probably too strong option would be
right-handed neutrino having no coupling spinor connection but coupling to the CP2

gamma matrices transforming it to left handed neutrino. Recall that νR represents
a candidate for super-symmetry.
Neither charged leptons nor quarks would be allowed at string boundaries and
classical W gauge potentials should vanish at the boundaries if also left-handed
neutrinos are allowed: this can be achieved in suitable gauge. Quarks and charged
leptons could reside only at string world sheets assignable to monopole flux tubes.
This could relate to color confinement and also to the widely different mass scales
of neutrinos and other fermions as will be found.

To sum up, the new result is that the distinction between neutrinos and other fermions
could be understood in terms of the condition that em charge is well-defined. What looked
originally a problem of TGD turns out to be a powerful predictive tool.

4.7.3 Classical Higgs field again

A motivation for returning back to Higgs field comes from the twistor lift of Kähler action.

(a) The twistor lift of TGD [L22] [L24] brings in cosmological constant as the coefficient of
volume term resulting in dimensional reduction of 6-D Kähler action for twistor space
of space-time surface realized as surface in the product of twistor space of M4 and CP2.
The radius of the sphere of M4 twistor bundle corresponds to Planck length. Volume
term is extremely small but removes the huge vacuum degeneracy of Kähler action.
Vacuum extremals are replaced by 4-D minimal surfaces and modified Dirac equation
is just the analog of massless Dirac equation in complete analogy with string models.

(b) The well-definedness and conservation of fermionic em charges and SH demand the
localization of fermions to string world sheets. The earlier picture assumed only em
fields at string world sheets. More precise picture allows also W fields.

(c) The first guess is that string world sheets are minimal surfaces and this is supported
by the previous considerations demanding also string area term and Kähler magnetic
flux tube. Here gravitational constant assignable to M4 twistor space would be the first
guess for the string tension.

What one can say about the possible existence of classical Higgs field?

(a) TGD predicts both Higgs type particles and gauge bosons as bound states of fermions
and antifermions and they differ only in that their polarization are in M4 resp. CP2

tangent space. p-adic thermodynamics [K39] gives excellent predictions for elementary
particle masses in TGD framework. Higgs vacuum expectation is not needed to predict
fermion or boson masses. Standard model gives only a parametrization of these masses
by assuming that Higgs couplings to fermions are proportional to their masses, it does
not predict them.

The experimental fact is however that the couplings of Higgs are proportional to fermion
masses and TGD should be able to predict this and there is a general argument for the
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proportonality, which however should be deduced from basic TGD. Can one achieve
this?

(b) Can one imagine any candidate for the classical Higgs field? There is no covariantly
constant vector field in CP2, whose space-time projection could define a candidate for
classical Higgs field. This led years ago before the model for how bosons emerge from
fermions to the wrong conclusion that TGD does not predict Higgs.

The first guess for the possibly existing classical counterpart of Higgs field would be as
CP2 part for the divergence of the space-time vector defined modified gamma matrices
expressible in terms of canonical momentum currents having natural interpretation as a
generalization of force for point like objects to that for extended objects. Higgs field in
this sense would however vanish by above consistency conditions and would not couple
to spinors at all.

Classical Higgs field should have only CP2 part being CP2 vector. What would be also
troublesome that this proposale for classical Higgs field would involve second derivatives
of imbedding space coordinates. Hence it seems that there is no hope about geometriza-
tion of classical Higgs fields.

(c) The contribution of the induced Kähler form gives to the modified gamma matrices a
term expressible solely in terms of CP2 gamma matrices. This term appears in modified
Dirac equation and mixes M4 chiralities - a signal for the massivation. This term is
analogous to Higgs term expect that it contains covariant derivative.

The question that I have not posed hitherto is whether this term could at QFT limit
of TGD give rise to vacuum expectation of Higgs. The crucial observation is that the
presence of derivative, which in quantum theory corresponds roughly to mass propor-
tionality of chirality mixing coupling at QFT limit. This could explain why the coupling
of Higgs field to fermions is proportional to the mass of the fermion at QFT limit!

(d) For S2
II type string world sheets assignable to neutrinos the contribution to the chirality

mixing coupling should be of order of neutrino mass. The coefficient 1/L4 of the volume
term defining cosmological constant [L24] separates out as over all factor in massless
Dirac equation and the parameter characterizing the mass scale causing the mixing is of
order m = ω1ω2R. Here ω1 characterizes the scale of gradient for CP2 coordinates. The
simplest minimal surface is that for which CP2 projection is geodesic line with Φ = ω1t.
ω2 characterizes the scale of the gradient of spinor mode.

Assuming ω1 = ω2 ≡ ω the scale m is of order neutrino mass mν ' .1 eV from
the condition m ∼ ω2R ∼ mν . This gives the estimate ω ∼ √mCP2mν ∼ 102mp

from mCP2 ∼ 10−4mP , which is weak mass scale and therefore perfectly sensible. The
reduction ∆c/c of the light velocity from maximal signal velocity due the replacement
gtt = 1−R2ω2 is ∆c/c ∼ 10−34 and thus completely negligible. This estimate does not
make sense for charged fermions, which correspond to S2

I type string world sheets.

A possible problem is that if the value of the cosmological constant Λ evolves as 1/p as
function of the length mass scale the mass scale of neutrinos should increase in short
scales. This looks strange unless the mass scale remains below the cosmic temperature
so that neutrinos would be always effectively massless.

(e) For S2
I type string world sheets assignable to charged fermions Kähler action dominates

and the mass scales are expected to be higher than for neutrinos. For S2
I type strings

the modified gamma matrices contain also Kähler term and a rough estimate is that the
ratio of two contributions is the ratio of the energy density of Kähler action to vacuum
energy density. As Kähler energy density exceeds the value corresponding to vacuum
energy density 1/L4, L ∼ 40 µm, Kähler action density begins to dominate over dark
energy density.

To sum up, this picture suggest that the large difference between the mass scales of neutrinos
and em charged fermions is due to the fact that neutrinos are associated with string world
sheet of type II and em charged fermions with string world sheets of type I. Both strings
world sheets would be accompanied by flux tubes but for charged particles the flux tubes
would carry Kähler magnetic flux. Cosmological constant forced by twistor lift would make
neutrinos massive and allow to understand neutrino mass scale.



Chapter 5

Recent View about Kähler
Geometry and Spin Structure of
”World of Classical Worlds”

5.1 Introduction

The construction of Kähler geometry of WCW (“world of classical worlds”) is fundamental
to TGD program. I ended up with the idea about physics as WCW geometry around 1985
and made a breakthrough around 1990, when I realized that Kähler function for WCW could
correspond to Kähler action for its preferred extremals defining the analogs of Bohr orbits so
that classical theory with Bohr rules would become an exact part of quantum theory and path
integral would be replaced with genuine integral over WCW. The motivating construction
was that for loop spaces leading to a unique Kähler geometry [A48]. The geometry for the
space of 3-D objects is even more complex than that for loops and the vision still is that the
geometry of WCW is unique from the mere existence of Riemann connection.

The basic idea is that WCW is union of symmetric spaces G/H labelled by zero modes which
do not contribute to the WCW metric. There have been many open questions and it seems
the details of the ealier approach [?]ust be modified at the level of detailed identifications
and interpretations.

(a) A longstanding question has been whether one could assign Equivalence Principle (EP)
with the coset representation formed by the super-Virasoro representation assigned to G
and H in such a manner that the four-momenta associated with the representations and
identified as inertial and gravitational four-momenta would be identical. This does not
seem to be the case. The recent view will be that EP reduces to the view that the clas-
sical four-momentum associated with Kähler action is equivalent with that assignable
to Kähler-Dirac action supersymmetrically related to Kähler action: quantum classical
correspondence (QCC) would be in question. Also strong form of general coordinate in-
variance implying strong form of holography in turn implying that the super-symplectic
representations assignable to space-like and light-like 3-surfaces are equivalent could
imply EP with gravitational and inertial four-momenta assigned to these two represen-
tations.

At classical level EP follows from the interpretation of GRT space-time as effective
space-time obtained by replacing many-sheeted space-time with Minkowski space with
effective metric determined as a sum of Minkowski metric and sum over the deviations of
the induced metrices of space-time sheets from Minkowski metric. Poincare invariance
suggests strongly classical EP for the GRT limit in long length scales at least.

(b) The detailed identification of groups G and H and corresponding algebras has been a
longstanding problem. Symplectic algebra associated withδM4

± × CP2 (δM4
± is light-
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cone boundary - or more precisely, with the boundary of causal diamond (CD) defined
as Cartesian product of CP2 with intersection of future and past direct light cones of
M4 has Kac-Moody type structure with light-like radial coordinate replacing complex
coordinate z. Virasoro algebra would correspond to radial diffeomorphisms. I have also
introduced Kac-Moody algebra assigned to the isometries and localized with respect to
internal coordinates of the light-like 3-surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian and which serve as natural correlates
for elementary particles (in very general sense!). This kind of localization by force
could be however argued to be rather ad hoc as opposed to the inherent localization of
the symplectic algebra containing the symplectic algebra of isometries as sub-algebra.
It turns out that one obtains direct sum of representations of symplectic algebra and
Kac-Moody algebra of isometries naturally as required by the success of p-adic mass
calculations.

(c) The dynamics of Kähler action is not visible in the earlier construction. The construction
also expressed WCW Hamiltonians as 2-D integrals over partonic 2-surfaces. Although
strong form of general coordinate invariance (GCI) implies strong form of holography
meaning that partonic 2-surfaces and their 4-D tangent space data should code for
quantum physics, this kind of outcome seems too strong. The progress in the under-
standing of the solutions of Kähler-Dirac equation led however to the conclusion that
spinor modes other than right-handed neutrino are localized at string world sheets with
strings connecting different partonic 2-surfaces. This leads to a modification of earlier
construction in which WCW super-Hamiltonians are essentially integrals with integrand
identified as a Noether super current for the deformations in G Each spinor mode gives
rise to super current and the modes of right-handed neutrino and other fermions differ
in an essential manner. Right-handed neutrino would correspond to symplectic algebra
and other modes to the Kac-Moody algebra and one obtains the crucial 5 tensor factors
of Super Virasoro required by p-adic mass calculations.

The matrix elements of WCW metric between Killing vectors are expressible as anti-
commutators of super-Hamiltonians identifiable as contractions of WCW gamma ma-
trices with these vectors and give Poisson brackets of corresponding Hamiltonians. The
anti-commutation relates of induced spinor fields are dictated by this condition. Ev-
erything is 3-dimensional although one expects that symplectic transformations local-
ized within interior of X3 act as gauge symmetries so that in this sense effective 2-
dimensionality is achieved. The components of WCW metric are labelled by standard
model quantum numbers so that the connection with physics is extremely intimate.

(d) An open question in the earlier visions was whether finite measurement resolution is
realized as discretization at the level of fundamental dynamics. This would mean that
only certain string world sheets from the slicing by string world sheets and partonic
2-surfaces are possible. The requirement that anti-commutations are consistent sug-
gests that string world sheets correspond to surfaces for which Kähler magnetic field is
constant along string in well defined sense (Jµνε

µνg1/2 remains constant along string).
It however turns that by a suitable choice of coordinates of 3-surface one can guarantee
that this quantity is constant so that no additional constraint results.

(e) Quantum criticality is one of the basic notions of quantum TGD and its relationship
to coset construction has remained unclear. In this chapter the concrete realization of
criticality in terms of symmetry breaking hierarchy of Super Virasoro algebra acting
on symplectic and Kac-Moody algebras. Also a connection with finite measurement
resolution - second key notion of TGD - emerges naturally.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L12].

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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5.2 WCW As A Union Of Homogenous Or Symmetric
Spaces

The physical interpretation and detailed mathematical understanding of super-conformal
symmetries has developed rather slowly and has involved several side tracks. In the following
I try to summarize the basic picture with minimal amount of formulas with the understand-
ing that the statement “Noether charge associated with geometrically realized Kac-Moody
symmetry” is enough for the reader to write down the needed formula explicitly. Formula
oriented reader might deny the value of the approach giving weight to principles. My personal
experience is that piles of formulas too often hide the lack of real understanding.

In the following the vision about WCW as union of coset spaces is discussed in more detail.

5.2.1 Basic Vision

The basic view about coset space construction for WCW has not changed.

(a) The idea about WCW as a union of coset spaces G/H labelled by zero modes is ex-
tremely attractive. The structure of homogenous space [A7] (http://tinyurl.com/
y7u2t8jo ) means at Lie algebra level the decomposition g = h⊕ t to sub-Lie-algebra h
and its complement t such that [h, t] ⊂ t holds true. Homogeneous spaces have G as its
isometries. For symmetric space the additional condition [t, t] ⊂ h holds true and implies
the existence of involution changing at the Lie algebra level the sign of elements of t and
leaving the elements of h invariant. The assumption about the structure of symmetric
space [A22] (http://tinyurl.com/ycouv7uh ) implying covariantly constant curvature
tensor is attractive in infinite-dimensional case since it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP2, which is
symmetric space A particular choice of h corresponds to Lie-algebra elements realized as
Killing vector fields which vanish at particular point of WCW and thus leave 3-surface
invariant. A preferred choice for this point is as maximum or minimum of Kähler func-
tion. For this 3-surface the Hamiltonians of h should be stationary. If symmetric space
property holds true then commutators of [t, t] also vanish at the minimum/maximum.
Note that Euclidian signature for the metric of WCW requires that Kähler function can
have only maximum or minimum for given zero modes.

(b) The basic objection against TGD is that one cannot use the powerful canonical quan-
tization using the phase space associated with configuration space - now WCW . The
reason is the extreme non-linearity of the Kähler action and its huge vacuum degen-
eracy, which do not allow the construction of Hamiltonian formalism. Symplectic and
Kähler structure must be realized at the level of WCW . In particular, Hamiltonians
must be represented in completely new manner. The key idea is to construct WCW
Hamiltonians as anti-commutators of super-Hamiltonians defining the contractions of
WCW gamma matrices with corresponding Killing vector fields and therefore defining
the matrix elements of WCW metric in the tangent vector basis defined by Killing vec-
tor fields. Super-symmetry therefre gives hopes about constructing quantum theory in
which only induced spinor fields are second quantized and imbedding space coordinates
are treated purely classically.

(c) It is important to understand the difference between symmetries and isometries assigned
to the Kähler function. Symmetries of Kähler function do not affect it. The symmetries
of Kähler action are also symmetries of Kähler action because Kähler function is Kähler
action for a preferred extremal (here there have been a lot of confusion). Isometries
leave invariant only the quadratic form defined by Kähler metric gMN = ∂M∂LK but
not Kähler function in general. For G/H decomposition G represents isometries and H
both isometries and symmetries of Kähler function.

CP2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler func-
tion invariant since it depends on the U(2) invariant radial coordinate r of CP2. The ori-

http://tinyurl.com/y7u2t8jo
http://tinyurl.com/y7u2t8jo
http://tinyurl.com/ycouv7uh
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gin r = 0 is left invariant by U(2) but for r > 0 U(2) performs a rotation at r = constant
3-sphere. This simple picture helps to understand what happens at the level of WCW .

How to then distinguish between symmetries and isometries? A natural guess is that
one obtains also for the isometries Noether charges but the vanishing of boundary terms
at spatial infinity crucial in the argument leading to Noether theorem as ∆S = ∆Q = 0
does not hold true anymore and one obtains charges which are not conserved anymore.
The symmetry breaking contributions would now come from effective boundaries defined
by wormhole throats at which the induce metric changes its signature from Minkowskian
to Euclidian. A more delicate situation is in which first order contribution to ∆S
vanishes and therefore also ∆Q and the contribution to ∆S comes from second variation
allowing also to define Noether charge which is not conserved.

(d) The simple picture about CP2 as symmetric space helps to understand the general vision
if one assumes that WCW has the structure of symmetric space. The decomposition
g = h+t corresponds to decomposition of symplectic deformations to those which vanish
at 3-surface (h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators associated
with t give Hamiltonians of h identifiable as the matrix elements of WCW metric. They
would not vanish although they are stationary at 3-surface meaning that Riemann con-
nection vanishes at 3-surface. The Hamiltonians which vanish at 3-surface X3 would
correspond to t and the Hamiltonians for which Killing vectors vanish and which there-
fore are stationary at X3 would correspond to h. Outside X3 the situation would of
course be different. The metric would be obtained by parallel translating the metric
from the preferred point of WCW to elsewhere and symplectic transformations would
make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t would
still give Hamiltonians identifiable as matrix elements of WCW metric but now they
would be necessary those of h. In particular, the Hamiltonians of t do not in general
vanish at X3.

5.2.2 Equivalence Principle And WCW

5.2.3 Ep At Quantum And Classical Level

Quite recently I returned to an old question concerning the meaning of Equivalence Principle
(EP) in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a
pseudo problem due to uncritical assumption there really are two different four-momenta
which must be identified. If even the identification of these two different momenta is difficult,
the pondering of this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by graviton exchange
are proportional to the product of four-momenta of particles and that the proportionality
constant does not depend on any other parameters characterizing particle (except spin). The
are excellent reasons to expect that the stringy picture for interactions predicts this.

(a) The old idea is that EP reduces to the coset construction for Super Virasoro algebra
using the algebras associated with G and H. The four-momenta assignable to these
algebras would be identical from the condition that the differences of the generators
annihilate physical states and identifiable as inertial and gravitational momenta. The
objection is that for the preferred 3-surface H by definition acts trivially so that time-
like translations leading out from the boundary of CD cannot be contained by H unlike
G. Hence four-momentum is not associated with the Super-Virasoro representations
assignable to H and the idea about assigning EP to coset representations does not look
promising.
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(b) Another possibility is that EP corresponds to quantum classical correspondence (QCC)
stating that the classical momentum assignable to Kähler action is identical with gravi-
tational momentum assignable to Super Virasoro representations. This forced to recon-
sider the questions about the precise identification of the Kac-Moody algebra and about
how to obtain the magic five tensor factors required by p-adic mass calculations [K79].

A more precise formulation for EP as QCC comes from the observation that one
indeed obtains two four-momenta in TGD approach. The classical four-momentum
assignable to the Kähler action and that assignable to the Kähler-Dirac action. This
four-momentum is an operator and QCC would state that given eigenvalue of this oper-
ator must be equal to the value of classical four-momentum for the space-time surfaces
assignable to the zero energy state in question. In this form EP would be highly non-
trivial. It would be justified by the Abelian character of four-momentum so that all
momentum components are well-defined also quantum mechanically. One can also con-
sider the splitting of four-momentum to longitudinal and transversal parts as done in the
parton model for hadrons: this kind of splitting would be very natural at the boundary
of CD. The objection is that this correspondence is nothing more than QCC.

(c) A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces
holds true. This is the case if the action of symplectic algebra can be defined at light-
like 3-surfaces or even for the entire space-time surfaces. This could be achieved by
parallel translation of light-cone boundary providing slicing of CD. The four-momenta
associated with the two representations of super-symplectic algebra would be naturally
identical and the interpretation would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an effective theory obtained by
endowing M4 with effective metric.

(a) The replacement of superposition of fields with superposition of their effects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the effects caused by the classical fields at the space-time
sheets.

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the effective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the effective space-time.

(d) The breaking of Poincare invariance could have interpretation as effective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K103].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color
charges and the charges defined by the conserved currents associated with color isometries
would define “inertial” color charges. Since the induced color fields are proportional to color
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Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in
accordance with “gravitational” color confinement.

5.2.4 Criticism Of The Earlier Construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criticized.

(a) Even after these more than twenty years it looks strange that the Hamiltonians should
reduce to flux integrals over partonic 2-surfaces. The interpretation has been in terms
of effective 2-dimensionality suggested strongly by strong form of general coordinate
invariance stating that the descriptions based on light-like orbits of partonic 2-surfaces
and space-like three surfaces at the ends of causal diamonds are dual so that only
partonic 2-surfaces and 4-D tangent space data at them would matter. Strong form of
holography implies effective 2-dimensionality but this should correspond gauge character
for the action of symplectic generators in the interior the space-like 3-surfaces at the
ends of CDs, which is something much milder.

One expects that the strings connecting partonic 2-surfaces could bring something
new to the earlier simplistic picture. The guess is that imbedding space Hamiltonian
assignable to a point of partonic 2-surface should be replaced with that defined as in-
tegral over string attached to the point. Therefore the earlier picture would suffer no
modification at the level of general formulas.

(b) The fact that the dynamics of Kähler action and Kähler-Dirac action are not directly in-
volved with the earlier construction raises suspicions. I have proposed that Kähler func-
tion could allow identification as Dirac determinant [K88] but one would expect more
intimate connection. Here the natural question is whether super-Hamiltonians for the
Kähler-Dirac action could correspond to Kähler charges constructible using Noether’s
theorem for corresponding deformations of the space-time surface and would also be
identifiable as WCW gamma matrices.

5.2.5 Is WCW Homogenous Or Symmetric Space?

A key question is whether WCW can be symmetric space [A22] (http://tinyurl.com/
y8ojglkb ) or whether only homogenous structure is needed. The lack of covariant constancy
of curvature tensor might produce problems in infinite-dimensional context.

The algebraic conditions for symmetric space are g = h + t, [h, t] ⊂ t, [t, t] ⊂ h. The latter
condition is the difficult one.

(a) δCD Hamiltonians should induce diffeomorphisms of X3 indeed leaving it invariant.
The symplectic vector fields would be parallel to X3. A stronger condition is that
they induce symplectic transformations for which all points of X3 remain invariant.
Now symplectic vector fields vanish at preferred 3-surface (note that the symplectic
transformations are rM local symplectic transformations of S2 × CP2).

(b) For Kac-Moody algebra inclusion H ⊂ G for the finite-dimensional Lie-algebra induces
the structure of symmetric space. If entire algebra is involved this does not look phys-
ically very attractive idea unless one believes on symmetry breaking for both SU(3),
U(2)ew, and SO(3) and E2 (here complex conjugation corresponds to the involution).
If one assumes only Kac-Moody algebra as critical symmetries, the number of tensor
factors is 4 instead of five, and it is not clear whether one can obtain consistency with
p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP2. They
could correspond to intersections of deformations of CP2 type vacuum extremals with
the boundary of CD. Also geodesic spheres S2 of CP2 are invariant under U(2) subgroup
and would relate naturally to cosmic strings. The corresponding 3-surface would be
L× S2, where L is a piece of light-like radial geodesic.

http://tinyurl.com/y8ojglkb
http://tinyurl.com/y8ojglkb
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(c) In the case of symplectic algebra one can construct the imbedding space Hamiltonians
inducing WCW Hamiltonians as products of elements of the isometry algebra of S2×CP2

for with parity under involution is well-defined. This would give a decomposition of the
symplectic algebra satisfying the symmetric space property at the level imbedding space.
This decomposition does not however look natural at the level of WCW since the only
single point of CP2 and light-like geodesic of δM4

+ can be fixed by SO(2)×U(2) so that
the 3-surfaces would reduce to pieces of light rays.

(d) A more promising involution is the inversion rM → 1/rM of the radial coordinate map-
ping the radial conformal weights to their negatives. This corresponds to the inversion
in Super Virasoro algebra. t would correspond to functions which are odd functions of
u ≡ log(rM/r0) and h to even function of u. Stationary 3-surfaces would correspond
to u = 1 surfaces for which log(u) = 0 holds true. This would assign criticality with
Virasoro algebra as one expects on general grounds.

rM = constant surface would most naturally correspond to a maximum of Kähler
function which could indeed be highly symmetric. The elements with even u-parity
should define Hamiltonians, which are stationary at the maximum of Kähler function.
For other 3-surfaces obtained by /rM -local) symplectic transformations the situation is
different: now H is replaced with its symplectic conjugate hHg−1 of H is acceptable and
if the conjecture is true one would obtained 3-surfaces assignable to perturbation theory
around given maximum as symplectic conjugates of the maximum. The condition that
H leaves X3 invariant in poin-twise manner is certainly too strong and imply that the
3-surface has single point as CP2 projection.

(e) One can also consider the possibility that critical deformations correspond to h and non-
critical ones to t for the preferred 3-surface. Criticality for given h would hold only for
a preferred 3-surface so that this picture would be very similar that above. Symplectic
conjugates of h would define criticality for other 3-surfaces. WCW would decompose
to a union corresponding to different criticalities perhaps assignable to the hierarchy of
sub-algebras of conformal algebra labelled by integer whose multiples give the allowed
conformal weights. Hierarchy of breakings of conformal symmetries would characterize
this hierarchy of sectors of WCW .

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra) the
condition [t, t] ⊂ h cannot hold true so that one would obtain only the structure of
homogenous space.

5.2.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

5.3 Updated View About Kähler Geometry Of WCW

During last years the understanding of the mathematical aspects of TGD and of its connection
with the experimental world has developed rapidly.

TGD differs in several respects from quantum field theories and string models. The basic
mathematical difference is that the mathematically poorly defined notion of path integral is
replaced with the mathematically well-defined notion of functional integral defined by the
Kähler function defining Kähler metric for WCW (“world of classical worlds”). Apart from
quantum jump, quantum TGD is essentially theory of classical WCW spinor fields with WCW
spinors represented as fermionic Fock states. One can say that Einstein’s geometrization of
physics program is generalized to the level of quantum theory.

It has been clear from the beginning that the gigantic super-conformal symmetries gener-
alizing ordinary super-conformal symmetries are crucial for the existence of WCW Kähler
metric. The detailed identification of Kähler function and WCW Kähler metric has however
turned out to be a difficult problem. It is now clear that WCW geometry can be under-
stood in terms of the analog of AdS/CFT duality between fermionic and space-time degrees
of freedom (or between Minkowskian and Euclidian space-time regions) allowing to express
Kähler metric either in terms of Kähler function or in terms of anti-commutators of WCW
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gamma matrices identifiable as super-conformal Noether super-charges for the symplectic
algebra assignable to δM4

± ×CP2. The string model type description of gravitation emerges
and also the TGD based view about dark matter becomes more precise. String tension is
however dynamical rather than pregiven and the hierarchy of Planck constants is necessary
in order to understand the formation of gravitationally bound states. Also the proposal that
sparticles correspond to dark matter becomes much stronger: sparticles actually are dark
variants of particles.

A crucial element of the construction is the assumption that super-symplectic and other
super-conformal symmetries having the same structure as 2-D super-conformal groups can
be seen a broken gauge symmetries such that sub-algebra with conformal weights coming as
n-ples of those for full algebra act as gauge symmetries. In particular, the Noether charges of
this algebra vanish for preferred extremals- this would realize the strong form of holography
implied by strong form of General Coordinate Invariance. This gives rise to an infinite number
of hierarchies of conformal gauge symmetry breakings with levels labelled by integers n(i)
such that n(i) divides n(i+ 1) interpreted as hierarchies of dark matter with levels labelled
by the value of Planck constant heff = n × h. These hierarchies define also hierarchies
of quantum criticalities, and are proposed to give rise to inclusion hierarchies of hyperfinite
factors of II1 having interpretation in terms of finite cognitive resolution with inclusions being
characterized by the integers n(+1)/n(i).

These hierarchies are fundamental for the understanding of living matter. Living matter is
fighting in order to stay at criticality and uses metabolic energy and homeostasis to achieve
this. In the biological death of the system (self) a phase transition increasing heff finally takes
place. The sub-selves of self experienced by self as mental images however die and are reborn
at opposite boundary of the corresponding causal diamond (CD) and they genuinely evolve
so that self can be said to become wiser even without dying! The purpose of this fighting
against criticality would thus allow a possibility for sub-selves to evolve via subsequent re-
incarnations. One interesting prediction is the possibility of time reversed mental images.
The challenge is to understand what they do mean at the level of conscious experience.

5.3.1 Kähler Function, Kähler Action, And Connection With String
Models

The definition of Kähler function in terms of Kähler action is possible because space-time
regions can have also Euclidian signature of induced metric. Euclidian regions with 4-D CP2

projection - wormhole contacts - are identified as lines of generalized Feynman diagrams -
space-time correlates for basic building bricks of elementary particles. Kähler action from
Minkowskian regions is imaginary and gives to the functional integrand a phase factor crucial
for quantum field theoretic interpretation. The basic challenges are the precise specification
of Kähler function of “world of classical worlds” ( WCW ) and Kähler metric.

There are two approaches concerning the definition of Kähler metric: the conjecture analo-
gous to AdS/CFT duality is that these approaches are mathematically equivalent.

(a) The Kähler function defining Kähler metric can be identified as Kähler action for space-
time regions with Euclidian signature for a preferred extremal containing 3-surface as
the ends of the space-time surfaces inside causal diamond (CD). Minkowskian space-time
regions give to Kähler action an imaginary contribution interpreted as the counterpart
of quantum field theoretic action. The exponent of Kähler function gives rise to a
mathematically well-defined functional integral in WCW . WCW metric is dictated by
the Euclidian regions of space-time with 4-D CP2 projection.

The basic question concerns the attribute ”preferred”. Physically the preferred extremal
is analogous to Bohr orbit. What is the mathematical meaning of preferred extremal
of Kähler action? The latest step of progress is the realization that the vanishing of
generalized conformal charges for the ends of the space-time surface fixes the preferred
extremals to high extent and is nothing but classical counterpart for generalized Virasoro
and Kac-Moody conditions.
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(b) Fermions are also needed. The well-definedness of electromagnetic charge led to the
hypothesis that spinors are restricted at string world sheets. One could also consider
associativity as basic contraint to fermionic dynamics combined with the requirement
that octonionic representation for gamma matrices is equivalent with the ordinary one.
The conjecture is that this leads to the same outcome. This point is highly non-trivial
and will be discussed below separately.

(c) Second manner to define Kähler metric is as anticommutators of WCW gamma matrices
identified as super-symplectic Noether charges for the Dirac action for induced spinors
with string tension proportional to the inverse of Newton’s constant. These charges are
associated with the 1-D space-like ends of string world sheets connecting the wormhole
throats. WCW metric contains contributions from the spinor modes associated with
various string world sheets connecting the partonic 2-surfaces associated with the 3-
surface.

It is clear that the information carried by WCW metric about 3-surface is rather limited
and that the larger the number of string world sheets, the larger the information. This
conforms with strong form of holography and the notion of measurement resolution as a
property of quantums state. Duality clearly means that Kähler function is determined
either by space-time dynamics inside Euclidian wormhole contacts or by the dynamics of
fermionic strings in Minkowskian regions outside wormhole contacts. This duality brings
strongly in mind AdS/CFT duality. One could also speak about fermionic emergence
since Kähler function is dictated by the Kähler metric part from a real part of gradient
of holomorphic function: a possible identification of the exponent of Kähler function is
as Dirac determinant.

5.3.2 Realization Of Super-Conformal Symmetries

The detailed realization of various super-conformal symmetries has been also a long standing
problem.

(a) Super-conformal symmetry requires that Dirac action for string world sheets is accom-
panied by string world sheet area as part of bosonic action. String world sheets are
implied and can be present only in Minkowskian regions if one demands that octonionic
and ordinary representations of induced spinor structure are equivalent (this requires
vanishing of induced spinor curvature to achieve associativity in turn implying that
CP2 projection is 1-D). Note that 1-dimensionality of CP2 projection is symplectically
invariant property. Kähler action is not invariant under symplectic transformations.
This is necessary for having non-trivial Kähler metric. Whether WCW really possesses
super-symplectic isometries remains an open problem.

(b) Super-conformal symmetry also demands that Kähler action is accompanied by what
I call Kähler-Dirac action with gamma matrices defined by the contractions of the
canonical momentum currents with imbedding space-gamma matrices. Both the well-
definedness of em charge and equivalence of octonionic spinor dynamics with ordinary
one require the restriction of spinor modes to string world sheets with light-like bound-
aries at wormhole throats. K-D action with the localization of induced spinors at string
world sheets is certainly the minimal option to consider.

(c) Strong form of holography implied by strong form of general coordinate invariance
strongly suggests that super-conformal symmetry is broken gauge invariance in the sense
that the clasical super-conformal charges for a sub-algebra of the symplectic algebra
with conformal weights vanishing modulo some integer n vanish. The proposal is that
n corresponds to the effective Planck constant as heff/h = n. The standard conformal
symmetries for spinors modes at string world sheets is always unbroken gauge symmetry.
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5.3.3 Interior Dynamics For Fermions, The Role Of Vacuum Ex-
tremals, And Dark Matter

The key role of CP2-type and M4-type vacuum extremals has been rather obvious from
the beginning but the detailed understanding has been lacking. Both kinds of extremals
are invariant under symplectic transformations of δM4 × CP2, which inspires the idea that
they give rise to isometries of WCW . The deformations CP2-type extremals correspond to
lines of generalized Feynman diagrams. M4 type vacuum extremals in turn are excellent
candidates for the building bricks of many-sheeted space-time giving rise to GRT space-
time as approximation. For M4 type vacuum extremals CP2 projection is (at most 2-D)
Lagrangian manifold so that the induced Kähler form vanishes and the action is fourth-order
in small deformations. This implies the breakdown of the path integral approach and of
canonical quantization, which led to the notion of WCW .

If the action in Minkowskian regions contains also string area, the situation changes dramati-
cally since strings dominate the dynamics in excellent approximation and string theory should
give an excellent description of the situation: this of course conforms with the dominance of
gravitation.

String tension would be proportional to 1/~G and this raises a grave classical counter ar-
gument. In string model massless particles are regarded as strings, which have contracted
to a point in excellent approximation and cannot have length longer than Planck length.
How this can be consistent with the formation of gravitationally bound states is however not
understood since the required non-perturbative formulation of string model required by the
large valued of the coupling parameter GMm is not known.

In TGD framework strings would connect even objects with macroscopic distance and would
obviously serve as correlates for the formation of bound states in quantum level description.
The classical energy of string connecting say the two wormhole contacts defining elementary
particle is gigantic for the ordinary value of ~ so that something goes wrong.

I have however proposed [K66, K53, K109] that gravitons - at least those mediating inter-
action between dark matter have large value of Planck constant. I talk about gravitational
Planck constant and one has ~eff = ~gr = GMm/v0, where v0/c < 1 (v0 has dimensions
of velocity). This makes possible perturbative approach to quantum gravity in the case of
bound states having mass larger than Planck mass so that the parameter GMm analogous
to coupling constant is very large. The velocity parameter v0/c becomes the dimensionless
coupling parameter. This reduces the string tension so that for string world sheets con-
necting macroscopic objects one would have T ∝ v0/G

2Mm. For v0 = GMm/~, which
remains below unity for Mm/m2

Pl one would have hgr/h = 1. Hence action remains small
and its imaginary exponent does not fluctuate wildly to make the bound state forming part
of gravitational interaction short ranged. This is expected to hold true for ordinary matter
in elementary particle scales. The objects with size scale of large neutron (100 µm in the
density of water) - probably not an accident - would have mass above Planck mass so that
dark gravitons and also life would emerge as massive enough gravitational bound states are
formed. hgr = heff hypothesis is indeed central in TGD based view about living matter.

If one assumes that for non-standard values of Planck constant only n-multiples of super-
conformal algebra in interior annihilate the physical states, interior conformal gauge degrees
of freedom become partly dynamical. The identification of dark matter as macroscopic
quantum phases labeled by heff/h = n conforms with this.

The emergence of dark matter corresponds to the emergence of interior dynamics via breaking
of super-conformal symmetry. The induced spinor fields in the interior of flux tubes obeying
Kähler Dirac action should be highly relevant for the understanding of dark matter. The
assumption that dark particles have essentially same masses as ordinary particles suggests
that dark fermions correspond to induced spinor fields at both string world sheets and in the
space-time interior: the spinor fields in the interior would be responsible for the long range
correlations characterizing heff/h = n. Magnetic flux tubes carrying dark matter are key
entities in TGD inspired quantum biology. Massless extremals represent second class of M4

type non-vacuum extremals.



5.3. Updated View About Kähler Geometry Of WCW 231

This view forces once again to ask whether space-time SUSY is present in TGD and how it
is realized. With a motivation coming from the observation that the mass scales of particles
and sparticles most naturally have the same p-adic mass scale as particles in TGD Universe
I have proposed that sparticles might be dark in TGD sense. The above argument leads to
ask whether the dark variants of particles correspond to states in which one has ordinary
fermion at string world sheet and 4-D fermion in the space-time interior so that dark matter
in TGD sense would almost by definition correspond to sparticles!

5.3.4 Classical Number Fields And Associativity And Commutativ-
ity As Fundamental Law Of Physics

The dimensions of classical number fields appear as dimensions of basic objects in quantum
TGD. Imbedding space has dimension 8, space-time has dimension 4, light-like 3-surfaces are
orbits of 2-D partonic surfaces. If conformal QFT applies to 2-surfaces (this is questionable),
one-dimensional structures would be the basic objects. The lowest level would correspond to
discrete sets of points identifiable as intersections of real and p-adic space-time sheets. This
suggests that besides p-adic number fields also classical number fields (reals, complex num-
bers, quaternions, octonions [A71]) are involved [K74] and the notion of geometry generalizes
considerably. In the recent view about quantum TGD the dimensional hierarchy defined by
classical number field indeed plays a key role. H = M4 × CP2 has a number theoretic
interpretation and standard model symmetries can be understood number theoretically as
symmetries of hyper-quaternionic planes of hyper-octonionic space.

The associativity condition A(BC) = (AB)C suggests itself as a fundamental physical law
of both classical and quantum physics. Commutativity can be considered as an additional
condition. In conformal field theories associativity condition indeed fixes the n-point functions
of the theory. At the level of classical TGD space-time surfaces could be identified as maximal
associative (hyper-quaternionic) sub-manifolds of the imbedding space whose points contain
a preferred hyper-complex plane M2 in their tangent space and the hierarchy finite fields-
rationals-reals-complex numbers-quaternions-octonions could have direct quantum physical
counterpart [K74]. This leads to the notion of number theoretic compactification analogous to
the dualities of M-theory: one can interpret space-time surfaces either as hyper-quaternionic
4-surfaces of M8 or as 4-surfaces in M4 × CP2. As a matter fact, commutativity in number
theoretic sense is a further natural condition and leads to the notion of number theoretic
braid naturally as also to direct connection with super string models.

At the level of Kähler-Dirac action the identification of space-time surface as a hyper-
quaternionic sub-manifold of H means that the modified gamma matrices of the space-time
surface defined in terms of canonical momentum currents of Kähler action using octonionic
representation for the gamma matrices of H span a hyper-quaternionic sub-space of hyper-
octonions at each point of space-time surface (hyper-octonions are the subspace of com-
plexified octonions for which imaginary units are octonionic imaginary units multiplied by
commutating imaginary unit). Hyper-octonionic representation leads to a proposal for how
to extend twistor program to TGD framework [K88, K76].

How to achieve associativity in the fermionic sector?

In the fermionic sector an additional complication emerges. The associativity of the tangent-
or normal space of the space-time surface need not be enough to guarantee the associativity
at the level of Kähler-Dirac or Dirac equation. The reason is the presence of spinor connec-
tion. A possible cure could be the vanishing of the components of spinor connection for two
conjugates of quaternionic coordinates combined with holomorphy of the modes.

(a) The induced spinor connection involves sigma matrices in CP2 degrees of freedom, which
for the octonionic representation of gamma matrices are proportional to octonion units
in Minkowski degrees of freedom. This corresponds to a reduction of tangent space
group SO(1, 7) to G2. Therefore octonionic Dirac equation identifying Dirac spinors
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as complexified octonions can lead to non-associativity even when space-time surface is
associative or co-associative.

(b) The simplest manner to overcome these problems is to assume that spinors are lo-
calized at 2-D string world sheets with 1-D CP2 projection and thus possible only in
Minkowskian regions. Induced gauge fields would vanish. String world sheets would
be minimal surfaces in M4 × D1 ⊂ M4 × CP2 and the theory would simplify enor-
mously. String area would give rise to an additional term in the action assigned to the
Minkowskian space-time regions and for vacuum extremals one would have only strings
in the first approximation, which conforms with the success of string models and with
the intuitive view that vacuum extremals of Kähler action are basic building bricks
of many-sheeted space-time. Note that string world sheets would be also symplectic
covariants.

Without further conditions gauge potentials would be non-vanishing but one can hope
that one can gauge transform them away in associative manner. If not, one can also
consider the possibility that CP2 projection is geodesic circle S1: symplectic invariance
is considerably reduces for this option since symplectic transformations must reduce to
rotations in S1.

(c) The fist heavy objection is that action would contain Newton’s constant G as a funda-
mental dynamical parameter: this is a standard recipe for building a non-renormalizable
theory. The very idea of TGD indeed is that there is only single dimensionless param-
eter analogous to critical temperature. One can of coure argue that the dimensionless
parameter is ~G/R2, R CP2 ”radius”.

Second heavy objection is that the Euclidian variant of string action exponentially
damps out all string world sheets with area larger than ~G. Note also that the classical
energy of Minkowskian string would be gigantic unless the length of string is of order
Planck length. For Minkowskian signature the exponent is oscillatory and one can argue
that wild oscillations have the same effect.

The hierarchy of Planck constants would allow the replacement ~ → ~eff but this is
not enough. The area of typical string world sheet would scale as heff and the size of
CD and gravitational Compton lengths of gravitationally bound objects would scale as√
heff rather than ~eff = GMm/v0, which one wants. The only way out of problem

is to assume T ∝ (~/heff )2 × (1/hbarG). This is however un-natural for genuine area
action. Hence it seems that the visit of the basic assumption of superstring theory to
TGD remains very short.

Is super-symmetrized Kähler-Dirac action enough?

Could one do without string area in the action and use only K-D action, which is in any case
forced by the super-conformal symmetry? This option I have indeed considered hitherto. K-
D Dirac equation indeed tends to reduce to a lower-dimensional one: for massless extremals
the K-D operator is effectively 1-dimensional. For cosmic strings this reduction does not
however take place. In any case, this leads to ask whether in some cases the solutions of
Kähler-Dirac equation are localized at lower-dimensional surfaces of space-time surface.

(a) The proposal has indeed been that string world sheets carry vanishing W and possibly
even Z fields: in this manner the electromagnetic charge of spinor mode could be well-
defined. The vanishing conditions force in the generic case 2-dimensionality.

Besides this the canonical momentum currents for Kähler action defining 4 imbedding
space vector fields must define an integrable distribution of two planes to give string
world sheet. The four canonical momentum currents Πkα = ∂LK/∂∂αhk identified as
imbedding 1-forms can have only two linearly independent components parallel to the
string world sheet. Also the Frobenius conditions stating that the two 1-forms are pro-
portional to gradients of two imbedding space coordinates Φi defining also coordinates
at string world sheet, must be satisfied. These conditions are rather strong and are
expected to select some discrete set of string world sheets.
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(b) To construct preferred extremal one should fix the partonic 2-surfaces, their light-like
orbits defining boundaries of Euclidian and Minkowskian space-time regions, and string
world sheets. At string world sheets the boundary condition would be that the normal
components of canonical momentum currents for Kähler action vanish. This picture
brings in mind strong form of holography and this suggests that might make sense and
also solution of Einstein equations with point like sources.

(c) The localization of spinor modes at 2-D surfaces would would follow from the well-
definedness of em charge and one could have situation is which the localization does
not occur. For instance, covariantly constant right-handed neutrinos spinor modes at
cosmic strings are completely de-localized and one can wonder whether one could give
up the localization inside wormhole contacts.

(d) String tension is dynamical and physical intuition suggests that induced metric at string
world sheet is replaced by the anti-commutator of the K-D gamma matrices and by
conformal invariance only the conformal equivalence class of this metric would matter
and it could be even equivalent with the induced metric. A possible interpretation is
that the energy density of Kähler action has a singularity localized at the string world
sheet.

Another interpretation that I proposed for years ago but gave up is that in spirit with
the TGD analog of AdS/CFT duality the Noether charges for Kähler action can be
reduced to integrals over string world sheet having interpretation as area in effective
metric. In the case of magnetic flux tubes carrying monopole fluxes and containing
a string connecting partonic 2-surfaces at its ends this interpretation would be very
natural, and string tension would characterize the density of Kähler magnetic energy.
String model with dynamical string tension would certainly be a good approximation
and string tension would depend on scale of CD.

(e) There is also an objection. For M4 type vacuum extremals one would not obtain any
non-vacuum string world sheets carrying fermions but the successes of string model
strongly suggest that string world sheets are there. String world sheets would represent
a deformation of the vacuum extremal and far from string world sheets one would have
vacuum extremal in an excellent approximation. Situation would be analogous to that
in general relativity with point particles.

(f) The hierarchy of conformal symmetry breakings for K-D action should make string
tension proportional to 1/h2

eff with heff = hgr giving correct gravitational Compton
length Λgr = GM/v0 defining the minimal size of CD associated with the system. Why
the effective string tension of string world sheet should behave like (~/~eff )2?

The first point to notice is that the effective metric Gαβ defined as hklΠα
kΠβ

l , where
the canonical momentum current Πkα = ∂LK/∂∂αhk has dimension 1/L2 as required.
Kähler action density must be dimensionless and since the induced Kähler form is di-
mensionless the canonical momentum currents are proportional to 1/αK .

Should one assume that αK is fundamental coupling strength fixed by quantum criti-
cality to αK = 1/137? Or should one regard g2

K as fundamental parameter so that one
would have 1/αK = ~eff/4πg2

K having spectrum coming as integer multiples (recall the
analogy with inverse of critical temperature)?

The latter option is the in spirit with the original idea stating that the increase of
heff reduces the values of the gauge coupling strengths proportional to αK so that
perturbation series converges (Universe is theoretician friendly). The non-perturbative
states would be critical states. The non-determinism of Kähler action implying that
the 3-surfaces at the boundaries of CD can be connected by large number of space-time
sheets forming n conformal equivalence classes. The latter option would giveGαβ ∝ h2

eff

and det(G) ∝ 1/h2
eff as required.

(g) It must be emphasized that the string tension has interpretation in terms of gravitational
coupling on only at the GRT limit of TGD involving the replacement of many-sheeted
space-time with single sheeted one. It can have also interpretation as hadronic string
tension or effective string tension associated with magnetic flux tubes and telling the
density of Kähler magnetic energy per unit length.
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Superstring models would describe only the perturbative Planck scale dynamics for
emission and absorption of heff/h = 1 on mass shell gravitons whereas the quantum
description of bound states would require heff/n > 1 when the masses. Also the
effective gravitational constant associated with the strings would differ from G.

The natural condition is that the size scale of string world sheet associated with the
flux tube mediating gravitational binding is G(M +m)/v0, By expressing string tension
in the form 1/T = n2~G1, n = heff/h, this condition gives ~G1 = ~2/M2

red, Mred =
Mm/(M +m). The effective Planck length defined by the effective Newton’s constant
G1 analogous to that appearing in string tension is just the Compton length associated
with the reduced mass of the system and string tension equals to T = [v0/G(M +m)]2

apart from a numerical constant (2G(M + m) is Schwartschild radius for the entire
system). Hence the macroscopic stringy description of gravitation in terms of string
differs dramatically from the perturbative one. Note that one can also understand
why in the Bohr orbit model of Nottale [E1] for the planetary system and in its TGD
version [K66] v0 must be by a factor 1/5 smaller for outer planets rather than inner
planets.

Are 4-D spinor modes consistent with associativity?

The condition that octonionic spinors are equivalent with ordinary spinors looks rather nat-
ural but in the case of Kähler-Dirac action the non-associativity could leak in. One could
of course give up the condition that octonionic and ordinary K-D equation are equivalent in
4-D case. If so, one could see K-D action as related to non-commutative and maybe even
non-associative fermion dynamics. Suppose that one does not.

(a) K-D action vanishes by K-D equation. Could this save from non-associativity? If
the spinors are localized to string world sheets, one obtains just the standard stringy
construction of conformal modes of spinor field. The induce spinor connection would
have only the holomorphic component Az. Spinor mode would depend only on z but
K-D gamma matrix Γz would annihilate the spinor mode so that K-D equation would be
satisfied. There are good hopes that the octonionic variant of K-D equation is equivalent
with that based on ordinary gamma matrices since quaternionic coordinated reduces to
complex coordinate, octonionic quaternionic gamma matrices reduce to complex gamma
matrices, sigma matrices are effectively absent by holomorphy.

(b) One can consider also 4-D situation (maybe inside wormhole contacts). Could some
form of quaternion holomorphy [A94] [K76] allow to realize the K-D equation just as
in the case of super string models by replacing complex coordinate and its conjugate
with quaternion and its 3 conjugates. Only two quaternion conjugates would appear in
the spinor mode and the corresponding quaternionic gamma matrices would annihilate
the spinor mode. It is essential that in a suitable gauge the spinor connection has
non-vanishing components only for two quaternion conjugate coordinates. As a special
case one would have a situation in which only one quaternion coordinate appears in the
solution. Depending on the character of quaternionion holomorphy the modes would be
labelled by one or two integers identifiable as conformal weights.

Even if these octonionic 4-D modes exists (as one expects in the case of cosmic strings),
it is far from clear whether the description in terms of them is equivalent with the de-
scription using K-D equation based ordinary gamma matrices. The algebraic structure
however raises hopes about this. The quaternion coordinate can be represented as sum
of two complex coordinates as q = z1 + Jz2 and the dependence on two quaternion
conjugates corresponds to the dependence on two complex coordinates z1, z2. The con-
dition that two quaternion complexified gammas annihilate the spinors is equivalent
with the corresponding condition for Dirac equation formulated using 2 complex coor-
dinates. This for wormhole contacts. The possible generalization of this condition to
Minkowskian regions would be in terms Hamilton-Jacobi structure.

Note that for cosmic strings of form X2 × Y 2 ⊂ M4 × CP2 the associativity condition
for S2 sigma matrix and without assuming localization demands that the commutator
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of Y 2 imaginary units is proportional to the imaginary unit assignable to X2 which
however depends on point of X2. This condition seems to imply correlation between
Y 2 and S2 which does not look physical.

To summarize, the minimal and mathematically most optimistic conclusion is that Kähler-
Dirac action is indeed enough to understand gravitational binding without giving up the
associativity of the fermionic dynamics. Conformal spinor dynamics would be associative if
the spinor modes are localized at string world sheets with vanishing W (and maybe also Z)
fields guaranteeing well-definedness of em charge and carrying canonical momentum currents
parallel to them. It is not quite clear whether string world sheets are present also inside
wormhole contacts: for CP2 type vacuum extremals the Dirac equation would give only
right-handed neutrino as a solution (could they give rise to N = 2 SUSY?).

The construction of preferred extremals would realize strong form of holography. By con-
formal symmetry the effective metric at string world sheet could be conformally equivalent
with the induced metric at string world sheets.

Dynamical string tension would be proportional to ~/h2
eff due to the proportionality αK ∝

1/heff and predict correctly the size scales of gravitationally bound states for ~gr = ~eff =
GMm/v0. Gravitational constant would be a prediction of the theory and be expressible in
terms of αK and R2 and ~eff (G ∝ R2/g2

K).

In fact, all bound states - elementary particles as pairs of wormhole contacts, hadronic strings,
nuclei [L3], molecules, etc. - are described in the same manner quantum mechanically. This is
of course nothing new since magnetic flux tubes associated with the strings provide a universal
model for interactions in TGD Universe. This also conforms with the TGD counterpart of
AdS/CFT duality.

The basic building bricks are symplectic algebra of δCD (this includes CP2 besides light-
cone boundary) and Kac-Moody algebra assignable to the isometries of δCD [K15]. It seems
however that the longheld view about the role of Kac-Moody algebra must be modified. Also
the earlier realization of super-Hamiltonians and Hamiltonians seems too naive.

(a) I have been accustomed to think that Kac-Moody algebra could be regarded as a sub-
algebra of symplectic algebra. p-Adic mass calculations however requires five tensor
factors for the coset representation of Super Virasoro algebra naturally assigned to the
coset structure G/H of a sector of WCW with fixed zero modes. Therefore Kac-Moody
algebra cannot be regarded as a sub-algebra of symplectic algebra giving only single
tensor factor and thus inconsistent with interpretation of p-adic mass calculations.

(b) The localization of Kac-Moody algebra generators with respect to the internal coordi-
nates of light-like 3-surface taking the role of complex coordinate z in conformal field
theory is also questionable: the most economical option relies on localization with re-
spect to light-like radial coordinate of light-cone boundary as in the case of symplectic
algebra. Kac-Moody algebra cannot be however sub-algebra of the symplectic algebra
assigned with covariantly constant right-handed neutrino in the earlier approach.

(c) Right-handed covariantly constant neutrino as a generator of super symmetries plays
a key role in the earlier construction of symplectic super-Hamiltonians. What raises
doubts is that other spinor modes - both those of right-handed neutrino and electro-
weakly charged spinor modes - are absent. All spinor modes should be present and thus
provide direct mapping from WCW geometry to WCW spinor fields in accordance with
super-symmetry and the general idea that WCW geometry is coded by WCW spinor
fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of the in-
duced spinor field which carry electroweak quantum numbers. If would be natural that
the modes of right-handed neutrino having no weak and color interactions would gen-
erate the huge symplectic algebra of symmetries and that the modes of fermions with
electroweak charges generate much smaller Kac-Moody algebra.

(d) The dynamics of Kähler action and Kähler-Dirac action action are invisible in the earlier
construction. This suggests that the definition of WCW Hamiltonians is too simplistic.
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The proposal is that the conserved super charges derivable as Noether charges and
identifiable as super-Hamiltonians define WCW metric and Hamiltonians as their anti-
commutators. Spinor modes would become labels of Hamiltonians and WCW geometry
relates directly to the dynamics of elementary particles.

(e) Note that light-cone boundary δM4
+ = S2 × R+ allows infinite-dimensional group of

isometries consisting of conformal transformation of the sphere S2 with conformal scal-
ing compensated by an S2 local scaling or the light-like radial coordinate of R+. These
isometries contain as a subgroup symplectic isometries and could act as gauge symme-
tries of the theory.

5.4 About some unclear issues of TGD

TGD has been in the middle of palace revolution during last two years and it is almost
impossible to keep the chapters of the books updated. Adelic vision and twistor lift of TGD
are the newest developments and there are still many details to be understood and errors to
be corrected. The description of fermions in TGD framework has contained some unclear
issues. Hence the motivation for the following brief comments.

There questions about the adelic vision about symmetries. Do the cognitive representations
implying number theoretic disretization of the space-time surface lead to the breaking of the
basic symmetries and are preferred imbedding space coordinates actually necessary?

In the fermionic sector there are many questions deserving clarification. How quantum classi-
cal correspondence (QCC) is realized for fermions? How is SH realized for fermions and how
does it lead to the reduction of dimension D = 4 to D = 2 (apart from number theoretical
discretization)? Can scattering amplitudes be really formulated by using only the data at
the boundaries of string sheets and what does this mean from the point of view of the mod-
ified Dirac equation? Are the spinors at light-like boundaries limiting values or sources? A
long-standing issue concerns the fermionic anti-commutation relations: what motivated this
article was the solution of this problem. There is also the general problem about whether
statistical entanglement is “real”.

5.4.1 Adelic vision and symmetries

In the adelic TGD SH is weakened: also the points of the space-time surface having imbedding
space coordinates in an extension of rationals (cognitive representation) are needed so that
data are not precisely 2-D. I have believed hitherto that one must use preferred coordinates
for the imbedding space H - a subset of these coordinates would define space-time coordi-
nates. These coordinates are determined apart from isometries. Does the number theoretic
discretization imply loss of general coordinate invariance and also other symmetries?

The reduction of symmetry groups to their subgroups (not only algebraic since powers of e
define finite-dimensional extension of p-adic numbers since ep is ordinary p-adic number) is
genuine loss of symmetry and reflects finite cognitive resolution. The physics itself has the
symmetries of real physics.

The assumption about preferred imbedding space coordinates is actually not necessary. Dif-
ferent choices of H-coordinates means only different and non-equivalent cognitive repre-
sentations. Spherical and linear coordinates in finite accuracy do not provide equivalent
representations.

5.4.2 Quantum-classical correspondence for fermions

Quantum-classical correspondence (QCC) for fermions is rather well-understood but deserves
to be mentioned also here.

QCC for fermions means that the space-time surface as preferred extremal should depend
on fermionic quantum numbers. This is indeed the case if one requires QCC in the sense
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that the fermionic representations of Noether charges in the Cartan algebras of symmetry
algebras are equal to those to the classical Noether charges for preferred extremals.

Second aspect of QCC becomes visible in the representation of fermionic states as point like
particles moving along the light-like curves at the light-like orbits of the partonic 2-surfaces
(curve at the orbit can be locally only light-like or space-like). The number of fermions and
antifermions dictates the number of string world sheets carrying the data needed to fix the
preferred extremal by SH. The complexity of the space-time surface increases as the number
of fermions increases.

5.4.3 Strong form of holography for fermions

It seems that scattering amplitudes can be formulated by assigning fermions with the bound-
aries of strings defining the lines of twistor diagrams [L22, L38]. This information theoretic
dimensional reduction from D = 4 to D = 2 for the scattering amplitudes can be partially
understood in terms of strong form of holography (SH): one can construct the theory by us-
ing the data at string worlds sheets and/or partonic 2-surfaces at the ends of the space-time
surface at the opposite boundaries of causal diamond (CD).

4-D modified Dirac action would appear at fundamental level as supersymmetry demands
but would be reduced for preferred extremals to its 2-D stringy variant serving as effective
action. Also the value of the 4-D action determining the space-time dynamics would reduce
to effective stringy action containing area term, 2-D Kähler action, and topological Kähler
magnetic flux term. This reduction would be due to the huge gauge symmetries of preferred
extremals. Sub-algebra of super-symplectic algebra with conformal weigths coming as n-
multiples of those for the entire algebra and the commutators of this algebra with the entire
algebra would annihilate the physical states, and thecorresponding classical Noether charges
would vanish.

One still has the question why not the data at the entire string world sheets is not needed
to construct scattering amplitudes. Scattering amplitudes of course need not code for the
entire physics. QCC is indeed motivated by the fact that quantum experiments are always
interpreted in terms of classical physics, which in TGD framework reduces to that for space-
time surface.

5.4.4 The relationship between spinors in space-time interior and
at boundaries between Euclidian and Minkoskian regions

Space-time surface decomposes to interiors of Minkowskian and Euclidian regions. At light-
like 3-surfaces at which the four-metric changes, the 4-metric is degenerate. These metrically
singular 3-surfaces - partonic orbits- carry the boundaries of string world sheets identified as
carriers of fermionic quantum numbers. The boundaries define fermion lines in the twistor
lift of TGD [L22, L38]. The relationship between fermions at the partonic orbits and interior
of the space-time surface has however remained somewhat enigmatic.

So: What is the precise relationship between induced spinors ΨB at light-like partonic 3-
surfaces and ΨI in the interior of Minkowskian and Euclidian regions? Same question can
be made for the spinors ΨB at the boundaries of string world sheets and ΨI in interior of
the string world sheets. There are two options to consider:

• Option I: ΨB is the limiting value of ΨI .

• Option II: ΨB serves as a source of ΨI .

For the Option I it is difficult to understand the preferred role of ΨB .

I have considered Option II already years ago but have not been able to decide.

(a) That scattering amplitudes could be formulated only in terms of sources only, would fit
nicely with SH, twistorial amplitude construction, and also with the idea that scattering
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amplitudes in gauge theories can be formulated in terms of sources of boson fields
assignable to vertices and propagators. Now the sources would become fermionic.

(b) One can take gauge theory as a guideline. One adds to free Dirac equation source term

kΨ. Therefore the natural boundary term in the action would be of the form (forgetting
overall scale factor)

SB = ΨIΓ
α(C − S)AαΨB + c.c .

Here the modified gamma matrix is Γα(C − S) (contravariant form is natural for light-
like 3-surfaces) is most naturally defined by the boundary part of the action - naturally
Chern-Simons term for Kähler action. A denotes the Kähler gauge potential.

(c) The variation with respect to ΨB gives

Gα(C − S)AαΨI = 0

at the boundary so that the C-S term and interaction term vanish. This does not
however imply vanishing of the source term! This condition can be seen as a boundary
condition.

The same argument applies also to string world sheets.

5.4.5 About second quantization of the induced spinor fields

The anti-commutation relations for the induced spinors have been a long-standing issue and
during years I have considered several options. The solution of the problem looks however
stupifuingly simple. The conserved fermion currents are accompanied by super-currents
obtained by replacing Ψ with a mode of the induced spinor field to get unΓαΨ or ΨΓαun
with the conjugate of the mode. One obtains infinite number of conserved super currents.
One can also replace both Ψ and Ψ in this manner to get purely bosonic conserved currents
umΓαun to which one can assign a conserved bosonic charges Qmn.

I noticed this years ago but did not realize that these bosonic charges define naturally anti-
commutators of fermionic creation and annihilation operators! The ordinary anti-commutators
of quantum field theory follow as a special case! By a suitable unitary transformation of the
spinor basis one can diagonalize the hermitian matrix defined by Qmn and by performing
suitable scalings one can transform anti-commutation relations to the standard form. An in-
teresting question is whether the diagonalization is needed, and whether the deviation of the
diagonal elements from unity could have some meaning and possibly relate to the hierarchy
heff = n× h of Planck constants - probably not.

5.4.6 Is statistical entanglement “real” entanglement?

The question about the “reality” of statistical entanglement has bothered me for years. This
entanglement is maximal and it cannot be reduced by measurement so that one can argue
that it is not “real”. Quite recently I learned that there has been a longstanding debate
about the statistical entanglement and that the issue still remains unresolved.

The idea that all electrons of the Universe are maximally entangled looks crazy. TGD pro-
vides several variants for solutions of this problem. It could be that only the fermionic oscil-
lator operators at partonic 2-surfaces associated with the space-time surface (or its connected
component) inside given CD anti-commute and the fermions are thus indistinguishable. The
extremist option is that the fermionic oscillator operators belonging to a network of par-
tonic 2-surfaces connected by string world sheets anti-commute: only the oscillator operators
assignable to the same scattering diagram would anti-commute.

What about QCC in the case of entanglement. ER-EPR correspondence introduced by
Maldacena and Susskind for 4 years ago proposes that blackholes (maybe even elementary
particles) are connected by wormholes. In TGD the analogous statement emerged for more
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than decade ago - magnetic flux tubes take the role of wormholes in TGD. Magnetic flux
tubes were assumed to be accompanied by string world sheets. I did not consider the question
whether string world sheets are always accompanied by flux tubes.

What could be the criterion for entanglement to be “real”? “Reality” of entanglement de-
mands some space-time correlate. Could the presence of the flux tubes make the entanglement
“real”? If statistical entanglement is accompanied by string connections without magnetic
flux tubes, it would not be “real”: only the presence of flux tubes would make it “real”. Or
is the presence of strings enough to make the statistical entanglement “real”. In both cases
the fermions associated with disjoint space-time surfaces or with disjoint CDs would not be
indistinguishable. This looks rather sensible.

The space-time correlate for the reduction of entanglement would be the splitting of a flux
tube and fermionic strings inside it. The fermionic strings associated with flux tubes carrying
monopole flux are closed and the return flux comes back along parallel space-time sheet.
Also fermionic string has similar structure. Reconnection of this flux tube with shape of very
long flattened square splitting it to two pieces would be the correlate for the state function
reduction reducing the entanglement with other fermions and would indeed decouple the
fermion from the network.

5.5 About The Notion Of Four-Momentum In TGD Frame-
work

The starting point of TGD was the energy problem of General Relativity [K79]. The solution
of the problem was proposed in terms of sub-manifold gravity and based on the lifting of the
isometries of space-time surface to those of M4 × CP2 in which space-times are realized as
4-surfaces so that Poincare transformations act on space-time surface as an 4-D analog of
rigid body rather than moving points at space-time surface. It however turned out that the
situation is not at all so simple.

There are several conceptual hurdles and I have considered several solutions for them. The
basic source of problems has been Equivalence Principle (EP): what does EP mean in TGD
framework [K79, K103] ? A related problem has been the interpretation of gravitational
and inertial masses, or more generally the corresponding 4-momenta. In General Relativity
based cosmology gravitational mass is not conserved and this seems to be in conflict with
the conservation of Noether charges. The resolution is in terms of zero energy ontology
(ZEO), which however forces to modify slightly the original view about the action of Poincare
transformations.

A further problem has been quantum classical correspondence (QCC): are quantal four-
momenta associated with super conformal representations and classical four-momenta as-
sociated as Noether charges with Kähler action for preferred extremals identical? Could
inertial-gravitational duality - that is EP - be actually equivalent with QCC? Or are EP
and QCC independent dualities. A powerful experimental input comes p-adic mass calcu-
lations [K100] giving excellent predictions provided the number of tensor factors of super-
Virasoro representations is five, and this input together with Occam’s razor strongly favors
QCC=EP identification.

There is also the question about classical realization of EP and more generally, TGD-GRT
correspondence.

Twistor Grassmannian approach has meant a technical revolution in quantum field theory
(for attempts to understand and generalize the approach in TGD framework see [K76]. This
approach seems to be extremely well suited to TGD and I have considered a generalization
of this approach from N = 4 SUSY to TGD framework by replacing point like particles
with string world sheets in TGD sense and super-conformal algebra with its TGD version:
the fundamental objects are now massless fermions which can be regarded as on mass shell
particles also in internal lines (but with unphysical helicity). The approach solves old prob-
lems related to the realization of stringy amplitudes in TGD framework, and avoids some
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problems of twistorial QFT (IR divergences and the problems due to non-planar diagrams).
The Yangian [A27] [B39, B30, B31] variant of 4-D conformal symmetry is crucial for the ap-
proach in N = 4 SUSY, and implies the recently introduced notion of amplituhedron [B20].
A Yangian generalization of various super-conformal algebras seems more or less a “must”
in TGD framework. As a consequence, four-momentum is expected to have characteristic
multilocal contributions identifiable as multipart on contributions now and possibly relevant
for the understanding of bound states such as hadrons.

5.5.1 Scale Dependent Notion Of Four-Momentum In Zero Energy
Ontology

Quite generally, General Relativity does not allow to identify four-momentum as Noether
charges but in GRT based cosmology one can speak of non-conserved mass [K67], which
seems to be in conflict with the conservation of four-momentum in TGD framework. The
solution of the problem comes in terms of zero energy ontology (ZEO) [K4, K98], which
transforms four-momentum to a scale dependent notion: to each causal diamond (CD) one
can assign four-momentum assigned with say positive energy part of the quantum state
defined as a quantum superposition of 4-surfaces inside CD.

ZEO is necessary also for the fusion of real and various p-adic physics to single coherent whole.
ZEO also allows maximal “free will” in quantum jump since every zero energy state can be
created from vacuum and at the same time allows consistency with the conservation laws.
ZEO has rather dramatic implications: in particular the arrow of thermodynamical time is
predicted to vary so that second law must be generalized. This has especially important
implications in living matter, where this kind of variation is observed.

More precisely, this superposition corresponds to a spinor field in the “world of classical
worlds” ( WCW ) [K98]: its components - WCW spinors - correspond to elements of fermionic
Fock basis for a given 4-surface - or by holography implied by general coordinate invariance
(GCI) - for 3-surface having components at both ends of CD. Strong form of GGI implies
strong form of holography (SH) so that partonic 2-surfaces at the ends of space-time surface
plus their 4-D tangent space data are enough to fix the quantum state. The classical dynamics
in the interior is necessary for the translation of the outcomes of quantum measurements to
the language of physics based on classical fields, which in turn is reduced to sub-manifold
geometry in the extension of the geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-QCC.
Strong form of holography has strongly stringy flavor: string world sheets connecting the
wormhole throats appearing as basic building bricks of particles emerge from the dynamics
of induced spinor fields if one requires that the fermionic mode carries well-defined electro-
magnetic charge [K88].

5.5.2 Are The Classical And Quantal Four-Momenta Identical?

One key question concerns the classical and quantum counterparts of four-momentum. In
TGD framework classical theory is an exact part of quantum theory. Classical four-momentum
corresponds to Noether charge for preferred extremals of Kähler action. Quantal four-
momentum in turn is assigned with the quantum superposition of space-time sheets assigned
with CD - actually WCW spinor field analogous to ordinary spinor field carrying fermionic
degrees of freedom as analogs of spin. Quantal four-momentum emerges just as it does in
super string models - that is as a parameter associated with the representations of super-
conformal algebras. The precise action of translations in the representation remains poorly
specified. Note that quantal four-momentum does not emerge as Noether charge: at at least
it is not at all obvious that this could be the case.

Are these classical and quantal four-momenta identical as QCC would suggest? If so, the
Noether four-momentum should be same for all space-time surfaces in the superposition.
QCC suggests that also the classical correlation functions for various general coordinate
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invariant local quantities are same as corresponding quantal correlation functions and thus
same for all 4-surfaces in quantum superposition - this at least in the measurement resolution
used. This would be an extremely powerful constraint on the quantum states and to a high
extend could determined the U-, M-, and S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects the descrip-
tions based on classical physics defined by Kähler action in the interior of space-time surface
and the quantal description in terms of quantum states assignable to the intersections of
space-like 3-surfaces at the boundaries of CD and light-like 3-surfaces at which the signature
of induced metric changes. SH means effective 2-dimensionality since the four-dimensional
tangent space data at partonic 2-surfaces matters. SH could be interpreted as Kac-Mody and
symplectic symmetries meaning that apart from central extension they act almost like gauge
symmetries in the interiors of space-like 3-surfaces at the ends of CD and in the interiors of
light-like 3-surfaces representing orbits of partonic 2-surfaces. Gauge conditions are replaced
with Super Virasoro conditions. The word “almost” is of course extremely important.

5.5.3 What Equivalence Principle (EP) Means In Quantum TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian theory. A possible
generalization would be equivalence of gravitational and inertial four-momenta. In GRT this
correspondence cannot be realized in mathematically rigorous manner since these notions are
poorly defined and EP reduces to a purely local statement in terms of Einstein’s equations.

What about TGD? What could EP mean in TGD framework?

(a) Is EP realized at both quantum and space-time level? This option requires the identifi-
cation of inertial and gravitational four-momenta at both quantum and classical level.
It is now clear that at classical level EP follows from very simple assumption that GRT
space-time is obtained by lumping together the space-time sheets of the many-sheeted
space-time and by the identification the effective metric as sum of M4 metric and de-
viations of the induced metrics of space-time sheets from M2 metric: the deviations
indeed define the gravitational field defined by multiply topologically condensed test
particle. Similar description applies to gauge fields. EP as expressed by Einstein’s
equations would follow from Poincare invariance at microscopic level defined by TGD
space-time. The effective fields have as sources the energy momentum tensor and YM
currents defined by topological inhomogenities smaller than the resolution scale.

(b) QCC would require the identification of quantal and classical counterparts of both gravi-
tational and inertial four-momenta. This would give three independent equivalences, say
PI,class = PI,quant, Pgr,class = Pgr,quant, Pgr,class = PI,quant, which imply the remaining
ones.

Consider the condition Pgr,class = PI,class. At classical level the condition that the stan-
dard energy momentum tensor associated with Kähler action has a vanishing divergence
is guaranteed if Einstein’s equations with cosmological term are satisfied. If preferred
extremals satisfy this condition they are constant curvature spaces for non-vanishing
cosmological constant. A more general solution ansatz involves several functions analo-
gous to cosmological constant corresponding to the decomposition of energy momentum
tensor to terms proportional to Einstein tensor and several lower-dimensional projection
operators [K103]. It must be emphasized that field equations are extremely non-linear
and one must also consider preferred extremals (which could be identified in terms of
space-time regions having so called Hamilton-Jacobi structure): hence these proposals
are guesses motivated by what is known about exact solutions of field equations.

Consider next Pgr,class = PI,class. At quantum level I have proposed coset representa-
tions for the pair of super conformal algebras g and h ⊂ g which correspond to the coset
space decomposition of a given sector of WCW with constant values of zero modes.
The coset construction would state that the differences of super-Virasoro generators
associated with g resp. h annhilate physical states.
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The identification of the algebras g and h is not straightforward. The algebra g could
be formed by the direct sum of super-symplectic and super Kac-Moody algebras and
its sub-algebra h for which the generators vanish at partonic 2-surface considered. This
would correspond to the idea about WCW as a coset space G/H of corresponding groups
(consider as a model CP2 = SU(3)/U(2) with U(2) leaving preferred point invariant).
The sub-algebra h in question includes or equals to the algebra of Kac-Moody generators
vanishing at the partonic 2-surface. A natural choice for the preferred WCW point would
be as maximum of Kähler function in Euclidian regions: positive definiteness of Kähler
function allows only single maximum for fixed values of zero modes). Coset construction
states that differences of super Virasoro generators associated with g and h annihilate
physical states. This implies that corresponding four-momenta are identical that is
Equivalence Principle.

(c) Does EP at quantum level reduce to one aspect of QCC? This would require that clas-
sical Noether four-momentum identified as inertial momentum equals to the quantal
four-momentum assignable to the states of super-conformal representations and identi-
fiable as gravitational four-momentum. There would be only one independent condition:
Pclass ≡ PI,class = Pgr,quant ≡ Pquant.
Holography realized as AdS/CFT correspondence states the equivalence of descriptions
in terms of gravitation realized in terms of strings in 10-D space-time and gauge fields at
the boundary of AdS. What is disturbing is that this picture is not completely equivalent
with the proposed one. In this case the super-conformal algebra would be direct sum of
super-symplectic and super Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calculations [K100]
have motivated the use of them as a guideline in attempts to understand TGD. The basic
outcome was that elementary particle spectrum can be understood if Super Virasoro algebra
has five tensor factors. Can one decide the fate of the two approaches to EP using this
number as an input?

This is not the case. For both options the number of tensor factors is five as required. Four
tensor factors come from Super Kac-Moody and correspond to translational Kac-Moody
type degrees of freedom in M4, to color degrees of freedom and to electroweak degrees of
freedom (SU(2)×U(1)). One tensor factor comes from the symplectic degrees of freedom in
∆CD × CP2 (note that Hamiltonians include also products of δCD and CP2 Hamiltonians
so that one does not have direct sum!).

The reduction of EP to the coset structure of WCW sectors is extremely beautiful property.
But also the reduction of EP to QCC looks very nice and deep. It is of course possible that
the two realizations of EP are equivalent and the natural conjecture is that this is the case.

For QCC option the GRT inspired interpretation of Equivalence Principle at space-time level
remains to be understood. Is it needed at all? The condition that the energy momentum
tensor of Kähler action has a vanishing divergence leads in General Relativity to Einstein
equations with cosmological term. In TGD framework preferred extremals satisfying the
analogs of Einstein’s equations with several cosmological constant like parameters can be
considered.

Should one give up this idea, which indeed might be wrong? Could the divergence of of energy
momentum tensor vanish only asymptotically as was the original proposal? Or should one
try to generalize the interpretation? QCC states that quantum physics has classical correlate
at space-time level and implies EP. Could also quantum classical correspondence itself have
a correlate at space-time level. If so, space-time surface would able to represent abstractions
as statements about statements about.... as the many-sheeted structure and the vision about
TGD physics as analog of Turing machine able to mimic any other Turing machine suggest.

5.5.4 TGD-GRT Correspondence And Equivalence Principle

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an effective theory obtained by
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endowing M4 with effective metric.

(a) The replacement of superposition of fields with superposition of their effects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the effects caused by the classical fields at the space-time
sheets (see Fig. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ??
in the appendix of this book).

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the effective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the effective space-time.

(d) The breaking of Poincare invariance could have interpretation as effective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K103].

5.5.5 How Translations Are Represented At The Level Of WCW ?

The four-momentum components appearing in the formulas of super conformal generators
correspond to infinitesimal translations. In TGD framework one must be able to identify these
infinitesimal translations precisely. As a matter of fact, finite measurement resolution implies
that it is probably too much to assume infinitesimal translations. Rather, finite exponentials
of translation generators are involved and translations are discretized. This does not have
practical signficance since for optimal resolution the discretization step is about CP2 length
scale.

Where and how do these translations act at the level of WCW ? ZEO provides a possible
answer to this question.

Discrete Lorentz transformations and time translations act in the space of CDs:
inertial four-momentum

Quantum state corresponds also to wave function in moduli space of CDs. The moduli space
is obtained from given CD by making all boosts for its non-fixed boundary: boosts correspond
to a discrete subgroup of Lorentz group and define a lattice-like structure at the hyperboloid
for which proper time distance from the second tip of CD is fixed to Tn = n × T (CP2).
The quantization of cosmic redshift for which there is evidence, could relate to this lattice
generalizing ordinary 3-D lattices from Euclidian to hyperbolic space by replacing translations
with boosts (velocities).

The additional degree of freedom comes from the fact that the integer n > 0 obtains all
positive values. One has wave functions in the moduli space defined as a pile of these lattices
defined at the hyperboloid with constant value of T (CP2): one can say that the points of

http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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this pile of lattices correspond to Lorentz boosts and scalings of CDs defining sub- WCW :
s.

The interpretation in terms of group which is product of the group of shifts Tn(CP2) →
Tn+m(CP2) and discrete Lorentz boosts is natural. This group has same Cartesian prod-
uct structure as Galilean group of Newtonian mechanics. This would give a discrete rest
energy and by Lorentz boosts discrete set of four-momenta giving a contribution to the
four-momentum appearing in the super-conformal representation.

What is important that each state function reduction would mean localisation of either
boundary of CD (that is its tip). This localization is analogous to the localization of particle
in position measurement in E3 but now discrete Lorentz boosts and discrete translations
Tn − − > Tn+m replace translations. Since the second end of CD is necessary del-ocalized
in moduli space, one has kind of flip-flop: localization at second end implies de-localization
at the second end. Could the localization of the second end (tip) of CD in moduli space
correspond to our experience that momentum and position can be measured simultaneously?
This apparent classicality would be an illusion made possible by ZEO.

The flip-flop character of state function reduction process implies also the alternation of
the direction of the thermodynamical time: the asymmetry between the two ends of CDs
would induce the quantum arrow of time. This picture also allows to understand what the
experience growth of geometric time means in terms of CDs.

The action of translations at space-time sheets

The action of imbedding space translations on space-time surfaces possibly becoming triv-
ial at partonic 2-surfaces or reducing to action at δCD induces action on space-time sheet
which becomes ordinary translation far enough from end end of space-time surface. The
four-momentum in question is very naturally that associated with Kähler action and would
therefore correspond to inertial momentum for PI,class = Pquant,gr option. Indeed, one
cannot assign quantal four-momentum to Kähler action as an operator since canonical quan-
tization badly fails. In finite measurement infinitesimal translations are replaced with their
exponentials for PI,class = Pquant,gr option.

What looks like a problem is that ordinary translations in the general case lead out from
given CD near its boundaries. In the interior one expects that the translation acts like ordi-
nary translation. The Lie-algebra structure of Poincare algebra including sums of translation
generators with positive coefficient for time translation is preserved if only time-like super-
positions if generators are allowed also the commutators of time-like translation generators
with boost generators give time like translations. This defines a Lie-algebraic formulation for
the arrow of geometric time. The action of time translation on preferred extremal would be
ordinary translation plus continuation of the translated preferred extremal backwards in time
to the boundary of CD. The transversal space-like translations could be made Kac-Moody
algebra by multiplying them with functions which vanish at δCD.

A possible interpretation would be that Pquant,gr corresponds to the momentum assignable
to the moduli degrees of freedom and Pcl,I to that assignable to the time like translations.
Pquant,gr = Pcl,I would code for QCC. Geometrically quantum classical correspondence would
state that time-like translation shift both the interior of space-time surface and second bound-
ary of CD to the geometric future/past while keeping the second boundary of space-time
surface and CD fixed.

5.5.6 Yangian And Four-Momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach toN = 4
SUSY culminating in the notion of amplituhedron which promises to give a nice projective
geometry interpretation for the scattering amplitudes [B20]. Yangian symmetry is a multilo-
cal generalization of ordinary symmetry based on the notion of co-product and implies that
Lie algebra generates receive also multilocal contributions. I have discussed these topics from



5.5. About The Notion Of Four-Momentum In TGD Framework 245

slightly different point of view in [K76], where also references to the work of pioneers can be
found.

Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group
in the study of integrable systems. Yangians are Hopf algebras which can be assigned with
Lie algebras as the deformations of their universal enveloping algebras. The elegant but
rather cryptic looking definition is in terms of the modification of the relations for generating
elements [K76]. Besides ordinary product in the enveloping algebra there is co-product ∆
which maps the elements of the enveloping algebra to its tensor product with itself. One
can visualize product and co-product is in terms of particle reactions. Particle annihilation
is analogous to annihilation of two particle so single one and co-product is analogous to the
decay of particle to two. ∆ allows to construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra
or Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its
super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for super-
conformal algebra in very elegant andconcrete manner in the article Yangian Symmetry in
D=4 superconformal Yang-Mills theory [B30]. Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with
a continuous one. Discrete index poses conditions on the Lie group and its representation
(adjoint representation in the case of N = 4 SUSY). One of the conditions conditions is
that the tensor product R ⊗R∗ for representations involved contains adjoint representation
only once. This condition is non-trivial. For SU(n) these conditions are satisfied for any
representation. In the case of SU(2) the basic branching rule for the tensor product of
representations implies that the condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra.
Now however the generators are labelled by non-negative integers labeling the light-like in-
coming and outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody
algebra also negative values are allowed. Note that only the generators with non-negative
conformal weight appear in the construction of states of Kac-Moody and Virasoro represen-
tations so that the extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be
labelled by conformal weights n = 0 and n = 1 and and their mutual commutation relations
are same as for Kac-Moody algebra. The commutators of n = 1 generators with themselves
are however something different for a non-vanishing deformation parameter h. Serre’s rela-
tions characterize the difference and involve the deformation parameter h. Under repeated
commutations the generating elements generate infinite-dimensional symmetric algebra, the
Yangian. For h = 0 one obtains just one half of the Virasoro algebra or Kac-Moody algebra.
The generators with n > 0 are n+ 1-local in the sense that they involve n+ 1-forms of local
generators assignable to the ordered set of incoming particles of the scattering amplitude.
This non-locality generalizes the notion of local symmetry and is claimed to be powerful
enough to fix the scattering amplitudes completely.

How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however possible
to keep discussion at general level and still say something interesting (as I hope!). The key
question is whether it could be possible to generalize the proposed Yangian symmetry and
geometric picture behind it to TGD framework.

(a) The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question
is quite too limited since it allows only single representation of the gauge group and
requires massless particles. One must allow all representations and massive particles so
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that the representation of symmetry algebra must involve states with different masses,
in principle arbitrary spin and arbitrary internal quantum numbers. The candidates
are obvious: Kac-Moody algebras [A9] and Virasoro algebras [A21] and their super
counterparts. Yangians indeed exist for arbitrary super Lie algebras. In TGD framework
conformal algebra of Minkowski space reduces to Poincare algebra and its extension to
Kac-Moody allows to have also massive states.

(b) The formal generalization looks surprisingly straightforward at the formal level. In zero
energy ontology one replaces point like particles with partonic two-surfaces appearing
at the ends of light-like orbits of wormhole throats located to the future and past light-
like boundaries of causal diamond (CD × CP2 or briefly CD). Here CD is defined as
the intersection of future and past directed light-cones. The polygon with light-like
momenta is naturally replaced with a polygon with more general momenta in zero
energy ontology and having partonic surfaces as its vertices. Non-point-likeness forces
to replace the finite-dimensional super Lie-algebra with infinite-dimensional Kac-Moody
algebras and corresponding super-Virasoro algebras assignable to partonic 2-surfaces.

(c) This description replaces disjoint holomorphic surfaces in twistor space with partonic
2-surfaces at the boundaries of CD × CP2 so that there seems to be a close analogy
with Cachazo-Svrcek-Witten picture. These surfaces are connected by either light-like
orbits of partonic 2-surface or space-like 3-surfaces at the ends of CD so that one indeed
obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

(a) At least it means that ordinary Super Kac-Moody and Super Virasoro algebras asso-
ciated with isometries of M4 × CP2 annihilating the scattering amplitudes must be
extended to a co-algebras with a non-trivial deformation parameter. Kac-Moody group
is thus the product of Poincare and color groups. This algebra acts as deformations of
the light-like 3-surfaces representing the light-like orbits of particles which are extremals
of Chern-Simon action with the constraint that weak form of electric-magnetic duality
holds true. I know so little about the mathematical side that I cannot tell whether
the condition that the product of the representations of Super-Kac-Moody and Super-
Virasoro algebras contains adjoint representation only once, holds true in this case. In
any case, it would allow all representations of finite-dimensional Lie group in vertices
whereas N = 4 SUSY would allow only the adjoint.

(b) Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-
Moody algebra associated with the light-cone boundary which is metrically 3-dimensional.
The finite-dimensional Lie group is in this case replaced with infinite-dimensional group
of symplectomorphisms of δM4

+/− made local with respect to the internal coordinates
of the partonic 2-surface. This picture also justifies p-adic thermodynamics applied to
either symplectic or isometry Super-Virasoro and giving thermal contribution to the
vacuum conformal and thus to mass squared.

(c) The construction of TGD leads also to other super-conformal algebras and the natural
guess is that the Yangians of all these algebras annihilate the scattering amplitudes.

(d) Obviously, already the starting point symmetries look formidable but they still act on
single partonic surface only. The discrete Yangian associated with this algebra associ-
ated with the closed polygon defined by the incoming momenta and the negatives of
the outgoing momenta acts in multi-local manner on scattering amplitudes. It might
make sense to speak about polygons defined also by other conserved quantum numbers
so that one would have generalized light-like curves in the sense that state are massless
in 8-D sense.

Could Yangian symmetry provide a new view about conserved quantum num-
bers?

The Yangian algebra has some properties which suggest a new kind of description for bound
states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute.
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Since the co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to
generators with high value of n, it seems that they commute also with n ≥ 1 generators. This
applies to four-momentum, color isospin and color hyper charge, and also to the Virasoro
generator L0 acting on Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum
of contributions from various levels? If so, the four momentum and mass squared would
involve besides the local term assignable to wormhole throats also n-local contributions.
The interpretation in terms of n-parton bound states would be extremely attractive. n-
local contribution would involve interaction energy. For instance, string like object would
correspond to n = 1 level and give n = 2-local contribution to the momentum. For baryonic
valence quarks one would have 3-local contribution corresponding to n = 2 level. The Yangian
view about quantum numbers could give a rigorous formulation for the idea that massive
particles are bound states of massless particles.

5.6 Generalization Of Ads/CFT Duality To TGD Frame-
work

AdS/CFT duality has provided a powerful approach in the attempts to understand the non-
perturbative aspects of super-string theories. The duality states that conformal field theory
in n-dimensional Minkowski space Mn identifiable as a boundary of n+ 1-dimensional space
AdSn+1 is dual to a string theory in AdSn+1 × S9−n.

As a mathematical discovery the duality is extremely interesting but it seems that it need not
have much to do with physics. From TGD point of view the reason is obvious: the notion
of conformal invariance is quite too limited. In TGD framework conformal invariance is
extended to a super-symplectic symmetry in δM4

±×CP2, whose Lie-algebra has the structure
of conformal algebra. Also ordinary super-conformal symmetries associated with string world
sheets are present as well as generalization of 2-D conformal symmetries to their analogs at
light-cone boundary and light-like orbits of partonic 2-surfaces. In this framework AdS/CFT
duality is expected to be modified and this seems to be the case.

The matrix elements of Kähler metric of WCW can be expressed in two manners. As con-
tractions of the derivatives ∂K∂LK of the Kähler function of WCW with isometry generators
or as anticommutators of WCW gamma matrices identified as supersymplectic Noether su-
per charges assignable to fermioni strings connecting partonic 2-surfaces. Kähler function
is identified as Kähler action for the Euclidian space-time regions with 4-D CP2 projection.
Kähler action defines the Kähler-Dirac gamma matrices appearing in K-D action as contrac-
tions of canonical momentum currents with imbedding space gamma matrices. Bosonic and
fermionic degrees of freedom are therefore dual in a well-defined sense.

This observation suggests various generalizations. There is super-symmetry between Kähler
action and Kähler-Dirac action. The problem is that induced spinor fields are localized at
2-D string world sheets. Strong form of holography implying effective 2-dimensionality sug-
gests the solution to the paradox. The paradox disappears if the Kähler action is expressible
as string area for the effective metric defined by the anti-commutators of K-D gamma ma-
trices at string world sheet. This expression allows to understand how strings connecting
partonic 2-surfaces give rise to the formation of gravitationally bound states. Bound states
of macroscopic size are however possible only if one allows hierarchy of Planck constants.
This representation of Kähler action can be seen as one aspect of the analog of AdS/CFT
duality in TGD framework.

One can imagine also other realizations. For instance, Dirac determinant for the spinors
associated with string world sheets should reduce to the exponent of Kähler action.
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5.6.1 Does The Exponent Of Chern-Simons Action Reduce To The
Exponent Of The Area Of Minimal Surfaces?

As I scanned of hep-th I found an interesting article (see http://tinyurl.com/ycpkrg4f) by
Giordano, Peschanski, and Seki [B48] based on AdS/CFT correspondence. What is studied is
the high energy behavior of the gluon-gluon and quark-quark scattering amplitudes of N = 4
SUSY.

(a) The proposal made earlier by Aldaya and Maldacena (see http://tinyurl.com/ybnk6kbs)
[B18] is that gluon-gluon scattering amplitudes are proportional to the imaginary expo-
nent of the area of a minimal surface in AdS5 whose boundary is identified as momentum
space. The boundary of the minimal surface would be polygon with light-like edges: this
polygon and its dual are familiar from twistor approach.

(b) Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy
quarks corresponds to the exponent of the area for a minimal surface in the Euclidian
version of AdS5 which is hyperbolic space (space with a constant negative curvature): it
is interpreted as a counterpart of WCW rather than momentum space and amplitudes
are obtained by analytic continuation. For instance, a universal Regge behavior is
obtained. For general amplitudes the exponent of the area alone is not enough since it
does not depend on gluon quantum numbers and vertex operators at the edges of the
boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum
TGD framework. I hasten to inform that I am not a specialist in AdS/CFT and can make
only general comments inspired by analogies with TGD and the generalization of AdS/CFT
duality to TGD framework based on the localization of induced spinors at string world sheets,
super-symmetry between bosonic and fermionic degrees of freedom at the level of WCW ,
and the notion of effective metric at string world sheets.

5.6.2 Does Kähler Action Reduce To The Sum Of Areas Of Minimal
Surfaces In Effective Metric?

Minimal surface conjectures are highly interesting from TGD point of view. The weak form of
electric magnetic duality implies the reduction of Kähler action to 3-D Chern-Simons terms.
Effective 2-dimensionality implied by the strong form of General Coordinate Invariance sug-
gests a further reduction of Chern-Simons terms to 2-D terms and the areas of string world
sheet and of partonic 2-surface are the only non-topological options that one can imagine.
Skeptic could of course argue that the exponent of the minimal surface area results as a
characterizer of the quantum state rather than vacuum functional. In the following I end up
with the proposal that the Kähler action should reduce to the sum of string world sheet areas
in the effective metric defines by the anticommutators of Kähler-Dirac gamma matrices at
string world sheets.

Let us look this conjecture in more detail.

(a) In zero energy ontology twistor approach is very natural since all physical states are
bound states of massless particles. Also virtual particles are composites of massless
states. The possibility to have both signs of energy makes possible space-like momenta
for wormhole contacts. Mass shell conditions at internal lines imply extremely strong
constraints on the virtual momenta and both UV and IR finiteness are expected to hold
true.

(b) The weak form of electric magnetic duality [K88] implies that the exponent of Kähler
action reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at
the ends of space-time surface inside CD and for light-like 3-surfaces. The coefficient
of this term is complex since the contribution of Minkowskian regions of the space-
time surface is imaginary (

√
g4 is imaginary) and that of Euclidian regions (generalized

Feynman diagrams) real. The Chern-Simons term from Minkowskian regions is like

http://tinyurl.com/ycpkrg4f
http://tinyurl.com/ybnk6kbs
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Morse function and that from Euclidian regions defines Kähler function and stationary
phase approximation makes sense. The two contributions are different since the space-
like 3-surfaces contributing to Kähler function and Morse function are different.

(c) Electric magnetic duality [K88] leads also to the conclusion that wormhole throats carry-
ing elementary particle quantum numbers are Kähler magnetic monopoles. This forces
to identify elementary particles as string like objects with ends having opposite monopole
charges. Also more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired
by quantum classical correspondence is that it corresponds to the p-adic length scale of
the particle characterizing its Compton length. Second possibility is that it corresponds
to electroweak scale. For leptons stringyness in Compton length scale might not have
any fatal implications since the second end of string contains only neutrinos neutralizing
the weak isospin of the state. This kind of monopole pairs could appear even in con-
densed matter scales: in particular if the proposed hierarchy of Planck constants [K22]
is realized.

(d) Strong form of General Coordinate Invariance requires effective 2-dimensionality. In
given UV and IR resolutions either partonic 2-surfaces or string world sheets form a finite
hierarchy of CDs inside CDs with given CD characterized by a discrete scale coming
as an integer multiple of a fundamental scale (essentially CP2 size). The string world
sheets have boundaries consisting of either light-like curves in induced metric at light-
like wormhole throats and space-like curves at the ends of CD whose M4 projections are
light-like. These braids intersect partonic 2-surfaces at discrete points carrying fermionic
quantum numbers.

This implies a rather concrete analogy with AdS5 × S5 duality, which describes gluons
as open strings. In zero energy ontology (ZEO) string world sheets are indeed a fun-
damental notion and the natural conjecture is that these surfaces are minimal surfaces
whose area by quantum classical correspondence depends on the quantum numbers of
the external particles. String tension in turn should depend on gauge couplings -perhaps
only Kähler coupling strength- and geometric parameters like the size scale of CD and
the p-adic length scale of the particle.

(e) One can of course ask whether the metric defining the string area is induced metric or
possibly the metric defined by the anti-commutators of Kähler-Dirac gamma matrices.
The recent view does not actually leave any other alternative. The analog of AdS/CFT
duality together with supersymmetry demands that Kähler action is proportional to the
sum of the areas of string world sheets in this effective metric. Whether the vanishing of
induced W fields (and possibly also Z0) making possible well-defined em charge for the
spinor nodes is realized by the condition that the string world sheet is a miniml surface
in the effective metric remains an open question.

The assumption that ordinary minimal surfaces are in question is not consistent with
the TGD view about the formation of gravitational bound states and if string tension is
1/~G as in string models, only bound states with size of order Planck length are possible.
This strongly favors effective metric giving string tension proportional to 1/h2

eff . How

1/h2
eff proportionality might be understood is discussed in [K106] in terms electric-

magnetic duality.

(f) One can of course still consider also the option that ordinary minimal surfaces are in
question. Are the minimal surfaces in question minimal surfaces of the imbedding space
M4 × CP2 or of the space-time surface X4? All possible 2-surfaces at the boundary of
CD must be allowed so that they cannot correspond to minimal surfaces in M4 × CP2

unless one assumes that they emerge in stationary phase approximation only. The
boundary conditions at the ends of CD could however be such that any partonic 2-
surface correspond to a minimal surfaces in X4. Same applies to string world sheets.
One might even hope that these conditions combined with the weak form of electric
magnetic duality fixes completely the boundary conditions at wormhole throats and
space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic
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2-surface as sub-manifold of space-time surface would vanish: this is nothing but a
generalization of the geodesic motion obtained by replacing word line with a 2-D surface.
It does not imply the vanishing of the trace of the second fundamental form in M4×CP2

having interpretation as a generalization of particle acceleration [K79]. Effective 2-
dimensionality would be realized if Chern-Simons terms reduce to a sum of the areas of
these minimal surfaces.

2. These arguments suggest that scattering amplitudes are proportional to the product of ex-
ponents of 2-dimensional actions which can be either imaginary or real. Imaginary exponent
would be proportional to the total area of string world sheets and the imaginary unit would
come naturally from

√
g2, where g2 is effective metric most naturally. Teal exponent pro-

portional to the total area of partonic 2-surfaces. The coefficient of these areas would not in
general be same.

3. The reduction of the Kähler action from Minkowskian regions to Chern-Simons terms means
that Chern-Simons terms reduce to actions assignable to string world sheets. The equality
of the Minkowskian and Euclidian Chern-Simons terms is suggestive but not necessarily true
since there could be also other Chern-Simons contributions than those assignable to wormhole
throats and the ends of space-time. The equality would imply that the total area of string
world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality
meaning that either Euclidian or Minkowskian regions carry the needed information.

5.6.3 Surface Area As Geometric Representation Of Entanglement En-
tropy?

I encountered a link to a talk by James Sully and having the title “Geometry of Compression”
(see http://tinyurl.com/ycuu8xcr). I must admit that I understood very little about the talk.
My not so educated guess is however that information is compressed: UV or IR cutoff eliminating
entanglement in short length scales and describing its presence in terms of density matrix - that is
thermodynamically - is another manner to say it. The TGD inspired proposal for the interpretation
of the inclusions of hyper-finite factors of type II1 (HFFs) [K87] is in spirit with this.

The space-time counterpart for the compression would be in TGD framework discretization.
Discretizations using rational points (or points in algebraic extensions of rationals) make sense also
p-adically and thus satisfy number theoretic universality. Discretization would be defined in terms
of intersection (rational or in algebraic extension of rationals) of real and p-adic surfaces. At the
level of “world of classical worlds” the discretization would correspond to - say - surfaces defined
in terms of polynomials, whose coefficients are rational or in some algebraic extension of rationals.
Pinary UV and IR cutoffs are involved too. The notion of p-adic manifold allows to interpret the
p-adic variants of space-time surfaces as cognitive representations of real space-time surfaces.

Finite measurement resolution does not allow state function reduction reducing entangle-
ment totally. In TGD framework also negentropic entanglement stable under Negentropy Maxim-
ixation Principle (NMP) is possible [K41]. For HFFs the projection into single ray of Hilbert space
is indeed impossible: the reduction takes always to infinite-D sub-space.

The visit to the URL was however not in vain. There was a link to an article (see http:

//tinyurl.com/y9h3qtr8) [B71] discussing the geometrization of entanglement entropy inspired
by the AdS/CFT hypothesis.

Quantum classical correspondence is basic guiding principle of TGD and suggests that entan-
glement entropy should indeed have space-time correlate, which would be the analog of Hawking-
Bekenstein entropy.

Generalization of AdS/CFT to TGD context

AdS/CFT generalizes to TGD context in non-trivial manner. There are two alternative interpre-
tations, which both could make sense. These interpretations are not mutually exclusive. The first
interpretation makes sense at the level of “world of classical worlds” ( WCW ) with symplectic
algebra and extended conformal algebra associated with δM4

± replacing ordinary conformal and
Kac-Moody algebras. Second interpretation at the level of space-time surface with the extended

http://tinyurl.com/ycuu8xcr
http://tinyurl.com/y9h3qtr8
http://tinyurl.com/y9h3qtr8
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conformal algebras of the light-likes orbits of partonic 2-surfaces replacing the conformal algebra
of boundary of AdSn.

1. First interpretation
For the first interpretation 2-D conformal invariance is generalised to 4-D conformal invari-

ance relying crucially on the 4-dimensionality of space-time surfaces and Minkowski space.

1. One has an extension of the conformal invariance provided by the symplectic transformations
of δCD×CP2 for which Lie algebra has the structure of conformal algebra with radial light-
like coordinate of δM4

+ replacing complex coordinate z.

2. One could see the counterpart of AdSn as imbedding space H = M4×CP2 completely unique
by twistorial considerations and from the condition that standard model symmetries are
obtained and its causal diamonds defined as sub-sets CD×CP2, where CD is an intersection
of future and past directed light-cones. I will use the shorthand CD for CD × CP2. Strings
in AdS5 × S5 are replaced with space-time surfaces inside 8-D CD.

3. For this interpretation 8-D CD replaces the 10-D space-time AdS5 × S5. 7-D light-like
boundaries of CD correspond to the boundary of say AdS5, which is 4-D Minkowski space so
that zero energy ontology (ZEO) allows rather natural formulation of the generalization of
AdS/CFT correspondence since the positive and negative energy parts of zero energy states
are localized at the boundaries of CD.

Second interpretation

For the second interpretation relies on the observation that string world sheets as carriers of
induced spinor fields emerge in TGD framework from the condition that electromagnetic charge is
well-defined for the modes of induced spinor field.

1. One could see the 4-D space-time surfaces X4 as counterparts of AdS4. The boundary of
AdS4 is replaced in this picture with 3-surfaces at the ends of space-time surface at opposite
boundaries of CD and by strong form of holography the union of partonic 2-surfaces defining
the intersections of the 3-D boundaries between Euclidian and Minkowskian regions of space-
time surface with the boundaries of CD. Strong form of holography in TGD is very much
like ordinary holography.

2. Note that one has a dimensional hierarchy: the ends of the boundaries of string world sheets at
boundaries of CD as point-like partices, boundaries as fermion number carrying lines, string
world sheets, light-like orbits of partonic 2-surfaces, 4-surfaces, imbedding space M4 ×CP2.
Clearly the situation is more complex than for AdS/CFT correspondence.

3. One can restrict the consideration to 3-D sub-manifolds X3 at either boundary of causal
diamond (CD): the ends of space-time surface. In fact, the position of the other boundary
is not well-defined since one has superposition of CDs with only one boundary fixed to be
piece of light-cone boundary. The delocalization of the other boundary is essential for the
understanding of the arrow of time. The state function reductions at fixed boundary leave
positive energy part (say) of the zero energy state at that boundary invariant (in positive
energy ontology entire state would remain unchanged) but affect the states associated with
opposite boundaries forming a superposition which also changes between reduction: this is
analog for unitary time evolution. The average for the distance between tips of CDs in the
superposition increases and gives rise to the flow of time.

4. One wants an expression for the entanglement entropy between X3 and its partner. Beken-
stein area law allows to guess the general expression for the entanglement entropy: for the
proposal discussed in the article the entropy would be the area of the boundary of X3 divided
by gravitational constant: S = A/4G. In TGD framework gravitational constant might be
replaced by the square of CP2 radius apart from numerical constant. How gravitational con-
stant emerges in TGD framework is not completely understood although one can deduce for
it an estimate using dimensional analyses. In any case, gravitational constant is a parameter
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which characterizes GRT limit of TGD in which many-sheeted space-time is in long scales re-
placed with a piece of Minkowski space such that the classical gravitational fields and gauge
potentials for sheets are summed. The physics behind this relies on the generalization of
linear superposition of fields: the effects of different space-time sheets particle touching them
sum up rather than fields.

5. The counterpart for the boundary of X3 appearing in the proposal for the geometrization of
the entanglement entropy naturally corresponds to partonic 2-surface or a collection of them
if strong form of holography holds true.

There is however also another candidate to be considered! Partonic 2-surfaces are basic
objects, and one expects that the entanglement between fundamental fermions associated
with distinct partonic 2-surfaces has string world sheets as space-time correlates. Could the
area of the string world sheet in the effective metric defined by the anti-commutators of K-D
gamma matrices at string world sheet provide a measure for entanglement entropy? If this
conjecture is correct: the entanglement entropy would be proportional to Kähler action. Also
negative values are possible for Kähler action in Minkowskian regions but in TGD framework
number theoretic entanglement entropy having also negative values emerges naturally.

Which of these guesses is correct, if any? Or are they equivalent?

With what kind of systems 3-surfaces can entangle?

With what system X3 is entangled/can entangle? There are several options to consider and they
could correspond to the two TGD variants for the AdS/CFT correspondence.

1. X3 could correspond to a wormhole contact with Euclidian signature of induced metric. The
entanglement would be between it and the exterior region with Minkowskian signature of the
induced metric.

2. X3 could correspond to single sheet of space-time surface connected by wormhole contacts to
a larger space-time sheet defining its environment. More precisely, X3 and its complement
would be obtained by throwing away the wormhole contacts with Euclidian signature of
induce metric. Entanglement would be between these regions. In the generalization of the
formula

S =
A

4~G

area A would be replaced by the total area of partonic 2-surfaces and G perhaps with CP2

length scale squared.

3. In ZEO the entanglement could also correspond to time-like entanglement between the 3-D
ends of the space-time surface at opposite light-like boundaries of CD. M-matrix, which can
be seen as the analog of thermal S-matrix, decomposes to a product of hermitian square
root of density matrix and unitary S-matrix and this hermitian matrix could also define p-
adic thermodynamics. Note that in ZEO quantum theory can be regarded as square root of
thermodynamics.

Minimal surface property is not favored in TGD framework

Minimal surface property for the 3-surfaces X3 at the ends of space-time surface looks at first
glance strange but a proper generalization of this condition makes sense if one assumes strong
form of holography. Strong form of holography realizes General Coordinate Invariance (GCI) in
strong sense meaning that light-like parton orbits and space-like 3-surfaces at the ends of space-
time surfaces are equivalent physically. As a consequence, partonic 2-surfaces and their 4-D tangent
space data must code for the quantum dynamics.

The mathematical realization is in terms of conformal symmetries accompanying the sym-
plectic symmetries of δM4

± × CP2 and conformal transformations of the light-like partonic or-
bit [K88]. The generalizations of ordinary conformal algebras correspond to conformal algebra,
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Kac-Moody algebra at the light-like parton orbits and to symplectic transformations δM4 × CP2

acting as isometries of WCW and having conformal structure with respect to the light-like radial
coordinate plus conformal transformations of δM4

+, which is metrically 2-dimensional and allows
extended conformal symmetries.

1. If the conformal realization of the strong form of holography works, conformal transforma-
tions act at quantum level as gauge symmetries in the sense that generators with no-vanishing
conformal weight are zero or generate zero norm states. Conformal degeneracy can be elim-
inated by fixing the gauge somehow. Classical conformal gauge conditions analogous to
Virasoro and Kac-Moody conditions satisfied by the 3-surfaces at the ends of CD are natural
in this respect. Similar conditions would hold true for the light-like partonic orbits at which
the signature of the induced metric changes.

2. What is also completely new is the hierarchy of conformal symmetry breakings associated
with the hierarchy of Planck constants heff/h = n [K22]. The deformations of the 3-surfaces
which correspond to non-vanishing conformal weight in algebra or any sub-algebra with
conformal weights vanishing modulo n give rise to vanishing classical charges and thus do
not affect the value of the Kähler action [K88].

The inclusion hierarchies of conformal sub-algebras are assumed to correspond to those for
hyper-finite factors. There is obviously a precise analogy with quantal conformal invariance
conditions for Virasoro algebra and Kac-Moody algebra. There is also hierarchy of inclusions
which corresponds to hierarchy of measurement resolutions. An attractive interpretation is
that singular conformal transformations relate to each other the states for broken conformal
symmetry. Infinitesimal transformations for symmetry broken phase would carry fractional
conformal weights coming as multiples of 1/n.

3. Conformal gauge conditions need not reduce to minimal surface conditions holding true for
all variations.

4. Note that Kähler action reduces to Chern-Simons term at the ends of CD if weak form
of electric magnetic duality holds true. The conformal charges at the ends of CD cannot
however reduce to Chern-Simons charges by this condition since only the charges associated
with CP2 degrees of freedom would be non-trivial.

The way out of the problem is provided by the generalization of AdS/CFT conjecture. String
area is estimated in the effective metric provided by the anti-commutator of K-D gamma matrices
at string world sheet.

5.6.4 Related Ideas

p-Adic mass calculations led to the introduction of the p-adic variant of Bekenstein-Hawkin law
in which Planck length is replaced by p-adic length scale. This generalization is in spirit with the
idea that string world sheet area is estimated in effective rather than induced metric.

p-Adic variant of Bekenstein-Hawking law

When the 3-surface corresponds to elementary particle, a direct connection with p-adic thermo-
dynamics suggests itself and allows to answer the questions above. p-Adic thermodynamics could
be interpreted as a description of the entanglement with environment. In ZEO the entanglement
could also correspond to time-like entanglement between the 3-D ends of the space-time surface
at opposite light-like boundaries of CD. M-matrix, which can be seen as the analog of thermal S-
matrix, decomposes to a product of hermitian square root of density matrix and unitary S-matrix
and this hermitian matrix could also define p-adic thermodynamics.

1. p-Adic thermodynamics [K100] would not be for energy but for mass squared (or scaling
generator L0) would describe the entanglement of the particle with environment defined by
the larger space-time sheet. Conformal weights would comes as positive powers of integers
(pL0 would replace exp(−H/T ) to guarantee the number theoretical existence and convergence
of the Boltzmann weight: note that conformal invariance that is integer spectrum of L0 is
also essential).
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2. The interactions with environment would excite very massive CP2 mass scale excitations
(mass scale is about 10−4 times Planck mass) of the particle and give it thermal mass squared
identifiable as the observed mass squared. The Boltzmann weights would be extremely small
having p-adic norm about 1/pn, p the p-adic prime: M127 = 2127 − 1 for electron.

3. One of the first ideas inspired by p-adic vision was that p-adic entropy could be seen as
a p-adic counterpart of Bekenstein-Hawking entropy [K49]. S = (R2/~2) ×M2 holds true
identically apart from numerical constant. Note that one could interpret R2M/~ as the
counterpart of Schwartschild radius. Note that this radius is proportional to 1/

√
p so that

the area A would correspond to the area defined by Compton length. This is in accordance
with the third option.

What is the space-time correlate for negentropic entanglement?

The new element brought in by TGD framework is that number theoretic entanglement entropy
is negative for negentropic entanglement assignable to unitary entanglement (in the sense that
entanglement matrix is proportional to a unitary matrix) and NMP states that this negentropy
increases [K41]. Since entropy is essentially number of energy degenerate states, a good guess is
that the number n = heff/h of space-time sheets associated with heff defines the negentropy.
An attractive space-time correlate for the negentropic entanglement is braiding. Braiding defines
unitary S-matrix between the states at the ends of braid and this entanglement is negentropic.
This entanglement gives also rise to topological quantum computation.

5.6.5 The Importance Of Being Light-Like

The singular geometric objects associated with the space-time surface have become increasingly
important in TGD framework. In particular, the recent progress has made clear that these objects
might be crucial for the understanding of quantum TGD. The singular objects are associated not
only with the induced metric but also with the effective metric defined by the anti-commutators
of the Kähler-Dirac gamma matrices appearing in the Kähler-Dirac equation and determined by
the Kähler action.

The singular objects associated with the induced metric

Consider first the singular objects associated with the induced metric.

1. At light-like 3-surfaces defined by wormhole throats the signature of the induced metric
changes from Euclidian to Minkowskian so that 4-metric is degenerate. These surfaces are
carriers of elementary particle quantum numbers and the 4-D induced metric degenerates
locally to 3-D one at these surfaces.

2. Braid strands at partonic orbits - fermion lines identified as boundaries of string world sheets
in the more recent terminology - are most naturally light-like curves: this correspond to the
boundary condition for open strings. One can assign fermion number to the braid strands.
Braid strands allow an identification as curves along which the Euclidian signature of the
string world sheet in Euclidian region transforms to Minkowskian one. Number theoretic
interpretation would be as a transformation of complex regions to hyper-complex regions
meaning that imaginary unit i satisfying i2 = −1 becomes hyper-complex unit e satisfying
e2 = 1. The complex coordinates (z, z) become hyper-complex coordinates (u = t+ ex, v =
t− ex) giving the standard light-like coordinates when one puts e = 1.

The singular objects associated with the effective metric

There are also singular objects assignable to the effective metric. According to the simple argu-
ments already developed, string world sheets and possibly also partonic 2-surfaces are singular
objects with respect to the effective metric defined by the anti-commutators of the Kähler-Dirac
gamma matrices rather than induced gamma matrices. Therefore the effective metric might be
more than a mere formal structure. The following is of course mere speculation and should be
taken as such.
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1. For instance, quaternionicity of the space-time surface might allow an elegant formulation in
terms of the effective metric avoiding the problems due to the Minkowski signature. This is
achieved if the effective metric has Euclidian signature ε × (1, 1, 1, 1), ε = ±1 or a complex
counterpart of the Minkowskian signature ε(1, 1,−1,−1).

2. String word sheets and perhaps also partonic 2-surfaces might be be understood as singular-
ities of the effective metric. What happens that the effective metric with Euclidian signature
ε × (1, 1, 1, 1) transforms to the signature ε(1, 1,−1,−1) (say) at string world sheet so that
one would have the degenerate signature ε× (1, 1, 0, 0) at the string world sheet.

What is amazing is that this works also number theoretically. It came as a total surprise to
me that the notion of hyper-quaternions as a closed algebraic structure indeed exists. The
hyper-quaternionic units would be given by (1, I, iJ, iK), where i is a commuting imaginary
unit satisfying i2 = −1. Hyper-quaternionic numbers defined as combinations of these units
with real coefficients do form a closed algebraic structure which however fails to be a number
field just like hyper-complex numbers do. Note that the hyper-quaternions obtained with
real coefficients from the basis (1, iI, iJ, iK) fail to form an algebra since the product is not
hyper-quaternion in this sense but belongs to the algebra of complexified quaternions. The
same problem is encountered in the case of hyper-octonions defined in this manner. This
has been a stone in my shoe since I feel strong disrelish towards Wick rotation as a trick for
moving between different signatures.

3. Could also partonic 2-surfaces correspond to this kind of singular 2-surfaces? In principle, 2-D
surfaces of 4-D space intersect at discrete points just as string world sheets and partonic 2-
surfaces do so that this might make sense. By complex structure the situation is algebraically
equivalent to the analog of plane with non-flat metric allowing all possible signatures (ε1, ε2)
in various regions. At light-like curve either ε1 or ε2 changes sign and light-like curves for
these two kinds of changes can intersect as one can easily verify by drawing what happens.
At the intersection point the metric is completely degenerate and simply vanishes.

4. Replacing real 2-dimensionality with complex 2-dimensionality, one obtains by the univer-
sality of algebraic dimension the same result for partonic 2-surfaces and string world sheets.
The braid ends at partonic 2-surfaces representing the intersection points of 2-surfaces of this
kind would have completely degenerate effective metric so that the Kähler-Dirac gamma ma-
trices would vanish implying that energy momentum tensor vanishes as does also the induced
Kähler field.

5. The effective metric suffers a local conformal scaling in the critical deformations identified in
the proposed manner. Since ordinary conformal group acts on Minkowski space and leaves
the boundary of light-cone invariant, one has two conformal groups. It is not however clear
whether theM4 conformal transformations can act as symmetries in TGD, where the presence
of the induced metric in Kähler action breaks M4 conformal symmetry. As found, also in
TGD framework the Kac-Moody currents assigned to the braid strands generate Yangian:
this is expected to be true also for the Kac-Moody counterparts of the conformal algebra
associated with quantum criticality. On the other hand, in twistor program one encounters
also two conformal groups and the space in which the second conformal group acts remains
somewhat mysterious object. The Lie algebras for the two conformal groups generate the
conformal Yangian and the integrands of the scattering amplitudes are Yangian invariants.
Twistor approach should apply in TGD if zero energy ontology is right. Does this mean a
deep connection?

What is also intriguing that twistor approach in principle works in strict mathematical sense
only at signatures ε × (1, 1,−1 − 1) and the scattering amplitudes in Minkowski signature
are obtained by analytic continuation. Could the effective metric give rise to the desired
signature? Note that the notion of massless particle does not make sense in the signature
ε× (1, 1, 1, 1).

These arguments provide genuine a support for the notion of quaternionicity and suggest a
connection with the twistor approach.
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5.7 Could One Define Dynamical Homotopy Groups In WCW?

Agostino Prastaro - working as professor at the University of Rome - has done highly interesting
work with partial differential equations, also those assignable to geometric variational principles
such as Kähler action in TGD [A32, A33]. I do not understand the mathematical details but the
key idea is a simple and elegant generalization of Thom’s cobordism theory, and it is difficult to
avoid the idea that the application of Prastaro’s idea might provide insights about the preferred
extremals, whose identification is now on rather firm basis [K111].

One could also consider a definition of what one might call dynamical homotopy groups as
a genuine characteristics of WCW topology. The first prediction is that the values of conserved
classical Noether charges correspond to disjoint components of WCW. Could this mean that the
natural topology in the parameter space of Noether charges zero modes of WCW metric) is p-adic?
An analogous conjecture was made on basis of spin glass analogy long time ago. Second surprise is
that the only the six lowest dynamical homotopy groups of WCW would be non-trivial. The finite
number of these groups dictate by the dimension of imbedding space suggests also an interpretation
as analogs of homology groups.

In the following the notion of cobordism is briefly discussed and the idea of Prastaro about
assigning cobordism with partial differential equations is discussed.

5.7.1 About Cobordism As A Concept

To get some background consider first the notion of cobordism (http://tinyurl.com/y7wdhtmv).

1. Thom’s cobordism theory [A81] is inspired by the question “When an n-manifold can be
represented as a boundary of n+ 1-manifold”. One can also pose additional conditions such
as continuity, smoothness, orientability, one can add bundles structures and require that they
are induced to n-manifold from that of n+ 1-manifold. One can also consider sub-manifolds
of some higher-dimensional manifold.

One can also fix n-manifold M and ask “What is the set of n-manifolds N with the property
that there exists n+ 1-manifold W having union of M ∪N as its boundary”. One can also
allow M to have boundary and pose the same question by allowing also the boundary of
connecting n+ 1-manifold W contain also the orbits of boundaries of M and N .

The cobordism class of M can be defined as the set of manifolds N cobordant with M - that is
connectable in this manner. They have same cobordism class since cobordism is equivalence
relation. The classes form also a group with respect to disjoint union. Cobordism is much
rougher equivalence relation than diffeomorphy or homeomorphy since topology changes are
possible. For instance, every 3-D closed un-oriented manifold is a boundary of a 4-manifold!
Same is true for orientable cobordisms. Cobordism defines a category: objects are (say
closed) manifolds and morphisms are cobordisms.

2. The basic result of Morse, Thom, and Milnor is that cobordism as topology changes can be
engineered from elementary cobordisms. One take manifold M × I and imbeds to its other
n-dimensional end the manifold Sp × Dq, n = p + q, removes its interior and glues back
Dp+1×Sq−1 along its boundary to the boundary of the resulting hole. This gives n-manifold
with different topology, call it N . The outcome is a cobordism connecting M and N unless
there are some obstructions.

There is a connection with Morse theory (http://tinyurl.com/ych4chg9) in which cobor-
dism can be seen as a mapping of W to a unit interval such that the inverse images define a
slicing of W and the inverse images at ends correspond to M and N .

3. One can generalize the abstract cobordism to that for n-sub-manifolds of a given imbedding
space. This generalization is natural in TGD framework. This might give less trivial results
since not all connecting manifolds are imbeddable into a given imbedding space. If connecting
4-manifolds connecting 3-manifolds with Euclidian signature (of induced metric) are assumed
to have a Minkowskian signature, one obtains additional conditions, which might be too
strong (the classical result of Geroch [A84] implies that non-trivial cobordism implies closed
time loops - impossible in TGD).

http://tinyurl.com/y7wdhtmv
http://tinyurl.com/ych4chg9
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From TGD point of view this is too strong a condition and in TGD framework space-time
surfaces with both Euclidian and Minkowskian signature of the induced metric are allowed.
Also cobordisms singular as 4-surfaces are analogous to 3-vertices of Feynman diagrams are
allowed.

5.7.2 Prastaro’s Generalization Of Cobordism Concept To The Level Of
Partial Differential Equations

I am not enough mathematician in technical sense of the word to develop overall view about what
Prastaro has done and I have caught only the basic idea. I have tried to understand the articles
[A32, A33] with title “Geometry of PDE’s. I/II: Variational PDE’s and integral bordism groups”
(http://tinyurl.com/yb9wey8c and http://tinyurl.com/y9x55qmk), which seem to correspond
to my needs. The key idea is to generalize the cobordism concept also to partial differential
equations with cobordism replaced with the time evolution defined by partial differential equation.
In particular, to geometric variational principles defining as their extremals the counterparts of
cobordisms.

Quite generally, and especially so in the case of the conservation of Noether charges give rise
to strong selection rules since two n-surfaces with different classical charges cannot be connected
by extremals of the variational principle. Note however that the values of the conserved charges
depend on the normal derivatives of the imbedding space coordinates at the n-dimensional ends of
cobordism. If one poses additional conditions fixing these normal derivatives, the selection rules
become even stronger. In TGD framework Bohr orbit property central for the notion of WCW
geometry and holography allows to hope that conserved charges depend on 3-surfaces only.

What is so beautiful in this approach that it promises to generalize the notion of cobordism
and perhaps also the notions of homotopy/homology groups so that they would apply to partial
differential equations quite generally, and especially so in the case of geometric variational prin-
ciples giving rise to n+ 1-surfaces connecting n-surfaces characterizing the initial and final states
classically. TGD with n = 3 seems to be an ideal applications for these ideas.

Prastaro also proposes a generalization of cobordism theory to super-manifolds and quantum
super-manifolds. The generalization in the case of quantum theory utilizing path integral does
not not pose conditions on classical connecting field configurations. In TGD framework these
generalizations are not needed since fermion number is geometrized in terms of imbedding space
gamma matrices and super(-symplectic) symmetry is realized differently.

5.7.3 Why Prastaro’s Idea Resonates So Strongly With TGD

Before continuing I want to make clear why Prastaro’s idea resonates so strongly with TGD.

1. One of the first ideas as I started to develop TGD was that there might be selection rules
analogous to those of quantum theory telling which 3-surfaces can be connected by a space-
time surface. At that time I still believed in path integral formalism assuming that two
3-surfaces at different time slices with different values of Minkowski time can be connected
by any space-time surface for which imbedding space coordinates have first derivatives.

I soon learned about Thom’s theory but was greatly disappointed since no selection rules
were involved in the category of abstract 3-manifolds. I thought that possible selection rules
should result from the imbeddability of the connecting four-manifold to H = M4 × CP2

but my gut feeling was that these rules are more or less trivial since so many connecting
4-manifolds exist and some of them are very probably imbeddable.

One possible source of selection rules could have been the condition that the induced metric
has Minkowskian signature - one could justify it in terms of classical causality. This restricts
strongly topology change in general relativity (http://tinyurl.com/y6vuopgj). Geroch’s
classical result [A84] states that non-trivial smooth Lorentz cobordism between compact
3-surfaces implies the existence of closed time loop - not possible in TGD framework. Sec-
ond non-encouraging result is that scalar field propagating in trouser topology leads to an
occurrence of infinite energy burst (http://tinyurl.com/ybbuwyfj).

http://tinyurl.com/yb9wey8c
http://tinyurl.com/y9x55qmk
http://tinyurl.com/y6vuopgj
http://tinyurl.com/ybbuwyfj
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In the recent formulation of TGD however also Euclidian signature of the induced metric
is allowed. For space-time counterparts of 3-particle vertices three space-time surfaces are
glued along their smooth 3-D ends whereas space-time surface fails to be everywhere smooth
manifold. This picture fits nicely with the idea that one can engineer space-time surfaces by
gluing them together along their ends.

2. At that time (before 1980) the discovery of the geometry of the “World of Classical Worlds”
(WCW) as a possible solution to the failures of canonical quantization and path integral
formalism was still at distance of ten years in future. Around 1985 I discovered the notion
of WCW. I made some unsuccessful trials to construct its geometry, and around 1990 finally
realized that 4-D general coordinate invariance is needed although basic objects are 3-D
surfaces.

This is realized if classical physics is an exact part of quantum theory - not only something
resulting in a stationary phase approximation. Classical variational principle should assign
to a 3-surface a physically unique space-time surface - the analog of Bohr orbit - and the
action for this surface would define Kähler function defining the Kähler geometry of WCW
using standard formula.

This led to a notion of preferred extremal: absolute minimum of Kähler action was the first
guess and might indeed make sense in the space-time regions with Euclidian signature of
induced metric but not in Minkowskian regions, which give to the vacuum functional and
exponential of Minkowskian Kähler action multiplied by imaginary unit coming from

√
g

- just as in quantum field theories. Euclidian regions give the analog of the free energy
exponential of thermodynamics and transform path integral to mathematically well-defined
functional integral.

3. After having discovered the notion of preferred extremal, I should have also realized that
an interesting generalization of cobordism theory might make sense after all, and could even
give rise to the classical counterparts of the selection rules! For instance, conservation of
isometry charges defines equivalence classes of 3-surfaces endowed with tangent space data.
Bohr orbit property could fix the tangent space data (normal derivatives of imbedding space
coordinates) so that conserved classical charges would characterize 3-surfaces alone and thus
cobordism equivalence classes and become analogous to topological invariants. This would
be in spirit with the attribute ”Topological” in TGD!

5.7.4 What Preferred Extremals Are?

The topology of WCW has remained mystery hitherto - partly due to my very limited technical
skills and partly by the lack of any real physical idea. The fact, that p-adic topology seems to be
natural at least as an effective topology for the maxima of Kähler function of WCW gave a hint
but this was not enough.

I hope that the above summary has made clear why the idea about dynamical cobordism
and even dynamical homotopy theory is so attractive in TGD framework. One could even hope
that dynamics determines not only Kähler geometry but also the topology of WCW to some extend
at least! To get some idea what might be involved one must however first tell about the recent
situation concerning the notion of preferred extremal.

1. The recent formulation for the notion of preferred extremal relies on strong form of General
Coordinate Invariance (SGCI). SGCI states that two kinds of 3-surfaces can identified as fun-
damental objects. Either the light-light 3-D orbits of partonic 2-surfaces defining boundaries
between Minkowskian and Euclidian space-time regions or the space-like 3-D ends of space-
time surfaces at boundaries of CD. Since both choices are equally good, partonic 2-surfaces
and their tangent space-data at the ends of space-time should be the most economic choice.

This eventually led to the realization that partonic 2-surfaces and string world sheets should
be enough for the formulation of quantum TGD. Classical fields in the interior of space-
time surface would be needed only in quantum measurement theory, which demands classical
physics in order to interpret the experiments.
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2. The outcome is strong form of holography (SH) stating that quantum physics should be
coded by string world sheets and partonic 2-surfaces inside given causal diamond (CD). SH
is very much analogous to the AdS/CFT correspondence but is much simpler: the simplicity
is made possible by much larger group of conformal symmetries.

If these 2-surfaces satisfy some consistency conditions one can continue them to 4-D space-
time surface inside CD such that string world sheets are surfaces inside them satisfying
the condition that charged (possibly all) weak gauge potentials identified as components
of the induced spinor connection vanish at the string world sheets and also that energy
momentum currents flow along these surfaces. String world sheets carry second quantized
free induced spinor fields and fermionic oscillator operator basis is used to construct WCW
gamma matrices.

3. The 3-surfaces at the ends of WCW must satisfy strong conditions to guarantee effective
2-dimensionality. Quantum criticality suggests the identification of these conditions. All
Noether charges assignable to a sub-algebra of super-symplectic algebra isomorphic to it and
having conformal weights which are n-multiples of those of entire algebra vanish/annihilate
quantum states. One has infinite fractal hierarchy of broken super-conformal symmetries
with the property that the sub-algebra is isomorphic with the entire algebra. This like a ball
at the top of ball at the top of ....

The speculative vision is that super-symplectic subalgebra with weights coming as n-ples
of those for the entire algebra acts as an analog of conformal gauge symmetries on light-
like orbits of partonic 2-surfaces, and gives rise to a pure gauge degeneracy whereas other
elements of super-symplectic algebra act as dynamical symmetries. The hierarchy of quantum
criticalities defines hierarchies of symmetry breakings characterized by hierarchies of sub-
algebras for which one ni+1 is divisible by ni. The proposal is that conformal gauge invariance
means that the analogs of Bohr orbits are determined only apart from conformal gauge
transformations forming to ni conformal equivalence classes so that effectively one has ni
discrete degrees of freedom assignable to light-like partonic orbits.

4. In this framework manifolds M and N would correspond the 3-surfaces at the boundaries
of CD and containing a collection strings carrying induced spinor fields. The connecting
4-surface W would contain string world sheets and the light-like orbits of partonic 2-surfaces
as simultaneous boundaries for Minkowskian and Euclidian regions.

Propagator line has several meanings depending on whether one considers particles as strings,
as single fermion states localizable at the ends of strings, or as Euclidian space-time regions or their
light-like boundaries with singular induced metric having vanishing determinant. Vertices appear
as generalizations of the stringy vertices and as generalization of the vertices of Feynman diagrams
in which the incoming 4-surfaces meet along their ends.

1. Propagator line has several meanings depending on whether one considers particles as strings,
as single fermion states localizable at the ends of strings, or as Euclidian space-time regions
or their light-like boundaries with degenerate induced metric with vanishing determinant.
Vertices appear as generalizations of the stringy vertices and as generalization of the vertices
of Feynman diagrams in which the incoming 4-surfaces meet along their ends.

(a) The lines of generalized Feynman graphs defined in topological sense are identified as
slightly deformed pieces of CP2 defining wormhole contacts connecting two Minkowskian
regions and having wormhole throats identified as light-like parton orbits as boundaries.
Since there is a magnetic monopole flux through the wormhole contacts they must
appear as pairs (also larger number is possible) in order that magnetic field lines can
close. Elementary particles correspond to pairs of wormhole contacts. At both space-
time sheets the throats are connected by magnetic flux tubes carrying monopole flux
so that a closed flux tube results having a shape of an extremely flattened square and
having wormhole contacts at its ends. It is a matter of taste, whether to call the light-
like wormhole throats or their interiors as lines of the generalized Feynman/twistor
diagrams.
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The light-like orbits of partonic 2-surfaces bring strongly in mind the light-like 3-surfaces
along which radiation fields can be restricted - kind of shockwaves at which the signature
of the induced space-time metric changes its signature.

(b) String world sheets as orbits of strings are also in an essential role and could be seen
as particle like objets. String world sheets could as kind of singular solutions of field
equations analogous to characteristics of hyperbolic differential equations. The isometry
currents of Kähler action flow along string world sheets and field equations restricted to
them are satisfied. As if one would have 2-dimensional solution.

√
g4 would of course

vanishes for genuinely 2-D solution but this one can argue that this is not a problem
since

√
g4 can be eliminated from field equations. String world sheets could serve as

2-D a analoga for a solution of hyperbolic field equations defining expanding wave front
localized at 3-D light-like surface.

(c) Propagation in the third sense of word is assignable to the ends of string world sheets at
the light-like orbits of partonic 2-surfaces and possibly carrying fermion number. One
could say that in TGD one has both fundamental fermions serving as building bricks of
elementary particles and strings characterizing interactions between particles. Fermion
lines are massless in 8-D sense. By strong form of holography this quantum description
has 4-D description space-time description as a classical dual.

2. The topological description of interaction vertices brings in the most important deviation
from the standard picture behind cobordism: space-time surfaces are not smooth in TGD
framework. One allows topological analogs of 3-vertices of Feynman diagrams realized by
connecting three 4-surfaces along their smooth 3-D ends. 3-vertex is also an analog (actually
much more!) for the replication in biology. This vertex is not the analog of stringy trouser
vertex for which space-time surface is continuous whereas 3-surface at the vertex is singular
(also trouser vertex could appear in TGD).

The analog of trouser vertex for string world sheets means splitting of string and fermionic
field modes decompose into superposition of modes propagating along the two branches. For
instance, the propagation of photon along two paths could correspond to its geometric decay
at trouser vertex not identifiable as “decay” to two separate particles.

For the analog of 3-vertex of Feynman diagram the 3-surface at the vertex is non-singular
but space-time surface is singular. The gluing along ends corresponds to genuine 3-particle
vertex.

The view about solution of PDEs generalizes dramatically but the general idea about cobor-
dism might make sense also in the generalized context.

5.7.5 Could Dynamical Homotopy/Homology Groups Characterize WCW
Topology?

The challenge is to at least formulate (with my technical background one cannot dream of much
more) the analog of cobordism theory in this framework. One can actually hope even the analog
of homotopy/homology theory.

1. To a given 3-surface one can assign its cobordism class as the set of 3-surfaces at the opposite
boundary of CD connected by a preferred extremal. The 3-surfaces in the same cobordism
class are characterized by same conserved classical Noether charges, which become analogs
of topological invariants.

One can also consider generalization of cobordisms as analogs to homotopies by allowing
return from the opposite boundary of CD. This would give rise to first homotopy groupoid.
One can even go back and forth several times. These dynamical cobordisms allow to divide
3-surfaces at given boundary of CD in equivalence classes characterized among other things
by same values of conserved charges. One can also return to the original 3-surface. This
could give rise to the analog of the first homotopy group Π1.

2. If one takes the homotopy interpretation literally one must conclude that the 3-surfaces with
different conserved Noether charges cannot be connected by any path in WCW - they belong
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to disjoint components of the WCW! The zeroth dynamical homotopy group Π0 of WCW
would be non-trivial and its elements would be labelled by the conserved Noether charges
defining topological invariants!

The values of the classical Noether charges would label disjoint components of WCW. The
topology for the space of these parameters would be totally disconnected - no two points
cannot be connected by a continuous path. p-Adic topologies are indeed totally disconnected.
Could it be that p-adic topology is natural for the conserved classical Noether charges and
the sectors of WCW are characetrized by p-adic number fields and their algebraic extensions?

Long time ago I noticed that the 4-D spin glass degeneracy induced by the huge vacuum
degeneracy of Kähler action implies analogy between the space of maxima of Kähler function
and the energy landscape of spin glass systems [K49]. Ultrametricity (http://tinyurl.com/
y6vswdoh) is the basic property of the topology of the spin glass energy landscape. p-Adic
topology is ultrametric and the proposal was that the effective topology for the space of
maxima could be p-adic.

3. Isometry charges are the most important Noether charges. These Noether charges are very
probably not the only conserved charges. Also the generators in the complement of the gauge
sub-algebra of symplectic algebra acting as gauge conformal symmetries could be conserved.
All these conserved Noether charges would define a parameter space with a natural p-adic
topology.

Since integration is problematic p-adically, one can ask whether only discrete quantum su-
perpositions of 3-surfaces with different classical charges are allowed or whether one should
even assume fixed values for the total classical Noether charges appearing in the scattering
amplitudes.

I have proposed this kind of approach for the zero modes of WCW geometry not contributing
to the Kähler metric except as parameters. The integration for zero modes is also problematic
because there is no metric, which would define the integration measure. Since classical charges
do not correspond to quantum fluctuating degrees of freedom they should correspond to zero
modes. Hence these arguments are equivalent.

The above argument led to the identification of the analogs of the homotopy group Π0 and
led to the idea about homotopy groupoid/group Π1. The elements of Π1 would correspond to
space-time surfaces, which run arbitrary number of times fourth and back and return to the initial
3-surface at the boundary of CD. If the two preferred extremals connecting same pair of 3-surfaces
can be deformed to each other, one can say that they are equivalent as dynamical homotopies
(or cobordisms). What could be the allowed deformations? Are they cobordisms of cobordisms?
What this could mean? Could they define the analog of homotopy groupoid Π2 as foliations of
preferred extremals connecting the same 3-surfaces?

1. The number theoretic vision about generalized Feynman diagrams suggests a possible ap-
proach. Number theoretic ideas combined with the generalization of twistor approach [K111,
K76] led to the vision that generalized Feynman graphs can be identified as sequences or
webs of algebraic operations in the co-algebra defined by the Yangian assignable to super-
symplectic algebra [A27] [B39, B30, B31] and acting as symmetries of TGD. Generalized
Feynman graphs would represent algebraic computations. Computations can be done in very
many different manners and each of them corresponds to a generalized Feynman diagram.
These computations transform give same final collection of “numbers” when the initial col-
lection of “numbers” is given. Does this mean that the corresponding scattering amplitudes
must be identical?

If so, a huge generalization of the duality symmetry of the hadronic string models would
suggest itself. All computations can be reduced to minimal computations. Accordingly,
generalized Feynman diagrams can be reduced to trees by eliminating loops by moving the
ends of the loops to same point and snipping the resulting tadpole out! The snipped of
tadpole would give a mere multiplicative factor to the amplitude contributing nothing to the
scattering rate - just like vacuum bubbles contribute nothing in the case of ordinary Feynman
diagrams.

http://tinyurl.com/y6vswdoh
http://tinyurl.com/y6vswdoh
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2. How this symmetry could be realized? Could one just assume that only the minimal gen-
eralized Feynman diagrams contribute? - not a very attractive option. Or could one hope
that only tree diagrams are allowed by the classical dynamics: this was roughly the origi-
nal vision? The huge vacuum degeneracy of Kähler action implying non-determinism does
not encourage this option. The most attractive and most predictive realization conforming
with the idea about generalized Feynman diagrammatics as arithmetics would be that all the
diagrams differing by these moves give the same result. An analogous symmetry has been
discovered for twistor diagrams.

3. Suppose one takes seriously the snipping of a tadpole away from diagram as a move, which
does not affect the scattering amplitude. Could this move correspond to an allowed ele-
mentary cobordism of preferred extremal? If so, scattering amplitudes would have purely
topological meaning as representations of the elements of cobordism classes! TGD would
indeed be what it was proposed to be but in much deeper sense than I thought originally.
This could also conform with the interpretation of classical charges as topological invariants,
realize adelic physics at the level of WCW, and conform with the idea about TGD as almost
topological QFT and perhaps generalizing it to topological QFT in generalized sense.

4. One can imagine several interpretations for the snipping operation at space-time level. TGD
allows a huge classical vacuum degeneracy: all space-time surfaces having Lagrangian man-
ifold of CP2 as their CP2 projection are vacuum extremals of Kähler action. Also all CP2

extremals having 1-D light-like curve as M4 projection are vacuum extremals but have non-
vanishing Kähler action. This would not matter if one does not have superpositions since
multiplicative factors are eliminated in scattering amplitudes. Could the tadpoles correspond
to CP2 type vacuum extremals at space-time level?

There is also an alternative interpretation. In ZEO causal diamonds (CD) form a hierarchy
and one can imagine that the sub-CDs of given CD correspond to quantum fluctuations.
Could tadpoles be assigned to sub-CDs of CD be considered+

5. In this manner one could perhaps define elements of homotopy groupoid Π2 as foliations
preferred extremals with same ends - these would be 5-D surfaces. If one has two such 5-D
foliations with the same 4-D ends, one can form the reverse of the other and form a closed
surface. This would be analogous to a map of S2 to WCW. If the two 5-D foliations cannot
be transformed to each other, one would have something, which might be regarded as a
non-trivial element of dynamical homotopy group Π2.

One can ask whether one could define also the analogs of higher homology or homotopy
grouppoids and groupoids Π3 up to Π5 - the upper bound n = 5 = 8− 3 comes from the fact that
foliations of foliations.. can have maximum dimension D = 8 and from the dimension of D = 3 of
basic objects.

1. One could form a foliation of the foliations of preferred extremals as the element of the
homotopy groupoid Π3. Could allowed moves reduce to the snipping operation for generalized
Feynman diagrams but performed along direction characterized by a new foliation parameter.

2. The topology of the zero mode sector of WCW parameterized by fixed values of conserved
Noether charges as element of Π0 could be characterized by dynamical homotopy groups
Πn, n = 1, ..., 5 - at least partially. These degrees of freedom could correspond to quantum
fluctuating degrees of freedom. The Kähler structure of WCW and finite-D analogy suggests
that all odd dynamical homotopy groups vanish so that Π0, Π2 and Π4 would be the only
non-trivial dynamical homotopy groups. The vanishing of Π1 would imply that there is only
single minimal generalized Feynman diagram contributing to the scattering amplitude. This
also true if Feynman diagrams correspond to arithmetic operations.

3. Whether one should call these groups homotopy groups or homology groups is not obvious.
The construction means that the foliations of foliations of ... can be seen as images of
spheres suggesting “homotopy”. The number of these groups is determined by the dimension
of imbedding space, which suggests “homology”.
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4. Clearly, the surfaces defining the dynamical homotopy groups/groupoids would be analogs of
branes of M-theory but would be obtained constructing paths of paths of paths... by starting
from preferred extremals. The construction of so called n-groups (http://tinyurl.com/
yckcjcln) brings strongly in mind this construction.

5.7.6 Appendix: About Field Equations Of TGD In Jet Bundle Formu-
lation

Prastaro utilizes jet bundle (http://tinyurl.com/yb2575bm) formulation of partial differential
equations (PDEs). This notion allows a very terse formulation of general PDEs as compared to
the old-fashioned but much more concrete formulation that I have used. The formulation is rather
formula rich and reader might lose easily his/her patience since one must do hard work to learn
which formulas follow trivially from the basic definitions.

I will describe this formulation in TGD framework briefly but without explicit field equations,
which can be found at [K7]. To my view a representation by using a concrete example is always
more reader friendly than the general formulas derived in some reference. I explain my view about
the general ideas behind jet bundle formulation with minimal number amount of formulas. The
reader can find explicit formulas from the Wikipedia link above.

The basic goal is to have a geometric description of PDE. In TGD framework the geometric
picture is of course present from beginning: field patterns as 4-surfaces in field space - somewhat
formal geometric objects - are replaced with genuine 4-surfaces in M4 × CP2.

Field equations as conservation laws, Frobenius integrability conditions, and a con-
nection with quaternion analyticity

The following represents qualitative picture of field equations of TGD trying to emphasize the
physical aspects. Also the possibility that Frobenius integrability conditions are satisfied and
correspond to quaternion analyticity is discussed.

1. Kähler action is Maxwell action for induced Kähler form and metric expressible in terms
of imbedding space coordinates and their gradients. Field equations reduce to those for
imbedding space coordinates defining the primary dynamical variables. By GCI only four of
them are independent dynamical variables analogous to classical fields.

2. The solution of field equations can be interpreted as a section in fiber bundle. In TGD the
fiber bundle is just the Cartesian product X4 × CD × CP2 of space-time surface X4 and
causal diamond CD × CP2. CD is the intersection of future and past directed light-cones
having two light-like boundaries, which are cone-like pieces of light-boundary δM4

± × CP2.
Space-time surface serves as base space and CD × CP2 as fiber. Bundle projection Π is the
projection to the factor X4. Section corresponds to the map x → hk(x) giving imbedding
space coordinates as functions of space-time coordinates. Bundle structure is now trivial and
rather formal.

By GCI one could also take suitably chosen 4 coordinates of CD × CP2 as space-time coor-
dinates, and identify CD × CP2 as the fiber bundle. The choice of the base space depends
on the character of space-time surface. For instance CD, CP2 or M2 × S2 (S2 a geodesic
sphere of CP2), could define the base space. The bundle projection would be projection from
CD × CP2 to the base space. Now the fiber bundle structure can be non-trivial and make
sense only in some space-time region with same base space.

3. The field equations derived from Kähler action must be satisfied. Even more: one must have
a preferred extremal of Kähler action. One poses boundary conditions at the 3-D ends of
space-time surfaces and at the light-like boundaries of CD × CP2.

One can fix the values of conserved Noether charges at the ends of CD (total charges are
same) and require that the Noether charges associated with a sub-algebra of super-symplectic
algebra isomorphic to it and having conformal weights coming as n-ples of those for the
entire algebra, vanish. This would realize the effective 2-dimensionality required by SH. One
must pose boundary conditions also at the light-like partonic orbits. So called weak form of
electric-magnetic duality is at least part of these boundary conditions.

http://tinyurl.com/yckcjcln
http://tinyurl.com/yckcjcln
http://tinyurl.com/yb2575bm
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It seems that one must restrict the conformal weights of the entire algebra to be non-negative
r ≥ 0 and those of subalgebra to be positive: mn > 0. The condition that also the com-
mutators of sub-algebra generators with those of the entire algebra give rise to vanishing
Noether charges implies that all algebra generators with conformal weight m ≥ n vanish so
the dynamical algebra becomes effectively finite-dimensional. This condition generalizes to
the action of super-symplectic algebra generators to physical states.

M4 time coordinate cannot have vanishing time derivative dm0/dt so that four-momentum
is non-vanishing for non-vacuum extremals. For CP2 coordinates time derivatives dsk/dt
can vanish and for space-like Minkowski coordinates dmi/dt can be assumed to be non-
vanishing if M4 projection is 4-dimensional. For CP2 coordinates dsk/dt = 0 implies the
vanishing of electric parts of induced gauge fields. The non-vacuum extremals with the largest
conformal gauge symmetry (very small n) would correspond to cosmic string solutions for
which induced gauge fields have only magnetic parts. As n increases, also electric parts
are generated. Situation becomes increasingly dynamical as conformal gauge symmetry is
reduced and dynamical conformal symmetry increases.

4. The field equations involve besides imbedding space coordinates hk also their partial deriva-
tives up to second order. Induced Kähler form and metric involve first partial derivatives
∂αh

k and second fundamental form appearing in field equations involves second order partial
derivatives ∂α∂βh

k.

Field equations are hydrodynamical, in other worlds represent conservation laws for the
Noether currents associated with the isometries of M4 × CP2. By GCI there are only 4
independent dynamical variables so that the conservation of m ≤ 4 isometry currents is
enough if chosen to be independent. The dimension m of the tangent space spanned by the
conserved currents can be smaller than 4. For vacuum extremals one has m = 0 and for
massless extremals (MEs) m = 1! The conservation of these currents can be also interpreted
as an existence of m ≤ 4 closed 3-forms defined by the duals of these currents.

5. The hydrodynamical picture suggests that in some situations it might be possible to assign
to the conserved currents flow lines of currents even globally. They would define m ≤
4 global coordinates for some subset of conserved currents (4+8 for four-momentum and
color quantum numbers). Without additional conditions the individual flow lines are well-
defined but do not organize to a coherent hydrodynamic flow but are more like orbits of
randomly moving gas particles. To achieve global flow the flow lines must satisfy the condition
dφA/dxµ = kABJ

B
µ or dφA = kABJ

B so that one can special of 3-D family of flow lines parallel

to kABJ
B at each point - I have considered this kind of possibly in [K7] at detail but the

treatment is not so general as in the recent case.

Frobenius integrability conditions (http://tinyurl.com/yc6apam2) follow from the condi-
tion d2φA = 0 = dkAB∧JB+kABdJ

B = 0 and implies that dJB is in the ideal of exterior algebra
generated by the JA appearing in kABJ

B . If Frobenius conditions are satisfied, the field equa-
tions can define coordinates for which the coordinate lines are along the basis elements for
a sub-space of at most 4-D space defined by conserved currents. Of course, the possibility
that for preferred extremals there exists m ≤ 4 conserved currents satisfying integrability
conditions is only a conjecture.

It is quite possible to have m < 4. For instance for vacuum extremals the currents vanish
identically For MEs various currents are parallel and light-like so that only single light-like
coordinate can be defined globally as flow lines. For cosmic strings (cartesian products of
minimal surfaces X2 in M4 and geodesic spheres S2 in CP2 4 independent currents exist).
This is expected to be true also for the deformations of cosmic strings defining magnetic flux
tubes.

6. Cauchy-Riemann conditions in 2-D situation represent a special case of Frobenius conditions.
Now the gradients of real and imaginary parts of complex function w = w(z) = u+ iv define
two conserved currents by Laplace equations. In TGD isometry currents would be gradients
apart from scalar function multipliers and one would have generalization of C-R conditions.
In citeallbprefextremals,twistorstory I have considered the possibility that the generalization

http://tinyurl.com/yc6apam2
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of Cauchy-Riemann-Fuerter conditions [A94, A72] (http://tinyurl.com/yb8l34b5) could
define quaternion analyticity - having many non-equivalent variants - as a defining property
of preferred extremals. The integrability conditions for the isometry currents would be the
natural physical formulation of CRF conditions. Different variants of CRF conditions would
correspond to varying number of independent conserved isometry currents.

7. The problem caused by GCI is that there is infinite number of coordinate choices. How
to pick a physically preferred coordinate system? One possible manner to do this is to use
coordinates for the projection of space-time surface to some preferred sub-space of imbedding
- geodesic manifold is an excellent choice. Only M1×X3 geodesic manifolds are not possible
but these correspond to vacuum extremals.

One could also consider a philosophical principle behind integrability. The variational prin-
ciple itself could give rise to at least some preferred space-time coordinates in the same
manner as TGD based quantum physics would realize finite measurement resolution in terms
of inclusions of HFFs in terms of hierarchy of quantum criticalities and fermionic strings
connecting partonic 2-surfaces. Frobenius integrability of the isometry currents would define
some preferred coordinates. Their number need not be the maximal four however.

For instance, for massless extremals only light-like coordinate corresponding to the light-like
momentum is obtained. To this one can however assign another local light-like coordinate
uniquely to obtain integrable distribution of planes M2. The solution ansatz however defines
directly an integrable choice of two pairs of coordinates at imbedding space level usable also
as space-time coordinates - light-like local direction defining local plane M2 and polarization
direction defining a local plane E2. These choices define integrable distributions of orthogonal
planes and local hypercomplex and complex coordinates. Pair of analogs of C-R equations
is the outcome. I have called these coordinates Hamilton-Jacobi coordinates for M4.

8. This picture allows to consider a generalization of the notion of solution of field equation
to that of integral manifold (http://tinyurl.com/yajn7cuz. If the number of indepen-
dent isometry currents is smaller than 4 (possibly locally) and the integrability conditions
hold true, lower-dimensional sub-manifolds of space-time surface define integral manifolds as
kind of lower-dimensional effective solutions. Genuinely lower-dimensional solutions would
of course have vanishing

√
g4 and vanishing Kähler action.

String world sheets can be regarded as 2-D integral surfaces. Charged (possibly all) weak
boson gauge fields vanish at them since otherwise the electromagnetic charge for spinors
would not be well-defined. These conditions force string world sheets to be 2-D in the
generic case. In special case 4-D space-time region as a whole can satisfy these conditions.
Well-definedness of Kähler-Dirac equation [K88, K110] demands that the isometry currents
of Kähler action flow along these string world sheets so that one has integral manifold. The
integrability conditions would allow 2 < m ≤ n integrable flows outside the string world
sheets, and at string world sheets one or two isometry currents would vanish so that the
flows would give rise 2-D independent sub-flow.

9. The method of characteristics (http://tinyurl.com/y9dcdayt) is used to solve hyperbolic
partial differential equations by reducing them to ordinary differential equations. The (say 4-
D) surface representing the solution in the field space has a foliation using 1-D characteristics.
The method is especially simple for linear equations but can work also in the non-linear
case. For instance, the expansion of wave front can be described in terms of characteristics
representing light rays. It can happen that two characteristics intersect and a singularity
results. This gives rise to physical phenomena like caustics and shock waves.

In TGD framework the flow lines for a given isometry current in the case of an integrable flow
would be analogous to characteristics, and one could also have purely geometric counterparts
of shockwaves and caustics. The light-like orbits of partonic 2-surface at which the signature
of the induced metric changes from Minkowskian to Euclidian might be seen as an example
about the analog of wave front in induced geometry. These surfaces serve as carriers of fermion
lines in generalized Feynman diagrams. Could one see the particle vertices at which the 4-D
space-time surfaces intersect along their ends as analogs of intersections of characteristics -

http://tinyurl.com/yb8l34b5
http://tinyurl.com/yajn7cuz
http://tinyurl.com/y9dcdayt
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kind of caustics? At these 3-surfaces the isometry currents should be continuous although
the space-time surface has “edge”.

10. The analogy with ordinary analyticity suggests that it might be possible to interpret string
world sheets and partonic 2-surfaces appearing in strong form of holography (SH) as co-
dimension 2 surfaces analogous to poles of analytic function in complex plane. Light-like 3-
surfaces might be seen as analogs of cuts. The coding of analytic function by its singularities
could be seen as analog of SH.

Jet bundle formalism

Jet bundle formalism (http://tinyurl.com/yb2575bm) is a modern manner to formulate PDEs in
a coordinate independent manner emphasizing the local algebraic character of field equations. In
TGD framework GCI of course guarantees this automatically. Beside this integrability conditions
formulated in terms of Cartan’s contact forms are needed.

1. The basic idea is to take the partial derivatives of imbedding space coordinates as functions of
space-time coordinates as independent variables. This increases the number of independent
variables. Their number depends on the degree of the jet defined and for partial differential
equation of order r, for n dependent variables, and for N independent variables the number
of new degrees of freedom is determined by r, n, and N -just by counting the total number
of various partial derivatives from k = 0 to r. For r = 1 (first order PDE) it is N × (1 + n).

2. Jet at given space-time point is defined as a Taylor polynomial of the imbedding space coor-
dinates as functions of space-time coordinates and is characterized by the partial derivatives
at various points treated as independent coordinates analogous to imbedding space coordi-
nate. Jet degree r is characterized by the degree of the Taylor polynomial. One can sum and
multiply jets just like Taylor polynomials. Jet bundle assigns to the fiber bundle associated
with the solutions of PDE corresponding jet bundle with fiber at each point consisting of
jets for the independent variables (CD × CP2 coordinates) as functions of the dependent
variables (space-time coordinates).

3. The field equations from the variation of Kähler action are second order partial differential
equations and in terms of jet coefficients they reduce to local algebraic equations plus inte-
grability conditions. Since TGD is very non-linear one obtains polynomial equations at each
point - one for each imbedding space coordinate. Their number reduces to four by GCI. The
minimum degree of jet bundle is r = 2 if one wants algebraic equations since field equations
are second order PDEs.

4. The local algebraic conditions are not enough. One must have also conditions stating that
the new independent variables associated with partial derivatives of various order reduces to
appropriate multiple partial derivatives of imbedding space coordinates. These conditions can
be formulated in terms of Cartan’s contact forms, whose vanishing states these conditions.
For instance, if dhk is replaced by independent variable uk, the condition dhk − uk = 0 is
true for the solution surfaces.

5. In TGD framework there are good motivations to break the non-orthodoxy and use 1-jets
so that algebraic equations replaced by first order PDEs plus conditions requiring vanishing
of contact forms. These equations state the conservation of isometry currents implying that
the 3-forms defined by the duals of isometry currents are closed. As found, this formulation
reveals in TGD framework the hydrodynamic picture and suggests conditions making the
system integrable in Frobenius sense.

http://tinyurl.com/yb2575bm


Chapter 6

Can one apply Occam’s razor as a
general purpose debunking
argument to TGD?

Occarm’s razor have been used to debunk TGD. The following arguments provide the information
needed by the reader to decide himself. Considerations are at three levels.

The level of “world of classical worlds” (WCW) defined by the space of 3-surfaces endowed
with Kähler structure and spinor structure and with the identification of WCW space spinor fields
as quantum states of the Universe: this is nothing but Einstein’s geometrization program applied
to quantum theory. Second level is space-time level.

Space-time surfaces correspond to preferred extremals of Käction in M4×CP2. The number
of field like variables is 4 corresponding to 4 dynamically independent imbedding space coordinates.
Classical gauge fields and gravitational field emerge from the dynamics of 4-surfaces. Strong
form of holography reduces this dynamics to the data given at string world sheets and partonic
2-surfaces and preferred extremals are minimal surface extremals of Kähler action so that the
classical dynamics in space-time interior does not depend on coupling constants at all which are
visible via boundary conditions only. Continuous coupling constant evolution is replaced with a
sequence of phase transitions between phases labelled by critical values of coupling constants: loop
corrections vanish in given phase. Induced spinor fields are localized at string world sheets to
guarantee well-definedness of em charge.

At imbedding space level the modes of imbedding space spinor fields define ground states
of super-symplectic representations and appear in QFT-GRT limit. GRT involves post-Newtonian
approximation involving the notion of gravitational force. In TGD framework the Newtonian force
correspond to a genuine force at imbedding space level.

I was also asked for a summary about what TGD is and what it predicts. I decided to add
this summary to this chapter although it is goes slightly outside of its title.

6.1 Introduction

Occam’s razor argument is one the standard general purpose arguments used in debunking: the
debunked theory is claimed to be hopelessly complicated. This argument is more refined that mere
“You are a crackpot!” but is highly subjective and often the arguments pro or con are not given.
Combined with the claim that the theory does not predict anything Occam’s razor is very powerful
argument unless the audience includes people who have bothered to study the debunked theory.

Let us take a closer look on this argument and compare TGD superstring models and
seriously ask which of these theories is simple.

In superstring models one has strings as basic dynamical objects. They live in target space
M10, which in some mysterious manner (something “non-perturbative” it is) spontaneously com-
pactifies to M4 × C, C is Calabi-Yau space. The number of them is something like 10500 or
probably infinite: depends on the counting criterion. And this estimate leaves their metric open.
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This leads to landscape and multiverse catastrophe: theory cannot predict anything. As a mat-
ter fact M4 × C:s must be allowed to deform still in Kaluza-Klein paradigm in which space-time
has Calabi-Yau as small additional dimensions. An alternative manner to obtain space-time is as
3-brane. One obtains also higher-D objects. Again by some “nonperturbative” mechanisms. One
does not even know what space-time is! Situation looks to me a totally hopeless mess. Reader can
conclude whether to regard this as simple and elegant.

I will consider TGD at three levels. At the level of “world of classical worlds” (WCW), at
space-time level, and at the level of imbedding space H = M4 × CP2. I hope that I can convince
the reader about the simplicity of the approach. The simplicity is actually quite shocking and
certainly an embarrassing experience for the unhappy super string theorists meandering around
in the landscape and multiverse. Behind this simplicity are however principles - something, which
colleagues usually regard as unpractical philosophizing: “shut-up-and-calculate!”!

I was also asked for a summary about what TGD is and what it predicts. I decided to add
this summary to this chapter although it is goes slightly outside of its title.

6.2 Simplicity at various levels

6.2.1 WCW level: a generalization of Einstein’s geometrization program
to entire quantum physics

I hope that the reader would read the following arguments keeping in mind the question “Is TGD
really hopelessly complicated mess of pieces picked up randomly from theoretical physics?” as one
debunker who told that he does not have time to read TGD formulated it.

1. Einstein’s geometrization program for gravitation has been extremely successful but has failed
for other classical fields, which do not have natural geometrization in the case of abstract
four-manifolds with metric. One should understand standard model quantum numbers and
also family replication for fermions.

However, if space-time can be regarded surface in H = M4×CP2 also the classical fields find
a natural geometrization as induced fields obtained basically by projecting. Also spinor
structure can be induced and one avoids the problems due the fact that generic space-
time as abstract 4-manifold does not allow spinor structure. The dynamics of space-time
surfaces incredibly simple: only 4 field-like variables corresponding to four imbedding space
coordinates and induced that of classical geometric fields. Nowadays one would speak of
emergence. The complexity emerges from the topology of space-time surfaces giving rise to
many-sheeted space-time.

2. Even this view about geometrization is generalized in TGD. Einstein’s geometrization pro-
gram is applied to the entire quantum physics in terms of the geometry of WCW consisting
of 3-D surfaces of H. More precisely, in zero energy ontology (ZEO) it consists of pairs of
3-surfaces at opposite boundaries of causal diamond (CD) connected by a preferred extremals
of a variational principle to be discussed.

Quantum states of the Universe would correspond to the modes of formally classical WCW
spinor field satisfying the analog of Dirac equation. No quantization: just the construction
of WCW geometry and spinor structure. The only genuinely quantal element of quantum
theory would be state function reduction and in ZEO its description leads to a quantum
theory of consciousness.

To me this sounds not only simple but shockingly simple.

WCW geometry

Consider first the generalization of Einstein’s program of at the level of WCW geometry [K110,
K34, K15].

1. Since complex conjugation must be geometrized, WCW must allow a geometric representation
of imaginary unit as an antisymmetric tensor, which is essentially square root of the negative
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of the metric tensor and thus allow Kähler structure coded by Kähler function. One must
have 4-D general coordinate invariance (GCI) but basic objects are 3-D surfaces. Therefore
the definition of Kähler function must assign to 3-surface a unique 4-surface.

Kähler function should have physical meaning and the natural assumption is that it is Kähler
action plus possibly also volume term (twistor lift implies it). Space-time surface would be
a preferred extremal of this action. The interpretation is also as an analog of Bohr orbit so
that Bohr orbitology would correspond exact rather than only approximate part of quantum
theory in TGD framework. One could speak also of quantum classical correspondence.

2. The action principle involves coupling parameters analogous to thermodynamical parameters.
Their value spectrum is fixed by the conditions that TGD is quantum critical. For instance
Kähler couplings strength is analogous to critical temperature. Different values correspond
to different phases. Coupling constant evolution correspond to phase transitions between
these phases and loops vanish as in free field theory for N = 4 SYM.

3. The infinite-dimensionality of WCW is a crucial element of simplicity. Already in the case of
loop spaces the geometry is essentially unique: loop space is analogous to a symmetric space
points of the loop space being geometrically equivalent. For loop spaces Riemann connection
exists only of the metric has maximal isometries defined by Kac-Moody algebra.

The generalization to 3-D case is compelling. In TGD Kac-Moody algebra is replaced by
super-symplectic algebra, which is much larger but has same basic structure (conformal
weights of two kinds) and a fractal hierarchy of isomorphic sub-algebas with conformal weights
coming as multiples of those for the entire algebra is crucial. Physics is unique because of
its mathematical existence. WCW decompose to a union of sectors, which are infinite-D
variants of symmetric spaces labelled by zero modes whose differentials do not appear in the
line element of WCW.

All this sounds to me shockingly simple.

WCW spinor structure

One must construct also spinor structure for WCW [K88, K110].

1. The modes of WCW spinor fields would correspond to the solutions of WCW Dirac equation
and would define the quantum states of the Universe. WCW spinors (assignable to given 3-
surface) would correspond to fermionic Fock states created by fermionic creation operators.
In ZEO 3-surfaces are pairs of 3-surfaces assignable to the opposite boundaries of WCW
connected by preferred extremal.

The fermionic states are superpositions of pairs of fermion states with opposite net quantum
numbers at the opposite ends of space-time surface at boundaries of CD. The entanglement
coefficients define the analogs of S-matrix elements. The analog of Dirac equation is analog for
super-Virasoro conditions in string models but assignable to the infinite-D supersymplectic
algebra of WCW defining its isometries.

2. The construction of the geometry of WCW requires that the anticommuting gamma matrices
of WCW are expressible in terms of fermionic oscillator operators assignable to the induced
spinor fields at space-time surface. Fermionic anti-commutativity at space-time level is not
assumed but is forced by the anticommutativity of gamma matrices to metric. Fermi statistics
is geometrized.

3. The gamma matrices of WCW in the coordinates assignable to isometry generators can be
regarded as generators of superconformal symmetries. They correspond to classical charges
assignable to the preferred extremals and to fermionic generators. The fermionic isometry
generators are fermionic bilinears and super-generators are obtained from them by replacing
the second second quantized spinor field with its mode. Quantum classical correspondence
between fermionic dynamics and classical dynamics (SH) requires that the eigenvalues of the
fermionic Cartan charges are equal to corresponding bosonic Noether charges.
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4. The outcome is that quantum TGD reduces to a theory of formally classical spinor fields at
the level of WCW and by infinite symmetries the construction of quantum states reduces to
the construction of representations of super-symplectic algebra which generalizes to Yangian
algebra as twistorial picture suggests. In ZEO everything would reduce to group theory, even
the construction of scattering amplitudes! In ZEO the construction of zero energy states and
thus scattering amplitudes would reduce to that for the representations of Yangian variant
of super-symplectic algebra [A27] [B39, B30, B31].

5. One can go to the extreme and wonder whether the scattering amplitudes as entanglement
coefficients for Yangian zero energy states are just constant scalars for given values of zero
modes as group invariant for isometries. This would leave only integration over zero modes
and if number theoretical universality is assumed this integral reduces to sum over points
with algebraic coordinates in the preferred coordinates made possible by the symmetric space
property. Certainly this is one of the lines of research to be followed in future.

Personally I find it hard to imagine anything simpler!

6.2.2 Space-time level: many-sheeted space-time and emergence of clas-
sical fields and GRT space-time

At space-time level one must consider dynamics of space-time surface and spinorial dynamics.

Dynamics of space-time surfaces

Consider first simplicity at space-time level.

1. Space-time is identified as 4-D surface in certain imbedding space required to have symmetries
of special relativity - Poincare invariance. This resolves the energy problem and many other
problems of GRT [K105].

This allows also to see TGD as generalization of string models obtained by replacing strings
with 3-surfaces and 2-D string world sheets with 4-D space-time surfaces. Small space-time
surfaces are particles, large space-time surfaces the background space-time in which these
particles “live”. There are only 4 dynamical field like variables for 8-D M4 ×CP2 since GCI
eliminates 4 imbedding space coordinates (they can be taken as space-tme coordinates). This
should be compared with the myriads of classical fields for 10-D Einstein’s theory coupled to
matter fields (do not forget landscape and multiverse!)

2. Classical fields are induced at the level of single space-time sheet from their geometric coun-
terparts in imbedding space. A more fashionable way to say the same is that they emerge.
Classical gravitational field correspond to the induced metric, electroweak gauge potentials to
induced spinor connection of CP2 and color gauge potentials to projections of Killing vector
fields for CP2.

3. In TGD the space-time of GRT is replaced by many-sheeted space-time constructed from
basic building bricks, which are preferred extremals of Kähler action + volume term. This
action emerges in twistor lift of TGD existing only for H = M4 × CP2: TGD is completely
unique since only M4 and CP2 allows twistor space with Kähler structure. This also predicts
Planck length as radius of twistor sphere associated with M4. Cosmological constant appears
as the coefficient of the volume term and obeys p-adic length scale evolution predicting
automatically correct order of magnitude in the scale of recent cosmos. Besides this one has
CP2 size which is of same order of magnitude as GUT scale, and Kähler coupling strength.
By quantum criticality the various parameters are quantized.

Quantum criticality is basic dynamical principle [K34, L22] and discretizes coupling constant
evolution: only coupling constants corresponding to quantum criticality are realized and
discretized coupling constant evolution corresponds to phase transitions between these values
of coupling constants. All radiative corrections vanish so that only tree diagram contribute.
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4. Preferred extremals realize strong form of holography (SH) implied by strong form of GCI
(SGCI) emerging naturally in TGD framework. That GCI implies SH meaning an enormous
simplification at the conceptual level.

One has two choices for fundamental 3-D objects. They could be light-like boundaries be-
tween regions of Minkowskian and Euclidian signatures of the induced metric or they could
be pairs of space-time 3-surfaces at the ends of space-time surface at opposite boundaries of
causal diamond (CD) (CDs for a scale hierarchy). Both options should be correct so that the
intersections of these 3-surfaces consisting of partonic 2-surfaces at which light-like partonic
orbits and space-like 3-surfaces intersect should carry the data making possible holography.
Also data about normal space of partonic 2-surface is involved.

SH generalizes AdS/CFT correspondence by replacing holography with what is very much like
the familiar holography. String world, sheets, which are minimal surfaces carrying fermion
fields and partonic 2-surfaces intersecting string world sheets at discrete points determine
by SH the entire 4-D dynamics. The boundaries of string world sheets are world lines with
fermion number coupling to classical Kähler force. In the interior Kähler force vanishes so that
one has “dynamics of avoidance” [L19] required also by number theoretic universality satisfied
if the coupling constants do not appear in the field equations at all: they are however seen
in the boundary values stating vanishing of the classical super-symplectic charges (Noether’s
theorem) so that one obtains dependence of coupling constants via boundary conditions and
coupling constant evolutions makes it manifest also classically. Hence the preferred extremals
from which the space-time surfaces are engineered are extremely simple objects.

5. In twistor formulation the assumption that the inverse of Kähler coupling strength has zeros
of Riemann zeta [L16] as the spectrum of its quantum critical values gives excellent prediction
for the coupling constant of U(1) coupling constant of electroweak interactions. Complexity
means that extremals are extremals of both Kähler action and volume term: minimal surfaces
extremals of Kähler action. This would be part of preferred extremal property.

Why αK should be complex? If αK is real, both bosonic and fermionic degrees of freedom for
Euclidian and Minkowskian regions decouple completely. This is not physically attractive.
If αK is complex there is coupling between the two regions and the simplest assumption
is that there is no Chern-Simons term in the action and one has just continuity conditions
for canonical momentum current and hits super counterpart. Note the analogy with the
possibility of blackhole evaporation. The presence of momentum exchange is also natural
since it gives classical space-time correlates for interactions as momentum exchange.

The conditions state that sub-algebra of super-symplectic algebra isomorphic to itself and its
commutator with the entire algebra annihilate the physical states (classical Noether charges
vanish). The condition could follow from minimal surface extremality or provide additional
conditions reducing the degrees of freedom. In any case, 3-surfaces would be almost 2-D
objects.

6. GRT space-time emerges from many-sheeted space-time as one replaces the sheets of many-
sheeted space-time (4-D M4 projection) to single slightly curved region of M4 defining GRT
space-time. Since test particle regarded as 3-surface touching the space-time sheets of many-
sheeted spacetime, test particle experiences the sum of forces associated with the classical
fields at the space-time sheets. Hence the classical fields of GRT space-time are sums of these
fields. Disjoint union for space-time sheets maps to the sum of the induced fields. This gives
standard model and GRT as long range scale limit of TGD.

How to build TGD space-time from legos?

TGD predicts shocking simplicity of both quantal and classical dynamics at space-time level.
Could one imagine a construction of more complex geometric objects from basic building bricks -
space-time legos?

Let us list the basic ideas.

1. Physical objects correspond to space-time surfaces of finite size - we see directly the non-
trivial topology of space-time in everyday length scales.
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2. There is also a fractal scale hierarchy: 3-surfaces are topologically summed to larger surfaces
by connecting them with wormhole contact, which can be also carry monopole magnetic flux
in which one obtains particles as pairs of these: these contacts are stable and are ideal for
nailing together pieces of the structure stably.

3. In long length scales in which space-time surface tend to have 4-D M4 projection this gives
rise to what I have called many-sheeted spacetime. Sheets are deformations of canonically
imbedded M4 extremely near to each other (the maximal distance is determined by CP2 size
scale about 104 Planck lengths. The sheets touch each other at topological sum contacts,
which can be also identified as building bricks of elementary particles if they carry monopole
flux and are thus stable. In D = 2 it is easy to visualize this hierarchy.

What could be the simplest surfaces of this kind - the legos?

1. Assume twistor lift [L22, L24] so that action contain volume term besides Kähler action:
preferred extremals can be seen as non-linear massless fields coupling to self-gravitation.
They also simultaneously extremals of Kähler action. Also hydrodynamical interpretation
makes sense in the sense that field equations are conservation laws. What is remarkable is
that the solutions have no dependence on coupling parameters: this is crucial for realizing
number theoretical universality. Boundary conditions however bring in the dependence on
the values of coupling parameters having discrete spectrum by quantum criticality.

2. The simplest solutions corresponds to Lagrangian sub-manifolds of CP2: induced Kähler
form vanishes identically and one has just minimal surfaces. The energy density defined by
scale dependent cosmological constant is small in cosmological scales - so that only a template
of physical system is in question. In shorter scales the situation changes if the cosmological
constant is proportional the inverse of p-adic prime.

The simplest minimal surfaces are constructed from pieces of geodesic manifolds for which
not only the trace of second fundamental form but the form itself vanishes. Geodesic sub-
manifolds correspond to points, pieces of lines, planes, and 3-D volumes in E3. In CP2 one
has points, circles, geodesic spheres, and CP2 itself.

3. CP2 type extremals defining a model for wormhole contacts, which can be used to glue basic
building bricks at different scales together stably: stability follows from magnetic monopole
flux going through the throat so that it cannot be split like homologically trivial contact.
Elementary particles are identified as pairs of wormhole contacts and would allow to nail the
legos together to from stable structures.

Amazingly, what emerges is the elementary geometry. My apologies for those who hated
school geometry.

1. Geodesic minimal surfaces with vanishing induced gauge fields

Consider first static objects with 1-D CP2 projection having thus vanishing induced gauge
fields. These objects are of form M1×X3, X3 ⊂ E3×CP2. M1 corresponds to time-like or possible
light-like geodesic (for CP2 type extremals). I will consider mostly Minkowskian space-time regions
in the following.

1. Quite generally, the simplest legos consist of 3-D geodesic sub-manifolds of E3 × CP2. For
E3 their dimensions are D = 1, 2, 3 and for CP2, D = 0, 1, 2. CP2 allows both homologically
non-trivial resp. trivial geodesic sphere S2

I resp. S2
II . The geodesic sub-manifolds cen be

products G3 = GD1
×GD2

, D2 = 3−D1 of geodesic manifolds GD1
, D1 = 1, 2, 3 for E3 and

GD2 , D2 = 0, 1, 2 for CP2.

2. It is also possible to have twisted geodesic sub-manifolds G3 having geodesic circle S1 as
CP2 projection corresponding to the geodesic lines of S1 ⊂ CP2, whose projections to E3

and CP2 are geodesic line and geodesic circle respectively. The geodesic is characterized by
S1 wave vector. One can have this kind of geodesic lines even in M1 × E3 × S1 so that
the solution is characterized also by frequency and is not static in CP2 degrees of freedom
anymore.



6.2. Simplicity at various levels 273

These parameters define a four-D wave vector characterizing the warping of the space-time
surface: the space-time surface remains flat but is warped. This effect distinguishes TGD
from GRT. For instance, warping in time direction reduces the effective light-velocity in the
sense that the time used to travel from A to B increases. One cannot exclude the possibility
that the observed freezing of light in condensed matter could have this warping as space-time
correlate in TGD framework.

For instance, one can start from 3-D minimal surfaces X2×D as local structures (thin layer
in E3). One can perform twisting by replacing D with twisted closed geodesics in D × S1:
this gives valued map from D to S1 (subset CP2) representing geodesic line of D × S1.
This geodesic sub-manifold is trivially a minimal surface and defines a two-sheeted cover of
X2 ×D. Wormhole contact pairs (elementary particles) between the sheets can be used to
stabilize this structure.

3. Structures of form D2 × S1, where D2 is polygon, are perhaps the simplest building bricks
for more complex structures. There are continuity conditions at vertices and edges at which
polygons D2

i meet and one could think of assigning magnetic flux tubes with edes in the
spirit of homology: edges as magnetic flux tubes, faces as 2-D geodesic sub-manifolds and
interiors as 3-D geodesic sub-manifolds.

Platonic solids as 2-D surfaces can be build are one example of this and are abundant in
biology and molecular physics. An attractive idea is that molecular physics utilizes this kind
of simple basic structures. Various lattices appearing in condensed matter physics represent
more complex structures but could also have geodesic minimal 3-surfaces as building bricks.
In cosmology the honeycomb structures having large voids as basic building bricks could
serve as cosmic legos.

4. This lego construction very probably generalizes to cosmology, where Euclidian 3-space is
replaced with 3-D hyperbolic space SO(3, 1)/SO(3). Also now one has pieces of lines, planes
and 3-D volumes associated with an arbitrarily chosen point of hyperbolic space. Hyperbolic
space allows infinite number of tesselations serving as analogs of 3-D lattices and the char-
acteristic feature is quantization of redshift along line of sight for which empirical evidence
is found.

5. The structures as such are still too simple to represent condensed matter systems. These basic
building bricks can glued together by wormhole contact pairs defining elementary particles
so that matter emerges as stabilizer of the geometry: they are the nails allowing to fix planks
together, one might say.

2. Geodesic minimal surfaces with non-vanishing gauge fields

What about minimal surfaces and geodesic sub-manifolds carrying non-vanishing gauge
fields - in particular em field (Kähler form identifiable as U(1) gauge field for weak hypercharge
vanishes and thus also its contribution to em field)? Now one must use 2-D geodesic spheres of
CP2 combined with 1-D geodesic lines of E2. Actually both homologically non-trivial resp. trivial
geodesic spheres S2

I resp. S2
II can be used so that also non-vanishing Kähler forms are obtained.

The basic legos are now D × S2
i , i = I, II and they can be combined with the basic legos

constructed above. These legos correspond to two kinds of magnetic flux tubes in the ideal infinitely
thin limit. There are good reasons to expected that these infinitely thin flux tubes can be thickened
by deforming them in E3 directions orthogonal to D. These structures could be used as basic
building bricks assignable to the edges of the tensor networks in TGD.

3. Static minimal surfaces, which are not geodesic sub-manifolds

One can consider also more complex static basic building bricks by allowing bricks which are
not anymore geodesic sub-manifolds. The simplest static minimal surfaces are form M1×X2×S1,
S1 ⊂ CP2 a geodesic line and X2 minimal surface in E3.

Could these structures represent higher level of self-organization emerging in living systems?
Could the flexible network formed by living cells correspond to a structure involving more general
minimal surfaces - also non-static ones - as basic building bricks? The Wikipedia article about
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minimal surfaces in E3 suggests the role of minimal surface for instance in bio-chemistry (see
http://tinyurl.com/zqlv322).

The surfaces with constant positive curvature do not allow imbedding as minimal surfaces in
E3. Corals provide an example of surface consisting of pieces of 2-D hyperbolic space H2 immersed
in E3 (see http://tinyurl.com/ho9uvcc. Minimal surfaces have negative curvature as also H2

but minimal surface immersions of H2 do not exist. Note that pieces of H2 have natural imbedding
to E3 realized as light-one proper time constant surface but this is not a solution to the problem.

Does this mean that the proposal fails?

1. One can build approximately spherical surfaces from pieces of planes. Platonic solids repre-
sents the basic example. This picture conforms with the notion of monadic manifold having
as a spine a discrete set of points with coordinates in algebraic extension of rationals (pre-
ferred coordinates allowed by symmetries are in question). This seems to be the realistic
option.

2. The boundaries of wormhole throats at which the signature of the induced metric changes
can have arbitrarily large M4 projection and they take the role of blackhole horizon. All
physical systems have such horizon and the approximately boundaries assignable to physical
objects could be horizons of this kind. In TGD one has minimal surface in E3 × S1 rather
than E3. If 3-surface have no space-like boundaries they must be multi-sheeted and the
sheets co-incide at some 2-D surface analogous to boundary. Could this 3-surface give rise
to an approximately spherical boundary.

3. Could one lift the immersions of H2 and S2 to E3 to minimal surfaces in E3 × S1? The
constancy of scalar curvature, which is for the immersions in question quadratic in the sec-
ond fundamental form would pose one additional condition to non-linear Laplace equations
expressing the minimal surface property. The analyticity of the minimal surface should
make possible to check whether the hypothesis can make sense. Simple calculations lead to
conditions, which very probably do not allow solution.

4. Dynamical minimal surfaces: how space-time manages to engineer itself?

At even higher level of self-organization emerge dynamical minimal surfaces. Here string
world sheets as minimal surfaces represent basic example about a building block of type X2 × S2

i .
As a matter fact, S2 can be replaced with complex sub-manifold of CP2.

One can also ask about how to perform this building process. Also massless extremals (MEs)
representing TGD view about topologically quantized classical radiation fields are minimal surfaces
but now the induced Kähler form is non-vanishing. MEs can be also Lagrangian surfaces and
seem to play fundamental role in morphogenesis and morphostasis as a generalization of Chladni
mechanism [L27, L24]. One might say that they represent the tools to assign material and magnetic
flux tube structures at the nodal surfaces of MEs. MEs are the tools of space-time engineering.
Here many-sheetedness is essential for having the TGD counterparts of standing waves.

Spherically symmetry metric as minimal surface

Physical intuition and the experience with the vacuum extremals as models for GRT space-times
suggests that Kähler charge is not important in the case of astrophysical objects like stars so
that it might be possible to model them as minimal surfaces, which in the simplest situation have
spherically symmetric metric analogous to Schwartschild solution. The vanishing of the induced
Kähler form does not of course exclude the presence of electromagnetic fields. It must be of course
emphasized that the assumption that single-sheeted space-time surface can model GRT-QFT limit
based on many-sheeted space-time could be un-realistic.

At 90’s I studied the imbeddings of Schwartschild-Nordström solution as vacuum extremals
of Kähler action and found that the solution is necessarily electromagnetically charged [K79]. This
property is unavoidable. The imbedding in coordinates (t, r, θ, φ) for X4, (m0, r, θ, φ) for M4 and
(Θ,Φ) for the trivial geodesic sphere S2

II of CP2 was not stationary as the first guess might be.
m0 relates to Schwartschild time and radial coordinate r by a shift m0 = Λt+ h(r). Without this
shift the perihelion shift would be negligibly small.

http://tinyurl.com/zqlv322
http://tinyurl.com/ho9uvcc
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One has (cos(Θ) = f(r),Φ = ωt+k(r)). Also the dependence of Φ is not the first possibility
to come in mind. The shifts h(r) and k(r) are such that the non-diagonal contribution gtr to the
induced metric vanishes. The question is whether one obtains spherically symmetric metric as a
minimal surface.

5. General form of minimal surface equations

Consider first the minimal surface equations generally.

1. The field equations are analogous to massless wave equations for scalar fields defined by CP2

coordinates having gravitational self coupling and also covariant derivative coupling due to
the non-flatness of CP2. One might therefore expect that the Newtonian gravitation based
on Laplace equation in empty space-time regions follows as an approximation. Therefore
also something analogous to Schwartschild metric is to be expected. Note that also massless
extremals (MEs) are obtained as minimal surfaces so that also the topologically quantized
counterparts of em and gravitational radiation emerge.

2. The general field equations can be written as vanishing of the covariant divergence for canon-
ical momentum current T kα

Dα(T kα
√
g) = ∂α

[
T kα
√
g
]

+ { k
α m

}Tmα√g = 0 ,

T kα = gαβ∂βh
k ,

{ k
α m

} = { k
l m

}∂αhl .

(6.2.1)

Dα is covariant derivative taking into account that gradient ∂αh
k is imbedding space vector.

3. For isometry currents jA,k (Killing vector fields)

TA,α = Tαkhklj
A,l (6.2.2)

the covariant divergence simplifies to ordinary divergence

∂α
[
TA,α

√
g
]

= 0 . (6.2.3)

This allows to simplify the equations considerably.

6. Spherically symmetric stationary minimal surface

Consider now the spherically symmetric stationary metric representable as minimal surface.

1. In the following we consider only the region exterior to the surface defining the TGD counter-
part of Schwartschild horizon and the possible horizon at which the signature of the induced
metric. The first possibility is gtt = 0 at horizon. If grr remains non-vanishing, the signature
changes to Euclidian. If also grr = 0, both gtt and grr can change sign so that one has a
smooth variant of Schwartschild horizon.

Second possibility is grr = 0 at radius rE in the region below Schwartschild radius. At rE the
determinant of 4-metric would vanish and the signature of the induced metric would change
to Euclidian.
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2. The reduction to the conservation of isometry currents can be used for isometry current
corresponding to the rotation Φ→ Φ + ε and time translation m0 → m0 + ε.

3. With the experience coming from the imbedding of Reissner-Nordström metric the ansatz is
exactly the same and can be written as

m0 = Λt+ h(r) , Φ = ωt+ k(r) , u ≡ cos(Θ) = u(r) , (6.2.4)

4. The condition gtr = 0 gives

Λ∂rh = R2ωsin2(Θ)∂rk = 0 .

(6.2.5)

This allows to integrate h(r) in terms of k(r).

5. The interesting components of the induced metric are

gtt = Λ2 −R2ω2sin2(Θ) , grr = −1−R2(∂rΘ)2 + Λ2(∂rh)2 .

(6.2.6)

6. The field equations reduce to conservation laws for various isometry currents. Consider
energy current and the current related to the SO(3) ⊂ SU(3) rotation acting on Φ as shift
(call this current isospin current). The stationary character of the induced metric implies
that the field equations reduce to the conservation of the radial current for energy current
and isospin current. These two equations fix the solution together with diagonality condition.
One obtains the following equations

∂r(∂rh× grr
√
g) = 0 , ∂r(sin

2(Θ)∂rk × grr
√
g) = 0) . (6.2.7)

These two equations can be satisfied simultaneously only if one has

∂rh× grrr2√g2 = Asin2(Θ)∂rk × grrr2√g2 +B , g2 ≡ −gttgrr . (6.2.8)

Note the presence of constant B.

Second implication is

grr∂rh
√
g2 = C

r2 , grrsin2(Θ)∂rk
√
g2 = D

r2 , C = AD +B . (6.2.9)

By substituting the expressions for the metric one has

∂rh =
√
− grrgtt ×

C
r2 , sin2(Θ)∂rk =

√
− grrgtt ×

D
r2 . (6.2.10)
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7. It is natural to look what one obtains in the approximation that the metric is flat expected
to make sense at large distances. Putting gtt = −grr = 1, one obtains

∂rh ' C
r2 , sin2(Θ)∂rk ' D

r2 . (6.2.11)

The time component of the induced metric is given by

gtt = Λ2 −R2ω2sin2(Θ) ' Λ2 − D

r2∂rk
. (6.2.12)

This gives 1/r gravitational potential of a mass point if one has ∂rk ' E/r giving for Λ = 1

gtt = 1− rS
r , rS = 2GM = D

E . (6.2.13)

with the identification rS = 2GM = D/E inspired by the behavior of the Scwartschild
metric. It seems that one can take Λ = 1 without a loss of generality.

8. Using gtr = 0 condition this gives for h the approximate expression

∂rh ' D
r2 , D = R2ω2

Λ . (6.2.14)

so that the field equations are consistent with the 1/r behavior of gravitational potential.
The solution carries necessarily a non-vanishing Abelian electroweak gauge field.

9. The asymptotic behaviors of k and h would be

k ' k0log( rr0 ) , h ' h0 − C
r . (6.2.15)

7. Two horizons and layered structure as basic prediction

A very interesting question is whether gtt = 0 defines Schwartschild type horizon at which
the roles of the coordinates t and r change or whether one obtains horizon at which the signature
of the induced metric becomes Euclidian. The most natural option turns out to be Schwartschild
like horizon at which the roles of time and radial coordinate are changed and second inner horizon
at which grr changes sign again so that the induced metric has Euclidian signature below this inner
horizon.

1. Unless one has gttgrr = C 6= 0 (C = −1 holds true in Scwhartschild-Nordström metric) the
surface gtt = 0 - if it exists - defines a light-like 3-surface identifiable as horizon at which the
signature of the induced metric changes. The conditions gtt = 0 gives

Λ2 −R2ω2(1− u2) = 0 . (6.2.16)

giving

0 < sin2(Θ) = 1− u2 =
Λ2

R2ω2
< 1 . (6.2.17)

For Λ = 1 this condition implies that ω is a frequency of order of the inverse of CP2 radius
R. Note that gtt = 0 need mean change of the metric signature to Euclidian if the analog of
Schwarschild horizon is in question.
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2. gtt = 0 surface is light-like surface if grr has non-vanishing and finite value at it. grr could
diverges at this surface guaranteeing gttgrr > 0. The quantities ∂rh and sin2(Θ)∂rk are
proportional to

√
grr/gtt, which diverges for gtt = 0 unless also grr vanishes so that also

these derivatives would diverge. The behavior of grr at this surface is

grr = −1−R2 (∂ru)2

1−u2 + Λ2(∂rh)2 , u ≡ cos(Θ) . (6.2.18)

There are several options to consider.

(a) Option I: The divergence of (∂rh)2 as cause for the divergence of grr is out of question.
If this quantity increases for small values of r, grr can change sign for with finite value
of ∂rh and u2 < 1 at some larger radius rS analogous to Schwartschild radius. Since it is
impossible to have two time-like directions also the sign of gtt must change so that one
would have the analog of Schwartschild horizon at this radius - call it rS : rS = 2GM
need not hold true. The condition gtt = 0 at this radius fixes the value of sin2(Θ) at
this radius

sin2(ΘS) =
Λ2

R2ω2
. (6.2.19)

If grr has finite value and is continuous, the metric has Euclidian signature in interior.
If grr is discontinuous and changes sign as in the case of Schwartschild metric, one has
counterpart of Scwartschild horizon without infinities. This option will be called Option
I.

(b) Second possibility giving rise to would be that u becomes equal 1. This is not consistent
with sin2(ΘS) = 0.

(c) Option II: Voth gtt and grr change their sign and vanish at rS . This however requires
both radial and time-like direction become null directions locally. Space-time surface
would become locally metrically 2-dimensional at the horizon. This would conform
with the idea of strong form of holography (SH) but it is not possible to have two
different light-like directions simultaneously unless these directions are actually same.
Mathematically it is certainly possible to have surfaces for which the dimension is locally
reduced from the maximal one but it is difficult to visualize what this kind of metric
reduction of local space-time dimension could mean. This option will be considered in
what follows.

To sum up, grr changes sign at horizon. For Option I grr is finite and dis-continuous. For
Option II grr vanishes and is continuous. Whether grr vanishes at horizon or not, remains
open.

3. For Schwartschild-Nordström metric grr becomes infinite and changes sign at horizon. The
change of the roles of gtt and grr could for Option II take place smoothly so that both could
become zero and change their sign at rS . This would keep ∂rh and sin2(Θ)∂rk finite. One
would have the analog of the interior of Schwartschild metric.

What happens at the smaller radii? The obvious constraint is that sin2(Θ) remains be-
low unity. If grr/gtt remains bounded, the condition for sin2(Θ)∂k however suggests that
sin2(Θ) = 1 is eventually achieved. This is the case also for the imbedding of Schwartschild
metric. Could this horizon correspond to a surface at which the signature of the metric
changes? grr should becomes zero in order to obtain light-like surface. grr contains indeed
a term proportional to 1/sin2(Θ) which diverges at u = 1 so that grr must change sign for
second time already above the radius for sin2(Θ) = 1 if h and k behaves smoothly enough.
At this radius - call it rE - gtt would be finite and the signature would become Euclidian
below this radius.

One would therefore have two special radii rS and rE and a layer between these radii.
rS = 2GM need not hold true but is expected to give a reasonable order of magnitude
estimate.
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Is there any empirical evidence for the existence of two horizons? There is evidence that
the formation of the recently found LIGO blackhole (discussed from TGD view point in [L25]) is
not fully consistent with the GRT based model (see http://tinyurl.com/zbbz58w). There are
some indications that LIGO blackhole has a boundary layer such that the gravitational radiation
is reflected forth and back between the inner and outer boundaries of the layer. In the proposed
model the upper boundary would not be totally reflecting so that gravitational radiation leaks out
and gave rise to echoes at times .1 sec, .2 sec, and .3 sec. It is perhaps worth of noticied that time
scale .1 sec corresponds to the secondary p-adic time scale of electron (characterized by Mersenne
prime M127 = 2127 − 1). If the minimal surface solution indeed has two horizons and a layer like
structure between them, one might at least see the trouble of killing the idea that it could give rise
to repeated reflections of gravitational radiation.

The proposed model (see http://tinyurl.com/zbbz58w) assumes that the inner horizon is
Schwarstchild horizon. TGD would however suggests that the outer horizon is the TGD counterpart
of Schwartschild horizon. It could have different radius since it would not be a singularity of grr
(gtt/grr would be finite at rS which need not be rS = 2GM now). At rS the tangent space of the
space-time surface would become effectively 2-dimensional for grr = 0: the interpretation in terms
of strong holography (SH) has been already mentioned.

The condition that the normal components of the canonical momentum currents for Kähler
action and volume term are finite implies that gnn

√
g4 is finite at both sides of the horizon. Also

the weak form of electric magnetic duality for Kähler form requires this. This condition can be
satisfied if gtt and gnn approach to zero in the same manner at both sides of the horizon. Hence it
seems that strong form of holography in the horizon is forced by finiteness.

One should understand why it takes rather long time T = .1 seconds for radiation to travel
forth and back the distance L = rS − rE between the horizons. The maximal signal velocity is
reduced for the light-like geodesics of the space-time surface but the reduction should be rather
large for L ∼ 20 km (say). The effective light-velocity is measured by the coordinate time ∆t =
∆m0 + h(rS) − h(rE) needed to travel the distance from rE to rS . The Minkowski time ∆m0

−+

would be the from null geodesic property and m0 = t+ h(r)

∆m0
−+ = ∆t− h(rS) + h(rE) , ∆t =

∫ rS
rE

√
grr
gtt
dr ≡

∫ rS
rE

dr
c#

. (6.2.20)

Note that c# approaches zero at horizon if grr is non-vanishing at horizon.
The time needed to travel forth and back does not depend on h and would be given by

∆m0 = 2∆t = 2

∫ rS

rE

dr

c#
. (6.2.21)

This time cannot be shorter than the minimal time (rs − rE)/c along light-like geodesic of M4

since light-like geodesics at space-time surface are in general time-like curves in M4. Since .1 sec
corresponds to about 3× 104 km, the average value of c# should be for L = 20 km (just a rough
guess) of order c# ∼ 2−11c in the interval [rE , rS ]. As noticed, T = .1 sec is also the secondary
p-adic time assignable to electron labelled by the Mersenne prime M127. Since grr vanishes at rE
one has c# →∞. c# is finite at rS .

There is an intriguing connection with the notion of gravitational Planck constant. The
formula for gravitational Planck constant given by hgr = GMm/v0 characterizing the magnetic
bodies topologically for mass m topologically condensed at gravitational magnetic flux tube ema-
nating from large mass M [K66, K53, K106, K109]. The interpretation of the velocity parameter
v0 has remained open. Could v0 correspond to the average value of c#? For inner planets one has
v0 ' 2−11 so that the order of magnitude is same as for the estimate for c#.

What about TGD inspired cosmology?

Before the discovery of the twistor lift TGD inspired cosmology has been based on the assumption
that vacuum extremals provide a good estimate for the solutions of Einstein’s equations at GRT
limit of TGD [K79, K67] . One can find imbeddings of Robertson-Walker type metrics as vacuum
extremals and the general finding is that the cosmological with super-critical and critical mass

http://tinyurl.com/zbbz58w
http://tinyurl.com/zbbz58w
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density have finite duration after which the mass density becomes infinite: this period of course
ends before this. The interpretation would be in terms of the emergence of new space-time sheet at
which matter represented by smaller space-time sheets suffers topological condensation. The only
parameter characterizing critical cosmologies is their duration. Critical (over-critical) cosmologies
having SO3×E3 (SO(4)) as isometry group is the duration and the CP2 projection at homologically
trivial geodesic sphere S2: the condition that the contribution from S2 to grr component transforms
hyperbolic 3-metric to that of E3 or S3 metric fixes these cosmologies almost completely. Sub-
critical cosmologies have one-dimensional CP2 projection.

Do Robertson-Walker cosmologies have minimal surface representatives? Recall that mini-
mal surface equations read as

Dα(gαβ∂βh
k√g) = ∂α

[
gαβ∂βh

k√g
]

+ { k
α m

}gαβ∂βhm
√
g = 0 ,

{ k
α m

} = { k
l m

}∂αhl .

(6.2.22)

Sub-critical minimal surface cosmologies would correspond to X4 ⊂ M4 × S1. The natural co-
ordinates are Robertson-Walker coordinates, which co-incide with light-cone coordinates (a =√

(m0)2 − r2
M , r = rM/a, θ, φ) for light-cone M4

+. They are related to spherical Minkowski co-

ordinates (m0, rM , θ, φ) by (m0 = a
√

1 + r2, rM = ar). β = rM/m0 = r/
√

1 + r2 corresponds
to the velocity along the line from origin (0,0) to (m0, rM ). r corresponds to the Lorentz factor

γβ = β/
√

1− β2. The metric of M4
+ is given by the diagonal form [gaa = 1, grr = a2/(1+r2), gθθ =

a2r2, gφφ = a2r2sin2(θ)]. One can use the coordinates of M4
+ also for X4.

The ansatz for the minimal surface reads is Φ = f(a). For f(a) = constant one obtains
just the flat M4

+. In non-trivial case one has gaa = 1 − R2(df/da)2. The gaa component of the
metric becomes now gaa = 1/(1 − R2(df/da)2). Metric determinant is scaled by

√
gaa = 1 →√

1−R2(df/da)2. Otherwise the field equations are same as for M4
+. Little calculation shows that

they are not satisfied unless one as gaa = 1.

Also the minimal surface imbeddings of critical and over-critical cosmologies are impossible.
The reason is that the criticality alone fixes these cosmologies almost uniquely and this is too much
for allowing minimal surface property.

Thus one can have only the trivial cosmology M4
+ carrying dark energy density as a minimal

surface solution! This obviously raises several questions.

1. Could Λ = 0 case for which action reduces to Kähler action provide vacuum extremals provide
single-sheeted model for Robertson-Walker cosmologies for the GRT limit of TGD for which
many-sheeted space-time surface is replaced with a slightly curved region of M4? Could
Λ = 0 correspond to a genuine phase present in TGD as formal generalization of the view of
mathematicians about reals as p =∞ p-adic number suggest. p-Adic length scale would be
strictly infinite implying that Λ ∝ 1/p vanishes.

2. Second possibility is that TGD is quantum critical in strong sense. Not only 3-space but
the entire space-time surface is flat and thus M4

+. Only the local gravitational fields created
by topologically condensed space-time surfaces would make it curved but would not cause
smooth expansion. The expansion would take as quantum phase transitions reducing the
value of Λ ∝ 1/p as p-adic prime p increases. p-Adic length scale hypothesis suggests that
the preferred primes are near but below powers of 2 p ' 2k for some integers k. This led for
years ago to a model for Expanding Earth [K27].

3. This picture would explain why individual astrophysical objects have not been observed to
expand smoothly (except possibly in these phase transitions) but participate cosmic expan-
sion only in the sense that the distance to other objects increase. The smaller space-time
sheets glued to a given space-time sheet preserving their size would emanate from the tip of
M4

+ for given sheet.
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4. RW cosmology should emerge in the idealization that the jerk-wise expansion by quantum
phase transitions and reducing the value of Λ (by scalings of 2 by p-adic length scale hypoth-
esis) can be approximated by a smooth cosmological expansion.

One should understand why Robertson-Walker cosmology is such a good approximation to
this picture. Consider first cosmic redshift.

1. The cosmic recession velocity is defined from the redshift by Doppler formula.

z =
1 + β

1− β
− 1 ' β =

v

c
. (6.2.23)

In TGD framework this should correspond to the velocity defined in terms of the coordinate
r of the object.

Hubble law tells that the recession velocity is proportional to the proper distance D from the
source. One has

v = HD , H = (da/dta ) = 1√
gaaa

. (6.2.24)

This brings in the dependence on the Robertson-Walker metric.

For M4
+ one has a = t and one would have gaa = 1 and H = 1/a. The experimental fact is

however that the value of H is larger for non-empty RW cosmologies having gaa < 1. How
to overcome this problem?

2. To understand this one must first understand the interpretation of gravitational redshift.
In TGD framework the gravitational redshift is property of observer rather than source.
The point is that the tangent space of the 3-surface assignable to the observer is related by
a Lorent boost to that associated with the source. This implies that the four-momentum
of radiation from the source is boosted by this same boost. Redshift would mean that
the Lorentz boost reduces the momentum from the real one. Therefore redshift would be
consistent with momentum conservation implied by Poincare symmetry.

gaa for which a corresponds to the value of cosmic time for the observer should characterize the
boost of observer relative to the source. The natural guess is that the boost is characterized
by the value of gtt in sufficiently large rest system assignable to observer with t is taken to
be M4 coordinate m0. The value of gtt fluctuates do to the presence of local gravitational
fields. At the GRT limit gaa would correspond to the average value of gtt.

3. There is evidence that H is not same in short and long scales. This could be understood if
the radiation arrives along different space-time sheets in these two situations.

4. If this picture is correct GRT description of cosmology is effective description taking into
account the effect of local gravitation to the redshift, which without it would be just the M4

+

redshift.

Einstein’s equations for RW cosmology [K79, K67] should approximately code for the cosmic
time dependence of mass density at given slightly deformed piece of M4

+ representing particular
sub-cosmology expanding in jerkwise manner.

1. Many-sheeted space-time implies a hierarchy of cosmologies in different p-adic length scales
and with cosmological constant Λ ∝ 1/p so that vacuum energy density is smaller in long
scale cosmologies and behaves on the average as 1/a2 where a characterizes the scale of the
cosmology. In zero energy ontology given scale corresponds to causal diamond (CD) with
size characterized by a defining the size scale for the distance between the tips of CD.
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2. For the comoving volume with constant value of coordinate radius r the radius of the volume
increases as a. The vacuum energy would increase as a3 for comoving volume. This is in
sharp conflict with the fact that the mass decreases as 1/a for radiation dominated cosmology,
is constant for matter dominated cosmology, and is proportional to a for string dominated
cosmology.

The physical resolution of the problem is rather obvious. Space-time sheets representing
topologically condensed matter have finite size. They do not expand except possibly in
jerkwise manner but in this process Λ is reduced - in average manner like 1/a2.

If the sheets are smaller than the cosmological space-time sheet in the scale considered and
do not lose energy by radiation they represent matter dominated cosmology emanating from
the vertex of M4

+. The mass of the co-moving volume remains constant.

If they are radiation dominated and in thermal equilibrium they lose energy by radiation and
the energy of volume behaves like 1/a.

Cosmic strings and magnetic flux tubes have size larger than that the space-time sheet
representing the cosmology. The string as linear structure has energy proportional to a for
fixed value of Λ as in string dominated cosmology. The reduction of Λ decreasing on the
average like 1/a2 implies that the contribution of given string is reduced like 1/a on the
average as in radiation dominated cosmology.

3. GRT limit would code for these behaviours of mass density and pressure identified as scalars
in GRT cosmology in terms of Einstein’s equations. The time dependence of gaa would code
for the density of the topologically condensed matter and its pressure and for dark energy at
given level of hierarchy. The vanishing of covariant divergence for energy momentum tensor
would be a remnant of Poincare invariance and give Einstein’s equations with cosmological
term.

4. Why GRT limit would involve only the RW cosmologies allowing imbedding as vacuum
extremals of Kähler action? Can one demand continuity in the sense that TGD cosmology
at p → ∞ limit corresponds to GRT cosmology with cosmological solutions identifiable as
vacuum extremals? If this is assumed the earlier results are obtained. In particular, one
obtains the critical cosmology with 2-D CP2 projection assumed to provide a GRT model for
quantum phase transitions changing the value of Λ.

If this picture is correct, TGD inspired cosmology at the level of many-sheeted space-time
would be extremely simple. The new element would be many-sheetedness which would lead to
more complex description provided by GRT limit. This limit would however lose the information
about many-sheetedness and lead to anomalies such as two Hubble constants.

Induced spinor structure

The notion of induced spinor field deserves a more detailed discussion. Consider first induced
spinor structures [K88].

1. Induced spinor field are spinors of M4 ×CP2 for which modes are characterized by chirality
(quark or lepton like) and em charge and weak isospin.

2. Induced spinor spinor structure involves the projection of gamma matrices defining induced
gamma matrices. This gives rise to superconformal symmetry if the action contains only
volume term.

When Kähler action is present, superconformal symmetry requires that the modified gamma
matrices are contractions of canonical momentum currents with imbedding space gamma
matrices. Modified gammas appear in the modified Dirac equation and action, whose solution
at string world sheets trivializes by super-conformal invariance to same procedure as in the
case of string models.

3. Induced spinor fields correspond to two chiralities carrying quark number and lepton number.
Quark chirality does not carry color as spin-like quantum number but it corresponds to a
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color partial wave in CP2 degrees of freedom: color is analogous to angular momentum. This
reduces to spinor harmonics of CP2 describing the ground states of the representations of
super-symplectic algebra.

The harmonics do not satisfy correct correlation between color and electroweak quantum
numbers although the triality t=0 for leptonic waves and t=1 for quark waves. There are
two manners to solve the problem.

(a) Super-symplectic generators applied to the ground state to get vanishing ground states
weight instead of the tachyonic one carry color and would give for the physical states
correct correlation: leptons/quarks correspond to the same triality zero(one partial wave
irrespective of charge state. This option is assumed in p-adic mass calculations [K39].

(b) Since in TGD elementary particles correspond to pairs of wormhole contacts with weak
isospin vanishing for the entire pair, one must have pair of left and right-handed neu-
trinos at the second wormhole throat. It is possible that the anomalous color quantum
numbers for the entire state vanish and one obtains the experimental correlation between
color and weak quantum numbers. This option is less plausible since the cancellation
of anomalous color is not local as assume in p-adic mass calculations.

The understanding of the details of the fermionic and actually also geometric dynamics has
taken a long time. Super-conformal symmetry assigning to the geometric action of an object with
given dimension an analog of Dirac action allows however to fix the dynamics uniquely and there
is indeed dimensional hierarchy resembling brane hierarchy.

1. The basic observation was following. The condition that the spinor modes have well-defined
em charge implies that they are localized to 2-D string world sheets with vanishing W boson
gauge fields which would mix different charge states. At string boundaries classical induced
W boson gauge potentials guarantee this. Super-conformal symmetry requires that this 2-
surface gives rise to 2-D action which is area term plus topological term defined by the flux
of Kähler form.

2. The most plausible assumption is that induced spinor fields have also interior component but
that the contribution from these 2-surfaces gives additional delta function like contribution:
this would be analogous to the situation for branes. Fermionic action would be accompanied
by an area term by supersymmetry fixing modified Dirac action completely once the bosonic
actions for geometric object is known. This is nothing but super-conformal symmetry.

One would actually have the analog of brane-hierarchy consisting of surfaces with dimension
D= 4,3,2,1 carrying induced spinor fields which can be regarded as independent dynamical
variables and characterized by geometric action which is D-dimensional analog of the action
for Kähler charged point particle. This fermionic hierarchy would accompany the hierarchy
of geometric objects with these dimensions and the modified Dirac action would be uniquely
determined by the corresponding geometric action principle (Kähler charged point like parti-
cle, string world sheet with area term plus Kähler flux, light-like 3-surface with Chern-Simons
term, 4-D space-time surface with Kähler action).

3. This hierarchy of dynamics is consistent with SH only if the dynamics for higher dimensional
objects is induced from that for lower dimensional objects - string world sheets or maybe even
their boundaries orbits of point like fermions. Number theoretic vision [K111] suggests that
this induction relies algebraic continuation for preferred extremals. Note that quaternion
analyticity [L22] means that quaternion analytic function is determined by its values at 1-D
curves.

4. Quantum-classical correspondences (QCI) requires that the classical Noether charges are
equal to the eigenvalues of the fermionic charges for surfaces of dimension D = 0, 1, 2, 3 at
the ends of the CDs. These charges would not be separately conserved. Charges could flow
between objects of dimension D+ 1 and D - from interior to boundary and vice versa. Four-
momenta and also other charges would be complex as in twistor approach: could complex
values relate somehow to the finite life-time of the state?
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If quantum theory is square root of thermodynamics as zero energy ontology suggests, the
idea that particle state would carry information also about its life-time or the time scale of CD
to which is associated could make sense. For complex values of αK there would be also flow
of canonical and super-canonical momentum currents between Euclidian and Minkowskian
regions crucial for understand gravitational interaction as momentum exchange at imbedding
space level.

5. What could be the physical interpretation of the bosonic and fermionic charges associated
with objects of given dimension? Condensed matter physicists assign routinely physical states
to objects of various dimensions: is this assignment much more than a practical approxima-
tion or could condensed matter physics already be probing many-sheeted physics?

SUSY and TGD

From this one ends up to the possibility of identifying the counterpart of SUSY in TGD framework
[K95].

1. In TGD the generalization of much larger super-conformal symmetry emerges from the super-
symplectic symmetries of WCW. The mathematically questionable notion of super-space is
not needed: only the realization of super-algebra in terms of WCW gamma matrices defining
super-symplectic generators is necessary to construct quantum states. As a matter of fact,
also in QFT approach one could use only the Clifford algebra structure for super-multiplets.
No Majorana condition on fermions is needed as for N = 1 space-time SUSY and one avoids
problems with fermion number non-conservation.

2. In TGD the construction of sparticles means quite concretely adding fermions to the state.
In QFT it corresponds to transformation of states of integer and half-odd integer spin to each
other. This difference comes from the fact that in TGD particles are replaced with point like
particles.

3. The analog of N = 2 space-time SUSY could be generated by covariantly constant right
handed neutrino and antineutrino. Quite generally the mixing of fermionic chiralities implied
by the mixing of M4 and CP2 gamma matrices implies SUSY breaking at the level of particle
masses (particles are massless in 8-D sense). This breaking is purely geometrical unlike the
analog of Higgs mechanism proposed in standard SUSY.

There are several options to consider.

1. The analog of brane hierarchy is realized also in TGD. Geometric action has parts assignable
to 4-surface, 3-D light like regions between Minkowskian and Euclidian regions, 2-D string
world sheets, and their 1-D boundaries. They are fixed uniquely. Also their fermionic coun-
terparts - analogs of Dirac action - are fixed by super-conformal symmetry. Elementary
particles reduce so composites consisting of point-like fermions at boundaries of wormhole
throats of a pair of wormhole contacts.

This forces to consider 3 kinds of SUSYs! The SUSYs associated with string world sheets and
space-time interiors would certainly be broken since there is a mixing between M4 chiralities
in the modified Dirac action. The mass scale of the broken SUSY would correspond to the
length scale of these geometric objects and one might argue that the decoupling between
the degrees of freedom considered occurs at high energies and explains why no evidence for
SUSY has been observed at LHC. Also the fact that the addition of massive fermions at
these dimensions can be interpreted differently. 3-D light-like 3-surfaces could be however an
exception.

2. For 3-D light-like surfaces the modified Dirac action associated with the Chern-Simons term
does not mix M4 chiralities (signature of massivation) at all since modified gamma matrices
have only CP2 part in this case. All fermions can have well-defined chirality. Even more: the
modified gamma matrices have no M4 part in this case so that these modes carry no four-
momentum - only electroweak quantum numbers and spin. Obviously, the excitation of these
fermionic modes would be an ideal manner to create spartners of ordinary particles consting
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of fermion at the fermion lines. SUSY would be present if the spin of these excitations couples
- to various interactions and would be exact in absence of coupling to interior spinor fields.

What would be these excitations? Chern-Simons action and its fermionic counterpart are
non-vanishing only if the CP2 projection is 3-D so that one can use CP2 coordinates. This
strongly suggests that the modified Dirac equation demands that the spinor modes are co-
variantly constant and correspond to covariantly constant right-handed neutrino providing
only spin.

If the spin of the right-handed neutrino adds to the spin of the particle and the net spin
couples to dynamics, N = 2 SUSY is in question. One would have just action with unbroken
SUSY at QFT limit? But why also right-handed neutrino spin would couple to dynamics
if only CP2 gamma matrices appear in Chern-Simons-Dirac action? It would seem that it
is independent degree of freedom having no electroweak and color nor even gravitational
couplings by its covariant constancy. I have ended up with just the same SUSY-or-no-SUSY
that I have had earlier.

3. Can the geometric action for light-like 3-surfaces contain Chern-Simons term?

(a) Since the volume term vanishes identically in this case, one could indeed argue that also
the counterpart of Kähler action is excluded. Moreover, for so called massless extremals
of Kähler action reduces to Chern-Simons terms in Minkowskian regions and this could
happen quite generally: TGD with only Kähler action would be almost topological QFT
as I have proposed. Volume term however changes the situation via the cosmological
constant. Kähler-Dirac action in the interior does not reduce to its Chern-Simons analog
at light-like 3-surface.

(b) The problem is that the Chern-Simons term at the two sides of the light-like 3-surface
differs by factor

√
−1 coming from the ratio of

√
g4 factors which themselves approach

to zero: oOne would have the analog of dipole layer. This strongly suggests that one
should not include Chern-Simons term at all.

Suppose however that Chern-Simons terms are present at the two sides and αK is real so
that nothing goes through the horizon forming the analog of dipole layer. Both bosonic
and fermionic degrees of freedom for Euclidian and Minkowskian regions would decouple
completely but currents would flow to the analog of dipole layer. This is not physically
attractive.

The canonical momentum current and its super counterpart would give fermionic source
term ΓnΨint,± in the modified Dirac equation defined by Chern-Simons term at given
side ±: ± refers to Minkowskian/Euclidian part of the interior. The source term is
proportional to ΓnΨint,± and Γn is in principle mixture of M4 and CP2 gamma matrices
and therefore induces mixing of M4 chiralities and therefore also 3-D SUSY breaking.
It must be however emphasized that Γn is singular and one must be consider the limit
carefully also in the case that one has only continuity conditions. The limit is not
completely understood.

(c) If αK is complex there is coupling between the two regions and the simplest assumption
has been that there is no Chern-Simons term as action and one has just continuity
conditions for canonical momentum current and hits super counterpart.

The cautious conclusion is that 3-D Chern-Simons term and its fermionic counterpart are
absent.

4. What about the addition of fermions at string world sheets and interior of space-time surface
(D = 2 and D = 4). For instance, in the case of hadrons D = 2 excitations could correspond
to addition of quark in the interior of hadronic string implying additional states besides the
states obtained assuming only quarks at string ends. Let us consider the interior (D = 4).
For instance, inn the case of hadrons D = 2 excitations could correspond to addition of
quark in the interior of hadronic string implying additional states besides the states obtained
assuming only quarks at string ends. The smallness of cosmological constant implies that
the contribution to the four-momentum from interior should be rather small so that an
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interpretation in terms of broken SUSY might make sense. There would be mass m ∼ .03
eV per volume with size defined by the Compton scale ~/m. Note however that cosmological
constant has spectrum coming as inverse powers of prime so that also higher mass scales are
possible.

This interpretation might allow to understand the failure to find SUSY at LHC. Sparticles
could be obtained by adding interior right-handed neutrinos and antineutrinos to the particle
state. They could be also associated with the magnetic body of the particle. Since they do
not have color and weak interactions, SUSY is not badly broken. If the mass difference
between particle and sparticle is of order m = .03 eV characterizing dark energy density
ρvac, particle and sparticle could not be distinguished in higher energy physics at LHC since
it probes much shorter scales and sees only the particle. I have already earlier proposed a
variant of this mechanism but without SUSY breaking.

To discover SUSY one should do very low energy physics in the energy range m ∼ .03 eV
having same order of magnitude as thermal energy kT = 2.6×10−2 eV at room temperature
25 ◦C. One should be able to demonstrate experimentally the existence of sparticle with
mass differing by about m ∼ .03 eV from the mass of the particle (one cannot exclude
higher mass scales since Λ is expected to have spectrum). An interesting question is whether
the sparticles associated with standard fermions could give rise to Bose-Einstein condensates
whose existence in the length scale of large neutron is strongly suggested by TGD view about
living matter.

6.2.3 Imbedding space level

In GRT the description of gravitation involve only space-time and gravitational force is eliminated.
In TGD also imbedding space level is involved with the description [L22].

1. The incoming and outgoing states of particle reaction are labelled by the quantum numbers
associated with the isometries of the imbedding space and by the contributions of super-
symplectic generators and isometry generators to the quantum numbers. This follows from
the fact that the ground states of super-symplectic representations correspond to the modes
of imbedding space spinors fields. These quantum numbers appear in the S-matrix of QFT
limit too. In particular, color quantum numbers as angular momentum like quantum numbers
at fundamental level are transformed to spin-like quantum numbers at QFT limit.

2. In GRT the applications rely on Post-Newtonian approximation (PNA). This means that the
notion of gravitational force is brought to the theory although it has been eliminated from
the basic GRT. This is not simple. One could argue that there is genuine physics behind this
PNA and TGD suggests what this physics is.

At the level of space-time surfaces particles move along geodesic lines and in TGD minimal
surface equation states the generalization of the geodesic line property for 3-D particles. At
the imbedding space level gravitational interaction involves exchanges of four-momentum
and in principle of color quantum numbers too. Indeed, there is an exchange of classical
charges through the light-like 3-surfaces defining the boundaries of Euclidian regions defining
Euclidian regions as “lines” of generalized scattering diagrams. This however requires that
Kähler coupling strength is allowed to be complex (say correspond to zero of Riemann Zeta).
Hence in TGD also Newtonian view would be correct and needed.

6.3 Some questions about TGD

In Face Book I was made a question about general aspects of TGD. It was impossible to answer the
question with few lines and I decided to write a blog posting, which then gave rise to this section.
This text talks from different perspective about same topics as the article Can one apply Occams
razor as a general purpose debunking argument to TGD? [L20] trying o emphasize the simplicity
of the basic principles of TGD and of the resulting theory.
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6.3.1 In what aspects TGD extends other theory/theories of physics?

I will replace “extends” with “modifies” since TGD also simplifies in many respects. I shall restrict
the considerations to the ontological level which to my view is the really important level.

1. Space-time level is where TGD started from. Space-time as an abstract 4-geometry is re-
placed as space-time as 4-surface in M4 ×CP2 . In GRT space-time is small deformation of
Minkowski space.

In TGD both Relativity Principle (RP) of Special Relativity (SRT) and General Coordinate
Invariance (GCI) and Equivalence Principle (EP) of General Relativity hold true. In GRT
RP is given up and leads to the loss of conservation laws since Noether theorem cannot be
applied anymore: this is what led to the idea about space-time as surface in H. Strong form
of holography (SH) is a further principle reducing to strong form of GCI (SGCI).

2. TGD as a physical theory extends to a theory of consciousness and cognition. Observer as
something external to the Universe becomes part of physical system - the notion of self - and
quantum measurement theory which is the black sheet of quantum theory extends to a theory
of consciousness and also of cognition relying of p-adic physics as correlate for cognition. Also
quantum biology becomes part of fundamental physics and consciousness and life are seen as
basic elements of physical existence rather than something limited to brain.

One important aspect is a new view about time: experienced time and geometric time are
not one and same thing anymore although closely related. ZEO explains how the experienced
flow and its direction emerges. The prediction is that both arrows of time are possible and
that this plays central role in living matter.

3. p-Adic physics is a new element and an excellent candidate for a correlate of cognition. For
instance, imagination could be understood in terms of non-determinism of p-adic partial
differential equations for p-adic variants of space-time surfaces. p-Adic physics and fusion
of real and various p-adic physics to adelic physics provides fusion of physics of matter with
that of cognition in TGD inspired theory of cognition. This means a dramatic extension of
ordinary physics. Number Theoretical Universality states that in certain sense various p-adic
physics and real physics can be seen as extensions of physics based on algebraic extensions
of rationals (and also those generated by roots of e inducing finite-D extensions of p-adics).

4. Zero energy ontology (ZEO) in which so called causal diamonds (CDs, analogs Penrose
diagrams) can be seen as being forced by very simple condition: the volume action forced by
twistor lift of TGD must be finite. CD would represent the perceptive field defined by finite
volume of imbedding space H = M4 × CP2 .

ZEO implies that conservation laws formulated only in the scale of given CD do not anymore
fix select just single solution of field equations as in classical theory. Theories are strictly
speaking impossible to test in the old classical ontology. In ZEO testing is possible be
sequence of state function reductions giving information about zero energy states.

In principle transition between any two zero energy states - analogous to events specified by
the initial and final states of event - is in principle possible but Negentropy Maximization
Principle (NMP) as basic variational principle of state function reduction and of conscious-
ness restricts the possibilities by forcing generation of negentropy: the notion of negentropy
requires p-adic physics.

Zero energy states are quantum superpositions of classical time evolutions for 3-surfaces and
classical physics becomes exact part of quantum physics: in QFTs this is only the outcome
of stationary phase approximation. Path integral is replaced with well-defined functional
integral- not over all possible space-time surface but pairs of 3-surfaces at the ends of space-
time at opposite boundaries of CD.

ZEO leads to a theory of consciousness as quantum measurement theory in which observer
ceases to be outsider to the physical world. One also gets rid of the basic problem caused by
the conflict of the non-determinism of state function reduction with the determinism of the
unitary evolution. This is obviously an extension of ordinary physics.
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5. Hierarchy of Planck constants represents also an extension of quantum mechanics at QFT
limit. At fundamental level one actually has the standard value of h but at QFT limit one
has effective Planck constant heff/h = n, n = 1, 2, ... This generalizes quantum theory.
This scaling of h has a simple topological interpretation: space-time surface becomes n-fold
covering of itself and the action becomes n-multiple of the original which can be interpreted
as heff/h = n.

The most important applications are to biology, where quantum coherence could be under-
stood in terms of a large value of heff/h. The large n phases resembles the large N limit of
gauge theories with gauge couplings behaving as α ∝ 1/N used as a kind of mathematical
trick. Also gravitation is involved: heff is associated with the flux tubes mediating various
interactions (being analogs to wormholes in ER-EPR correspondence). In particular, one
can speak about hgr, which Nottale introduced originally and heff = hgr plays key role in
quantum biology according to TGD.

6.3.2 In what sense TGD is simplification/extension of existing theory?

1. Classical level: Space-time as 4-surface of H means a huge reduction in degrees of freedom.
There are only 4 field like variables - suitably chosen 4 coordinates of H = M4 × CP2 . All
classical gauge fields and gravitational field are fixed by the surface dynamics. There are no
primary gauge fields or gravitational fields nor any other fields in TGD Universe and they
appear only at the QFT limit [K7, K112, L24].

GRT limit would mean that many-sheeted space-time is replaced by single slightly curved
region of M4. The test particle - small particle like 3-surface - touching the sheets simulta-
neously experience sum of gravitational forces and gauge forces. It is natural to assume that
this superposition corresponds at QFT limit to the sum for the deviations of induced metrics
of space-time sheets from flat metric and sum of induce gauge potentials. These would define
the fields in standard model + GRT. At fundamental level effects rather than fields would
superpose. This is absolutely essential for the possibility of reducing huge number field like
degrees of freedom. One can obviously speak of emergence of various fields.

A further simplification is that only preferred extremals for which data coding for them are
reduced by SH to 2-D string like world sheets and partonic 2-surfaces are allowed. TGD
is almost like string model but space-time surfaces are necessary for understanding the fact
that experiments must be analyzed using classical 4-D physics. Things are extremely simple
at the level of single space-time sheet.

Complexity emerges from many-sheetedness. From these simple basic building bricks - min-
imal surface extremals of Kähler action (not the extremal property with respect to Kähler
action and volume term strongly suggested by the number theoretical vision plus analogs of
Super Virasoro conditions in initial data) - one can engineer space-time surfaces with arbi-
trarily complex topology - in all length scales. An extension of existing space-time concept
emerges. Extremely simple locally, extremely complex globally with topological information
added to the Maxwellian notion of fields (topological field quantization allowing to talk about
field identify of system/field body/magnetic body.

Another new element is the possibility of space-time regions with Euclidian signature of the
induced metric. These regions correspond to 4-D “lines” of general scattering diagrams.
Scattering diagrams has interpretation in terms of space-time geometry and topology.

2. The construction of quantum TGD using canonical quantization or path integral formalism
failed completely for Kähler action by its huge vacuum degeneracy. The presence of volume
term still suffers from complete failure of perturbation theory and extreme non-linearity.
This led to the notion of world of classical worlds (WCW) - roughly the space of 3-surfaces.
Essentially pairs of 3-surfaces at the boundaries of given CD connected by preferred extremals
of action realizing SH and SGCI.

The key principle is geometrization of the entire quantum theory, not only of classical
fields geometrized by space-time as surface vision. This requires geometrization of hermi-
tian conjugation and representation of imaginary unit geometrically. Kähler geometry for
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WCW [K34, K15, K110] makes this possible and is fixed once Kähler function defining Kähler
metric is known. Kähler action for a preferred extremal of Kähler action defining space-time
surface as an analog of Bohr orbit was the first guess but twistor lift forced to add volume
term having interpretation in terms of cosmological constant.

Already the geometrization of loop spaces demonstrated that the geometry - if it exists -
must have maximal symmetries (isometries). There are excellent reasons to expect that this
is true also in D = 3. Physics would be unique from its mathematical existence!

3. WCW has also spinor structure [K88, K110]. WCW spinors correspond to fermionic Fock
states using oscillator operators assignable to the induced spinor fields - free spinor fiels.
WCW gamma matrices are linear combinations of these oscillator operators and Fermi statis-
tics reduces to spinor geometry.

4. There is no quantization in TGD framework at the level of WCW [K14, L22]. The con-
struction of quantum states and S-matrix reduces to group theory by the huge symmetries
of WCW. Therefore zero energy states of Universe (or CD) correspond formally to classical
WCW spinor fields satisfying WCW Dirac equation analogous to Super Virasoro conditions
and defining representations for the Yangian generalization of the isometries of WCW (so
called super-symplectic group assignable to δM4

+×CP2. In ZEO stated are analogous to pairs
of initial and final states and the entanglement coefficients between positive and negative en-
ergy parts of zero energy states expected to be fixed by Yangian symmetry define scattering
matrix and have purely group theoretic interpretation. If this is true, entire dynamics would
reduce to group theory in ZEO.

6.3.3 What is the hypothetical applicability of the extension - in ener-
gies, sizes, masses etc?

TGD is a unified theory and is meant to apply in all scales. Usually the unifications rely on
reductionistic philosophy and try to reduce physics to Planck scale. Also super string models
tried this and failed: what happens at long length scales was completely unpredictable (landscape
catastrophe).

Many-sheeted space-time however forces to adopt fractal view. Universe would be analogous
to Mandelbrot fractal down to CP2 scale. This predicts scaled variants of say hadron physics
and electroweak physics. p-Adic length scale hypothesis and hierarchy of phases of matter with
heff/h = n interpreted as dark matter gives a quantitative realization of this view.

1. p-Adic physics shows itself also at the level of real physics [K100]. One ends up to the
vision that particle mass squared has thermal origin: the p-adic variant of particle mass
square is given as thermal mass squared given by p-adic thermodynamics mappable to real
mass squared by what I call canonical identification. p-Adic length scale hypothesis states
that preferred p-adic primes characterizing elementary particles correspond to primes near
to power of 2: p ' 2k. p-Adic length scale is proportional to p1/2.

This hypothesis is testable and it turns out that one can predict particle mass rather ac-
curately. This is highly non-trivial since the sensitivity to the integer k is exponential. So
called Mersenne primes turn out to be especially favoured. This part of theory was originally
inspired by the regularities of particle mass spectrum. I have developed arguments for why
the crucial p-adic length scale hypothesis - actually its generalization - should hold true. A
possible interpretation is that particles provide cognitive representations of themselves by
p-adic thermodynamics.

2. p-Adic length scale hypothesis leads also to consider the idea that particles could appear
as different p-adically scaled up variants. For instance, ordinary hadrons to which one can
assign Mersenne prime M107 = 2107−1 could have fractally scaled variants. M89 and MG,107

(Gaussian prime) would be two examples and there are indications at LHC for these scaled
up variants of hadron physics [K42, K43]. These fractal copies of hadron physics and also of
electroweak physics would correspond to extension of standard model.
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3. Dark matter hierarchy predicts zoomed up copies of various particles. The simplest assump-
tion is that masses are not changed in the zooming up. One can however consider that
binding energy scale scales non-trivially. The dark phases would emerge are quantum criti-
cality and give rise to the associated long range correlations (quantum lengths are typically
scaled up by heff/h = n).

6.3.4 What is the leading correction/contribution to physical effects due
to TGD onto particles, interactions, gravitation, cosmology?

1. Concerning particles I already mentioned the key predictions.

(a) The existence of scaled variants of various particles and entire branches of physics. The
fundamental quantum numbers are just standard model quantum numbers code by CP2

geometry.

(b) Particle families have topological description meaning that space-time topology would
be an essential element of particle physics [K12]. The genus of partonic 2-surfaces
(number of handles attached to sphere) is g = 0, 1, 2, ... and would give rise to family
replication. g < 2 partonic 2-surfaces have always global conformal symmetry Z2 and
this suggests that they give rise to elementary particles identifiable as bound states of g
handles. For g > 2 this symmetry is absent in the generic case which suggests that they
can be regarded as many-handle states with mass continuum rather than elementary
particles. 2-D anyonic systems could represent an example of this.

(c) A hierarchy of dynamical symmetries as remnants of super-symplectic symmetry how-
ever suggests itself [K14, K110]. The super-symplectic algebra possess infinite hierarchy
of isomorphic sub-algebras with conformal weights being n-multiples of for those for
the full algebra (fractal structure again possess also by ordinary conformal algebras).
The hypothesis is that sub-algebra specified by n and its commutator with full alge-
bra annihilate physical states and that corresponding classical Noether charges vanish.
This would imply that super-symplectic algebra reduces to finite-D Kac-Moody algebra
acting as dynamical symmetries. The connection with ADE hierarchy of Kac-Moody
algebras suggests itself. This would predict new physics. Condensed matter physics
comes in mind.

(d) Number theoretic vision suggests that Galois groups for the algebraic extensions of ratio-
nals act as dynamical symmetry groups. They would act on algebraic discretizations of
3-surfaces and space-time surfaces necessary to realize number theoretical universality.
This would be completely new physics.

2. Interactions would be mediated at QFT limit by standard model gauge fields and gravitons.
QFT limit however loses all information about many-sheetedness and there would be anoma-
lies reflecting this information loss. In many-sheeted space-time light can propagate along
several paths and the time taken to travel along light-like geodesic from A to B depends
on space-time sheet since the sheet is curved and warped. Neutrinos and gamma rays from
SN1987A arriving at different times would represent a possible example of this. It is quite
possible that the outer boundaries of even macroscopic objects correspond to boundaries
between Euclidian and Minkowskian regions at the space-time sheet of the object.

The failure of QFTs to describe bound states of say hydrogen atom could be second example:
many-sheetedness and identification of bound states as single connected surface formed by
proton and electron would be essential and taken into account in wave mechanical description
but not in QFT description.

3. Concerning gravitation the basic outcome is that by number theoretical vision all preferred
extremals are extremals of both Kähler action and volume term. This is true for all known
extremals what happens if one introduces the analog of Kähler form in M4 is an open
question) [L24].

Minimal surfaces carrying no Kähler field would be the basic model for gravitating system.
Minimal surface equation are non-linear generalization of d’Alembert equation with gravi-
tational self-coupling to induce gravitational metric. In static case one has analog for the
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Laplace equation of Newtonian gravity. One obtains analog of gravitational radiation as
“massless extremals” and also the analog of spherically symmetric stationary metric.

Blackholes would be modified. Besides Schwartschild horizon which would differ from its
GRT version there would be horizon where signature changes. This would give rise to a layer
structure at the surface of blackhole [L24].

4. Concerning cosmology the hypothesis has been that RW cosmologies at QFT limit can be
modelled as vacuum extremals of Kä hler action. This is admittedly ad hoc assumption
inspired by the idea that one has infinitely long p-adic length scale so that cosmological
constant behaving like 1/p as function of p-adic length scale assignable with volume term in
action vanishes and leaves only Kähler action [?]grprebio. This would predict that cosmology
with critical is specified by a single parameter - its duration as also over-critical cosmology
[K67]. Only sub-critical cosmologies have infinite duration.

One can look at the situation also at the fundamental level. The addition of volume term
implies that the only RW cosmology realizable as minimal surface is future light-cone of M4.
Empty cosmology which predicts non-trivial slightly too small redshift just due to the fact
that linear Minkowski time is replaced with light-cone proper time constant for the hyper-
boloids of M4

+. Locally these space-time surfaces are however deformed by the addition of
topologically condensed 3-surfaces representing matter. This gives rise to additional grav-
itational redshift and the net cosmological redshift. This also explains why astrophysical
objects do not participate in cosmic expansion but only comove. They would have finite size
and almost Minkowski metric.

The gravitational redshift would be basically a kinematical effect. The energy and momentum
of photons arriving from source would be conserved but the tangent space of observer would
be Lorentz-boosted with respect to source and this would course redshift.

The very early cosmology could be seen as gas of arbitrarily long cosmic strings in H (or M4)
with 2-D M4 projection [K67, K108]. Horizon would be infinite and TGD suggests strongly
that large values of heff/h makes possible long range quantum correlations. The phase
transition leading to generation of space-time sheets with 4-D M4 projection would generate
many-sheeted space-time giving rise to GRT space-time at QFT limit. This phase transition
would be the counterpart of the inflationary period and radiation would be generated in the
decay of cosmic string energy to particles.
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Chapter 7

Construction of Quantum Theory:
Symmetries

7.1 Introduction

This chapter provides a summary about the role of symmetries in the construction of quantum
TGD. The discussions are based on the general vision that quantum states of the Universe cor-
respond to the modes of classical spinor fields in the configuration space - “world of the clas-
sical worlds” (WCW) - identified as the infinite-dimensional WCW of light-like 3-surfaces of
H = M4 ×CP2 (more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr
orbits). The following topics are discussed on basis of this vision.

7.1.1 Physics As Infinite-Dimensional Kähler Geometry

1. The basic idea is that it is possible to reduce quantum theory to WCW geometry and spinor
structure. The geometrization of loop spaces inspires the idea that the mere existence of
Riemann connection fixes WCW Kähler geometry uniquely. Accordingly, WCW can be
regarded as a union of infinite-dimensional symmetric spaces labeled by zero modes labeling
classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the WCW geometry deriving from the light-likeness of 3-surfaces and
from the special conformal properties of the boundary of 4-D light-cone would guarantee the
maximal isometry group necessary for the symmetric space property. Quantum criticality is
the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of TGD
uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution of
coupling constants.

2. WCW spinors correspond to Fock states and anti-commutation relations for fermionic os-
cillator operators correspond to anti-commutation relations for the gamma matrices of the
WCW. WCW gamma matrices contracted with Killing vector fields give rise to a super-
symplectic algebra which together with Hamiltonians of the WCW forms what I have used
to call super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have
no electroweak couplings. In the case of hadrons super-symplectic quanta correspond to what
has been identified as non-perturbative sector of QCD: they define TGD correlate for the
degrees of freedom assignable to hadronic strings. They are responsible for the most of the
mass of hadron and resolve spin puzzle of proton.

3. Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to
light-like 3-surfaces and together these algebras extend the conformal symmetries of string
models to dynamical conformal symmetries instead of mere gauge symmetries. The con-
struction of the representations of these symmetries is one of the main challenges of quantum
TGD.

294
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4. Modular invariance is one aspect of conformal symmetries and plays a key role in the under-
standing of elementary particle vacuum functionals and the description of family replication
phenomenon in terms of the topology of partonic 2-surfaces.

5. Kähler-Dirac equation gives also rise to a hierarchy super-conformal algebras assignable to
zero modes. These algebras follow from the existence of conserved fermionic currents. The
corresponding deformations of the space-time surface correspond to vanishing second varia-
tions of Kähler action and provide a realization of quantum criticality. This led to a break-
through in the understanding of the Kähler-Dirac action via the addition of a measurement
interaction term to the action allowing to obtain among other things stringy propagator
and the coding of quantum numbers of super-conformal representations to the geometry of
space-time surfaces required by quantum classical correspondence.

A second breakthrough came from the realization that the well-definedness of em charge
forces in the generic situation localization of the modes to 2- surfaces at which induced W
fields and also Z0 fields above weak scale vanish.

6. The effective 2-dimensionality of the space-like 3-surfaces realizing quantum holography can
be formulated as a symmetry stating that the replacement of wormhole throat by any light-
like 3-surfaces parallel to it in the slicing of the space-time sheet induces only a gauge trans-
formation of WCW Kähler function adding to it a real part of a holomorphic function of
complex coordinate of WCW depending also on zero modes. This means that the Kähler
metric of WCW remains invariant. It is also postulated that measurement interaction added
to the Kähler-Dirac action induces similar gauge symmetry.

7. The study of the Kähler-Dirac equation leads to a detailed identification of super charges of
the super-conformal algebras relevant for TGD [K97]: these results represent the most recent
layer in the development of ideas about supersymmetry in TGD Universe. Whereas many
considerations related to supersymmetry represented earlier rely on general arguments, the
results deriving from the Kähler-Dirac equation are rather concrete and clarify the crucial
role of the right-handed neutrino in TGD based realization of super-conformal symmetries.
N = 1 SUSY- now almost excluded at LHC - is not possible in TGD because it requires
Majorana spinors. AlsoN = 2 variant of the standard space-time SUSY seems to be excluded
in TGD Universe. Fermionic oscillator operators for the induced spinor fields restricted to
2-D surfaces however generate large N SUSY and super-conformal algebra and the modes of
right-handed neutrino its 4-D version.

7.1.2 P-Adic Physics As Physics Of Cognition

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of ele-
mentary particle masses using only super-conformal symmetries and p-adic thermodynamics. The
need to fuse real physics and various p-adic physics to single coherent whole led to a generalization
of the notion of number obtained by gluing together reals and p-adics together along common
rationals and algebraics. The interpretation of p-adic space-time sheets is as correlates for cogni-
tion. p-Adic and real space-time sheets intersect along common rationals and algebraics and the
subset of these points defines what I call number theoretic braid in terms of which both WCW
geometry and S-matrix elements should be expressible. Thus one would obtain number theoretical
discretization, which involves no ad hoc elements and is inherent to the physics of TGD.

The original idea was that the notion of number theoretic braid could pose strong number
theoretic conditions on physics just as p-adic thermodynamics poses on elementary particle mass
spectrum. A practically oriented physicist would argue that general braids must be allowed if
one wants to calculate something and that number theoretic braids represent only the intersection
between the real and various p-adic physics. He could also insist that at the level of WCW
various sectors must be realized in a more abstract manner - say as hierarchies of polynomials
with coefficients belonging to various extensions or rationals so that one can speak about surfaces
common to real and various p-adic sectors. In this view the fusion of various physics would be
analogous to the completion of rationals to various number fields.

Perhaps the most dramatic implication relates to the fact that points, which are p-adically
infinitesimally close to each other, are infinitely distant in the real sense (recall that real and p-adic
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imbedding spaces are glued together along rational imbedding space points). This means that any
open set of p-adic space-time sheet is discrete and of infinite extension in the real sense. This
means that cognition is a cosmic phenomenon and involves always discretization from the point
of view of the real topology. The testable physical implication of effective p-adic topology of real
space-time sheets is p-adic fractality meaning characteristic long range correlations combined with
short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime or possibly
several of them. The classical non-determinism of Kähler action should correspond to p-adic non-
determinism for some prime(s) p in the sense that the effective topology of the real space-time
sheet is p-adic in some length scale range. p-Adic space-time sheets with same prime should have
many common rational points with the real space-time and be easily transformable to the real
space-time sheet in quantum jump representing intention-to-action transformation. The concrete
model for the transformation of intention to action leads to a series of highly non-trivial number
theoretical conjectures assuming that the extensions of p-adics involved are finite-dimensional and
can contain also transcendentals.

An ideal realization of the space-time sheet as a cognitive representation results if the CP2

coordinates as functions of M4
+ coordinates have the same functional form for reals and various

p-adic number fields and that these surfaces have discrete subset of rational numbers with upper
and lower length scale cutoffs as common. The hierarchical structure of cognition inspires the idea
that S-matrices form a hierarchy labeled by primes p and the dimensions of algebraic extensions.

The number-theoretic hierarchy of extensions of rationals appears also at the level of WCW
spinor fields and allows to replace the notion of entanglement entropy based on Shannon entropy
with its number theoretic counterpart having also negative values in which case one can speak about
genuine information. In this case case entanglement is stable against Negentropy Maximization
Principle stating that entanglement entropy is minimized in the self measurement and can be
regarded as bound state entanglement. Bound state entanglement makes possible macro-temporal
quantum coherence. One can say that rationals and their finite-dimensional extensions define
islands of order in the chaos of continua and that life and intelligence correspond to these islands.

TGD inspired theory of consciousness and number theoretic considerations inspired for years
ago the notion of infinite primes [K72]. It came as a surprise, that this notion might have direct
relevance for the understanding of mathematical cognition. The idea is very simple. There is
infinite hierarchy of infinite rationals having real norm one but different but finite p-adic norms.
Thus single real number (complex number, (hyper-)quaternion, (hyper-)octonion) corresponds to
an algebraically infinite-dimensional space of numbers equivalent in the sense of real topology.
Space-time and imbedding space points become infinitely structured and single space-time point
would represent the Platonia of mathematical ideas. This structure would be completely invisible
at the level of real physics but would be crucial for mathematical cognition and explain why we
are able to imagine also those mathematical structures which do not exist physically. Space-time
could be also regarded as an algebraic hologram. The connection with Brahman=Atman idea is
also obvious.

7.1.3 Hierarchy Of Planck Constants And Dark Matter Hierarchy

The realization for the hierarchy of Planck constants proposed as a solution to the dark matter
puzzles leads to a profound generalization of quantum TGD through a generalization of the notion
of imbedding space to characterize quantum criticality. The resulting space has a book like struc-
ture with various almost-copies of the imbedding space representing the pages of the book meeting
at quantum critical sub-manifolds. A particular page of the book can be seen as an n-fold singular
covering or factor space of CP2 or of a causal diamond (CD ) of M4 defined as an intersection of the
future and past directed light-cones. Therefore the cyclic groups Zn appear as discrete symmetry
groups.

The original intuition was the the space-time would be n-sheeted for heff = n. Quantum
criticality expected on basis of the vacuum degeneracy of Kähler action suggests that conformal
symmetries act as critical deformations respecting the light-likeness of partonic orbits at which the
signature of the induced metric changes from Minkowskian to Euclidian. Therefore one would have
n conformal equivalence classes of physically equivalent space-time sheets. A hierarchy of breakings
of conformal symmetry is expected on basis of ordinary catastrophe theory. These breakings would
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correspond to the hierarchy defined by the sub-algebras of conformal algebra or associated algebra
for which conformal weights are divisible by n. This defines infinite number of inclusion hierarchies
.. ⊂ C(n1) ⊂ C(n3)... such that ni+1 divides ni. These hierarchies could correspond to inclusion
hierarchies of hyper-finite factors and conformal algebra acting as gauge transformations would
naturally define the notion of finite measurement resolution.

This topic will not be discussed in this chapter since it is discussed in earlier chapter [K102].

7.1.4 Number Theoretical Symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical symme-
tries are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids can be as-
signed with the roots of a polynomial with suggests the interpretation corresponding Galois
groups as purely number theoretical symmetries of quantum TGD. Galois groups are sub-
groups of the permutation group S∞ of infinitely manner objects acting as the Galois group
of algebraic numbers. The group algebra of S∞ is HFF which can be mapped to the HFF
defined by WCW spinors. This picture suggest a number theoretical gauge invariance stating
that S∞ acts as a gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented as diagonal groups
of G×G× .... of the completion of S∞.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields, actu-
ally their complexifications. In particular, SU(3) acts as subgroup of octonion automorphisms
leaving invariant preferred imaginary unit. If space-time surfaces are hyper-quaternionic
(meaning that the octonionic counterparts of the Kähler-Dirac gamma matrices span com-
plex quaternionic sub-algebra of octonions) and contain at each point a preferred plane M2

of M4, one ends up with M8 − H duality stating that space-time surfaces can be equiv-
alently regarded as surfaces in M8 or M4 × CP2. One can actually generalize M2 to a
two-dimensional Minkowskian sub-manifold of M4. One ends up with quantum TGD by
considering associative sub-algebras of the local octonionic Clifford algebra of M8 or H. so
that TGD could be seen as a generalized number theory.

This idea will not be discussed in this chapter since it has better place in the book about
physics as generalized number theory [K71].

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L12].

7.2 Symmetries

The most general expectation is that WCW can be regarded as a union of coset spaces which are
infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i).

Index i labels 3-topology and zero modes. The group G, which can depend on 3-surface, can
be identified as a subgroup of diffeomorphisms of δM4

+×CP2 and H must contain as its subgroup
a group, whose action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent
space of WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow
complexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course
understand what “preferred” means.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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7.2.1 General Coordinate Invariance And Generalized Quantum Grav-
itational Holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces to
the geometry of classical spinor fields in the infinite-dimensional configuration space of 3-surfaces
of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum theory
and its geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded
into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler
function reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on δM4

+ × CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of
Y 3 at X4(Y 3) Kähler function would have the same value so that Diff4 invariance and degeneracy
would be the outcome. The proposal was that the preferred extremals are absolute minima of
Kähler action.

This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said.

2. It has also become obvious that the gigantic symmetries associated with δM4
± × CP2 ⊂

CD × CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of WCW to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this
chapter restricted to δM4

+×CP2 generalize almost trivially. This option is beautiful because
the center of mass degrees of freedom associated with the different sectors of CH would
correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface
is unique among all its Diff4 translates. This also allows physically preferred “gauge fixing” allowing
to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of
the space-time sheet must define the preferred 3-surface X3

l .
The realization of this vision means a considerable mathematical challenge. The effective

metric 2-dimensionality of 3-dimensional light-like surfaces X3
l of M4 implies generalized conformal

and symplectic symmetries allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

7.2.2 Light Like 3-D Causal Determinants And Effective2-Dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic ex-

amples are boundaries and elementary particle horizons at which Minkowskian signature of the
induced metric transforms to Euclidian one. This brings in a second conformal symmetry (see
Fig. 7.1 ) related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry is
identifiable as TGD counterpart of the Kac Moody symmetry of string models. The challenge is
to understand the relationship of this symmetry to WCW geometry and the interaction between
the two conformal symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.
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Figure 7.1: Conformal symmetry preserves angles in complex plane

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l )∩CD×CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kähler form of δM4

± × CP2 - allows identification as a coset space obtained
by dividing the symplectic group of δM4

± × CP2 with Kac-Moody group, whose generators
vanish at X2 = X3

l × δM4
±×CP2. One can say that quantum fluctuating degrees of freedom

in a very concrete sense correspond to the local variant of S2 × CP2.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like

radial direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine
WCW geometry. This implies that the relevant data is contained to their intersection X2 at least
for finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving
light-likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-
CD: s brings in improved measurement resolution and means also that effective 2-dimensionality
is realized in the scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. What was
regarded originally as a victory was that it simplifies dramatically the earlier formulas for WCW
metric involving 3-dimensional integrals over X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional
integrals. One can of course criticize so strong form of effective 2-dimensionality as unphysical. As
often happens, the later progress led to the comeback of the formulation involving 3-surfaces! The
stringy picture implied by the solutions of Kähler-Dirac action led to the 3-D picture with effective
2-dimensionality realized in terms of super conformal symmetries.

7.2.3 Magic Properties Of Light Cone Boundary And Isometries OfWCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kähler structure. Kähler structure is not unique: possible Kähler structures of light cone
boundary are paramet3rized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the
isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical 3-momentum
assigned to X4(Y 3) defined as a preferred extremum of Kähler action, fixes the choice of the
complex structure uniquely. Therefore group theoretical approach and the approach based on
Kähler action complement each other.
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1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light
cone boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes local-

ized with respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic

structure.

Hence any function of δM4
+ × CP2 would serve as a Hamiltonian transformation acting in

both CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary

local gauge transformations. This group leaves the symplectic form of δM4
+ × CP2, defined

as the sum of light cone and CP2 symplectic forms, invariant. The group of symplectic
transformations of δM4

+ × CP2 is a good candidate for the isometry group of WCW .

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the
symplectic transformations of CP2, CP2 symplectic transformations wiykd correspond to
zero modes having zero norm in the Kähler metric of WCW . This does not make sense since
symplectic transformations of δM4 × CP2 actually parameterize the quantum fluctuation
degrees of freedom.

3. The groups G and H, and thus WCW itself, should inherit the complex structure of the
light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

7.2.4 Symplectic Transformations Of ∆M4
+×CP2 As Isometries Of WCW

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplectic

transformations of the WCW acting as isometries. There are however deep differences with respect
to the Kac Moody algebras.

1. The conformal algebra of WCW is gigantic when compared with the Virasoro + Kac Moody
algebras of string models as is clear from the fact that the Lie-algebra generator of a sym-
plectic transformation of δM4

+ × CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transforma-

tion of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the

notion of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+×CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
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and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

7.2.5 Does The Symmetric Space Property Correspond To Coset Con-
struction For Super Virasoro Algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (7.2.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

1. WCW geometry allows two super-conformal symmetries. The first one corresponds to super-
symplectic transformations acting at the level of imbedding space. The second one corre-
sponds to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respect-
ing their light-likeness.

2. It took considerable amount of trials and errors to realize that both symplectic and Kac-
Moody algebras are needed to generate the entire isometry algebra g. h is sub-algebra of
this extended algebra. In general case the elements of both algebras are non-vanishing at the
prefered partonic 2-surfaces considered.

3. Strong form of holography implies that transformations located to the interior of space-like
3-surface and light-like partonic orbit define zero modes and act like gauge symmetries. The
physically non-trivial transformations correspond to transformations acting non-trivially at
space-like 3-surfaces. g corresponds to the algebra generated by these transformations. For
preferred p3-surface - identified as (say) maximum of Kähler function - h corresponds to the
elements of this algebra reducing to infinitesimal diffeomorphisms.

4. Coset representation has five tensor factors as required by p-adic mass calculations and
they correspond to color algebra, to two factors from electroweak U(2), to one factor from
transversal M4 translations and one factor from symplectic algebra (note that also Hamilto-
nians which are products of δM4

+ and CP2 Hamiltonians are possible.

5. The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H
(analogous to CP2 = SU(3)/U(2)) suggests that one can assign super-Virasoro algebras
with G and H as a generalized coset representation for g and h so that the differences of the
generators of two super Virasoro algebras annihilate the physical states for coset represen-
tations. This obviously generalizes Goddard-Olive-Kent construction [A61]. It however does
not imply Equivalence Principle as believed for a long time.

7.2.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

Concerning the interpretation of the relationship between symplectic and Kac-Moody algebra
there are some poorly understood points, which directly relate to what one means with precise
interpretation of strong form of holography.

The basic building bricks are symplectic algebra of δCD (this includes CP2 besides light-cone
boundary) and Kac-Moody algebra assignable to the isometries of δCD [K15]. It seems however
that the longheld view about the role of Kac-Moody algebra must be modified. Also the earlier
realization of super-Hamiltonians and Hamiltonians seems too naive.

1. I have been accustomed to think that Kac-Moody algebra could be regarded as a sub-algebra
of symplectic algebra. p-Adic mass calculations however requires five tensor factors for the
coset representation of Super Virasoro algebra naturally assigned to the coset structure G/H
of a sector of WCW with fixed zero modes. Therefore Kac-Moody algebra cannot be regarded
as a sub-algebra of symplectic algebra giving only single tensor factor and thus inconsistent
with interpretation of p-adic mass calculations.
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2. The localization of Kac-Moody algebra generators with respect to the internal coordinates
of light-like 3-surface taking the role of complex coordinate z in conformal field theory is
also questionable: the most economical option relies on localization with respect to light-like
radial coordinate of light-cone boundary as in the case of symplectic algebra. Kac-Moody
algebra cannot be however sub-algebra of the symplectic algebra assigned with covariantly
constant right-handed neutrino in the earlier approach.

3. Right-handed covariantly constant neutrino as a generator of super symmetries plays a key
role in the earlier construction of symplectic super-Hamiltonians. What raises doubts is that
other spinor modes - both those of right-handed neutrino and electro-weakly charged spinor
modes - are absent. All spinor modes should be present and thus provide direct mapping
from WCW geometry to WCW spinor fields in accordance with super-symmetry and the
general idea that WCW geometry is coded by WCW spinor fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of the induced
spinor field which carry electroweak quantum numbers. If would be natural that the modes
of right-handed neutrino having no weak and color interactions would generate the huge
symplectic algebra of symmetries and that the modes of fermions with electroweak charges
generate much smaller Kac-Moody algebra.

4. The dynamics of Kähler action and Kähler-Dirac action action are invisible in the earlier
construction. This suggests that the definition of WCW Hamiltonians is too simplistic. The
proposal is that the conserved super charges derivable as Noether charges and identifiable
as super-Hamiltonians define WCW metric and Hamiltonians as their anti-commutators.
Spinor modes would become labels of Hamiltonians and WCW geometry relates directly to
the dynamics of elementary particles.

5. Note that light-cone boundary δM4
+ = S2×R+ allows infinite-dimensional group of isometries

consisting of conformal transformation of the sphere S2 with conformal scaling compensated
by an S2 local scaling or the light-like radial coordinate of R+. These isometries contain as
a subgroup symplectic isometries and could act as gauge symmetries of the theory.

Gauge symmetry property means that the Kähler metric of the WCW is same for all choices
of preferred X3. Kähler function would however differ by a real part of a holomorphic function of
WCW coordinates for different choices of preferred X3.

Strong form of holography (or strong form of GCI) implies that one can take either space-like
or light-like 3-surfaces as basic objects and consider the action the super-symplectic algebra also
for the light-like 3-surfaces. This is possible by just parallelly translating the light-like boundary of
CD so that one obtains slicing of CD by these light-like 3-surfaces. The equality of four-momenta
associated with the two super-conformal representations might allow interpretation in terms of
equivalence of gravitational and inertial four-momenta.

7.2.7 Comparison Of TGD And Stringy Views About Super-Conformal
Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison with
the conformal symmetries of super string models.

Basic differences between the realization of super conformal symmetries in TGD and
in super-string models

The realization super conformal symmetries in TGD framework differs from that in string models
in several fundamental aspects.

1. In TGD framework super-symmetry generators acting as configuration space gamma matri-
ces carry either lepton or quark number. Majorana condition required by the hermiticity
of super generators which is crucial for super string models would be in conflict with the
conservation of baryon and lepton numbers and is avoided. This is made possible by the
realization of bosonic generators represented as Hamiltonians of X2-local symplectic trans-
formations rather than vector fields generating them [K15]. This kind of representation
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applies also in Kac-Moody sector since the local transversal isometries localized in X3
l and

respecting light-likeness condition can be regarded as X2 local symplectic transformations,
whose Hamiltonians generate also isometries. Localization is not complete: the functions of
X2 coordinates multiplying symplectic and Kac-Moody generators are functions of the sym-
plectic invariant J = εµνJµν so that effective one-dimensionality results but in different sense
than in conformal field theories. This realization of super symmetries is what distinguishes
between TGD and super string models and leads to a totally different physical interpretation
of super-conformal symmetries. The fermionic representations of super-symplectic and super
Kac-Moody generators can be identified as Noether charges in standard manner.

2. A long-standing problem of quantum TGD was that stringy propagator 1/G does not make
sense if G carries fermion number. The progress in the understanding of second quantization
of the modified Dirac operator made it however possible to identify the counterpart of G as
a c-number valued operator and interpret it as different representation of G [K13].

3. The notion of super-space is not needed at all since Hamiltonians rather than vector fields
represent bosonic generators, no super-variant of geometry is needed. The distinction be-
tween Ramond and N-S representations important for N = 1 super-conformal symmetry and
allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2 super-conformal
symmetry it is already possible to generate spectral flow transforming these Ramond and
N-S representations to each other (Gn is not Hermitian anymore).

4. If Kähler action defines the Kähler-Dirac operator, the number of spinor modes could be
finite. One must be here somewhat cautious since bound state in the Coulomb potential
associated with electric part of induced electro-weak gauge field might give rise to an infinite
number of bound states which eigenvalues converging to a fixed eigenvalue (as in the case of
hydrogen atom). Finite number of generalized eigenmodes means that the representations
of super-conformal algebras reduces to finite-dimensional ones in TGD framework. Also the
notion of number theoretic braid indeed implies this. The physical interpretation would be in
terms of finite measurement resolution. If Kähler action is complexified to include imaginary
part defined by CP breaking instanton term, the number of stringy mass square eigenvalues
assignable to the spinor modes becomes infinite since conformal excitations are possible. This
means breakdown of exact holography and effective 2-dimensionality of 3-surfaces. It seems
that the inclusion of instanton term is necessary for several reasons. The notion of finite
measurement resolution forces conformal cutoff also now. There are arguments suggesting
that only the modes with vanishing conformal weight contribute to the Dirac determinant
defining vacuum functional identified as exponent of Kähler function in turn identified as
Kähler action for its preferred extremal.

5. What makes spinor field mode a generator of gauge super-symmetry is that is c-number and
not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom. If the
number of eigen modes of DK(X2) is indeed finite means that most of spinor field modes
represent super gauge degrees of freedom.

The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro rep-
resentations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason is that
WCW gamma matrices possess a well defined fermion number. The hermiticity of the WCW
gamma matrices Γ and of the Super Virasoro current G could be achieved by posing Majorana
conditions on the second quantized H-spinors. Majorana conditions can be however realized only
for space-time dimension D mod 8 = 2 so that super string type approach does not work in TGD
context. This kind of conditions would also lead to the non-conservation of baryon and lepton
numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the
general situation corresponds to super symmetric operators S, S†, whose anti-commutator is Hamil-
tonian: {S, S†} = H. One can define a simpler system by considering a Hermitian operator
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S0 = S + S† satisfying S2
0 = H: this relation is completely analogous to the ordinary Super Vi-

rasoro relation GG = L. On basis of this observation it is clear that one should replace ordinary
Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the doubling
of super generators and super generators carry U(1) charge having an interpretation as fermion
number in recent context. The so called short representations of N = 2 super-symmetry algebra
can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix Γn, n > 0 corresponds to an operator creating fermion whereas Γn,
n < 0 annihilates anti-fermion. For the Hermitian conjugate Γ†n the roles of fermion and anti-
fermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian
conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian and
are constructed as bilinears of the gamma matrices and their Hermitian conjugates and, just like
conserved currents of the ordinary quantum theory, contain parts proportional to a†a, b†b, a†b† and
ab (a and b refer to fermionic and anti-fermionic oscillator operators). The commutators between
Kac Moody generators and Kac Moody generators and gamma matrices remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0 annihilates anti-
fermions. Analogous result holds for G†n. Virasoro generators remain Hermitian and decompose
just like Kac Moody generators do. Thus the usual anti-commutation relations for the super
Virasoro generators must be replaced with anti-commutations between Gm and G†n and one has

{Gm, G†n} = 2Lm+n + c
3 (m2 − 1

4 )δm,−n ,
{Gm, Gn} = 0 ,
{G†m, G†n} = 0 .

(7.2.2)

The commutators of type [Lm, Ln] are not changed. Same applies to the purely kinematical
commutators between Ln and Gm/G†m.

The Super Virasoro conditions satisfied by the physical states are as before in case of Ln
whereas the conditions for Gn are doubled to those of Gn, n < 0 and G†n, n > 0.

What could be the counterparts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the
complex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine two
counterparts of the stringy coordinate z in TGD framework.

1. Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the sense
that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than being

completely free [K15]. Thus the real variable J replaces complex (or hyper-complex) stringy
coordinate and effective 1-dimensionality holds true also now but in different sense than for
conformal field theories.

2. The slicing of X4 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number
theoretical compactification implies string-parton duality and involves the super conformal
fermionic gauge symmetries associated with the coordinates u and w in the dual dimensional
reductions to stringy and partonic dynamics. These coordinates define the natural analogs of
stringy coordinate. The effective reduction of X3

l to braid by finite measurement resolution
implies the effective reduction of X4(X3) to string world sheet. This implies quite strong
resemblance with string model. The realization that spinor modes with well- define em
charge must be localized at string world sheets makes the connection with strings even more
explicit [K88].

One can understand how Equivalence Principle emerges in TGD framework at space-time
level when many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/manysheeted.
jpg or Fig. 9 in the appendix of this book) is replaced with effective space-time lumping to-
gether the space-time sheets to M4 endowed with effective metric. The quantum counterpart
EP has most feasible interpretation in terms of Quantum Classical Correspondence (QCC):
the conserved Kähler four-momentum equals to an eigenvalue of conserved Kähler-Dirac
four-momentum acting as operator.

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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3. The conformal fields of string model would reside at X2 or Y 2 depending on which description
one uses and complex (hyper-complex) string coordinate would be identified accordingly. Y 2

could be fixed as a union of stringy world sheets having the strands of number theoretic braids
as its ends. The proposed definition of braids is unique and characterizes finite measurement
resolution at space-time level. X2 could be fixed uniquely as the intersection of X3

l (the
light-like 3-surface at which induced metric of space-time surface changes its signature) with
δM4
± × CP2. Clearly, wormhole throats X3

l would take the role of branes and would be
connected by string world sheets defined by number theoretic braids.

4. An alternative identification for TGD parts of conformal fields is inspired by M8−H duality.
Conformal fields would be fields in WCW . The counterpart of z coordinate could be the
hyper-octonionic M8 coordinate m appearing as argument in the Laurent series of WCW
Clifford algebra elements. m would characterize the position of the tip of CD and the fractal
hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and thus inclusions
of hyper-finite factors of type II1. Reduction to hyper-quaternionic field -that is field in M4

center of mass degrees of freedom- would be needed to obtained associativity. The arguments
m at various level might correspond to arguments of N-point function in quantum field theory.

7.3 WCW As A Union Of Homogenous Or Symmetric Spaces

The physical interpretation and detailed mathematical understanding of super-conformal sym-
metries has developed rather slowly and has involved several side tracks. In the following I try
to summarize the basic picture with minimal amount of formulas with the understanding that
the statement “Noether charge associated with geometrically realized Kac-Moody symmetry” is
enough for the reader to write down the needed formula explicitly. Formula oriented reader might
deny the value of the approach giving weight to principles. My personal experience is that piles of
formulas too often hide the lack of real understanding.

In the following the vision about WCW as union of coset spaces is discussed in more detail.

7.3.1 Basic Vision

The basic view about coset space construction for WCW has not changed.

1. The idea about WCW as a union of coset spaces G/H labelled by zero modes is extremely at-
tractive. The structure of homogenous space [A7] (http://tinyurl.com/y7u2t8jo ) means
at Lie algebra level the decomposition g = h⊕t to sub-Lie-algebra h and its complement t such
that [h, t] ⊂ t holds true. Homogeneous spaces have G as its isometries. For symmetric space
the additional condition [t, t] ⊂ h holds true and implies the existence of involution changing
at the Lie algebra level the sign of elements of t and leaving the elements of h invariant. The
assumption about the structure of symmetric space [A22] (http://tinyurl.com/ycouv7uh )
implying covariantly constant curvature tensor is attractive in infinite-dimensional case since
it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP2, which is sym-
metric space A particular choice of h corresponds to Lie-algebra elements realized as Killing
vector fields which vanish at particular point of WCW and thus leave 3-surface invariant.
A preferred choice for this point is as maximum or minimum of Kähler function. For this
3-surface the Hamiltonians of h should be stationary. If symmetric space property holds
true then commutators of [t, t] also vanish at the minimum/maximum. Note that Euclidian
signature for the metric of WCW requires that Kähler function can have only maximum or
minimum for given zero modes.

2. The basic objection against TGD is that one cannot use the powerful canonical quantization
using the phase space associated with configuration space - now WCW . The reason is the
extreme non-linearity of the Kähler action and its huge vacuum degeneracy, which do not
allow the construction of Hamiltonian formalism. Symplectic and Kähler structure must be
realized at the level of WCW . In particular, Hamiltonians must be represented in completely

http://tinyurl.com/y7u2t8jo
http://tinyurl.com/ycouv7uh
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new manner. The key idea is to construct WCW Hamiltonians as anti-commutators of super-
Hamiltonians defining the contractions of WCW gamma matrices with corresponding Killing
vector fields and therefore defining the matrix elements of WCW metric in the tangent
vector basis defined by Killing vector fields. Super-symmetry therefre gives hopes about
constructing quantum theory in which only induced spinor fields are second quantized and
imbedding space coordinates are treated purely classically.

3. It is important to understand the difference between symmetries and isometries assigned to
the Kähler function. Symmetries of Kähler function do not affect it. The symmetries of
Kähler action are also symmetries of Kähler action because Kähler function is Kähler action
for a preferred extremal (here there have been a lot of confusion). Isometries leave invariant
only the quadratic form defined by Kähler metric gMN = ∂M∂LK but not Kähler function
in general. For G/H decomposition G represents isometries and H both isometries and
symmetries of Kähler function.

CP2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler function
invariant since it depends on the U(2) invariant radial coordinate r of CP2. The origin r = 0
is left invariant by U(2) but for r > 0 U(2) performs a rotation at r = constant 3-sphere.
This simple picture helps to understand what happens at the level of WCW .

How to then distinguish between symmetries and isometries? A natural guess is that one
obtains also for the isometries Noether charges but the vanishing of boundary terms at spa-
tial infinity crucial in the argument leading to Noether theorem as ∆S = ∆Q = 0 does not
hold true anymore and one obtains charges which are not conserved anymore. The symme-
try breaking contributions would now come from effective boundaries defined by wormhole
throats at which the induce metric changes its signature from Minkowskian to Euclidian. A
more delicate situation is in which first order contribution to ∆S vanishes and therefore also
∆Q and the contribution to ∆S comes from second variation allowing also to define Noether
charge which is not conserved.

4. The simple picture about CP2 as symmetric space helps to understand the general vision if
one assumes that WCW has the structure of symmetric space. The decomposition g = h+ t
corresponds to decomposition of symplectic deformations to those which vanish at 3-surface
(h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators associated with t
give Hamiltonians of h identifiable as the matrix elements of WCW metric. They would not
vanish although they are stationary at 3-surface meaning that Riemann connection vanishes
at 3-surface. The Hamiltonians which vanish at 3-surface X3 would correspond to t and
the Hamiltonians for which Killing vectors vanish and which therefore are stationary at X3

would correspond to h. Outside X3 the situation would of course be different. The metric
would be obtained by parallel translating the metric from the preferred point of WCW to
elsewhere and symplectic transformations would make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t would still
give Hamiltonians identifiable as matrix elements of WCW metric but now they would be
necessary those of h. In particular, the Hamiltonians of t do not in general vanish at X3.

7.3.2 Equivalence Principle And WCW

7.3.3 Ep At Quantum And Classical Level

Quite recently I returned to an old question concerning the meaning of Equivalence Principle (EP)
in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a pseudo
problem due to uncritical assumption there really are two different four-momenta which must be
identified. If even the identification of these two different momenta is difficult, the pondering of
this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by graviton exchange
are proportional to the product of four-momenta of particles and that the proportionality constant
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does not depend on any other parameters characterizing particle (except spin). The are excellent
reasons to expect that the stringy picture for interactions predicts this.

1. The old idea is that EP reduces to the coset construction for Super Virasoro algebra using
the algebras associated with G and H. The four-momenta assignable to these algebras would
be identical from the condition that the differences of the generators annihilate physical
states and identifiable as inertial and gravitational momenta. The objection is that for the
preferred 3-surface H by definition acts trivially so that time-like translations leading out
from the boundary of CD cannot be contained by H unlike G. Hence four-momentum is
not associated with the Super-Virasoro representations assignable to H and the idea about
assigning EP to coset representations does not look promising.

2. Another possibility is that EP corresponds to quantum classical correspondence (QCC) stat-
ing that the classical momentum assignable to Kähler action is identical with gravitational
momentum assignable to Super Virasoro representations. This forced to reconsider the ques-
tions about the precise identification of the Kac-Moody algebra and about how to obtain the
magic five tensor factors required by p-adic mass calculations [K79].

A more precise formulation for EP as QCC comes from the observation that one indeed
obtains two four-momenta in TGD approach. The classical four-momentum assignable to
the Kähler action and that assignable to the Kähler-Dirac action. This four-momentum is an
operator and QCC would state that given eigenvalue of this operator must be equal to the
value of classical four-momentum for the space-time surfaces assignable to the zero energy
state in question. In this form EP would be highly non-trivial. It would be justified by the
Abelian character of four-momentum so that all momentum components are well-defined also
quantum mechanically. One can also consider the splitting of four-momentum to longitudinal
and transversal parts as done in the parton model for hadrons: this kind of splitting would
be very natural at the boundary of CD. The objection is that this correspondence is nothing
more than QCC.

3. A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces holds true.
This is the case if the action of symplectic algebra can be defined at light-like 3-surfaces or
even for the entire space-time surfaces. This could be achieved by parallel translation of
light-cone boundary providing slicing of CD. The four-momenta associated with the two rep-
resentations of super-symplectic algebra would be naturally identical and the interpretation
would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an effective theory obtained by endow-
ing M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets.

2. This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would correspond
to that of General Relativity. This resolves long standing issues relating to the interpretation
of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
effective metric. The conjecture vanishing of divergence of Khler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in zero
energy ontology (ZEO), in which various conserved charges are length dependent and defined
separately for each causal diamond (CD).
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One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of QCC
rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for
Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein’s equations
with cosmological term hold true. This is the case also now but one can consider also more
general solutions in which one has two cosmological constants which are not genuine constants
anymore [K103].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color charges and
the charges defined by the conserved currents associated with color isometries would define “iner-
tial” color charges. Since the induced color fields are proportional to color Hamiltonians multiplied
by Kähler form they vanish identically for vacuum extremals in accordance with “gravitational”
color confinement.

7.3.4 Criticism Of The Earlier Construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criticized.

1. Even after these more than twenty years it looks strange that the Hamiltonians should reduce
to flux integrals over partonic 2-surfaces. The interpretation has been in terms of effective
2-dimensionality suggested strongly by strong form of general coordinate invariance stating
that the descriptions based on light-like orbits of partonic 2-surfaces and space-like three
surfaces at the ends of causal diamonds are dual so that only partonic 2-surfaces and 4-
D tangent space data at them would matter. Strong form of holography implies effective
2-dimensionality but this should correspond gauge character for the action of symplectic
generators in the interior the space-like 3-surfaces at the ends of CDs, which is something
much milder.

One expects that the strings connecting partonic 2-surfaces could bring something new to
the earlier simplistic picture. The guess is that imbedding space Hamiltonian assignable to
a point of partonic 2-surface should be replaced with that defined as integral over string
attached to the point. Therefore the earlier picture would suffer no modification at the level
of general formulas.

2. The fact that the dynamics of Kähler action and Kähler-Dirac action are not directly in-
volved with the earlier construction raises suspicions. I have proposed that Kähler function
could allow identification as Dirac determinant [K88] but one would expect more intimate
connection. Here the natural question is whether super-Hamiltonians for the Kähler-Dirac
action could correspond to Kähler charges constructible using Noether’s theorem for cor-
responding deformations of the space-time surface and would also be identifiable as WCW
gamma matrices.

7.3.5 Is WCW Homogenous Or Symmetric Space?

A key question is whether WCW can be symmetric space [A22] (http://tinyurl.com/y8ojglkb
) or whether only homogenous structure is needed. The lack of covariant constancy of curvature
tensor might produce problems in infinite-dimensional context.

The algebraic conditions for symmetric space are g = h+ t, [h, t] ⊂ t, [t, t] ⊂ h. The latter
condition is the difficult one.

1. δCD Hamiltonians should induce diffeomorphisms of X3 indeed leaving it invariant. The
symplectic vector fields would be parallel to X3. A stronger condition is that they induce
symplectic transformations for which all points of X3 remain invariant. Now symplectic
vector fields vanish at preferred 3-surface (note that the symplectic transformations are rM
local symplectic transformations of S2 × CP2).

2. For Kac-Moody algebra inclusion H ⊂ G for the finite-dimensional Lie-algebra induces the
structure of symmetric space. If entire algebra is involved this does not look physically very
attractive idea unless one believes on symmetry breaking for both SU(3), U(2)ew, and SO(3)

http://tinyurl.com/y8ojglkb
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and E2 (here complex conjugation corresponds to the involution). If one assumes only Kac-
Moody algebra as critical symmetries, the number of tensor factors is 4 instead of five, and
it is not clear whether one can obtain consistency with p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP2. They could
correspond to intersections of deformations of CP2 type vacuum extremals with the boundary
of CD. Also geodesic spheres S2 of CP2 are invariant under U(2) subgroup and would relate
naturally to cosmic strings. The corresponding 3-surface would be L×S2, where L is a piece
of light-like radial geodesic.

3. In the case of symplectic algebra one can construct the imbedding space Hamiltonians in-
ducing WCW Hamiltonians as products of elements of the isometry algebra of S2 ×CP2 for
with parity under involution is well-defined. This would give a decomposition of the sym-
plectic algebra satisfying the symmetric space property at the level imbedding space. This
decomposition does not however look natural at the level of WCW since the only single point
of CP2 and light-like geodesic of δM4

+ can be fixed by SO(2) × U(2) so that the 3-surfaces
would reduce to pieces of light rays.

4. A more promising involution is the inversion rM → 1/rM of the radial coordinate mapping
the radial conformal weights to their negatives. This corresponds to the inversion in Super
Virasoro algebra. t would correspond to functions which are odd functions of u ≡ log(rM/r0)
and h to even function of u. Stationary 3-surfaces would correspond to u = 1 surfaces for
which log(u) = 0 holds true. This would assign criticality with Virasoro algebra as one
expects on general grounds.

rM = constant surface would most naturally correspond to a maximum of Kähler function
which could indeed be highly symmetric. The elements with even u-parity should define
Hamiltonians, which are stationary at the maximum of Kähler function. For other 3-surfaces
obtained by /rM -local) symplectic transformations the situation is different: now H is re-
placed with its symplectic conjugate hHg−1 of H is acceptable and if the conjecture is true
one would obtained 3-surfaces assignable to perturbation theory around given maximum as
symplectic conjugates of the maximum. The condition that H leaves X3 invariant in poin-
twise manner is certainly too strong and imply that the 3-surface has single point as CP2

projection.

5. One can also consider the possibility that critical deformations correspond to h and non-
critical ones to t for the preferred 3-surface. Criticality for given h would hold only for
a preferred 3-surface so that this picture would be very similar that above. Symplectic
conjugates of h would define criticality for other 3-surfaces. WCW would decompose to
a union corresponding to different criticalities perhaps assignable to the hierarchy of sub-
algebras of conformal algebra labelled by integer whose multiples give the allowed conformal
weights. Hierarchy of breakings of conformal symmetries would characterize this hierarchy
of sectors of WCW .

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra) the condition
[t, t] ⊂ h cannot hold true so that one would obtain only the structure of homogenous space.

7.3.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

7.3.7 WCW As A Union Of Symmetric Spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = ∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G
and H depend on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all
orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the
coset space decomposition give very strong constraints on the group H, which certainly contains
the subgroup of G, whose action reduces to diffeomorphisms of X3.

If G is symplectic group of δM4
±×CP2 then H is its subgroup, and one can wonder whether

this is really consistent with the identification of H as Kac-Moody algebra assignable to light-like
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3-surfaces. This raises the possibility that SKM acts as pure gauge symmetries and has nothing
to do with the coset decomposition.

The improved understanding of solutions of the Kähler-Dirac equation [K88] also leads to the
realization that the direct sum of super-symplectic algebra and isometry algebra is more natural
spectrum generating algebra. For super-symplectic algebra super-generators are represented in
terms of contractions of covariantly constant right-handed neutrino mode with second quantized
spinor field. For isometry sub-algebra super generators have representation in terms of contractions
of modes of induced spinor field localized at string world sheets is a more natural identification
of the fundamental conformal algebra and gives five tensor factors as required by p-adic mass
calculations.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability
of the theory are enormous since it suffices to find metric and curvature tensor for single repre-
sentative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative
calculation of matrix elements as functional integrals over the WCW ). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero
mode structure of the WCW . Almost twenty (seven according to long held belief!) years after the
discovery of the candidate for the Kähler function defining the metric, it became finally clear that
these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic trans-
formations of δM4

± × CP2 leaving the induced Kähler form invariant. If G acts as isometries the
values of Kähler form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes
and WCW allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler
form. Quantum fluctuating degrees of freedom would correspond to symplectic group and to the
fluctuations of the induced metric. The group H dividing G would in turn correspond to the sym-
plectic isometries reducing to diffeomorphisms at the 3-surfaces or possibly at partonic 2-surfaces
only.

H could but not not need to corresponds to the Kac-Moody symmetries respecting light-
likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2. The action of course

extends also to the interior of space-like 3-surface X3 at the boundary of CD. This coset structure
was originally suggested via coset construction for super Virasoro algebras of super-symplectic and
super Kac-Moody algebras.

WCW isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of δM4

+×CP2. These diffeomorphisms indeed
act in a natural manner in δCH, the space of 3-surfaces in δM4

+ × CP2. WCW is expected to
decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the
vector fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend
on the topology of X3 and since G does not change the topology of 3-surface each 3-topology
defines separate orbit of G. Therefore, the union involves sum over all on topologies of X3 plus
possibly other “zero modes”. Different topologies are naturally glued together since singular 3-
surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with different topologies.

7.3.8 Isometries Of WCW Geometry As SymplecticTransformations Of
∆M4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of WCW as
the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write the general
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decomposition of diff(δM4
+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (7.3.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light
cone diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with
respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since
the theory should be more or less equivalent with topological field theory in this case. Consider
now the various candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical

symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms of the
light cone boundary and symplectic transformations of CP2 could leave Kähler function in-
variant and thus correspond to zero modes. The symplectic transformations of CP2 localized
with respect to light cone boundary acting as symplectic transformations of CP2 have inter-
pretation as local color transformations and are a good candidate for the isometries. The
fact that local color transformations are not even approximate symmetries of Kähler action
is not a problem: if they were exact symmetries, Kähler function would be invariant and zero
modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+.

Besides this there is a huge group of the symplectic symmetries of δM4
+ × CP2 if light

cone boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. δM4

+×CP2 option exploits fully the special properties of
δM4

+×CP2, and one can develop simple argument demonstrating that δM4
+×CP2 symplectic

invariance is the correct option. Also the construction of WCW gamma matrices as super-
symplectic charges supports δM4

+ × CP2 option.

7.3.9 SUSY Algebra Defined By The Anti-Commutation Relations Of
Fermionic Oscillator Operators And WCW Local Clifford Algebra
Elements As Chiral Super-Fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majorana
spinors appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric stan-
dard model (MSSM). Majorana-Weyl spinors appear in M-theory and super string models. An
undesirable consequence is chiral anomaly in the case that the numbers of left and right handed
spinors are not same. For D = 11 and D = 10 these anomalies cancel which led to the breakthrough
of string models and later to M-theory. The probable reason for considering these dimensions is
that standard model does not predict right-handed neutrino (although neutrino mass suggests that
right handed neutrino exists) so that the numbers of left and right handed Weyl-spinors are not
the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino
spinor acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-
defined sense disappears from the spectrum as a zero mode so that the number of right and left
handed chiralities in M4 × CP2 would not be same. For light-like 3-surfaces covariantly constant
right-handed neutrino does not however solve the counterpart of Dirac equation for a non-vanishing
four-momentum and color quantum numbers of the physical state. Therefore it does not disappear
from the spectrum anymore and one expects the same number of right and left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Ma-
jorana spinors and also the the Minkowski signature of M4 × CP2 makes them impossible. The
conclusion that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors
are indeed possible and if the number of right and left handed Weyl spinors is same super-symmetry
is possible. In 8-D context right and left-handed fermions correspond to quarks and leptons and
since color in TGD framework corresponds to CP2 partial waves rather than spin like quantum
number, also the numbers of quark and lepton-like spinors are same.
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The physical picture suggest a new kind of approach to super-symmetry in the sense that
the anti-commutations of fermionic oscillator operators associated with the modes of the induced
spinor fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY with
large N is in question allowing spins higher than two and also large fermion numbers. Recall
that N ≤ 32 is implied by the absence of spins higher than two and the number of real spinor
components is N = 32 also in TGD. The situation clearly differs from that encountered in super-
string models and SUSYs and the large value of N allows to expect very powerful constraints
on dynamics irrespective of the fact that SUSY is broken. Right handed neutrino modes define a
sub-algebra for which the SUSY is only slightly broken by the absence of weak interactions and one
could also consider a theory containing a large number of N = 2 super-multiplets corresponding
to the addition of right-handed neutrinos and antineutrinos at the wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could
be formulated in terms of Kähler-Dirac gamma matrices using octonionic representation and as-
suming that they span local quaternionic sub-algebra at each point of the space-time sheet. SUSY
algebra has standard interpretation with respect to spin and isospin indices only at the partonic 2-
surfaces so that the basic algebra should be formulated at these surfaces. Effective 2-dimensionality
would require that partonic 2-surfaces can be taken to be ends of any light-like 3-surface Y 3

l in the
slicing of the region surrounding a given wormhole throat.

Super-algebra associated with the Kähler-Dirac gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor
fields are naturally formulated in terms of the Kähler-Dirac gamma matrices. Super-conformal
symmetry suggests that the anti-commutation relations for the fermionic oscillator operators at
light-like 3-surfaces or at their ends are most naturally formulated as anti-commutation relations
for SUSY algebra. The resulting anti-commutation relations would fix the quantum TGD.

{a†nα, anβ} = DmnDαβ ,

D = (pµ +
∑
a

Qµa)σ̂µ . (7.3.2)

Here pµ andQµa are space-time projections of momentum and color charges in Cartan algebra. Their
action is purely algebraic. The anti-commutations are nothing but a generalization of the ordinary
equal-time anti-commutation relations for fermionic oscillator operators to a manifestly covariant
form. The matrix Dm,n is expected to reduce to a diagonal form with a proper normalization
of the oscillator operators. The experience with extended SUSY algebra suggest that the anti-
commutators could contain additional central term proportional to δαβ .

One can consider basically two different options concerning the definition of the super-
algebra.

1. If the super-algebra is defined at the 3-D ends of the intersection of X4 with the boundaries
of CD, the modified gamma matrices appearing in the operator D appearing in the anti-
commutator are associated with Kähler action. If the generalized masslessness condition
D2 = 0 holds true -as suggested already earlier- one can hope that no explicit breaking of
super-symmetry takes place and elegant description of massive states as effectively massless
states making also possible generalization of twistor is possible. One must however notice
that also massive representatives of SUSY exist.

2. SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces.

According to considerations of [K88] these options are equivalent for a large class of space-
time sheets. If the effective 3-dimensionality realized in the sense that the effective metric defined
by the Kähler-Dirac gamma matrices is degenerate, propagation takes place along 3-D light-like
3-surfaces. This condition definitely fails for string like objects.

One can realize the local Clifford algebra also by introducing theta parameters in the stan-
dard manner and the expressing a collection of local Clifford algebra element with varying values
of fermion numbers (function of CD and CP2 coordinates) as a chiral super-field. The definition
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of a chiral super field requires the introduction of super-covariant derivatives. Standard form for
the anti-commutators of super-covariant derivatives Dα make sense only if they do not affect the
Kähler-Dirac gamma matrices. This is achieved if pk acts on the position of the tip of CD (rather
than internal coordinates of the space-time sheet). Qa in turn must act on CP2 coordinates of the
tip.

Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically sen-
sible to super-pose local Clifford algebra elements with different fermion numbers. The extremely
elegant formulation of super-symmetric theories in terms of super-fields encourages to ask whether
the local Clifford algebra elements could allow expansion in terms of complex theta parameters
assigned to various fermionic oscillator operator in order to obtain formal superposition of elements
with different fermion numbers. One can also ask whether the notion of chiral super field might
make sense.

The obvious question is whether it makes sense to assign super-fields with the Kähler-Dirac
gamma matrices.

1. Kähler-Dirac gamma matrices are not covariantly constant but this is not a problem since
the action of momentum generators and color generators on space-time coordinates is purely
algebraic.

2. One can define the notion of chiral super-field also at the fundamental level. Chiral super-field
would be continuation of the local Clifford algebra of associated with CD to a local Clifford
algebra element associated with the union of CDs. This would allow elegant description of
cm degrees of freedom, which are the most interesting as far as QFT limit is considered.

3. Kähler function of WCW as a function of complex coordinates could be extended to a chiral
super-field defined in quantum fluctuation degrees of freedom. It would depend on zero
modes too. Does also the latter dependence allow super-space continuation? Coefficients
of powers of theta would correspond to fermionic oscillator operators. Does this function
define the propagators of various states associated with light-like 3-surface? WCW complex
coordinates would correspond to the modes of induced spinor field so that super-symmetry
would be realized very concretely.

7.3.10 Identification Of Kac-Moody Symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-
surfaces plays a crucial role in the identification of quantum fluctuating WCW degrees of freedom
contributing to the metric. The recent vision looks like follows.

1. The recent interpretation is that these symmetries are due to the non-determinism of Kähler
action and transform to each other preferred extremals with same space-like surfaces as their
ends at the boundaries of causal diamond. These space-time surfaces have same Kähler
action and possess same conserved quantities.

2. The sub-algebra of conformal symmetries acts as gauge transformations of these infinite set
of degenerate preferred extremals and there is finite number n of gauge equivalence classes.
n corresponds to the effective (or real depending on interpretation) value of Planck constant
heff = n× h. The further conjecture is that the sub-algebra of conformal algebra for which
conformal weights are integers divisible by n act as genuine gauge symmetries. If Kähler
action reduces to a sum of 3-D Chern-Simons terms for preferred extremals, it is enough
to consider the action on light-like 3-surfaces. For gauge part of algebra the algebra acts
trivially at space-like 3-surfaces.

3. A good guess is that the Kac-Moody type algebra corresponds to the sub-algebra of sym-
plectic isometries of δM4

± × CP2 acting on light-like 3-surfaces and having continuation to
the interior.



314 Chapter 7. Construction of Quantum Theory: Symmetries

A stronger assumption is that isometries are in question. For CP2 nothing would change
but light-cone boundary δM4

± = S2×R+ has conformal transformations of S2 as isometries.
The conformal scaling is compensated by S2-local scaling of the light like radial coordinate
of R+.

4. This super-conformal algebra realized in terms of spinor modes and second quantized induced
spinor fields would define the Super Kac-Moody algebra. The generators of this Kac-Moody
type algebra have continuation from the light-like boundaries to deformations of preferred
extremals and at least the generators of sub-algebra act trivially at space-like 3-surfaces.

The following is an attempt to achieve a more detailed identification of the Kac-Moody
algebra is considered.

Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0

invariant. This gives the condition

δgαβCof(gαβ) = 0 , (7.3.3)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ+ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (7.3.4)

Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space
generated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (7.3.5)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (7.3.6)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the
first term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (7.3.7)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of
X3 reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (7.3.8)
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A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations.
In order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the
metric in this form is plausible since generic 3-manifold allows coordinates in which the metric is
diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (7.3.9)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results.
If cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (7.3.10)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart

for the condition that Kac-Moody algebra acts in the transversal degrees of freedom only.
The condition also states that the components gri is not changed in the infinitesimal trans-
formation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (7.3.11)

The equation states that gri are not affected by the symmetry. The radial dependence of
ξi is fixed by this differential equation. No condition on ξr results. These conditions imply
that the local gauge transformations are dynamical with the light-like radial coordinate r
playing the role of the time variable. One should be able to fix the transformation more or
less arbitrarily at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (7.3.12)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with
r appearing as a parameter. Note however that the derivatives of ξr do not appear in
the equation. At least formally equations are not over-determined so that solutions should
exist for arbitrary choices of cA as functions of X3 coordinates satisfying the orthogonality
conditions. If this is the case, the Kac-Moody algebra can be regarded as a local algebra in
X3 subject to the orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA
except the one associated with time translation and fixed by the orthogonality condition
depends on the radial coordinate r only. The larger algebra decomposes into a direct sum of
representations of this algebra.
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Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric
via the orthogonality condition. What this means that jA,k in principle acts also to φB in the
commutator [cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (7.3.13)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal
transformation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir
of the induced metric are unchanged in the transformation so that the condition for cA resulting
from grr component of the metric is not affected. Also the conditions coming from gir = 0
remain unchanged. Therefore the commutation relations of local algebra apart from constraint
from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The
orthogonality to the light-like tangent vector creates here a problem since the commutator does
not obviously satisfy this condition automatically. The problem can be solved by following the
recipes of non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from
the orthogonality condition. This assumption is analogous with the assumption that time
coordinate is non-dynamical in the quantization of strings. The natural basis for the algebra
is obtained by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the
JA 6= P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent
with commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz
vector property of P k it is clear that the commutators resulting in a repeated commutation
have well-defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting
with P 0. Also D could be allowed without losing well-defined radial conformal weights but
the argument below excludes it. This picture conforms with the earlier identification of the
Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mu-
tually commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving
added generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(7.3.14)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators
of SO(3) (but not with D so that it is excluded!), one can define the commutator of two
generators as a commutator of the remaining part and identify Ψ(P 0) from the condition
above.
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4. Of course, also the more general transformations act as Kac-Moody type symmetries but
the interpretation would be that the sub-algebra plays the same role as SO(3) in the case of
Lorentz group: that is gives rise to generalized spin degrees of freedom whereas the entire
algebra divided by this sub-algebra would define the coset space playing the role of orbital
degrees of freedom. In fact, also the Kac-Moody type symmetries for which cA depends
on the transversal coordinates of X3 would correspond to orbital degrees of freedom. The
presence of these orbital degrees of freedom arranging super Kac-Moody representations into
infinite multiplets labeled by function basis for X2 means that the number of degrees of
freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinatem0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip
of δM4

±. Thus it would be natural to assume that the preferred M4 coordinate varies along
this light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal
weights would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of
S2
± along this ray defining also SO(2) rotation axis.

Hamiltonians

The action of these transformations on Kähler action is well-defined and one can deduce the
conserved quantities having identification as WCW Hamiltonians. Hamiltonians also correspond
to closed 2-forms. The condition that the Hamiltonian reduces to a dual of closed 2-form is satisfied
because X2-local conformal transformations of M4

± × CP2 are in question (X2-locality does not
imply any additional conditions).

The action of Kac-Moody algebra on spinors and fermionic representations of Kac-
Moody algebra

One can imagine two interpretations for the action of generalized Kac-Moody transformations on
spinors.

1. The basic goal is to deduce the fermionic Noether charge associated with the bosonic Kac-
Moody symmetry and this can be done by a standard recipe. The first contribution to
the charge comes from the transformation of Kähler-Dirac gamma matrices appearing in
the Kähler-Dirac action associated with fermions. Second contribution comes from spinor
rotation.

2. Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak
rotation allowing to define the action of the Kac-Moody algebra JA on spinors.

How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension
which can emerge from the freedom to add a constant term to Hamiltonians as in the case of
super-symplectic algebra. The expression of the Hamiltonians as closed forms could allow to
understand how the central extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on
fermions a representations as a fermionic bilinear and the central extension of Kac-Moody algebra
could emerge in this construction just as it appears in Sugawara construction.

About the interpretation of super Kac-Moody symmetries

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as
causal determinants, and thus contribute to WCW metric. In this case the symmetries correspond
to the isometries of the imbedding space localized with respect to the complex coordinate of the
2-surface X2 determining the light like 3-surface X3

l so that Kac-Moody type symmetry results.
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Also the condition
√
g3 = 0 for the determinant of the induced metric seems to define a conformal

symmetry associated with the light like direction.
If is enough to localize only the H-isometries with respect to X3

l , the purely bosonic part of
the Kac-Moody algebra corresponds to the isometry group M4 × SO(3, 1)× SU(3). The physical
interpretation of these symmetries is not so obvious as one might think. The point is that one
can generalize the formulas characterizing the action of infinitesimal isometries on spinor fields
of finite-dimensional Kähler manifold to the level of the configuration space. This gives rise to
bosonic generators containing also a sigma-matrix term bilinear in fermionic oscillator operators.
This representation need not be equivalent with the purely fermionic representations provided by
induced Dirac action. Thus one has two groups of local color charges and the challenge is to find
a physical interpretation for them.

The following arguments support one possible identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corresponds
in a well-defined sense electro-weak algebra identified as a holonomy algebra of the spinor
connection. Hence one could argue that the U(2) generators of either SU(3) algebra might
be identifiable as generators of local U(2)ew gauge transformations whereas non-diagonal
generators would correspond to Higgs field. This interpretation would conform with the idea
that Higgs field is a genuine scalar field rather than a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents are characterized

by central extension they would naturally correspond to the electro-weak gauge algebra and
Higgs bosons. This is also consistent with the fact that both leptons and quarks define
fermionic Kac Moody currents.

3. The fact that only quarks appear in the gamma matrices of the WCW supports the view that
action of the generators of X3

l -local color transformations on WCW spinor fields represents
local color transformations. If the action of X3

l -local SU(3) transformations on WCW spinor
fields has trivial central extension term the identification as a representation of local color
symmetries is possible.

The topological explanation of the family replication phenomenon is based on an assignment
of 2-dimensional boundary to a 3-surface characterizing the elementary particle. The precise
identification of this surface has remained open and one possibility is that the 2-surface X2 defining
the light light-like surface associated with an elementary particle horizon is in question. This
assumption would conform with the notion of elementary particle vacuum functionals defined in
the zero modes characterizing different conformal equivalences classes for X2.

The relationship of the Super-Kac Moody symmetry to the standard super-conformal
invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex
H-spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark
like spinors acting as generators of complex dynamical super-symmetries. The super-symmetries
generated by the covariantly constant right handed neutrino appear with both M4 helicities: it
however seems that covariantly constant neutrino does not generate any global super-symmetry in
the sense of particle-sparticle mass degeneracy. Only right-handed neutrino spinor modes (apart
from covariantly constant mode) appear in the expressions of WCW gamma matrices forming a
subalgebra of the full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z),
U(1) current J(z), and super generators G±(z) carrying U(1) charge. Now U(1) current would
correspond to right-handed neutrino number and super generators would involve contraction of
covariantly constant neutrino spinor with second quantized induced spinor field. The further facts
that N = 2 algebra is associated naturally with Kähler geometry, that the partition functions
associated with N = 2 super-conformal representations are modular invariant, and that N = 2
algebra defines so called chiral ring defining a topological quantum field theory [A59], lend a
further support for the belief that N = 2 super-conformal algebra acts in super-symplectic degrees
of freedom.
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The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (7.3.15)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information
about conformal algebras can be found from the appendix of [A59].

For Ramond representation L0−c/24 or equivalently G0 must annihilate the massless states.
This occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and

that (k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance
of a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+ 2). I have proposed that NS and
Ramond algebras could combine to a larger algebra containing also lepto-quark type generators
but this not necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-
algebras associated with quarks and leptons might further extend to a larger algebra if lepto-quark
generators acting effectively as half odd-integer Virasoro generators can be allowed. The algebra
would contain spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody
generators would act as symplectically extended isometry generators on WCW Hamiltonians ex-
pressible in terms of Hamiltonians of X3

l ×CP2. Electro-weak and color Kac-Moody currents have
conformal weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended
algebra requires the inclusion of also second quantized induced spinor fields with h = 1/2 and
their super-partners with h = 0 and realized as fermion-anti-fermion bilinears. Since G and Ψ
are labeled by 2 × 4 spinor indices, super-partners would correspond to 2 × (3 + 1) = 8 massless
electro-weak gauge boson states with polarization included. Their inclusion would make the theory
highly predictive since induced spinor and electro-weak fields are the fundamental fields in TGD.

7.3.11 Coset Space Structure For WCW As A SymmetricSpace

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in
the WCW metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also that G acts as isometries of WCW . This
generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM±×CP2 and
Kac-Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next
section.

The identification of the precise form of the coset space structure is however somewhat
delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation
in terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody
algebra is
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H =
∑

ΦA(x)HA . (7.3.16)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l × CP2. For symplectic algebra

any Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing

of the causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l ×CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal
weight. ∆ is identified as analogous quantum number labeling the modes of induced spinor
field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decompo-

sition of M4 = M2(x)×E2(x) required by number theoretical compactification and present
for known extremals of Kähler action with Minkowskian signature of induced metric. In this
case SO(3) would be replaced with SO(2). It however seems that the radial light-like coor-
dinate u of X4(X3

l ) would remain the same since any other curve along light-like boundary
would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (7.3.17)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of
the point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. WCW at X2 could be also regarded as the analog of
the origin of local S2×CP2. This interpretation is in accordance with the original idea which
however was given up in the lack of proper realization. The same picture can be deduced from
braiding in which case the Kac-Moody algebra corresponds to local SO(2) × U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in
the sense that the deformations of X3

l preserving its light-likeness do not affect the physics.
Note however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of
course trivial since the action leaves each point invariant. The conditions of Cartan decom-
position are satisfied. The commutators of the Kac-Moody vector fields with symplectic
generators are non-vanishing since the action of symplectic generator on Kac-Moody gener-
ator restricted to X2 gives a non-vanishing result belonging to the symplectic algebra. Also
the commutators of Kac-Moody generators are Kac-Moody generators.

7.3.12 The Relationship Between Super-Symplectic And SuperKac-Moody
Algebras, Equivalence Principle, And Justification Of P-Adic
Thermodynamics

The relationship between super-symplectic algebra (SS) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) assumed to act on light-like 3-surfaces and by continuation of the
action also to the space-like 3-surfaces at the boundaries of CD has remained somewhat enigmatic
due to the lack of physical insights.
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Corresponding to the coset decomposition G/H of WCW there is also the sub-algebra SD
of SS acting as diffeomorphisms of given 3-surface. This algebra acts as gauge algebra. It seems
that SKM and SD cannot be the same algebra.

The construction of WCW gamma matrices and study of the solutions of Kähler-Dirac
equation support strongly the conclusion that the construction of physical states involves the direct
sum of two algebras SS and SI. The super-generators of SS are realized using only covariantly
constant mode for the right-handed neutrino. The isometry sub-algebra SI is realized using all
spinor modes. The direct sum SS⊕SI has the 5 tensor factors required by p-adic mass calculations.
SI is Kac-Moody algebra and could be a natural identification for SKM . This forces to give up
the construction of coset representation for the Super-Virasoro algebras.

This is not the only problem. The question to precisely what extent Equivalence Principle
(EP) remains true in TGD framework and what might be the precise mathematical realization of
EP and to wait for an answer for rather long time. Also the justification of p-adic thermodynamics
for the scaling generator L0 of Virasoro algebra - in obvious conflict with the basic wisdom that
this generator should annihilate physical states - remained lacking.

One cannot still exclude the possibility that these three problems could have a common
solution in terms of an appropriate coset representation. Quantum variant of EP cannot not follow
from the coset representation for SS and SD. The coset representation of SS and SI = SKM
could however make sense and would be realized in the tensor product for the representations of
SS and SI and would have the five tensor factors. Physical states would correspond to those
for the direct sum SS ⊕ SI. Since SS ⊕ SI acts as a spectrum generating algebra rather than
gauge algebras, the condition that L0 annihilates the physical states is not necessary. The coset
representation would differ from the representation for SS ⊕ SI only that the states would be
annihilated by the differences of the SV generators rather than their sums.

New vision about the relationship between various algebras

Consider now the new vision about the relationship between SSV , its sub-algebra acting as dif-
feomorphisms of 3-surface and SKMV .

1. The isometries G of sub- WCW associted with given CD are symplectic transformations of
δCD×CP2 [K15] (note that I have used the attribute “canonical” instead of “symplectic” in
some contexts) reducing to diffeomorphisms at partonic 2-surfaces or at the entire 3-surfaces
at the boundaries of CD. H acts a symplectic subgroup acting as diffeomorphisms of X3 or
partonic 2-surfaces. It should annihilate physical states so that SD associated with H ⊂ G
is not interesting as far as coset representations are considered.

Only the sub-algebra SI associated with symplectic isometries can provide coset represen-
tation. The representation space would be generated by the action of SS ⊕ SI in terms of
fermionic oscillator operators and WCW isometry algebra. The same representation space al-
lows also the representation of sums of super generators so that one has two options. SS⊕SI
and SS − SI.

2. Consider first the SS⊕SI option. In this case the number of tensor factors in Super-Virasoro
algebra is five as required by the p-adic mass calculations. Ln annihilated physical states but
there is no need for L0 to annihilate them since symplectic algebra is not gauge algebra.

3. Consider next the SS − SI obtain, the coset representation. A generalization of the coset
construction obtained by replacing finite-dimensional Lie group with infinite-dimensional
symplectic group suggests itself. The differences of Super-Virasor algebra elements for SS
and SI would annihilate physical states. Also the generators On, n > 0, for both algebras
would annihilate the physical states so that the differences of the elements would annihilate
automatically physical states for n > 0. For coset representation one could even require that
the difference of the scaling generators L0 annihilates the physical states.

The problem is however that the Super Virasoro algebra generators do note reduce to the
sums of generators assignable to SS and SI so that one does not obtain the five tensor
factors.
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The coset representation motivated the proposal was that identical action of the Dirac
operators assignable to G and H in coset representation could provide the long sought-for precise
realization of Equivalence Principle (EP) in TGD framework. EP would state that the total
inertial four-momentum and color quantum numbers assignable to G are equal to the gravitational
four-momentum and color quantum numbers assignable to H. One can argue that since super-
symplectic transformations correspond to the isometries of the “world of classical worlds”, the
assignment of the attribute “inertial” to them is natural.

This interpretation is not feasible if H corresponds acts as diffeomorphisms: the four-
momentum associated with SD most naturally vanishes since it represents diffeomorphisms. If
H corresponds to SI, one has the problem with the number of tensor factors. Therefore SS ⊕ SI
seems to be the only working option.

A more feasible realization of EP quantum level is as Quantum Classical Correspondence
(QCC) stating that the conserved four-momentum associated with Kähler action equals to an
eigenvalue of the conserved Kähler-Dirac four-momentum having natural interpretation as grav-
itational four-momentum due the fact that well-defined em charge for spinor modes forces them
in the generic case to string world sheets. At classical level EP follows at GRT limit obtained by
lumping many-sheeted space-time to M4 with effective metric satisfying Einstein’s equations as a
reflection of the underlying Poincare invariance.

Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already
used as a constraint in attempts to understand the super-conformal symmetries in partonic level.

1. The hope was that for SS/SI coset representations the p-adic thermal expectation values of
the SS and SI conformal weights would be non-vanishing and identical and mass squared
could be identified equivalently either as the expectation value of SI or SS scaling generator
L0. There would be no need to give up Super Virasoro conditions for SS − SI.

2. There seems consistency with p-adic mass calculations for hadrons [K47] since the non-
perturbative SS contributions and perturbative SKM contributions to the mass correspond
to space-time sheets labeled by different p-adic primes. The earlier statement that SS is
responsible for the dominating non-perturbative contributions to the hadron mass transforms
to a statement reflecting SS − SI duality. The perturbative quark contributions to hadron
masses can be calculated most conveniently by using p-adic thermodynamics for SI whereas
non-perturbative contributions to hadron masses can be calculated most conveniently by
using p-adic thermodynamics for SS. Also the proposal that the exotic analogs of baryons
resulting when baryon looses its valence quarks [K42] remains intact in this framework.

3. The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. This excldes the coset representation
SS/SI. SS ⊕ SI however survives. It indeed seems that holonomic contributions related
to spinor modes other than covariantly constant right-handed neutrino- that is electro-weak
and spin contributions- must be regarded as contributions separate from those coming from
isometries. SKM algebras in electro-weak degrees and spin degrees of of freedom, would give
2+1=3 tensor factors corresponding to U(2)ew×SU(2). SU(3) and SO(3) (or SO(2) ⊂ SO(3)
leaving the intersection of light-like ray with S2 invariant) would give 2 additional tensor
factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. In positive energy ontology Lorentz invariance requires the interpretation of mass squared
as thermal expectation value of the conformal weight assignable to vibrational degrees of
freedom. In Zero Energy Ontology (ZEO) quantum theory can be formally regarded as a
square root of thermodynamics and it is possible to speak about thermal expectation value
of mass squared without losing Lorentz invariance since the zero energy state corresponds
to a square root of density matrix expressible as product of hermitian and unitary matrices.
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This implies that one can speak about thermal expectation value of mass squared rather
than conformal weight. This might have some non-trivial experimental consequences since
the energies of states with the same free momentum contributing to the thermal expectation
value are different.

2. The coefficient of proportionality can be however deduced from the observation that the mass
squared values for CP2 Dirac operator correspond to definite values of conformal weight in
p-adic mass calculations. It is indeed possible to assign to partonic 2-surface X2 CP2 partial
waves correlating strongly with the net electro-weak quantum numbers of the parton so that
the assignment of ground state conformal weight to CP2 partial waves makes sense. The
identification of the spinor partial waves is in terms of ground states of super-conformal
representations.

3. In the case of M4 degrees of freedom it is strictly speaking not possible to talk about mo-
mentum eigen states since translations take parton out of δH+. This would suggests that
4-momentum must be assigned with the tip of the light-cone containing the particle but this
is not consistent with zero energy ontology. Hence it seems that one must restrict the trans-
lations of X3

l to time like translations in the direction of geometric future at δM4
+×CP2. The

decomposition of the partonic 3-surface X3
l to regions X3

l,i carrying non-vanishing induced

Kähler form and the possibility to assign M2(x) ⊂ M4 to the tangent space of X4(X3
l ) at

points of X3
l suggests that the points of number theoretic braid to which oscillator operators

can be assigned can carry four-momentum in the plane defined by M2(x). One could assume
that the four-momenta assigned with points in given region X3

i are collinear but even this
restriction is not necessary.

4. The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (7.3.18)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the
QCD based model of hadrons only longitudinal momenta and transverse momentum squared
are used as labels of parton states, which together with the presence of preferred plane M2

would suggest that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (7.3.19)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.

How it is possible to have negative conformal weights for ground states?

p-Adic mass calculations require negative conformal weights for ground states [K39]. The only
elegant solution of the problems caused by this requirement seems to be p-adic: the conformal
weights are positive in the real sense but as p-adic numbers their dominating part is negative
integer (in the real sense), which can be compensated by the conformal weights of Super Virasoro
generators.

1. If ±λ2
i as such corresponds to a ground state conformal weight and if λi is real the ground

state conformal weight positive in the real sense. In complex case (instanton term) the most
natural formula is h = ±|λ|2.
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2. The first option is based on the understanding of conformal excitations in terms of CP
breaking instanton term added to the modified Dirac operator. In this case the conformal
weights are identified as h = n−|λk|2 and the minus sign comes from the Euclidian signature
of the effective metric for the Kähler-Dirac operator. Ground state conformal weight would
be non-vanishing for non-zero modes of D(X3

l ). Massless bosons produce difficulties unless
one has h = |λi(1)− λi(2)|2, where i = 1, 2 refers to the two wormhole throats. In this case
the difference can vanish and its non-vanishing would be due to the symmetric breaking.
This scenario is assumed in p-adic mass calculations. Fermions are predicted to be always
massive since zero modes of D(X2) represent super gauge degrees of freedom.

3. In the context of p-adic thermodynamics a loop hole opens allowing λi to be real. In spirit of
rational physics suppose that one has in natural units h = λ2

i = xp2 − n, where x is integer.
This number is positive and large in the real sense. In p-adic sense the dominating part of
this number is −n and can be compensated by the net conformal weight n of Super Virasoro
generators acting on the ground state. xp2 represents the small Higgs contribution to the
mass squared proportional to (xp2)R ' x/p2 (R refers to canonical identification ). By the
basic features of the canonical identification p > x ' p should hold true for gauge bosons
for which Higgs contribution dominates. For fermions x should be small since p-adic mass
calculations are consistent with the vanishing of Higgs contribution to the fermion mass. This
would lead to the earlier conclusion that xp2 and hence BK is large for bosons and small for
fermions and that the size of fermionic (bosonic) wormhole throat is large (small). This kind
of picture is consistent with the p-adic modular arithmetics and suggests by the cutoff for
conformal weights implied by the fact that both the number of fermionic oscillator operators
and the number of points of number theoretic braid are finite. This solution is however tricky
and does not conform with number theoretical universality.

7.4 Are Both Symplectic And Conformal Field Theories
Needed?

Symplectic (or canonical as I have called them) symmetries of δM4
+ × CP2 (light-cone boundary

briefly) act as isometries of the “world of classical worlds”. One can see these symmetries as
analogs of Kac-Moody type symmetries with symplectic transformations of S2 × CP2, where S2

is rM = constant sphere of light-cone boundary, made local with respect to the light-like radial
coordinate rM taking the role of complex coordinate. Thus finite-dimensional Lie group G is
replaced with infinite-dimensional group of symplectic transformations. This inspires the question
whether a symplectic analog of conformal field theory at δM4

+ × CP2 could be relevant for the
construction of n-point functions in quantum TGD and what general properties these n-point
functions would have. This section appears already in the previous chapter about symmetries of
quantum TGD [K14] but because the results of the section provide the first concrete construction
recipe of M -matrix in zero energy ontology, it is included also in this chapter.

7.4.1 Symplectic QFT At Sphere

Actually the notion of symplectic QFT emerged as I tried to understand the properties of cosmic
microwave background which comes from the sphere of last scattering which corresponds roughly
to the age of 5 × 105 years [K53]. In this situation vacuum extremals of Kähler action around
almost unique critical Robertson-Walker cosmology imbeddable in M4×S2, where there is homo-
logically trivial geodesic sphere of CP2. Vacuum extremal property is satisfied for any space-time
surface which is surface in M4×Y 2, Y 2 a Lagrangian sub-manifold of CP2 with vanishing induced
Kähler form. Symplectic transformations of CP2 and general coordinate transformations of M4

are dynamical symmetries of the vacuum extremals so that the idea of symplectic QFT emerges
natural. Therefore I shall consider first symplectic QFT at the sphere S2 of last scattering with
temperature fluctuation ∆T/T proportional to the fluctuation of the metric component gaa in
Robertson-Walker coordinates.

1. In quantum TGD the symplectic transformation of the light-cone boundary would induce
action in the “world of classical worlds” (light-like 3-surfaces). In the recent situation it is
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convenient to regard perturbations of CP2 coordinates as fields at the sphere of last scattering
(call it S2) so that symplectic transformations of CP2 would act in the field space whereas
those of S2 would act in the coordinate space just like conformal transformations. The
deformation of the metric would be a symplectic field in S2. The symplectic dimension
would be induced by the tensor properties of R-W metric in R-W coordinates: every S2

coordinate index would correspond to one unit of symplectic dimension. The symplectic
invariance in CP2 degrees of freedom is guaranteed if the integration measure over the vacuum
deformations is symplectic invariant. This symmetry does not play any role in the sequel.

2. For a symplectic scalar field n ≥ 3-point functions with a vanishing anomalous dimension
would be functions of the symplectic invariants defined by the areas of geodesic polygons
defined by subsets of the arguments as points of S2. Since n-polygon can be constructed from
3-polygons these invariants can be expressed as sums of the areas of 3-polygons expressible in
terms of symplectic form. n-point functions would be constant if arguments are along geodesic
circle since the areas of all sub-polygons would vanish in this case. The decomposition of n-
polygon to 3-polygons brings in mind the decomposition of the n-point function of conformal
field theory to products of 2-point functions by using the fusion algebra of conformal fields
(very symbolically ΦkΦl = cmklΦm). This intuition seems to be correct.

3. Fusion rules stating the associativity of the products of fields at different points should
generalize. In the recent case it is natural to assume a non-local form of fusion rules given
in the case of symplectic scalars by the equation

Φk(s1)Φl(s2) =

∫
cmklf(A(s1, s2, s3))Φm(s)dµs . (7.4.1)

Here the coefficients cmkl are constants and A(s1, s2, s3) is the area of the geodesic triangle of
S2 defined by the sympletic measure and integration is over S2 with symplectically invariant
measure dµs defined by symplectic form of S2. Fusion rules pose powerful conditions on
n-point functions and one can hope that the coefficients are fixed completely.

4. The application of fusion rules gives at the last step an expectation value of 1-point function
of the product of the fields involves unit operator term

∫
cklf(A(s1, s2, s))Iddµs so that one

has

〈Φk(s1)Φl(s2)〉 =

∫
cklf(A(s1, s2, s))dµs . (7.4.2)

Hence 2-point function is average of a 3-point function over the third argument. The absence
of non-trivial symplectic invariants for 1-point function means that n = 1- an are constant,
most naturally vanishing, unless some kind of spontaneous symmetry breaking occurs. Since
the function f(A(s1, s2, s3)) is arbitrary, 2-point correlation function can have both signs.
2-point correlation function is invariant under rotations and reflections.

7.4.2 Symplectic QFT With Spontaneous Breaking Of Rotational And
Reflection Symmetries

CMB data suggest breaking of rotational and reflection symmetries of S2. A possible mechanism
of spontaneous symmetry breaking is based on the observation that in TGD framework the hier-
archy of Planck constants assigns to each sector of the generalized imbedding space a preferred
quantization axes. The selection of the quantization axis is coded also to the geometry of “world of
classical worlds”, and to the quantum fluctuations of the metric in particular. Clearly, symplectic
QFT with spontaneous symmetry breaking would provide the sought-for really deep reason for the
quantization of Planck constant in the proposed manner.
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1. The coding of angular momentum quantization axis to the generalized imbedding space
geometry allows to select South and North poles as preferred points of S2. To the three
arguments s1, s2, s3 of the 3-point function one can assign two squares with the added point
being either North or South pole. The difference

∆A(s1, s2, s3) ≡ A(s1, s2, s3, N)−A(s1, s2, s3, S) (7.4.3)

of the corresponding areas defines a simple symplectic invariant breaking the reflection sym-
metry with respect to the equatorial plane. Note that ∆A vanishes if arguments lie along
a geodesic line or if any two arguments co-incide. Quite generally, symplectic QFT differs
from conformal QFT in that correlation functions do not possess singularities.

2. The reduction to 2-point correlation function gives a consistency conditions on the 3-point
functions

〈(Φk(s1)Φl(s2))Φm(s3)〉 = crkl

∫
f(∆A(s1, s2, s))〈Φr(s)Φm(s3)〉dµs

= (7.4.4)

crklcrm

∫
f(∆A(s1, s2, s))f(∆A(s, s3, t))dµsdµt . (7.4.5)

Associativity requires that this expression equals to 〈Φk(s1)(Φl(s2)Φm(s3))〉 and this gives ad-
ditional conditions. Associativity conditions apply to f(∆A) and could fix it highly uniquely.

3. 2-point correlation function would be given by

〈Φk(s1)Φl(s2)〉 = ckl

∫
f(∆A(s1, s2, s))dµs (7.4.6)

4. There is a clear difference between n > 3 and n = 3 cases: for n > 3 also non-convex polygons
are possible: this means that the interior angle associated with some vertices of the polygon
is larger than π. n = 4 theory is certainly well-defined, but one can argue that so are also
n > 4 theories and skeptic would argue that this leads to an inflation of theories. TGD
however allows only finite number of preferred points and fusion rules could eliminate the
hierarchy of theories.

5. To sum up, the general predictions are following. Quite generally, for f(0) = 0 n-point cor-
relation functions vanish if any two arguments co-incide which conforms with the spectrum
of temperature fluctuations. It also implies that symplectic QFT is free of the usual singu-
larities. For symmetry breaking scenario 3-point functions and thus also 2-point functions
vanish also if s1 and s2 are at equator. All these are testable predictions using ensemble of
CMB spectra.

7.4.3 Generalization To Quantum TGD

Since number theoretic braids are the basic objects of quantum TGD, one can hope that the n-
point functions assignable to them could code the properties of ground states and that one could
separate from n-point functions the parts which correspond to the symplectic degrees of freedom
acting as symmetries of vacuum extremals and isometries of the “world of classical worlds”.

1. This approach indeed seems to generalize also to quantum TGD proper and the n-point
functions associated with partonic 2-surfaces can be decomposed in such a manner that one
obtains coefficients which are symplectic invariants associated with both S2 and CP2 Kähler
form.
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2. Fusion rules imply that the gauge fluxes of respective Kähler forms over geodesic triangles
associated with the S2 and CP2 projections of the arguments of 3-point function serve basic
building blocks of the correlation functions. The North and South poles of S2 and three
poles of CP2 can be used to construct symmetry breaking n-point functions as symplectic
invariants. Non-trivial 1-point functions vanish also now.

3. The important implication is that n-point functions vanish when some of the arguments
co-incide. This might play a crucial role in taming of the singularities: the basic general
prediction of TGD is that standard infinities of local field theories should be absent and this
mechanism might realize this expectation.

Next some more technical but elementary first guesses about what might be involved.

1. It is natural to introduce the moduli space for n-tuples of points of the symplectic manifold
as the space of symplectic equivalence classes of n-tuples. In the case of sphere S2 convex
n-polygon allows n + 1 3-sub-polygons and the areas of these provide symplectically invari-
ant coordinates for the moduli space of symplectic equivalence classes of n-polygons (2n-D
space of polygons is reduced to n + 1-D space). For non-convex polygons the number of
3-sub-polygons is reduced so that they seem to correspond to lower-dimensional sub-space.
In the case of CP2 n-polygon allows besides the areas of 3-polygons also 4-volumes of 5-
polygons as fundamental symplectic invariants. The number of independent 5-polygons for
n-polygon can be obtained by using induction: once the numbers N(k, n) of independent
k ≤ n-simplices are known for n-simplex, the numbers of k ≤ n + 1-simplices for n + 1-
polygon are obtained by adding one vertex so that by little visual gymnastics the numbers
N(k, n+1) are given by N(k, n+1) = N(k−1, n)+N(k, n). In the case of CP2 the allowance
of 3 analogs {N,S, T} of North and South poles of S2 means that besides the areas of poly-
gons (s1, s2, s3), (s1, s2, s3, X), (s1, s2, s3, X, Y ), and (s1, s2, s3, N, S, T ) also the 4-volumes
of 5-polygons (s1, s2, s3, X, Y ), and of 6-polygon (s1, s2, s3, N, S, T ), X,Y ∈ {N,S, T} can
appear as additional arguments in the definition of 3-point function.

2. What one really means with symplectic tensor is not clear since the naive first guess for the n-
point function of tensor fields is not manifestly general coordinate invariant. For instance, in
the model of CMB, the components of the metric deformation involving S2 indices would be
symplectic tensors. Tensorial n-point functions could be reduced to those for scalars obtained
as inner products of tensors with Killing vector fields of SO(3) at S2. Again a preferred
choice of quantization axis would be introduced and special points would correspond to the
singularities of the Killing vector fields.

The decomposition of Hamiltonians of the “world of classical worlds” expressible in terms of
Hamiltonians of S2×CP2 to irreps of SO(3) and SU(3) could define the notion of symplectic
tensor as the analog of spherical harmonic at the level of WCW . Spin and gluon color would
have natural interpretation as symplectic spin and color. The infinitesimal action of various
Hamiltonians on n-point functions defined by Hamiltonians and their super counterparts
is well-defined and group theoretical arguments allow to deduce general form of n-point
functions in terms of symplectic invariants.

3. The need to unify p-adic and real physics by requiring them to be completions of rational
physics, and the notion of finite measurement resolution suggest that discretization of also
fusion algebra is necessary. The set of points appearing as arguments of n-point functions
could be finite in a given resolution so that the p-adically troublesome integrals in the formulas
for the fusion rules would be replaced with sums. Perhaps rational/algebraic variants of
S2 × CP2 = SO(3)/SO(2) × SU(3)/U(2) obtained by replacing these groups with their
rational/algebraic variants are involved. Tedrahedra, octahedra, and dodecahedra suggest
themselves as simplest candidates for these discretized spaces. Also the symplectic moduli
space would be discretized to contain only n-tuples for which the symplectic invariants are
numbers in the allowed algebraic extension of rationals. This would provide an abstract
looking but actually very concrete operational approach to the discretization involving only
areas of n-tuples as internal coordinates of symplectic equivalence classes of n-tuples. The
best that one could achieve would be a formulation involving nothing below measurement
resolution.
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4. This picture based on elementary geometry might make sense also in the case of conformal
symmetries. The angles associated with the vertices of the S2 projection of n-polygon could
define conformal invariants appearing in n-point functions and the algebraization of the
corresponding phases would be an operational manner to introduce the space-time correlates
for the roots of unity introduced at quantum level. In CP2 degrees of freedom the projections
of n-tuples to the homologically trivial geodesic sphere S2 associated with the particular
sector of CH would allow to define similar conformal invariants. This framework gives
dimensionless areas (unit sphere is considered). p-Adic length scale hypothesis and hierarchy
of Planck constants would bring in the fundamental units of length and time in terms of CP2

length.

The recent view about M -matrix described is something almost unique determined by
Connes tensor product providing a formal realization for the statement that complex rays of state
space are replaced with N rays where N defines the hyper-finite sub-factor of type II1 defining the
measurement resolution. M -matrix defines time-like entanglement coefficients between positive
and negative energy parts of the zero energy state and need not be unitary. It is identified as
square root of density matrix with real expressible as product of of real and positive square root
and unitary S-matrix. This S-matrix is what is measured in laboratory. There is also a general
vision about how vertices are realized: they correspond to light-like partonic 3-surfaces obtained
by gluing incoming and outgoing partonic 3-surfaces along their ends together just like lines of
Feynman diagrams. Note that in string models string world sheets are non-singular as 2-manifolds
whereas 1-dimensional vertices are singular as 1-manifolds. These ingredients we should be able
to fuse together. So we try once again!

1. Iteration starting from vertices and propagators is the basic approach in the construction of n-
point function in standard QFT. This approach does not work in quantum TGD. Symplectic
and conformal field theories suggest that recursion replaces iteration in the construction. One
starts from an n-point function and reduces it step by step to a vacuum expectation value
of a 2-point function using fusion rules. Associativity becomes the fundamental dynamical
principle in this process. Associativity in the sense of classical number fields has already
shown its power and led to a hyper-octoninic formulation of quantum TGD promising a
unification of various visions about quantum TGD [K74].

2. Let us start from the representation of a zero energy state in terms of a causal diamond
defined by future and past directed light-cones. Zero energy state corresponds to a quantum
superposition of light-like partonic 3-surfaces each of them representing possible particle
reaction. These 3-surfaces are very much like generalized Feynman diagrams with lines
replaced by light-like 3-surfaces coming from the upper and lower light-cone boundaries and
glued together along their ends at smooth 2-dimensional surfaces defining the generalized
vertices.

3. It must be emphasized that the generalization of ordinary Feynman diagrammatics arises and
conformal and symplectic QFTs appear only in the calculation of single generalized Feynman
diagram. Therefore one could still worry about loop corrections. The fact that no integration
over loop momenta is involved and there is always finite cutoff due to discretization together
with recursive instead of iterative approach gives however good hopes that everything works.
Note that this picture is in conflict with one of the earlier approaches based on positive
energy ontology in which the hope was that only single generalized Feynman diagram could
define the U -matrix thought to correspond to physical S-matrix at that time.

4. One can actually simplify things by identifying generalized Feynman diagrams as maxima
of Kähler function with functional integration carried over perturbations around it. Thus
one would have conformal field theory in both fermionic and WCW degrees of freedom. The
light-like time coordinate along light-like 3-surface is analogous to the complex coordinate
of conformal field theories restricted to some curve. If it is possible continue the light-
like time coordinate to a hyper-complex coordinate in the interior of 4-D space-time sheet,
the correspondence with conformal field theories becomes rather concrete. Same applies to
the light-like radial coordinates associated with the light-cone boundaries. At light-cone
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boundaries one can apply fusion rules of a symplectic QFT to the remaining coordinates.
Conformal fusion rules are applied only to point pairs which are at different ends of the
partonic surface and there are no conformal singularities since arguments of n-point functions
do not co-incide. By applying the conformal and symplectic fusion rules one can eventually
reduce the n-point function defined by the various fermionic and bosonic operators appearing
at the ends of the generalized Feynman diagram to something calculable.

5. Finite measurement resolution defining the Connes tensor product is realized by the dis-
cretization applied to the choice of the arguments of n-point functions so that discretion is
not only a space-time correlate of finite resolution but actually defines it. No explicit realiza-
tion of the measurement resolution algebra N seems to be needed. Everything should boil
down to the fusion rules and integration measure over different 3-surfaces defined by exponent
of Kähler function and by imaginary exponent of Chern-Simons action. The continuation of
WCW Clifford algebra for 3-surfaces with cm degrees of freedom fixed to a hyper-octonionic
variant of gamma matrix field of super-string models defined in M8 (hyper-octonionic space)
and M8 ↔ M4 × CP2 duality leads to a unique choice of the points, which can contribute
to n-point functions as intersection of M4 subspace of M8 with the counterparts of partonic
2-surfaces at the boundaries of light-cones of M8. Therefore there are hopes that the result-
ing theory is highly unique. Symplectic fusion algebra reduces to a finite algebra for each
space-time surface if this picture is correct.

6. Consider next some of the details of how the light-like 3-surface codes for the fusion rules
associated with it. The intermediate partonic 2- surfaces must be involved since otherwise
the construction would carry no information about the properties of the light-like 3-surface,
and one would not obtain perturbation series in terms of the relevant coupling constants.
The natural assumption is that partonic 2-surfaces belong to future/past directed light-cone
boundary depending on whether they are on lower/upper half of the causal diamond. Hyper-
octonionic conformal field approach fixes the nint points at intermediate partonic two-sphere
for a given light-like 3-surface representing generalized Feynman diagram, and this means
that the contribution is just N -point function with N = nout + nint + nin calculable by the
basic fusion rules. Coupling constant strengths would emerge through the fusion coefficients,
and at least in the case of gauge interactions they must be proportional to Kähler coupling
strength since n-point functions are obtained by averaging over small deformations with
vacuum functional given by the exponent of Kähler function. The first guess is that one can
identify the spheres S2 ⊂ δM4

± associated with initial, final and, and intermediate states so
that symplectic n-points functions could be calculated using single sphere.

These findings raise the hope that quantum TGD is indeed a solvable theory. Even if one
is not willing to swallow any bit of TGD, the classification of the symplectic QFTs remains a
fascinating mathematical challenge in itself. A further challenge is the fusion of conformal QFT
and symplectic QFT in the construction of n-point functions. One might hope that conformal and
symplectic fusion rules can be treated separately. This separation indeed happens since conformal
degrees of freedom correspond to quantum fluctuations contributing to the WCW metric and
affecting the induced metric whereas symplectic invariants correspond to non-quantum fluctuating
zero modes defining the part of quantum state not affected by quantum fluctuations parameterized
by the symplectic group of δM4

± × CP2. Also the dream about symplectic fusion rules have been
realized. An explicit construction of symplectic fusion algebras is represented in [K10].



Chapter 8

Zero Energy Ontology and
Matrices

8.1 Introduction

Zero energy ontology has become gradually one of the corner stones of quantum TGD. Quantum
criticality has been the key idea from beginning but its understanding has grown rather slowly.
Now it can be understood in terms of several hierarchies: hierarchy of Planck constants, hierarchy
of breakings of super-symplectic symmetry represented as gauge symmetry, hierarchy of CDs, even
hierarchy of conscious entities. Hyperfinite factors of type II1 are highly suggestive candidates for
the mathematical realization of these hierarchies. This motivate the discussion of ZEO and HFFs
in the same chapter. Only general identifications for M and U matrices generalizing S-matrix to
TGD framework are given but concrete proposals are left to later chapters.

8.1.1 Zero Energy Ontology And Interpretation Of Light-Like 3-Surfaces
As Generalized Feynman Diagrams

1. Zero energy ontology (ZEO) is the cornerstone of the construction. Zero energy states have
vanishing net quantum numbers and consist of positive and negative energy parts, which can
be thought of as being localized at the boundaries of light-like 3-surface X3

l connecting the
light-like boundaries of a causal diamond CD identified as intersection of future and past
directed light-cones. There is entire hierarchy of CDs, whose scales are suggested to come
as powers of 2. A more general proposal is that prime powers of fundamental size scale are
possible and would conform with the most general form of p-adic length scale hypothesis.
The hierarchy of size scales assignable to CDs corresponds to a hierarchy of length scales and
code for a hierarchy of radiative corrections to generalized Feynman diagrams.

2. Either space-like 3-surfaces at the boundaries of CDs or light-like 3-surfaces connecting the
boundaries of CDs can be seen as the basic dynamical objects of quantum TGD and have
interpretation as generalized Feynman diagrams having light-like 3-surfaces as lines glued to-
gether along their ends defining vertices as 2-surfaces. By effective 2-dimensionality (hologra-
phy) of light-like 3-surfaces the interiors of light-like 3-surfaces are analogous to gauge degrees
of freedom and partially parameterized by Kac-Moody group respecting the light-likeness of
3-surfaces. This picture differs dramatically from that of string models since light-like 3-
surfaces replacing stringy diagrams are singular as manifolds whereas 2-surfaces representing
vertices are not.

3. String word sheets and partonic 2-surfaces however appear also in TGD as carriers of spinor
modes: this follows from the condition that em charge is well defined for the modes. The
condition follows also from number theoretic arguments and is assumed quite generally. This
has far reaching consequences for the understanding of gravitation in TGD framework and
profound deviations from string models are predicted due to the hierarchy of Planck con-
stants absolutely essential for the description of gravitational bound states in terms of strings

330
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connecting partonic 2-surfaces. Macroscopic quantum coherence in even astrophysical scales
is predicted [K106, K109].

8.1.2 Identification Of The Counterpart Of M-Matrix As Time-Like En-
tanglement Coefficients

1. The TGD counterpart of S-matrix -call it M -matrix- defines time-like entanglement coeffi-
cients between positive and negative energy parts of zero energy state located at the light-like
boundaries of CD. One can also assign to quantum jump between zero energy states a matrix-
call it U -matrix - which is unitary and assumed to be expressible in terms of M -matrices.
M -matrix need not be unitary unlike the U -matrix characterizing the unitary process form-
ing part of quantum jump. There are several arguments suggesting that M -matrix cannot
be unitary but can be regarded as thermal S-matrix so that thermodynamics would become
an essential part of quantum theory. In fact, M -matrix can be decomposed to a product
of positive diagonal matrix identifiable as square root of density matrix and unitary matrix
so that quantum theory would be kind of square root of thermodynamics. Path integral
formalism is given up although functional integral over the 3-surfaces is present.

2. In the general case only thermal M -matrix defines a normalizable zero energy state so that
thermodynamics or at least formalism resembling thermodynamics becomes part of quantum
theory. One can assign to M -matrix a complex parameter whose real part has interpretation
as interaction time and imaginary part as the inverse temperature.

8.1.3 Topics Of The Chapter

The goal is to provide some conceptual background for the attempts to identify scattering ampli-
tudes in TGD framework.

First the basic ideas and implications of ZEO are described. I will represent motivations for
ZEO in TGD framework, compare ZEO with the positive energy ontology, and try to make clear
the implications of ZEO for quantum measurement theory since they relate also directly to the
notion of conscious observer as it is understood in TGD inspired theory of consciousness. After
that the definitions of M -matrix and U -matrix are discussed.

The notion of hyper-finite factor expected to play central role in the mathematical de-
scription of finite measurement resolution, in the realization of the hierarchy of Planck con-
stants [K22, K106], the hierarchy quantum criticalities, and the hierarchy of gauge symmetry
breakings for the super-symplectic algebra. This motivates the discussion of the basic results and
ideas are about HFFs. The views about M -matrix as a characterizer of time-like entanglement
and M -matrix as a functor are analyzed. The role of hyper-finite factors in the construction of
M -matrix is considered. One section is devoted to the possibility that Connes tensor product
could define fundamental vertices. A more detailed discussion can be found in the book [K99], in
particular in chapter [K87].

I do not pretend of having handle about the huge technical complexities and can only recom-
mend the works of von Neumann [A78, A92, A82, A67]. Tomita [A76]. [B50, B22, B52]. the work
of Powers and Araki and Woods which served as starting point for the work of Connes [A29, A28].
The work of Jones [A55], and other leading figures in the field. What is may main contribution
is fresh physical interpretation of this mathematics which also helps to make mathematical con-
jectures. The book of Connes [A29] available in web provides an excellent overall view about von
Neumann algebras and non-commutative geometry.

In the last section some general speculations about U -matrix are represented. The negative
and positive energy parts of zero energy state can contain zero energy parts in shorter scales -
quantum field theorist might talk about quantum fluctuations. One can have also U -matrix and
M -matrix elements between this kind of states and even between zero energy states and a hierarchy
suggests itself. Since fermions could be seen as correlates of Boolean cognition and zero energy
states in fermion sectors as quantal Boolean statements, one can ask whether these matrices could
define Boolean hierarchies: statements about statements about...
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8.2 Zero Energy Ontology

Zero energy ontology has changed profoundly the views about the construction of S-matrix and
forced to introduce the separate notions of M -matrix and U -matrix. M -matrix generalizes the
notion of S-matrix as used in particle physics. The unitary U -matrix is something new having a
natural place in TGD inspired theory of consciousness. Therefore it it best to begin the discussion
with a brief summary of zero energy ontology.

8.2.1 Motivations For Zero Energy Ontology

Zero energy ontology was first forced by the finding that the imbeddings of Robertson-Walker
cosmologies to M4 × CP2 are vacuum extremals. The interpretation is that positive and negative
energy parts of states compensate each other so that all quantum states have vanishing net quantum
numbers. One can however assign to state quantum numbers as those of the positive energy part
of the state. At space-time level zero energy state can be visualized as having positive energy part
in geometric past and negative energy part in geometric future. In time scales shorter than the
temporal distance between states positive energy ontology works. In longer time scales the state
is analogous to a quantum fluctuation.

Zero energy ontology gives rise to a profound distinction between TGD and standard QFT.
Physical states are identified as states with vanishing net quantum numbers, in particular energy.
Everything is creatable from vacuum - and one could add- by intentional action so that zero energy
ontology is profoundly Eastern. Positive resp. negative energy parts of states can be identified
as states associated with 2-D partonic surfaces at the boundaries of future resp. past directed
light-cones, whose tips correspond to the arguments of n-point functions. Each incoming/outgoing
particle would define a mini-cosmology corresponding to not so big bang/crunch. If the time
scale of perception is much shorter than time interval between positive and zero energy states, the
ontology looks like the Western positive energy ontology. Bras and kets correspond naturally to the
positive and negative energy states and phase conjugation for laser photons making them indeed
something which seems to travel in opposite time direction is counterpart for bra-ket duality.

8.2.2 Zero Energy Ontology

Zero energy ontology (ZEO) is one of the cornerstones of TGD and has become part of TGD
during last six years. Zero energy states are identified as superpositions of pairs of positive and
negative energy states assigned with the future and past boundaries of causal diamonds (CDs)
and correspond in ordinary ontology to physical events with positive and negative energy parts
of the state identified as counterparts for the initial and final states of the event. Effective 2-
dimensionality allows a further reduction to the level of partonic 2-surfaces: also their 4-D tangent
space data matter. Symmetry considerations lead to a beautiful view about generalizations S-
matrix to U-matrix in terms o forthogonal M-matrices which in turn are expressible as products
of orthogonal basis of hermitian square roots of density matrices and unitary S-matrix [K91]. One
can say that quantum theory is “complex” square root of thermodynamics.

Therefore one should try to find tests for ZEO.

The hierarchy of CDs

The basic assumption is that the sizes of CDs come as integer multiples of CP2 scale R and for
prime multiples of R correspond to secondary p-adic length scales Lp,2 = Lp,1

√
p, Lp1 = R

√
p,

where R denotes CP2 scale. For electron with p = M127 = 2127 − 1 one has Tp2
= .1 seconds

and defines a fundamental bio-rhythm. This time scale should have preferred role in physics.
More generally the secondary p-adic time scales assignable to elementary particles should define
time scales relevant to macroscopic physics. The corresponding size scale can be assigned to the
magnetic body of the elementary particle. Also it should be possible to assign to quark mass scales
special biological time scales as has been indeed done [K5]. h predictions could be tested.
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Generalization of standard conservation laws in ZEO

ZEO together with sub-manifold geometry provides a new view about conservation laws and re-
solves the problem posed by the fact that gravitational interactions do not seem to respect energy
conservation in cosmological time scales. Conservation laws holds true only in the scale associated
with given CD, not universally (this would allow only single infinitely large CD).

Superconducting coherent states involve quantum superposition of states with different num-
bers of Cooper pairs and therefore break the super-selection rule associated with fermion number
in ordinary ontology. In ZEO they could be understood without giving up the superselection rule
associated with fermion number.

Experimental tests should try to prove that quantum number conservation is a length scale
dependent notion. For instance, creation of matter from vacuum is possible in ZEO, and one might
hope that its occurrenece could be in some scale for CDs aritficially.

Breaking of second law in standard form

In standard physics second law states that all systems are entropic but a system can reduce its
entropy by feeding its entropy to the environment. Negentropic entanglement carries genuine
information and life can be seen as islands of negentropy in the sea of entropy. This forces to
generalized second law. The proposed generalization (see http://tinyurl.com/ybg8qypx) [L9]
[K41] can be characterized as maximally pessimistic.

The generation of negentropic entanglement is assumed to be accompanied by generation of
compensating entropic entanglement. The modified form of second law is suggested by the mech-
anism of directed attention based on negentropic entanglement assignable to magnetic flux tube
connecting selfandtarget. Negentropic entanglement prevails during the attention but disappears
after state function reduction giving rise to entropy at the level of ensemble. Second law would
hold true above time scale assignab le to the duration of negentropic entanglement.

There are also other reasons to reconsider second law. The breaking of second law in
standard form since the arrow of geometric time can change locally. Living systems are indeed
accompanied by syntropic effects as realized by Italian quantum physicist Fantappie [J3, J4]. These
effects could be understood as entropic effects but with a reversed arrow of geometric time. The
mechanism would be based on negative energy signals. Phase conjugate laser waves are known to
obey second law in reversed direction of geometric time. Cooling effects due to the absorption of
negative energy signals inducing the breaking of the standard form of the second law are predicted
to be possible. One can also imagine a spontaneous excitation of atoms generating radiation in the
return to ground state in a situation when there is a target able to receive negative energy signals
emitted in spontaneous excitation.

Standard form of second law assumes that quantum coherence is absent in the scales in
which it is applied. Both the hierarchy of Planck constants and negentropic entanglement however
make possible macroscopic quantum coherence characterized by the scale involved and the natural
guess is that the time scale associated with causal diamond in question defines the scale above
which one can expect second law to hold. There is evidence for the breaking of second law in time
scale of.1 seconds [D2].

Negative energy signals

Zero energy ontology allows to assign to zero energy states an arrow of time naturally since one
can require that states have well defined single particle quantum numbers at either upper or lower
boundary of CD. Also the spontaneous change of the arrow of geometric time is possible. The
simplest possible description for U-process is that U-matrix relates to each other these two kinds
of states and state function reductions can occur at upper and lower boundaries of CD meaning
reduction to single particle states with well defined quantum numbers. The precise correlates for
the generation of geometric arrow of time are not completely understood.

Negative energy signals to geometric past would serve as counterparts for time reversed states
in the case of radiation and phase conjugate laser waves are natural counterparts for them. The
signal property requires a dissipative process proceeding in preferred time direction and this kind
of process has been assigned to sub-CDs and should proceed as state function reduction sequence
in preferred direction of time determined by the quantum arrow of time for the zero energy state.

http://tinyurl.com/ybg8qypx
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This process would be essential for the experience of flow of time in preferred direction and for
generation of arrow of geometric time as explain in previous chapter and also in [K4]. For phase
conjugate laser beams the reversed time direction for dissipation is observed.

Negative energy signals make possible remote metabolism as sucking of energy from remote
energy source provided resonance conditions for transitions are satisfied. The counterpart of pop-
ulation inverted laser could serve as ideal source and the negative energy signal could serve as
a control switch inducing phase transition like process taking the excited atom like systems to
ground state (induce emission). This process should occur in living matter. Anomalous excitation
of atomic state by absorbing energy by remote metabolism and subsequent generation of radiation
could also serve as a signature. It could also lead to cooling effects breaking second law.

Negative energy signals would also make possible realization of intentional action by ini-
tiating the activity already in geometric past. This would be very desirable in rapidly changing
circumstances. The time anomalies of Libet for active aspect of consciousness could be interpreted
in terms of time mirror mechanism [J1] and further experiments in longer time scales might be
perhaps carried out.

Negative energy signals could be also essential for the mechanism of long term memory.
They would induce a breakdown for a system analogous to population reversed laser via induced
emission meaning generation of strong positive energy signal [K61].

Definition of energy in zero energy ontology

The approach relying on the two super conformal structures of quantum TGD gives hopes of
defining the notion of energy for positive and negative energy parts of the state.

1. CD allows translational invariance only in its interior and since partonic two surfaces are
located to the boundary of CD, one can argue that translations assigned to them lead out
from CD. One can however argue that if it is enough to assign eigenstates of four-momentum
to partons and require that only the total four-momentum generators acts on the physical
state by shifting CD. Since total four-momentum vanishes for CD this would mean that wave
function in cm degrees of CD is just constant plane wave. Super-conformal invariance would
indeed allow to assign momentum eigenstates to the super-conformal representations.

2. A more stringent condition would be that four-momentum generators act as translation like
operators on partons themselves. Since light-like 3-surfaces assignable to incoming and out-
going legs of the generalized Feynman diagrams are the basic objects, one can hope of having
enough translational invariance to define the notion of energy. If translations are restricted
to time-like translations acting in the direction of the future (past) then one has local trans-
lation invariance of dynamics for classical field equations inside δM4

± as a kind of semigroup.
Also the M4 translations leading to interior of X4 from the light-like 2-surfaces surfaces act
as translations. Classically these restrictions correspond to non-tachyonic momenta defin-
ing the allowed directions of translations realizable as particle motions. These two kinds of
translations can be assigned to super-symplectic conformal symmetries at δM4

± × CP2 and
and super Super-Kac-Moody type conformal symmetries acting as super-symplectic isome-
tries. Super-symplectic algebra is realized in terms of second quantized spinor fields and
covariantly constant modes of right-handed neutrino. Symplectic group has as sub-group
symplectic isometries and the Super-Kac-Moody algebra associated with this group and rep-
resented in terms of spinor modes localized to string world sheets plays also a key role in
TGD.

Finite M4 translations to the interior of CD do not respect the shape of the partonic 2-
surface. Local M4 translations vanishing at the boundary of CD however act as Kac-Moody
symmetries of the light-like 3-surfaces and reduce physically to gauge transformations: hence
one could allow also the deformations of the partonic 2-surface in the interior of the light-
like 3-surface. This corresponds to the effective metric 2-dimensionality stating that all
information both about the geometry of WCW and quantum physics is carried by the partonic
2-surfaces X2 resulting as intersections of the light-like 3-surfaces X3

l and space-like 3-D
surfaces X3 at the boundaries of CD and the distribution of 4-D tangent planes of X2.
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3. The condition selecting preferred extremals of Kähler action is induced by a global selection
of M2 ⊂M4 as a plane belonging to the tangent space of X4 at all its points [K14] and inter-
preted as a plane of nonphysical polarizations so that direct connection with number theory
and gauge symmetries emerges. The M4 translations of X4 as a whole in general respect the
form of this condition in the interior. Furthermore, if M4 translations are restricted to M2,
also the condition itself - rather than only its general form - is respected. This observation,
the earlier experience with p-adic mass calculations, and also the treatment of quarks and
gluons in QCD encourage to consider the possibility that translational invariance should be
restricted to M2 translations so that mass squared, longitudinal momentum and transversal
mass squared would be well defined quantum numbers. This would be enough to realize zero
energy ontology. Encouragingly, M2 appears also in the generalization of the causal diamond
to a book-like structure forced by the realization of the hierarchy of Planck constant at the
level of the imbedding space.

4. That the cm degrees of freedom for CD would be gauge like degrees of freedom sounds strange.
The paradoxical feeling disappears as one realizes that this is not the case for sub-CDs, which
indeed can have non-trivial correlation functions with either upper or lower tip of the CD
playing a role analogous to that of an argument of n-point function in QFT description. One
can also say that largest CD in the hierarchy defines infrared cutoff.

Objection against zero energy ontology and quantum classical correspondence

The motivation for requiring geometry and topology of space-time as correlates for quantum states
is the belief that quantum measurement theory requires the representability of the outcome of
quantum measurement in terms of classical physics -and if one believes in geometrization- one
ends up with generalization of Einstein’s vision.

There is however a counter argument against this view and second one against zero energy
ontology in which one assigns eigenstates of four-momentum with causal diamonds (CDs).

1. One can argue that momentum eigenstates for which particle regarded as a topological inho-
mogenuity of space-time surface, which is non-localized cannot allow a space-time correlate.

2. Even worse, CDs have finite size so that strict four-momentum eigenstates strictly are not
possible.

On the other hand, the paradoxical fact is that we are able to perceive momentum eigenstates
and they look localized to us. This cannot be understood in the framework of standard Poincare
symmetry.

The resolution of the objections and of the apparent paradox could rely on conformal sym-
metry assignable to light-like 3-surfaces implying a generalization of Poincare symmetry and other
symmetries with their Kac-Moody variants for which symmetry transformations become local.

1. Poincare group is replaced by its Kac-Moody variant so that all non-constant translations
act as gauge symmetries. Translations which are constant in the interior of CD and trivial at
the boundaries of CDs are physically equivalent with constant translations. Hence the latter
objection can be circumvented.

2. The same argument allows also a localization of momentum eigenstates at the boundaries of
CD. In the interior the state is non-local. Classically the momentum eigenstate assigned with
the partonic 2-surface is characterized by its 4-D tangent space data coding for momentum
classically. The Kähler-Dirac equation and Kähhler action indeed contain and additional
term representing coupling to four-momenta of particles. Formally this corresponds only to a
gauge transform linear in momentum but Kahler gauge potential has U(1) gauge symmetry
only as a spin glass like degeneracy, not as a gauge symmetry so that space-time surface
depends on momenta.

3. Conscious observer corresponds in TGD inspired theory of consciousness to CD and the
sensory data of the observer come from partonic 2-surfaces at the boundaries of CD and
its sub-CDs. This implies classicality of sensory experience and momentum eigenstates look
classical for conscious perceiver.
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The usual argument resolving the paradox is based on the notion of wave packet and also this
notion could be involved. The notion of finite measurement resolution is key notion of TGD and it
is quite possible that one can require the localization of momentum eigenstates at the boundaries
of CDs only modulo finite measurement resolution for the position of the partonic 2-surfaces.

8.2.3 The Anatomy Of Quantum Jump In Zero Energy Ontology (ZEO)

Zero energy ontology (ZEO) emerged around 2005 and has had profound consequences for the
understanding of quantum TGD. The basic implication is that state function reductions occur
at the opposite light-like boundaries of causal diamonds (CDs) forming a hierarchy, and produce
zero energy states with opposite arrows of time. Also concerning the identification of quantum
jump as moment of consciousness ZEO encourages rather far reaching conclusions. In ZEO the
only difference between motor action and sensory representations is that the arrows of imbedding
space time (CDs) are opposite for them. Furthermore, sensory perception followed by motor action
corresponds to a basic structure in the sequence of state function reductions and it seems that these
processes occur fractally for CDs of various size scales.

1. State function reduction can be performed to either boundary of CD but not both simul-
taneously. State function reduction at either boundary is equivalent to state preparation
giving rise to a state with well defined quantum numbers (particle numbers, charges, four-
momentum, etc...) at this boundary of CD. At the other boundary single particle quantum
numbers are not well defined although total conserved quantum numbers at boundaries are
opposite by the zero energy property for every pair of positive and negative energy states in
the superposition. State pairs with different total energy, fermion number, etc.. for other
boundary are possible: for instance, the coherent states of super-conductor for which fermion
number is ill defined are possible in zero energy ontology and do not break the super-selection
rules.

2. The basic objects coding for physics are U-matrix, M-matrices and S-matrix. M-matrices
correspond to hermitian square roots of density matrices multiplied by a universal S-matrix
which depends on the scale n of CD in very simple manner: S(n) = Sn giving thus a
unitary representation for scalings. The explicit construction of a unitary U-matrix in terms
of M-matrices is carried out in [K91]: U-matrix elements are essentially inner products of
M-matrices associated with CDs with various size scales. One can say that quantum theory is
formally a square root of thermodynamics. The thermodynamics in question would however
relate more naturally to NMP rather than second law, which at ensemble level and for
ordinary entanglement can be seen as a consequence of NMP.

The non-triviality of M-matrix requires that for given state reduced at say the “lower” bound-
ary of CD there is entire distribution of states at “upper boundary” (given initial state can
lead to a continuum of final states). Even more, all size scales of CDs are possible since the
position of only the “lower” boundary of CD is localized in quantum jump whereas the loca-
tion of upper boundary of CD can vary so that one has distribution over CDs with different
size scales and over their Lorentz boots and translates.

3. The quantum arrow of time follows from the asymmetry between positive and negative energy
parts of the state: the other is prepared and the other corresponds to the superposition of the
final states resulting when interactions are turned on: also quantum superposition over CDs
of different sizes with second boundary belonging to the same fixed δM4

± is possible. What
is remarkable that the arrow of time at imbedding space level (at least) changes direction as
quantum jump occurs to opposite boundary.

It is however possible to have sequences of quantum jumps occurring at the same boundary:
these periods are counterparts for repeated state function reductions, which do not change the
state at all in standard quantum measurement theory. During these periods the superposition
of opposite boundaries of CDs and states at them change, and the average distance between
the tips of CDs tends to increase, hence the flow of subjective time and its arrow.

NMP dictates when the first quantum jumps to the opposite boundary of CD takes place.
The sequence of state function reduction at the same boundary defines self as a conscious
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entity and the increase of the average distance between the tips of CD defines the life-time
of self.

This brings strongly in mind the old proposal of Fantappie [J3] that in living matter the
arrow of time is not fixed and that entropy and its diametric opposite syntropy apply to
the two arrows of the imbedding space time. The arrow of subjective time assignable to
second law would hold true but the increase of syntropy would be basically a reflection of
second law since only the arrow of the geometric time at imbedding space level has changed
direction. The arrow of geometric at space-time level which conscious observer experiences
directly could be always the same if quantum classical correspondence holds true in the sense
that the arrow of time for zero energy states corresponds to arrow of time for preferred
extremals. The failure of strict non-determinism making possible phenomena analogous to
multi-furcations makes this possible.

4. This picture differs radically from the standard view and if quantum jump represents a
fundamental algorithm, this variation of the arrow of geometric time should manifest itself
in the functioning of brain and living organisms. The basic building brick in the functioning
of brain is the formation of sensory representation followed by motor action/volition realized
as the first reduction at the opposite boundary.

These processes look very much like temporal mirror images of each other such as the state
function reductions to opposite boundaries of CD look like. The fundamental process could
correspond to a sequences of these two kinds of state function reductions at opposite bound-
aries of CDs and maybe independently for CDs of different size scales in a “many-particle”
state defined by a union of CDs.

How the formation of cognitive and sensory representations could relate to quantum jump?

1. The earlier view was based on the idea that p-adic space-time sheets can transform to real ones
and vice versa in quantum jump and these process correspond to a realization of intention
as action and formation of though. This view is mathematically awkward and has been
replaced with the adelic vision in which all systems have both sensory (real space-time sheets)
and cognitive (p-adic space-time sheets) space-time correlates. The real and p-adic number
fields form a book like structure - adele- with an algebraic extension of rationals as its
back. Same applieds at the level of imbedding space, space-time surfaces, and WCW. In this
framedwork holography makes it possible to understand real and p-adic space-time surfaces
as continuations of string world sheets and partonic 2-surfaces to space-time surfaces, either
real or p-adic. The string world sheets themselves are in the intersection of reality and various
p-adicities in the sense that the parameters characterizing them belong to an extension of
rational numbers.

2. Self having the mental image about intention can be be seen as the agent transforming
intention to action. By NMP negentropy is typically generated in this transition tending to
increase the value of Planck constant heff = n × h and thus reducing quantum criticality
and occurring therefore spontaneously. Negentropy Maximization Principle eventually forces
the occurrence of volitional action - self experiences the urge to perform the action so strong
that cannot resist. Subself representing the mental image about intention tries to prevent it
as long as possible because it means death: all living systems try to stay at the existing level
of criticality and avoid the fatal final state function reduction by practicing homeostasis and
using metabolic energy. Weak form of NMP states that self has freedom to decide whether
it performs the reduction producing maximal entanglement negentropy. It can also perform
ordinary quantum jump reducing entanglement entropy to zero and destroying entanglement.
The outcome is isolation from the external world. The motivation for the weak form of NMP
is that we do not live in the best possible world and have free will to choose between Good
and Evil. Strong form of NMP would produce always mazimal negentropy gain and would
mean best possible world.ur in various length scales in fractal manner.
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8.2.4 Conscious Entities And Arrow Of Time In TGD Universe

“Fractality from your blog” posed an interesting question about possible asymmetry be-
tween boundaries of causal diamond CD. The answer to the question led to recall once again the
incomplete understanding of details about how the arrow of time emerges in zero energy ontology
(ZEO).

The basic vision is following.

1. CDs form a fractal scale hierarchy. Zero energy states possess a wave function in moduli
degrees of freedom characterizing sizes of CDs as well telling what Lorentz boost leaving
boundary invariant are allowed for them. Boosts form by number theoretic constraints a
discrete subgroup of Lorentz group defining analogs of lattices generated by boosts instead
of translations.

2. The arrow of subjective time maps to that of geometric time somehow. The origin of arrow
comes from the fact that state function reductions can occur to either boundary of given CD
and reduction creates time-asymmetric state since second boundary of CD is in a quantum
superposition of different sizes and there is a superposition of many-particle states with
different particles numbers and quantum number distributions. It is possible that each state
function reduction leaving the passive boundary intact, involves localization in the moduli
space of CDs with second boundary fixed.

3. Subjective existence corresponds to a sequence of moments of consciousness: state function
reductions at opposite boundaries of CDs. State function reduction localizes either boundary
but the second boundary is in a quantum superposition of several locations and size scales
for CD. This predicts that the arrow of time is not constant. In fact, there is considerable
evidence for the variation of the arrow of time in living systems and Fantappie [J3] introduced
long time ago the notion of syntropy to describe his view about the situation.

4. The first very naive proposal was that state function reductions occur alternately to the two
boundaries of CD. This assumption would be indeed natural if one considered single fixed
CD rather than superposition CDs with different size and state function reduction localizing
their either boundary: restriction to single CD was what I indeed did first.

5. This assumption leads to the question about why do we do not observe this alternation of
the arrow of time all the time in our personal experience. Some people actually claim to have
actually experienced a temporary change of the arrow of time: I belong to them and I can
tell that the experience is frightening. But why do we experience the arrow of time as stable
in the standard state of consciousness?

One possible way to solve the problem - perhaps the simplest one - is that state function
reduction to the same boundary of CD can occur many times repeatedly. This solution is so
absolutely trivial that I could perhaps use this triviality to defend myself for not realizing it
immediately!

I made this totally trivial observation only after I had realized that also in this process the
wave function in the moduli space of CDs change in these reductions. Zeno effect in ordinary
measurement theory relies on the possibility of repeated state function reductions. In the ordinary
quantum measurement theory repeated state function reductions do not affect the state in this
kind of sequence but in ZEO the wave function in the moduli space labelling different CDs with
the same boundary could change in each quantum jump. It would be natural that this sequence
of quantum jumps give rise to the experience about flow of time? This option would allow the size
scale of CD associated with human consciousness be rather short, say.1 seconds. It would allow to
understand why we do not observe continual change of arrow of time.

Maybe living systems are working hardly to keep the personal arrow of time un-changed -
living creatures try to prevent kettle from boiling by staring at it intensely. Maybe it would be
extremely difficult to live against the collective arrow of time.

An objection against this picture as compared to the original one assuming alternate re-
ductions to the opposite boundaries of CD is that is that one can understand state preparation
as state function reduction to the opposite boundary. This interpetation makes sense almost as
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such also in the new picture if the average time period for which the reductions occur to a given
boundary is shorter in elementary particles scales than in macroscopic scales characteristic for hu-
man consciousness. The approximate reversibility in elementary particle scales can be understood
as summing up of the two arrows of time to no arrow at all.

This picture allows also to identify self as a continuous entity as the sequence of state
function reductions occurring at the same boundary of CD. The average increase of the temporal
distance between the tips of cD defines the life-time of self. The number of reductions would give
a measure for the subjectively experienced of life-time of self.

In elementary particle time scales reversibility is a good approximation and this suggests
that in elementary particle scales the number of state function reductions at the same boundary
of CD is small so that the effects due to the change of the arrow of time cancel on the average.

NMP would eventually force ”death” of self since the state function reduction at opposite
boundary would generate more negentropy. ”Death” of self would mean birth of self asssociated
with the opposite boundary of CD. The age of self identified as the proper time distance between
the tips would increase in statistical sense even when its arrow can change. The act of volition
would have a natural identification as the first state function reduction at the opposite boundary
of CD.

This picture raises a series of questions. Do our wake-up periods correspond to sequences
of state function reductions for self and are sleeping periods wake-up periods of the self at the
opposite boundary of CD? The arrow of geometric time should change at some space-time sheet
associated with the self hierarchy. How could one demonstrate this? Are the memories of the
”other” self predictions of future from our point of view? Do we sleep in order to get information
from future, to remember what the future will be?

How the hierarchy of Planck constants defining a hierarchy of quantum criticalities does
relate to this picture? The ageing of self having has as a correlate the increase of the size scale of
CD. Could this increase be due to the increase of heff expected to occur spontaneously since it
corresponds to a reduction of criticality and therefore to the appearance of new physical degrees
of freedom as symplectic gauge degrees of freedom transform to physical ones in gauge symmetry
breaking. This is not the case. The time evolution must be analogous to shift in time rather than
scaling. This of course corresponds to the QFT view about time evolution.

In the first state function reduction to the opposite boundary of CD however scaling of CD
is possible and would correspond to the scaling of CD represented by exponent of infinitesimal
scaling operator as in conformal field theories. The emergence of bew physical degrees of freedom
suggest increasing perceptive and cognitive capabilities. The increase of heff could be seen as
evolution as also the associated increase of resources of negentropic entanglement suggests. The
total increase of heff measured by the ratio heff (final)/heff (initial) could be seen as a measure
for the progress per single life period of self.

8.3 A Vision About The Role Of HFFs In TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have
a profound role in TGD. Whether also HFFS of type III1 appearing also in relativistic quantum
field theories emerge when WCW spinors are replaced with spinor fields is not completely clear. I
have proposed several ideas about the role of hyper-finite factors in TGD framework. In particular,
Connes tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by zero energy
ontology and the recent advances in the understanding of M-matrix using the notion of bosonic
emergence. The conclusion is that the notion of state as it appears in the theory of factors is not
enough for the purposes of quantum TGD. The reason is that state in this sense is essentially the
counterpart of thermodynamical state. The construction of M-matrix might be understood in the
framework of factors if one replaces state with its “complex square root” natural if quantum theory
is regarded as a “complex square root” of thermodynamics. It is also found that the idea that
Connes tensor product could fix M-matrix is too optimistic but an elegant formulation in terms
of partial trace for the notion of M-matrix modulo measurement resolution exists and Connes
tensor product allows interpretation as entanglement between sub-spaces consisting of states not
distinguishable in the measurement resolution used. The partial trace also gives rise to non-pure
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states naturally.
The newest element in the vision is the proposal that quantum criticality of TGD Universe

is realized as hierarchies of inclusions of super-conformal algebras with conformal weights coming
as multiples of integer n, where n varies. If n1 divides n2 then various super-conformal algebras
Cn2

are contained in Cn1
. This would define naturally the inclusion.

8.3.1 Basic Facts About Factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a
physicist to express physical vision in terms of only superficially understood mathematical notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space
H bounded in the norm topology with norm defined by the supremum for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that
the counterparts of complex conjugation, order structure and metric structure determined by the
algebraic structure exist. This means the existence involution -that is *- algebra property. The
order structure determined by algebraic structure means following: A ≥ 0 defined as the condition
(Aξ, ξ) ≥ 0 is equivalent with A = B∗B. The algebra has also metric structure ||AB|| ≤ ||A||||B|
(Banach algebra property) determined by the algebraic structure. The algebra is also C∗ algebra:
||A∗A|| = ||A||2 meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebraM [A26] is defined as a weakly closed non-degenerate *-subalgebra
of B(H) and has therefore all the above mentioned properties. From the point of view of physicist
it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

1. LetM be subalgebra of B(H) and denote byM′ its commutant (H) commuting with it and
allowing to express B(H) as B(H) =M∨M′.

2. A factor is defined as a von Neumann algebra satisfying M′′ =MM is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that
the intersection of the algebra and its commutant reduces to a complex line spanned by a
unit operator. The condition that the only operator commuting with all operators of the
factor is unit operator corresponds to irreducibility in representation theory.

3. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only if
it is separating for its commutant. In so called standard representation Ω is both cyclic and
separating.

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is
dense in the factor exists. This roughly means that one can approximate the algebra in
arbitrary accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the underly-
ing physical motivations. The motivating question is what the decomposition of a physical system
to non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes this
decomposition.

1. Tensor product H = H1 ⊗ H2 is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(H) to tensor products
of mutually commuting operators in M = B(H1) and M′ = B(H2). The information about
M can be coded in terms of projection operators. In this case projection operators projecting
to a complex ray of Hilbert space exist and arbitrary compact operator can be expressed as
a sum of these projectors. For factors of type I minimal projectors exist. Factors of type In
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correspond to sub-algebras of B(H) associated with infinite-dimensional Hilbert space and
I∞ to B(H) itself. These factors appear in the standard quantum measurement theory where
state function reduction can lead to a ray of Hilbert space.

2. For factors of type II no minimal projectors exists whereas finite projectors exist. For factors
of type II1 all projectors have trace not larger than one and the trace varies in the range
(0, 1]. In this case cyclic vectors Ω exist. State function reduction can lead only to an infinite-
dimensional subspace characterized by a projector with trace smaller than 1 but larger than
zero. The natural interpretation would be in terms of finite measurement resolution. The
tensor product of II1 factor and I∞ is II∞ factor for which the trace for a projector can
have arbitrarily large values. II1 factor has a unique finite tracial state and the set of traces
of projections spans unit interval. There is uncountable number of factors of type II but
hyper-finite factors of type II1 are the exceptional ones and physically most interesting.

3. Factors of type III correspond to an extreme situation. In this case the projection operators
E spanning the factor have either infinite or vanishing trace and there exists an isometry
mapping EH to H meaning that the projection operator spans almost all of H. All projectors
are also related to each other by isometry. Factors of type III are smallest if the factors are
regarded as sub-algebras of a fixed B(H) whereH corresponds to isomorphism class of Hilbert
spaces. Situation changes when one speaks about concrete representations. Also now hyper-
finite factors are exceptional.

4. Von Neumann algebras define a non-commutative measure theory. Commutative von Neu-
mann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1. A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a∗a) to non-negative reals.

2. A positive linear functional is weight with ω(1) finite.

3. A state is a weight with ω(1) = 1.

4. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

5. A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of type
I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1] and for
factors of type II∞ n the range [0,∞). For factors of type III the values of the trace are 0, and∞.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (8.3.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.
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3. The conjugation x → x∗ is isometric in M and defines a map M → L2(M) via x → xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A45, A70] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the fac-
tor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of cor-
responding II∞ factor characterizes partially a factor of type II1. This group consists real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there
is no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that
the automorphisms do not affect the identity operator of the factor at all.
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The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M′ = JMJ holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

Crossed product as a manner to construct factors of type III

By using so called crossed product crossedproduct for a group G acting in algebra A one can obtain
new von Neumann algebras. One ends up with crossed product by a two-step generalization by
starting from the semidirect product G/H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2)
(note that Poincare group has interpretation as a semidirect product M4 /SO(3, 1) of Lorentz and
translation groups). At the first step one replaces the group H with its group algebra. At the
second step the the group algebra is replaced with a more general algebra. What is formed is the
semidirect product A / G which is sum of algebras Ag. The product is given by (a1, g1)(a2, g2) =
(a1g1(a2), g1g2). This construction works for both locally compact groups and quantum groups.
A not too highly educated guess is that the construction in the case of quantum groups gives the
factor M as a crossed product of the included factor N and quantum group defined by the factor
space M/N .

The construction allows to express factors of type III as crossed products of factors of type
II∞ and the 1-parameter group G of modular automorphisms assignable to any vector which is
cyclic for both factor and its commutant. The ergodic flow θλ scales the trace of projector in II∞
factor by λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not depend
on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of
the kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the
center is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of
type IIIλ and contains all real numbers for factors of type III1 meaning that the flow does not
affect the center.

Inclusions and Connes tensor product

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical de-
scription for sub-system-system relation. In [K87] there is more extensive TGD colored description
of inclusions and their role in TGD. Here only basic facts are listed and the Connes tensor product
is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such.
For factors of II1 and III the inclusions are highly non-trivial. The inclusion of type II1 factors
were understood by Vaughan Jones [A1] and those of factors of type III by Alain Connes [A28] .

Formally sub-factor N ofM is defined as a closed ∗-stable C-subalgebra ofM. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M
as N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by indexM : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only
the imbedding.

The basic facts proved by Jones are following [A1] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by
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a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(8.3.2)

the numbers at right hand side are known as Beraha numbers [A60] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B53] , for M : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r. The Lie
algebras of SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign
to the inclusion an extended Dynkin graph of type ADE characterizing Kac Moody algebra.
Extended ADE diagrams characterize also the subgroups of SU(2) and the interpretation
proposed in [A91] is following. The ADE diagrams are associated with the n = ∞ case
having M : N ≥ 4. There are diagrams corresponding to infinite subgroups: SU(2) itself,
circle group U(1), and infinite dihedral groups (generated by a rotation by a non-rational
angle and reflection. The diagrams corresponding to finite subgroups are extension of An
for cyclic groups, of Dn dihedral groups, and of En with n=6,7,8 for tetrahedron, cube,
dodecahedron. For M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed.

Connes tensor product

The inclusions The basic idea of Connes tensor product is that a sub-space generated sub-factor
N takes the role of the complex ray of Hilbert space. The physical interpretation is in terms of
finite measurement resolution: it is not possible to distinguish between states obtained by applying
elements of N .

Intuitively it is clear that it should be possible to decomposeM to a tensor product of factor
space M/N and N :

M = M/N ⊗N . (8.3.3)

One could regard the factor space M/N as a non-commutative space in which each point cor-
responds to a particular representative in the equivalence class of points defined by N . The
connections between quantum groups and Jones inclusions suggest that this space closely relates
to quantum groups. An alternative interpretation is as an ordinary linear space obtained by map-
ping N rays to ordinary complex rays. These spaces appear in the representations of quantum
groups. Similar procedure makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the spaceM⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right is
equivalent with N multiplication from left so that N acts like complex numbers on states. One
can imagine variants of the Connes tensor product and in TGD framework one particular variant
appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n×n matrices acts on V from right, V can be regarded
as a space formed by m × n matrices for some value of m. If N acts from left on W , W can be
regarded as space of n× r matrices.

1. In the first representation the Connes tensor product of spaces V and W consists of m ×
r matrices and Connes tensor product is represented as the product VW of matrices as
(VW )mre

mr. In this representation the information about N disappears completely as the
interpretation in terms of measurement resolution suggests. The sum over intermediate states
defined by N brings in mind path integral.

2. An alternative and more physical representation is as a state



8.3. A Vision About The Role Of HFFs In TGD 345

∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

3. One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for A† ⊗N B or its tensor product counterpart. This case corresponds to
the modification of the Connes tensor product of positive and negative energy states. Since
Hermitian conjugation is involved, matrix product does not define the Connes tensor product
now. For m = r case entanglement coefficients should define a unitary matrix commuting
with the action of the Hermitian matrices of N and interpretation would be in terms of
symmetry. HFF property would encourage to think that this representation has an analog
in the case of HFFs of type II1.

4. Also type In factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.

Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A80, A45, A70] . There are good
arguments showing that in HFFs of III1 appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is
essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [A70] deserve to be listed
since they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x)
where (O+ x) is the translate of O and |x| denotes Minkowski norm. Then every projection
E ∈ M(O) can be written as WW ∗ with W ∈ M(Oε) and W ∗W = 1. Note that the union
is not a bounded set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz
boosts induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs of
type III1 associated with causally disjoint regions are sub-factors of factor of type I∞. This
means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic inclusions.

Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A80, A45, A70] . There are good
arguments showing that in HFFs of III1 appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is
essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [A70] deserve to be listed
since they are suggestive also from the point of view of TGD.
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1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x)
where (O+ x) is the translate of O and |x| denotes Minkowski norm. Then every projection
E ∈ M(O) can be written as WW ∗ with W ∈ M(Oε) and W ∗W = 1. Note that the union
is not a bounded set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz
boosts induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs of
type III1 associated with causally disjoint regions are sub-factors of factor of type I∞. This
means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic inclusions.

8.3.2 TGD And Factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual
and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is
the physical interpretation of the formula M′ = JMJ relating factor and its commutant in
TGD framework?

2. Is the identification M = ∆it sensible is quantum TGD and ZEO, where M-matrix is “com-
plex square root” of exponent of Hamiltonian defining thermodynamical state and the notion
of unitary time evolution is given up? The notion of state ω leading to ∆ is essentially ther-
modynamical and one can wonder whether one should take also a “complex square root” of
ω to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of
freedom assignable to light-like 3-surfaces and zero modes identifiable as classical degrees
of freedom assignable to interior of the space-time sheet. Zero modes have also fermionic
counterparts. State preparation should generate entanglement between the quantal and
classical states. What this means at the level of von Neumann algebras?

4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at imbedding space level causally disjoint
CDs would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a crossed
product of some group G with direct physical interpretation and of naturally appearing factor
A? Is A a HFF of type II∞? assignable to a fixed CD? What is the natural Hilbert space H
in which A acts?
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2. What are the geometric transformations inducing modular automorphisms of II∞ inducing
the scaling down of the trace? Is the action of G induced by the boosts in Lorentz group.
Could also translations and scalings induce the action? What is the factor associated with
the union of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the
non-unitarity of exp(log(∆)it) mean physically?

3. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the
choice of the sphere S2 defining the radial coordinate playing the role of complex variable
in the case of the radial conformal algebra. Does ∗-operation inM correspond to Hermitian
conjugation for fermionic oscillator operators and change of sign of super conformal weights?

The exponent of the Kähler-Dirac action gives rise to the exponent of Kähler function
as Dirac determinant and fermionic inner product defined by fermionic Feynman rules. It is
implausible that this exponent could as such correspond to ω or ∆it having conceptual roots in
thermodynamics rather than QFT. If one assumes that the exponent of the Kähler-Dirac action
defines a “complex square root” of ω the situation changes. This raises technical questions relating
to the notion of square root of ω.

1. Does the complex square root of ω have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does ω1/2 correspond to
the modulus in the decomposition? Does the square root of ∆ have similar decomposition
with modulus equal equal to ∆1/2 in standard picture so that modular automorphism, which
is inherent property of von Neumann algebra, would not be affected?

2. ∆it or rather its generalization is defined modulo a unitary operator defined by some Hamil-
tonian and is therefore highly non-unique as such. This non-uniqueness applies also to |∆|.
Could this non-uniqueness correspond to the thermodynamical degrees of freedom?

ZEO and factors

The first question concerns the identification of the Hilbert space associated with the factors in
ZEO. As the positive or negative energy part of the zero energy state space or as the entire space
of zero energy states? The latter option would look more natural physically and is forced by the
condition that the vacuum state is cyclic and separating.

1. The commutant of HFF given as M′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like
boundaries of CD are analogous to upper and lower hemispheres of S2 in conformal field
theory. The presence of J representing essentially Hermitian conjugation would suggest that
positive and zero energy parts of zero energy states are related by this formula so that state
space decomposes to a tensor product of positive and negative energy states and M -matrix
can be regarded as a map between these two sub-spaces.

2. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum is
cyclic and separating means that neither creation nor annihilation operators can annihilate it.
Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of ∗ transforms creation operators acting
on the positive energy part of the state to annihilation operators acting on negative energy
part of the state. If J permutes the two Fock vacuums in their tensor product, the action of
S indeed maps permutes the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in ZEO.

1. In ZEO M -matrix defines time-like entanglement coefficients between positive and negative
energy parts of the state. M -matrix is essentially “complex square root” of the density
matrix and quantum theory similar square root of thermodynamics. The notion of state as it
appears in the theory of HFFs is however essentially thermodynamical. Therefore it is good
to ask whether the “complex square root of state” could make sense in the theory of factors.
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2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0 limit.
In quantum TGD the exponent of Kähler-Dirac action giving exponent of Kähler function
as real exponent could be the manner to take this complex square root. Kähler-Dirac action
can therefore be regarded as a “square root” of Kähler action.

3. The identification M = ∆it relies on the idea of unitary time evolution which is given up in
ZEO based on CDs? Is the reduction of the quantum dynamics to a flow a realistic idea?
As will be found this automorphism could correspond to a time translation or scaling for
either upper or lower light-cone defining CD and can ask whether ∆it corresponds to the
exponent of scaling operator L0 defining single particle propagator as one integrates over t.
Its complex square root would correspond to fermionic propagator.

4. In this framework J∆it would map the positive energy and negative energy sectors to each
other. If the positive and negative energy state spaces can identified by isometry then M =
J∆it identification can be considered but seems unrealistic. S = J∆1/2 maps positive and
negative energy states to each other: could S or its generalization appear in M -matrix as
a part which gives thermodynamics? The exponent of the Kähler-Dirac action does not
seem to provide thermodynamical aspect and p-adic thermodynamics suggests strongly the
presence exponent of exp(−L0/Tp) with Tp chose in such manner that consistency with p-adic
thermodynamics is obtained. Could the generalization of J∆n/2 with ∆ replaced with its
“square root” give rise to padic thermodynamics and also ordinary thermodynamics at the
level of density matrix? The minimal option would be that power of ∆it which imaginary
value of t is responsible for thermodynamical degrees of freedom whereas everything else is
dictated by the unitary S-matrix appearing as phase of the “square root” of ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the
relationship between zero modes and HFFs involves further conceptual problems.

1. The presence of zero modes means that one has a direct integral over HFFs labeled by
zero modes which by definition do not contribute to WCW line element. The realization of
quantum criticality in terms of Kähler-Dirac action [K88] suggests that also fermionic zero
mode degrees of freedom are present and correspond to conserved charges assignable to the
critical deformations of the pace-time sheets. Induced Kähler form characterizes the values
of zero modes for a given space-time sheet and the symplectic group of light-cone boundary
characterizes the quantum fluctuating degrees of freedom. The entanglement between zero
modes and quantum fluctuating degrees of freedom is essential for quantum measurement
theory. One should understand this entanglement.

2. Physical intuition suggests that classical observables should correspond to longer length scale
than quantal ones. Hence it would seem that the interior degrees of freedom outside CD
should correspond to classical degrees of freedom correlating with quantum fluctuating de-
grees of freedom of CD.

3. Quantum criticality means that Kähler-Dirac action allows an infinite number of conserved
charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra asso-
ciated with quantum fluctuating degrees of freedom? Could the restriction of elements of
quantum fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativ-
ity. Quantum holography would suggest a duality between these algebras. Quantum mea-
surement theory suggests even 1-1 correspondence between the elements of the two super-
conformal algebras. The entanglement between classical and quantum degrees of freedom
would mean that prepared quantum states are created by operators for which the operators
in the two algebras are entangled in diagonal manner.

4. The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions
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of hyper-finite factors for which sub-factor defines the resolution in the sense that its action
creates states not distinguishable from each other in the resolution used. The notion of
finite measurement resolution suggests that one should speak about entanglement between
sub-factors and corresponding sub-spaces rather than between states. Connes tensor product
would code for the idea that the action of sub-factors is analogous to that of complex numbers
and tracing over sub-factor realizes this idea.

5. Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond toM′ = JMJ? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If
this crazy guess is correct (very probably not!), both positive and negative energy states
would be observed in quantum measurement but in totally different manner. Since this
identity would simplify enormously the structure of the theory, it deserves therefore to be
shown wrong.

Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic chal-
lenge. Consider first the question how HFFs of type II∞ emerge, how modular automorphisms act
on them, and how one can understand the non-unitary character of the ∆it in an apparent conflict
with the hermiticity and positivity of ∆.

1. The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at the
boundaries of CD) defines HFF of type II1 or possibly a direct integral of them. For a
given CD having compact isotropy group SO(3) leaving the rest frame defined by the tips
of CD invariant the factor defined by Clifford algebra valued fields in WCW(CD) is most
naturally HFF of type II∞. The Hilbert space in which this Clifford algebra acts, consists
of spinor fields in WCW(CD). Also the symplectic transformations of light-cone boundary
leaving light-like 3-surfaces inside CD can be included to G. In fact all conformal algebras
leaving CD invariant could be included in CD.

2. The downwards scalings of the radial coordinate rM of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
and effectively scale down the size of CD. exp(iL0) as algebraic operator acts as a phase mul-
tiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itL0) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value
of the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
modular automorphism. These shifts seem to be necessary to define rest energies of positive
and negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of II∞ factor reflects different choices of
ω. The degeneracy of ω could be due to the non-uniqueness of conformal vacuum which is
part of the definition of ω. The radial Virasoro algebra of light-cone boundary is generated
by Ln = L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are in asymmetric
position. The conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group
defining the slicing of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely.
One can however consider also alternative choices of SO(3) and each corresponds to a slicing
of the light-cone boundary by spheres but in general the sphere defining the intersection of
the two light-cone does not belong to the slicing. Hence the action of Lorentz transformation
inducing different choice of SO(3) can lead out from the preferred state space so that its
representation must be non-unitary unless Virasoro generators annihilate the physical states.
The non-vanishing of the conformal central charge c and vacuum weight h seems to be
necessary and indeed can take place for super-symplectic algebra and Super Kac-Moody
algebra since only the differences of the algebra elements are assumed to annihilate physical
states.
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Modular automorphism of HFFs type III1 can be induced by several geometric transforma-
tions for HFFs of type III1 obtained using the crossed product construction from II∞ factor by
extending CD to a union of its Lorentz transforms.

1. The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD
cannot correspond to these transformations. Same applies to time translations acting on
either boundary but not to ordinary translations. As found, the modular automorphisms
reducing the size of CD could act in HFF of type II∞.

2. The geometric counterparts of the modular transformations would most naturally correspond
to any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The
Lorentz boosts would replace the radial coordinate rM of the light-cone boundary associated
with the radial Virasoro algebra with a new one so that the slicing of light-cone boundary
with spheres would be affected and one could speak of a new conformal gauge. The temporal
distance between tips of CD in the rest frame would not be affected. The effect would seem
to be however unitary because the transformation does not only modify the states but also
transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal gauge
defining the radial coordinate of the light-cone boundary, they affect also the definition of
the conformal vacuum so that also ω is affected so that the interpretation as a modular
automorphism makes sense. The simplistic intuition of the novice suggests that if one allows
wave functions in the space of Lorentz transforms of CD, unitarity of ∆it is possible. Note
that the hierarchy of Planck constants assigns to CD preferred M2 and thus direction of
quantization axes of angular momentum and boosts in this direction would be in preferred
role.

4. One can also consider the HFF of type IIIλ if the radial scalings by negative powers of
2 correspond to the automorphism group of II∞ factor as the vision about allowed CDs
suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing only the
radial scalings. Lorentz boosts would expand the factor to HFF of type III1. Why scalings
by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number
having as its real part the temporal distance between tips of CD quantized as 2n and temperature
as imaginary part, looks at first highly attractive, since it would mean that M -matrix indeed exists
mathematically. The proposed interpretations of modular automorphisms do not support the idea
that they could define the S-matrix of the theory. In any case, the identification as modular
automorphism would not lead to a magic universal formula since arbitrary unitary transformation
is involved.

Quantum criticality and inclusions of factors

Quantum criticality fixes the value of Kähler coupling strength but is expected to have also an
interpretation in terms of a hierarchies of broken conformal gauge symmetries suggesting hierarchies
of inclusions.

1. In ZEO 3-surfaces are unions of space-like 3-surfaces at the ends of causal diamond (CD).
Space-time surfaces connect 3-surfaces at the boundaries of CD. The non-determinism of
Kähler action allows the possibility of having several space-time sheets connecting the ends
of space-time surface but the conditions that classical charges are same for them reduces this
number so that it could be finite. Quantum criticality in this sense implies non-determinism
analogous to that of critical systems since preferred extremals can co-incide and suffer this
kind of bifurcation in the interior of CD. This quantum criticality can be assigned to the
hierarchy of Planck constants and the integer n in heff = n × h [K22] corresponds to the
number of degenerate space-time sheets with same Kähler action and conserved classical
charges.
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2. Also now one expects a hierarchy of criticalities and since criticality and conformal invariance
are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of con-
formal algebra isomorphic to conformal algebra itself and having conformal weights coming
as multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would
define a hierarchy of symmetry breakings in the sense that only the sub-algebra would act
as gauge symmetries.

3. The assignment of this hierarchy with super-symplectic algebra having conformal structure
with respect to the light-like radial coordinate of light-cone boundary looks very attractive.
An interesting question is what is the role of the super-conformal algebra associated with the
isometries of light-cone boundary R+ × S2 which are conformal transformations of sphere
S2 with a scaling of radial coordinate compensating the scaling induced by the conformal
transformation. Does it act as dynamical or gauge symmetries?

4. The natural proposal is that the inclusions of various superconformal algebras in the hierar-
chy define inclusions of hyper-finite factors which would be thus labelled by integers. Any
sequences of integers for which ni divides ni+1 would define a hierarchy of inclusions pro-
ceeding in reverse direction. Physically inclusion hierarchy would correspond to an infinite
hierarchy of criticalities within criticalities.

8.3.3 Can One Identify M-Matrix From Physical Arguments?

Consider next the identification of M -matrix from physical arguments from the point of view of
factors.

A proposal for M-matrix

The proposed general picture reduces the core of U -matrix to the construction of S-matrix possibly
having the real square roots of density matrices as symmetry algebra. This structure can be taken
as a template as one tries to to imagine how the construction of M -matrix could proceed in
quantum TGD proper.

1. At the bosonic sector one would have converging functional integral over WCW . This is
analogous to the path integral over bosonic fields in QFTs. The presence of Kähler function
would make this integral well-defined and would not encounter the difficulties met in the case
of path integrals.

2. In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors modes lo-
calized at string world sheets are eigenstates of induced Dirac operator with generalized eigen-
value pkγk defining light-like 8-D momentum so that one would obtain fermionic propagators
massless in 8-D sense at light-light geodesics of imbedding space. The 8-D generalization
of twistor Grassmann approach is suggestive and would mean that the residue integral over
fermionic virtual momenta gives only integral over massless momenta and virtual fermions
differ from real fermions only in that they have non-physical polarizations so that massless
Dirac operator replacing the propagator does not annihilate the spinors at the other end of
the line.

3. Fundamental bosons (not elementary particles) correspond to wormhole contacts having
fermion and antifermion at opposite throats and bosonic propagators are composite of mass-
less fermion propagators. The directions of virtual momenta are obviously strongly corre-
lated so that the approximation as a gauge theory with gauge symmetry breaking in almost
massless sector is natural. Massivation follows necessary from the fact that also elementary
particles are bound states of two wormhole contacts.

4. Physical fermions and bosons correspond to pairs of wormhole contacts with throats carry-
ing Kähler magnetic charge equal to Kähler electric charge (dyon). The absence of Dirac
monopoles (as opposed to homological magnetic monopoles due to CP2 topology) implies
that wormhole contacts must appear as pairs (also large numbers of them are possible and 3
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valence quarks inside baryons could form Kähler magnetic tripole). Hence elementary parti-
cles would correspond to pairs of monopoles and are accompanied by Kähler magnetic flux
loop running along the two space-time sheets involved as well as fermionic strings connecting
the monopole throats.

There seems to be no specific need to assign string to the wormhole contact and if is a piece
of deformed CP2 type vacuum extremal this might not be even possible: the Kähler-Dirac
gamma matrices would not span 2-D space in this case since the CP2 projection is 4-D. Hence
massless fermion propagators would be assigned only with the boundaries of string world
sheets at Minkowskian regions of space-time surface. One could say that physical particles
are bound states of massless fundamental fermions and the non-collinearity of their four-
momenta can make them massive. Therefore the breaking of conformal invariance would be
due to the bound state formation and this would also resolve the infrared divergence problems
plaguing Grassmann twistor approach by introducing natural length scale assignable to the
size of particles defined by the string like flux tube connecting the wormhole contacts. This
point is discussed in more detail in [K76].

The bound states would form representations of super-conformal algebras so that stringy
mass formula would emerge naturally. p-Adic mass calculations indeed assume conformal
invariance in CP2 length scale assignable to wormhole contacts. Also the long flux tube
strings contribute to the particle masses and would explain gauge boson masses.

5. The interaction vertices would correspond topologically to decays of 3-surface by splitting
in complete analogy with ordinary Feynman diagrams. At the level of orbits of partonic 2-
surface the vertices would be represented by partonic 2-surfaces. In [K76] the interpretation of
scattering ampiltudes as sequences of algebraic operations for the Yangian of super-symplectic
algebra is proposed: product and co-product would define time 3-vertex and its time reversal.
At the level of fermions the diagrams reduce to braid diagrams since fermions are “free”. At
vertices fermions can however reflect in time direction so that fermion-antifermion annihila-
tions in classical fields can be said to appear in the vertices.

The Yangian is generated by super-symplectic fermionic Noether charges assignable to the
strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic operations
implies that all sequences of operations connecting given collections of elements of Yangian
at the opposite boundaries of CD give rise to the same amplitude. This means a huge
generalization of the duality symmetry of hadronic string models that I have proposed already
earlier: the chapter [K6] is a remnant of an “idea that came too early”. The propagators are
associated with the fermionic lines identifiable as boundaries of string world sheets. These
lines are light-like geodesics of H and fermion lines correspond topartial wave in the space
S3 of light like 8-momenta with fixed M4 momentum. For external lines M8 momentum
corresponds to the M4 × CP2 quantum numbers of a spinor harmonic.

The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance various
conformal moduli - in the algebraic extension of rationals are replaced with real and various
p-adic numbers.

6. Wormhole contacts represent fundamental interaction vertex pairs and propagators between
them and one has stringy super-conformal invariance. Therefore there are excellent reasons to
expect that the perturbation theory is free of divergences. Without stringy contributions for
massive conformal excitations of wormhole contacts one would obtain the usual logarithmic
UV divergences of massless gauge theories. The fact that physical particles are bound states
of massless particles, gives good hopes of avoiding IR divergences of massless theories.

The figures ??, ?? (http://tgdtheory.fi/appfigures/elparticletgd.jpg http://tgdtheory.
fi/appfigures/tgdgrpahs.jpg) in the appendix of this book illustrate the relationship between
TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K76] a more detailed
construction based on the generalization of twistor approach and the idea that scattering ampli-
tudes represent sequences of algebraic operation in the Yangian of super-symplectic algebra, is
considered.

http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/tgdgrpahs.jpg
http://tgdtheory.fi/appfigures/tgdgrpahs.jpg
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Quantum TGD as square root of thermodynamics

ZEO (ZEO) suggests strongly that quantum TGD corresponds to what might be called square
root of thermodynamics. Since fermionic sector of TGD corresponds naturally to a hyper-finite
factor of type II1, and super-conformal sector relates fermionic and bosonic sectors (WCW degrees
of freedom), there is a temptation to suggest that the mathematics of von Neumann algebras
generalizes: in other worlds it is possible to speak about the complex square root of ω defining
a state of von Neumann algebra [A80] [K87]. This square root would bring in also the fermionic
sector and realized super-conformal symmetry. The reduction of determinant with WCW vacuum
functional would be one manifestation of this supersymmetry.

The exponent of Kähler function identified as real part of Kähler action for preferred ex-
tremals coming from Euclidian space-time regions defines the modulus of the bosonic vacuum
functional appearing in the functional integral over WCW. The imaginary part of Kähler action
coming from the Minkowskian regions is analogous to action of quantum field theories and would
give rise to interference effects distinguishing thermodynamics from quantum theory. This would
be something new from the point of view of the canonical theory of von Neumann algebra. The
saddle points of the imaginary part appear in stationary phase approximation and the imaginary
part serves the role of Morse function for WCW.

The exponent of Kähler function depends on the real part of t identified as Minkowski
distance between the tips of CD. This dependence is not consistent with the dependence of the
canonical unitary automorphism ∆it of von Neumann algebra on t [A80], [K87] and the natural
interpretation is that the vacuum functional can be included in the definition of the inner product
for spinors fields of WCW . More formally, the exponent of Kähler function would define ω in
bosonic degrees of freedom.

Note that the imaginary exponent is more natural for the imaginary part of Kähler action
coming from Minkowskian region. In any case, one has combination of thermodynamics and QFT
and the presence of thermodynamics makes the functional integral mathematically well-defined.

Number theoretic vision requiring number theoretical universality suggests that the value of
CD size scales as defined by the distance between the tips is expected to come as integer multiples
of CP2 length scale - at least in the intersection of real and p-adic worlds. If this is the case the
continuous faimily of modular automorphisms would be replaced with a discretize family.

Quantum criticality and hierarchy of inclusions

Quantum criticality and related fractal hierarchies of breakings of conformal symmetry could allow
to understand the inclusion hierarchies for hyper-finite factors. Quantum criticality - implied
by the condition that the Kähler-Dirac action gives rise to conserved currents assignable to the
deformations of the space-time surface - means the vanishing of the second variation of Kähler
action for these deformations. Preferred extremals correspond to these 4-surfaces and M8−M4×
CP2 duality would allow to identify them also as associative (co-associative) space-time surfaces.

Quantum criticality is basically due to the failure of strict determinism for Kähler action
and leads to the hierarchy of dark matter phases labelled by the effective value of Planck constant
heff = n × h. These phases correspond to space-time surfaces connecting 3-surfaces at the ends
of CD which are multi-sheeted having n conformal equivalence classes.

Conformal invariance indeed relates naturally to quantum criticality. This brings in n dis-
crete degrees of freedom and one can technically describe the situation by using n-fold singular
covering of the imbedding space [K22]. One can say that there is hierarchy of broken conformal
symmetries in the sense that for heff = n×h the sub-algebra of conformal algebras with conformal
weights coming as multiples of n act as gauge symmetries. This implies that classical symplectic
Noether charges vanish for this sub-algebra. The quantal conformal charges associated with in-
duced spinor fields annihilate the physical states. Therefore it seems that the measured quantities
are the symplectic charges and there is not need to introduce any measurement interaction term
and the formalism simplifies dramatically.

The resolution increases with heff/h = n. Also the number of of strings connecting par-
tonic 2-surfaces (in practice elementary particles and their dark counterparts plus bound states
generated by connecting dark strings) characterizes physically the finite measurement resolution.
Their presence is also visible in the geometry of the space-time surfaces through the conditions that
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induced W fields vanish at them (well-definedness of em charge), and by the condition that the
canonical momentum currents for Kähler action define an integrable distribution of planes parallel
to the string world sheet. In spirit with holography, preferred extremal is constructed by fixing
string world sheets and partonic 2-surfaces and possibly also their light-like orbits (should one fix
wormhole contacts is not quite clear). If the analog of AdS/CFT correspondence holds true, the
value of Kähler function is expressible as the energy of string defined by area in the effective metric
defined by the anti-commutators of K-D gamma matrices.

Super-symplectic algebra, whose charges are represented by Noether charges associated with
strings connecting partonic 2-surfaces extends to a Yangian algebra with multi-stringy generators
[K76]. The better the measurement resolution, the larger the maximal number of strings associated
with the multilocal generator.

Kac-Moody type transformations preserving light-likeness of partonic orbits and possibly
also the light-like character of the boundaries of string world sheets carrying modes of induced
spinor field underlie the conformal gauge symmetry. The minimal option is that only the light-
likeness of the string end world line is preserved by the conformal symmetries. In fact, conformal
symmetries was originally deduced from the light-likeness condition for the M4 projection of CP2

type vacuum extremals.

The inclusions of super-symplectic Yangians form a hierarchy and would naturally corre-
spond to inclusions of hyperfinite factors of type II1. Conformal symmetries acting as gauge
transformations would naturally correspond to degrees of freedom below measurement resolution
and would correspond to included subalgebra. As heff increases, infinite number of these gauge
degrees of freedom become dynamical and measurement resolution is increased. This picture is
definitely in conflict with the original view but the reduction of criticality in the increase of heff
forces it.

Summarizing

On basis of above considerations it seems that the idea about “complex square root” of the state
ω of von Neumann algebras might make sense in quantum TGD. Also the discretized versions of
modular automorphism assignable to the hierarchy of CDs would make sense and because of its
non-uniqueness the generator ∆ of the canonical automorphism could bring in the flexibility needed
one wants thermodynamics. Stringy picture forces to ask whether ∆ could in some situation be
proportional exp(L0), where L0 represents as the infinitesimal scaling generator of either super-
symplectic algebra or super Kac-Moody algebra (the choice does not matter since the differences of
the generators annihilate physical states in coset construction). This would allow to reproduce real
thermodynamics consistent with p-adic thermodynamics. Note that also p-adic thermodynamics
would be replaced by its square root in ZEO.

8.3.4 Finite Measurement Resolution And HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion
of quantum M -matrix for which elements have values in sub-factor N of HFF rather than being
complex numbers. M-matrix in the factor spaceM/N is obtained by tracing overN . The condition
that N acts like complex numbers in the tracing implies that M-matrix elements are proportional
to maximal projectors toN so that M-matrix is effectively a matrix inM/N and situation becomes
finite-dimensional. It is still possible to satisfy generalized unitarity conditions but in general case
tracing gives a weighted sum of unitary M-matrices defining what can be regarded as a square root
of density matrix.

About the notion of observable in ZEO

Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. As in standard quantum theory observables correspond to hermitian operators acting on
either positive or negative energy part of the state. One can indeed define hermitian conju-
gation for positive and negative energy parts of the states in standard manner.
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2. Also the conjugation A → JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at the
upper boundary of CD to the lower boundary and vice versa. The map is induced by time
reflection in the rest frame of CD with respect to the origin at the center of CD and has a
well defined action on light-like 3-surfaces and space-time surfaces. This operation cannot
correspond to the sought for hermitian conjugation since JAJ and A commute.

3. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kähler action. Chern-Simons Dirac terms to which Kähler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

4. ZEO gives Cartan sub-algebra of the Lie algebra of symmetries a special status. Only Cartan
algebra acting on either positive or negative states respects the zero energy property but this
is enough to define quantum numbers of the state. In absence of symmetry breaking positive
and negative energy parts of the state combine to form a state in a singlet representation of
group. Since only the net quantum numbers must vanish ZEO allows a symmetry breaking
respecting a chosen Cartan algebra.

5. In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action is a
shift of the upper (lower) tip of CD. In the scale of entire CD this transformation induced
Lorentz boost fixing the other tip. The value of mass squared is identified as proportional to
the average of conformal weight in p-adic thermodynamics for the scaling generator L0 for
either super-symplectic or Super Kac-Moody algebra.

Inclusion of HFFs as characterizer of finite measurement resolution at the level of
S-matrix

The inclusion N ⊂M of factors characterizes naturally finite measurement resolution. This means
following things.

1. Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by N -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results. Non-
commutativity corresponds to a finite measurement resolution rather than something exotic
occurring in Planck length scales. The quantum Clifford algebraM/N creates physical states
modulo resolution. The fact that N takes the role of gauge algebra suggests that it might
be necessary to fix a gauge by assigning to each element of M/N a unique element of M.
Quantum Clifford algebra with fractal dimension β =M : N creates physical states having
interpretation as quantum spinors of fractal dimension d =

√
β. Hence direct connection

with quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and
hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and thus corre-
spond entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues
guarantees that it is possible to speak about state function reduction for quantum spinors.
In the simplest case of a 2-component quantum spinor this means that second component of
quantum spinor vanishes in the sense that second component of spinor annihilates physical
state and second acts as element of N on it. The non-commutativity of spinor components
implies correlations between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N × TrN (X) . (8.3.4)
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Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator inM defines an operator inM/N by a projection to the preferred elements ofM.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (8.3.5)

4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (8.3.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (8.3.7)

5. Unitarity at the level of M/N can be achieved if the unit operator Id for M can be de-
composed into an analog of tensor product for the unit operators of M/N and N and M
decomposes to a tensor product of unitary M-matrices inM/N and N . For HFFs of type II
projection operators of N with varying traces are present and one expects a weighted sum of
unitary M-matrices to result from the tracing having interpretation in terms of square root
of thermodynamics.

6. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1

this assumption must be given up. This might be possible if one compensates the trace over
N by dividing with the trace of the infinite trace of the projection operator to N . This
probably requires a limiting procedure which indeed makes sense for HFFs.

Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C with that in
N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with
their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in
the state space generated by quantum Clifford algebra M/N which can be regarded as a finite-
dimensional matrix algebra with non-commutingN -valued matrix elements. This suggests that full
M -matrix can be expressed as M -matrix withN -valued elements satisfyingN -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-
matrix must be commuting hermitian N -valued operators inside every row and column. The
traces of these operators giveN -averaged transition probabilities. The eigenvalue spectrum of these
Hermitian matrices gives more detailed information about details below experimental resolution.
N -hermicity and commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states
with N -valued coefficients. How this affects the situation? The non-commutativity of quantum
spinors has a natural interpretation in terms of fuzzy state function reduction meaning that quan-
tum spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by “quantum quantum states”?
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Quantum fluctuations and inclusions

Inclusions N ⊂M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase “long range quantum fluctuations
around quantum criticality” really means mathematically.

1. Phase transitions involve a change of symmetry. One might hope that the change of the
symmetry group Ga ×Gb could universally code this aspect of phase transitions. This need
not always mean a change of Planck constant but it means always a leakage between sectors
of imbedding space. At quantum criticality 3-surfaces would have regions belonging to at
least two sectors of H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage
of the 3-surface to a sector of imbedding space with larger Planck constant meaning zooming
up of various quantal lengths.

3. For M -matrix in M/N regarded as calN module quantum criticality would mean a special
kind of eigen state for the transition probability operator defined by the M -matrix. The
properties of the number theoretic braids contributing to the M -matrix should characterize
this state. The strands of the critical braids would correspond to fixed points for Ga×Gb or
its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states
give a precise formulation for M -matrix in finite measurement resolution and the Connes tensor
product involved. The original expectation that Connes tensor product could lead to a unique
M-matrix is wrong. The replacement of ω with its complex square root could lead to a unique
hierarchy of M-matrices with finite measurement resolution and allow completely finite theory
despite the fact that projectors have infinite trace for HFFs of type III1.

1. In ZEO the counterpart of Hermitian conjugation for operator is replaced with M→ JMJ
permuting the factors. Therefore N ∈ N acting to positive (negative) energy part of state
corresponds to N → N ′ = JNJ acting on negative (positive) energy part of the state.

2. The allowed elements of N much be such that zero energy state remains zero energy state.
The superposition of zero energy states involved can however change. Hence one must have
that the counterparts of complex numbers are of form N = JN1J ∨ N2, where N1 and N2

have same quantum numbers. A superposition of terms of this kind with varying quantum
numbers for positive energy part of the state is possible.

3. The condition that N1i and N2i act like complex numbers in N -trace means that the effect
of JN1iJ ∨N2i and JN2iJi∨N1i to the trace are identical and correspond to a multiplication
by a constant. If N is HFF of type II1 this follows from the decompositionM =M/N ⊗N
and from Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary to
the original hopes that Connes tensor product could fix the M-matrix there are no conditions
on MM/N which would give rise to a finite-dimensional M-matrix for Jones inclusions. One
can replaced the projector PN with a more general state if one takes this into account in ∗

operation.

4. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with
a state ωN in the sense of factors looks more natural. This means that the counterpart of
∗ operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2.
The exchange of N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) =
ωN∆A) guarantees the effective complex number property [A10] .

5. Quantum TGD more or less requires the replacement of ω with its “complex square root”
so that also a unitary matrix U multiplying ∆ is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [A10] in
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this case. The QFT counterpart would be a cutoff involving path integral over the degrees
of freedom below the measurement resolution. In TGD framework it would mean a cutoff in
the functional integral over WCW and for the modes of the second quantized induced spinor
fields and also cutoff in sizes of causal diamonds. Discretization in terms of braids replacing
light-like 3-surfaces should be the counterpart for the cutoff.

6. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N ×MN with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M .

Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N -trace or its generalization in terms of state ωN is needed. One might however dream of
something more.

1. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N ⊂ M. This would mean that
one can write

M = MM/N ⊗MN (8.3.8)

for any physically reasonable choice of N . This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that
MN is essentially the same as MM in the same sense as N is same as M. It might be that
the trivial solution M = 1 is the only possible solution to the condition.

2. MM/N would be obtained by the analog of TrN or ωN operation involving the “complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would be
path integration over the degrees of freedom below cutoff to get effective action.

3. Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of “complex square root” of ω or for the S-matrix part of M :

S = SM/N ⊗ SN (8.3.9)

for any physically reasonable choice N .

4. In TGD framework the condition would say that the M-matrix defined by the Kähler-Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration
over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is “complex
square root of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new choices.
This would actually be a well-come result and make possible quantum measurement theory.

In the section “Handful of problems with a common resolution” it was found that one can add
to both Kähler action and Kähler-Dirac action a measurement interaction term characterizing the
values of measured observables. The measurement interaction term in Kähler action is Lagrange
multiplier term at the space-like ends of space-time surface fixing the value of classical charges
for the space-time sheets in the quantum superposition to be equal with corresponding quantum
charges. The term in Kähler-Dirac action is obtained from this by assigning to this term canonical
momentum densities and contracting them with gamma matrices to obtain Kähler-Dirac gamma
matrices appearing in 3-D analog of Dirac action. The constraint terms would leave Kähler function
and Kähler metric invariant but would restrict the vacuum functional to the subset of 3-surfaces
with fixed classical conserved charges (in Cartan algebra) equal to their quantum counterparts.
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Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation
could be in terms of the formation of bound states. The reducibility of HFFs and inclusions means
that the tensor product is not uniquely fixed and ordinary entanglement could correspond to this
kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The inter-
pretation of Connes tensor product would be as the variance of the states with respect to some
subgroup of U(n) associated with the measurement resolution: the analog of color confinement
would be in question.

2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A64] are playing with very formal looking formal structures obtained
by replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with
morphisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-
wise product and sum. They obtain results which make them happy. For instance, the category of
linear representations of a given group forms 2-vector spaces since direct sums and tensor products
of representations as well as n-tuples make sense. The 2-vector space however looks more or less
trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite
measurement resolution described in terms of inclusions of hyper-finite factors of type II1. The
reason is that Connes tensor product replaces ordinary tensor product and brings in interactions
via irreducible entanglement as a representation of finite measurement resolution. The category in
question could give Connes tensor products of quantum state spaces and describing interactions.
For instance, one could multiply M -matrices via Connes tensor product to obtain category of
M -matrices having also the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-
D sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor
takes the role of complex numbers in generalized QM so that one obtains non-commutative
quantum mechanics. For instance, quantum entanglement for two systems of this kind would
not be between rays but between infinite-D subspaces corresponding to sub-factors. One
could build a generalization of QM by replacing rays with sub-spaces and it would seem that
quantum group concept does more or less this: the states in representations of quantum
groups could be seen as infinite-dimensional Hilbert spaces.

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the
action of included HFF. Possible values of the fractal dimension are fixed completely for
Jones inclusions. Maybe these quantum state spaces could define the notions of quantum 2-
Hilbert space and 2-operator algebra via direct sum and tensor production operations. Fractal
dimensions would make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF con-
taining included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not any-
more trivial. The condition that measurement algebras act effectively like complex numbers
would require Connes tensor product involving irreducible entanglement between elements
belonging to the two HFFs. This would have direct physical relevance since this entangle-
ment cannot be reduced in state function reduction. The category would defined interactions
in terms of Connes tensor product and finite measurement resolution.
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3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

8.3.5 Questions About Quantum Measurement Theory In Zero Energy
Ontology

The following summary about quantum measurement theory in ZEO is somewhat out-of-date and
somewhat sketchy. For more detailed view see [K41, K81, K4].

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale
imply the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion
would be deeper and would give rise to a larger reducibility of the representation of N in M.
Formally, as N approaches to a trivial algebra, one would have a square root of density matrix
and trivial S-matrix in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy N -rays.
The projectors give rise to the averaging over the initial and final states inside N ray. The
reduction could continue step by step to shorter length scales so that one would obtain a sequence
of inclusions. If the U -process of the next quantum jump can return the M -matrix associated with
M or some larger HFF, U process would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the progress
of science from macroscopic to microscopic scales; even biological decay processes: all these have an
intriguing resemblance to the fractal state function reduction process proceeding to to shorter and
shorter time scales. Since this means increasing thermality of M -matrix, U process as a reversal
of state function reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by
U process giving rise to new zero energy states can bring in something new and is responsible for
evolution. The non-conservative option is that the biological death is the U -process of the next
quantum jump leading to a new life cycle. Breathing would become a universal metaphor for what
happens in quantum Universe. The 4-D body would be lived again and again.

How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the
Kähler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3

max - depending on its quantum
numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
Z0 charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that
the needed phase factor corresponds to either Chern-Simons type action or an action describing
the interaction of the induced gauge field with the charges associated with the braid strand. This
action would be defined for the induced gauge fields. YM action seems to be excluded since it is
singular for light-like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3)

but also
√
det(g4) vanishes).
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The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct

gauge charges. Kind of electric-magnetic duality should relate the normal components Fni of the
gauge fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is
in terms of quantum gravitational holography.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

Quantum measurements in ZEO

ZEO based quantum measurement theory leads directly to a theory of conscious entities. The
basic idea is that state function reduction localizes the second boundary of CD so that it becomes
a piece of light-cone boundary (more precisely δM4

± × CP2).
Repeated reductions are possible as in standard quantum measurement theory and leave the

passive boundary of CD. Repeated reduction begins with U process generating a superposition of
CDs with the active boundary of CD being de-localized in the moduli space of CDs, and is followed
by a localization in this moduli space so that single CD is the outcome. This process tends to
increase the distance between the ends of the CD and has interpretation as a space-time correlate
for the flow of subjective time.

Self as a conscious entity corresponds to this sequence of repeated reductions on passive
boundary of CD. The first reduction at opposite boundary means death of self and its re-incarnation
at the opposite boundary of CD. Also the increase of Planck constant and generation of negentropic
entanglement is expected to be associated with this state function reduction.

Weak form of NMP is the most plausible variational principle to characterize the state
function reduction. It does not require maximal negentropy gain for state function reductions but
allows it. In other words, the outcome of reduction is n-dimensional eigen space of density matrix
space but this space need not have maximum possible dimension and even 1-D ray is possible in
which case the entanglement negentropy vanishes for the final state and system becomes isolated
from the rest of the world. Weak form of NMP brings in free will and can allow also larger
negentropy gain than the strong form if n is a product of primes. The beauty of this option is that
one can understand how the generalization of p-adic length scale hypothesis emerges.

8.3.6 Miscellaneous

The following considerations are somewhat out-of-date: hence the title “Miscellaneous”.

Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with physically
acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal
field theory suggest that Connes tensor product is essentially equivalent with the fusion rules for
conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated with
3-surfaces at the boundary of causal diamond CD in M4), extended to local fields in M4 with
gamma matrices acting on WCW spinor s assignable to the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A91] and refers to the work of Wassermann about the fusion of loop
group representations as a demonstration of the possibility to formula the fusion rules in terms of
Connes tensor product [A34] .

Fusion rules are indeed something more intricate that the naive product of free fields ex-
panded using oscillator operators. By its very definition Connes tensor product means a dramatic
reduction of degrees of freedom and this indeed happens also in conformal field theories.

1. For non-vanishing n-point functions the tensor product of representations of Kac Moody
group associated with the conformal fields must give singlet representation.



362 Chapter 8. Zero Energy Ontology and Matrices

2. The ordinary tensor product of Kac Moody representations characterized by given value of
central extension parameter k is not possible since k would be additive.

3. A much stronger restriction comes from the fact that the allowed representations must define
integrable representations of Kac-Moody group [A42] . For instance, in case of SU(2)k Kac
Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum phase corresponds
to n = k + 2. SU(2) is indeed very natural in TGD framework since it corresponds to both
electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace naive tensor product with something more intricate. The naivest approach
would start from M4 local variants of gamma matrices since gamma matrices generate the Clifford
algebra Cl associated with CH(CD). This is certainly too naive an approach. The next step
would be the localization of more general products of Clifford algebra elements elements of Kac
Moody algebras creating physical states and defining free on mass shell quantum fields. In standard
quantum field theory the next step would be the introduction of purely local interaction vertices
leading to divergence difficulties. In the recent case one transfers the partonic states assignable to
the light-cone boundaries δM4

±(mi) × CP2 to the common partonic 2-surfaces X2
V along X3

L,i so
that the products of field operators at the same space-time point do not appear and one avoids
infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right N actions in the Connes tensor product
M⊗NM are identical so that the elements nm1 ⊗m2 and m1 ⊗m2n are identified. This implies
a reduction of degrees of freedom so that free tensor product is not in question. One might hope
that at least in the simplest choices for N characterizing the limitations of quantum measurement
this reduction is equivalent with the reduction of degrees of freedom caused by the integrability
constraints for Kac-Moody representations and dropping away of higher spins from the ordinary
tensor product for the representations of quantum groups. If fusion rules are equivalent with
Connes tensor product, each type of quantum measurement would be characterized by its own
conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by
quantum field theories. In [K13] a rather precise vision about generalized Feynman diagrams is
developed and the challenge is to relate this vision to Connes tensor product.

Connection with topological quantum field theories defined by Chern-Simons action

There is also connection with topological quantum field theories (TQFTs) defined by Chern- Simons
action [A50] .

1. The light-like 3-surfaces X3
l defining propagators can contain unitary matrix characterizing

the braiding of the lines connecting fermions at the ends of the propagator line. Therefore
the modular S-matrix representing the braiding would become part of propagator line. Also
incoming particle lines can contain similar S-matrices but they should not be visible in the
M -matrix. Also entanglement between different partonic boundary components of a given
incoming 3-surface by a modular S-matrix is possible.

2. Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung like
exchanges always accompanied by exchanges of CP2 type extremals making possible mo-
mentum conservation. Also light-like boundaries of magnetic flux tubes having macroscopic
size could carry light-like momenta and represent similar brehmstrahlung like exchanges. In
this case the modular S-matrix could make possible topological quantum computations in
q 6= 1 phase [K85] . Notice the somewhat counter intuitive implication that magnetic flux
tubes of macroscopic size would represent change in quantum jump rather than quantum
state. These quantum jumps can have an arbitrary long geometric duration in macroscopic
quantum phases with large Planck constant [K18] .

There is also a connection with topological QFT defined by Chern-Simons action allowing
to assign topological invariants to the 3-manifolds [A50] . If the light-like CDs X3

L,i are boundary
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components, the 3-surfaces associated with particles are glued together somewhat like they are
glued in the process allowing to construct 3-manifold by gluing them together along boundaries.
All 3-manifold topologies can be constructed by using only torus like boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory
defined by Chern-Simons action allowing to define invariants for knots, links, and braids and 3-
manifolds using surgery along links in terms of Wilson lines. In these theories one consider gluing of
two 3-manifolds, say three-spheres S3 along a link to obtain a topologically non-trivial 3-manifold.
The replacement of link with Wilson lines in S3#S3 = S3 reduces the calculation of link invariants
defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like structure
are possible. The allowance of CDs which are not boundaries, typically 3-D light-like throats of
wormhole contacts at which induced metric transforms from Minkowskian to Euclidian, brings in
additional richness of structure. If the scaling factor of CP2 metric can be arbitrary large as the
quantization of Planck constant predicts, this kind of structure could be macroscopic and could
be also linked and knotted. In fact, topological condensation could be seen as a process in which
two 4-manifolds are glued together by drilling light-like CDs and connected by a piece of CP2 type
extremal.

8.4 The Relation Between U-Matrix And M-Matrices

S-matrix is the key notion in quantum field theories. In Zero Energy Ontology (ZEO) this notion
must be replaced with the triplet U-matrix, M-matrix, and S-matrix. U-matrix realizes unitary
time evolution in the space for zero energy states realized geometrically as dispersion in the moduli
space of causal diamonds (CDs) leaving second boundary (passive boundary) of CD and states at
it fixed.

This process can be seen as the TGD counterpart of repeated state function reductions
leaving the states at passive boundary unaffected and affecting only the member of state pair at
active boundary (Zeno effect) [K41]. In TGD inspired theory of consciousness self corresponds to
the sequence of these state function reductions [K81, K4, K65]. M-matrix describes the entan-
glement between positive and negative energy parts of zero energy states and is expressible as a
hermitian square root H of density matrix multiplied by a unitary matrix S, which corresponds to
ordinary S-matrix, which is universal and depends only the size scale n of CD through the formula
S(n) = Sn. M-matrices and H-matrices form an orthonormal basis at given CD and H-matrices
would naturally correspond to the generators of super-symplectic algebra.

The first state function reduction to the opposite boundary corresponds to what happens in
quantum physics experiments. The relationship between U- and S-matrices has remained poorly
understood.

The original view about the relationship was a purely formal guess: M -matrices would define
the orthonormal rows of U -matrix. This guess is not correct physically and one must consider in
detail what U-matrix really means.

1. First about the geometry of CD [K91]. The boundaries of CD will be called passive and active:
passive boundary correspond to the boundary at which repeated state function reductions
take place and give rise to a sequence of unitary time evolutions U followed by localization in
the moduli of CD each. Active boundary corresponds to the boundary for which U induces
delocalization and modifies the states at it.

The moduli space for the CDs consists of a discrete subgroup of scalings for the size of CD
characterized by the proper time distance between the tips and the sub-group of Lorentz
boosts leaving passive boundary and its tip invariant and acting on the active boundary
only. This group is assumed to be represented unitarily by matrices Λ forming the same
group for all values of n.

The proper time distance between the tips of CDs is quantized as integer multiples of the
minimal distance defined by CP2 time: T = nT0. Also in quantum jump in which the size
scale n of CD increases the increase corresponds to integer multiple of T0. Using the logarithm
of proper time, one can interpret this in terms of a scaling parametrized by an integer. The
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possibility to interpret proper time translation as a scaling is essential for having a manifest
Lorentz invariance: the ordinary definition of S-matrix introduces preferred rest system.

2. The physical interpretation would be roughly as follows. M-matrix for a given CD codes
for the physics as we usually understand it. M-matrix is product of square root of density
matrix and S-matrix depending on the size scale of CD and is the analog of thermal S-matrix.
State function at the opposite boundary of CD corresponds to what happens in the state
function reduction in particle physics experiments. The repeated state function reductions
at same boundary of CD correspond to TGD version of Zeno effect crucial for understanding
consciousness. Unitary U-matrix describes the time evolution zero energy states due to the
increase of the size scale of CD (at least in statistical sense). This process is dispersion in
the moduli space of CDs: all possible scalings are allowed and localization in the space of
moduli of CD localizes the active boundary of CD after each unitary evolution.

In the following I will proceed by making questions. One ends up to formulas allowing
to understand the architecture of U-matrix and to reduce its construction to that for S-matrix
having interpretation as exponential of the generator L1 of the Virasoro algebra associated with
the super-symplectic algebra.

8.4.1 What One Can Say About M-Matrices?

1. The first thing to be kept in mind is that M-matrices act in the space of zero energy states
rather than in the space of positive or negative energy states. For a given CD M-matrices
are products of hermitian square roots of hermitian density matrices acting in the space of
zero energy states and universal unitary S-matrix S(CD) acting on states at the active end
of CD (this is also very important to notice) depending on the scale of CD:

M i = Hi ◦ S(CD) .

Here “◦” emphasizes the fact that S acts on zero energy states at active boundary only. Hi

is hermitian square root of density matrix and the matrices Hi must be orthogonal for given
CD from the orthonormality of zero energy states associated with the same CD. The zero
energy states associated with different CDs are not orthogonal and this makes the unitary
time evolution operator U non-trivial.

2. Could quantum measurement be seen as a measurement of the observables defined by the
Hermitian generators Hi? This is not quite clear since their action is on zero energy states.
One might actually argue that the action of this kind of observables on zero energy states
does not affect their vanishing net quantum numbers. This suggests that Hi carry no net
quantum numbers and belong to the Cartan algebra. The action of S is restricted at the
active boundary of CD and therefore it does not commute with Hi unless the action is in a
separate tensor factor. Therefore the idea that S would be an exponential of generators Hi

and thus commute with them so that Hi would correspond to sub-spaces remaining invariant
under S acting unitarily inside them does not make sense.

3. In TGD framework symplectic algebra actings as isometries of WCW is analogous to a Kac-
Moody algebra with finite-dimensional Lie-algebra replaced with the infinite-dimensional
symplectic algebra with elements characterized by conformal weights [K15, K14]. There is
a temptation to think that the Hi could be seen as a representation for this algebra or its
sub-algebra. This algebra allows an infinite fractal hierarchy of sub-algebras of the super-
symplectic algebra isomorphic to the full algebra and with conformal weights coming as n-ples
of those for the full algebra. In the proposed realization of quantum criticality the elements
of the sub-algebra characterized by n act as a gauge algebra. An interesting question is
whether this sub-algebra is involved with the realization of M-matrices for CD with size scale
n. The natural expectation is that n defines a cutoff for conformal weights relating to finite
measurement resolution.
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8.4.2 How Does The Size Scale Of CD Affect M-Matrices?

1. In standard quantum field theory (QFT) S-matrix represents time translation. The obvious
generalization is that now scaling characterized by integer n is represented by a unitary S-
matrix that is as n:th power of some unitary matrix S assignable to a CD with minimal size:
S(CD) = Sn. S(CD) is a discrete analog of the ordinary unitary time evolution operator
with n replacing the continuous time parameter.

2. One can see M-matrices also as a generalization of Kac-Moody type algebra. Also this
suggests S(CD) = Sn, where S is the S-matrix associated with the minimal CD. S becomes
representative of phase exp(iφ). The inner product between CDs of different size scales can
n1 and n2 can be defined as

〈M i(m),M j(n)〉 = Tr(S−m ◦HiHj ◦ Sn)× θ(n−m) ,

θ(n) = 1 for n ≥ 0 , θ(n) = 0 for n < 0 .
(8.4.1)

Here I have denoted the action of S-matrix at the active end of CD by “◦” in order to
distinguish it from the action of matrices on zero energy states which could be seen as
belonging to the tensor product of states at active and passive boundary.

It turns out that unitarity conditions for U-matrix are invariant under the translations of
n if one assumes that the transitions obey strict arrow of time expressed by nj − ni ≥ 0.
This simplifies dramatically unitarity conditions. This gives orthonormality for M-matrices
associated with identical CDs. This inner product could be used to identify U-matrix.

3. How do the discrete Lorentz boosts affecting the moduli for CD with a fixed passive bound-
ary affect the M-matrices? The natural assumption is that the discrete Lorentz group is
represented by unitary matrices λ: the matrices M i are transformed to M i ◦ λ for a given
Lorentz boost acting on states at active boundary only.

One cannot completely exclude the possibility that S acts unitarily at both ends of zero
energy states. In this case the scaling would be interpreted as acting on zero energy states
rather than those at active boundary only. The zero energy state basis defined by Mi would
depend on the size scale of CD in more complex manner. This would not affect the above
formulas except by dropping away the “◦”.

Unitary U must characterize the transitions in which the moduli of the active boundary
of causal diamond (CD) change and also states at the active boundary (paired with unchanging
states at the passive boundary) change. The arrow of the experienced flow of time emerges during
the period as state function reductions take place to the fixed (“passive”) boundary of CD and do
not affect the states at it. Note that these states form correlated pairs with the changing states
at the active boundary. The physically motivated question is whether the arrow of time emerges
statistically from the fact that the size of CD tends to increase in average sense in repeated state
function reductions or whether the arrow of geometric time is strict. It turns out that unitarity
conditions simplify dramatically if the arrow of time is strict.

8.4.3 What Can One Say About U-Matrix?

1. Just from the basic definitions the elements of a unitary matrix, the elements of U are
between zero energy states (M-matrices) between two CDs with possibly different moduli of
the active boundary. Given matrix element of U should be proportional to an inner product
of two M -matrices associated with these CDs. The obvious guess is as the inner product
between M-matrices



366 Chapter 8. Zero Energy Ontology and Matrices

U ijm,n = 〈M i(m,λ1),M j(n, λ2)〉

= Tr(λ†1S
−m ◦HiHj ◦ Snλ2)

= Tr(S−m ◦HiHj ◦ Snλ2λ
−1
1 )θ(n−m) .

(8.4.2)

Here the usual properties of the trace are assumed. The justification is that the operators
acting at the active boundary of CD are special case of operators acting non-trivially at both
boundaries.

2. Unitarity conditions must be satisfied. These conditions relate S and the hermitian generators
Hi serving as square roots of density matrices. Unitarity conditions UU† = U†U = 1 is
defined in the space of zero energy states and read as

∑
j1n1

U ij1mn1
(U†)j1jn1n = δi,jδm,nδλ1,λ2

(8.4.3)

To simplify the situation let us make the plausible hypothesis contribution of Lorentz boosts
in unitary conditions is trivial by the unitarity of the representation of discrete boosts and
the independence on n.

3. In the remaining degrees of freedom one would have

∑
j1,k≥Max(0,n−m)

Tr(Sk ◦HiHj1)Tr(Hj1Hj ◦ Sn−m−k) = δi,jδm,n . (8.4.4)

The condition k ≥ Max(0, n −m) reflects the assumption about a strict arrow of time and
implies that unitarity conditions are invariant under the proper time translation (n,m) →
(n+ r,m+ r). Without this condition n back-wards translations (or rather scalings) to the
direction of geometric past would be possible for CDs of size scale n and this would break the
translational invariance and it would be very difficult to see how unitarity could be achieved.
Stating it in a general manner: time translations act as semigroup rather than group.

4. Irreversibility reduces dramatically the number of the conditions. Despite this their number
is infinite and correlates the Hermitian basis and the unitary matrix S. There is an obvious
analogy with a Kac-Moody algebra at circle with S replacing the phase factor exp(inφ) and
Hi replacing the finite-dimensional Lie-algebra. The conditions could be seen as analogs for
the orthogonality conditions for the inner product. The unitarity condition for the analog
situation would involve phases exp(ikφ1) ↔ Sk and exp(i(n − m − k)φ2) ↔ Sn−m−k and
trace would correspond to integration

∫
dφ1 over φ1 in accordance with the basic idea of

non-commutative geometry that trace corresponds to integral. The integration of φi would
give δk,0 and δm,n. Hence there are hopes that the conditions might be satisfied. There is
however a clear distinction to the Kac-Moody case since Sn does not in general act in the
orthogonal complement of the space spanned by Hi.

5. The idea about reduction of the action of S to a phase multiplication is highly attractive and
one could consider the possibility that the basis of Hi can be chosen in such a manner that
Hi are eigenstates of of S. This would reduce the unitarity constraint to a form in which the
summation over k can be separated from the summation over j1.

∑
k≥Max(0,n−m)

exp(iksi − (n−m− k)sj)
∑
j1

Tr(HiHj1)Tr(Hj1Hj) = δi,jδm,n .

(8.4.5)
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The summation over k should gives a factor proportional to δsi,sj . If the correspondence
between Hi and eigenvalues si is one-to-one, one obtains something proportional to δ(i, j)
apart from a normalization factor. Using the orthonormality Tr(HiHj) = δi,j one obtains
for the left hand side of the unitarity condition

exp(isi(n−m))
∑
j1

Tr(HiHj1)Tr(Hj1Hj) = exp(isi(n−m))δi,j .

(8.4.6)

Clearly, the phase factor exp(isi(n −m)) is the problem. One should have Kronecker delta
δm,n instead. One should obtain behavior resembling Kac-Moody generators. Hi should be
analogs of Kac-Moody generators and include the analog of a phase factor coming visible by
the action of S.

8.4.4 How To Obtain Unitarity Correctly?

It seems that the simple picture is not quite correct yet. One should obtain somehow an integration
over angle in order to obtain Kronecker delta.

1. A generalization based on replacement of real numbers with function field on circle suggests
itself. The idea is to the identify eigenvalues of generalized Hermitian/unitary operators as
Hermitian/unitary operators with a spectrum of eigenvalues, which can be continuous. In
the recent case S would have as eigenvalues functions λi(φ) = exp(isiφ). For a discretized
version φ would have has discrete spectrum φ(n) = 2πk/n. The spectrum of λi would have
n as cutoff. Trace operation would include integration over φ and one would have analogs of
Kac-Moody generators on circle.

2. One possible interpretation for φ is as an angle parameter associated with a fermionic string
connecting partonic 2-surface. For the super-symplectic generators suitable normalized radial
light-like coordinate rM of the light-cone boundary (containing boundary of CD) would be
the counterpart of angle variable if periodic boundary conditions are assumed.

The eigenvalues could have interpretation as analogs of conformal weights. Usually conformal
weights are real and integer valued and in this case it is necessary to have generalization of the
notion of eigenvalues since otherwise the exponentials exp(isi) would be trivial. In the case
of super-symplectic algebra I have proposed that the generating elements of the algebra have
conformal weights given by the zeros of Riemann zeta. The spectrum of conformal weights
for the generators would consist of linear combinations of the zeros of zeta with integer
coefficients. The imaginary parts of the conformal weights could appear as eigenvalues of S.

3. It is best to return to the definition of the U-matrix element to check whether the trace
operation appearing in it can already contain the angle integration. If one includes to the
trace operation appearing the integration over φ it gives δm,n factor and U-matrix has ele-
ments only between states assignable to the same causal diamond. Hence one must interpret
U-matrix elements as functions of φ realized factors exp(i(sn − sm)φ). This brings strongly
in mind operators defined as distributions of operators on line encountered in the theory of
representations of non-compact groups such as Lorentz group. In fact, the unitary represen-
tations of discrete Lorentz groups are involved now.

4. The unitarity condition contains besides the trace also the integrations over the two angle
parameters φi associated with the two U-matrix elements involved. The left hand side of the
unitarity condition reads as
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∑
k≥Max(0,n−m)

I(ksi)I((n−m− k)sj)×
∑
j1

Tr(HiHj1)Tr(Hj1Hj)

= δi,jδm,n ,

I(s) =
1

2π
×
∫
dφexp(isφ) = δs,0 .

(8.4.7)

Integrations give the factor δk,0 eliminating the infinite sum obtained otherwise plus the factor
δn,m. Traces give Kronecker deltas since the projectors are orthonormal. The left hand side
equals to the right hand side and one achieves unitarity. It seems that the proposed ansatz
works and the U-matrix can be reduced by a general ansatz to S-matrix.

5. It should be made clear that the use of eigenstates of S is only a technical trick, the physical
states need not be eigenstates. If the active parts of zero energy states where eigenstates of
S, U-matrix would not have matrix elements between different Hi and projection operator
could not change during time evolution.

8.4.5 What About The Identification Of S?

1. S should be exponential of time the scaling operator whose action reduces to a time trans-
lation operator along the time axis connecting the tips of CD and realized as scaling. In
other words, the shift t/T0 = m → m + n corresponds to a scaling t/T0 = m → km giv-
ing m + n = km in turn giving k = 1 + n/m. At the limit of large shifts one obtains
k ' n/m → ∞, which corresponds to QFT limit. nS corresponds to (nT0) × (S/T0) = TH
and one can ask whether QFT Hamiltonian could corresponds to H = S/T0.

2. It is natural to assume that the operators Hi are eigenstates of radial scaling generator
L0 = irMd/drM at both boundaries of CD and have thus well-defined conformal weights. As
noticed the spectrum for super-symplectic algebra could also be given in terms of zeros of
Riemann zeta.

3. The boundaries of CD are given by the equations rM = m0 and rM = T − m0, m0 is
Minkowski time coordinate along the line between the tips of CD and T is the distance
between the tips. From the relationship between rM and m0 the action of the infinitesimal
translation H ≡ i∂/∂m0 can be expressed as conformal generator L−1 = i∂/∂rM = r−1

M L0.
Hence the action is non-diagonal in the eigenbasis of L0 and multiplies with the conformal
weights and reduces the conformal weight by one unit. Hence the action of U can change
the projection operator. For large values of conformal weight the action is classically near to
that of L0: multiplication by L0 plus small relative change of conformal weight.

4. Could the spectrum of H be identified as energy spectrum expressible in terms of zeros of zeta
defining a good candidate for the super-symplectic radial conformal weights. This certainly
means maximal complexity since the number of generators of the conformal algebra would
be infinite. This identification might make sense in chaotic or critical systems. The functions
(rM/r0)1/2+iy and (rM/r0)−2n, n > 0, are eigenmodes of rM/drM with eigenvalues (1/2+iy)
and −2n corresponding to non-trivial and trivial zeros of zeta.

There are two options to consider. Either L0 or iL0 could be realized as a hermitian operator.
These options would correspond to the identification of mass squared operator as L0 and
approximation identification of Hamiltonian as iL1 as iL0 making sense for large conformal
weights.

(a) Suppose that L0 = rMd/drM realized as a hermitian operator would give harmonic
oscillator spectrum for conformal confinement. In p-adic mass calculations the string
model mass formula implies that L0 acts essentially as mass squared operator with inte-
ger spectrum. I have proposed conformal confinent for the physical states net conformal
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weight is real and integer valued and corresponds to the sum over negative integer val-
ued conformal weights corresponding to the trivial zeros and sum over real parts of
non-trivial zeros with conformal weight equal to 1/2. Imaginary parts of zeta would
sum up to zero.

(b) The counterpart of Hamiltonian as a time translation is represented by H = iL0 =
irMd/drM . Conformal confinement is now realized as the vanishing of the sum for the
real parts of the zeros of zeta: this can be achieved. As a matter fact the integration
measure drM/rM brings implies that the net conformal weight must be 1/2. This is
achieved if the number of non-trivial zeros is odd with a judicious choice of trivial zeros.
The eigenvalues of Hamiltonian acting as time translation operator could correspond to
the linear combination of imaginary part of zeros of zeta with integer coefficients. This
is an attractive hypothesis in critical systems and TGD Universe is indeed quantum
critical.

8.4.6 What About Quantum Classical Correspondence?

Quantum classical correspondence realized as one-to-one map between quantum states and zero
modes has not been discussed yet.

1. M -matrices would act in the tensor product of quantum fluctuating degrees of freedom and
zero modes. The assumption that zero energy states form an orthogonal basis implies that
the hermitian square roots of the density matrices form an orthonormal basis. This condition
generalizes the usual orthonormality condition.

2. The dependence on zero modes at given boundary of CD would be trivial and induced by
1-1 correspondence |m〉 → z(m) between states and zero modes assignable to the state basis
|m± at the boundaries of CD, and would mean the presence of factors δz+,f(m+) × δz−,f(n−)

multiplying M-matrix M i
m,n.

To sum up, it seems that the architecture of the U-matrix and its relationship to the S-
matrix is now understood and in accordance with the intuitive expectations the construction of
U-matrix reduces to that for S-matrix and one can see S-matrix as discretized counterpart of
ordinary unitary time evolution operator with time translation represented as scaling: this allows
to circumvent problems with loss of manifest Poincare symmetry encountered in quantum field
theories and allows Lorentz invariance although CD has finite size. What came as surprise was
the connection with stringy picture: strings are necessary in order to satisfy the unitary conditions
for U-matrix. Second outcome was that the connection with super-symplectic algebra suggests
itself strongly. The identification of hermitian square roots of density matrices with Hermitian
symmetry algebra is very elegant aspect discovered already earlier. A further unexpected result
was that U-matrix is unitary only for strict arrow of time (which changes in the state function
reduction to opposite boundary of CD).



Chapter 9

What Scattering Amplitudes
Should Look Like?

9.1 Introduction

During years I have spent a lot of time and effort in attempts to imagine various options for the
construction of S-matrix - in Zero Energy Ontology (ZEO) M - and U -matrices - and it seems
that there are quite many strong constraints, which might lead to a more or less unique final
result if some young analytically blessed brain decided to transform these assumptions to concrete
calculational recipes.

The realization that WCW spinors correspond to von Neumann algebras known as hyper-
finite factors of type II1 meant [K87, K22] a turning point also in the attempts to construct
S-matrix. A sequence of trials and errors led rapidly to the generalization of the quantum mea-
surement theory and re-interpretation of S-matrix elements as entanglement coefficients of zero
energy states in accordance with the zero energy ontology applied already earlier in TGD inspired
cosmology [K16]. ZEO motivated the replacement of the term “S-matrix” with “M -matrix”. This
led to the discovery that rather stringy formulas for M -matrix elements emerge in TGD framework.

The purpose of this chapter is to collect to single chapter various general ideas about the
construction of M -matrix scattered in the chapters of books about TGD and often drowned into
details and plagued by side tracks and give a brief summary about intuitive picture behind various
matrices. Also a general vision about generalized Feynman diagrams is formulated. A more
detailed construction is suggested in the chapters about twistors and TGD.

My hope is that this chapter might provide a kind of bird’s eye of view and help the reader
to realize how fascinating and profound and near to physics the mathematics of hyper-finite factors
is.

The goal is to sketch an overall view about the ideas which have led to the recent view about
the construction of M -matrix. First the basic philosophical ideas are discussed. These include the
basic ideas behind TGD inspired theory of consciousness [K75]. the identification of p-adic physics
as physics of cognition forcing the central idea of number theoretic universality, quantum classical
correspondence, and the crucial notion of zero energy ontology.

The understanding of the fundamental variational principles of TGD is so detailed that
one can sketch a rather concrete formulation for the generalized Feynman rules. The generalized
Feynman diagrams correspond to Euclidian regions of 4-D surfaces - preferred extremals - defined
by orbits of wormhole contacts plus the string world sheets connecting them and carrying spinor
modes. Fermioaction contains also a part associated with the boundaries of string world sheets
at partonic orbits. As a consequence, fundamental fermions propagate as particles with momenta
which are light-like in 8-D sense along the light-like geodesics defined by the boundaries of string
world sheets at which spinor modes are localized. This strongly suggests 8-D generalization of
twistor approach.

The topological identification of the basic interaction vertices is as partonic 2-surfaces at
which the orbits of partonic 2-surfaces meet. Fermions behave like free massless (in 8-D sense)
particles during propagation along boundaries of string world sheets but interact at partonic sur-
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faces and associated wormhole contacts by classical induced gauge fields. The naive guess would be
that the conformal scaling generator L0 for super-symplectic algebra could serving as propagator
mediating the interaction between fermions at opposite wormhole throats.

The notion of preferred extremal does not favor ordinary Feynman diagrammatics result-
ing from path integral approach. The picture suggested by twistorialization looks more natural.
Scattering amplitudes would be analogous to a minimal sequences of calculations transforming a
given initial state to a given final state located at boundaries of CD. I proposed this vision for
many years ago in terms of bi-algebras and related structures but gave it up as too speculative,
and the only remnant of the enthusiasism period is a little appendix [K6]. The basic operations
would be product and co-product in the Yangian associated with the super-symplectic algebra.
Interaction vertices would correspond product and co-product for the generators of the Yangian
algebra. The generators of this algebra would be Noether super charges associated with strings
connecting partonic two surfaces.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L12].

9.2 General Vision Behind Matrices

In the following I summarize the basic notions and ideas discussed in previous chapters.

9.2.1 Basic Principles

My original intention was to summarize the basic principles of Quantum TGD first. The problem
is however where to start from since everything is so tightly interwoven that linear representation
proceeding from principles to consequences seems impossible. Therefore it might be a good idea
to try to give a summary with emphasis on what has happened during the few months in turn of
2008 to 2009 assuming that the reader is familiar with the basic concepts discussed in previous
chapters. This summary gives also a bird’s eye of view about what I believe M -matrix to be. Later
this picture is used to answer the questions raised in the earlier version of this chapter.

Zero energy ontology

One of the key notions underlying the recent developments is zero energy ontology.

1. Zero energy ontology leads naturally to the identification of light-like 3-surfaces interpreted
as a generalization of Feynman diagrams as the most natural dynamical objects (equivalent
with space-like 3-surface by holography).

2. The fractal hierarchy of causal diamonds ( CD) with light like boundaries of CD interpreted
as carriers of positive and negative energy parts of zero energy state emerges naturally. If the
scales of CDs come as powers of 2, p-adic length scale hypothesis follows as a consequence.

3. The identification of M -matrix as time-like entanglement coefficients between zero energy
states identified as the product of positive square root of the density matrix and unitary
S-matrix emerges naturally and leads to the unification of thermodynamics and quantum
theory.

4. The identification of M -matrix in terms of Connes tensor product means that the included
algebra N ⊂M acts effectively like complex numbers and does not affect the physical state.
The interpretation is that N corresponds to zero energy states in size scales smaller than the
measurement resolution and thus the insertion of this kind of zero energy state should not
have any observable effects. The uniqueness of Connes tensor product gives excellent hopes
that the M -matrix could be unique apart from the square root of of density matrix.

5. The unitary U -matrix between zero energy states assignable to quantum jump has nothing
to do with S-matrix measured in particle physics experiments. A possible interpretation

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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is in terms of consciousness theory. For instance, U -matrix could make sense even for p-
adic-to-real transitions interpreted as transformations of intentions to actions making sense
since zero energy state is generated (“Everything is creatable from vacuum” is the basic
principle of zero energy ontology) [K41] . One can express U -matrix as a collection of M -
matrices labeled by zero energy states and unitaritity conditions for U -matrix boil down to
orthogonality conditions for the zero energy states defined by M -matrices.

The notion of finite measurement resolution

The notion of finite measurement resolution as a basic dynamical principle of quantum TGD
might be seen by a philosophically minded reader as the epistemological counterpart of zero energy
ontology.

1. As far as length scale resolution is considered, finite measurement resolution implies that
only CDs above some size scale are allowed. This is not an approximation but a property
of zero energy state so that zero energy states realize finite measurement resolution in their
structure. One might perhaps say that quantum states represent only the information that
we can becomes conscious of.

2. In the case of angle resolution the hierarchy of Planck constants accompanied by a hierarchy
of algebraic extensions of rationals by roots of unity, and realized in terms of the book like
structures assigned with CD and CP2, is a natural outcome of this thinking.

3. Number theoretic braids implying discretization at parton level can be seen as a space-time
correlate for the finite measurement resolution. Zero energy states should contain in their
construction only information assignable to the points of the braids. Note however that
there is also information about tangent space of space-time surface at these points so that
the theory does not reduce to a genuinely discrete theory. Each choice of M2 and geodesic
spheres defines a selection of quantization axis and different choice of the number theoretic
braid. Hence discreteness does not reduce to that resulting from the assumption that space-
time as the arena of dynamics is discrete but reflects the limits to what we can measure,
perceive, and cognize in continuous space-time. Zero energy state corresponds to wave-
function in the space of these choices realized as the union of copies of the page CD × CP2.
Quantum measurement must induce a localization to single point in this space unless one is
ready to take seriously the notion of quantum multiverse.

4. Finite measurement resolution allows a realization in terms of inclusions N ⊂ M of hyper-
finite factors of type II1 (HFFs) about which the WCW Clifford algebra provides standard
example. Also the factor spaces M/N are suggestive and should correspond to quantum
variants of HFFs with a finite quantum dimension. p-Adic coupling constant evolution can
be understood in this framework and corresponds to the inclusions of HFFs realized as
inclusions of spaces of zero energy states with two different scale cutoffs.

Number theoretical compactification and M8 −H duality

The closely related notions of number theoretical compactification and M8 −H duality have had
a decisive impact on the understanding of the mathematical structure of quantum TGD.

1. The hypothesis is that TGD allows two equivalent descriptions using either M8- the space of
hyper-octonions- or H = M4 ×CP2 as imbedding space so that standard model symmetries
have a number theoretic interpretation. The underlying philosophy is that the world of
classical worlds and thus H is unique so that the symmetries of H should be something very
special. Number theoretical symmetries indeed fulfil this criterion.

2. InM8 description space-time surfaces decompose to hyper-quaternionic and co-hyperquaternionic
regions. The map assigning to X4 ⊂M8 the image in X4 ⊂ H must be a isometry and also
preserve the induced Kähler form so that the Kähler action has same value in the two spaces.
The isometry groups of E4 and CP2 are different, and the interpretation is that the low
energy description of hadrons in terms of SO(4) symmetry and high energy description in
terms of SU(3) gauge group reflect this duality.
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3. Number theoretic compactification implies very detailed conjectures about the preferred ex-
tremals of Kähler action implying dual slicings of the M4 projection of space-time surface
to string world sheets Y 2 and partonic 2-surfaces X2 for Minkowskian signature of induced
metric. This occurs for the known extremals of Kähler action of this kind [K7, K74, K111].
These slicings allow to understand how Equivalence Principle emerges via its stringy variant
in TGD framework through dimensional reduction. The tangent spaces of Y 2 and X2 define
local planes of physical and un-physical polarizations and M2 defines also the plane for the
four-momentum assignable to the braid strand so that gauge symmetries are purely number
theoretical interpretation.

4. Also a slicing of X4(X3
l ) to light-like 3-surfaces Y 3

l parallel to X3
l giving equivalent space-

time representations of partonic dynamics is predicted. This implies holography meaning an
effective reduction of space-like 3-surfaces to 2-D surfaces. Number theoretical compactifi-
cation leads also to a dramatic progress in the construction of quantum TGD in terms of
the second quantized induced spinor fields. The holography seems however to be not quite
simple as one might think first. Kac-Moody symmetries respecting the light-likeness of X3

l

and leaving X2 fixed act as gauge transformations and all light-like 3-surfaces with fixed
ends and related by Kac-Moody symmetries would be geometrically equivalent in the sense
that WCW Kähler metric is identical for them. These transformations would also act as zero
modes of Kähler action.

5. A physically attractive realization of the braids - and more generally- of slicings of space-
time surface by 3-surfaces and string world sheets, is discussed in [K35] by starting from the
observation that TGD defines an almost topological QFT of braids, braid cobordisms, and
2-knots. The boundaries of the string world sheets at the space-like 3-surfaces at boundaries
of CDs and wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A51] to TGD framework. It leads to the
identification of slicing by three-surfaces as that induced by the inverse images of r = constant
surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the role of Higgs
field vacuum expectation value in gauge theories. r = ∞ surfaces correspond to geodesic
spheres and define analogs of fractionally magnetically charged Dirac strings identifiable as
preferred string world sheets. The union of these sheets labelled by subgroups U(2) ⊂ SU(3)
would define the slicing of space-time surface by string world sheets. The choice of U(2)
relates directly to the choice of quantization axes for color quantum numbers characterizing
CD and would have the choice of braids and string world sheets as a space-time correlate.

WCW spinor structure

The construction of WCW (“world of classical worlds”, configuration space) spinor structure in
terms of second quantized induced spinor fields is certainly the most important step made hitherto
towards explicit formulas for M -matrix elements.

1. Number theoretical compactification (M8−H duality) states that space-time surfaces can be
equivalently regarded as 4-dimensional surfaces of either H = M4×CP2 or of 8-D Minkowski
space M8, and consisting of hyper-quaternionic and co-hyper-quaternionic regions identified
as regions with Minkowskian and Euclidian signatures of induced metric. Duality preserves
induced metric and Kähler form. This duality poses very strong constraints on the geometry
of the preferred extremals of Kähler action implying dual slicings of the space-time surface
by string worlds sheets and partonic 2-surfaces as also by light-like 1-surfaces and light-like
3-surfaces. These predictions are consistent what is known about the extremals of Kähler
action. The predictions of number theoretical compactification lead to dramatic progress in
the construction of configurations space spinor structure and geometry.

2. The construction of WCW geometry and spinor structure in terms of induced spinor fields
leads to the conclusion that finite measurement resolution is an intrinsic property of quantum
states basically due to the vacuum degeneracy of Kähler action. This gives a justification
for the notion of number theoretic braid effectively replacing light-like 3-surfaces. Hence the
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infinite-dimensional WCW is replaced with a finite-dimensional space (δM4
± × CP2)n/Sn.

A possible interpretation is that the finite fermionic oscillator algebra for given partonic
2-surface X2 represents the factor space M/N identifiable as quantum variant of Clifford
algebra. (δM4

± × CP2)n/Sn would represent its bosonic analog.

3. The isometries of the WCW corresponds to X2 local symplectic transformations δM4
±×CP2

depending only on the value of the invariant εµνJµν , where Jµν can correspond to the Kähler
form induced from δM4

± or CP2. This group parameterizes quantum fluctuating degrees of
freedom. Zero modes correspond to coordinates which cannot be made complex, in particular
to the values of the induced symplectic form which thus behaves as a classical field so that
WCW allows a slicing by the classical field patterns Jµν(x) representing zero modes.

4. By the effective 2-dimensionality of light-like 3-surfaces X3
l (holography) the interiors of

light-like 3-surfaces are analogous to gauge degrees of freedom and partially parameterized
by Kac-Moody group respecting the light-likeness of 3-surfaces. Quantum classical correspon-
dence suggests that gauge fixing in Kac-Moody degrees of freedom takes place and implies
correlation between the quantum numbers of the physical state and X3

l or equivalently any
light-like 3-surface Y 3

l parallel to X3
l . There would be no path integral over X3

l and only
functional integral defined by WCW geometry over partonic 2-surfaces.

5. The condition that the Noether currents assignable to the modified Dirac equation are con-
served requires that space-time surfaces correspond to extremals for which second variation
of Kähler action vanishes. A milder condition is that the rank of the matrix defined by the
second variation of Kähler action is less than maximal. Preferred extremals of Kähler action
can be identified as this kind of 4-surface and the interpretation is in terms of quantum
criticality.

For given preferred extremal one expects the existence of an infinite number of deformations
with a vanishing second variation of Kähler action. These deformations act as conformal
gauge symmetries realizing quantum criticality at space-time level. The natural assumption
is that the number, call it n, of conformal gauge equivalence classes of space-time surfaces
with fixed 3-surfaces at their ends at the boundaries of CD is finite. This integer would
characterize the effective value of Planck constant heff = n× h.

6. The physically most transparent formulation of criticality as a hierarchy of broken super-
symplectic conformal symmetries emerged rather recently. Super-symplectic algebra has an
infinite fractal hierarchy of isomorphic sub-algebras with conformal weights coming as mul-
tiple of integer n for a given sub-algebra. The natural hypothesis is that the sub-algebra
labelled by n acts as a conformal gauge algebra. This gives rise to infinite number of hierar-
chies of super-symplectic breakings labelled by sequences of integers ni+1 =

∏
k<i+1mk. In

a given symmetry breaking criticality is reduced as gauge degrees of freedom transform to
physical ones. At quantum level the gauge sub-algebra labelled by n annihilates the physical
states. At space-time level the corresponding super-symplectic Noether charges vanish. This
defines precisely what it means to be a preferred extremal in zero energy ontology (ZEO).

Hierarchy of Planck constants

The hierarchy of Planck constants realized as a replacement of CD and CP2 of CD × CP2 with
book like structures labeled by finite subgroups of SU(2) assignable to Jones inclusions is now
relatively well understood as also its connection to dark matter, charge fractionization, and anyons
[K22, K55].

1. This notion leads also to a unique identification of number theoretical braids as intersections
of CD (CP2) projection of X3

l and the back M2 (the backs S2
I and S2

II) of M4 (CP2) book.
The spheres S2

I and S2
IIare geodesic spheres of CP2 orthogonal to each other).

2. The formulation of M -matrix should involve the local data from the points of number the-
oretic braids at partonic 2-surfaces. This data involves information about tangent space of
X4(X3) so that the theory does not reduce to 2-D theory. The hierarchy of CDs within CDs
means that the improvement of measurement resolution brings in new CDs with smaller size.
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3. The points of number theoretical braids are by definition quantum critical with respect
to the phase transitions changing Planck constant and meaning leakage between different
pages of the books in question. This quantum criticality need not be equivalent with the
quantum criticality in the sense of the degeneracy of the matrix like entity defined by the
second variation of Kähler action. Note that the entire partonic 2-surface at the boundary of
CD cannot be quantum critical unless it corresponds to vacuum state with only topological
degrees of freedom excited (that is have as its CD (CP2) projection at the back of CD (CP2)
book or both) since Planck constant would be ill-defined in this kind of situation.

Super-conformal symmetries

The attempts to understand super-conformal symmetries has been unavoidably a guess work and
produced several alternative scenarios. The consistency with p-adic mass calculations requiring
five tensor factors to Super-Virasoro algebra has been the basic experimental constraint. The
work with Kähler-Dirac equation has helped dramatically in the attempts to understand of super-
conformal symmetries. Also the understanding of Super-Kac-Moody symmetries acting as gauge
symmetries and made possible by the non-determinism of Kähler action has helped a lot.

There have been a considerable progress also in the understanding of super-conformal sym-
metries [K88, K14].

1. Super-symplectic algebra corresponds to the isometries of WCW constructed in terms covari-
antly constant right handed neutrino mode and second quantized induced spinor field Ψ and
the corresponding Super-Kac-Moody algebra restricted to symplectic isometries and realized
in terms of all spinor modes and Ψ is the most plausible identification of the superconformal
algebras when the constraints from p-adic mass calculations are taken into account. These
algebras act as dynamical rather than gauge algebras and related to the isometries of WCW
.

2. One expects also gauge symmetries due to the non-determinism of Kähler action. They
transform to each other preferred extremals having fixed 3-surfaces as ends at the boundaries
of the causal diamond. They preserve the value of Kähler action and those of conserved
charges. The assumption is that there are n gauge equivalence classes of these surfaces and
that n defines the value of the effective Planck constant heff = n × h in the effective GRT
type description replacing many-sheeted space-time with single sheeted one.

3. An interesting question is whether the symplectic isometries of δM4
± × CP2 should be ex-

tended to include all isometries of δM4
± = S2×R+ in one-one correspondence with conformal

transformations of S2.The S2 local scaling of the light-like radial coordinate rM of R+ com-
pensates the conformal scaling of the metric coming from the conformal transformation of
S2. Also light-like 3-surfaces allow the analogs of these isometries.

4. A further step of progress relates to the understanding of the fusion rules of symplectic field
theory [K10]. These fusion rules makes sense only if one allows discretization that is number
theoretic braids. An infinite hierarchy of symplectic fusion algebras can be identified with
nice number theoretic properties (only roots of unity appear in structure constants). Hence
there are good hopes that symplecto-conformal N-point functions defining the vertices of
generalized Feynman diagrams can be constructed exactly.

5. The possible reduction of the fermionic Clifford algebra to a finite-dimensional one means
that super-conformal algebras must have a cutoff in conformal weights. These algebras must
reduce to finite dimensional ones and the replacement of integers with finite field is what
comes first in mind.

6. The conserved fermionic currents implied by vanishing second variations of Kähler action for
preferred extremal define a hierarchy of super-conformal algebras assignable to zero modes.
These currents are appear in the expression of measurement interactions added to the Kähler-
Dirac action in order to obtain stringy propagators and the coding of super-conformal quan-
tum numbers to space-time geometry.



376 Chapter 9. What Scattering Amplitudes Should Look Like?

9.2.2 Various Inputs To The Construction Of M-Matrix

It is perhaps wise to summarize briefly the vision about M -matrix.

Zero energy ontology and interpretation of light-like 3-surfaces as generalized Feyn-
man diagrams

1. Zero energy ontology is the cornerstone of the construction. Zero energy states have vanishing
net quantum numbers and consist of positive and negative energy parts, which can be thought
of as being localized at the boundaries of light-like 3-surface X3

l connecting the light-like
boundaries of a causal diamond CD identified as intersection of future and past directed
light-cones. There is entire hierarchy of CDs, whose scales are suggested to come as powers
of 2. A more general proposal is that prime powers of fundamental size scale are possible and
would conform with the most general form of p-adic length scale hypothesis. The hierarchy
of size scales assignable to CDs corresponds to a hierarchy of length scales and code for a
hierarchy of radiative corrections to generalized Feynman diagrams.

2. Light-like 3-surfaces are the basic dynamical objects of quantum TGD and have interpretation
as generalized Feynman diagrams having light-like 3-surfaces as lines glued together along
their ends defining vertices as 2-surfaces. By effective 2-dimensionality (holography) of light-
like 3-surfaces the interiors of light-like 3-surfaces are analogous to gauge degrees of freedom
and partially parameterized by Kac-Moody group respecting the light-likeness of 3-surfaces.
This picture differs dramatically from that of string models since light-like 3-surfaces replacing
stringy diagrams are singular as manifolds whereas 2-surfaces representing vertices are not.

Identification of TGD counterpart of S-matrix as time-like entanglement coefficients

1. The TGD counterpart of S-matrix -call it M -matrix- defines time-like entanglement coeffi-
cients between positive and negative energy parts of zero energy state located at the light-like
boundaries of CD. One can also assign to quantum jump between zero energy states a matrix-
call it U -matrix - which is unitary and assumed to be expressible in terms of M -matrices.
M -matrix need not be unitary unlike the U -matrix characterizing the unitary process form-
ing part of quantum jump. There are several good arguments suggesting that that M -matrix
cannot be unitary but can be regarded as thermal S-matrix so that thermodynamics would
become an essential part of quantum theory. In fact, M -matrix can be decomposed to a
product of positive diagonal matrix identifiable as square root of density matrix and uni-
tary matrix so that quantum theory would be kind of square root of thermodynamics. Path
integral formalism is given up although functional integral over the 3-surfaces is present.

2. In the general case only thermal M -matrix defines a normalizable zero energy state so that
thermodynamics becomes part of quantum theory. One can assign to M -matrix a complex
parameter whose real part has interpretation as interaction time and imaginary part as the
inverse temperature.

Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could
be used to define the M-matrix of quantum TGD. This is not the case as is obvious already
from the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but as a
generalization of thermodynamical state is certainly not enough for the purposes of quantum
TGD and quantum field theories (algebraic quantum field theorists might disagree!). Zero
energy ontology requires that the notion of thermodynamical state should be replaced with
its “complex square root” abstracting the idea about M-matrix as a product of positive
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square root of a diagonal density matrix and a unitary S-matrix. This generalization of
thermodynamical state -if it exists- would provide a firm mathematical basis for the notion
of M-matrix and for the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology: the two vacua can be assigned with the positive and negative energy parts
of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of
WCW differing only by a real part of holomorphic function of complex coordinates of WCW
and arbitrary function of zero mode coordinates and giving rise to the same Kähler metric
of WCW .

Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite measure-
ment resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the
original one. Therefore N takes the role of complex numbers in non-commutative quantum
theory. The space M/N would correspond to the operators creating physical states mod-
ulo measurement resolution and has typically fractal dimension given as the index of the
inclusion. The corresponding spinor spaces have an identification as quantum spaces with
non-commutative N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a uni-
versal M-matrix describing the situation for an ideal measurement resolution exists as the
idea about square root of state encourages to think. Finite measurement resolution forces
to replace the probabilities defined by the M-matrix with their N “averaged” counterparts.
The “averaging” would be in terms of the complex square root of N -state and a direct analog
of functionally or path integral over the degrees of freedom below measurement resolution
defined by (say) length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -“aver-
aged” probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix
in M(N interpreted as finite-dimensional space with a projection operator to N . The con-
dition that N averaging in terms of a complex square root of N state produces this kind of
M-matrix poses a very strong constraint on M-matrix if it is assumed to be universal (apart
from variants corresponding to different measurement interactions).

Conformal symmetries and stringy diagrammatics

The Kähler-Dirac equation has rich super-conformal symmetries helping to achieve concrete vision
about the structure of M -matrix in terms of generalized Feynman diagrammatics.

Both super-conformal symmetries and the effective reduction of space-time sheet to string
world sheets at Minkowskian regions as a consequence of finite measurement resolution suggest
that the generalized Feynman diagrams have as vertices N -point functions of a conformal field
theory assignable to the partonic 2-surfaces at which the lines of Feynman diagram meet. The
vertices can be assigned with wormhole contacts with Euclidian signture of induced metric. In
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Minkowskian regions fundamental fermions propagate like massless particles along boundaries of
string world sheets. One can say that a hybrid of Feynman and stringy diagrammatics results.

Finite measurement resolution means that this conformal theory is defined in the discrete set
defined by the intersections of braids defined by boundaries of string worlds sheets with partonic
two-surfaces. The presence of symplectic invariants in turn suggest a symplectic variant of con-
formal field theory leading to a concrete construction of symplectic fusion rules relying in crucial
manner to discretization.

TGD as almost topological QFT

The idea that TGD could be regarded as almost topological QFT has been very fruitful although
the hypothesis that Chern-Simons term for induced Kähler gauge potential assignable to light-
like 3-surfaces identified as regions of space-time where the Euclidian signature of induced metric
assignable to the interior or generalized Feynman diagram changes to Minkowskian one turned out
to be too strong. The reduction of WCW and its Clifford algebra to finite dimensional structures
due to finite measurement resolution however realizes this idea but in different manner.

1. There is functional integral over the small deformations of Feynman cobordisms correspond-
ing to the maxima of Kähler function which is finite-dimensional if finite measurement res-
olution is taken into account. Almost topological QFT property of quantum suggests the
identification of M -matrix as a functor from the category of generalized Feynman cobordisms
(generalized Feynman diagrams) to the category of operators mapping the Hilbert space of
positive energy states to that for negative energy states: these Hilbert spaces are assignable
to partonic 2-surfaces.

2. The limit at which momenta vanish is well-defined for M-matrix since the Kähler-Dirac action
contains measurement interaction term and at this limit one indeed obtains topological QFT.

3. Almost TQFT property suggests that braiding S-matrices should have important role in the
construction. It is indeed possible to assign the with the lines of the generalized Feynman
diagram. The reduction of quantum TGD to topological QFT should occur at quantum
criticality with respect to the change of Planck constant since in this situation the M -matrix
should not depend at all on Planck constant. Factoring QFTs in 1+1 dimensions give exam-
ples of this kind of theories.

Heuristic picture about generalized Feynman rules

Concerning the understanding of the relationship between HFFs and M -matrix the basic implica-
tions are following.

1. General visions do not allow to provide explicit expressions for M-matrix elements. Therefore
one must be humble and try to feed in all understanding about quantum TGD and from
the quantum field theoretic picture. In particular, the dependence of M -matrix on Planck
constant should be such that the addition of loop corrections as sub- CDs corresponds to an
expansion in powers of 1/~ as in quantum field theory whereas for tree diagrams there is no
dependence on ~.

2. The vacuum degeneracy of Kähler action and the identification of Kähler function as Dirac
determinant strongly suggest that fermionic oscillator operators define what could be inter-
preted as a finite quantum-dimensional Clifford algebra identifiable as a factor space M/N ,
N ⊂M. One must be however very cautious since also an alternative option in which exci-
tations of labeled by conformal weight are present cannot be excluded. Finite-dimensionality
would mean an enormous simplification, and together with the unique identification of num-
ber theoretic braids as orbits of the end points of string world sheets this means that the dy-
namics is finite-quantum-dimensional conforming with the fact effective finite-dimensionality
is the defining property of HFFs. Physical states would realize finite measurement resolution
in their structure so that approximation would cease to be an approximation.
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3. An interesting question is whether this means that M -matrix must be replaced with quantum
M -matrix with operator valued matrix elements and whether the probabilities should be
determined by taking traces of these operators having interpretation as averaging over N
defining the degrees of freedom below measurement resolution. This kind of picture would
conform with the basic properties of HFFs.

4. To the strands of number theoretic braids one would attach fermionic propagators. Since
bosons correspond to fermion pairs at the throats of wormhole contact, all propagators reduce
to fermionic ones. As found, the addition of measurement interaction term fixes fermionic
propagator completely and gives it a stringy character.

5. Similar correlation function in WCW degrees of freedom would be given in lowest order -
and perhaps exact - approximation in terms of the contravariant metric of the configuration
space proportional to g2

K . Besides this the exponent of Kähler action would be involved.
For elementary particles it would be the exponent of Kähler action for CP2 type vacuum
extremal. In this manner something combinatorially very similar to standard perturbation
theory would result and there are excellent hopes that p-adic coupling constant evolution in
powers of 2 is consistent with the standard coupling constant evolution.

6. Vertices correspond to n-point functions. The contribution depending on fermionic fields
defines the quantum number dependent part of the vertices and comes from the fermion
field and their conjugats attached to the ends of propagator lines identified as braid strands.
Besides this there is a symplecto-conformal contribution to the vertex.

7. The stringy variant of twistor Grassmannian approach is highly suggestive since the nec-
essary conditions are satisfied. In particular, the fundamental fermions propagate in the
internal lines effectively as massless on-mass shell states but with non-physical polarization.
M4 resp.CP2 is the unique 4-D manifold resp. compact manifold with Minkowskian resp.
Euclidian signature of metric allowing twistor space with Kähler structure. This suggests
that a generalization of twistorialization to 8-D context makes sense. The twistor space for
CP2 is 6-dimensional flag manifold SU(3)/U(1) × U(1) parameterizing the choice of color
quantization axes and has popped up earlier in TGD inspired theory of consciousness.

The expansion of M-matrix in powers of ~

One should understand how the proportionality of gauge couplings to g2
K emerges and how loops

give rise to powers of αK . In zero energy ontology one does not calculate M -matrix but tries to
construct zero energy state in the hope that QFT wisdom yields cold help to construct Connes
tensor product correctly.

1. The basic rule of quantum field theory is that each loop gives α = g2/4π and thus 1/~
factor whereas in tree diagrams only g2 appears so that they correspond to the semiclassical
approximation.

2. This rule is obtained if one assumes loops correspond to a hierarchy of sub- CDs and that
in loop one can distinguish one line as “base line” and other lines as radiative corrections.
To each internal line one must one must assign the factor r−1/2 = (~0/~)1/2 and factor g2

K

except to the portion of base line appearing in loop since otherwise double counting would
result. This dictates the expansion of M -matrix in powers of r−1/2. It would not be too
surprising to have this kind of expansion.

3. g2
K factor comes from the functional integral over the partonic 2-surface selected by stationary

phase approximation using the exponent of Kähler action. The functional integral over the
WCW degrees of freedom is carried out using contravariant Kähler metric as a propagator
and this gives g2

K factor in the lowest non-trivial order since one must develop a perturbation
theory with respect to the deformations at the partonic 2-surfaces at the ends of line.

If the analogs of radiative corrections to this functional integral vanish - as suggested by
quantum criticality and required by number theoretic universality - the resulting dependence
on g2

K is exact and completely analogous to the free field theory propagator. The numerical
factors give the appropriate gauge coupling squared.
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4. Besides this one must assign to the ends of the propagator line positive and negative energy
parts of quantum state representing the particle in question. These give a contribution
which is zeroth order in ~. For instance, gauge bosons correspond to fermionic bilinears.
Essentially fermion currents formed from spinor fields at the two light-like wormhole throats
of the wormhole contact at which the signature of the induced metric changes are in question.
Correct dimension requires the presence of 1/~ factor in boson state and 1/

√
~ factor in

fermion state. The correlators between fermionic fields at the end points of the line are
proportional to ~ so that normalization factors cancel the ~ dependence. Besides this one
would expect N-points function of symplecto-conformal QFT with N = Nin + Nout having
no dependence on ~.

9.2.3 But What About The Concrete Feynman Rules?

The skeptic reader can say that all this is just an endless list of general principles. I dare however
claim that the only manner to proceed is to try to identify the general principles first. At this
moment the understanding of the fundamental variational principled of TGD understood at such
level of detail that one can indeed sketch a rather concrete formulation for the generalized Feynman
rules. The generalized Feynman diagrams correspond to the 4-D surfaces defined by the Euclidian
regions defined by wormhole contacts plus the string world sheets connecting them and carrying
spinor modes. One might also talk about combination of Feynman diagrams and stringy diagrams
or even about generalization of Wilson loops. The lines of these diagrams form also braids.

1. The boundaries of string world sheets at which the modes of induced spinor field are localized
(by well-definedness of em charge) carry fermion number and are identifiable as braid strands
within partonic orbits at which the signature of the induced metric changes from Minkowskian
to Euclidian. 1-D Dirac action for induced metric and its bosonic counterpart - must be
assigned with partonic orbits in order to obtain non-trivial fermionic propagator. Massles
fermion propagator emerges if light-like portions of string world sheet boundary contain 1-D
Dirac action in induced metric. The bosonic part of this action implied by supersymmetry
implies that light-like geodesic of imbedding space is in question and there is a conserved
light-like four-momentum associated with the fermion line.

2. The fundamental interaction is the scattering of fermions at opposite wormhole throats of
wormhole contact. With string model based intuition one can argue that this interaction must
correspond essentially to the stringy propagator 1/L0 so that one would obtain a combination
of Feynman rules and stringy rules. The vertices correspond topologically to a fusion of
4-D lines along the 3-surfaces at their ends and this means deviation from string model
picture: stringy diagrams correspond at topological level to what happens when particle
travels between A and B along two different routes and has nothing to do with particle
decay.

One can criticize this idea about ad hoc character. Furthermore, super-symmetry requires
also the presence of super-generator G and its hermitian conjugate. In TGD however these
operators carry baryon or lepton number and cannot appear as propagators unless they
appear as pairs GGdagger ∝ L0.

The vision about scattering amplitudes as sequences of algebraic operations with 3-vertices
identified as product and co-products in super-sympelectic Yangian of super-symplectic al-
gebra looks much more feasible option [K76].

3. Physical particles are bound states of massless fundamental fermions and correspond to
pairs of wormhole contacts: a pair is required since wormhole throats behave effectively as
magnetic monopoles and closed flux tube consisting of pieces at the two space-time sheets
and wormhole contacts is required. This resolves the infrared difficulties of twistor approach.
Twistor Grassmann approach strongly suggests that the residue integral over the virtual four-
momenta reduces the propagators of fundamental fermions to their inverses at mass-shell so
that only non-physical fermion helicities appear as virtual fermions.
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The reader wishing for a brief summary of TGD might find the three articles about TGD,
TGD inspired theory of consciousness, and TGD based view about quantum biology helpful [L6,
L5, L4].

9.3 How To Define Generalized Feynman Diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or
actually M-matrix which generalizes this notion in ZEO (ZEO) [K63] . This work has led to the
notion of generalized Feynman diagram and the challenge is to give a precise mathematical meaning
for this object. The attempt to understand the counterpart of twistors in TGD framework [K76]
has inspired several key ideas in this respect but it turned out that twistors themselves need not
be absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman
diagram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats
carrying quantum numbers) and vertices identified as their 2-D ends - I call them partonic
2-surfaces is central. Speaking somewhat loosely, generalized Feynman diagrams (plus back-
ground space-time sheets) define the “world of classical worlds” (WCW). These diagrams
involve the analogs of stringy diagrams but the interpretation is different: the analogs of
stringy loop diagrams have interpretation in terms of particle propagating via two different
routes simultaneously (as in the classical double slit experiment) rather than as a decay of
particle to two particles. For stringy diagrams the counterparts of vertices are singular as
manifolds whereas the entire diagrams are smooth. For generalized Feynman diagrams ver-
tices are smooth but entire diagrams represent singular manifolds just like ordinary Feynman
diagrams do. String like objects however emerge in TGD and even ordinary elementary par-
ticles are predicted to be magnetic flux tubes of length of order weak gauge boson Compton
length with monopoles at their ends as shown in accompanying article. This stringy character
should become visible at LHC energies.

2. ZEO (ZEO) and causal diamonds (intersections of future and past directed light-cones) define
second key ingredient. The crucial observation is that in ZEO it is possible to identify off
mass shell particles as pairs of on mass shell fermions at throats of wormhole contact since
both positive and negative signs of energy are possible and one obtains also space-like total
momenta for wormhole contact behaving as a boson. The localization of fermions to string
world sheets and the fact that super-conformal generator G carries fermion number combined
with twistorial consideration support the view that the propagators at fermionic lines are of
form (1/G)ipkγk(1/G† + h.c. and thus hermitian. In strong models 1/G would serve as a
propagator and this requires Majorana condition fixing the dimension of the target space to
10 or 11.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman
amplitudes in all number fields when one allows suitable algebraic extensions: roots of unity
are certainly required in order to realize p-adic counterparts of plane waves. Also imbedding
space, partonic 2-surfaces and WCW must exist in all number fields and their extensions.
These constraints are enormously powerful and the attempts to realize this vision have dom-
inated quantum TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices
is a further important element as far as twistors are considered [K76] . Kähler-Dirac gamma
matrices at space-time surfaces are quaternionic/associative and allow a genuine matrix rep-
resentation. As a matter fact, TGD and WCW could be formulated as study of associative
local sub-algebras of the local Clifford algebra of 8-D imbedding space parameterized by
quaternionic space-time surfaces.

5. A central conjecture has been that associative (co-associative) 4-surfaces correspond to pre-
ferred extremals of Kähler action [K88]. It took long time to realize that in ZEO the notion
of preferred extremal might be un-necessary! The reason is that 3-surfaces are now pairs of
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3-surfaces at boundaries of causal diamonds and for deterministic dynamics the space-time
surface connecting them is expected to be more or less unique. Now the action principle is
non-deterministic but the non-determinism would give rise to additional discrete dynamical
degrees of freedom naturally assignable to the hierarchy of Planck constants heff = n× h, n
the number of space-time surface with same fixed ends at boundaries of CD and with same
values of Kähler action and of conserved quantities. One must be however cautions: this
leaves the possibility that there is a gauge symmetry present so that the n sheets correspond
to gauge equivalence classes of sheets. Conformal invariance is associated with criticality and
is expected to be present also now.

One can of course also ask whether one can assume that the pairs of 3-surfaces at the ends of
CD are totally un-correlated. If this assumption is not made then preferred extremal property
would make sense also in ZEO and imply additional correlation between the members of these
pairs. This kind of correlations would correspond to the Bohr orbit property, which is very
attractive space-time correlate for quantum states. This kind of correlates are also expected
as space-time counterpart for the correlations between initial and final state in quantum
dynamics.

6. A further conjecture has been that preferred extremals are in some sense critical (second
variation of Kähler action could vanish for infinite number of deformations defining a super-
conformal algebra). The non-determinism of Kähler action implies this property for n > 0
in heff = nh. If the criticality is present, it could correspond to conformal gauge invariance
defined by sub-algebras of conformal algebra with conformal weights coming as multiples of
n and isomorphic to the conformal algebra itself.

7. As far as twistors are considered, the first key element is the reduction of the octonionic
twistor structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor
and twistor structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [K88, K76] .

1. The progress was stimulated by the simple observation that on mass shell property puts
enormously strong kinematic restrictions on the loop integrations. With mild restrictions on
the number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case
of massless particles and due to IR cutoff due to the presence largest CD- the number of
diagrams is finite. Unitarity reduces to Cutkosky rules [B70] automatically satisfied as in the
case of ordinary Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely
necessary in this approach although they are of course possible. Situation changes if one
does not assume small p-adically thermal mass due to the presence of massless particles and
one must sum infinite number of diagrams. Here a potential problem is whether the infinite
sum respects the algebraic extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet
about the functional (not path-) integral over small deformations of the partonic 2-surfaces. The
basic challenges are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral
or summation over loop momenta. Note that the order is important since the space-time
surface assigned to the line carries information about the quantum numbers associated with
the line by quantum classical correspondence realized in terms of Kähler-Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis
relying on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly
that the loop momenta are discretized and ZEO predicts this kind of discretization naturally.
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It indeed seems that the functional integrals over WCW could be carried out at general level
both in real and p-adic context. This is due to the symmetric space property (maximal number
of isometries) of WCW required by the mere mathematical existence of Kähler geometry [K34] in
infinite-dimensional context already in the case of much simpler loop spaces [A48] .

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible
looking technical challenge of p-adic physics- for symmetric spaces for functions allowing the
analog of discrete Fourier decomposition. Symmetric space property is indeed essential also
for the existence of Kähler geometry for infinite-D spaces as was learned already from the
case of loop spaces. Plane waves and exponential functions expressible as roots of unity and
powers of p multiplied by the direct analogs of corresponding exponent functions are the basic
building bricks and key functions in harmonic analysis in symmetric spaces. The physically
unavoidable finite measurement resolution corresponds to algebraically unavoidable finite
algebraic dimension of algebraic extension of p-adics (at least some roots of unity are needed).
The cutoff in roots of unity is very reminiscent to that occurring for the representations of
quantum groups and is certainly very closely related to these as also to the inclusions of
hyper-finite factors of type II1 defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram
defining the basic building brick for WCW. Kähler function decomposes to a sum of “ki-
netic” terms associated with its ends and interaction term associated with the line itself.
p-Adicization boils down to the condition that Kähler function, matrix elements of Kähler
form, WCW Hamiltonians and their super counterparts, are rational functions of complex
WCW coordinates just as they are for those symmetric spaces that I know of. This would
allow a continuation to p-adic context.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

9.3.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement res-
olution in which case one obtains only finite sums of what one might hope to be algebraic
functions. The finiteness of the algebraic extension would be in fact equivalent with the finite
measurement resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids.
p-Adicization condition suggests that that one must allow only the number theoretic braids.
For these the ends of braid at boundary of CD are algebraic points of the imbedding space.
This would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use
momentum eigenstates to achieve quantum classical correspondence in the Kähler-Dirac ac-
tion [K88] suggests however a de-localization of braid points, that is wave function in space
of braid points. In real context one could allow all possible choices for braid points but in
p-adic context only algebraic points are possible if one wants to replace integrals with sums.
This implies finite measurement resolution analogous to that in lattice. This is also the only
possibility in the intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and anti-fermions
is bounded above by the number nalg of algebraic points for a given partonic 2-surface:
nF +nF ≤ nalg. Outside the intersection of real and p-adic worlds the problematic aspect of
this definition is that small deformations of the partonic 2-surface can radically change the
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number of algebraic points unless one assumes that the finite measurement resolution means
restriction of WCW to a sub-space of algebraic partonic surfaces.

4. Braids defining propagator lines for fundamental fermions (to be distinguished from observer
particles) emerges naturally. Braid strands correspond to the boundaries of string world
sheets at which the modes of induced spinor fields are localized from the condition that em
charge is well-defined: induced W field and above weak scale also Z0 field vanish at them.

In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This sug-
gests strongly a connection with quantum field theory and an 8-D generalization of twistor
Grassmannian approach. By field equations the bosonic part of this action does not con-
tribute to the Kähler action. The light-like 8-momenta pk have same M4 and CP2 mass
squared and latter correspond to the the eigenvalues of the CP2 spinor d’Alembertian by
quantum-classical correspondence.

5. One has also discretization of the relative position of the second tip of CD at the hyperboloid
isometric with mass shell. Only the number of braid points and their momenta would matter,
not their positions.

6. The quantum numbers characterizing positive and negative energy parts of zero energy states
couple directly to space-time geometry via the measurement interaction terms in Kähler
action expressing the equality of classical conserved charges in Cartan algebra with their
quantal counterparts for space-time surfaces in quantum superposition. This makes sense if
classical charges parametrize zero modes. The localization in zero modes in state function
reduction would be the WCW counterpart of state function collapse.

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler func-
tion. Gaussian and metric determinants cancel each other and only algebraic expressions
remain. Finiteness is not a problem since the Kähler function is non-local functional of 3-
surface so that no local interaction vertices are present. One should however assume the
vanishing of loops required also by algebraic universality and this assumption look unreal-
istic when one considers more general functional integrals than that of vacuum functional
since free field theory is not in question. The construction of the inverse of the WCW metric
defining the propagator is also a very difficult challenge. Duistermaat-Hecke theorem states
that something like this known as localization might be possible and one can also argue that
something analogous to localization results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there
would be no need for perturbation theory in the proposed sense. In finite measurement reso-
lution the symmetric spaces involved would be finite-dimensional. Symmetric space structure
of WCW could also allow to define p-adic integration in terms of p-adic Fourier analysis for
symmetric spaces. Essentially algebraic continuation of the integration from the real case
would be in question with additional constraints coming from the fact that only phase fac-
tors corresponding to finite algebraic extensions of rationals are used. Cutoff would emerge
automatically from the cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.
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1. WCW integration must be carried out separately for all values of the momenta associated
with the internal lines. The reason is that the spectrum of eigenvalues λi of the Kähler-
Dirac operator D depends on the momentum of line and momentum conservation in vertices
translates to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible
in terms of harmonics of symmetric space , there should be no problems.

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficul-
ties are encountered if the spectrum of the momenta is continuous. The integration over on
mass shell loop momenta is analogous to the integration over sub-CDs, which suggests that
internal line corresponds to a sub − CD in which it is at rest. There are excellent reasons
to believe that the moduli space for the positions of the upper tip is a discrete subset of
hyperboloid of future light-cone. If this is the case, the loop integration indeed reduces to a
sum over discrete positions of the tip. p-Adizication would thus give a further good reason
why for ZEO.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a
sum over these for each propagator line. At vertices one has products of WCW harmonics
assignable to the incoming lines. The product must have vanishing quantum numbers asso-
ciated with the phase angle variables of WCW. Non-trivial quantum numbers of the WCW
harmonic correspond to WCW quantum numbers assignable to excitations of ordinary el-
ementary particles. WCW harmonics are products of functions depending on the “radial”
coordinates and phase factors and the integral over the angles leaves the product of the first
ones analogous to Legendre polynomials Pl,m, These functions are expected to be rational
functions or at least algebraic functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent
case this would mean that incoming stringy lines at the ends of CD correspond to fermions
satisfying the stringy mass formula serving as a generalization of masslessness condition.

9.3.2 Generalized Feynman Diagrams At Fermionic And Momentum
SpaceLevel

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynman diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in
the topological sense.

One must be however ready for the possibility that something unexpectedly simple might
emerge. For instance, the vision about algebraic physics allows naturally only finite sums for
diagrams and does not favor infinite perturbative expansions. Hence the true believer on algebraic
physics might dream about finite number of diagrams for a given reaction type. For simplicity
generalized Feynman diagrams without the complications brought by the magnetic confinement
since by the previous arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow to get rid
of off mass shell momenta. ZEO encourages to consider a stronger form of this principle in the
sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the
interaction region the idea about reducing the construction of Feynman diagrams to some kind of
lego rules might work.
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Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts
join at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and
outgoing ones to −− type lines. The first two line pairs allow only time like net momenta
whereas +− line pairs allow also space-like virtual momenta. The sign assigned to a given
throat is dictated by the sign of the on mass shell momentum on the line. The condition
that Cutkosky rules generalize as such requires ++ and −− type virtual lines since the cut
of the diagram in Cutkosky rules corresponds to on mass shell outgoing or incoming states
and must therefore correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop inte-
grals are integrals over mass shell momenta and that all throats carry on mass shell momenta.
In each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a com-
mon kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3

are possible. The virtual states N2 include all all states in the intersection of kinematically
allow regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible
diagrams is not fulfilled if one allows massless particles. If all particles are massive then the
particle number N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in
mind twistor diagrams) since the conservation laws at vertices imply that the momenta are
parallel. In the massive case and allowing mass spectrum the situation is not so simple. As a
first example one can consider a loop with three vertices and thus three internal lines. Three
on mass shell conditions are present so that the four-momentum can vary in 1-D subspace
only. For a loop involving four vertices there are four internal lines and four mass shell
conditions so that loop integrals would reduce to discrete sums. Loops involving more than
four vertices are expected to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary
fermions and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle
wave functions in the momentum degrees of freedom of fermion and X± might allow more
flexibility and allow more loops. Note however that there are excellent hopes about the
finiteness of the theory also in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something
is missing. Magnetic monopoles are an essential element of also these theories as also mas-
sivation and symmetry breaking and this encourages to think that the formation of massive
states as fermion X± pairs is needed. Of course, in TGD framework one has also high mass
excitations of the massless states making the scattering matrix non-trivial.
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2. In YM theories on mass shell lines would be singular. In TGD framework this is not the
case since the propagator is defined as the inverse of the 3-D dimensional reduction of the
Kähler-Dirac operator D containing also coupling to four-momentum (this is required by
quantum classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (9.3.1)

The propagator does not diverge for on mass shell massless momenta and the propagator
lines are well-defined. This is of course of essential importance also in general case. Only for
the incoming lines one can consider the possibility that 3-D Dirac operator annihilates the
induced spinor fields. All lines correspond to generalized eigenstates of the propagator in the
sense that one has D3Ψ = λγΨ, where γ is Kähler-Dirac gamma matrix in the direction of the
stringy coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional
reduction of the 4-D Kähler-Dirac operator. The eigenvalue λ is analogous to energy. Note
that the eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related
to poles since the loop integrands for given massless wormhole contact are proportional to
dx/x3 for large values of x.

4. Irrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N−4 for N -vertex. The construction of SUSY limit of TGD in [K24] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond
to a product of N fermion propagators with same four-momentum so that for fermions and
ordinary bosons one has the standard behavior but for N > 2 non-standard so that these
excitations are not seen as ordinary particles. Higher vertices are finite only if the total
number NF of fermions propagating in the loop satisfies NF > 3N − 4. For instance, a
4-vertex from which N = 2 states emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B5]
leads to the picture about elementary particles as pairs of magnetic monopoles inspiring the no-
tions of weak confinement based on magnetic monopole force. Also color confinement would have
magnetic counterpart. This means that elementary particles would behave like string like objects
in weak boson length scale. Therefore one must also consider the stringy case with wormhole
throats replaced with fermion-X± pairs (X± is electromagnetically neutral and ± refers to the
sign of the weak isospin opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent
objects, that is scatter elastically. In more general case only their higher excitations identifi-
able in terms of stringy degrees of freedom would be created in vertices. The massivation of
these states makes possible non-collinear vertices. An open question is how the massivation
fermion-X± pairs relates to the existing TGD based description of massivation in terms of
Higgs mechanism and Kähler-Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also
vertex normalization. By very general arguments supersymmetry implies the cancellation of
the self energy loops but would allow non-trivial vertex renormalization [K24] .
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3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-anti-fermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and
p-adic length scale hypothesis favors the inverse of the size scale of CD coming in powers of
two. This parameter would define the momentum resolution as a discrete parameter of the
p-adic coupling constant evolution. This scale does not have any counterpart in standard
physics. For electron, d quark, and u quark the proper time distance between the tips of
CD corresponds to frequency of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define
fundamental bio-rhythms [K18] .

These considerations have left completely untouched one important aspect of generalized
Feynman diagrams: the necessity to perform a functional integral over the deformations of the
partonic 2-surfaces at the ends of the lines- that is integration over WCW. Number theoretical
universality requires that WCW and these integrals make sense also p-adically and in the following
these aspects of generalized Feynman diagrams are discussed.

9.3.3 Harmonic Analysis In WCW As A Manner To Calculate WCW-
Functional Integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and
the use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and
corresponding “radial” coordinates are essential for WCW integration and p-adicization. Kähler
function, the components of the metric, and therefore also metric determinant and Kähler function
depend on the “radial” coordinates only and the possible generalization involves the identification
the counterparts of the “radial” coordinates in the case of WCW.

Conditions guaranteeing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional
integral over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of “kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line indepen-
dently. This means an enormous simplification. Each line contributes besides propagator
a piece to the exponent of Kähler action identifiable as interaction term in action and de-
pending on the propagator momentum. This contribution should be expressible in terms of
generalized spherical harmonics. Essentially a sum over the products of pairs of harmonics
associated with the ends of the line multiplied by coefficients analogous to 1/(p2−m2) in the
case of the ordinary propagator would be in question. The optimal situation is that the pairs
are harmonics and their conjugates appear so that one has invariance under G analogous to
momentum conservation for the lines of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the Kähler-Dirac operator D at
propagator lines [K88] . G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
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each internal line. p-Adicization means only the algebraic continuation to real formulas to
p-adic context.

4. The exponent of Kähler function depends on both ends of the line and this means that the
geometries at the ends are correlated in the sense that that Kähler form contains interaction
terms between the line ends. It is however not quite clear whether it contains separate
“kinetic” or self interaction terms assignable to the line ends. For Kähler function the kinetic
and interaction terms should have the following general expressions as functions of complex
WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (9.3.2)

Here Kkin,i define “kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field the-
ories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (9.3.3)

such that the products are invariant under the group H appearing in G/H and therefore
have opposite H quantum numbers. The exponent of Kähler function does not factorize
although the terms in its Taylor expansion factorize to products whose factors are products
of holomorphic and antiholomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of
the Kähler-Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(9.3.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since
also the interaction term between the ends of the line is present not taken into account in the
previous approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K15, K88]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (9.3.5)

works for the kinetic terms only since J cannot be the same at the ends of the line. The
formula defining K assumes weak form of self-duality (03 refers to the coordinates in the
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complement of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic
invariant and constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining
the counterpart of Kähler electric field equals to the Kähler charge gK gives the condition
K = g2

K/~, where gK is Kähler coupling constant. Within experimental uncertainties one

has αK = g
/
K4π~0 = αem ' 1/137, where αem is finite structure constant in electron length

scale and ~0 is the standard value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as
JA,B ≡ Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter asso-
ciated with the exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible
as JA,B = ∂tA/∂HB . From these formulas one can deduce by using chain rule that the
bracket {Q(HA), Q(HB} = ∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the
flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the inter-
action term. The symplectic conjugation associated with the interaction term permutes the
WCW coordinates assignable to the ends of the line. One should reduce this apparently non-
local symplectic conjugation (if one thinks the ends of line as separate objects) to a non-local
symplectic conjugation for δCD × CP2 by identifying the points of lower and upper end of
CD related by time reflection and assuming that conjugation corresponds to time reflection.
Formally this gives a well defined generalization of the local Poisson brackets between time
reflected points at the boundaries of CD. The connection of Hermitian conjugation and time
reflection in quantum field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is
defined as by the geodesic line orthogonal to S2 and going through the point of X2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a
unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in
the rest system defined by the time-like vector connecting the tips of CD. Either spheres or
possibly both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K13] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only
that the S2 coordinates of the projection are algebraic and that these coordinates correspond
to the discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (9.3.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of
H[A,B] over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (9.3.7)
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The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of
Kähler form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same
should hold true now. In the recent case JA,B would contain an interaction term defined
in terms of flux Hamiltonians and the previous argument should go through also now by
identifying Hamiltonians as sums of two contributions and by introducing the doubling of
the coordinates tA.

5. The quantization of the Kähler-Dirac operator must be reconsidered. It would seem that
one must add to the super-Hamiltonian completely analogous term obtained by replacing
(1+K)J with X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anti-commutation relations defining correct

anti-commutators to flux Hamiltonians, one should pose anti-commutation relations consis-
tent with the anti-commutation relations of super Hamiltonians. In these anti-commutation
relations (1 + K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that
the oscillator operators at the ends of the line are not independent and that the resulting
Hamiltonian reduces to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).

Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear
whether the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in
powers of K and therefore in negative powers of αK . In principle an infinite number of terms
can be present. This is analogous to the perturbative expansion based on using magnetic
monopoles as basic objects whereas the expansion using the contravariant Kähler metric as
a propagator would be in positive powers of αK and analogous to the expansion in terms of
magnetically bound states of wormhole throats with vanishing net value of magnetic charge.
At this moment one can only suggest various approaches to how one could understand the
situation.

2. Weak form of self-duality and magnetic confinement could change the situation. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to
α0
K and αK . This would leave to the scattering amplitudes the exponents of Kähler function

at the maximum of Kähler function so that the non-analytic dependence on αK would not
disappear.

A further reason to be worried about is that the expansion containing infinite number of
terms proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs
of states with arbitrarily high but opposite values of quantum numbers. In the functional
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integral these quantum numbers would compensate each other. The functional integral would
leave only an expansion containing powers of αK starting from some finite possibly negative
(unless one assumes the weak form of self-duality) power. Various gauge coupling strengths
are expected to be proportional to αK and these expansions should reduce to those in powers
of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorphic factorization the expansion in powers ofK means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated
at the vertex and magnetic confinement might be necessary to guarantee the convergence.
Also super-symmetry could imply cancellations in loops.

Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as inter-
action terms inspires the question whether the Kähler function could contain only the interaction
terms so that Kähler form and Kähler metric would have components only between the ends of
the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any
role in the theory. One could also argue that the WCW metric would not be positive definite
if only the non-diagonal interaction term is present. The simplest example is Hermitian
2× 2-matrix with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local
interaction vertices. These terms do not produce divergences now but the possibility that
the exponential series of this kind of terms could diverge cannot be excluded. The absence
of the kinetic terms would allow to get rid of these terms and might be argued to be the
symmetric space counterpart for the vanishing of loops in WCW integral.

3. In ZEO this idea does not look completely non-sensical since physical states are pairs of
positive and negative energy states. Note also that in quantum theory only creation operators
are used to create positive energy states. The manifest non-locality of the interaction terms
and absence of the counterparts of kinetic terms would provide a trivial manner to get rid of
infinities due to the presence of local interactions. The safest option is however to keep both
terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the Kähler-Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of
decisive importance is that the entire Feynman diagrammatics at WCW level would reduce to the
construction of WCW geometry for a single propagator line as a function of quantum numbers
propagating on the line.
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9.4 A More Detailed View About The Construction Of Scat-
tering Amplitudes

The following represents an update view about construction of scattering amplitudes at the level
of “world of classical worlds” ( WCW ).

9.4.1 Basic Principles

In order to facilitate the challenge of the reader I summarize basic ideas behind the construction
of scattering amplitudes.

Construction of scattering amplitudes as functional integrals in WCW

The decomposition of space-time surface to Minkowskian and Eucldian regions is the basic dis-
tinction from ordinary quantum field theories since it replaces path integral with mathematically
well-defined functional integral over WCW .

1. Space-time surface decomposes to regions with Minkowskian or Euclidian signature of the
induced metric. The regions with Euclidian metric are identified as lines of generalized
Feynman diagrams. The boundaries between two kinds of regions - to be called parton
orbits - can be regarded as carriers of elementary particle quantum numbers such as fermion
number assignable to the boundaries of string world sheets at them. Induced spinor fields are
localized at them from the well-definedness of electromagnetic charge requiring that induced
W boson fields vanish. Hence strings emerge from TGD. Note that at boundary between
Euclidian and Minkowskian regions the metric determinant vanishes. Unlike the name would
suggest, generalized Feynman diagrams are analogous to twistor diagrams, and instead of
infinite number of superposed diagrams there might just single diagram.

2. Weak form of electric magnetic duality together with the assumption that the term jαAα in
Kähler action vanishes imply that Kähler action reduces to 3-D Chern-Simons term. This
hypothesis is inspired by TGD as almost topological quantum field theory conjecture. In
Minkowskian regions this conjecture is very natural. In the Euclidian region the contribution
to Kähler action need not reduce to a mere Chern-Simons term associated with its boundary.
This would be due to the non-triviality of the U(1) bundle defined by Kähler form giving
also Chern-Simons terms inside the CP2 type vacuum extremal.

3. Scattering amplitude is a functional integral over space-time surfaces: the data about these
space-time surfaces are coded by their ends about the opposite light-like boundaries of causal
diamond (CD) of given scale. The weight function in the functional integral is exponential of
Kähler function of “world of classical worlds” coming from Euclidian regions of the space-time
surface representing lines of generalized Feynman diagram and being deformation of CP2

type vacuum extremals representing wormhole contacts connecting two space-time sheets
with Minkowskian signature of induced metric. Kähler function is the exponent of Kähler
action from Euclidian regions. The real exponent takes care that the functional integral is
obtained instead of path integral so that the outcome is mathematically well-defined.

4. Euclidian region would give only the analog of thermodynamics but there is also an imaginary
exponential coming from the exponential of the imaginary Kähler action from Minkowskian
regions. Space-time surfaces are extremals of Kähler action and for very general ansatz
Minkowskian contribution to Kähler action reduces to imaginary Chern-Simons term at the
light-like 3-D boundary between regions at which the 4-D metric is degenerate. This term
makes possible interference of different contributions to the functional integral which is ab-
solutely essential in quantum field theory.

5. The details of the theory in fermionic sector have turned out to be crucial. From the well-
definedness of the electric charge for the modes of the induced spinor field - and also by
number theoretic arguments - spinor modes are localized at 2-D string world sheets carrying
vanishing W gauge fields. Preferred extremals can be constructed by fixing first partonic 2-
surfaces, string world sheets, and possibly also the light-like orbits of partonic 2-surfaces and
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posing the condition that the canonical momentum densities have no components normal to
string world sheets. Also the condition that a sub-algebra of super-symplectic algebra gives
rise to vanishing Noether charges at the space-like ends of preferred extremal is natural.

This construction would conform with the strong form of holography. The boundaries of
string world sheets at the light-like orbits of partonic 2-surfaces carry 1-D Dirac action for
induced gamma matrices. The bosonic counterpart of this action gives as solutions light-like
geodesics of imbedding space - light-likeness in 8-D sense. 1-D Dirac equation for induced
gamma matrices is satisfied. A very twistorial picture emerges and suggests 8-D generaliza-
tion of twistor approach. M4 and CP2 are indeed twistorially completely unique.

6. The generators of super-symplectic algebra can be represented as Noether charges for the
fermionic strings and the supercharges identifiable as WCW gamma matrices are natural
identification for fermionic oscillator operators. Since one expects that a given partonic 2-
surface is connected to a large number of partonic 2-surfaces a generalization to Yangian
[A27] [B39, B30, B31] of super-symplectic algebra seems necessary and is in spirit with
twistorialization. It seems possible to identify the fundamental vertices assignable to partonic
2-surfaces at which three lines of diagram meet in terms of product and co-product for
Yangian so that there are hopes about realizing the already forgotten TGD inspired dream
about reduction of scattering amplitudes to sequences of algebraic operations of Yangian
with minimal length and connecting chosen initial and final states at the boundaries of CD.
Universe would be Yangian algebraist!

So what one expects vertices and propagators to be? Fermionic propagators would be
massless in 8-D sense and they should be contracted with the legs of the vertices defined by
product tor co-product involving three Yangian generators. Structure constants would define the
coupling constants. Each Yangian generator would involve a collection of fermions fields associated
with strings and with each fermion field propagator would contract. The only modification of the
ordinary vertex is that partonic 2-surfaces carry many-fermion states and the vertices involve 3
multi- fermion states. Fermion lines can also turn backwards in time: this gives rise to virtual
bosons.

Why it might work?

There are many reasons encouraging the hopes about calculable theory.

1. The theory has huge super-conformal symmetries dramatically reducing the dynamical de-
grees of freedom by the choice of conformal gauge. This implies that both the space-like
3-surfaces at the ends of space-time surface and partonic orbits satisfy classical Super con-
formal conditions for generalizations of ordinary super-conformal algebras perhaps extending
to multilocal Yangian with loci identified as strings connecting partonic 2-surfaces at the
light-like boundary of CD. This algebra extends also to include both boundaries of CD.
Fermionic anticommutation relations which allow by 2-dimensionality of string world sheet
also quantum group variant determine the anticommutations between all generators.

Yangian symmetry in turn gives excellent hopes about twistorialization: in fact, M4 × CP2

is completely unique choice for the imbedding space by twistorial considerations and the
product of the twistor spaces of M4 and CP2 allows to constructed the twistor spaces of
space-time surfaces as liftings of the extremals of Kähler action to 6-D sphere bundles over
space-time surface.

2. The integrand in the functional integral represents the analog of ordinary Feynman diagrams
involving only fermions and 1-D lines. Indeed, by bosonic emergence all bosons (in fact
all elementary particles) can be regarded as composites of fundamental fermions. The only
purely fermionic vertices are 2-fermion vertices. 3-vertices correspond to space-time surfaces
meeting along common 3-surface and are thus purely topological, and as already mentioned
could correspond to product and co-product for Yangian. This is of course excellent news from
the point of view of finiteness. The fermionic vertices are represented by the discontinuity
of the Kähler-Dirac operator associated with the string boundary line at partonic 2-surface
so that there are no coupling constants involved. The only fundamental coupling parameter
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is Kähler strength whose value is dictated by quantum criticality as the analog of critical
temperature.

One must have a view about what elementary particles - as opposed to fundamental fermions
- are, how the ordinary view about scattering based on exchanges of elementary particles emerges
from this picture and how say BFF vertex reduces to a diagram at for fundamental fermions
involving only 2-fermion vertices.

9.4.2 Elementary Particles In TGD Framework

The notion of elementary particles involves two aspects: elementary particles as space-time sur-
faces and elementary particles as many-fermion states with fundamental fermions localized at
the wormhole throats and defining elementary particles as their bound states (including physical
fermions).

Let us first summarize what kind of picture ZEO suggests about elementary particles.

1. Kähler magnetically charged wormhole throats are the basic building bricks of elementary
particles. The lines of generalized Feynman diagrams are identified as the Euclidian regions
of space-time surface. The weak form of electric magnetic duality forces magnetic monopoles
and gives classical quantization of the Kähler electric charge. Wormhole throat is a carrier
of many-fermion state with parallel momenta and the fermionic oscillator algebra gives rise
to a badly broken large N SUSY [K24].

2. The first guess would be that elementary fermions correspond to wormhole throats with
unit fermion number and bosons to wormhole contacts carrying fermion and anti-fermion
at opposite throats. The magnetic charges of wormhole throats do not however allow this
option. The reason is that the field lines of Kähler magnetic monopole field must close. Both
in the case of fermions and bosons one must have a pair of wormhole contacts (see Fig.
http://tgdtheory.fi/appfigures/wormholecontact.jpg or Fig. ?? in the appendix of
this book) connected by flux tubes. The most general option is that net quantum numbers are
distributed amongst the four wormhole throats. A simpler option is that quantum numbers
are carried by the second wormhole: fermion quantum numbers would be carried by its
second throat and bosonic quantum numbers by fermion and anti-fermion at the opposite
throats. All elementary particles would therefore be accompanied by parallel flux tubes and
string world sheets.

3. A cautious proposal in its original form was that the throats of the other wormhole contact
could carry weak isospin represented in terms of neutrinos and neutralizing the weak isospin
of the fermion at second end. This would imply weak neutrality and weak confinement above
length scales longer than the length of the flux tube. This condition might be un-necessarily
strong.

The realization of the weak neutrality using pair of left handed neutrino and right handed
antineutrino or a conjugate of this state is possible if one allows right-handed neutrino to have
also unphysical helicity. The weak screening of a fermion at wormhole throat is possible if νR
is a constant spinor since in this case Dirac equation trivializes and allows both helicities as
solutions. The new element from the solution of the Kähler-Dirac equation is that νR would
be interior mode de-localized either to the other wormhole contact or to the Minkowskian
flux tube. The state at the other end of the flux tube is sparticle of left-handed neutrino.

It must be emphasized that weak confinement is just a proposal and looks somewhat complex:
Nature is perhaps not so complex at the basic level. To understand this better, one can think
about how M89 mesons having quark and antiquark at the ends of long flux tube returning
back along second space-time sheet could decay to ordinary quark and antiquark.

9.4.3 Scattering Amplitudes

The basic challenge is to introduce vertices and fermionic propagators. The recent based on stringy
realization of Yangian algebra allows to do this.

http://tgdtheory.fi/appfigures/wormholecontact.jpg
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Fermionic propagators

How fermionic propagators emerge? The first explanation coming in mind is based on the discon-
tinuity associated with the Dirac operator at the partonic 2-surfaces defining vertices.

Discontinuities can be of two different types. Fermionic lines has discontinuous tangent at
the partonic 2-surfaces meaning local non-conservation of light-like 8-momentum. Also second
kind of discontinuity in which two lines belonging to orbits of distinct partonic 2-surfaces emerge
at single point. Their 8-momenta need not be opposite if one requires only global momentum
conservation. If it is assumed one can say that fermionic line turns backwards in time. These kind
of pairs of lines forming closed curves with peaks at ends are associated with bosonic propagators-
say those describing boson exchange between two fermions.

The discontinuities of the induced spinor along the fermionic line making a turn at the
partonic 2-surface give rise to delta function singularities under the action of 1-D Dirac operator.
This would give Dirac equation with a source term and its solution would be given by Dirac
propagator convoluted with the discontinuity.

Vertices

Vertices can be considered at both space-time level and fermionic level.

1. At space-time level vertices correspond to the fusion of space-surfaces representing particles
along common 3-surface defining the vertex. At the parton level 3-light-like parton orbits
fuse together along partonic 2-surface. In these vertices particle number changes this change
correspond the change of particle number for elementary particles.

2. At fermion level vertices are localized at the partonic 2-surfaces. The above argument would
suggest that vertices corresponds to the discontinuity of the Kähler Dirac operator at the
corner of the line representing the boundary of string world sheet. The creation of fermion pair
from vacuum corresponds to an corner of string boundary at which the boundaries of string
world sheets associated with two outgoing or incoming sheets meet. The creation/annihilation
of a fermion pair is essential for the realization of say tree diagrams describing fermion
scattering by virtual boson exchange.

The identification of vertex as a product or co-product in Yangian looks the most promising
approach. The charges of the super-symplectic Yangian are associated with strings and are either
linear or bilinear in the fermion field. The fermion fields associated with the partonic 2-surface
defining the vertex are contracted with fermion fields associated with other partonic 2-surfaces
using the same rule as in Wick expansion in quantum field theories. The contraction gives fermion
propagator at each leg plus vertex factor. Vertex factor is proportional to the contraction of spinor
modes with the operators defining the Noether charge or super charge - essentially Kähler-Dirac
gamma matrix and the representation of the action of the symplectic generator on fermion realizable
in terms of sigma matrices. This is very much like the corresponding expression in gauge theories
but with gauge algebra replaced with symplectic algebra. The possibility of contractions of creation
and annihilation operator for fermion lines associated with opposite wormfhole throats at the same
partonic 2-surface (for Noether charge bilinear in fermion field) gives bosonic exchanges as lines
in which the fermion lines turns in time direction: otherwise only regroupings of fermions would
take place. One obtains integration of the light-like 8-momenta of fermions in natural manner and
something resembling very strongly standard QFT. The integration interpreted as residue integral
should give only inverse of the propagator actin on on mass shell states with wrong helicity. Virtual
fermions would have wrong helicity unlikes incoming ones.

9.4.4 What One Should Obtain At QFT Limit?

After functional integration over WCW of one should obtain a scattering amplitude in which the
fermionic 2- vertices defined as discontinuities of the Kähler-Dirac operator at partonic 2-surfaces
should boil down to a contraction of an M8 vector with gamma matrices of M8. This vector has
dimension of mass. This basic parameter should characterize many different physical situations.
Consider only the description of massivation of elementary particles regarded as bound states
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of fundamental massless fermions and the mixing of left and right-handed fermions. Also CKM
mixing should involve this parameter. These vectors should also appear in Higgs couplings, which
in QFT description contain Higgs vacuum expectation as a factor.

In twistor approach virtual particles have complex light-like 8-momenta. Fundamental
fermions have most naturally real and light-like momenta. N = 4 SUSY describes gauge bosons
which correspond to bound states of fundamental fermions in TGD. This suggests that the four-
momenta of bound states of massless fermions - be they hadrons, leptons, or gauge bosons - can
be taken to be complex.

There is an intriguing connection with TGD based notion of space-time. In TGD one obtains
at space-time level complexified light-like 8-momenta since the 8-momentum from Minkowskian/Euclidian
region is real/imaginary. In the case of physical particle necessary involving two wormhole contacts
and two flux tubes connecting them the total complexifies four momentum would be sum of two
real and two imaginary contributions. Every elementary particle should have also imaginary part
in its 8-momentum and would be massless in complexified sense allowing mass in real sense given
by the length of the imaginary four-momentum. In twistor approach complex light-like momenta
indeed appear in BCFW bridge.

TGD predicts Higgs boson although Higgs expectation does not have any role in quantum
TGD proper. Higgs vacuum expectation is however a necessary part of QFT limit (Higgs decays
to WW pairs require that vacuum expectation is non-vanishing). Higgs vacuum expectation must
correspond in TGD framework to a quantity with dimensions of mass. In TGD Higgs cannot be
scalar but a vector in CP2 degrees of freedom. The problem is that CP2 does not allow covariantly
constant vectors. The imaginary part of classical four-momentum gives a parameter which has
interpretation as a vector in the tangent space of which is same as that of M4 × CP2. Could
M8 −H duality be realized at the level of tangent space and for relate four-momentum and color
quantum numbers to the E4 part of 8-momentum?

Elementary particles of course need not be eigenstates of the CP2 part of 8-momentum. For
a fixed mass one can have wave functions in the space of CP3 part of 8-momentum analogous to
S3 spherical harmonics at the sphere of E4 with radius defined by the length of imaginary four-
momentum (mass). These harmonics are characterized by SO(4) quantum numbers. Could one
interpret this complexification in terms ofM8-duality and say that SO(4) defines the symmetries for
the low energy dual of WCW defining high energy description of QCD based on SU(3) symmetry.
SO(4) would corresponds to the symmetry group assigned to hadrons in the approach based on
conserved vector currents and partially conserved axial currents. SO(4) would be much more
general and associated also with leptons.

The anomalous color hyper-charge of leptonic spinors would imply that one can have also in
the case of leptons a wave function in S3. Higher harmonics would correspond to color excitations of
leptons and quarks. If one considers gamma matrices, complexification ofM4 means introduction of
gamma matrix algebra of complexified M4 requiring 8 gamma matrices. This suggests a connection
with M8 − H duality. All elementary particles have also imaginary part of four-momentum and
the 8-momentum can be interpreted as M8-momentum combining the four-momentum and color
quantum numbers together.



Chapter 10

Does Riemann Zeta Code for
Generic Coupling Constant
Evolution?

10.1 Introduction

During years I have made several attempts to understand coupling evolution in TGD framework.

1. The first idea dates back to the discovery of WCW Kähler geometry defined by Kähler func-
tion defined by Kähler action (this happened around 1990) [K34]. The only free parameter
of the theory is Kähler coupling strength αK analogous to temperature parameter αK postu-
lated to be is analogous to critical temperature. Whether only single value or entire spectrum
of of values αK is possible, remained an open question.

About decade ago I realized that Kähler action is complex receiving a real contribution
from space-time regions of Euclidian signature of metric and imaginary contribution from
the Minkoswkian regions. Euclidian region would give Kähler function and Minkowskian
regions analog of QFT action of path integral approach defining also Morse function. Zero
energy ontology (ZEO) [K105] led to the interpretation of quantum TGD as complex square
root of thermodynamics so that the vacuum functional as exponent of Kähler action could
be identified as a complex square root of the ordinary partition function. Kähler function
would correspond to the real contribution Kähler action from Euclidian space-time regions.
This led to ask whether also Kähler coupling strength might be complex: in analogy with
the complexification of gauge coupling strength in theories allowing magnetic monopoles.
Complex αK could allow to explain CP breaking. I proposed that instanton term also
reducing to Chern-Simons term could be behind CP breaking

2. p-Adic mass calculations for 2 decades ago [K39] inspired the idea that length scale evolution
is discretized so that the real version of p-adic coupling constant would have discrete set of
values labelled by p-adic primes. The simple working hypothesis was that Kähler coupling
strength is renormalization group (RG) invariant and only the weak and color coupling
strengths depend on the p-adic length scale. The alternative ad hoc hypothesis considered was
that gravitational constant is RG invariant. I made several number theoretically motivated
ad hoc guesses about coupling constant evolution, in particular a guess for the formula for
gravitational coupling in terms of Kähler coupling strength, action for CP2 type vacuum
extremal, p-adic length scale as dimensional quantity [K3]. Needless to say these attempts
were premature and a hoc.

3. The vision about hierarchy of Planck constants heff = n × h and the connection heff =
hgr = GMm/v0, where v0 < c = 1 has dimensions of velocity [K106] forced to consider
very seriously the hypothesis that Kähler coupling strength has a spectrum of values in
one-one correspondence with p-adic length scales. A separate coupling constant evolution
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associated with heff induced by αK ∝ 1/~eff ∝ 1/n looks natural and was motivated by
the idea that Nature is theoretician friendly: when the situation becomes non-perturbative,
Mother Nature comes in rescue and an heff increasing phase transition makes the situation
perturbative again.

Quite recently the number theoretic interpretation of coupling constant evolution [K111] [L15]
in terms of a hierarchy of algebraic extensions of rational numbers inducing those of p-adic
number fields encouraged to think that 1/αK has spectrum labelled by primes and values
of heff . Two coupling constant evolutions suggest themselves: they could be assigned to
length scales and angles which are in p-adic sectors necessarily discretized and describable
using only algebraic extensions involve roots of unity replacing angles with discrete phases.

4. Few years ago the relationship of TGD and GRT was finally understood [K79]. GRT space-
time is obtained as an approximation as the sheets of the many-sheeted space-time of TGD
are replaced with single region of space-time. The gravitational and gauge potential of sheets
add together so that linear superposition corresponds to set theoretic union geometrically.
This forced to consider the possibility that gauge coupling evolution takes place only at the
level of the QFT approximation and αK has only single value. This is nice but if true, one
does not have much to say about the evolution of gauge coupling strengths.

5. The analogy of Riemann zeta function with the partition function of complex square root of
thermodynamics suggests that the zeros of zeta have interpretation as inverses of complex
temperatures s = 1/β. Also 1/αK is analogous to temperature. This led to a radical idea to
be discussed in detail in the sequel.

Could the spectrum of 1/αK reduce to that for the zeros of Riemann zeta or - more plausibly
- to the spectrum of poles of fermionic zeta ζF (ks) = ζ(ks)/ζ(2ks) giving for k = 1/2 poles
as zeros of zeta and as point s = 2? ζF is motivated by the fact that fermions are the
only fundamental particles in TGD and by the fact that poles of the partition function are
naturally associated with quantum criticality whereas the vanishing of ζ and varying sign
allow no natural physical interpretation.

The poles of ζF (s/2) define the spectrum of 1/αK and correspond to zeros of ζ(s) and to the
pole of ζ(s/2) at s = 2. The trivial poles for s = 2n, n = 1, 2, .. correspond naturally to the
values of 1/αK for different values of heff = n×h with n even integer. Complex poles would
correspond to ordinary QFT coupling constant evolution. The zeros of zeta in increasing
order would correspond to p-adic primes in increasing order and UV limit to smallest value
of poles at critical line. One can distinguish the pole s = 2 as extreme UV limit at which
QFT approximation fails totally. CP2 length scale indeed corresponds to GUT scale.

6. One can test this hypothesis. 1/αKcorresponds to the electroweak U(1) coupling strength
so that the identification 1/αK = 1/αU(1) makes sense. One also knows a lot about the
evolutions of 1/αU(1) and of electromagnetic coupling strength 1/αem = 1/[cos2(θW )αU(1).
What does this predict?

It turns out that at p-adic length scale k = 131 (p ' 2k by p-adic length scale hypothesis,
which now can be understood number theoretically [K111]) fine structure constant is pre-
dicted with .7 per cent accuracy if Weinberg angle is assumed to have its value at atomic
scale! It is difficult to believe that this could be a mere accident because also the prediction
evolution of αU(1) is correct qualitatively. Note however that for k = 127 labelling electron
one can reproduce fine structure constant with Weinberg angle deviating about 10 per cent
from the measured value of Weinberg angle. Both models will be considered.

7. What about the evolution of weak, color and gravitational coupling strengths? Quantum
criticality suggests that the evolution of these couplings strengths is universal and indepen-
dent of the details of the dynamics. Since one must be able to compare various evolutions
and combine them together, the only possibility seems to be that the spectra of gauge cou-
pling strengths are given by the poles of ζF (w) but with argument w = w(s) obtained by
a global conformal transformation of upper half plane - that is Möbius transformation (see
https://en.wikipedia.org/wiki/Mbius_transformation) with real coefficients (element
of GL(2, R)) so that one as ζF ((as+b)/(cs+d)). Rather general arguments force it to be and

https://en.wikipedia.org/wiki/ Möbius_transformation
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element of GL(2, Q), GL(2, Z) or maybe even SL(2, Z) (ad − bc = 1) satisfying additional
constraints. Since TGD predicts several scaled variants of weak and color interactions, these
copies could be perhaps parameterized by some elements of SL(2, Z) and by a scaling factor
K.

Could one understand the general qualitative features of color and weak coupling contant
evolutions from the properties of corresponding Möbius transformation? At the critical line
there can be no poles or zeros but could asymptotic freedom be assigned with a pole of cs+d
and color confinement with the zero of as+ b at real axes? Pole makes sense only if Kähler
action for the preferred extremal vanishes. Vanishing can occur and does so for massless
extremals characterizing conformally invariant phase. For zero of as + b vacuum function
would be equal to one unless Kähler action is allowed to be infinite: does this make sense?.
One can however hope that the values of parameters allow to distinguish between weak and
color interactions. It is certainly possible to get an idea about the values of the parameters of
the transformation and one ends up with a general model predicting the entire electroweak
coupling constant evolution successfully.

To sum up, the big idea is the identification of the spectra of coupling constant strengths
as poles of ζF ((as + b/)(cs + d)) identified as a complex square root of partition function with
motivation coming from ZEO, quantum criticality, and super-conformal symmetry; the discretiza-
tion of the RG flow made possible by the p-adic length scale hypothesis p ' kk, k prime; and the
assignment of complex zeros of ζ with p-adic primes in increasing order. These assumptions reduce
the coupling constant evolution to four real rational or integer valued parameters (a, b, c, d). In the
sequel this vision is discussed in more detail.

10.2 Fermionic Zeta As Partition Function And Quantum
Criticality

Riemann zeta has formal interpretation as a partition function ζ = ZB =
∏

1/(1− ps) for a gas of
bosons with energies coming as integer multiples of log(p), for given mode labelled by prime p. I
have proposed different interpretation based on the fermionic zeta ζF based on its representation
as a product

ζF =
∏
p

(1 + ps)

of single fermion partition functions associated with fermions with energy log(p) (by Fermi statistics
the fermion number is 0 or 1). In this framework the poles (not zeros!) of the fermionic zeta
ζF (ks) = ζ(ks)/ζ(2ks) (the value of k turns out to be k = 1/2) (this identity is trivial to deduce)
correspond to s/2, where s is either trivial or non-trivial zero of zeta (denominator), or the pole
of zeta at s = 1 (numerator). Trivial poles are negative integers s = −1 − 2,−3... suggesting an
interpretation as conformal weights. This interpretation is proposed also for the nontrivial poles.

ζF emerges naturally in TGD, where the only fundamental (to be distinguished from ele-
mentary) particles are fermions. The assignment of physics to poles rather than zeros of ζF is also
natural. The interpretation inspired by the structure of super-symplectic algebra is as conformal
weights associated with the representations of extended super-conformal symmetry associated with
super-symplectic algebra defining symmetries of TGD at the level of “World of Classical Worlds”
(WCW).

“Conformal confinement” states that the sum of conformal weights of particles in given
state is real. I discovered the idea for decade ago but gave it up to end up with it again. The
fractal structure of superconformal algebra conforms with quantum criticality: infinite hierarchy
of symmetry breakings to sub-symmetry isomorphic to original one! The conformal structure is
infinitely richer than the ordinary one since the algebra in question has infinite number of generating
elements labelled by all zeros of zeta rather than a handful of conformal weights (n = −2, ...+2 for
Virasoro algebra). Kind of Mandelbrot fractal is in question. There is however deviation from the
ordinary conformal symmetry since real conformal weights can have only one sign (for generating
elements all negative conformal weights n = −1,−2,−. are realized as poles of 1/ζ(2s) but n = 1
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realized as pole of ζ(s) is the only positive conformal weight). Situation is therefore not quite
identical with that in conformal field theories although also conformal field theories realizes only
positive conformal weights (positivity is a convention) and have also some tachyonic conformal
weights which are negative.

The problem of all attempts to interpret zeros of zeta relates to the fact that zeros are not
purely imaginary but possess the troublesome real part Re(s) = 1/2. This led me to consider
coherent states instead of eigenstates of Hamiltonian in my proposal, which I christened a strategy
for proving Riemann hypothesis [K64], [L1]. Zeta has phase at the critical line so the interpretation
as a partition function can be only formal. So called Z function defined at critical line and obtained
by extracting the phase of zeta out, is real at critical line.

In TGD framework the solution of these problems is provided by zero energy ontology (ZEO).
Quantum theory is “complex square root” of thermodynamics and means that partition function
becomes a complex entity having also a phase. The well-known function

ξ(s) =
1

2
π−s/2s(s− 1)Γ(s/2)(ζ(s)

assignable to Riemann zeta having same zeros and basic symmetries has at critical line phase equal
±1 except at zeros where the phase can be defined only as a limit depending the direction from
which the zero is approached. Fermionic partion function ζF (s) has a complex phase and it is not
clear whether it makes sense to assign with it the analog of ξ(s). Ordinary partition function is
modulus squared for the generalized partition function.

Why does the partition function interpretation does demand poles?

1. In ordinary thermodynamics the vanishing of partition function makes sense only at the limit
of zero temperature when all Boltzmann weights approach to zero. By subtracting the energy
of the lowest energy state from the energies the partition function becomes non-vanishing also
in this case. Hence the idea that partition function vanishes does not look very attractive.
The varying sign is even worse problem.

2. Since the temperature interpreted as 1/s in the partition function is not infinite could mean
that one has analog of Hagedorn temperature (see http://tinyurl.com/pvkbrum): the de-
generacy of states increases exponentially with temperature and at Hagedorn temperature
compensates the s exponential decreases of Boltzmann weights so that partition function
is sum of infinite number of terms approaching to unity. Hagedorn temperature relates by
strong form of holography to magnetic flux tubes behaving as strings with infinite number
of degrees of freedom. One would have quantum critical system possessing supersymplectic
symmetry and other superconformal symmetries predicted by TGD [K15, K14, K76].

3. The temperature is complex for non-trivial zeros. This requires a generalization of thermo-
dynamics by making partition function complex. Modulus squared of this function takes
the role of an ordinary partition function. One can allow in the case of Kähler action the
replacement of argument s with ks+ b without giving up the basic features of U(1) coupling
constant evolution. Here one can allow rational numbers k and b. The inverse temperature
for ζF (ks+ b) is identified as β = 1/T = k(s+ b). It turns out that in the model for coupling
constant evolution the scaling factor k = 1/2 is required. b is not completely fixed.

Complex temperature is indeed the natural quantity to consider in ZEO. The real part
of temperature at critical line equals to Re(β) = (s + b)/4k, with b rational or integer for
ζF (w = k(s+b)) at poles assignable with the zeros of ζ(2k(s+b)) in denominator. Imaginary
part

Im [β] =
1

T
=

1

2k
(b+ frac12 + iy) (10.2.1)

of the inverse temperature does not depend on b. Infinite number of critical temperatures
is predicted and a discrete coupling constant evolution takes place already at the level of
basic quantum TGD rather than emerging only at the QFT limit - I have also considered the

http://tinyurl.com/pvkbrum
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possibility that coupling constant evolution emerges at the QFT limit only [K3]. One could
even allow Möbius transformation with real coefficients in the argument of ζF and that this
could allow the understanding of the evolutions of weak and colour coupling constants.

ζF (w) at s = −(n − b)/k are also present. For s = 1/T they would correspond to negative
temperatures β = (−n+ b)/k? In the real context and for Hamiltonian with a fixed sign this
looks weird. Preferred extremals can be however dominated by either electric or magnetic
fields and the sign of the action density depends on this.

4. Interestingly, in p-adic thermodynamics p-adic temperatures has just the values T = −1/n
if one defines p-adic Boltzmann weight as exp(−E/T )→ p−E/T , with E = n ≥ 0 conformal
weight. The condition that weight approaches zero requires that T identified in this is as
real integer negative for p-adic thermodynamics! Trivial poles would correspond to p-adic
thermodynamics and non-trivial poles to ordinary real thermodynamics! Note that the earlier
convention is that T = 1/n is positive: the change of the sign is just a convention. Could the
hierarchy of p-adic thermodynamics labelled by p-adic primes corresponds to the sequence
of critical zeros of zeta? Number theoretic vision indeed leads to this proposal [L15], [K111].

The factor 1/(1 − pn) at the real poles s = −2n would exist p-adically in p-adic number
field Qp so that the factors of zeta would correspond to adelic decomposition of the partition
function. At critical line in turn 1/1 + p1/2+iy would exist for zeros y for which piy is root
of unity (note that p1/2 is somewhat problematic for Qp: does it make sense to speak about
an extension of Qp containing sqrtp or is the extension just the same p-adic number field
but with different definition of norm?). That piy is root of unity for some set C(p) of zeros
y associated with p was proposed in [L15], [K111]. Now C(p) would consist of single zero
y = y(p).

10.2.1 Could The Spectrum Of Kähler Couplings Strength Correspond
To Poles Of ζF (s/2)?

The idea that the spectrum of conformal weights for supersymplectic algebra is given by the poles
of ζF is not new [L15].

Poles of ζF (ks) (k = /2 turns out to be the correct choice) have also interpretation as
complexified temperatures. Kähler action can be interpreted as a complexified partition function
and the inverse 1/αK of Kähler coupling appears in the role of critical inverse temperature β.
The original hypothesis was that Kähler coupling strength has only single value. The hierarchy of
quantum criticalities and its assignment with number theoretical hierarchy of algebraic extensions
of rationals led to consider the possibility that Kähler coupling strength has a spectrum corre-
sponding to a hierarchy of critical temperatures. Quantum criticality and Hagedorn temperature
for magnetic flux tubes as string like objects are indeed key elements of TGD.

The hypothesis to be studied is that the values 1/αK correspond to poles of

ζF (ks) = ζ(ks)/ζ(2ks)

with the identification 1/αK = ks. The model for coupling constant evolution however favors
k = 1/2 predicting that poles correspond to zeros of zeta in the denominator of ζF and s = 2
in its numerator. For k = 1/2 only even negative integers would appear in the spectrum and
there would be pole at s = 2. Here one onr also allow the sift ks → ks + b, b integer without
shifting the imaginary parts of poles crucial for the coupling constant evolution. This induces a
shift Re[s]→ kRe[s] + b for the real parts of poles.

For nontrivial poles this requires the replacement of temperature with a complex temper-
ature. Therefore also 1/αK becomes complex. This is just what the ZEO inspired idea about
quantum theory as complex square root of thermodynamics suggests. Kähler action is also com-
plex already for real values of 1/αK since Euclidian resp. Minkowskian regions give real/imaginary
contribution to the Kähler action.

The poles of ζF would appear both as spectrum of complex critical temperatures β = 1/T =
1/αK and as spectrum of supersymplectic conformal weights. ζF is complex along the critical line
containing the complex poles. This makes sense only in ZEO. ξ function associated with ζ is real
at critical line but the problems are vanishing at finite temperature, indefinite sign, and also the
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fact that partition function interpretation fails at positive real axis. This does not conform with
the intuitive picture about partition function defined in terms of Boltzmann weights.

10.2.2 The Identification Of 1/αK As Inverse Temperature Identified As
Pole Of ζF

Let us list the general assumptions of the model based on the identification of 1/αK as a complex-
ified inverse temperature in turn identified as zero of ζF .

1. I have earlier considered the number theoretical vision based on the assumption that vacuum
functional identified as exponent of Kähler action receiving real/imaginary contributions from
Euclidian/Minkowskian space-time regions exists simultaneously in all number fields. This
is in spirit with the idea of integrability meaning that functional integral reduces to a sum
over exponents of Kähler action associated with stationary points. What is nice that by
the Kähler property of WCW metric Gaussian and metric determinants cancel [K34, K111]
and one indeed obtains a discrete sum over exponentials making sense also in p-adic sectors,
where ordinary integration does not make sense. Number theoretic universality is realized if
one allows the extension of rationals containing also some roots of e if the exponent reduces to
a product of root of unity and product of rational powers of e (ep is ordinary p-adic number)
and integer powers of primes p. It is perhaps needless to emphasize the importance of this
result.

The criticism is obvious: how does one know, which preferred extremals have a number
theoretically universal action exponent? For calculational purposes it might not be necessary
to know this. The easy option would be that all preferred extremals are number theoretically
universal: this cannot be however the case if the values of 1/αK correspond to zeros of ζ.
Second option is that in the sum over preferred extremals those which do not have a number
theoretically universal exponent give a vanishing net contribution and are effectively absent.
The situation brings in mind the reduction of momentum spectrum of a particle in a box to
momenta equal to k = n2π/L, L the length of the box. The contributions of other plane
waves in integrals vanish since they are dropped away by boundary conditions.

Strong form of number theoretic universality requires that the exponent of Kähler action
reduces to a product of rational power of some prime p or em/n and a root of unity [K111],
[L15]. This might be too strong a condition and weaker condition allows also powers of p
mapped to real sector and vice versa by canonical identification. One could pose root of unity
condition for the phase of exp(SK) as a boundary condition at the ends of causal diamond
(CD) stating that some integer power of the exponent of Kähler action for the given value of
αK is real. If exp(K) contains em/n factor but no pn factors, the reality of the nth power of
exp(iπK) would reveal this. Single pn factor in absence of em/n factor could be detected by
requiring that the exponent exp(iyK) is real for some y (imaginary part of zero of zeta with
piy a root of unity).

2. The assumption that 1/αK corresponds to a nontrivial zero of zeta has strong constraints on
the values of the reduced Kähler action SK,red = αKSK for which the classical field equations
do not depend on αK at all. The reason is that the SK must be proposal to 1/αK to achieve
number theoretical universality. Number theoretical universality thus implies that preferred
extremals depend on 1/αK - this is something very quantal. The proportionality 1/αK to
heff = n × h is highly suggestive. It does not destroy number theoretical universality for
given preferred extremal.

3. 1/αK has form 1/αK = s = a+ib = (1/2k)(1/2+iy/2) for nontrivial poles, 1/αK = s = −n/k
for trivial poles of 1/ζ(2s), and 1/αK = s = 1/k for the pole of ζ. k = 1/2 is the physically
preferred choice.

Kähler action can be written as a sum of Euclidian and Minkowskian contributions: K =
KE + iKM . For non-trivial poles in the case of 1/αK = ks one has

K = s× (KE + iKM ) =
1

k
×
[
KE

2
− yKM + i(

KM

2
+ yKE)

]
. (10.2.2)
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Here Kred = KE+iKM is reduced Kähler action. This option generalizes directly the original
proposal.

4. For trivial poles s = −n/k and s = 1/k one has

K =
s

k
×Kred =

s

k
× (KE + iKM ) . (10.2.3)

5. For real poles universality holds true without additional conditions since the multiplication
of 1/αK by the scaling factor −n2/n1 does not spoil number theoretical universality. One
can of course consider this condition. It predicts that the Kred is scaled by n1/n2 in the
transition n2 → n1. For nontrivial poles Kred is scaled by the complex ratio s2/s1.

An attractive possibility is that the hierarchy of Planck constants corresponds to this RG
evolution. n would correspond to the number of sheets in the n-sheeted covering for which
sheets co-incide at the ends of space-time at the boundaries of CD. Therefore p-adic and
heff = n×h hierarchies would find a natural interpretation in terms of zeros of ζF . To avoid
confusion let us make clear that the values of n = heff/h would not correspond to trivial
poles.

Number theoretical universality could be realized in terms of RG invariance leaving the vac-
uum functional invariant but deforming the vacuum extremal. The hierarchy of Planck constants
and p-adic length scale hierarchy could be interpreted as RG flows along real axis and critical line.

1. The grouping of poles to 4 RG orbits corresponding to non-trivial poles y > 0 and y < 0, to
poles s = −n/k < 0, and s = 1/k looks natural. The differential equations for RG evolution
of Kähler action would be replaced with a difference equation relating the values of Kähler
action for two subsequent critical poles of ζF .

2. Number theoretical universality allows to relate Minkowskian and Euclidian contributions
KM and KE to each other. Earlier I have not even tried to deduce any correlation between
them although the boundary conditions at light-like wormhole throats at which the signature
of the induced metric changes, probably give strong constraints.

The strongest form of the number theoretical universality condition assumes

Kred = Kred,E + iKred,M = αKK1 =
K1

s
= K(αK = 1) , s =

1

αK
. (10.2.4)

K1 satisfies the number theoretic universality meaning that exp(K1) = expK(αK = 1)
reduces to a product of powers primes, root of e and root of unity.

This ansatz has the very remarkable property that αK disappears from the vacuum functional
completely so that the RG action can be regarded as a symmetry leaving vacuum function
invariant. This operation however changes the preferred extremal and reduced Kähler action
so that the situation is non-classical. RG orbit would start from the pole s = 1 and contain
complex poles.

3. The large CP breaking suggested by complexity of αK would disappear at the level of vacuum
functional and appears only at the level of preferred extremals. If this is to conform with
the quantum classical correspondence, correlation functions, which must break CP symmetry
receive this breaking from preferred extremals. s = 1/2k and complex poles belong to the
same orbit. This ansatz is not necessary for poles s = 1/k and s = −n/k for which number
theoretic universality conditions are satisfied irrespective of the value of s.
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4. A more realistic looking solution is obtained by assuming that complex poles correspond to
separate orbit or even that positive and negative values of y correspond to separate orbits.
RG flow would begin from the lowest zero of zeta at either side of real axis. This gives

Kred =
αK
αK,0

×Kred(αK,0) . (10.2.5)

Also now the vacuum functional is invariant and preferred extremal changes in RG evolu-
tion. In accordance with quantum classical correspondence one has however a breaking of
CP symmetry also at the level of vacuum functional due to the complexity of αK,0 unless
Kred(αK,0) is proportional to αK,0.

Remark: The above arguments must be modified if one includes to the action cosmological
volume term strongly suggested by twistor lift of TGD.

10.3 About Coupling Constant Evolution

p-Adic mass calculations inspired the hypothesis that the continuous coupling constant evolution
in QFTs reduces in TGD framework to a discrete p-adic coupling constant evolution but assuming
that αK is absolute RG invariant. Therefore the hypothesis that the evolution of 1/αK defined by
the non-trivial poles of ζF corresponds to the p-adic coupling constant evolution deserves a serious
consideration.

1. p-Adic length scale hypothesis in the strong form states that primes p ' 2k, k prime, cor-
respond to physically preferred p-adic length scales. This would suggest that non-trivial
zeros s1, s2, s3, .. taken in increasing order for magnitude correspond to primes k = 2, 3, 5, 7...
as suggested also in [L15], [K111]. This allows to assign to each zero sn a unique prime:
p ↔ y(p) and this suggests more precise of the earlier hypothesis to state that piy(p) is root
of unity. The class of zeros associated with p would contain single zero.

Discrete p-adic length scale evolution would thus correspond to the evolution of non-trivial
zeros. The evolution associated with the hierarchy of Planck constants could only multiple
Kähler action with integer. To make this more concrete one must consider detailed physical
interpretation.

2. 1/αK corresponds to U(1) coupling of standard model: αK = α(U(1)) ≡ 1/α1. Kähler action
could be seen as analogous to a Hamiltonian associated with electroweak U(1) symmetry.
U(1) gauge theory is not asymptotically free and this correspond to the fact that Im(1/αK) =
y approaches in UV to the lowest zero y = 14.12... In IR y diverges, which conforms with
U(1) gauge theory symmetry.

Electromagnetic coupling corresponds to

1

αem
=

1

αKcos2(θW )
. (10.3.1)

The challenge is to understand also the evolution of cos2(θW ) allowing in turn to understand
the entire electroweak evolution.

3. The values of electroweak couplings at the length scale of electron (k = 127 or at 4 times
longer length scale k = 131 (L(131) = .1 Angstrom) are well-known and this provides a killer
test for the model. Depending on whether one assumes fine structure constant to correspond
to L(127) associated with electron or to 4 times long length scale L(131) one has too options.
L(131) allows to reproduce fine structure constant with a value of p = sin2(θW ) deviating
only .7 per cent from its measured value in this length scale! If this is not a mere nasty
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accident, Riemann zeta might code the entire electroweak physics and perhaps even strong
interactions!

The first guess is that UV asymptotia for the Weinberg angle is same as for GUTS: p→ 3/8
for p = 2 giving 1/αem → 22.61556016. IR asymptotia corresponds to p → 0 implying
1/αem = 1/αK . Notice that the evolution is rather fast in extreme UV. In extreme IR it
becomes slow. It turns out that the UV behavior of Weinberg angle does not conform with
this naive expectation.

4. Since p-adic length scale is proportional to 1/p1/2 it is enough to obtain RG evolution for cou-
pling constnt as function of p. One obtains reasonably accurate understanding about the evo-
lution by deducing an estimate for pdy/dp . This is obtained as pdy/dp = (dy/dN)(dN/dk)p(dk/dp).

• p ' 2k implies k ' log(p)/log(2) and pdk/dp ' 1/log(2).

• The approximate formula for the number N(y) of zeros smaller than y is given by

N(y) ∼ u× log(u) , u =
y

2π

giving

dN

dy
∼ 1

2π
× (log(u)− 1), u =

y

2π
.

• The number π(k) of primes smaller than k is given by

N(k) ∼ k

log(k)

giving

dN(y)

dk
∼ 1

log(k)
− 1

log(k)2
.

By combining the formulas, one obtains

p
dy

dp
= β =

2π

log(2)
× (

1

log(y/2π)
− 1)× (

1

log(k)
− 1

log(k)2
) , k =

log(p)

log(2)
.

(10.3.2)

The beta function for the evolution as function of p-adic length scale differs by factor 2 from
this one. Note that also double logarithms appear in the formula. Note that beta function
depends on y logarithmically making the equation rather nonlinear. This dependence can be
shifted to the left hand side and by replacing y which appropriation chosen function of it one
obtains

p
dN(y)

dp
= β1 =

1

log(k)
− 1

log(k)2
, k =

log(p)

log(2)
.

(10.3.3)

5. Coupling constant evolution would take place at the level of single space-time sheet. Obser-
vations involve averaging over space-time sheet sizes characterized by p-adic length scales so
that a direct comparison with experimental facts is not quite easy and requires a concrete
statistical model.

The entire electroweak U(1) coupling constant evolution would be predicted exactly from
number theory. Physics would represent mathematics rather than vice versa. Concerning experi-
mental testing a couple of remarks are in order.
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1. An open question is how much many-sheetedness of space-time affects situation: one expects
kind of statistical average of say Weinberg angles over p-adic length scales coming from a
superposition over space-time sheets of many-sheeted space-time. Space-time with single
sheet is not easy to construct experimentally although mathematically it is extremely simple
system as compared to the space-time of GRT.

2. The discreteness of the coupling constant evolution at fundamental level is one testable
prediction. There is no continuous flow but sequence of phases with fixed point behavior
with discrete phase transitions between them. At QFT limit one expects that continuous
coupling constant evolution emerges is statistical average.

3. Later it will be found that the entire electroweak evolution can be predicted and this predic-
tion is certainly testable.

10.3.1 General Description Of Coupling Strengths In Terms Of Complex
Square Root Of Thermodynamics

The above picture is unsatisfactory in the sense that it says nothing about the evolution of other
electroweak couplings and of color coupling strength. Does number theory fix also them rather
than only U(1) coupling? And what about color coupling strength αs?

Here quantum TGD as a complex square root of thermodynamics vision helps.

1. Kähler action reduces for preferred extremals to Abelian Chern-Simons action localized at
the ends of space-time surfaces at boundaries of causal diamond (CD) and possibly contains
terms also at light-like orbits of partonic 2-surfaces. This corresponds to almost topological
QFT property of TGD.

2. Kähler action contains additional boundary terms which serve as analogs for Lagrangian
multipler terms fixing the numbers of various particles in thermodynamics. Now they fix the
values of isometry charges for instance, or force the symplectic charges for a sub-algebra to
vanish.

Lagrangian multiplies can be written in the form µi/T in ordinary thermodynamics: µi de-
notes the chemical potentials assignable to particle of type i. Number theoretical universality
strongly favors similar representation now. For instance, this would give

1

αem
=
µem
αK

, µem =
1

cos2(θW )
. (10.3.4)

In the same manner SU(2) coupling strength given by

1

αW
=
µW
αK

=
cot2(θW )

αK
(10.3.5)

would define cot2(θW ) as analog of chemical potential.

3. In the case of weak interactions Chern-Simons term for induced SU(2) gauge potentials as
a boundary term would be the analog of Kähler action having interpretation as Lagrangian
multiplier term. In color degrees of freedom also an analog of Chern-Simons term would
be in question and would be associated with the classical color gauge field defined by HAJ ,
where HA is Hamiltonian of color isometry in CP2 and J is induced Kähler form.

4. The conditions for number theoretical universality would become more complex as also RG
invariance interpreted in terms of number theoretical universality.

This picture assuming a linear relationship between generic coupling strength α and αK in
terms of chemical potential is not yet general enough.
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10.3.2 Does ζF With GL(2, Q) Transformed Argument Dictate The Evo-
lution Of Other Couplings?

It seems that one cannot avoid dynamics totally. The dynamics at (quantum) criticality is however
universal. This raises the hope that the evolution of coupling constant is universal and does not
depend on the details of the dynamics at all. This could also explain the marvellous successes of
QED and standard model

At criticality the dynamics reduces to conformal invariance by quantum criticality, and
this inspires the idea about the values of coupling constant strength as poles of a meromorphic
function obtained from ζF by a conformal transformation of the argument. After all, what one
must understand is the relationship between 1/αW and 1/αK , and the linear relationship between
them can be seen as a simplifying assumption and an approximation.

The values of generic coupling strength - call it just α (to be not confused with αem) without
specifying the interaction - would still correspond to poles of ζF (s) but with a transformed argument
s. Conformal transformation would relate various coupling constant evolutions to each other and
allow to combine them together in a unique manner. Discreteness is of course absolutely essential.
The analysis of the situation leads to a surprisingly simple picture about the coupling constant
evolutions for weak and color coupling strengths.

1. By the symmetry of ζF under the reflection with respect to x-axis one can restrict the consid-
eration to globally defined conformal transformations of the upper half plane identifiable as
Möbius tranformations w = (as+ b)/(cs+d) with the real matrix coefficients (a, b, c, d). One
can express the transformation as a product of an overall scaling by factor k and GL(2, R)
transformation with ad − bc = 1. Number theoretical universality demands that k and the
coefficients a, b, c, d of GL(2, R) matrix are real rationals. Number theoretically GL(2, Q) is
attractive and one can consider also the possibility that the transformation matrix GL(2, Z)
matrix with a, b, c, d integers. SL(2, Z) is probably too restrictive option.

2. The Möbius transformation w = (as + b)/(cs + d) acts on zeros of ζ mapping the discrete
coupling constant evolution for 1/αK to that for 1/αW or 1/αs. The transformed coupling
constant depends logarithmically on p-adic length scale via 1/αK supporting the interpre-
tation in terms of RG flow induced by that for 1/αK - something very natural since Kähler
action is in special role in TGD framework since it determines the dynamics of preferred
extremals.

3. Asymptotically (long length scales) one has w → a/c for a 6= 0 so that both at critical line
and real axis one has accumulation of critical points to w = a/c! Thus for the option allowing
only very large value of coupling strength in IR one has

w = K × as+ b

cs+ d
, ad− bc = 1 (Option 1) . (10.3.6)

a/c = 0 (a = 0) corresponds to a diverging coupling strength (for color interactions and
for weak interactions for vanishing Weinberg angle) and corresponds to w = K × b/cs + d.
ad− bc = 1 gives b = −c = 1 and if one accepts the IR divergence of coupling constant, one
has

w =
K

−s+ d
(Option 2) . (10.3.7)

The only free parameters are the rational K > 0 and integer d. w has pole at s = d mapped
to 1 by ζF .

To gain physical insight consider the situation at real axes.
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1. The real poles s = −n/k and s = 1/k are mapped to poles on real axes and the reflection
symmetry with respect to x-axis is respected. Negative poles would be thus mapped to
negative poles for d ∈ 0, 1 and k < 0. One could also require that the pole s = 1 is mapped
to positive pole. For option 2 it is mapped to w = +∞.

2. For option 1 this is true if one has cs + d < 0 and as + b > 0. The other manner to satisfy
the conditions is cs + d > 0 and as + b < 0 for s = −1,−2, .... By replacing the (a, b, c, d)
with (−a,−b,−c,−d) these conditions can be transformed to each other so that it is enough
to consider the first conditions. The first form of the condition requires c > 0 and a < 0.

The condition that s = 1/k goes to a positive pole gives c/k + d > 0 and a/k + b > 0.
Altogether this gives for the two Options the conditions

w = K × as+ b

cs+ d
< 0 ,

k > 0 , a < 0 , c > 0 ,
c

k
+ d > 0 ,

a

k
+ b > 0 . (Option 1) ,

(10.3.8)

and

w =
K

−s+ 1
k

< 0 , k > 0 . (Option 2)

(10.3.9)

3. For option 2 s = 1/k phase is mapped to w = +∞. Coupling strength vanishes in this phase:
this brings in mind the asymptotic freedom for QCD realized at extreme UV? In long scales
α would behave like 1/αK and diverge suggesting that Option 2 provides at least an idealized
description of QCD. The scaling parameter K would remain the only free parameter.

For option 1 α can become arbitrary large in long scales but remains finite. The analog
of asymptotically free phase is replaced with that having non-vanishing inverse coupling
strength w = (a+ b)/(c+d). The interpretation could be in terms of weak coupling constant
evolution. The non-vanishing of the parameter a would distinguish between weak and strong
coupling constant evolution.

By feeding in information about the evolution of weak and color coupling strengths, one can
deduce information about the values of K and a.

Whether the analogs of weak and Chern-Simons actions can satisfy the number theoretical
universality, when the transformation is non-linear is far from obvious since the induced gauge
fields are not independent.

10.3.3 Questions About Coupling Constant Evolution

The simplest hypothesis conforming with the general form of Yang-Mills action is 1/αK = s,
where s is zero of zeta. With the identification 1/αK = 1/αU(1) this predicts the evolution of
U(1) coupling and one obtains excellent prediction in p-adic length scale k = 131 (L(131 ' 10−11

meters).

How general is the formula for 1/αK?

Is the simplest linear form for 1/αK general enough? Consider first the most general form of 2π/αK
taking as input the fact that its imaginary is equal to 1/αU(1) and corresponds to imaginary part
y of zero of zeta at critical line.
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Linear Möbius transformations w = (as+ b)/d with real coefficients do not affect Im[s] and
therfore the inverse of the imaginary part of the Kähler coupling strength which corresponds to th
inverse of the measured U(1) coupling strength. The general formula for complex Kähler coupling
strength would be

w = s+
b

d
(10.3.10)

in the case of SL(2, Q) giving Re[1/αK ] = 1/2 + b/d. This would correspond to the analog of the
inverse temperature appearing in the real exponent of Kähler function. For SL(2, Z) on obtains

w = s+ b , b ∈ Z . (10.3.11)

This gives Re[1/αK ] = 1/2 + b.

Does the reduction to Chern-Simons term give constraints

The coefficient of non-Abelian Chern-Simons action is quantized to integer and one can wonder
whether this has any implications in TGD framework.

1. The Minkowskian term in Kähler action reduces to Abelian Chern-Simons term for Kähler
action. In non-Abelian case the coefficient of Chern-Simons action (see http://tinyurl.

com/y7nfaj67) is k1/4π, where k1 is integer.

In Abelian case the triviality of gauge transformations does not give any condition on the
phase factor so that in principle no conditions are obtained. One can however look what
this condition gives. The coefficient of Chern-Simons term coming from in Kähler action
is 1/(8παK). For non-Abelian Chern-Simons theory with n fermions one obtains action
k → k − n/2. Depending on gauge group k1 can vanish modulo 2 or 4. For the zeros at the
real axes this would give the condition

s

2
= s+

b

d
= Re[

1

αK
] = 2k1 , s = −2n < 0 or s = 2 , (10.3.12)

which is identically satisfied for integer valued b/d. Thus it seems that SL(2, Z) is forced by
the Chern-Simons argument in the case of Kähler action, which is however not too convincing
for U(1).

For non-trivial zeros it is not at all clear whether one certainly cannot apply the condition
since there is also a contribution ySE to the imaginary part. In any case, the condition would
be

Re[s]

2
= 1/2 +

b

d
= Re[

1

αK
] = 2k1 . (10.3.13)

b/d must be half odd integer to satisfy the condition so that one would have SL(2, Z) instead
of SL(2, Q). This is however in conflict with the Chern-Simons condition at real axis.

2. w = s + b/d implies that the trivial poles s = −2n, n > 0, at the real axes are shifted to
s = −2n+ b/d and become fractional. The poles at s = 2 is shifted to 2 + b/d.

In the non-Abelian case one expects also Chern-Simons term but now emerging as an analog
of Lagrange multiplier term rather than fundamental action reducing to Chern-Simons term. For
w = (as+ b)(cs+d) the poles at real axis are mapped to rational numbers w = (am+ b)/(cm+d),
m = −2n or m = 2. Chern-Simons action would suggest integers. Gauge transformations would
transform the action by a phase which is a root of unity. Vacuum functional is ZEO an analog
of wave function as a square root of action exponential. Can one allow the wave function to be a
finitely-many valued section in bundle?

http://tinyurl.com/y7nfaj67
http://tinyurl.com/y7nfaj67
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Does the evolution along real axis corresponds to a confining or topological phase?

At real axis the imaginary part of s vanishes. Since it corresponds to the inverse of the gauge
coupling strength, one can ask whether the proper interpretation is in terms of confining phase
in which gauge coupling is literally infinite and it does not make sense to speak of perturbation
theory. Instead one would have a phase in which Minkowski part of the Kähler action contributes
only to the imaginary Chern-Simons term but not to the real part of the action. Topological QFT
also based on Chern-Simons action also suggests itself.

The vanishing of gauge coupling strength is not a catastrophe now since the real part is
non-vanishing. What looks strange that this phase is obtained also for Kähler coupling strength.
Could this interpreted in terms of the fact that induced gauge potentials are not independent
dynamical degrees of freedom but expressible in terms of CP2 coordinates.

The spectrum of 1/αK at real axis has the −2n + b
d and 2 + b

d and is integer or half-odd
integer valued by the conditions on Chern-Simons action. One could make the entire spectrum
integer value by a proper choice of b/d.

Integer valuedness forced by Chern-Simons condition leads to ask whether the situation
could relate to hierarchy of Planck constants. This cannot be the case. One can assign to each
value of y p-adic coupling constant labelled by prime k (p ' 2k) a hierarchy of Planck constants
heff = n× h. If number theoretical universality is realized for n = 1, it is realized for all values of
n and one can say that one has 1/α = n/α fora generic coupling strength α.

p-Adic temperature T = 1/n using log(p) as a unit correspond to the temperature parameter
defined by αK : the values of both are inverse integers. p-Adic thermodynamics might therefore
provide a proper description for the confining phase as also the success of p-adic mass calculations
encourages to think.

The sign of 1/αK is not fixed for the simplest option. The shift by b
d could fix the sign to be

negative. There is however no absolute need for a fixed sign since in Minkowskian regions the sign of
Kähler action density depends on whether magnetic or electric fields dominate. In Euclidian regions
the sign is always positive. Since the real part of Kähler action receives contributions from both
Euclidian and Minkowskian regions it can can well have both signs so that for preferred extremals
the signs of the real part of Kähler coupling strength and proper Kähler action compensate each
other.

10.4 A Model For Electroweak Coupling Constant Evolu-
tion

In the following a model for electroweak coupling constant evolution using as inputs Weinberg
angle at p-adic length scale k = 127 of electron or at four times longer scale k = 131 and in weak
length scale k = 89 is developed.

10.4.1 Evolution Of Weinberg Angle

Concerning the electroweak theory, a key question is whether the notion of Weinberg angle still
makes sense or whether one must somehow generalize the notion. Experimental data plus the
prediction for 1/αU(1) as zero of zeta suggest that Weinberg angle varies. For instance, the value
of1/αU(1) for k = 89 corresponds to weak length scale and is 87.4 whereas fine structure constant
is around 127. This gives sin2(θW ) ∼ .312, which is larger than standard model value.

1. Assume that the coupling constant evolutions for 1/αem and 1/αW correspond to different
Möbius transformations acting in a nonlinear manner to s. Tangent of Weinberg angle is
defined as the ratio of weak and U(1) coupling constants: tan(θW ) = gW /gU(1) and it
expresses the vectorial character of electromagnetic coupling. One can write

sin2(θW ) =
1

1 +X
, X =

αU(1)

αW
. (10.4.1)
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One can write the ansätze for for the coupling strengths as imaginary parts of complexified
ones:

1

αU(1)
= Im[s+ b] = y , s =

1

2
+ iy

1

αW
= Im[

aW s+ bW
cW s+ dW

] =
Dy

c2( 1
4 + y2) + cd+ d2)

,

D = ad− bc .

(10.4.2)

Here GL(2, Q) matrices are assumed and determinant D = ad− bc is allowed to differ from
unity. From this one obtains for the Weinberg angle the expression

sin2(θW (y)) = =
1

1 + [ c
2

D (y2 + 1
4 ) + d

c + (dc )2]
, D = ad− bc .

As the physical intuition suggests, Weinberg angle approaches zero at long length scales
(y → ∞). The value at short distance limit (the lowest zero y0 = 14.13 at critical line)
assignable to p = 2 is given by

sin2(θW (y1)) =
1

1 + c2

D [(y2
1 + 1

4 + d
c + d

c )2]
.

Note that Weinberg angle decreases monotonically with y. The choices for which c2/D are
equivalent but the parameters (a, b, c, d) can be chosen nearer to integers for large enough D.

2. How to fix the parameters D, c, d?

(a) The first guess D = ad − bc = 1 would reduces the unknown parameters to c, d. This
does not however allow even approximately integer valued parameters a, b, cd.

(b) The GUT value of Weinberg angle at this limit is sin2(θW ) = 3/8. TGD suggests that
the values of Weinberg angle correspond to Pythagorean triangles (see http://tinyurl.
com/o7c4pkt). The lowest primitive Pythagorean triangle (side lengths are coprimes,
(see http://tinyurl.com/j6ojlko) corresponds to the triplet (3,4,9) forming the trunk
of the 3-tree formed by the primitive Pythagorean triangles with 3 triangles emanating
at each node) and to sin2(θW ) = 9/25 slightly smaller than the GUT value. The
problem is that y0 is not a rational number and for rational values of c, d the equation
for Weinberg angule cannot be satisfied.

(c) An alternative more reliable option is to use as input Weinberg angle at intermediate
boson length scale k = 89 which corresponds to y(24) = 87.4252746. The value of fine
structure constant at Z0 boson length scale is about 1/αem(89) ' 127. From this one
would obtain

sin2(θW (k = 89)) = 1− y24

αem(89)
= 1−

αU(1)(24)

αem(89)
' 0.3116, . (10.4.3)

One can obviously criticize the rather large value of the Weinberg angle forced by the
value of y(24) as being smaller than the experimental value. Experiments however
suggests that Weinberg angle starts to increase after Z0 pole. Gauge theory limit
corresponds to a limit at which the sheets of many-sheeted are lumped together and
one obtains a statistical average and the contributions of longer scale might increase the
value of 1/αU(1)(24) and therefore reduce the value of the effective Weinberg angle.

http://tinyurl.com/o7c4pkt
http://tinyurl.com/o7c4pkt
http://tinyurl.com/j6ojlko
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(d) Another input is the value of fine structure constant either at k = 127 corresponding to
electron’s p-adic length scale or at k = 131 (L(131) = 10−11 meters and four times the
p-adic length scale of electron) fixed by the condition that fine structure constant αem =
α(U(1)cos

2(θW ) corresponds its low energy value 1/αem = 137.035999139 assigned often
to electron length scale. From y(32(= 1/αU(1) = 105.446623 or y(31) = 103.725538 and
1/αem(131) = 137.035999139 one can estimate the value of Weinberg angle as

sin2(θW (k = 131)) = 1− y32

αem(131)
' 0.23052 or

sin2(θW (k = 130)) = 1− y32

αem(127)
.

(10.4.4)

It turns out that the first option does not work unless one assumes 1/alphaem(k = 89) ≤
125.5263 rather than 1/alphaem(k = 89) ' 127. The deviation is about 1-2 per cent.
Second option works with a minimal modification for 1/alphaem(k = 89) ' 127.

(e) The value of y(1) is y1 = 14.13472. The two latter conditions give rise to the following
series of equations

X(k) = cot2(θW )(k) =
c2

D
(y2(k) +A) , A =

1

4
+
d

c
+ (

d

c
)2 ,

X(24)

X(K)
≡ Y =

cot2(θW )(24)

cot2(θW )(K)
=
y2(24) +A

y2(K) +A
,

A =
Y (y2(K)− y2(24))

1− Y
.

(10.4.5)

Here K is either K = 31 or K = 32 corresponding to the p-adic length scale k = 127 or
131. It turns out that only K = 31 works fo 1/αem(89) = 127.

Also following parameters can be expressed in terms of the data.

c2

D
=

cot2(θW )(K)

y2(K) +A
,

d

c
=

1

2

(
−1 +

√
A
)

,

sin2(θW )(1) =
1

1 +X(1)
, X(1) =

c2

D

(
y2(1) +A

)
.

(10.4.6)

If the parameters a, b, c, d are integers, the equations cannot be satisfied exactly. For
K = 32 it turns out that parameter A is negative for 1/alphaem(k = 89) ≤ 125.5263 .
For K = 31 still negative and small so that A = 0 is the natural choice breaking slightly
the conditions. Table 10.1 represent both options.

(f) For D = 1 one has c2 ' 0.0002894, which is very near to zero and not an integer. c
must be non-vanishing to obtain a running Weinberg angle. For the general value of D
the role c is taken by c2D as an invariant fixed by the input data. c → c = 2 requires
D = 1 → int(4/c2) = 138. D = 139 almost equally good. One has d/c = −0.5 for
A = 0 so that one would have d = −1, c = 2 for mimimum option. The condition
ad− bc = −a− 2b = D allows to estimate the values of the integer valued parameters a
and b and get additional constraint on integer D. The values are not completely unique
without additional conditions, say b = 1. This would give a = −D + 2 = −137 for
D = 139 (one cannot avoid association with the famous “137”!).
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3. Consider now the physical predictions. The evolution of Weinberg angle is depicted in the
tables 10.1 and 10.2 for k = 127 model whereas tables 10.3 and 10.4 give the predictions
of k = 131 model. The value of Weinberg angle at electron scale k = 127 is predicted to
be sin2(θw) ' 0.2430 deviating from its measured value by 5 per cent. For k = 131 the
Weinberg angle deviates .7 per cent from the measured value but the value of 1/αem(k = 89)
is about 1 per cent too small.

The expression for the predicted value of Weinberg angle at p-adic length scale p = 2 is
sin2(θW )p=2 ' 0.9453368487, which is near to its maximal value and much larger than the
sin2(θW )p=2 ' 0.375 of GUTs. This prediction was a total surprise but could be consistent
with the new physics predicted by TGD predicting several scaled up copies of hadron physics
above weak scale.

A related surprise at the high energy end was that 1/αem begins to increase again at k = 13
and is near to fine structure constant at k = 11! As if asymptotic freedom would apply to
all couplings except U(1) coupling. This behavior is due to the approach of cos2(θW ) to
zero. One can of course ask whether sin2(θW ) = 1 could be obtained for a suitable choice
of the parameters. This can be achieved only for y(1) = 0 which is not possible since A the
parameter A cannot be negative.

To sum up, experimental input allows to fix electroweak coupling constant evolution com-
pletely. The problematic feature of k = 127 model is the possibly too large value of Weinberg theta
at low energies. The predicted scaled up copies of hadron physics could explain why Weinberg
angle must increase at high energies. At electron length scale the 5 per cent too high value is
somewhat disturbing. The many-sheeted space-time requiring lumping together of sheets to get
space-time of General Relativity might help to understand why measured Weinberg angle is smaller
than predicted. Average over sheets of different sizes could be in question.

10.4.2 Test For The Model Of Electroweak Coupling Constant Evolution

One can check whether the values of 100 lowest non-trivial zeros are consistent with their assign-
ment with primes k in p ' 2k and whether the model is consistent with the value of fine structure
constant 1/αem = 137.035999139 and experimental value P = .2312 of Weinberg angle assigned
either with electron’s p-adic length scale k = 127 or k = 131 (0.1 Angstroms).

The tables below summarize the values of 1/αK identified as imaginary part of Riemann
zero and αem = αK(1 − P ) for the model already discussed. P is .7 per cent smaller than the
experimental value P = .2312 for k = 131. This agreement is excellent but it turns out that the
model works only if fine structure constant corresponds to αem(k) in electron length scale k = 127.

For k = 127 one obtains fine structure constant correctly for P = 0.243078179077 about 10
per cent larger than the experimental value. The predicted value of αK at scale k = 127 changes
from αK = αem to α(U(1)) due the presence of cos2(θW ) = .77. One can wonder whether this
is consistent with the p-adic mass calculations and the condition on CP2 coming from the string
tension of cosmic strings.

The predicted value of αK changes at electron length scale by the introduction of cos(thetaW )
factor. The formula for the p-adic mass squared involves second order contribution which cannot
be predicted with certainty. This contribution is 20 per cent at maximum so that the change of
αK by 10 per cent can be tolerated.

Galactic rotation velocity spectrum gives also constraint on the string tension of cosmic
strings and in this manner also to the value of the inverse 1/R of CP2 radius to which p-adic
mass scales are proportional. The size scale or large voids corresponds roughly to k = 293. From
Table 10.2 one has 1/αK = 167.2. If the condition αK ' αem holds true in long length scales,
the scaling of 1/αK = 1/αem used earlier would be given by r ' 167/137 and would increase the
string tension of cosmic strings by factor 1.2. This could be compensated by scaling R2

CP2
by the

same factor. CP2 mass scale would be scaled by factor 1/
√

1.2 ' .9. Also this can be tolerated.
Note that maximal value cosmic string tension is assumed making sense only for the ideal cosmic
strings with 2-D M4 projection. Thickening of cosmic strings reduces their tension since magnetic
energy per length is reduced.
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Table 10.1: Table represents the first 35 zeros of zeta identified as values of αK = α(U(1)),
the corresponding primes k (p ' 2k), the predicted values of both Weinberg angle and of αem =
α(U(1))cos2(θW ) assuming the proposed model for sin2(θW ).

n y k sin2(θW ) 1/αem
hline 1 14.1347251 2 0.945336 258.5784

2 21.0220396 3 0.886600 185.3802
3 25.0108575 5 0.846706 163.1566
4 30.4248761 7 0.788698 143.9880
5 32.9350615 11 0.761068 137.8428
6 37.5861781 13 0.709786 129.5121
7 40.9187190 17 0.673584 125.3579
8 43.3270732 19 0.647955 123.0727
9 48.0051508 23 0.599889 119.9796
10 49.7738324 29 0.582401 119.1907
11 52.9703214 31 0.551851 118.1982
12 56.4462476 37 0.520249 117.6574
13 59.3470440 41 0.495203 117.5663
14 60.8317785 43 0.482855 117.6301
15 65.1125440 47 0.449024 118.1767
16 67.0798105 53 0.434344 118.5877
17 69.5464017 59 0.416691 119.2275
18 72.0671576 61 0.399493 120.0105
19 75.7046906 67 0.376117 121.3444
20 77.1448400 71 0.367315 121.9326
21 79.3373750 73 0.354389 122.8874
22 82.9103808 79 0.334500 124.5836
23 84.7354929 83 0.324876 125.5111
24 87.4252746 89 0.311321 126.9464
25 88.8091112 97 0.304627 127.7144
26 92.4918992 101 0.287691 129.8480
27 94.6513440 103 0.278326 131.1552
28 95.8706342 107 0.273213 131.9102
29 98.8311942 109 0.261303 133.7912
30 101.317851 113 0.251824 135.4198
31 103.725538 127 0.243078 137.0359
32 105.446623 131 0.237073 138.2133
33 107.168611 137 0.231264 139.4088
34 111.029535 139 0.218919 142.1486
35 111.874659 149 0.216337 142.7587
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Table 10.2: Table represents the zeros yn of zeta in the range n ∈ [35, 70] identified as values of
αK = α(U(1)), the corresponding primes k (p ' 2k), the predicted values of both Weinberg angle
and of αem = α(U(1))cos2(θW ) assuming the proposed model for sin2(θW ).

n y k sin2(θW ) 1/αem
hline 36 114.320220 151 0.209095 144.5436

37 116.226680 157 0.203677 145.9543
38 118.790782 163 0.196690 147.8767
39 121.370125 167 0.189990 149.8379
40 122.946829 173 0.186049 151.0495
41 124.256818 179 0.182861 152.0633
42 127.516683 181 0.175248 154.6123
43 129.578704 191 0.170659 156.2431
44 131.087688 193 0.167407 157.4452
45 133.497737 197 0.162390 159.3794
46 134.756509 199 0.159853 160.3964
47 138.116042 211 0.153349 163.1322
48 139.736208 223 0.150345 164.4624
49 141.123707 227 0.147838 165.6068
50 143.111845 229 0.144348 167.2548
51 146.000982 233 0.139481 169.6662
52 147.422765 239 0.137170 170.8597
53 150.053520 241 0.133037 173.0796
54 150.925257 251 0.131706 173.8183
55 153.024693 257 0.128579 175.6036
56 156.112909 263 0.124167 178.2452
57 157.597591 269 0.122123 179.5214
58 158.849988 271 0.120436 180.6009
59 161.188964 277 0.117374 182.6243
60 163.030709 281 0.115040 184.2239
61 165.537069 283 0.111970 186.4094
62 167.184439 293 0.110016 187.8511
63 169.094515 307 0.107811 189.5277
64 169.911976 311 0.106886 190.2468
65 173.411536 313 0.103056 193.3360
66 174.754191 317 0.101639 194.5256
67 176.441434 331 0.099898 196.0238
68 178.377407 337 0.097952 197.7472
69 179.916484 347 0.096444 199.1206
70 182.207078 349 0.094262 201.1698
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Table 10.3: Table represents the first 35 zeros of zeta identified as values of αK = α(U(1)),
the corresponding primes k (p ' 2k), the predicted values of both Weinberg angle and of αem =
α(U(1))cos2(θW ) assuming the k = 131 model for sin2(θW ).

n y k sin2(θW ) 1/αem
hline 1 14.1347251 2 0.943414 249.7949

2 21.0220396 3 0.882868 179.4744
3 25.0108575 5 0.841896 158.1927
4 30.4248761 7 0.782535 139.9074
5 32.9350615 11 0.754350 134.0732
6 37.5861781 13 0.702190 126.2089
7 40.9187190 17 0.665488 122.3238
8 43.3270732 19 0.639563 120.2072
9 48.0051508 23 0.591074 117.3933
10 49.7738324 29 0.573475 116.6964
11 52.9703214 31 0.542785 115.8544
12 56.4462476 37 0.511110 115.4580
13 59.3470440 41 0.486058 115.4744
14 60.8317785 43 0.473724 115.5892
15 65.1125440 47 0.439988 116.2700
16 67.0798105 53 0.425376 116.7369
17 69.5464017 59 0.407825 117.4423
18 72.0671576 61 0.390747 118.2878
19 75.7046906 67 0.367570 119.7045
20 77.1448400 71 0.358853 120.3232
21 79.3373750 73 0.346062 121.3225
22 82.9103808 79 0.326403 123.0862
23 84.7354929 83 0.316902 124.0459
24 87.4252746 89 0.303530 125.5263
25 88.8091112 97 0.296931 126.3164
26 92.4918992 101 0.280251 128.5057
27 94.6513440 103 0.271035 129.8435
28 95.8706342 107 0.266007 130.6152
29 98.8311942 109 0.254301 132.5350
30 101.317851 113 0.244992 134.1945
31 103.725538 127 0.236408 135.8390
32 105.446623 131 0.230518 137.0359
33 107.168611 137 0.224822 138.2504
34 111.029535 139 0.212726 141.0304
35 111.874659 149 0.210197 141.6489
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Table 10.4: Table represents the zeros yn of zeta in the range n ∈ [35, 70] identified as values of
αK = α(U(1)), the corresponding primes k (p ' 2k), the predicted values of both Weinberg angle
and of αem = α(U(1))cos2(θW ) assuming the k = 131 model for sin2(θW ).

n y k sin2(θW ) 1/αem
hline 36 114.320220 151 0.203108 143.4576

37 116.226680 157 0.197806 144.8861
38 118.790782 163 0.190972 146.8316
39 121.370125 167 0.184423 148.8150
40 122.946829 173 0.180571 150.0397
41 124.256818 179 0.177456 151.0641
42 127.516683 181 0.170022 153.6387
43 129.578704 191 0.165542 155.2850
44 131.087688 193 0.162368 156.4981
45 133.497737 197 0.157474 158.4494
46 134.756509 199 0.154999 159.4751
47 138.116042 211 0.148658 162.2333
48 139.736208 223 0.145730 163.5739
49 141.123707 227 0.143287 164.7270
50 143.111845 229 0.139887 166.3872
51 146.000982 233 0.135146 168.8158
52 147.422765 239 0.132897 170.0175
53 150.053520 241 0.128873 172.2522
54 150.925257 251 0.127578 172.9957
55 153.024693 257 0.124534 174.7923
56 156.112909 263 0.120242 177.4499
57 157.597591 269 0.118254 178.7336
58 158.849988 271 0.116613 179.8194
59 161.188964 277 0.113635 181.8541
60 163.030709 281 0.111367 183.4623
61 165.537069 283 0.108383 185.6594
62 167.184439 293 0.106483 187.1085
63 169.094515 307 0.104341 188.7935
64 169.911976 311 0.103443 189.5162
65 173.411536 313 0.099722 192.6201
66 174.754191 317 0.098346 193.8152
67 176.441434 331 0.096655 195.3201
68 178.377407 337 0.094766 197.0512
69 179.916484 347 0.093302 198.4305
70 182.207078 349 0.091184 200.4884



Chapter 11

Could N = 2 Super-conformal
Theories Be Relevant For TGD?

11.1 Introduction

The concrete realization of the super-conformal symmetry (SCS) in TGD framework has remained
poorly understood. In particular, the question how SCS relates to super-conformal field theories
(SCFTs) has remained an open question. The most general super-conformal algebra assignable
to string world sheets by strong form of holography has N equal to the number of 4+4 =8 spin
states of leptonic and quark type fundamental spinors but the space-time SUSY is badly broken
for it. Covariant constancy of the generating spinor modes is replaced with holomorphy - kind of
“half covariant constancy”. I have considered earlier a proposal that N = 4 SCA could be realized
in TGD framework but given up this idea. Right-handed neutrino and antineutrino are excellent
candidates for generating N = 2 SCS with a minimal breaking of the corresponding space-time
SUSY. Covariant constant neutrino is an excellent candidate for the generator of N = 2 SCS. The
possibility of this SCS in TGD framework will be considered in the sequel.

11.1.1 Questions about SCS in TGD framework

This work was inspired by questions not related to N = 2 SCS, and it is good to consider first
these questions.

Could the super-conformal generators have conformal weights given by poles of fermionic
zeta?

The conjecture [L16] is that the conformal weights for the generators super-symplectic repre-
sentation correspond to the negatives of h = −ksk of the poles sk fermionic partition function
ζF (ks) = ζ(ks)/ζ(2ks) defining fermionic partition function. Here k is constant, whose value must
be fixed from the condition that the spectrum is physical. ζ(ks) defines bosonic partition function
for particles whos energies are given by log(p), p prime. These partition functions require complex
temperature but is completely sensible in Zero Energy Ontology (ZEO), where thermodynamics is
replaced with its complex square root.

For non-trivial zeros 2ks = 1/2 + iy of ζ(2ks) s would correspond pole s = (1/2 + iy)/2k
of zF (ks). The corresponding conformal weights would be h = (−1/2 − iy)/2k. For trivial zeros
2ks = −2n, n = 1, 2, .. s = −n/k would correspond to conformal weights h = n/k > 0. Conformal
confinement is assumed meaning that the sum of imaginary parts of of generators creating the
state vanishes.

What can one say about the value of k? The pole of ζ(ks) at s = 1/k would correspond
to pole and conformal weight h = −1/k. For k = 1 the trivial conformal weights would be
positive integers h = 1, 2, ...: this certainly makes sense. This gives for the real part for non-trivial
conformal weights h = −1/4. By conformal confinement both pole and its conjugate belong to
the state so that this contribution to conformal weight is negative half integers: this is consistent

419
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with the facts about super-conformal representations. For the ground state of super-conformal
representation the conformal weight for conformally confined state would be h = −K/2. In p-adic
mass calculations one would have K = 6 [K39].

The negative ground state conformal weights of particles look strange but p-adic mass cal-
culations require that the ground state conformal weights of particles are negative: h = −3 is
required.

What could be the origin of negative ground state conformal weights?

Super-symplectic conformal symmetries are realized at light-cone boundary and various Hamilto-
nians defined analogs of Kac-Moody generators are proportional functions f(rM )HJ,mHA, where
HJ,m correspond to spherical harmonics at the 2-sphere RM = constant and HA is color partial
wave in CP2, f(rM ) is a partial wave in radial light-like coordinate which is eigenstate of scaling
operator L0 = rMd/dRM and has the form (rM/r0)−h, where h is conformal weight which must
be of form h = −1/2 + iy.

To get plane wave normalization for the amplitudes

(
rM
r0

)−h = (
rM
r0

)−1/2exp(iyx) , x = log(
rM
r0

) ,

one must assume h = −1/2+iy. Together with the invariant integration measure drM this gives for
the inner product of two conformal plane waves exp(iyix), x = log(rM/r0) the desired expression∫
exp[iy1 − y2)x]dx = δ(y1 − y2), where dx = drM/rM is scaling invariance integration measure.

This is just the usual inner product of plane waves labelled by momenta yi.
If rM/r0 can be identified as a coordinate along fermionic string (this need not be always

the case) one can interpret it as real or imaginary part of a hypercomplex coordinate at string
world sheet and continue these wave functions to the entire string world sheets. This would be
very elegant realization of conformal invariance.

How to relate degenerate representations with h > 0 to the massless states constructed
from tachyonic ground states with negative conformal weight?

This realization would however suggest that there must be also an interpretation in which ground
states with negative conformal weight hvac = −k/2 are replaced with ground states having vanish-
ing conformal weights hvac = 0 as in minimal SCAs and what is regarded as massless states have
conformal weights h = −hvac > 0 of the lowest physical state in minimal SCAs.

One could indeed start directly from the scaling invariant measure drM/rM rather than
allowing it to emerge from drM . This would require in the case of p-adic mass calculations that
has representations satisfying Virasoro conditions for weight h = −hvac > 0. p-Adic mass squared
would be now shifted downwards and proportional to L0 +hvac. There seems to be no fundamental
reason preventing this interpretation. One can also modify scaling generator L0 by an additive
constant term and this does not affect the value of c. This operation corresponds to replacing basis
{zn} with basis {zn+1/2}.

What makes this interpretation worth of discussing is that the entire machinery of confor-
mal field theories with non-vanishing central charge and non-vanishing but positive ground state
conformal weight becomes accessible allowing to determine not only the spectrum for these theo-
ries but also to determine the partition functions and even to construct n-point functions in turn
serving as basic building bricks of S-matrix elements [L22].

ADE classification of these CFTs in turn suggests at connection with the inclusions of
hyperfinite factors and hierarchy of Planck constants. The fractal hierarchy of broken conformal
symmetries with sub-algebra defining gauge algebra isomorphic to entire algebra would give rise
to dynamic symmetries and inclusions for HFFs suggest that ADE groups define Kac-Moody type
symmetry algebras for the non-gauge part of the symmetry algebra.

11.1.2 Questions about N = 2 SCS

N = 2 SCFTs has some inherent problems. For instance, it has been claimed that they reduce
to topological QFTs. Whether N = 2 can be applied in TGD framework is questionable: they
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have critical space-time dimension D = 4 but since the required metric signature of space-time is
wrong.

Inherent problems of N = 2 SCS

N = 2 SCS has some severe inherent problems.

1. N = 2 SCS has critical space-time dimension D = 4, which is extremely nice. On the other,
N = 2 requires that space-time should have complex structure and thus metric signature
(4,0), (0,4) or (2,2) rather than Minkowski signature. Similar problem is encountered in
twistorialization and TGD proposal is Hamilton-Jacobi structure (se the appendix of [K112]),
which is hybrid of hypercomplex structure and Kähler structure. There is also an old proposal
by Pope et al [B59]that one can obtain by a procedure analogous to dimensional reduction
N = 2 SCS from a 6-D theory with signature (3,3). The lifting of Kähler action to twistor
space level allows the twistor space of M4 to have this signature and the degrees of freedom
of the sphere S2 are indeed frozen.

2. There is also an argument by Eguchi that N = 2 SCFTs reduce under some conditions
to mere topological QFTs [B34]. Thi looks bad but there is a more refined argument that
N = 2 SCFT transforms to a topological CFT only by a suitable twist [B32, B57]. This
is a highly attractive feature since TGD can be indeed regarded as almost topological QF.
For instance, Kähler action in Minkowskian regions could reduce to Chern-Simons term for
a very general solution ansatz. Only the volume term having interpretation in terms of
cosmological constant [L22] (extremely small in recent cosmology) would not allow this kind
of reduction. The topological description of particle reactions based on generalized Feynman
diagrams identifiable in terms of space-time regions with Euclidian signature of the induced
metric would allow to build n-point functions in the fermionic sector as those of a free field
theory. Topological QFT in bosonic degrees of freedom would correspond naturally to the
braiding of fermion lines.

Can one really apply N = 2 SCFTs to TGD?

TGD version of SCA is gigantic as compared to the ordinary SCA. This SCA involves super-
symplectic algebra associated with metrically 2-dimensional light-cone boundary (light-like bound-
aries of causal diamonds) and the corresponding extended conformal algebra (light-like boundary is
metrically sphere S2). Both these algebras have conformal structure with respect to the light-like
radial coordinate rM and conformal algebra also with respect to the complex coordinate of S2.
Symplectic algebra replaces finite-dimensional Lie algebra as the analog of Kac-Moody algebra.
Also light-like orbits of partonic 2-surfaces possess this SCA but now Kac-Moody algebra is de-
fined by isometries of imbedding space. String world sheets possess an ordinary SCA assignable to
isometries of the imbedding space. An attractive interpretation is that rM at light-cone boundary
corresponds to a coordinate along fermionic string extendable to a hypercomplex coordinate at
string world sheet.

N = 8 SCS seems to be the most natural candidate for SCS behind TGD: all fermion spin
states would correspond to generators of this symmetry. Since the modes generating the symmetry
are however only half-covariantly constant (holomorphic) this SUSY is badly broken at space-time
level and the minimal breaking occurs for N = 2 SCS generated by right-handed neutrino and
antineutrino.

The key motivation for the application of minimal N = 2 SCFTs to TGD is that SCAs for
them have a non-vanishing central charge c and vacuum weight h ≥ 0 and the degenerate character
of ground state allows to deduce differential equations for n-point functions so that these theories
are exactly solvable. It would be extremely nice is scattering amplitudes were basically determined
by n-point functions for minimal SCFTs.

A further motivation comes from the following insight. ADE classification of N = 2 SCFTs
is extremely powerful result and there is connection with the hierarchy of inclusions of hyperfinite
factors of type II1, which is central for quantum TGD. The hierarchy of Planck constants assignable
to the hierarchy of isomorphic sub-algebras of the super-symplectic and related algebras suggest
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interpretation in terms of ADE hierarchy a rather detailed view about a hierarchy of conformal
field theories and even the identification of primary fields in terms of critical deformations.

The application N = 2 SCFTs in TGD framework can be however challenged. The problem
caused by the negative value of vacuum conformal weight has been already discussed but there are
also other problems.

1. One can argue that covariantly constant right-handed neutrino - call it νR - defines a pure
gauge super-symmetry and it has taken along time to decide whether this is the case or not.
Taking at face value the lacking evidence for space-time SUSY from LHC would be easy but
too light-hearted manner to get rid of the problem.

Could it be that at space-time level covariantly constant right-handed neutrino (νR) and its
antiparticle (νR) generates pure gauge symmetry so that the resulting sfermions correspond to
zero norm states? The oscillator operators for νR at imbedding space level have commutator
proportional to pkγk vanishing at the limit of vanishing massless four-momentum. This
would imply that they generate sfermions as zero norm states. This argument is however
formulated at the level of imbedding space: induced spinor modes reside at string world
sheets and covariant constancy is replaced by holomorphy!

At the level of induced spinor modes located at string world sheets the situation is indeed
different. The anti-commutators are not proportional to pkγk but in Zero Energy Ontology
(ZEO) can be taken to be proportional to nkγk where nk is light-like vector dual to the
light-like radial vector of the point of the light-like boundary of causal diamond CD (part
of light-one boundary) considered. Therefore also constant νR and νR are allowed as non-
zero norm states and the 3 sfermions are physical particles. Both ZEO and strong form of
holography (SH) would play crucial role in making the SCS dynamical symmetry.

2. Second objection is that LHC has failed to detect sparticles. In TGD framework this objection
cannot be taken seriously. The breaking of N = 2 SUSY would be most naturally realized
as different p-adic length scales for particle and sparticle. The mass formula would be the
same apart from different p-adic mass scale. Sparticles could emerge at short p-adic length
scale than those studied at LHC (labelled by Mersenne primes M89 and MG,79 = (1 + i)79).

One the other hand, one could argue that since covariantly constant right-handed neutrino
has no electroweak-, color- nor gravitational interactions, its addition to the state should not
change its mass. Again the point is however that one considers only neutrinos at string world
sheet so that covariant constancy is replaced with holomorphy and all modes of right-handed
neutrino are involved. Kähler Dirac equation brings in mixing of left and right-handed
neutrinos serving as signature for massivation in turn leading to SUSY breaking. One can of
course ask whether the p-adic mass scales could be identical after all. Could the sparticles
be dark having non-standard value of Planck constant heff = n× h and be created only at
quantum criticality [K106].

This is a brief overall view about the most obvious problems and proposed solution of them
in TGD framework and in the following I will discuss the details. I am of course not a SCFT
professional. I however dare to trust my physical intuition since experience has taught to me that
it is better to concentrate on physics rather than get drowned in poorly understood mathematical
technicalities.

11.2 Some CFT backround

The construction of CFTs involves as the first step construction of irreducible unitary represen-
tations of conformal algebras. They are completely known for the central charge 0 ≤ c ≤ 1. One
can also construct modular invariant partition functions for tensor products possibly serving as
partition functions of CFTs. Already Belavin, Polyakov and Zhamolodzhikov [B23] discovered in
their pioneering paper so called minimal models with the defining property that the state space
realizes only finite number of irreducible representations.
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11.2.1 Modular invariant partition functions

The classification of modular functions leads to the ADE scheme [B28] (http://tinyurl.com/
h9val5g). The physical picture is that the primary fields of minimal CFT correspond to defor-
mations of a critical system in some configuration space. One can construct all minimal orbifold
CFTs in orbifolds G\C2 of C2 in which the discrete subgroup G of SU(2) acts linearly [B62]. This
is a minimal realization. ADE scheme enters via the ADE classification for the discrete subgroups
of SU(2) (see http://tinyurl.com/jyjplzc).

ADE classification gives an amazingly detailed view about the spectrum of minimal models
and also about their partition functions [B28] (see http://tinyurl.com/zlhk3wu). More general
rational CFTs can possess infinite families of Virasoro representations, which an be however or-
ganized to representations of W-algebra. So called WZW models provide an important example
constructible for any semi-simple Lie algebra.

The decomposition of RCFT Hilbert space to sum over tensor products of spaces carrying
irreducible unitary representation conformal algebra and is conjugate can be written as

H = ⊕jjNjjHj ⊗Hj . (11.2.1)

There are consistency conditions on the coefficients due to the conditions that the CFT must exist
on any Riemann surface. Verlinde algebra (see http://tinyurl.com/y8p9muj6) expresses the
fusion rules. The associative Verlinde algebra is finite-dimensional and has as its elements primary
fields and its structure constants code for the fusion rules. Especially interesting primary fields are
those which are simple in the sense that the product of two primary fields contains only one prime
field.

It is good to understand how one ends up with the expression of partition function in
conformal field theories.

1. Start from the fact that conformal invariance fixes the complex function by data at 1-
dimensional curve and one can speak about analog of time evolution in direction orthogonal
to this curve. Introduce Hamiltonian for the Euclidian “time” evolution in finite “time” in-
terval defining an annulus at 2-D surface with boundaries identified as initial and final times.
Assume periodic boundary conditions in Euclidian “time” direction so that the annulus ef-
fectively closes to a torus. The outcome is a conformal field theory at torus although one
starts from conformal invariance at sphere or even Riemann surface with higher genus.

2. Torus has several conformally inequivalent variants since it can be obtained from complex
plane by identifying the points differing by a translation generated by real unit 1 and complex
number τ . The possible values of τ defines the moduli space for conformal equivalence classes
of torus since the angle angle between the sides of this elementary cell and the ratio of the
lengths of homologically non-trivial geodesics of torus are conformal invariants. Modular
invariance however implies that the values of τ differing by PSL(2,Z) transformation are
equivalent.

3. What happens if one applies this procedure at higher genus surface? If the annulus is around
the handle of this kind of surface, one might have a problem since it is not clear whether
periodic boundary conditions can be identified in terms of a compactification to torus -
this kind of annulus cannot be physically compactified to a torus. One can also consider a
Hamiltonian evolution associated with any curve characterized by homology class telling how
many times the curve winds around various handles. Can one just use the parameter τ or
should one take into account the homology class of the annulus.

One can challenge the idea about Hamiltonian time evolution as a formal trick and consider
the possibility that partition functions is defined for the entire 2-surface in moduli space. In
this kind of situation it would be trivial for sphere.

4. One can write explicitly the expression for the Euclidian “time” evolution operator between
the ends of annulus as an exponential:

http://tinyurl.com/h9val5g
http://tinyurl.com/h9val5g
http://tinyurl.com/jyjplzc
http://tinyurl.com/zlhk3wu
http://tinyurl.com/y8p9muj6
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exp(−HcyclL) = exp
[
2πiτ(L0 −

c

24
)− 2πitau(L0 −

c

24

]
. (11.2.2)

Partition function is defined as the trace

Z(τ) = Tr [exp(−HcyclL)] . (11.2.3)

χj(q) = Tr
[
exp

[
2πiτ(L0 − c

24 )
]]

= qhj−
c
24

∑
mnq

n , q = exp(i2πτ) , q = exp(−i2πτ)(11.2.4)

5. The decomposition of Hilbert space translates to a decomposition of the partition function
as

Z(τ) =
∑
jj

Njjχj(q)× χj(q) . (11.2.5)

Here one can wonder whether one could give up the interpretation in terms of Hamiltonian
time evolution and consider just partition function in the moduli space of torus (or higher
genus surface).

Modular invariance poses strong conditions of the expression of partition function of system
as sum over products chijχj of characters assignable to irreducible unitary representations of
Virasoro algebra. In the case of torus moduli correspond to complex plane whose points differing
by a transformations by the discrete group SL(2,Z) are identified. The resulting moduli space
has topology of torus. The generators of modular transformations are unit shift T : τ → τ + 1
and inversion S: τ → −1/τ and it is enough to demand that the partition function is invariant
under these transformations. The action of these transformations on characters induce an unitary
automorphisms of the matrix Njj and the condition is that the actions of S and T are trivial

TNT † = SNS† = N . (11.2.6)

It is interesting to relate this picture to TGD framework where one has string world sheets
and partonic 2-surfaces.

1. The annulus picture applies to string world sheets. At the ends space-time surface at bound-
aries of CD one has fermionic strings connecting wormhole throat to another one along the
first space-time sheet and returning back along second space-time sheet and forming thus a
closed string, whose time evolution defines string space-time sheet as a cylindrical object.
The strings at the ends of CD can get knotted and braided. They can also reconnect - the
interpretation is in terms of standard stringy vertices. In fact this gives rise to 2-braiding
possible because space-time dimension is 4.

One can also consider loops as handles attached to these annuli: since the induced metric
is allowed to have Euclidian signature, they are in principle possible but involve always
Euclidian regions around points, where the time direction of closed homologically trivial
time loop defined by the time coordinate of Minkowski space changes. Preferred extremal
property might forbid loop corrections in Minkowskian space-time regions but allow them
inside Euclidian regions representing lines of scattering diagrams.

2. The moduli space for the conformal equivalence classes of partonic 2-surfaces is important in
the TGD based model for family replication phenomenon [K12]. In TGD context one must
construct modular invariant partition functions in these higher-dimensional moduli spaces -
I call them elementary particle vacuum functionals. These partition functions do not allow
interpretation in terms of Hamiltonian time evolution.
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11.2.2 Degenerate conformal representations and minimal models

So called degenerate representations allow to construct minimal models with finite number of
primary fields and derive also differential equations for their correlation functions. Degeneracy
condition fixes the spectrum of so called minimal conformal field theories.

1. The conformal weight the ground state is fixed to h ≥ 0. Virasoro conditions must be satisfied:
it is enough that the generators L1 and L2 annihilate the ground state. The defining feature
of degenerate representations is that they possess states with zero norm created by generates
with negative conformal weights from the ground state.

2. Degenerate states are obtained as linear combinations of states constructible using products∏
k L
−nk
−k , N =

∑
k nkk of generators with total conformal weight −N operating on ground

state with weight h. Degeneracy means that some combination of the generators with total
weight −N annihilates the state. Besides this ordinary Virasoro conditions for generators
with positive weight are satisfied. The existence of the degenerate state means that the metric
of this sub-state space is degenerate so that its determinant - so called Kac determinant
vanishes. This brings strongly in mind criticality: at criticality sub-representation is isolated
from the larger representation and defines zero norm states. These would correspond to zero
modes appearing at criticality and not contributing to the potential function.

3. Vanishing of Kac determinant gives a condition allowing to deduce a general formula for the
allowed values of the central charge c defining the central extension of conformal algebra.
One can factorize Kac determinant to a product form

∏
n(h − hn) and the eigenvalues hn

defined the ground state weights allowing the degeneracy. Unitarity gives a further condition
on the representation and for c < 1 this dictates the spectrum of vacuum conformal weights
completely.

One can deduce an explicit expression for the Kac determinant as function of c and h and
this gives rise to the following fundamental formulas [B28] (see http://tinyurl.com/h9val5g)
for the values of central charge c and ground state conformal weight h for which the determinant
vanishes. For c > 1 the determinant does not vanish and is positive. For c < 1 situation is different.

c = cp,q = 1− 6(p−q)2

pq , p and q coprime , p, q = 1, 2, 3, ...

h = hr,s(p, q) = [pr−qs]2−(p−q)2

4pq , 1 ≤ r ≤ q − 1, 1 ≤ s ≤ p− 1 .

(11.2.7)

For these values of c and h the representation defined by dividing away zero norm states is irre-
ducible and unitary. So called minimal models forming a special case of them and possessing finite
number of primary fields correspond to these representations.

Why the degeneracy is so important? Suppose that primary conformal fields Φk have con-
formal weight h and satisfy the degeneracy condition. Then n-point functions satisfy also the
appropriate form of the degeneracy condition being annihilated by the combination of Virasoro
generators with total weight −N . This gives rise to n partial differential equations of order N for
〈Φ(z1)...Φ(zn)〉 allowing to solve the conformal field theory exactly. In TGD this generalizes would
give a powerful tool to determine the correlation functions at string world sheets.

The standard example is provided by the N = 2 case. The operator O = L−2 − 3
2h+1L

2
−1

generates from the ground state with conformal weight h zero norm state provided the condition
c = 2h(5 − 8h)/(2h + 1) is satisfied. For h = 1/2 this gives c = 1/2. Primary fields of the CFT
are annihilated by this operator as also n-point functions and this gives second order differential
equations for the n-point functions.

If the proposed interpretation of negative conformal weights in TGD framework is correct
then one can add the condition h = K/2 to the conditions fixing c and h. Although SCFT rather
than CFT is expected to be interesting from TGD point of view, one can just for fun see the above
conditions for c and h allow h = K/2. Direct calculation for p = m, q = m + 1 shows that for
m = 4 (c = 1/2), x = 1 and x = 1/2 are realized for (r = 3, s = 1) and (r = 3, s = 2) respectively.
For m = 5 one obtains x = 3 corresponding to r = 4 and s = 1. For m = 6 one obtains x = 5. It
is not clear (p, q) = (m,m+ 1) allows to realize h = K/2 or even h = 5/2 and h = 2.

http://tinyurl.com/h9val5g
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11.2.3 Minimal N = 2 SCFTs

N = 2 SCA

N = 2 SCA is spanned by Virasoro generators Ln and their super counterparts Gr, where r is either
integer (Ramond) or half-odd integer (Neveu-Schwartz) plus generators of conserved U(1) current
J (se http://tinyurl.com/yblzbovb). Ramond and Neveu-Scwartz and these representations
can be mapped to each other by spectral automorphism.

The commutation/anticommutation relations for N = 2 algebra are given by

[Lm, Ln] = (m− n)Lm+n + c
12 (m3 −m)δm+n,0 ,

[Lm, Jn] = −nJm+n ,
[Jm, Jn] = c

3mδm+n,0 ,
{G+

r , G
−
s } = Lr+s + 1

2 (r − s)Jr+s + c
6 (r2 − 1

4 )δr+s,0 ,
{G+

r , G
+
s } = 0 = {G−r , G−s } ,

[Lm, G
±
r ] = (m2 − r)G

±
r+m ,

[Jm, G
±
r ] = ±G±m+r .

(11.2.8)

Also in the case of SCFTs one it is natural to search for sub-representations with ground
state weight h and annihilated by some generator of conformal weight −N . In this case the
operatiors would be monomials of Virasoro generators and their super counterparts and also now
the vanishing of Kac-determinant [B25], whose expression was deduced by Boucher, Friedan and
Kent, would allow to deduce information about allowed values of c and h. Also in this case the n-
point functions 〈Φ(z1)...Φ(zn) satisfy N :th order the differential equations implied by the condition
that the generator in question annihilates the primary fields.

Spectral automorphism mapping Ramond and N-S representations to each other

Spectral automorphism maps both the algebra and its representations to new ones. The spectral
automorphism mapping Ramond representation to N-S representation is given by

α(Ln) = Ln + θJn + θ2

6 δn,0 ,
α(Jn) = Jn + θ

3δn,0 ,
α(G±r ) = G±r±θ .

(11.2.9)

The inverse of the automorphism is given by

α−1(Ln) = Ln − θJn + θ2

6 δn,0 ,
α−1(Jn) = Jn − c

3θδn,0 ,
α−1(G±r ) = G±r∓θ .

(11.2.10)

For θ = 1/2 one obtains Ramond-NS spectral mapping.
Central extension term contains par linear in m. This is changed as one finds by calcu-

lating the commutators of the transformed Virasoro generators and expressing it in in terms of
transformed generators. This does not affect the value of c. No change occurs for k = 2 minimal
representations with Q = k/2(k + 2) − 1/4 = 0. Also the term linear in m remains unaffected if
the θ = 1/2 flow is modified to

α(Ln) = Ln +
1

2
Jn + (

1

24
− QN−S

2
)δn,0 . (11.2.11)

Also the ground state is changed in the spectral flow and QN−S labels the ground state charge for
the resulting N-S representation. For minimal SCAs the flow must label (h,Q)R to Ramond state
to (h,Q)N−S .

If the linear term of central extension is unaffected in the flow, the values of h and Q change
as follows:

http://tinyurl.com/yblzbovb
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hR → hnew,R + c
24 = hN−S ,

Q→ Qnew,R + c
6 = QN−S .

(11.2.12)

The simplest guess is that the change leaves (a, b) unchanged and just drops the 1/8 term from h
and Q. This condition determines the values of hnew,R and Qnew,R for minimal representations to

hnew,R = 1
8 −

c
24 = 1

8 −
k

8(k+2) ,

Qnew,R = 1
4 −

1
2k(k+2) .

(11.2.13)

Degenerate representations

The classification of unitary minimal super-conformal field theories is surprisingly well-understood
[B65] (see http://tinyurl.com/yctvyk2o). ADE patterns are involved also in the classification
of minimal SCFTs. The good news is that N = 2 superstrings have critical dimension D = 4. The
bad news is that the signature of the space-time metric is either (0,4), (2,2) or (4,0) rather than
Minkowkian (1,3). This problem will be considered later in more detail.

I am not specialist and can only list the results. It is to be emphasized that not only the
spectrum of basic parameters but also the partition functions are known, and correlation functions
can be constructed.

1. The values of the central charge are given by

c =
3k

k + 2
, k = 0, 1, 2...

(11.2.14)

Central charge has values c = 0, 1, 3/2, 9/5, ... and approaches c = 3 for large values of k.

2. The vacuum conformal weights and U(1) charges depend on two integer valued parameters
a, b besides k

hab =
a(a+ 2)− b2

4(k + 2)
+

(a+ b)2
2

8
,

Qab =
b

2(k + 2)
− (a+ b)2

2

4
.

(11.2.15)

Here the conditions

a = 0, ..., k , |b− (a+ b)2| ≤ a , (a+ b)2 ≡ a+ b mod 2

(11.2.16)

are satisfied. For Ramond type representations (a+ b)2 = 1 (a+ b is odd) is satisfied and for
N-S type representations (a+ b)2 = 0 (a+ b is even) is satisfied. Note that (h,Q) = (0, 0) is
possible only for (a, b) = 0 in the case of N − S representation. For Ramond representation
this would give (h,Q) = (1/8,−1/4).

http://tinyurl.com/yctvyk2o
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11.3 Could N = 2 super-conformal algebra be relevant for
TGD?

Despite various objections already discussed in the introduction there are good reasons to pose the
question of the title.

11.3.1 How does the ADE picture about SCFTs and criticality emerge
in TGD?

The crucial question in TGD framework is how the ADE picture relates to criticality and SCFTs
in 2 dimensions. That the SCFT would be defined in 2 dimensions follows from SH.

1. The connection of ADE with inclusions of hyperfinite factors and with the hierarchy of Planck
constants defining a hierarchy of dark matters are basic conjectures of TGD.

2. Finite number of degrees of freedom is left when aH+ sub-algebra of super-symplectic or some
other conformal algebra isomorphic to the entire algebra G+ and the commutator [H+, G+]
(“+” refers to non-negative conformal weights) annihilate the states. The conjecture is that
this gives rise to a finite-dimensional ADE type algebra defining Kac-Moody algebra or gauge
algebra whose constant generators however act non-trivially. Denote the resulting finite-D
ADE group by A+. The Kac-Moody algebra might act on fermionic strings whereas the
super-symplectic algebra would at at the boundary of CD.

3. At criticality a phase transition changing the value of Planck constant and thus H+ and A+

take place. These phase transitions would have a natural description in ZEO: the group ADE
group A+ would be smaller or larger an the other end of space-time surface at the opposite
boundary of CD.

4. If the groups A+,i and A+,f satisfy A+,i ⊂ A+,f , new degrees of freedom appear. They
correspond to the coset space A+,f/A+,i. Coset spaces typically form orbifolds: in fact the
term orbi-fold comes from the identification of orbifold as the space of orbits, now those
of A+,i in A+,f . One would have orbifolds of ADE groups belonging associated with the
hierarchy of inclusions labelled perhaps by Planck constants.

5. The orbifolds O = A+,f/A+,i are however orbifolds of ADE groups, which are in 1-1 cor-
respondence with the finite ADE subgroups G of SU(2). Does this mean that the orbifold
O = A+,f/A+,i is somehow determined by orbifold G\SU(2)? As far as orbifold property
is considered, A+,i would be effectively finite-D G ⊂ SU(2). Mathematician could probably
answer this question immediately.

This kind of reduction of relevant degrees of freedom takes place in catastrophe theory, where
only very few degrees of freedom determine the type of catastrophe: also in this case criticality
is involved and catastrophes correspond to a hierarchy of criticalities.

6. The hierarchy of Planck constants corresponds to a hierarchy of coverings of space-time
surface determined by strong form of holography by those for string world sheets. Could the
discrete ADE groups G act in both the fibers and bases of these coverings?

Orbifoldings correspond to pairs of ADE groups appearing in the tensor product of repre-
sentations. The first guess is that this is due to pairing of Ramond and N-S representations but
ADE pairs appear also for conformal minimal models without super-symmetry. Second guess is
that the tensor product pairing in TGD framework reflects the fact that one has always a pair of
wormhole throats associated with the wormhole contact.

Concluding, it would be very natural to identify the orbifold degrees of in O = A+,f/A+,i

primary fields of minimal SCFT. This makes sense if the orbifolding reduces effectively to that for
SU(2) by finite discrete subgroup.
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11.3.2 Degrees of freedom and dynamics

N = 2SCA or should be generated by the addition of right-handed neutrino or antineutrino to
one-fermion state. The interpretation as a pure gauge symmetry seems plausible. Instead of trying
to make ad hoc guesses by searching the enormous highly technical literature on the subject, it is
better to try to build the physical picture first and hope that professionals could get motivated to
perform detailed constructions.

Consider first the degrees of freedom involved.

1. In bosonic sector one has at the fundamental level deformations of string world sheets (pos-
sibly of partonic 2-surfaces too). There are also deformations of string world sheets in CP2

degrees of freedom: the latter could be assigned with electroweak gauge bosons and SU(3)
Killing vectors related to color gauge potentials defining representation spaces for Kac-Moody
algebras involved. N = 2 SCA should determine correlation functions for these. At higher
abstraction level the dynamical variables would correspond to representations of ADE groups
assignable to inclusions of HFFs and primary fields would correspond to orbifolds of groups
assignable to the hierarchy of Planck constants.

2. In M4 degrees of freedom there are 2 degrees of freedom orthogonal to string world sheets
which correspond to complex coordinate. They would give rise to 2 additional tensor factors
to the super Virasoro algebra, which should have 5 tensor factors if p-adic mass calculations
are taken at face value. N = 2SCA should have this number of tensor factors.

3. There are also fermionic degrees of freedom associated with the induced spinors at string
world sheets and they would contribute to SCA too.

What one can say about the dynamics?

1. The dynamics at the level of physical particles would be essentially due to the non-trivial
topological vertex in which 3 light-like 3-surfaces join along their ends. This dynamics would
have huge symmetry generalizing the duality symmetry of hadronic string models: scattering
diagram would be analogous to a computation with vertices having identification as algebraic
operations and all computations connecting given sets of objects in initial and final state
would be equivalent. This symmetry would allow to move the ends of internal lines so that
loops could be transformed to tadpoles and snipped away giving a braided tree diagram as
minimal scattering diagram. Something analogous to this happens for twistor Grassmann
diagrams.

2. To the lines meeting at vertices defined by partonic 2-surfaces one can assign the fundamental
four-fermion vertex [L22] defining second dynamics. This vertex does not however correspond
to ordinary fermion vertex involving quartic term in fermion fields but corresponds to redis-
tribution of fermion lines between the 3-legs. Therefore fermion dynamics would be free and
this would allow to avoid divergences. The tensor net construction [L22] suggests for a very
elegant description of these computations in terms of so called perfect tensors defining the
nodes of the net and defining isometries between any leg and its complement with each leg
involving unitary braiding operation.

3. The third dynamics would be at the level of Kähler action defined by the functional integral
for the exponent of Kähler action. Quantum criticality motivates the proposal is that it
is RG invariant in the sense that loop corrections vanish since Kähler coupling strength
is analogous to critical temperature and is piecewise constant so that coupling constant
evolution is discrete and the values fo αK are labelled by a subset of p-adic primes.

11.3.3 Covariantly constant right-handed neutrinos as generators of super-
conformal symmetries

As explained in the introduction, holomorphic right-handed neutrinos could generate the super-
conformal symmetries with minimal breaking. Also other fermionic spin states (at imbedding base
level) would generate super-conformal symmetries but they would be badly broken.
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1. At imbedding space level massless modes of right-handed neutrino are covariantly constant
in CP2 and do not mix with left handed neutrinos. On the other hand, induced (as opposed
to imbedding space -) right-handed neutrino spinors, which are not constant, mix with the
left handed neutrino spinor modes and they are physical degrees of freedom. This follows
from the mixing of the M4 and CP2 contributions to modified gamma matrices determined
by the Kähler action and are essentially contractions of canonical momentum currents with
imbedding space gamma matrices.

2. Induced spinor modes at string world sheets must carry vanishing weak W and possibly also
Z fields to guarantee that em charge is well-defined. SH implies that the data at string world
sheets are enough to construct the quantum theory. The assumption about localization
is thus natural but not actually necessary, and it is not even clear whether Kähler-Dirac
equation is really consistent with the localization at string world sheets although the special
properties of Kähler Dirac gamma matrices (in particular, the degenerate character of the
effective space-time metric defined by their anti-commutators) suggests this.

3. One must not forget that the conformal structure of solutions is extremely powerful and makes
the situation almost independent of the Dirac action used. Dirac equation reduces essentially
to holomorphy and to the condition that other half of the modified gamma matrices annihilate
the spinor mode. One can therefore ask whether string world sheets could be minimal surfaces
and whether Dirac equation in the induced metric could be satisfied at string world sheets.
The trace of the second fundamental form giving rise to a term mixing M4 chiralities vanishes
in this case but there is still the mixing of gamma matrices inducing mixing of M4 chiralities
serving as a signal for massivation in M4 sense.

4. The interpretation of N = 2 supersymmetry possibly generated by right-handed neutrino
has remained unresolved. As explained in the introduction, this problem disappears in ZEO
since the boundary of CD allows anti-commutators of holomorphic νR oscillator operators to
be non-vanishing also for constant mode and one obtains constant modes with non-vanishing
norm to which space-time N = 2 SUSY can be assigned.

5. A further complication is brought by the recent progress in twistorialization of Kähler action
[L22]. It adds to the Kähler action extremely small volume term, and this term could spoil
the idea about localization of the modes at string world sheets. Again the conformal structure
of the solutions would save the situation if one does not require localization to string world
sheets. The picture would be in accordance with SH.

11.3.4 Is N = 2 SCS possible?

Could one assign N = 2SCA with these degrees of freedom?

1. N = 2SCA can be associated with any Super-Kac Moody algebra defined by simple Lie
group by coset construction (see http://tinyurl.com/yd2zqjvz), in particular for CP2 =
SU(3)/SU(2) × U(1). The Kac-Moody algebra defined by the product of color group and
electroweak group is not simple, but the fact that electroweak group holonomy group of CP2

strongly suggests that N = 2 SCA is possible. This would take care of color and electroweak
degrees of freedom.

2. There are also 2 degrees of freedom corresponding to M4 deformations of string world sheet
orthogonal to the sheet. Free field construction would assign N = 2 to the degrees of freedom
orthogonal to the string world sheet but the central charge is c = 3 > 3k/(k + 2) for the
unitary N = 2 SCFTs. Personally I do not see any reason why one could not have tensor
product of several N = 2SCAs with different central charges.

There are some objections against the idea of understanding the correlation functions of this
dynamics in terms of N = 2 SCA.

1. N = 2 SCA is claimed to require (2,2) signature for the metric of the target space in
stringy realization: in Minkowskian resp. Euclidian space-time regions the induced metric

http://tinyurl.com/yd2zqjvz
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has signature (1,-1,-1,-1) resp.(-1,-1,-1,-1). To my best understanding the target space is
associated with one particular realization so that this objection need not be crucial. Note
that also in twistor Grassmann approach (2,2) signature plays also special role making things
well-defined whereas in other signature one must apply Wick-rotation.

2. There is also an argument that N = 2 SCFTs reduce to topological QFTs. TGD is indeed
almost topological QFT and inside the string world sheets one expects the S-matrix to re-
duce to braiding S-matrix. The non-triviality of the scattering amplitudes would come from
topology: one could assign the points of n-points functions to the ends of different legs of the
diagrams.

The minimal models seem however to have the same symmetries as TGD and could therefore
give some idea about what might be expected. h = K/2 condition for the representations of
degenerate representations of N = 2 SCA follows if h corresponds to the actual conformal weight
of a massless state shifted to zero by redefinition of the scaling generator L0 by shift L0 → L0−h.
In the alternative picture this shift would map vacuum state with vanishing conformal weight to
that with negative conformal weight −h. If −h is sum over conformal weights −1/2 for the “wave

functions” at light-cone boundary are proportional to r
−1/2
M factor then it must be negative half

integer and one has h = K/2.
This picture conforms also with the hypothesis that the poles of fermionic zeta determine the

conformal weights for the generators of super-conformal symmetry with physical states assumed
to satisfy conformal confinement implying that the imaginary parts of generators of SCA remain
hidden. Note that the number of generators for the SCAs would be infinite unlike for ordinary
SCAs: this would be also due to the fact that symplectic group is infinite-dimensional. Conformal
confinement allows how the reduction of the conformal algebra at string world sheets to the ordinary
super-conformal algebra. Also thermalization would occur only for this algebra.

For these reasons it is interesting to look what one obtains now by applying h = K/2
condition

1. N = 2 super-conformal symmetry algebra (see http://tinyurl.com/yd2zqjvz) involving
besides Virasoro generators also generators for U(1) current and their super-counterparts is
a reasonable candidate in TGD framework where classical Kähler current is conserved. The
addition of right-handed neutrino or its antiparticle is an excellent candidate for generating
exact N = 2 space-time supersymmetry as super-gauge symmetry as already explained. The
conservation of quark and lepton numbers however allows to consider badly broken conformal
SUSY algebra with larger value of N .

2. The infinite-D symplectic algebra replaces the Kac-Moody algebra at light-cone boundary. At
the light-like orbits of partons one obtains the counterpart of Kac-Moody algebra associated
with the isometries of H and holonomies of CP2. One might hope that p-adic thermody-
namics involving only super-Virasoro generators is not affected at all by these complications.
The states of additional algebras would only define the ground states of the Kac-Moody
typ Super-Virasoro representations assignable to string world sheets (no thermalization in
super-symplectic nor Kac-Moody degrees of freedom would occur), and the quantum num-
bers in question would correspond to quantum numbers of massless particles with massive
excitations having mass scale defined by CP2 mass scale.

11.3.5 How to circumvent the signature objection against N = 2 SCFT?

As already noticed N = 2 SCA is claimed to require (2,2) signature for the metric of the target
space in the stringy realization. The problem is that N = 2 super-conformal symmetry requires
space-time to have complex structure. Could one circumvent this objection?

The first attempt is based on the observation that the notion of Kähler structure generalizes
in TGD framework to what I have called Hamilton-Jacobi structure. This means that the complex
structure is hybrid of hypercomplex structure in longitudinal tangent space M2 and of ordinary
complex structure in transversal space E2. The signature poses also problem in the definition of
twistor structure and is circumvented using this construction.

The second attempt is based on the twistor lift of Kähler action.

http://tinyurl.com/yd2zqjvz
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1. Pope et al [B59] (see http://tinyurl.com/jnon4fh) propose that one might start from 6-D
theory space-time signature (1,1,1-1,1,-1) with N = 2 supersymmetry and perform kind of
dimensional reduction freezing 2 time coordinates of a 6-D space to obtainN = 2 superstrings
in the resulting effectively 4-dimensional space-time with signature (1,-1,-1,-1).

2. The twistor lift of TGD replaces space-time surface with its 6-D twistor space. One can
choose the metric signature of the sphere S2 having radius of order Planck constant defining
the fiber of twistor space M4 × S2 to be (1,1) or (-1,-1). For (1,1) one obtains signature
(1,1,1,-1,-1,-1). Dimensional reduction is involved and the analog for the freezing of S2 time
dimensions takes place. This suggests that one could have N = 2 symmetry at the level of
twistor spaces of space-time surfaces.

3. These two approaches seem to be very closely related in TGD framework.

Third trial would be based on the idea that the signature of the effective metric defined by
the anticommutators of the modified gamma matrices appearing in modified Dirac action takes
care of the problem by giving signature (1,1,-1,-1) for the effective metric. The following argument
does not support this option.

1. In Kähler-Dirac action the modified gamma matrices define effective space-time metric Gαβ

via their anticommutators. The physical role of Gαβ has remained obscure. One has Gαβ =
Tαk T

beta
l hkl, where Tαk is the canonical momentum current.

2. There are two contributions to Tαk corresponding to Kähler action and extremely small vol-
ume term suggested by the twistor lift of Kähler action having interpretation in terms of
cosmological constant. Let us write Kähler action density as LK = kJµνJmuν

√
g/2 and

volume action density as Lvol = K
√
g. One can write Tαk as

Tαk = [Tαβ [g]gkβ + Tαβ [J ]Jk,β ,

gkβ = hkl∂βh
l , Jk,β = Jkl∂βh

l ,
(11.3.1)

The tensors appearing in this formula can be expressed in a concise notation as

T [g] = T [K, g] + T [vol, g] ,

T [K, g] = ∂LK
∂g ≡ k[J ◦ J − 1

4Tr(J ◦ J)
√
g ≡ TK,1 + TK,2 ,

T [vol, g] = ∂Lvol
∂g = K

2 g ,

T [J ] = ∂LK
∂J = kJ

√
g ,

(11.3.2)

◦ denotes product of tensors defined by contraction. Tαβ [g] is energy momentum tensor and
Tαβ [J ] = kJαβ is its analog coming from variations with respect to induced Kähler form.
The following formulas will be used.

gkµg
k
ν = gµν , gkµJ

k
ν = Jµν , JkµJ

k
ν = −sµν

(11.3.3)

Here s refers to CP2 metric. G can be written in compact notation as

http://tinyurl.com/jnon4fh
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G = G[g, g] +G[J, J ] + 2G[g, J ] ,

G[g, g] = T ◦ T ,

G[J, J ] = −T [J ] ◦ s ◦ T [J ] = −k2J ◦ s ◦ J × det(g) ,

G[g, J ] = T ◦ J ◦ T [J ] = kT ◦ J ◦ J ×√g = T ◦ TK,1 .

(11.3.4)

The expression for Gboils down to

G = 4TK,1 ◦ TK,1 + 4TK,1 ◦ TK,2 + TK,2 ◦ TK,2

− kJ ◦ s ◦ J +KTK,1 +
kK

2
T1K

+
K2

4
g . (11.3.5)

The terms are quartic, quadratic, and zeroth order in J . One should disentangle these terms
and be able to see whether the signature of G could be (1,1,-1,-1) in the vicinity of string
world sheets. I have not been able to identify any obvious mechanism.

11.3.6 The necessity of Kac-Moody algebra of SU(2)× U(1)

An interesting observation [B62] (see http://tinyurl.com/hdy66lt) is that the central charge
c = 3k/(k + 2) emerges by Sugawara construction of the (Super-)Virasoro algebra for SU(2) for
(Super-)Kac-Moody algebra with central charge k.

1. In the general case one has following expressions for the central charge c and ground state
weight h of the Super Virasoro algebra associated with Super-Kac-Moody algebra

c =
kdim(G)

k + g
,

h(λ) =
C(λ)

2(k + g)
. (11.3.6)

C is Casimir operator in representation λ of G and g is the dual Coxeter number (half of the
value of Casimir in fundamental representation).

2. If one accepts these formulas for c and h, the N = 2 SUSY fixes Kac-Moody group to
be SU(2) or possibly electroweak SU(2) × U(1) as physical intuition suggests. The value
c = 3k1/(k1 + 1) requires k = 2k1 and h = K/2 gives C(λ) = j(j + 1) = 2K(k1 + 1).

3. What is the interpretation of SU(2)? Electroweak SU(2) operating in fermionic electro-weak
spin degrees of freedom is a natural candidate and would require and also allow the inclusion
of also U(1) factor naturally identifiable as the U(1) charge of the N = 2 SCFT. In fact,
the detailed study of Ramond representations show that U(1) factor must contribute to the
ground state conformal weight in order to satisfy h = K/2 condition.

http://tinyurl.com/hdy66lt
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11.3.7 h = K/2 condition for Ramond representations

The question is whether h = K/2 suggested by the conformal invariance for the radial coordinate
at light-like boundary can be achieved for these representations. Consider first Ramond type
representations.

1. The condition on the allowed values h = K/2 of the ground state conformal weight gives

hab = a(a+2)−b2
4(k+2) + 1

8 = K
2 , 0 ≤ a ≤ k , b ≤ a+ 1 ,

Qab = b
2(k+2) −

1
4 .

(11.3.7)

Also the value of U(1) charge is given.

2. A possible manner to get rid of the problematic 1/8 term is to assume

− b2

4(k + 2)
+

1

8
= 0 (11.3.8)

satisfied under the conditions

k = 2k1 , b2 = k1 + 1 .

(11.3.9)

This fixes the spectrum of k1 to values 0, 3, 8, 15, 24, 35, ... and non-negative integer b satis-
fying |b− 1| < a determines the value of k1.

3. As a consequence, one obtains the condition

a(a+ 2)

4(k + 2)
=
K

2
. (11.3.10)

This condition can be satisfied if one has

a = k = K . (11.3.11)

Second option a = k + 2 = K − 2 does not satisfy the condition a ≤ k.

4. Altogether one obtains

k = 2k1 , k1 = b2 − 1 , a = k = K ≤ k ,

c = 3k1

k1+1 , Q = 1
4 ( 1
b − 1) .

(11.3.12)

U(1) charge is quantized unless one as b = 1 giving k1 = 0 so that one has also k = 0. One
can ask whether the fractionization of U(1) charge could relate to the charge fractionization
possibly related to the hierarchy of Planck constants and/or to the braid statistics. Should
one require that physical states have integer charge? Could conformal confinement imply
vanishing of ground state U(1) charge automatically? This is is true if complex conjugate
conformal weights correspond to opposite U(1) charges.
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It is interesting to see whether this picture is consistent with the predictions of the SU(2)×
U(1) Kac-Moody algebra option.

1. Ramond option corresponds naturally to the half-odd integers spin for the Super-Kac-Moody
associated with SU(2) as will be found. For physical reasons one can expect that also U(1)
tensor factor is present and adds to the vacuum conformal weight. From the general expres-
sion of the conformal weight one expects that the term 1/8 is this contribution.

This would suggests the condition in SU(2) degrees of freedom in terms of half odd integer
spin j = (2r + 1)/2

a(a+ 2)− b2

4(k + 2)
=
a(a+ 2)

4(k + 2)
− 1

8
=

(2r + 1)(2r + 3)

8(k + 2)
=
K

2
− 1

8
. (11.3.13)

This gives the conditions

2a(a+ 2)− k + 2 = (2r + 1)(2r + 3) , (2r+1)(2r+3)
k+2 = 4K − 1 . (11.3.14)

This condition can be satisfied if k+ 2 divides the numerator - say (2r+ 1) or (2r+ 3). The
conclusion is that the U(1) factor must be present, which in turn supports the interpretation
in terms of gauge group of electroweak interactions and extended holonomy group of CP2

needed to obtain respectable spinor structure.

11.3.8 h = K/2 condition for N-S type representations

One can look the situation also for the N-S type representations. In this case one expects that
spin is even. It is rather clear that the interpretation is in terms of sfermions is not correct. Spin
for N-S states is even, which encourages the interpretation as bosonic states involving fermion and
antifermion at same or opposite throats of wormhole contact.

1. The values of ground state conformal weight and U(1) charge are assumed to be given by

hab = a(a+2)−b2
4(k+2) = K

4 ,

Qab = b
2(k+2) .

(11.3.15)

2. In the case of SU(2) Kac-Moody algebra one would have hab = j(j+1)/2(k+2), which would
give

a(a+ 2)− b2 = 2j(j + 1) , j(j+1)
k+2 = K .

(11.3.16)

Two solutions of the latter equation are

• j = k + 2 giving k = K − 3 and j = K − 1

• j + 1 = k + 2 given k = K − 1 and j = K.

The values of jare integers as expected.
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3. The condition a(a + 2) − b2 = j(j + 1) gives a further number theoretic constraint. Special
solutions are a = j − 1, b = 0 and a = j = b2.

To sum up, N = 2 superconformal theories provide an attractive approach in attempts to
gain a more detailed understanding of the super-conformal invariance at string world sheets. The
fermionic n-point functions as restricted to string world sheets in turn could correspond to n-point
functions for a CFT assignable to partonic 2-surfaces and one should understand the relationship
between these two CFTs. More generally, strong form of holography allows to except CFT de-
scription for both the spin and orbital degrees of freedom of WCW and one should understand
their relationship. It must be however emphasized that the actual SCA in TGD corresponds to
the number N = ∀ of spin states for H-spinors. The corresponding space-time SUSY is expected
to be badly broken.
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Chapter 12

TGD variant of Twistor Story

12.1 Introduction

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough
is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of
twistor structure to that for 8-D imbedding space H = M4 ×CP2 is necessary. M4 (and S4 as its
Euclidian counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces
allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1) × U(1) and F3 defines
twistor space for the imbedding space H and one can ask whether this generalized twistor structure
could allow to understand both quantum TGD [K62, K71, K101] and classical TGD [K50] defined
by the extremals of Kähler action.

In the following I summarize first the basic results and problems of the twistor approach.
After that I describe some of the mathematical background and develop a proposal for how to
construct extremals of Kähler action in terms of the generalized twistor structure. One ends up
with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so that
the twistor spaces give an alternative representation for generalized Feynman diagrams having as
lines space-time surfaces with Euclidian signature of induced metric and having wormhole contacts
as basic building bricks.

There is also a very close analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds [A2, A90] and the modification recipe for Calabi-Yau manifolds by removal of
singularities can be applied to remove self-intersections of twistor spaces and mirror symme-
try [B21]emerges naturally. The overall important implication is that the methods of algebraic
geometry used in super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. Twistor space has space-time as
base-space rather than forming with it Cartesian factors of a 10-D space-time. The Calabi-Yau
landscape is replaced with the space of twistor spaces of space-time surfaces having interpretation
as generalized Feynman diagrams and twistor spaces as sub-manifolds of P3×F3 replace Witten’s
twistor strings [B33]. The space of twistor spaces is the lift of the “world of classical worlds”
(WCW) by adding the CP1 fiber to the space-time surfaces so that the analog of landscape has
beautiful geometrization.

The classical view about twistorialization of TGD makes possible a more detailed formula-
tion of the previous ideas about the relationship between TGD and Witten’s theory and twistor
Grassmann approach.

1. The notion of quaternion analyticity extending the notion of ordinary analyticity to 4-D
context is highly attractive but has remained one of the long-standing ideas difficult to take
quite seriously but equally difficult to throw to paper basked. Four-manifolds possess almost
quaternion structure. In twistor space context the formulation of quaternion analyticity be-
comes possible and relies on an old notion of tri-holomorphy about which I had not been aware
earlier. The natural formulation for the preferred extremal property is as a condition stating
that various charges associated with generalized conformal algebras vanish for preferred ex-
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tremals. This leads to ask whether Euclidian space-time regions could be quaternion-Kähler
manifolds for which twistor spaces are so called Fano spaces. In Minkowskian regions so
called Hamilton-Jacobi property would apply.

2. The generalization of Witten’s twistor theory to TGD framework is a natural challenge and
the 2-surfaces studied defining scattering amplitudes in Witten’s theory could correspond to
partonic 2-surfaces identified as algebraic surfaces characterized by degree and genus. Besides
this also string world sheets are needed. String worlds have 1-D lines at the light-like orbits
of partonic 2-surfaces as their boundaries serving as carriers of fermions. This leads to a
rather detailed generalization of Witten’s approach using the generalization of twistors to
8-D context.

3. The generalization of the twistor Grassmannian approach to 8-D context is second fascinating
challenge. If one requires that the basic formulas relating twistors and four-momentum
generalize one must consider the situation in tangent space M8 of imbedding space (M8−H
duality) and replace the usual sigma matrices having interpretation in terms of complexified
quaternions with octonionic sigma matrices.

The condition that octonionic spinors are are equivalent with ordinary spinors has strong
consequences. Induced spinors must be localized to 2-D string world sheets, which are (co-
)commutative sub-manifolds of (co-)quaternionic space-time surface. Also the gauge fields
should vanish since they induce a breaking of associativity even for quaternionic and complex
surface so that CP2 projection of string world sheet must be 1-D. If one requires also the
vanishing of gauge potentials, the projection is geodesic circle of CP2 so that string world
sheets are restricted to Minkowskian space-time regions. Although the theory would be free
in fermionic degrees of freedom, the scattering amplitudes are non-trivial since vertices cor-
respond to partonic 2-surfaces at which partonic orbits are glued together along common
ends. The classical light-like 8-momentum associated with the boundaries of string world
sheets defines the gravitational dual for 4-D momentum and color quantum numbers associ-
ated with imbedding space spinor harmonics. This leads to a more detailed formulation of
Equivalence Principle which would reduce to M8 −H duality basically.

Number theoretic interpretation of the positivity of Grassmannians is highly suggestive since
the canonical identification maps p-adic numbers to non-negative real numbers. A possible
generalization is obtained by replacing positive real axis with upper half plane defining hyper-
bolic space having key role in the theory of Riemann surfaces. The interpretation of scattering
amplitudes as representations of permutations generalizes to interpretation as braidings at
surfaces formed by the generalized Feynman diagrams having as lines the light-like orbits of
partonic surfaces. This because 2-fermion vertex is the only interaction vertex and induced
by the non-continuity of the induced Dirac operator at partonic 2-surfaces. OZI rule gener-
alizes and implies an interpretation in terms of braiding consistent with the TGD as almost
topological QFT vision. This suggests that non-planar twistor amplitudes are constructible
as analogs of knot and braid invariants by a recursive procedure giving as an outcome planar
amplitudes.

4. Yangian symmetry is associated with twistor amplitudes and emerges in TGD from com-
pletely different idea interpreting scattering amplitudes as representations of algebraic ma-
nipulation sequences of minimal length (preferred extremal instead of path integral over
space-time surfaces) connecting given initial and final states at boundaries of causal dia-
mond. The algebraic manipulations are carried out in Yangian using product and co-product
defining the basic 3-vertices analogous to gauge boson absorption and emission. 3-surface
representing elementary particle splits into two or vice versa such that second copy carries
quantum numbers of gauge boson or its super counterpart. This would fix the scattering
amplitude for given 3-surface and leave only the functional integral over 3-surfaces.

12.2 Background And Motivations

In the following some background plus basic facts and definitions related to twistor spaces are
summarized. Also reasons for why twistor are so relevant for TGD is considered at general level.
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12.2.1 Basic Results And Problems Of Twistor Approach

The author describes both the basic ideas and results of twistor approach as well as the problems.

Basic results

There are three deep results of twistor approach besides the impressive results which have emerged
after the twistor resolution.

1. Massless fields of arbitrary helicity in 4-D Minkowski space are in 1-1 correspondence with
elements of Dolbeault cohomology in the twistor space CP3. This was already the discovery
of Penrose..The connection comes from Penrose transform. The light-like geodesics of M4

correspond to points of 5-D sub-manifold of CP3 analogous to light-cone boundary. The
points of M4 correspond to complex lines (Riemann spheres) of the twistor space CP3: one
can imagine that the point of M4 corresponds to all light-like geodesics emanating from it
and thus to a 2-D surface (sphere) of CP3. Twistor transform represents the value of a
massless field at point of M4 as a weighted average of its values at sphere of CP3. This
correspondence is formulated between open sets of M4 and of CP3. This fits very nicely with
the needs of TGD since causal diamonds which can be regarded as open sets of M4 are the
basic objects in zero energy ontology (ZEO).

2. Self-dual instantons of non-Abelian gauge theories for SU(n) gauge group are in one-one
correspondence with holomorphic rank-N vector bundles in twistor space satisfying some
additional conditions. This generalizes the correspondence of Penrose to the non-Abelian
case. Instantons are also usually formulated using classical field theory at four-sphere S4

having Euclidian signature.

3. Non-linear gravitons having self-dual geometry are in one-one correspondence with spaces
obtained as complex deformations of twistor space satisfying certain additional conditions.
This is a generalization of Penrose’s discovery to the gravitational sector.

Complexification of M4 emerges unavoidably in twistorial approach and Minkowski space
identified as a particular real slice of complexified M4 corresponds to the 5-D subspace of twistor
space in which the quadratic form defined by the SU(2,2) invariant metric of the 8-dimensional
space giving twistor space as its projectivization vanishes. The quadratic form has also positive
and negative values with its sign defining a projective invariant, and this correspond to complex
continuations of M4 in which positive/negative energy parts of fields approach to zero for large
values of imaginary part of M4 time coordinate.

Interestgingly, this complexification of M4 is also unavoidable in the number theoretic ap-
proach to TGD: what one must do is to replace 4-D Minkowski space with a 4-D slice of 8-D
complexified quaternions. What is interesting is that real M4 appears as a projective invariant
consisting of light-like projective vectors of C4 with metric signature (4,4). Equivalently, the points
of M4 represented as linear combinations of sigma matrices define hermitian matrices.

Basic problems of twistor approach

The best manner to learn something essential about a new idea is to learn about its problems.
Difficulties are often put under the rug but the thesis is however an exception in this respect. It
starts directly from the problems of twistor approach. There are two basic challenges.

1. Twistor approach works as such only in the case of Minkowski space. The basic condition for
its applicability is that the Weyl tensor is self-dual. For Minkowskian signature this leaves
only Minkowski space under consideration. For Euclidian signature the conditions are not
quite so restrictive. This looks a fatal restriction if one wants to generalize the result of
Penrose to a general space-time geometry. This difficulty is known as “googly” problem.

According to the thesis MHV construction of tree amplitudes of N = 4 SYM based on topo-
logical twistor strings in CP3 meant a breakthrough and one can indeed understand also have
analogs of non-self-dual amplitudes. The problem is however that the gravitational theory
assignable to topological twistor strings is conformal gravity, which is generally regarded as
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non-physical. There have been several attempts to construct the on-shell scattering ampli-
tudes of Einstein’s gravity theory as subset of amplitudes of conformal gravity and also thesis
considers this problem.

2. The construction of quantum theory based on twistor approach represents second challenge.
In this respect the development of twistor approach to N = 4 SYM meant a revolution and
one can indeed construct twistorial scattering amplitudes in M4.

12.2.2 Results About Twistors Relevant For TGD

First some background.

1. The twistors originally introduced by Penrose (1967) have made breakthrough during last
decade. First came the twistor string theory of Edward Witten [B33] proposed twistor string
theory and the work of Nima-Arkani Hamed and collaborators [B38] led to a revolution in the
understanding of the scattering amplitudes of scattering amplitudes of gauge theories [B27,
B26, B39]. Twistors do not only provide an extremely effective calculational method giving
even hopes about explicit formulas for the scattering amplitudes of N = 4 supersymmetric
gauge theories but also lead to an identification of a new symmetry: Yangian symmetry
[A27], [B30, B31], which can be seen as multilocal generalization of local symmetries.

This approach, if suitably generalized, is tailor-made also for the needs of TGD. This is why I
got seriously interested on whether and how the twistor approach in empty Minkowski space
M4 could generalize to the case of H = M4 × CP2. The twistor space associated with H
should be just the cartesian product of those associated with its Cartesian factors. Can one
assign a twistor space with CP2?

2. First a general result [A63] deserves to be mentioned: any oriented manifold X with Riemann
metric allows 6-dimensional twistor space Z as an almost complex space. If this structure is
integrable, Z becomes a complex manifold, whose geometry describes the conformal geometry
of X. In general relativity framework the problem is that field equations do not imply
conformal geometry and twistor Grassmann approach certainly requires conformal structure.

3. One can consider also a stronger condition: what if the twistor space allows also Kähler
structure? The twistor space of empty Minkowski space M4 (and its Euclidian counterpart
S4 is the Minkowskian variant of P3 = SU(2, 2)/SU(2, 1)× U(1) of 3-D complex projective
space CP3 = SU(4)/SU(3)× U(1) and indeed allows Kähler structure.

The points of the Euclidian twistor space CP3 = SU(4)/SU(3)×U(1) can be represented by
any column of the 4×4 matrix representing element of SU(4) with columns differing by phase
multiplication being identified. One has four coordinate charts corresponding to four different
choices of the column. The points of its Minkowskian variant CP2,1 = SU(2, 2)/SU(2, 1) ×
U(1) can be represented in similar manner as U(1) gauge equivalence classes for given column
of SU(3,1) matrices, whose rows and columns satisfy orthonormality conditions with respect
to the hermitian inner product defined by Minkowskian metric ε = (1, 1,−1,−1).

Rather remarkably, there are no other space-times with Minkowski signature allowing twistor
space with Kähler structure [A63]. Does this mean that the empty Minkowski space of special
relativity is much more than a limit at which space-time is empty?

This also means a problem for GRT. Twistor space with Kähler structure seems to be needed
but general relativity does not allow it. Besides twistor problem GRT also has energy prob-
lem: matter makes space-time curved and the conservation laws and even the definition of
energy and momentum are lost since the underlying symmetries giving rise to the conservation
laws through Noether’s theorem are lost. GRT has therefore two bad mathematical problems
which might explain why the quantization of GRT fails. This would not be surprising since
quantum theory is to high extent representation theory for symmetries and symmetries are
lost. Twistors would extend these symmetries to Yangian symmetry but GRT does not allow
them.
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4. What about twistor structure in CP2? CP2 allows complex structure (Weyl tensor is self-
dual), Kähler structure plus accompanying symplectic structure, and also quaternion struc-
ture. One of the really big personal surprises of the last years has been that CP2 twistor space
indeed allows Kähler structure meaning the existence of antisymmetric tensor representing
imaginary unit whose tensor square is the negative of metric in turn representing real unit.

The article by Nigel Hitchin, a famous mathematical physicist, describes a detailed argument
identifying S4 and CP2 as the only compact Riemann manifolds allowing Kählerian twistor
space [A63]. Hitchin sent his discovery for publication 1979. An amusing co-incidence is that
I discovered CP2 just this year after having worked with S2 and found that it does not really
allow to understand standard model quantum numbers and gauge fields. It is difficult to
avoid thinking that maybe synchrony indeed a real phenomenon as TGD inspired theory of
consciousness predicts to be possible but its creator cannot quite believe. Brains at different
side of globe discover simultaneously something closely related to what some conscious self
at the higher level of hierarchy using us as instruments of thinking just as we use nerve cells
is intensely pondering.

Although 4-sphere S4 allows twistor space with Kähler structure, it does not allow Kähler
structure and cannot serve as candidate for S in H = M4 × S. As a matter of fact, S4 can
be seen as a Wick rotation of M4 and indeed its twistor space is CP3.

In TGD framework a slightly different interpretation suggests itself. The Cartesian products
of the intersections of future and past light-cones - causal diamonds (CDs) - with CP2 - play
a key role in ZEO (ZEO) [K4]. Sectors of “world of classical worlds” (WCW) [K34, K15]
correspond to 4-surfaces inside CD×CP2 defining a the region about which conscious observer
can gain conscious information: state function reductions - quantum measurements - take
place at its light-like boundaries in accordance with holography. To be more precise, wave
functions in the moduli space of CDs are involved and in state function reductions come as
sequences taking place at a given fixed boundary. This kind of sequence is identifiable as self
and give rise to the experience about flow of time. When one replaces Minkowski metric with
Euclidian metric, the light-like boundaries of CD are contracted to a point and one obtains
topology of 4-sphere S4.

5. Another really big personal surprise was that there are no other compact 4-manifolds with
Euclidian signature of metric allowing twistor space with Kähler structure! The imbedding
space H = M4×CP2 is not only physically unique since it predicts the quantum number spec-
trum and classical gauge potentials consistent with standard model but also mathematically
unique!

After this I dared to predict that TGD will be the theory next to GRT since TGD generalizes
string model by bringing in 4-D space-time. The reasons are many-fold: TGD is the only
known solution to the two big problems of GRT: energy problem and twistor problem. TGD
is consistent with standard model physics and leads to a revolution concerning the identifi-
cation of space-time at microscopic level: at macroscopic level it leads to GRT but explains
some of its anomalies for which there is empirical evidence (for instance, the observation
that neutrinos arrived from SN1987A at two different speeds different from light velocity [?]
has natural explanation in terms of many-sheeted space-time). TGD avoids the landscape
problem of M-theory and anthropic non-sense. I could continue the list but I think that this
is enough.

6. The twistor space of CP2 is 3-complex dimensional flag manifold F3 = SU(3)/U(1) × U(1)
having interpretation as the space for the choices of quantization axes for the color hyper-
charge and isospin. This choice is made in quantum measurement of these quantum numbers
and a means localization to single point in F3. The localization in F3 could be higher level
measurement leading to the choice of quantizations for the measurement of color quantum
numbers.

F3 is symmetric space meaning that besides being a coset space with SU(3) invariant metric
it also has involutions acting as a reflection at geodesics through a point remaining fixed
under the involution. As a symmetric space with Fubini-Study metric F3 is positive constant
curvature space having thus positive constant sectional curvatures. This implies Einstein
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space property. This also conforms with the fact that F3 is CP1 bundle over CP2 as base
space (for more details see http://tinyurl.com/ychdeqjz ).

The points of flag manifold SU(3)/U(1)×U(1) can be represented locally by identifying SU(3)
matrices for which columns differ by multiplication from left with exponential ei(aY+bI3), a
and b arbitrary real numbers. This transformation allows what might be called a “gauge
choice”. For instance, first two elements of the first row can be made real in this manner.
These coordinates are not global.

7. Analogous interpretation could make sense for M4 twistors represented as points of P3.
Twistor corresponds to a light-like line going through some point of M4 being labelled by 4
position coordinates and 2 direction angles: what higher level quantum measurement could
involve a choice of light-like line going through a point of M4? Could the associated spatial
direction specify spin quantization axes? Could the associated time direction specify preferred
rest frame? Does the choice of position mean localization in the measurement of position? Do
momentum twistors relate to the localization in momentum space? These questions remain
fascinating open questions and I hope that they will lead to a considerable progress in the
understanding of quantum TGD.

8. It must be added that the twistor space of CP2 popped up much earlier in a rather unexpected
context [K31]: I did not of course realize that it was twistor space. Topologist Barbara
Shipman [A37] has proposed a model for the honeybee dance leading to the emergence of
F3. The model led her to propose that quarks and gluons might have something to do with
biology. Because of her position and specialization the proposal was forgiven and forgotten
by community. TGD however suggests both dark matter hierarchies and p-adic hierarchies of
physics [K22, K106]. For dark hierarchies the masses of particles would be the standard ones
but the Compton scales would be scaled up by heff/h = n [K106]. Below the Compton scale
one would have effectively massless gauge boson: this could mean free quarks and massless
gluons even in cell length scales. For p-adic hierarchy mass scales would be scaled up or
down from their standard values depending on the value of the p-adic prime.

12.2.3 Basic Definitions Related To Twistor Spaces

One can find from web several articles explaining the basic notions related to twistor spaces and
Calabi-Yau manifolds. At the first look the notions of twistor as it appears in the writings of
physicists and mathematicians don’t seem to have much common with each other and it requires
effort to build the bridge between these views. The bridge comes from the association of points of
Minkowski space with the spheres of twistor space: this clearly corresponds to a bundle projection
from the fiber to the base space, now Minkowski space. The connection of the mathematician’s
formulation with spinors remains still somewhat unclear to me although one can understand CP1

as projective space associated with spinors with 2 complex components. Minkowski signature poses
additional challenges. In the following I try my best to summarize the mathematician’s view, which
is very natural in classical TGD.

There are many variants of the notion of twistor depending on whether how powerful as-
sumptions one is willing to make. The weakest definition of twistor space is as CP1 bundle of
almost complex structures in the tangent spaces of an orientable 4-manifold. Complex structure
at given point means selection of antisymmetric form J whose natural action on vector rotates a
vector in the plane defined by it by π/2 and thus represents the action of imaginary unit. One must
perform this kind of choice also in normal plane and the direct sum of the two choices defines the
full J . If one chooses J to be self-dual or anti-self-dual (eigenstate of Hodge star operation), one
can fix J uniquely. Orientability makes possible the Hodge star operation involving 4-dimensional
permutation tensor.

The condition i1 = −1 is translated to the condition that the tensor square of J equals to
J2 = −g. The possible choices of J span sphere S2 defining the fiber of the twistor spaces. This is
not quite the complex sphere CP1, which can be thought of as a projective space of spinors with
two complex components. Complexification must be performed in both the tangent space of X4

and of S2. Note that in the standard approach to twistors the entire 6-D space is projective space
P3 associated with the C8 having interpretation in terms of spinors with 4 complex components.

http://tinyurl.com/ychdeqjz
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One can introduce almost complex structure also to the twistor space itself by extending
the almost complex structure in the 6-D tangent space obtained by a preferred choice of J by
identifying it as a point of S2 and acting in other points of S2 identified as antisymmetric tensors.
If these points are interpreted as imaginary quaternion units, the action is commutator action
divided by 2. The existence of quaternion structure of space-time surfaces in the sense as I have
proposed in TGD framework might be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex struc-
ture is characterized by a hermitian Kähler form ω defining the almost complex structure of the
twistor space. Three basic objects are involved: the hermitian form h, metric g and Kähler form
ω satisfying h = g + iω, g(X,Y ) = ω(X, JY ).

In the base space the metric of twistor space is the metric of the base space and in the
tangent space of fibre the natural metric in the space of antisymmetric tensors induced by the
metric of the base space. Hence the properties of the twistor structure depend on the metric of
the base space.

The relationship to the spinors requires clarification. For 2-spinors one has natural Lorentz
invariant antisymmetric bilinear form and this seems to be the counterpart for J?

One can consider various additional conditions on the definition of twistor space.

1. Kähler form ω is not closed in general. If it is, it defines symplectic structure and Kähler
structure. S4 and CP2 are the only compact spaces allowing twistor space with Kähler
structure [A63].

2. Almost complex structure is not integrable in general. In the general case integrability
requires that each point of space belongs to an open set in which vector fields of type (1,
0) or (0, 1) having basis ∂/∂zk and ∂/∂zk expressible as linear combinations of real vector
fields with complex coefficients commute to vector fields of same type. This is non-trivial
conditions since the leading names for the vector field for the partial derivatives does not yet
guarantee these conditions.

This necessary condition is also enough for integrability as Newlander and Nirenberg have
demonstrated. An explicit formulation for the integrability is as the vanishing of Nijenhuis
tensor associated with the antisymmetric form J (see (http://tinyurl.com/ybp9vsa5 and
http://tinyurl.com/y8j36p4m ). Nijenhuis tensor characterizes Nijenhuis bracket gener-
alizing ordinary Lie bracket of vector fields (for detailed formula see http://tinyurl.com/

y83mbnso ).

3. In the case of twistor spaces there is an alternative formulation for the integrability. Curvature
tensor maps in a natural manner 2-forms to 2-forms and one can decompose the Weyl tensor
W identified as the traceless part of the curvature tensor to self-dual and anti-self-dual parts
W+ and W−, whose actions are restricted to self-dual resp. antiself-dual forms (self-dual
and anti-self-dual parts correspond to eigenvalue + 1 and -1 under the action of Hodge ∗

operation: for more details see http://tinyurl.com/ybkhj4np ). If W+ or W− vanishes
- in other worlds W is self-dual or anti-self-dual - the assumption that J is self-dual or
anti-self-dual guarantees integrability. One says that the metric is anti-self-dual (ASD).
Note that the vanishing of Weyl tensor implies local conformal flatness (M4 and sphere are
obviously conformally flat). One might think that ASD condition guarantees that the parallel
translation leaves J invariant.

ASD property has a nice implication: the metric is balanced. In other words one has d(ω ∧
ω) = 2ω ∧ dω = 0.

4. If the existence of complex structure is taken as a part of definition of twistor structure, one
encounters difficulties in general relativity. The failure of spin structure to exist is similar
difficulty: for CP2 one must indeed generalize the spin structure by coupling Kähler gauge
potential to the spinors suitably so that one obtains gauge group of electroweak interactions.

5. One could also give up the global existence of complex structure and require symplectic
structure globally: this would give dω = 0. A general result is that hyperbolic 4-manifolds
allow symplectic structure and ASD manifolds allow complex structure and hence balanced
metric.

http://tinyurl.com/ybp9vsa5 
http://tinyurl.com/y8j36p4m
http://tinyurl.com/y83mbnso
http://tinyurl.com/y83mbnso
http://tinyurl.com/ybkhj4np
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12.2.4 Why Twistor Spaces With Kähler Structure?

I have not yet even tried to answer an obvious question. Why the fact that M4 and CP2 have
twistor spaces with Kähler structure could be so important that it could fix the entire physics?
Let us consider a less general question. Why they would be so important for the classical TGD -
exact part of quantum TGD - defined by the extremals of Kähler action [K7] ?

1. Properly generalized conformal symmetries are crucial for the mathematical structure of
TGD [K15, K88, K14, K76]. Twistor spaces have almost complex structure and in these
two special cases also complex, Kähler, and symplectic structures (note that the integrability
of the almost complex structure to complex structure requires the self-duality of the Weyl
tensor of the 4-D manifold).

For years ago I considered the possibility that complex 3-manifolds of CP3×CP3 could have
the structure of S2 fiber space and have space-time surfaces as base space. I did not realize
that these spaces could be twistor spaces nor did I realize that CP2 allows twistor space with
Kähler structure so that CP3 × F3 looks a more plausible choice.

The expectation was that the Cartesian product CP3 × F3 of the two twistor spaces with
Kähler structure is fundamental for TGD. The obvious wishful thought is that this space
makes possible the construction of the extremals of Kähler action in terms of holomorphic
surfaces defining 6-D twistor sub-spaces of CP3 × F3 allowing to circumvent the technical
problems due to the signature of M4 encountered at the level of M4 × CP2. It would also
make the magnificent machinery of the algebraic geometry so powerful in string theories
a tool of TGD. Here CP3 could be replaced with its non-compact form and the problem
is that one can have only compactification of M4 for which metric is defined only modulo
conformal scaling. There is however a problem: the compactified Minkowski space or its
complexification has a metric defined only modulo conformal factor. This is not a problem
in conformally invariant theories but becomes a problem if one wants to speak of induced
metric.

The next realization was that M4 allows twistor bundle also in purely geometric sense and
this bundle is just T (M4) = M4 × CP2. The two variants of twistor space would naturally
apply at the level of momentum space and imbedding space.

2. Every 4-D orientable Riemann manifold allows a twistor space as 6-D bundle with CP1 as fiber
and possessing almost complex structure. Metric and various gauge potentials are obtained
by inducing the corresponding bundle structures. Hence the natural guess is that the twistor
structure of space-time surface defined by the induced metric is obtained by induction from
that for T (M4) × F3 by restricting its twistor structure to a 6-D (in real sense) surface
of T (M4) × F3 with a structure of twistor space having at least almost complex structure
with CP1 as a fiber. For the imbedding of the twistor space of space-time this requires the
identification of S2 fibers of T (M4) and F3. If so then one can indeed identify the base space
as 4-D space-time surface in M4 × CP2 using bundle projections in the factors T (M4) and
F3.

3. There might be also a connection to the number theoretic vision about the extremals of Kähler
action. At space-time level however complexified quaternions and octonions could allow
alternative formulation. I have indeed proposed that space-time surfaces have associative of
co-associative meaning that the tangent space or normal space at a given point belongs to
quaternionic subspace of complexified octonions.

12.3 The Identification Of 6-D Twistor Spaces As Sub-Manifolds
Of 12-D Twistor Space

How to identify the 6-D sub-manifolds with the structure of twistor space? Is this property all
that is needed? Can one find a simple solution to this condition? What is the relationship of
twistor spaces to the Calabi-Yau manifolds of super string models? In the following intuitive
considerations of a simple minded physicist. Mathematician could probably make much more
interesting comments.
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12.3.1 Conditions For Twistor Spaces As Sub-Manifolds

Consider the conditions that must be satisfied using local trivializations of the twistor spaces. It
will be assumed that the twistor space T (M4) is CP3 or its Minkowskian variant. It has turned
out that a more reasonable option T (M4) = M4 × CP1 is possible. The following consideration
is however for CP3 option. Before continuing let us introduce complex coordinates zi = xi + iyi
resp. wi = ui + ivi for CP3 resp. F3.

1. 6 conditions are required and they must give rise by bundle projection to 4 conditions relating
the coordinates in the Cartesian product of the base spaces of the two bundles involved and
thus defining 4-D surface in the Cartesian product of compactified M4 and CP2.

2. One has Cartesian product of two fiber spaces with fiber CP1 giving fiber space with fiber
CP 1

1 × CP 2
1 . For the 6-D surface the fiber must be CP1. It seems that one must identify

the two spheres CP i1. Since holomorphy is essential, holomorphic identification w1 = f(z1)
or z1 = f(w1) is the first guess. A stronger condition is that the function f is meromorphic
having thus only finite numbers of poles and zeros of finite order so that a given point of CP i1
is covered by CP i+1

1 . Even stronger and very natural condition is that the identification is
bijection so that only Möbius transformations parametrized by SL(2, C) are possible.

3. Could the Möbius transformation f : CP 1
1 → CP 2

1 depend parametrically on the coordinates
z2, z3 so that one would have w1 = f1(z1, z2, z3), where the complex parameters a, b, c, d
(ad − bc = 1) of Möbius transformation depend on z2 and z3 holomorphically? Does this
mean the analog of local SL(2, C) gauge invariance posing additional conditions? Does this
mean that the twistor space as surface is determined up to SL(2, C) gauge transformation?

What conditions can one pose on the dependence of the parameters a, b, c, d of the Möbius
transformation on (z2, z3)? The spheres CP1 defined by the conditions w1 = f(z1, z2, z3)
and z1 = g(w1, w2, w3) must be identical. Inverting the first condition one obtains z1 =
f−1(w1, z2, z3). If one requires that his allows an expression as z1 = g(w1, w2, w3), one must
assume that z2 and z3 can be expressed as holomorphic functions of (w2, w3): zi = fi(wk),
i = 2, 3, k = 2, 3. Of course, non-holomorphic correspondence cannot be excluded.

4. Further conditions are obtained by demanding that the known extremals - at least non-
vacuum extremals - are allowed. The known extremals [K7] can be classified into CP2

type vacuum extremals with 1-D light-like curve as M4 projection, to vacuum extremals
with CP2 projection, which is Lagrangian sub-manifold and thus at most 2-dimensional, to
massless extremals with 2-D CP2 projection such that CP2 coordinates depend on arbitrary
manner on light-like coordinate defining local propagation direction and space-like coordinate
defining a local polarization direction, and to string like objects with string world sheet as
M4 projection (minimal surface) and 2-D complex sub-manifold of CP2 as CP2 projection, .
There are certainly also other extremals such as magnetic flux tubes resulting as deformations
of string like objects. Number theoretic vision relying on classical number fields suggest a
very general construction based on the notion of associativity of tangent space or co-tangent
space.

5. The conditions coming from these extremals reduce to 4 conditions expressible in the holo-
morphic case in terms of the base space coordinates (z2, z3) and (w2, w3) and in the more
general case in terms of the corresponding real coordinates. It seems that holomorphic ansatz
is not consistent with the existence of vacuum extremals, which however give vanishing contri-
bution to transition amplitudes since WCW (“world of classical worlds”) metric is completely
degenerate for them.

The mere condition that one has CP1 fiber bundle structure does not force field equations
since it leaves the dependence between real coordinates of the base spaces free. Of course,
CP1 bundle structure alone does not imply twistor space structure. One can ask whether
non-vacuum extremals could correspond to holomorphic constraints between (z2, z3) and
(w2, w3).

6. The metric of twistor space is not Kähler in the general case. However, if it allows complex
structure there is a Hermitian form ω, which defines what is called balanced Kähler form [A89]
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satisfying d(ω ∧ ω) = 2ω ∧ dω = 0: ordinary Kähler form satisfying dω = 0 is special case
about this. The natural metric of compact 6-dimensional twistor space is therefore balanced.
Clearly, mere CP1 bundle structure is not enough for the twistor structure. If the Kähler
and symplectic forms are induced from those of CP3 × Y3, highly non-trivial conditions are
obtained for the imbedding of the twistor space, and one might hope that they are equivalent
with those implied by Kähler action at the level of base space.

7. Pessimist could argue that field equations are additional conditions completely independent
of the conditions realizing the bundle structure! One cannot exclude this possibility. Mathe-
matician could easily answer the question about whether the proposed CP1 bundle structure
with some added conditions is enough to produce twistor space or not and whether field
equations could be the additional condition and realized using the holomorphic ansatz.

12.3.2 Twistor Spaces By Adding CP1 Fiber To Space-Time Surfaces

The physical picture behind TGD is the safest starting point in an attempt to gain some idea
about what the twistor spaces look like.

1. Canonical imbeddings of M4 and CP2 and their disjoint unions are certainly the natural
starting point and correspond to canonical imbeddings of CP3 and F3 to CP3 × F3.

2. Deformations of M4 correspond to space-time sheets with Minkowskian signature of the
induced metric and those of CP2 to the lines of generalized Feynman diagrams. The simplest
deformations of M4 are vacuum extremals with CP2 projection which is Lagrangian manifold.

Massless extremals represent non-vacuum deformations with 2-D CP2 projection. CP2 co-
ordinates depend on local light-like direction defining the analog of wave vector and local
polarization direction orthogonal to it.

The simplest deformations of CP2 are CP2 type extremals with light-like curve as M4 projec-
tion and have same Kähler form and metric as CP2. These space-time regions have Euclidian
signature of metric and light-like 3-surfaces separating Euclidian and Minkowskian regions
define parton orbits.

String like objects are extremals of type X2 × Y 2, X2 minimal surface in M4 and Y 2 a
complex sub-manifold of CP2. Magnetic flux tubes carrying monopole flux are deformations
of these.

Elementary particles are important piece of picture. They have as building bricks wormhole
contacts connecting space-time sheets and the contacts carry monopole flux. This requires
at least two wormhole contacts connected by flux tubes with opposite flux at the parallel
sheets.

3. Space-time surfaces are constructed using as building bricks space-time sheets, in particular
massless exrremals, deformed pieces of CP2 defining lines of generalized Feynman diagrams
as orbits of wormhole contacts, and magnetic flux tubes connecting the lines. Space-time
surfaces have in the generic case discrete set of self intersections and it is natural to remove
them by connected sum operation. Same applies to twistor spaces as sub-manifolds of CP3×
F3 and this leads to a construction analogous to that used to remove singularities of Calabi-
Yau spaces [A89].

Physical intuition suggests that it is possible to find twistor spaces associated with the basic
building bricks and to lift this engineering procedure to the level of twistor space in the sense that
the twistor projections of twistor spaces would give these structure. Lifting would essentially mean
assigning CP1 fiber to the space-time surfaces.

1. Twistor spaces should decompose to regions for which the metric induced from the CP3×F3

metric has different signature. In particular, light-like 5-surfaces should replace the light-like
3-surfaces as causal horizons. The signature of the Hermitian metric of 4-D (in complex
sense) twistor space is (1, 1, -1, -1). Minkowskian variant of CP3 is defined as projective
space SU(2, 2)/SU(2, 1)× U(1). The causal diamond (CD) (intersection of future and past
directed light-cones) is the key geometric object in ZEO (ZEO) and the generalization to the
intersection of twistorial light-cones is suggestive.
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2. Projective twistor space has regions of positive and negative projective norm, which are
3-D complex manifolds. It has also a 5-dimensional sub-space consisting of null twistors
analogous to light-cone and has one null direction in the induced metric. This light-cone has
conic singularity analogous to the tip of the light-cone of M4.

These conic singularities are important in the mathematical theory of Calabi-You manifolds
since topology change of Calabi-Yau manifolds via the elimination of the singularity can be
associated with them. The S2 bundle character implies the structure of S2 bundle for the
base of the singularity (analogous to the base of the ordinary cone).

3. Null twistor space corresponds at the level of M4 to the light-cone boundary (causal diamond
has two light-like boundaries). What about the light-like orbits of partonic 2-surfaces whose
light-likeness is due to the presence of CP2 contribution in the induced metric? For them
the determinant of induced 4-metric vanishes so that they are genuine singularities in metric
sense. The deformations for the canonical imbeddings of this sub-space (F3 coordinates
constant) leaving its metric degenerate should define the lifts of the light-like orbits of partonic
2-surface. The singularity in this case separates regions of different signature of induced
metric.

It would seem that if partonic 2-surface begins at the boundary of CD, conical singularity
is not necessary. On the other hand the vertices of generalized Feynman diagrams are 3-
surfaces at which 3-lines of generalized Feynman digram are glued together. This singularity
is completely analogous to that of ordinary vertex of Feynman diagram. These singularities
should correspond to gluing together 3 deformed F3 along their ends.

4. These considerations suggest that the construction of twistor spaces is a lift of construction
space-time surfaces and generalized Feynman diagrammatics should generalize to the level of
twistor spaces. What is added is CP1 fiber so that the correspondence would rather concrete.

5. For instance, elementary particles consisting of pairs of monopole throats connected buy
flux tubes at the two space-time sheets involved should allow lifting to the twistor level.
This means double connected sum and this double connected sum should appear also for
deformations of F3 associated with the lines of generalized Feynman diagrams. Lifts for the
deformations of magnetic flux tubes to which one can assign CP3 in turn would connect the
two F3s.

6. A natural conjecture inspired by number theoretic vision is that Minkowskian and Euclidian
space-time regions correspond to associative and co-associative space-time regions. At the
level of twistor space these two kinds of regions would correspond to deformations of CP3

and F3. The signature of the twistor norm would be different in this regions just as the
signature of induced metric is different in corresponding space-time regions.

These two regions of space-time surface should correspond to deformations for disjoint unions
of CP3s and F3s and multiple connected sum form them should project to multiple connected
sum (wormhole contacts with Euclidian signature of induced metric) for deformed CP3s.
Wormhole contacts could have deformed pieces of F3 as counterparts.

There are interesting questions related to the detailed realization of the twistor spaces of
space-time surfaces.

1. In the case of CP2 J would naturally correspond to the Kähler form of CP2. Could one
identify J for the twistor space associated with space-time surface as the projection of J?
For deformations of CP2 type vacuum extremals the normalization of J would allow to satisfy
the condition J2 = −g. For general extremals this is not possible. Should one be ready to
modify the notion of twistor space by allowing this?

2. Or could the associativity/co-associativity condition realized in terms of quaternionicity of
the tangent or normal space of the space-time surface guaranteeing the existence of quaternion
units solve the problem and J could be identified as a representation of unit quaternion? In
this case J would be replaced with vielbein vector and the decomposition 1+3 of the tangent
space implied by the quaternion structure allows to use 3-dimensional permutation symbol



450 Chapter 12. TGD variant of Twistor Story

to assign antisymmetric tensors to the vielbein vectors. Also the triviality of the tangent
bundle of 3-D space allowing global choices of the 3 imaginary units could be essential.

3. Does associativity/co-associativity imply twistor space property or could it provide alterna-
tive manner to realize this notion? Or could one see quaternionic structure as an extension of
almost complex structure. Instead of single J three orthogonal J : s (3 almost complex struc-
tures) are introduced and obey the multiplication table of quaternionic units? Instead of S2

the fiber of the bundle would be SO(3) = S3. This option is not attractive. A manifold with
quaternionic tangent space with metric representing the real unit is known as quaternionic
Riemann manifold and CP2 with holonomy U(2) is example of it. A more restrictive condition
is that all quaternion units define closed forms: one has quaternion Kähler manifold, which is
Ricci flat and has in 4-D case Sp(1)=SU(2) holonomy. (see http://tinyurl.com/y9qtoebe

).

4. Anti-self-dual property (ASD) of metric guaranteeing the integrability of almost complex
structure of the twistor space implies the condition ω ∧ dω = 0 for the twistor space. What
does this condition mean physically for the twistor spaces associated with the extremals of
Kähler action? For the 4-D base space this property is of course identically true. ASD
property need of course not be realized.

12.3.3 Twistor Spaces As Analogs Of Calabi-Yau Spaces Of Super String
Models

CP3 is also a Calabi-Yau manifold in the strong sense that it allows Kähler structure and complex
structure. Witten’s twistor string theory considers 2-D (in real sense) complex surfaces in twistor
space CP3 or its Minkowskian variant. This choice does not however seem to be natural from the
point of view of the induced geometry although it looks natural at the level of momentum space.
It is less well-known that M4 allows also second twistor space T (M4) = M4×CP1, and this looks
very natural concerning twistor lift of TGD replacing space-time surfaces in H with their twistor
spaces in T (H) = T (M4)× T (CP2).

The original identification T (M4) with CP3 or its Minkowskian variant has been given up
bit it inspired some questions discussed in the sequel.

1. Could TGD in twistor space formulation be seen as a generalization of this theory?

2. General twistor space is not Calabi-Yau manifold because it does does not have Kähler
structure. Do twistor spaces replace Calabi-Yaus in TGD framework?

3. Could twistor spaces be Calabi-Yau manifolds in some weaker sense so that one would have
a closer connection with super string models.

Consider the last question.

1. One can indeed define non-Kähler Calabi-Yau manifolds by keeping the hermitian metric and
giving up symplectic structure or by keeping the symplectic structure and giving up hermitian
metric (almost complex structure is enough). Construction recipes for non-Kähler Calabi-
Yau manifold are discussed in [A89]. It is shown that these two manners to give up Kähler
structure correspond to duals under so called mirror symmetry [B21] which maps complex
and symplectic structures to each other. This construction applies also to the twistor spaces.

2. For the modification giving up symplectic structure, one starts from a smooth Kähler Calabi-
Yau 3-fold Y , such as CP3. One assumes a discrete set of disjoint rational curves diffeomor-
phic to CP1. In TGD framework work they would correspond to special fibers of twistor
space.

One has singularities in which some rational curves are contracted to point - in twistorial case
the fiber of twistor space would contract to a point - this produces double point singularity
which one can visualize as the vertex at which two cones meet (sundial should give an idea
about what is involved). One deforms the singularity to a smooth complex manifold. One
could interpret this as throwing away the common point and replacing it with connected sum

http://tinyurl.com/y9qtoebe
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contact: a tube connecting the holes drilled to the vertices of the two cones. In TGD one
would talk about wormhole contact.

3. Suppose the topology looks locally like S3 × S2 × R± near the singularity, such that two
copies analogous to the two halves of a cone (sundial) meet at single point defining double
point singularity. In the recent case S2 would correspond to the fiber of the twistor space. S3

would correspond to 3-surface and R± would correspond to time coordinate in past/future
direction. S3 could be replaced with something else.

The copies of S3×S2 contract to a point at the common end of R+ and R− so that both the
based and fiber contracts to a point. Space-time surface would look like the pair of future
and past directed light-cones meeting at their tips.

For the first modification giving up symplectic structure only the fiber S2 is contracted to a
point and S2 ×D is therefore replaced with the smooth ”bottom” of S3. Instead of sundial
one has two balls touching. Drill small holes two the two S3s and connect them by connected
sum contact (wormhole contact). Locally one obtains S3×S3 with k connected sum contacts.

For the modification giving up Hermitian structure one contracts only S3 to a point instead
of S2. In this case one has locally two CP3: s touching (one can think that CPn is obtained
by replacing the points of Cn at infinity with the sphere CP1). Again one drills holes and
connects them by a connected sum contact to get k-connected sum of CP3.

For k CP1s the outcome looks locally like to a k-connected sum of S3×S3 or CP3 with k ≥ 2.
In the first case one loses symplectic structure and in the second case hermitian structure.
The conjecture is that the two manifolds form a mirror pair.

The general conjecture is that all Calabi-Yau manifolds are obtained using these two modi-
fications. One can ask whether this conjecture could apply also the construction of twistor
spaces representable as surfaces in CP3 × F3 so that it would give mirror pairs of twistor
spaces.

4. This smoothing out procedures isa actually unavoidable in TGD because twistor space is
sub-manifold. The 6-D twistor spaces in 12-D T (M4) × F3 have in the generic case self
intersections consisting of discrete points. Since the fibers CP1 cannot intersect and since
the intersection is point, it seems that the fibers must contract to a point. In the similar
manner the 4-D base spaces should have local foliation by spheres or some other 3-D objects
with contract to a point. One has just the situation described above.

One can remove these singularities by drilling small holes around the shared point at the two
sheets of the twistor space and connected the resulting boundaries by connected sum contact.
The preservation of fiber structure might force to perform the process in such a manner that
local modification of the topology contracts either the 3-D base (S3 in previous example or
fiber CP1 to a point.

The interpretation of twistor spaces is of course totally different from the interpretation
of Calabi-Yaus in superstring models. The landscape problem of superstring models is avoided
and the multiverse of string models is replaced with generalized Feynman diagrams! Different
twistor spaces correspond to different space-time surfaces and one can interpret them in terms
of generalized Feynman diagrams since bundle projection gives the space-time picture. Mirror
symmetry means that there are two different Calabi-Yaus giving the same physics. Also now
twistor space for a given space-time surface can have several imbeddings - perhaps mirror pairs
define this kind of imbeddings.

To sum up, the construction of space-times as surfaces of H lifted to those of (almost)
complex sub-manifolds in T (M4)timesF3 with induced twistor structure shares the spirit of the
vision that induction procedure is the key element of classical and quantum TGD. It also gives
deep connection with the mathematical methods applied in super string models and these methods
should be of direct use in TGD.
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12.4 Witten’s Twistor String Approach And TGD

The twistor Grassmann approach has led to a phenomenal progress in the understanding of the
scattering amplitudes of gauge theories, in particular the N = 4 SUSY.

As a non-specialist I have been frustrated about the lack of concrete picture, which would
help to see how twistorial amplitudes might generalize to TGD framework. A pleasant surprise
in this respect was the proposal of a particle interpretation for the twistor amplitudes by Nima
Arkani Hamed et al in the article ”Unification of Residues and Grassmannian Dualities” [B40] (see
http://tinyurl.com/y86mad5n )

In this interpretation incoming particles correspond to spheres CP1 so that n-particle state
corresponds to (CP1)n/Gl(2) (the modding by Gl(2) might be seen as a kind of formal generaliza-
tion of particle identity by replacing permutation group S2 with Gl(2) of 2 × 2 matrices). If the
number of ”wrong” helicities in twistor diagram is k, this space is imbedded to CPnk−1/Gl(k) as a
surface having degree k − 1 using Veronese map to achieve the imbedding. The imbedding space
can be identified as Grassmannian G(k, n). This surface defines the locus of the multiple residue
integral defining the twistorial amplitude.

The particle interpretation brings in mind the extension of single particle configuration space
E3 to its Cartesian power E3n/Sn for n-particle system in wave mechanics. This description could
make sense when point-like particle is replaced with 3-surface or partonic 2-surface: one would
have Cartesian product of WCWs divided my Sn. The generalization might be an excellent idea
as far calculations are considered but is not in spirit with the very idea of string models and TGD
that many-particle states correspond to unions of 3-surfaces in H (or light-like boundaries of causal
diamond (CD) in Zero Energy Ontology (ZEO).

Witten’s twistor string theory [B33] is more in spirit with TGD at fundamental level since
it is based on the identification of generalization of vertices as 2-surfaces in twistor space.

1. There are several kinds of twistors involved. For massless external particles in eigenstates
of momentum and helicity null twistors code the momentum and helicity and are pairs of
2-spinor and its conjugate. More general momenta correspond to two independent 2-spinors.

One can perform twistor Fourier transform for the conjugate 2-spinor to obtain twistors
coding for the points of compactified Minkowski space. Wave functions in this twistor space
characterized by massless momentum and helicity appear in the construction of twistor ampli-
tudes. BCFW recursion relation [B26] allows to construct more complex amplitudes assuming
that intermediate states are on mass shells massless states with complex momenta.

One can perform twistor Fourier transformation (there are some technical problems in Minkowski
signature) also for the second 2-spinor to get what are called momentum twistors providing
in some aspects simpler description of twistor amplitudes. These code for the four-momenta
propagating between vertices at which the incoming particles arrive and the differences if
two subsequent momenta are equal to massless external momenta.

2. In Witten’s theory the interactions of incoming particles correspond to amplitudes in which
the twistors appearing as arguments of the twistor space wave functions characterized by
momentum and helicity are localized to complex curves X2 of twistor space CP3 or its
Minkowskian counterpart. This can be seen as a non-local twistor space variant of local
interactions in Minkowski space.

The surfaces X2 are characterized by their degree d (of the polynomial of complex coordinates
defining the algebraic 2-surface) the genus g of the algebraic surface, by the number k of
”wrong” (helicity violating) helicities, and by the number of loops of corresponding diagram
of SUSY amplitude: one has d = k − 1 + l, g ≤ l. The interaction vertex in twistor space is
not anymore completely local but the n particles are at points of the twistorial surface X2.

In the following a proposal generalizing Witten’s approach to TGD is discussed.

1. The fundamental challenge is the generalization of the notion of twistor associated with
massless particle to 8-D context, first for M4 = M4 ×E4 and then for H = M4 ×CP2. The
notion of twistor space solves this question at geometric level. As far as construction of the
TGD variant of Witten’s twistor string is considered, this might be quite enough.

http://tinyurl.com/y86mad5n
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2. M8 − H duality and quantum-classical correspondence however suggest that M8 twistors
might allow tangent space description of four-momentum, spin, color quantum numbers and
electroweak numbers and that this is needed. What comes in mind is the identification of
fermion lines as light-like geodesics possessing M8 valued 8-momentum, which would define
the long sought gravitational counterparts of four-momentum and color quantum numbers
at classical point-particle level. The M8 part of this four-momentum would be equal to
that associated with imbedding space spinor mode characterizing the ground state of super-
conformal representation for fundamental fermion.

Hence one might also think of starting from the 4-D condition relating Minkowski coordinates
to twistors and looking what it could mean in the case of M8. The generalization is indeed
possible in M8 = M4 × E4 by its flatness if one replaces gamma matrices with octonionic
gamma matrices.

In the case of M4 ×CP2 situation is different since for octonionic gamma matrices SO(1, 7)
is replaced with G2, and the induced gauge fields have different holonomy structure than for
ordinary gamma matrices and octonionic sigma matrides appearing as charge matrices bring
in also an additional source of non-associativity. Certainly the notion of the twistor Fourier
transform fails since CP2 Dirac operator cannot be algebraized.

Algebraic twistorialization however works for the light-like fermion lines at which the ordinary
and octonionic representations for the induced Dirac operator are equivalent. One can indeed
assign 8-D counterpart of twistor to the particle classically as a representation of light-like
hyper-octonionic four-momentum having massive M4 and CP2 projections and CP2 part
perhaps having interpretation in terms of classical tangent space representation for color and
electroweak quantum numbers at fermionic lines.

If all induced electroweak gauge fields - rather than only charged ones as assumed hitherto
- vanish at string world sheets, the octonionic representation is equivalent with the ordi-
nary one. The CP2 projection of string world sheet should be 1-dimensional: inside CP2

type vacuum extremals this is impossible, and one could even consider the possibility that
the projection corresponds to CP2 geodesic circle. This would be enormous technical sim-
plification. What is important that this would not prevent obtaining non-trivial scattering
amplitudes at elementary particle level since vertices would correspond to re-arrangement
of fermion lines between the generalized lines of Feynman diagram meeting at the vertices
(partonic 2-surfaces).

3. In the fermionic sector one is forced to reconsider the notion of the induced spinor field. The
modes of the imbedding space spinor field should co-incide in some region of the space-time
surface with those of the induced spinor fields. The light-like fermionic lines defined by the
boundaries of string world sheets or their ends are the obvious candidates in this respect.
String world sheets is perhaps too much to require.

The only reasonable identification of string world sheet gamma matrices is as induced gamma
matrices and super-conformal symmetry requires that the action contains string world sheet
area as an additional term just as in string models. String tension would correspond to
gravitational constant and its value - that is ratio to the CP2 radius squared, would be fixed
by quantum criticality.

4. The generalization of the Witten’s geometric construction of scattering amplitudes relying on
the induction of the twistor structure of the imbedding space to that associated with space-
time surface looks surprisingly straight-forward and would provide more precise formulation
of the notion of generalized Feynman diagrams forcing to correct some wrong details. One of
the nice outcomes is that the genus appearing in Witten’s formulation naturally corresponds
to family replication in TGD framework.

12.4.1 Basic Ideas About Twistorialization Of TGD

The recent advances in understanding of TGD motive the attempt to look again for how twistor
amplitudes could be realized in TGD framework. There have been several highly non-trivial steps
of progress leading to a new more profound understanding of basic TGD.
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1. M4×CP2 is twistorially unique [K76] in the sense that its factors are the only 4-D geometries
allowing twistor space with Kähler structure (M4 corresponds to S4 in Euclidian signature)
[A63]. The twistor spaces in question are CP3 for S4 and its Minkowskian variant for M4 (I
will use P 3 as short hand for both twistor spaces) and the flag manifold F = SU(3)/U(1)×
U(1) parametrizing the choices of quantization axes for color group SU(3) in the case of CP2.
Recall that twistor spaces are S2 bundles over the base space and that all orientable four-
manifolds have twistor space in this sense. Note that space-time surfaces allow always almost
quaternionic structure and that that preferred extremals are suggested to be quaternionic
[K76].

2. The light-likeness condition for twistors in M4 is fundamental in the ordinary twistor ap-
proach. In 8-D context light-likeness holds in generalized sense for the spinor harmonics of
H: the square of the Dirac operator annihilates spinor modes. In the case M8 one can indeed
define twistors by generalizing the standard approach by replacing ordinary gamma matrices
with octonionic ones [?] For H octonionic and ordinary gamma matrices are equivalent at
the fermionic lines defined by the light-like boundaries of string world sheets and at string
world sheets if they carry vanishing induced electro-weak gauge fields that is have 1-D CP2

projection.

3. Twistor spaces emerge in TGD framework as lifts of space-time surfaces to corresponding
twistor spaces realized as 6-surfaces in the lift of M4 × CP2 to T (H) = P 3 × F having as
base spaces space-time surfaces. This implies that that generalized Feynman diagrams and
also generalized twistor diagrams can be lifted to diagrams in T and that the construction
of twistor spaces as surfaces of T has very concrete particle interpretation.

The modes of the imbedding space spinor field defining ground states of the extended con-
formal algebras for which classical conformal charges vanish at the ends of the space-time
surface (this defines gauge conditions realizing strong form of holography [K88] ) are lifted to
the products of modes of spinor fields in T (H) characterized by four-momentum and helicity
in M4 degrees of freedom and by color quantum numbers and electroweak quantum numbers
in F degrees of freedom. Thus twistorialization provides a purely geometric representation of
spin and electro-weak spin and it seems that twistorialization allows to a formulation without
H-spinors.

What is especially nice, that twistorialization extends to from spin to include also electroweak
spin. These two spins correspond correspond to M4 and CP2 helicities for the twistor space
amplitude, and are non-local properties of these amplitudes. In TGD framework only twistor
amplitudes for which helicities correspond to that for massless fermion and antifermion are
possible and by fermion number conservation the numbers of positive and negative helicities
are identical and equal to the fermion number (or antifermion number). Separate lepton
and baryon number conservation realizing 8-D chiral symmetry implies that M4 and CP2

helicities are completely correlated.

For massless fermions in M4 sense helicity is opposite for fermion and antifermion and con-
served. The contributions of initial and final states to k are same and equal to ki = kf =
2(n(F ) − n(F ). This means restriction to amplitudes with k = 2(n(F ) − n(F ). If fermions
are massless only in M8 sense, chirality mixing occurs and this rule does not hold anymore.
This holds true in quark and lepton sector separately.

4. All generalized Feynman graphs defined in terms of Euclidian regions of space-time surface
are lifted to twistor spaces [K14]. Incoming particles correspond quantum mechanically to
twistor space amplitudes defined by their momenta and helicities and and classically to the
entire twistor space of space-time surface as a surface in the twistor space of H. Of course,
also the Minkowskian regions have this lift. The vertices of Feynman diagrams correspond to
regions of twistor space in which the incoming twistor spaces meet along their 5-D ends having
also S2 bundle structure over space-like 3-surfaces. These space-like 3-surfaces correspond to
ends of Euclidian and Minkowskian space-time regions separated from each other by light-
like 3-surfaces at which the signature of the metric changes from Minkowskian to Euclidian.
These ”partonic orbits” have as their ends 2-D partonic surfaces. By strong form of General
Coordinate Invariance implying strong of holography, these 2-D partonic surfaces and their
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4-D tangent space data should code for quantum physics. Their lifts to twistor space are 4-D
S2 bundles having partonic 2-surface X2 as base.

5. The well-definedness of em charge for the spinor modes demands that they are localized at
2-D string world sheets [K88] and also these world sheets are lifted to sub-spaces of twistor
space of space-time surface. If one demands that octonionic Dirac operator makes sense at
string world sheets, they must carry vanishing induced electro-weak gauge fields and string
world sheets could be minimal surfaces in M4 × S1, S1 ⊂ CP2 a geodesic circle.

The boundaries of string world sheets at partonic orbits define light-like curves identifiable
as carriers of fermion number and they define the analogs of lines of Feynman diagrams in
ordinary sense. The only purely fermionic vertices are 2-fermion vertices at the partonic 2-
surfaces at which the end of space-time surface meet. As already explained, the string world
sheets can be seen as correlates for the correlations between fermion vertices at different
wormhole throats giving rise to the counterpart of bosonic propagator in quantum field
theories.

The localization of spinor fields to 2-D string world sheets corresponds to the localization
of twistor amplitudes to their 4-D lifts, which are S2 bundles and the boundaries of string
world sheets are lifted to 3-D twistor lifts of fermion lines. Clearly, the localization of spinors
to string world sheets would be absolutely essential for the emergence of twistor description.

6. All elementary particles are many particle bound states of massless fundamental fermions: the
non-collinearity (and possible complex character) of massless momenta explains massivation.
The fundamental fermions are localized at wormhole throats defining the light-like orbits of
partonic 2-surfaces. Throats are associated with wormhole contacts connecting two space-
time sheets. Stability of the contact is guaranteed by non-vanishing monopole magnetic
flux through it and this requires the presence of second wormhole contact so that a closed
magnetic flux tube carrying monopole flux and involving the two space-time sheets is formed.
The net fermionic quantum numbers of the second throat correspond to particle’s quantum
numbers and above weak scale the weak isospins of the throats sum up to zero.

7. Fermionic 2-vertex is the only local many-fermion vertex [K14] being analogous to a mass
insertion. The non-triviality of fundamental 4-fermion vertex is due to classical interactions
between fermions at opposite throats of worm-hole. The non-triviality of the theory involves
also the analog of OZI mechanism: the fermionic lines inside partonic orbits are redistributed
in vertices. Lines can also turn around in time direction which corresponds to creation or
annihilation of a pair. 3-particle vertices are obtained only in topological sense as 3 space-
time surfaces are glued together at their ends. The interaction between fermions at different
wormhole throats is described in terms of string world sheets.

8. The earlier proposal was that the fermions in the internal fermion lines are massless in M4

sense but have non-physical helicity so that the algebraic M4 Dirac operator emerging from
the residue integration over internal four-momentum does not annihilate the state at the end
of the propagator line. Now the algebraic induced Dirac operator defines the propagator at
fermion lines. Should one assume generalization of non-physical helicity also now?

9. All this stuff must be lifted to twistorial level and one expects that the lift to S2 bundle allows
an alternative description of fermions and spinor structure so that one can speak of induced
twistor structure instead of induced spinor structure. This approach allows also a realization
of M4 conformal symmetries in terms of globally well-defined linear transformations so that it
might be that twistorialization is not a mere reformulation but provides a profound unification
of bosonic and fermionic degrees of freedom.

12.4.2 The Emergence Of The Fundamental 4-Fermion Vertex And Of
Boson Exchanges

The emergence of the fundamental 4-fermion vertex and of boson exchanges deserves a more
detailed discussion.
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1. I have proposed that the discontinuity of the Dirac operator at partonic two-surface (corner
of fermion line) defines both the fermion boson vertex and TGD analog of mass insertion
(not scalar but imbedding space vector) giving rise to mass parameter having interpretation
as Higgs vacuum expectation and various fermionic mixing parameters at QFT limit of TGD
obtained by approximating many-sheeted space-time of TGD with the single sheeted region of
M4 such that gravitational field and gauge potentials are obtained as sums of those associated
with the sheets.

2. Non-trivial scattering requires also correlations between fermions at different partonic 2-
surfaces. Both partonic 2-surfaces and string world sheets are needed to describe these
correlations. Therefore the string world sheets and partonic 2-surfaces cannot be dual: both
are needed and this means deviation from Witten’s theory. Fermion vertex corresponds to a
”corner” of a fermion line at partonic 2-surface at which generalized 4-D lines of Feynman
diagram meet and light-like fermion line changes to space-like one. String world sheet with its
corners at partonic 2-surfaces (wormhole throats) describes the momentum exchange between
fermions. The space-like string curve connecting two wormhole throats serves as the analog
of the exchanged gauge boson.

3. Two kinds of 4-fermion amplitudes can be considered depending on whether the string con-
nects throats of single wormhole contact (CP2 scale) or of two wormhole contacts (p-adic
length scale - typically of order elementary particle Compton length). If string worlds sheets
have 1-D CP2 projection, only Minkowskian string world sheets are possible. The exchange
in Compton scale should be assignable to the TGD counterpart of gauge boson exchange and
the fundamental 4-fermion amplitude should correspond to single wormhole contact: string
need not to be involved now. Interaction is basically classical interaction assignable to single
wormhole contact generalizing the point like vertex.

4. The possible TGD counterparts of BCFW recursion relations [B26] should use the twistorial
representations of fundamental 4-fermion scattering amplitude as seeds. Yangian invariance
poses very strong conditions on the form of these amplitudes and the exchange of massless
bosons is suggestive for the general form of amplitude.

The 4-fermion amplitude assignable to two wormhole throats defines the analog of gauge
boson exchange and is expressible as fusion of two fundamental 4-fermion amplitudes such
that the 8-momenta assignable to the fermion and anti-fermion at the opposite throats of
exchanged wormhole contact are complex by BCFW shift acting on them to make the ex-
changed momenta massless but complex. This entity could be called fundamental boson (not
elementary particle).

5. Can one assume that the fundamental 4-fermion amplitude allows a purely formal composi-
tion to a product of FFBv amplitudes, Bv a purely fictive boson? Two 8-momenta at both
FFBv vertices must be complex so that at least two external fermionic momenta must be
complex. These external momenta are naturally associated with the throats of the a worm-
hole contact defining virtual fundamental boson. Rather remarkably, without the assumption
about product representation one would have general four-fermion vertex rather than boson
exchange. Hence gauge theory structure is not put in by hand but emerges.

12.4.3 What About SUSY In TGD?

Extended super-conformal symmetry is crucial for TGD and extends to quaternion-super-conformal
symmetry giving excellent hopes about calculability of the theory. N = 4 space-time supersym-
metry is in the key role in the approach of Witten and others.

In TGD framework space-time SUSY could be present as an approximate symmetry.

1. The many fermion states at partonic surfaces are created by oscillator operators of fermionic
Clifford algebra having also interpretation as a supersymmetric algebra but in principle hav-
ing N =∞. This SUSY is broken since the generators of SUSY carry four-momentum.

2. More concrete picture would be that various SUSY multiplets correspond to collinear many-
fermion states at the same wormhole throat. By fermionic statistics only the collinear states
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for which internal quantum numbers are different are realized: other states should have
antisymmetric wave function in spatial degrees of freedom implying wiggling in CP2 scale so
that the mass of the state would be very high. In both quark and lepton sectors one would
have N = 4 SUSY so that one would have the analog N = ∀ SUSY (color is not spin-like
quantum number in TGD).

At the level of diagrammatics single line would be replaced with ”line bundle” representing the
fermions making the many-fermion state at the light-like orbit of the partonic 2-surface. The
fusion of neighboring collinear multifermion stats in the twistor diagrams could correspond
to the process in which partonic 2-surfaces and single and many-fermion states fuse.

3. Right handed neutrino modes, which are not covariantly constant, are also localized at the
fermionic lines and defines the least broken N = 2 SUSY. The covariantly constant mode
seems to be a pure gauge degree of freedom since it carriers no quantum numbers and the
SUSY norm associated with it vanishes. The breaking would be smallest for N = 2 variant
assignable to right-handed neutrino having no weak and color interactions with other particles
but whose mixing with left-handed neutrino already induces SUSY breaking.

Why this SUSY has not been observed? One can consider two scenarios [K95].

1. The first scenario relies on the absence of weak and color interactions: one can argue that
the bound states of fermions with right-handed neutrino are highly unstable since only grav-
itational interaction so that sparticle decays very rapidly to particle and right-handed or
left-handed neutrino. By Uncertainty Principle this makes sparticle very massive, maybe
having mass of order CP2 mass. Neutrino mixing caused by the mixing of M4 and CP2

gamma matrices in induced gamma matrices is the weak point of this argument.

2. The mixing of left and right-handed neutrinos could be characterized by the p-adic mass
scale of neutrinos and be long. Sparticles would have same p-adic mass scale as particles and
would be dark having non-standard value of Planck constant heff = n× h: this would scale
up the lifetime by factor n and correlate with breaking of conformal symmetry assignable to
the mixing [K95].

What implications the approximate SUSY would have for scattering amplitudes?

1. k = 2(n(F )− n(F ) condition reduces the number of amplitudes dramatically if the fermions
are massless in M4 sense but the presence of weak iso-spin implies that the number of
amplitudes is 2n as in non-supersymmetric gauge theories. One however expects broken
SUSY with generators consisting of fermionic oscillator operators at partonic 2-surfaces with
symmetry breaking taking place only at the level of physical particles identifiable as many
particle bound states of massless (in 8-D sense) particles. This motivates the guess that
the formal FFBv amplitudes defining fundamental 4-fermion vertex are expressible as those
associated with N = 4 SUSY in quark and lepton sectors respectively. This would reduce
the number of independent amplitudes to just one.

2. Since SUSY and its breaking emerge automatically in TGD framework, super-space can
provide a useful technical tool but is not fundamental.

Side note: The number of external fermions is always even suggesting that the super-
conformal anomalies plaguing the amplitudes with odd n (http://tinyurl.com/yb85tnvc
) [B64] are absent.

12.4.4 What Does One Really Mean With The Induction Of Imbedding
Space Spinors?

The induction of spinor structure is a central notion of TGD but its detailed definition has remained
somewhat obscure. The attempt to generalize Witten’s approach has made it clear that the mere
restriction of spinor fields to space-time surfaces is not enough and that one must understand in
detail the correspondence between the modes of imbedding space spinor fields and those of induced
spinor fields.

http://tinyurl.com/yb85tnvc
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Even the identification of space-time gamma matrices is far from obvious at string world
sheets.

1. The simplest notion of the space-time gamma matrices is as projections of imbedding space
gamma matrices to the space-time surface - induced gamma matrices. If one assumes that
induced spinor fields are defined at the entire space-time surfaces, this notion fails to be
consistent with fermionic super-conformal symmetry unless one replaces Kähler action by
space-time volume. This option is certainly unphysical.

2. The notion of Kähler-Dirac matrices in the interior of space as gamma matrices defined
as contractions of canonical momentum densities of Kähler with imbedding space gamma
matrices allows to have conformal super-symmetry with fermionic super charges assignable
to the modes of the induced spinor field. Also Chern-Simons action could define gamma
matrices in the same manner at the light-like 3-surfaces between Minkowskian and Euclidian
space-time regions and at space-like 3-surfaces at the ends of space-time surface. Chern-
Simons-Dirac matrices would involve only CP2 gamma matrices.

It is however not quite clear whether the spinor fields in the interior of space-time surface
are needed at all in the twistorial approach and they seem to be only an un-necessary complication.
For instance, their modes would have well-defined electromagnetic charge only when induced W
gauge fields vanish, which implies that CP2 projection is 2-dimensional. This forces to consider
very seriously the possibility that induced spinor fields reside at string world sheets only (their
ends are at partonic 2-surfaces). This option supported also by strong form of holography and
number theoretic universality.

What about the space-time gamma matrices at string world sheets and their boundaries?

1. The first option would be reduction of Kähler-Dirac gamma matrices by requiring that they
are parallel to the string world sheets. This however poses additional conditions besides the
vanishing of W fields already restricting the dimension to two in the generic case. The con-
ditions state that the imbedding space 1-forms defined by the canonical momentum densities
of Kähler action involve only 2 linearly independent ones and that they are proportional
to imbedding space coordinate gradients: this gives Frobenius conditions. These conditions
look first too strong but one can also think that one fixes first string world sheets, partonic
2-surfaces, and perhaps also their light-like orbits, requires that the normal components of
canonical momentum currents at string world sheets vanish, and deduces space-time surface
from this data. This would be nothing but strong form of holography!

For this option the string world sheets could emerge in the sense that it would be possible
to express Kähler action as an area of string world sheet in the effective metric defined by
the anticommutator of K-D gamma matrices appearing also in the expressions for the matrix
elements of WCW metric. Gravitational constant would be a prediction of the theory.

2. Second possibility is to use induced gamma matrices automatically parallel to the string
world sheet so that no additional conditions would result. This would also conform with the
ordinary view about string world sheets and spinors.

Supersymmetry would require the addition of the area of string world sheet to the action
defining Kähler function in Euclidian regions and its counterpart in Minkowskian regions.
This would bring in gravitational constant, which otherwise remains a prediction. Quantum
criticality could fix the ratio of ~G/R2 (R is CP2 radius). The vanishing of induced weak
gauge fields requires that string world sheets have 1-D CP2 projection and are thus restricted
to Minkowskian regions with at most 3-D CP2 projection. Even stronger condition would be
that string world sheets are minimal surfaces in M4 × S1, S1 a geodesic sphere of CP2.

There are however grave objections. The presence of a dimensional parameter G as fun-
damental coupling parameter does not encourage hopes about the renomalizibility of the
theory. The idea that strings connecting partonic 2-surfaces gives rise to the formation of
gravitationally bound states is suggested by AdS/CFT correspondence. The problem is that
the string tension defined by gravitational constant is so large that only Planck length sized
bound states are feasible. Even the replacement ~→ ~eff fails to allow gravitationally bound
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states with length scale of order Schwartschild radius. For the K-D option the string tension
behaves like 1/~2 and there are no problems in this respect.

At this moment my feeling is that the first option - essentially the original view - is the
correct one. The short belief that the second option is the correct choice was a sidetrack, which
however helped to become convinced that the original vision is indeed correct, and to understand
the general mechanism for the formation of bound states in terms of strings connection partonic
2-surfaces (in the earlier picture I talked about magnetic flux tubes carrying monopole flux: the
views are equivalent).

Both options have the following nice features.

1. Induced gammas at the light-like string boundaries would be light-like. Massless Dirac equa-
tion would assign to spinors at these lines a light-like space-time four-momentum and twisto-
rialize it. This four-momentum would be essentially the tangent vector of the light-like curve
and would not have a constant direction. Light-likeness for it means light-likeness in 8-D
sense since light-like curves in H correspond to non-like momenta in M4. Both M4 mass
squared and CP2 mass would be conserved. Even four-momentum could be conserved if M4

projection of stringy curve is geodesic line of M4.

2. A new connection with Equivalence Principle (EP) would emerge. One could interpret the
induced four-momentum as gravitational four-momentum which would be massless in 4-D
sense and correspond to inertial 8-momentum. EP wold state in the weakest form that only
the M4 masses associated with the two momenta are identical. Stronger condition would
be that that the Minkowski parts of the two momenta co-incide at the ends of fermion lines
at partonic 2-surfaces. Even stronger condition is that the 8-momentum is 8-momentum
is conserved along fermion line. This is certainly consistent with the ordinary view about
Feynman graphs. This is guaranteed if the light-like curve is light-like geodesic of imbedding
space.

The induction of spinor fields has also remained somewhat imprecise notion. It how seems
that quantum-classical correspondence forces a unique picture.

1. Does the induced spinor field co-incide with imbedding space spinor harmonic in some do-
main? This domain would certainly include the ends of fermionic lines at partonic 2-surfaces
associated with the incoming particles and vertices. Could it include also the boundaries of
string world sheets and perhaps also the string world sheets? The Kähler-Dirac equation
certainly does not allow this for entire space-time surface.

2. Strong form of holography suggest that the light-like momenta for the Dirac equation at
the ends of light-like string boundaries has interpretation as 8-D light-like momentum has
M4 projection equal to that of H spinor-harmonic. The mass squared of M4 momentum
would be same as the CP2 momentum squared in both senses. Unless the gravitational four-
momentum assignable to the induced Dirac operato r is conserved one cannot pose stronger
condition.

3. If the induced spinor mode equals to imbedding space-spinor mode also at fermion line, the
light like momentum is conserved. The fermion line would be also light-like geodesic of the
imbedding space so that twistor polygons would have very concrete interpretation. This
condition would be clearly analogous to the conditions in Witten’s twistor string theory. A
stronger condition would be that the mode of the imbedding space spinor field co-incides
with induced spinor field at the string world sheet.

4. p-Adic mass calculations require that the massive excitations of imbedding space spinor
fields with CP2 mass scale are involved. The thermodynamics could be for fermion line,
wormhole throat carrying possible several fermions, or wormhole contact carrying fermion at
both throats. In the case of fermions physical intuition suggests that p-adic thermodynamics
must be associated with single fermionic line. The massive excitations would correspond to
light-like geodesics of the imbedding space.
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To minimize confusion I must confess that until recently I have considered a different options
for the momenta associated with fermionic lines.

1. The action of the Kähler-Dirac operator on the induced spinor field at the fermionic line
equals to that of 4-D Dirac operator pkγk for a massless momentum identified as M4 mo-
mentum [K14].

Now the action reduces to that of 8-D massless algebraic Dirac operator for light-like string
boundaries in the case of induced gamma matrices. Explicit calculation shows that in case of
K-D gamma matrices and for light-like string boundaries it can happen that the 8-momentum
of the mode can be tachyonic. Intriguingly, p-adic mass calculations require a tachyonic
ground state?

2. For this option the helicities for virtual fermions were assumed to be non-physical in order to
get non-vanishing fermion lines by residue integration: momentum integration for Dirac op-
erator would replace Dirac propagators with Dirac operators. This would be the counterpart
for the disappearance of bosonic propagators in residue integration.

3. This option has problems: quantum classical correspondence is not realized satisfactorily and
the interpretation of p-adic thermodynamics is problematic.

12.4.5 About The Twistorial Description Of Light-Likeness In 8-D Sense
Using Octonionic Spinors

The twistor approach to TGD [K76] require that the expression of light-likeness of M4 momenta
in terms of twistors generalizes to 8-D case. The light-likeness condition for twistors states that
the 2× 2 matrix representing M4 momentum annihilates a 2-spinor defining the second half of the
twistor. The determinant of the matrix reduces to momentum squared and its vanishing implies
the light-likeness. This should be generalized to a situation in one has M4 and CP2 twistor which
are not light-like separately but light-likeness in 8-D sense holds true.

The case of M8 = M4 × E4

M8 −H duality [K74] suggests that it might be useful to consider first the twistorialiation of 8-D
light-likeness first the simpler case of M8 for which CP2 corresponds to E4. It turns out that
octonionic representation of gamma matrices provide the most promising formulation.

In order to obtain quadratic dispersion relation, one must have 2 × 2 matrix unless the
determinant for the 4× 4 matrix reduces to the square of the generalized light-likeness condition.

1. The first approach relies on the observation that the 2 × 2 matrices characterizing four-
momenta can be regarded as hyper-quaternions with imaginary units multiplied by a com-
muting imaginary unit. Why not identify space-like sigma matrices with hyper-octonion
units?

2. The square of hyper-octonionic norm would be defined as the determinant of 4 × 4 matrix
and reduce to the square of hyper-octonionic momentum. The light-likeness for pairs formed
by M4 and E4 momenta would make sense.

3. One can generalize the sigma matrices representing hyper-quaternion units so that they
become the 8 hyper-octonion units. Hyper-octonionic representation of gamma matrices
exists (γ0 = σz×1, γk = σy×Ik) but the octonionic sigma matrices represented by octonions
span the Lie algebra of G2 rather than that of SO(1, 7). This dramatically modifies the
physical picture and brings in also an additional source of non-associativity. Fortunately, the
flatness of M8 saves the situation.

4. One obtains the square of p2 = 0 condition from the massless octonionic Dirac equation as
vanishing of the determinant much like in the 4-D case. Since the spinor connection is flat
for M8 the hyper-octonionic generalization indeed works.

This is not the only possibility that I have by-passingly considered [K14].
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1. Is it enough to allow the four-momentum to be complex? One would still have 2× 2 matrix
and vanishing of complex momentum squared meaning that the squares of real and imaginary
parts are same (light-likeness in 8-D sense) and that real and imaginary parts are orthogonal
to each other. Could E4 momentum correspond to the imaginary part of four-momentum?

2. The signature causes the first problem: M8 must be replaced with complexified Minkowski
space M4

c for to make sense but this is not an attractive idea although M4
c appears as sub-

space of complexified octonions.

3. For the extremals of Kähler action Euclidian regions (wormhole contacts identifiable as defor-
mations of CP2 type vacuum extremals) give imaginary contribution to the four-momentum.
Massless complex momenta and also color quantum numbers appear also in the standard
twistor approach. Also this suggest that complexification occurs also in 8-D situation and is
not the solution of the problem.

The case of M8 = M4 × CP2

What about twistorialization in the case of M4 ×CP2? The introduction of wave functions in the
twistor space of CP2 seems to be enough to generalize Witten’s construction to TGD framework and
that algebraic variant of twistors might be needed only to realize quantum classical correspondence.
It should correspond to tangent space counterpart of the induced twistor structure of space-time
surface, which should reduce effectively to 4-D one by quaternionicity of the space-time surface.

1. For H = M4 × CP2 the spinor connection of CP2 is not trivial and the G2 sigma matrices
are proportional to M4 sigma matrices and act in the normal space of CP2 and to M4 parts
of octonionic imbedding space spinors, which brings in mind co-associativity. The octonionic
charge matrices are also an additional potential source of non-associativity even when one
has associativity for gamma matrices.

Therefore the octonionic representation of gamma matrices in entire H cannot be physical.
It is however equivalent with ordinary one at the boundaries of string world sheets, where
induced gauge fields vanish. Gauge potentials are in general non-vanishing but can be gauge
transformed away. Here one must be of course cautious since it can happen that gauge
fields vanish but gauge potentials cannot be gauge transformed to zero globally: topological
quantum field theories represent basic example of this.

2. Clearly, the vanishing of the induced gauge fields is needed to obtain equivalence with or-
dinary induced Dirac equation. Therefore also string world sheets in Minkowskian regions
should have 1-D CP2 projection rather than only having vanishing W fields if one requires
that octonionic representation is equivalent with the ordinary one. For CP2 type vacuum
extremals electroweak charge matrices correspond to quaternions, and one might hope that
one can avoid problems due to non-associativity in the octonionic Dirac equation. Unless
this is the case, one must assume that string world sheets are restricted to Minkowskian
regions. Also imbedding space spinors can be regarded as octonionic (possibly quaternionic
or co-quaternionic at space-time surfaces): this might force vanishing 1-D CP2 projection.

(a) Induced spinor fields would be localized at 2-surfaces at which they have no interaction
with weak gauge fields: of course, also this is an interaction albeit very implicit one!
This would not prevent the construction of non-trivial electroweak scattering amplitudes
since boson emission vertices are essentially due to re-groupings of fermions and based
on topology change.

(b) One could even consider the possibility that the projection of string world sheet to
CP2corresponds to CP2 geodesic circle so that one could assign light-like 8-momentum
to entire string world sheet, which would be minimal surface in M4 × S1. This would
mean enormous technical simplification in the structure of the theory. Whether the
spinor harmonics of imbedding space with well-defined M4 and color quantum numbers
can co-incide with the solutions of the induced Dirac operator at string world sheets
defined by minimal surfaces remains an open problem.

(c) String world sheets cannot be present inside wormhole contacts which have 4-D CP2

projection so that string world sheets cannot carry vanishing induced gauge fields.



462 Chapter 12. TGD variant of Twistor Story

12.4.6 How To Generalize Witten’s Twistor String Theory To TGD
Framework?

The challenge is to lift the geometric description of particle like aspects of twistorial amplitudes
involving only algebraic curves (2-surfaces) in twistor space to TGD framework.

1. External particles correspond to the lifts of H-spinor harmonics to spinor harmonics in the
twistor space and are labeled by four-momentum, helicity, color, and weak helicity (isospin)
so that there should be no need to included fermions explicitly. The twistorial wave functions
would be superpositions of the eigenstates of helicity operator which would become a non-local
property in twistor space. Light-likeness would hold true in 8-D sense for spinor harmonics
as well as for the corresponding twistorial harmonics.

2. The surfaces X2 in Witten’s theory would be replaced with the lifts of partonic 2-surfaces
X2 to 4-D surfaces with bundle structure with X2 as base and S2 as fiber. S2 would be
non-dynamical. Whether X2 or its lift to 4-surface allows identification as algebraic surface
is not quite clear but it seems that X2 could be the relevant object identifiable as surface of
the base space of T (X4). If X2 is the basic object one would have the additional constraint
(not present in Witten’s theory) that it belongs to the base space X4. The genus of the lift
of X2 would be that of its base space X2. One obtains a union of partonic 2-surfaces rather
than single surface and lines connecting them as boundaries of string world sheets.

The n points of given X2 would correspond to the ends of boundaries of string world sheets at
the partonic 2-surface X2 carrying fermion number so that the helicities of twistorial spinor
modes would be highly fixed unless M4 chiralities mix making fermions massive in M4 sense.
This picture is in accordance with the fact that the lines of fundamental fermions should
correspond to QFT limit of TGD.

3. In TGD genus g of the partonic 2-surface labels various fermion families and g < 3 holds true
for physical fermions. The explanation could be that Z2 acts as global conformal symmetry
(hyper-ellipticity) for g < 3 surfaces irrespective of their conformal moduli but for g > 3 only
in for special moduli. Physically for g > 2 the additional handles would make the partonic
2-surface to behave like many-particle state of free particles defined by the handles.

This assumption suggests that assigns to the partonic surface what I have called modular
invariant elementary particle vacuum functional (EVPF) in modular degrees of freedom such
that for a particle characterized by genus g one has l ≥ g and l > g amplitudes are possible
because the EPVF leaks partially to higher genera [K12]. This would also induce a mixing of
boundary topologies explaining CKM mixing and its leptonic counterpart. In this framework
it would be perhaps more appropriate to define the number of loops as l1 = l − g.

A more precise picture is as follows. Elementary particles have actually four wormhole
throats corresponding to the two wormhole contacts. In the case of fermions the wormhole
throat carrying the electroweak quantum numbers would have minimum value g of genus
characterized by the fermion family. Furthermore, the universality of the standard model
physics requires that the couplings of elementary fermions to gauge bosons do not depend
on genus. This is the case if one has quantum superposition of the wormhole contacts
carrying the quantum numbers of observed gauge bosons at their opposite throats over the
three lowest genera g = 0, 1, 2 with identical coefficients. This meas SU(3) singlets for the
dynamical SU(3) associated with genus degeneracy. Also their exotic variants - say octets -
are in principle possible.

4. This description is not complete although already twistor string description involves integra-
tion over the conformal moduli of the partonic 2-surface. One must integrate over the “world
of classical worlds” (WCW) -roughly over the generalized Feynman diagrams and their com-
plements consisting of Minkowskian and Euclidian regions. TGD as almost topological QFT
reduces this integration to that of the boundaries of space-time regions.

By quaternion conformal invariance [K76] this functional integral could reduce to ordinary
integration over the quaternionic-conformal moduli space of space-time surfaces for which the
moduli space of partonic 2-surfaces should be contained (note that strong form of holography
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suggests that only the modular invariants associated with the tangent space data should enter
the description). One might hope that twistor space approach allows an elegant description
of the moduli assignable to the tangent space data.

12.4.7 Yangian Symmetry

One of the victories of the twistor Grassmannian approach is the discovery of Yangian symmetry
[A27], [B31, B39], [K76], whose variant associated with extended super-conformal symmetries is
expected to be in key role in TGD.

1. The very nature of the residue integral implies that the complex surface serving as the
locus of the integrand of the twistor amplitude is highly non-unique. Indeed, the Yangian
symmetry [K76] acting as multi-local symmetry and implying dual of ordinary conformal
invariance acting on momentum twistors, has been found to reduce to diffeomorphisms of
G(k, n) respecting positivity property of the decomposition of G(k, n) to polyhedrons. It is
quite possible that this symmetry corresponds to quaternion conformal symmetries in TGD
framework.

2. Positivity of a given regions means parameterization by non-negative coordinates in TGD
framework a possible interpretation is based on the observation that canonical identification
mapping reals to p-adic number and vice versa is well-defined only for non-negative real
numbers. Number theoretical Universality of spinor amplitudes so that they make sense in
all number fields, would therefore be implied.

3. Could the crucial Yangian invariance generalizing the extended conformal invariance of TGD
could reduce to the diffeomorphisms of the extended twistor space T (H) respecting positivity.
In the case of CP2 all coordinates could be regarded as angle coordinates and be replaced
by phase factors coding for the angles which do not make sense p-adically. The number
theoretical existence of phase factors in p-adic case is guaranteed if they belong to some
algebraic extension of rationals and thus also p-adics containing these phases as roots of
unity. This implies discretization of CP2.

ZEO allows to reduce the consideration to causal diamond CD defined as an intersection of
future and past directed light-cones and having two light-like boundaries. CD is indeed a
natural counterpart for S4. One could use as coordinates light-cone proper time a invari-
ant under Lorentz transformations of either boundary of CD, hyperbolic angle η and two
spherical angles (θ, φ). The angle variables allow representation in terms of finite algebraic
extension. The coordinate a is naturally non-negative and would correspond to positivity.
The diffeomorphisms perhaps realizing Yangian symmetry would respect causality in the
sense that they do not lead outside CD.

Quaternionic conformal symmetries the boundaries of CD×CP2 continued to the interior by
translation of the light-cones serve as a good candidates for the diffeomorphisms in question
since they do not change the value of the Minkowski time coordinate associated with the line
connecting the tips of CD.

12.4.8 Does BCFW Recursion Have Counterpart In TGD?

Could BCFW recursion for tree diagrams and its generalization to diagrams with loops have a
generalization in TGD framework? Could the possible TGD counterpart of BCFW recursion have
a representation at the level of the TGD twistor space allowing interpretation in terms of geometry
of partonic 2-surfaces and associated string world sheets? Supersymmetry is essential ingredient
in obtaining this formula and the proposed SUSY realized at the level of amplitudes and broken
at the level of states gives hopes for it. One could however worry about the fact that spinors are
Dirac spinors in TGD framework and that Majorana property might be essential element.

How to produce Yangian invariants

Nima Arkani-Hamed et al [B39] (http://tinyurl.com/y97rlzqb ) describe in detail various man-
ners to form Yangian invariants defining the singular parts of the integrands of the amplitudes

http://tinyurl.com/y97rlzqb
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allowing to construct the full amplitudes. The following is only a rough sketch about what is
involved using particle picture and I cannot claim of having understood the details.

1. One can add particle ((k, n)→ (k+ 1, n+ 1)) to the amplitude by deforming the momentum
twistors of two neighboring particles in a manner depending on the momentum twistor of the
added particle. One inserts the new particle between n-1:th and 1st particle, modifies their
momentum twistors without changing their four-momenta, and multiplying the resulting
amplitude by a twistor invariant known as [n − 2, n − 1, n, 1, 2] so that there is dependence
on the added n:th momentum twistor.

2. One can remove particle ((k, n)→ (k− 1, n− 1)) by contour integrating over the momentum
twistor variable of one particle.

3. One can fuse invariants simply by multiplying them.

4. One can merge invariants by identifying momentum twistors appearing in the two invariants.
The integration over the common twistor leads to an elimination of particle.

5. One can form a BCFW bridge between n1 + 1-particle invariant and n2 + 1-particle invariant
to get n = n1 + n2-particle invariant using the operations listed. One starts with the fusion
giving the product I1(1, ..., n1, I)I2(n1+1, ..n, I) of Yangian invariants followed by addition of
n1 +1 to I1 between n1 and I and 1 to I2 between I and n1 +1 (see the first item for details).
After that follows the merging of lines labelled by I next to n1 in I1 and the predecessor of
n1 + 1 in I2 reducing particle number by one unit and followed by residue integration over
ZI reducing particle number further by one unit so that the resulting amplitude is n-particle
amplitude.

6. One can perform entangled removal of two particles. One could remove them one-by-one by
independent contour integrations but one can also perform the contour integrations in such
a manner that one first integrates over two twistors at the same complex line and then over
the lines: this operation adds to n-particle amplitude loop.

BCFW recursion formula

BCFW recursion formula allows to express n-particle amplitudes with l loops in terms of amplitudes
with amplitudes having at most l−1 loops. The basic philosophy is that singularities serve as data
allowing to deduce the full integrands of the amplitudes by generalized unitarity and other kinds
of arguments.

Consider first the arguments behind the BCFW formula.

1. BCFW formula is derived by performing the canonical momentum twistor deformation Zn →
zn+zZn−1, multiplying by 1/z and performing integration along small curve around origin so
that one obtains original amplitude from the residue inside the curve. One obtains also and
alternative of the residue integral expression as sum of residues from its complement. The
singularities emerge by residue integral from poles of scattering amplitudes and eliminate two
lines so that the recursion formula for n-particle amplitude can involve at most n+2-particle
amplitudes.

It seems that one must combine all n-particle amplitudes to form a single entity defining the
full amplitude. I do not quite understand what how this is done. In ZEO zero energy state
involving different particle numbers for the final state and expressible in terms of S-matrix
(actually its generalization to what I call M-matrix) might allow to understand this.

2. In the general formula for the BCFW bridge of the ”left” and ”right” amplitudes one has
nL + nR = n+ 2, kL + kR = k − 1, and lL + lR = l.

3. The singularities are easy to understand in the case of tree amplitudes: they emerge from the
poles of the conformally invariant quantities in the denominators of amplitudes. Physically
this means that the sum of the momenta for a subset of particles corresponds to a complex
pole (BCFW deformation makes two neighboring momenta complex). Hence one obtains
sum over products of j+ 1-particle amplitudes BCFW bridged with n− j-particle amplitude
to give n-particle amplitude by the merging process.



12.4. Witten’s Twistor String Approach And TGD 465

4. This is not all that is needed since the diagrams could be reduced to products of 1 loop
3-particle amplitudes which vanish by the triviality of coupling constant evolution in N = 4
SUSY. Loop amplitudes serving as a kind of source in the recursion relation save the situation.
There is indeed also a second set of poles coming from loop amplitudes.

One-loop case is the simplest one. One begins from n+ 2 particle amplitude with l−1 loops.
At momentum space level the momenta the neighboring particles have opposite light-like
momenta: one of the particles is not scattered at all. This is called forward limit. This limit
suffers from collinear divergences in a generic gauge theory but in supersymmetric theories the
limit is well-defined. This forward limit defines also a Yangian invariant at the level of twistor
space. It can be regarded as being obtained by entangled removal of two particles combined
with merge operation of two additional particles. This operation leads from (n + 2, l − 1)
amplitude to (n, l) amplitude.

Does BCFW formula make sense in TGD framework?

In TGD framework the four-fermion amplitude but restricted so that two outgoing particles have
(in general) complex massless 8-momenta is the basic building brick. This changes the character
of BCFW recursion relations although the four-fermion vertex effectively reduces to FFB vertex
with boson identified as wormhole contact carrying fermion and antifermion at its throats.

The fundamental 4-fermion vertices assignable to wormhole contact could be formally ex-
pressed in terms of the product of two FFBv vertices (MHV expression), where Bv is purely formal
gauge boson, using the analog of MHV expression and taking into account that the second FF
pair is associated with wormhole contact analogous to exchanged gauge boson.

If the fermions at fermion lines of the same partonic 2-surface can be assumed to be collinear
and thus to form single coherent particle like unit, the description as superspace amplitude seems
appropriate. Consequently, the effective FFBv vertices could be assumed to have supersymmetry
defined by the fermionic oscillator operator algebra at the partonic 2-surface (Clifford algebra).
A good approximation is to restrict this algebra to that generating various spinor components of
imbedding space spinors so that N = 4 SUSY is obtained in leptonic and quark sector. Together
these give rise to N = 8 SUSY at the level of vertices broken however at the level of states.

Side note: The number of external fermions is always even suggesting that the super-
conformal anomalies plaguing the SUSY amplitudes with odd n (http://tinyurl.com/yb85tnvc
) [B64] are absent in TGD: this would be basically due to the decomposition of gauge bosons to
fermion pairs.

The leading singularities of scattering amplitudes would naturally correspond to the bound-
aries of the moduli space for the unions of partonic 2-surfaces and string world sheets.

1. The tree contribution to the gauge boson scattering amplitudes with k = 0, 1 vanish as
found by Parke and Taylor who also found the simple twistorial form for the k = 2 case
(http://tinyurl.com/y7nas26b ). In TGD framework, where lowest amplitude is 4-fermion
amplitude, this situation is not encountered. According to Wikipedia article the so called
CSW rules inspired by Witten’s twistor theory have a problem due to the vanishing of ++−
vertex which is not MHV form unless one changes the definition of what it is to be ”wrong
helicity”. + +− is needed to construct + + ++ amplitude at one loop which does not vanish
in YM theory. In SUSY it however vanishes.

In TGD framework one does not encounter these problems since 4-fermion amplitudes are
the basic building bricks. Fermion number conservation and the assumption that helicities
do not mix (light-likeness in M4 rather than only M8-sense) implies k = 2(n(F )− n(F ).

In the general formula for the BCFW bridge of the ”left” and ”right” amplitudes one has
nL + nR = n + 2, kL + kR = k − 1. If the TGD counterpart of the bridge eliminates two
antifermions with the same ”wrong” helicity -1/2, and one indeed has kL + kR = k − 1
if fermions have well-defined M4 helicity rather than being in superposition in completely
correlated M4 and CP2 helicities.

2. In string theory loops correspond to handles of a string world sheet. Now one has partonic
2-surfaces and string world sheets and both can in principle have handles. The condition

http://tinyurl.com/yb85tnvc
http://tinyurl.com/y7nas26b
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l ≥ g of Witten’s theory suggests that l− g defines the handle number for string world sheet
so that l is the total number of handles.

The identification of loop number as the genus of partonic 2-surface is second alternative: one
would have l = g and string world sheets would not contain handles. This might be forced by
the Minkowskian signature of the induced metric at string world sheet. The signature of the
induced metric would be presumably Euclidian in some region of string world sheet since the
M4 projection of either homology generator assignable with the handle would presumably
define time loop in M4 since the derivative of M4 time coordinate with respect to string
world sheet time should vanish at the turning points for M4 time. Minimal surface property
might eliminate Euclidian regions of the string world sheet. In any case, the area of string
world sheet would become complex.

3. In the moduli space of partonic 2-surfaces first kind of leading singularities could correspond
to pinches formed as n partonic 2-surfaces decomposes to two 2-surfaces having at least
single common point so that moduli space factors into a Cartesian product. This kind of
singularities could serve as counterparts for the merge singularities appearing in the BCFW
bridging of amplitudes. The numbers of loops must be additive and this is consistent with
both interpretations for l.

4. What about forward limit? One particle should go through without scattering and is elimi-
nated by entangled removal. In ZEO one can ask whether there is also quantum entanglement
between the positive and negative energy parts of this single particle state and state func-
tion reduction does not occur. The addition of particle and merging it with another one
could correspond to a situation in which two points of partonic 2-surface touch. This means
addition of one handle so that loop number l increases.

It seems that analytically the loop is added by the entangled removal but at the level of
partonic surface it is added by the merging. Also now both l > g and l = g options make
sense.

12.4.9 Possible Connections Of TGD Approach With The Twistor Grass-
mannian Approach

For a non-specialist lacking the technical skills, the work related to twistors is a garden of mysteries
and there are a lot of questions to be answered: most of them of course trivial for the specialist.
The basic questions are following.

How the twistor string approach of Witten and its possible TGD generalization relate to the
approach involving residue integration over projective sub-manifolds of Grassmannians G(k, n)?

1. In [B40] Nima et al argue that one can transform Grassmannian representation to twistor
string representation for tree amplitudes. The integration over G(k, n) translates to integra-
tion over the moduli space of complex curves of degree d = k − 1 + l, l ≥ g is the number of
loops. The moduli correspond to complex coefficients of the polynomial of degree d and they
form naturally a projective space since an overall scaling of coefficients does not change the
surfaces. One can expect also in the general case that moduli space of the partonic 2-surfaces
can be represented as a projective sub-manifold of some projective space. Loop corrections
would correspond to the inclusion of higher degree surfaces.

2. This connection gives hopes for understanding the integration contours in G(k, n) at deeper
level in terms of the moduli spaces of partonic 2-surfaces possibly restricted by conformal
gauge conditions.

Below I try to understand and relate the work of Nima Arkani Hamed et al with twistor
Grassmannian approach to TGD.

The notion of positive Grassmannian

The notion of positive Grassmannian is one of the central notions introduced by Nima et al.
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1. The claim is that the sub-spaces of the real Grassmannian G(k, n) contributing to the am-
plitudes for + +−− signature are such that the determinants of the k× k minors associated
with ordered columns of the k × n matrix C representing point of G(k, n) are positive. To
be precise, the signs of all minors are positive or negative simultaneously: only the ratios of
the determinants defining projective invariants are positive.

2. At the boundaries of positive regions some of the determinants vanish. Some k-volumes
degenerate to a lower-dimensional volume. Boundaries are responsible for the leading singu-
larities of the scattering amplitudes and the integration measure associated with G(k, n) has
a logarithmic singularity at the boundaries. These boundaries would naturally correspond to
the boundaries of the moduli space for the partonic 2-surfaces. Here also string world sheets
could contribute to singularities.

3. This condition has a partial generalization to the complex case: the determinants whose ratios
serve as projectively invariant coordinates are non-vanishing. A possible further manner to
generalize this condition would be that the determinants have positive real part so that apart
from rotation by π/2 they would reside in the upper half plane of complex plane. Upper
half plane is the hyperbolic space playing key role in complex analysis and in the theory
of hyperbolic 2-manifolds for which it serves as universal covering space by a finite discrete
subgroup of Lorentz group SL(2, C). The upper half-plane having a deep meaning in the
theory of Riemann surfaces might play also a key role in the moduli spaces of partonic 2-
surfaces. The projective space would be based - not on projectivization of Cn but that of
Hn, H the upper half plane.

Could positivity have some even deeper meaning?

1. In TGD framework the number theoretical universality of amplitudes suggests this. Canonical
identification maps

∑
xnp

n →
∑
xnp

−n p-adic number to non-negative reals. p-Adicization
is possible for angle variables by replacing them by discrete phases, which are roots of unity.
For non-angle like variables, which are non-negative one uses some variant of canonical iden-
tification involving cutoffs [K104]. The positivity should hold true for all structures involved,
the G(2, n) points defined by the twistors characterizing momenta and helicities of particles
(actually pairs of orthogonal planes defined by twistors and their conjugates), the moduli
space of partonic 2-surfaces, etc...

2. p-Adicization requires discretization of phases replacing angles so that they come as roots
of unity associated with the algebraic extension used. The p-adic valued counterpart of
Riemann or Lebesque integral does not make sense p-adically. Residue integrals can however
allow to define p-adic integrals by analytic continuation of the integral and discretization of
the phase factor along the integration contour does not matter (not however the p-adically
troublesome factor 2π!).

3. TGD suggests that the generalization of positive real projectively invariant coordinates to
complex coordinates of the hyperbolic space representable as upper half plane, or equivalently
as unit disk obtained from the upper half plane by exponential mapping w = exp(iz): positive
coordinate α would correspond to the radial coordinate for the unit disk (Poincare hyperbolic
disk appearing in Escher’s paintings). The real measure dα/α would correspond to dz =
dw/w restricted to a radial line from origin to the boundary of the unit disk. This integral
should correspond to integral over a closed contour in complex case. This is the case if
the integrand is discontinuity over a radial cut and equivalent with an integral over curve
including also the boundary of the unit disk. This integral would reduce to the sum of the
residues of poles inside the unit disk.

The notion of amplituhedron

The notion of amplituhedron is the latest step of progress in the twistor Grassmann approach
[B20, B19]. What is so remarkable, is the simplicity of the expressions for all-loop amplitudes and
the fact that positivity implies locality and unitarity for N = 4 SUSY.

Consider first tree amplitudes with general value of k.
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1. The notion of amplituhedron relies on the mapping of G(k, n) to G+(k, k + m) n ≥ k + m.
G+(k, k+m) is positive Grassmannian characterized by the condition that all k× k- minors
k × (k + m) matrix representing the point of G+(k, k + m) are non-negative and vanish at
the boundaries G+(k, k + m). The value of m is m = 4 and follows from the conditions
that amplitudes come out correctly. The constraint Y = C · Z, where Y corresponds to
point of G+(k, k + 4) and Z to the point of G(k, n) performs this mapping, which is clearly
many-to one. One can decompose G+(k, k + 4) to positive regions intersecting only along
their common boundary portions. The decomposition of a convex polygon in plane represent
the basic example of this kind of decomposition.

2. Each decomposition defines a sum of contributions to the scattering amplitudes involving
integration of a projectively invariant volume form over the positive region in question. The
form has a logarithmic singularity at the boundaries of the integration region but spurious
singularities cancel so that only the contribution of the genuine boundary of G+(k, k + 4)
remains. There are additional delta function constraints fixing the integral completely in real
case.

3. In complex case one has residue integral. The proposed generalization to the complex case is
by analytic continuation. TGD inspired proposal is that the positivity condition in the real
case is generalized to the condition that the positive coordinates are replaced by complex
coordinates of hyperbolic space representable as upper half plane or equivalently as the unit
disk obtained from upper half plane by exponential mapping w = exp(iz). The measure dα/α
would correspond to dz = dw/w. If taken over boundary circle labelled by discrete phase
factors exp(iφ) given by roots of unity the integral would be numerically a discrete Riemann
sum making no sense p-adically but residue theorem could allow to avoid the discretizaton
and to define the p-adic variant of the integral by analytic continuation. These conditions
would be completely general conditions on various projectively invariant moduli involved.

4. One must extend the bosonic twistors Za of external particles by adding k coordinates.
Somewhat surprisingly, these coordinates are anticommutative super-coordinates expressible
as linear combinations of fermionic parts of super-twistor using coefficients, which are also
Grassmann numbers. Integrating over these one ends up with the standard expression of
the amplitude using canonical integration measure for the regions in the decomposition of
amplituhedron.

What looks to me intriguing is that there is only super-integration involved over the additional
k degrees of freedom. In Witten’s approach k− 1 corresponds to the minimum degree of the
polynomial defining the string world sheet representing tree diagram. In TGD framework
k + 1 (rather than k − 1) could correspond to the minimum degree of partonic 2-surface.
In TGD approximate SUSY would correspond to Grassmann algebra of fermionic oscillator
operators defined by the spinor basis for imbedding space spinors. The interpretation could
be that each fermion whose helicity differs from that allowed by light-likeness in M4 sense
(this requires non-vanishing M4 mass), contributes ∆k = 1 to the degree of corresponding
partonic 2-surface. Since the partonic 2-surface is common for all particles, one must have
d = k + 1 at least. The k-fold super integration would be basically integral over the moduli
characterizing the polynomials of degree k realizing quantum classical correspondence in
fermionic degrees of freedom.

BFCW recursion formula involves also loop amplitudes for which amplituhedron provides
also a very nice representation.

1. The basic operation is the addition of a loop to get (n, k, l) amplitude from (n + 2, k, l − 1)
amplitude. That 2 particles must be removed for each loop is not obvious in N = 4 SUSY
but follows from the condition that positivity of the integration domain is preserved. This
procedure removes from (n+2, k, l−1)-amplitude 2 particles with opposite four-momenta so
that (n, k, l) amplitude is obtained. In the case of L-loops one extends G(k, n) by adding its
”complement” as a Cartesian factor G(n− k, n) and imbeds to G(n− k, n) 2-plane for each
loop. Positivity conditions can be generalized so that they apply to (k+2l)× (k+2l)-minors
associated with matrices having as rows 0 ≤ l ≤ L ordered Dik :s and of C. The general
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expressions of the loop contributions are of the same form as for tree contributions: only the
number of integration variables is 4× (k + L).

2. As already explained, in TGD framework the addition of loop would correspond to the for-
mation of a handle to the partonic surface by fusing two points of partonic 2-surface and
thus creating a surface intermediate between topologies with g and g+1 handles. g would
correspond to the genus characterizing fermion family and one would have L ≥ g. In ele-
mentary particle wave functionals loop [K12] contributions would correspond to higher genus
contributions l1 = l−g > 0 with basic contribution coming from genus g. For scattering am-
plitudes loop contributions would involve the change of the genus of the incoming wormhole
throat so that they correspond to singular surfaces at the boundaries of their moduli space
identifiable as loop corrections. l1 = l − g > 0 would represent the number of pinches of the
partonic 2-surface.

What about non-planar amplitudes?

Non-planar Feynman diagrams have remained a challenge for the twistor approach. The problem
is simple: there is no canonical ordering of the extrenal particles and the loop integrand involving
tricky shifts in integrations to get finite outcome is not unique and well-defined so that twistor
Grasmann approach encounters difficulties.

Recently Nima Arkani-Hamed et al have considered also non-planar MHV diagrams [B41]
(having minimal number of ”wrong” helicities) of N=4 SUSY, and shown that they can be reduced
to non-planar diagrams for different permutations of vertices of planar diagrams ordered naturally.
There are several integration regions identified as positive Grassmannians corresponding to different
orderings of the external lines inducing non-planarity. This does not however hold true generally.

At the QFT limit the crossings of lines emerges purely combinatorially since Feynman di-
agrams are purely combinatorial objects with the ordering of vertices determining the topological
properties of the diagram. Non-planar diagrams correspond to diagrams, which do not allow
crossing-free imbedding to plane but require higher genus surface to get rid of crossings.

1. The number of the vertices of the diagram and identification of lines connecting them deter-
mines the diagram as a graph. This defines also in TGD framework Feynman diagram like
structure as a graph for the fermion lines and should be behind non-planarity in QFT sense.

2. Could 2-D Feynman graphs exists also at geometric rather than only combinatorial level?
Octonionization at imbedding space level requires identification of preferred M2 ⊂M4 defin-
ing a preferred hyper-complex sub-space. Could the projection of the Fermion lines defined
concrete geometric representation of Feynman diagrams?

3. Despite their purely combinatorial character Feynman diagrams are analogous to knots and
braids. For years ago [K35] I proposed the generalization of the construction of knot invariants
in which one gradually eliminates the crossings of the knot projection to end up with a trivial
knot is highly suggestive as a procedure for constructing the amplitudes associated with the
non-planar diagrams. The outcome should be a collection of planar diagrams calculable
using twistor Grassmannian methods. Scattering amplitudes could be seen as analogs of
knot invariants. The reduction of MHV diagrams to planar diagrams could be an example
of this procedure.

One can imagine also analogs of non-planarity, which are geometric and topological rather
than combinatorial and not visible at the QFT limit of TGD.

1. The fermion lines representing boundaries of string world sheets at the light-like orbits of
partonic 2-surfaces can get braided. The same can happen also for the string boundaries at
space-like 3-surfaces at the ends of the space-time surface. The projections of these braids to
partonic 2-surfaces are analogs of non-planar diagrams. If the fermion lines at single wormhole
throat are regarded effectively as a line representing one member of super-multiplet, this kind
of braiding remains below the resolution used and cannot correspond to the braiding at QFT
limit.

2. 2-knotting and 2-braiding are possible for partonic 2-surfaces and string world sheets as
2-surfaces in 4-D space-time surfaces and have no counterpart at QFT limit.
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12.4.10 Permutations, Braidings, And Amplitudes

In [B37] Nima Arkani-Hamed demonstrates that various twistorially represented on-mass-
shell amplitudes (allowing light-like complex momenta) constructible by taking products of
the 3-particle amplitude and its conjugate can be assigned with unique permutations of the
incoming lines. The article describes the graphical representation of the amplitudes and its
generalization. For 3-particle amplitudes, which correspond to + + − and + − − twistor
amplitudes, the corresponding permutations are cyclic permutations, which are inverses of
each other. One actually introduces double cover for the labels of the particles and speaks of
decorated permutations meaning that permutation is always a right shift in the integer and
in the range [1, 2× n].

Amplitudes as representation of permutations

It is shown that for on mass shell twistor amplitudes the definition using on-mass-shell 3-
vertices as building bricks is highly reducible: there are two moves for squares defining
4-particle sub-amplitudes allowing to reduce the graph to a simpler one. The first ove is
topologically like the s-t duality of the old-fashioned string models and second one corresponds
to the transformation black ↔ white for a square sub-diagram with lines of same color at
the ends of the two diagonals and built from 3-vertices.

One can define the permutation characterizing the general on mass shell amplitude by a
simple rule. Start from an external particle a and go through the graph turning in in white
(black) vertex to left (right). Eventually this leads to a vertex containing an external particle
and identified as the image P (a) of the a in the permutation. If permutations are taken as
right shifts, one ends up with double covering of permutation group with 2 × n! elements -
decorated permutations. In this manner one can assign to any any line of the diagram two
lines. This brings in mind 2-D integrable theories where scattering reduces to braiding and
also topological QFTs where braiding defines the unitary S-matrix. In TGD parton lines
involve braidings of the fermion lines so that an assignment of permutation also to vertex
would be rather nice.

BCFW bridge has an interpretation as a transposition of two neighboring vertices affecting
the lines of the permutation defining the diagram. One can construct all permutations as
products of transpositions and therefore by building BCFW bridges. BCFW bridge can be
constructed also between disjoint diagrams as done in the BCFW recursion formula.

Can one generalize this picture in TGD framework? There are several questions to be an-
swered.

(a) What should one assume about the states at the light-like boundaries of string world
sheets? What is the precise meaning of the supersymmetry: is it dynamical or gauge
symmetry or both?

(b) What does one mean with particle: partonic 2-surface or boundary line of string world
sheet? How the fundamental vertices are identified: 4 incoming boundaries of string
world sheets or 3 incoming partonic orbits or are both aspects involved?

(c) How the 8-D generalization of twistors bringing in second helicity and doubling the M4

helicity states assignable to fermions does affect the situation?

(d) Does the crucial right-left rule relying heavily on the possibility of only 2 3-particle
vertices generalize? Does M4 massivation imply more than 2 3-particle vertices implying
many-to-one correspondence between on-mass-shell diagrams and permutations? Or
should one generalize the right-left rule in TGD framework?

Fermion lines for fermions massless in 8-D sense

What does one mean with particle line at the level of fermions?
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(a) How the addition of CP2 helicity and complete correlation between M4 and CP2 chi-
ralities does affect the rules of N = 4 SUSY? Chiral invariance in 8-D sense guarantees
fermion number conservation for quarks and leptons separately and means conservation
of the product of M4 and CP2 chiralities for 2-fermion vertices. Hence only M4 chiral-
ity need to be considered. M4 massivation allows more 4-fermion vertices than N = 4
SUSY.

(b) One can assign to a given partonic orbit several lines as boundaries of string world sheets
connecting the orbit to other partonic orbits. Supersymmetry could be understoond in
two manners.

i. The fermions generating the state of super-multiplet correspond to boundaries of
different string world sheets which need not connect the string world sheet to same
partonic orbit. This SUSY is dynamical and broken. The breaking is mildest
breaking for line groups connected by string world sheets to same partonic orbit.
Right handed neutrinos generated the least broken N = 2 SUSY.

ii. Also single line carrying several fermions would provide realization of generalized
SUSY since the multi-fermion state would be characterized by single 8-momentum
and helicity. One would have N = 4 SUSY for quarks and leptons separately and
N = 8 if both quarks and leptons are allowed. Conserved total for quark and
antiquarks and leptons and antileptons characterize the lines as well.
What would be the propagator associated with many-fermion line? The first guess
is that it is just a tensor power of single fermion propagator applied to the tensor
power of single fermion states at the end of the line. This gives power of 1/p2n to the
denominator, which suggests that residue integral in momentum space gives zero
unless one as just single fermion state unless the vertices give compensating powers
of p. The reduction of fermion number to 0 or 1 would simplify the diagrammatics
enormously and one would have only 0 or 1 fermions per given string boundary line.
Multi-fermion lines would represent gauge degrees of freedom and SUSY would be
realized as gauge invariance. This view about SUSY clearly gives the simplest
picture, which is also consistent with the earlier one, and will be assumed in the
sequel

(c) The multiline containing n fermion oscillator operators can transform by chirality mixing
in 2n manners at 4-fermion vertex so that there is quite a large number of options for
incoming lines with ni fermions.

(d) In 4-D Dirac equation light-likeness implies a complete correlation between fermion
number and chirality. In 8-D case light-likeness should imply the same: now chirality
correspond to fermion number. Does this mean that one must assume just superposition
of different M4 chiralities at the fermion lines as 8-D Dirac equation requires. Or should
one assume that virtual fermions at the end of the line have wrong chirality so that
massless Dirac operator does not annihilate them?

Fundamental vertices

One can consider two candidates for fundamental vertices depending on whether one identifies
the lines of Feynman diagram as fermion lines or as light-like orbits of partonic 2-surfaces.
The latter vertices reduces microscopically to the fermionic 4-vertices.

(a) If many-fermion lines are identified as fundamental lines, 4-fermion vertex is the fun-
damental vertex assignable to single wormhole contact in the topological vertex defined
by common partonic 2-surface at the ends of incoming light-like 3-surfaces. The discon-
tinuity is what makes the vertex non-trivial.

(b) In the vertices generalization of OZI rule applies for many-fermion lines since there are
no higher vertices at this level and interactions are mediated by classical induced gauge
fields and chirality mixing. Classical induced gauge fields vanish if CP2 projection is
1-dimensional for string world sheets and even gauge potentials vanish if the projection
is to geodesic circle. Hence only the chirality mixing due to the mixing of M4 and
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CP2 gamma matrices is possible and changes the fermionic M4 chiralities. This would
dictate what vertices are possible.

(c) The possibility of two helicity states for fermions suggests that the number of amplitudes
is considerably larger than in N = 4 SUSY. One would have 5 independent fermion
amplitudes and at each 4-fermion vertex one should be able to choose between 3 options
if the right-left rule generalizes. Hence the number of amplitudes is larger than the
number of permutations possibly obtained using a generalization of right-left rule to
right-middle-left rule.

(d) Note however that for massless particles in M4 sense the reduction of helicity combina-
tions for the fermion and antifermion making virtual gauge boson happens. The fermion
and antifermion at the opposite wormhole throats have parallel four-momenta in good
approximation. In M4 they would have opposite chiralities and opposite helicities so
that the boson would be M4 scalar. No vector bosons would be obtained in this manner.

In 8-D context it is possible to have also vector bosons since the M4 chiralities can be
same for fermion and anti-fermion. The bosons are however massive, and even photon is
predicted to have small mass given by p-adic thermodynamics [K39]. Massivation brings
in also the M4 helicity 0 state. Only if zero helicity state is absent, the fundamental
four-fermion vertex vanishes for + + ++ and −−−− combinations and one extend the
right-left rule to right-middle-left rule. There is however no good reason for he reduction
in the number of 4-fermion amplitudes to take place.

Partonic surfaces as 3-vertices

At space-time level one could identify vertices as partonic 2-surfaces.

(a) At space-time level the fundamental vertices are 3-particle vertices with particle identi-
fied as wormhole contact carrying many-fermion states at both wormhole throats. Each
line of BCFW diagram would be doubled. This brings in mind the representation of
permutations and leads to ask whether this representation could be re-interpreted in
TGD framework. For this option the generalization of the decomposition of diagram
to 3-particle vertices is very natural. If the states at throats consist of bound states of
fermions as SUSY suggests, one could characterize them by total 8-momentum and he-
licity in good approximation. Both helicities would be however possible also for fermions
by chirality mixing.

(b) A genuine decomposition to 3-vertices and lines connecting them takes place if two of
the fermions reside at opposite throats of wormhole contact identified as fundamental
gauge boson (physical elementary particles involve two wormhole contacts).

The 3-vertex can be seen as fundamental and 4-fermion vertex becomes its microscopic
representation. Since the 3-vertices are at fermion level 4-vertices their number is greater
than two and there is no hope about the generalization of right-left rule.

OZI rule implies correspondence between permutations and amplitudes

The realization of the permutation in the same manner as for N = 4 amplitudes does not
work in TGD. OZI rule following from the absence of 4-fermion vertices however implies
much simpler and physically quite a concrete manner to define the permutation for external
fermion lines and also generalizes it to include braidings along partonic orbits.

(a) Already N = 4 approach assumes decorated permutations meaning that each external
fermion has effectively two states corresponding to labels k and k + n (permutations
are shifts to the right). For decorated permutations the number of external states is
effectively 2n and the number of decorated permutations is 2 × n!. The number of
different helicity configurations in TGD framework is 2n for incoming fermions at the
vertex defined by the partonic 2-surface. By looking the values of these numbers for
lowest integers one finds 2n ≥ 2n: for n = 2 the equation is saturated. The inequality
log(n!) > nlog(n)/e) + 1 (see http://tinyurl.com/2bjk5h). gives

http://tinyurl.com/2bjk5h
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log(2n!)

log(2n)
≥ log(2) + 1 + nlog(n/e)

nlog(2)
= log(n/e)/log(2) +O(1/n)

so that the desired inequality holds for all interesting values of n.

(b) If OZI rule holds true, the permutation has very natural physical definition. One just
follows the fermion line which must eventually end up to some external fermion since
the only fermion vertex is 2-fermion vertex. The helicity flip would map k → k + n or
vice versa.

(c) The labelling of diagrams by permutations generalizes to the case of diagrams involving
partonic surfaces at the boundaries of causal diamond containing the external fermions
and the partonic 2-surfaces in the interior of CD identified as vertices. Permutations
generalize to braidings since also the braidings along the light-like partonic 2-surfaces are
allowed. A quite concrete generalization of the analogs of braid diagrams in integrable
2-D theories emerges.

(d) BCFW bridge would be completely analogous to the fundamental braiding operation
permuting two neighboring braid strands. The almost reduction to braid theory - apart
from the presence of vertices conforms with the vision about reduction of TGD to almost
topological QFT.

To sum up, the simplest option assumes SUSY as both gauge symmetry and broken dy-
namical symmetry. The gauge symmetry relates string boundaries with different fermion
numbers and only fermion number 0 or 1 gives rise to a non-vanishing outcome in the residue
integration and one obtains the picture used hitherto. If OZI rule applies, the decorated
permutation symmetry generalizes to include braidings at the parton orbits and k → k ± n
corresponds to a helicity flip for a fermion going through the 4-vertex. OZI rules follows
from the absence of non-linearities in Dirac action and means that 4-fermion vertices in the
usual sense making theory non-renormalizable are absent. Theory is essentially free field
theory in fermionic degrees of freedom and interactions in the sense of QFT are transformed
to non-trivial topology of space-time surfaces.

3. If one can approximate space-time sheets by maps from M4 to CP2, one expects General
Relativity and QFT description to be good approximations. GRT space-time is obtained
by replacing space-time sheets with single sheet - a piece of slightly deformed Minkowski
space but without assupmtion about imbedding to H. Induced classical gravitational field
and gauge fields are sums of those associated with the sheets. The generalized Feynman
diagrams with lines at various sheets and going also between sheets are projected to single
piece of M4. Many-sheetedness makes 1-homology non-trivial and implies analog of braiding,
which should be however invisible at QFT limit.

A concrete manner to eliminate line crossing in non-planar amplitude to get nearer to non-
planar amplitude could proceed roughly as follows. This is of course a pure guess motivated only
by topological considerations. Professional might kill it in few seconds.

1. If the lines carry no quantum numbers, reconnection allows to eliminate the crossings. Con-
sider the crossing line pair connecting AB in the initial state to CD in final state. The
crossing lines are AD and BC. Reconnection can take place in two manners: AD and BC
transform either to AB and CD or to AC and BD: neither line pair has crossing. The final
state of the braid would be quantum superposition of the resulting more planar braids.

2. The crossed lines however carry different quantum numbers in the generic situation: for
instance, they can be fermionic and bosonic. In this particular case the reconnection does
not make sense since a line carrying fermion number would transform to a line carrying
boson.

In TGD framework all lines are fermion lines at fundamental level but the constraint due to
different quantum numbers still remains and it is easy to see that mere reconnection is not
enough. Fermion number conservation allows only one of the two alternatives to be realized.
Conservation of quantum numbers forces to restrict gives an additional constraint which for
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simplest non-planar diagram with two crossed fermion lines forces the quantum numbers of
fermions to be identical.

It seems also more natural to consider pairs of wormhole contacts defining elementary par-
ticles as ”lines” in turn consisting of fermion lines. Yangian symmetry allows to develop a
more detailed view about what this decomposition could mean.

Quantum number conservation demands that reconnection is followed by a formation of an
additional internal line connecting the non-crossing lines obtained by reconnection. The addi-
tional line representing a quantum number exchange between the resulting non-crossing lines
would guarantee the conservation of quantum numbers. This would bring in two additional
vertices and one additional internal line. This would be enough to reduce planarity. The
repeated application of this transformation should produced a sum of non-planar diagrams.

3. What could go wrong with this proposal? In the case of gauge theory the order of diagram
increases by g2 since two new vertices are generated. Should a multiplication by 1/g2 ac-
company this process? Or is this observation enough to kill the hypothesis in gauge theory
framework? In TGD framework the situation is not understood well enough to say anything.
Certainly the critical value of αK implies that one cannot regard it as a free parameter and
cannot treat the contributions from various orders as independent ones.

12.5 Could The Universe Be Doing Yangian Arithmetics?

One of the old TGD inspired really crazy ideas about scattering amplitudes is that Universe is
doing some sort of arithmetics so that scattering amplitude are representations for computational
sequences of minimum length. The idea is so crazy that I have even given up its original form,
which led to an attempt to assimilate the basic ideas about bi-algebras, quantum groups [K6],
Yangians [K76], and related exotic things. The work with twistor Grassmannian approach inspired
a reconsideration of the original idea seriously with the idea that super-symplectic Yangian could
define the arithmetics. I try to describe the background, motivation, and the ensuing reckless
speculations in the following.

12.5.1 Do Scattering Amplitudes Represent Quantal Algebraic Manip-
ulations?

I seems that tensor product ⊗ and direct sum ⊕ - very much analogous to product and sum
but defined between Hilbert spaces rather than numbers - are naturally associated with the basic
vertices of TGD. I have written about this a highly speculative chapter - both mathematically and
physically [K92]. The chapter [K6] is a remnant of earlier similar speculations.

1. In ⊗ vertex 3-surface splits to two 3-surfaces meaning that the 2 ”incoming” 4-surfaces
meet at single common 3-surface and become the outgoing 3-surface: 3 lines of Feynman
diagram meeting at their ends. This has a lower-dimensional shadow realized for partonic 2-
surfaces. This topological 3-particle vertex would be higher-D variant of 3-vertex for Feynman
diagrams.

2. The second vertex is trouser vertex for strings generalized so that it applies to 3-surfaces. It
does not represent particle decay as in string models but the branching of the particle wave
function so that particle can be said to propagate along two different paths simultaneously.
In double slit experiment this would occur for the photon space-time sheets.

3. The idea is that Universe is doing arithmetics of some kind in the sense that particle 3-
vertex in the above topological sense represents either multiplication or its time-reversal
co-multiplication.

The product, call it ◦, can be something very general, say algebraic operation assignable
to some algebraic structure. The algebraic structure could be almost anything: a random list
of structures popping into mind consists of group, Lie-algebra, super-conformal algebra quantum
algebra, Yangian, etc.... The algebraic operation ◦ can be group multiplication, Lie-bracket, its
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generalization to super-algebra level, etc...). Tensor product and thus linear (Hilbert) spaces are
involved always, and in product operation tensor product ⊗ is replaced with ◦.

1. The product Ak ⊗ Al → C = Ak ◦ Al is analogous to a particle reaction in which particles
Ak and Al fuse to particle Ak ⊗ Al → C = Ak ◦ Al. One can say that ⊗ between reactants
is transformed to ◦ in the particle reaction: kind of bound state is formed.

2. There are very many pairs Ak, Al giving the same product C just as given integer can be
divided in many manners to a product of two integers if it is not prime. This of course
suggests that elementary particles are primes of the algebra if this notion is defined for it!
One can use some basis for the algebra and in this basis one has C = Ak ◦Al = fklmAm, fklm
are the structure constants of the algebra and satisfy constraints. For instance, associativity
A(BC) = (AB)C is a constraint making the life of algebraist more tolerable and is almost
routinely assumed.

For instance, in the number theoretic approach to TGD associativity is proposed to serve
as fundamental law of physics and allows to identify space-time surfaces as 4-surfaces with
associative (quaternionic) tangent space or normal space at each point of octonionic imbed-
ding space M4 × CP2. Lie algebras are not associative but Jacobi-identities following from
the associativity of Lie group product replace associativity.

3. Co-product can be said to be time reversal of the algebraic operation ◦. Co-product can be
defined as C = Ak →

∑
lm f

lm
k Al⊗Am, where f lmk are the structure constants of the algebra.

The outcome is quantum superposition of final states, which can fuse to C (the ”reaction”
Ak ⊗ Al → C = Ak ◦ Al is possible). One can say that ◦ is replaced with ⊗: bound state
decays to a superposition of all pairs, which can form the bound states by product vertex.

There are motivations for representing scattering amplitudes as sequences of algebraic op-
erations performed for the incoming set of particles leading to an outgoing set of particles with
particles identified as algebraic objects acting on vacuum state. The outcome would be analogous
to Feynman diagrams but only the diagram with minimal length to which a preferred extremal
can be assigned is needed. Larger ones must be equivalent with it.

The question is whether it could be indeed possible to characterize particle reactions as
computations involving transformation of tensor products to products in vertices and co-products
to tensor products in co-vertices (time reversals of the vertices). A couple of examples gives some
idea about what is involved.

1. The simplest operations would preserve particle number and to just permute the particles: the
permutation generalizes to a braiding and the scattering matrix would be basically unitary
braiding matrix utilized in topological quantum computation.

2. A more complex situation occurs, when the number of particles is preserved but quantum
numbers for the final state are not same as for the initial state so that particles must interact.
This requires both product and co-product vertices. For instance, Ak⊗Al → fmklAm followed
by Am → frsmAr ⊗ As giving Ak → fmkl f

rs
mAr ⊗ As representing 2-particle scattering. State

function reduction in the final state can select any pair Ar ⊗ As in the final state. This
reaction is characterized by the ordinary tree diagram in which two lines fuse to single line
and defuse back to two lines. Note also that there is a non-deterministic element involved.
A given final state can be achieved from a given initial state after large enough number of
trials. The analogy with problem solving and mathematical theorem proving is obvious. If
the interpretation is correct, Universe would be problem solver and theorem prover!

3. More complex reactions affect also the particle number. 3-vertex and its co-vertex are the
simplest examples and generate more complex particle number changing vertices. For in-
stance, on twistor Grassmann approach on can construct all diagrams using two 3-vertices.
This encourages the restriction to 3-vertice (recall that fermions have only 2-vertices)

4. Intuitively it is clear that the final collection of algebraic objects can be reached by a large
- maybe infinite - number of ways. It seems also clear that there is the shortest manner to
end up to the final state from a given initial state. Of course, it can happen that there is no
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way to achieve it! For instance, if ◦ corresponds to group multiplication the co-vertex can
lead only to a pair of particles for which the product of final state group elements equals to
the initial state group element.

5. Quantum theorists of course worry about unitarity. How can avoid the situation in which the
product gives zero if the outcome is element of linear space. Somehow the product should be
such that this can be avoided. For instance, if product is Lie-algebra commutator, Cartan
algebra would give zero as outcome.

12.5.2 Generalized Feynman Diagram As Shortest Possible Algebraic
Manipulation Connecting Initial And Final Algebraic Objects

There is a strong motivation for the interpretation of generalized Feynman diagrams as shortest
possible algebraic operations connecting initial and final states. The reason is that in TGD one
does not have path integral over all possible space-time surfaces connecting the 3-surfaces at the
ends of CD. Rather, one has in the optimal situation a space-time surface unique apart from
conformal gauge degeneracy connecting the 3-surfaces at the ends of CD (they can have disjoint
components).

Path integral is replaced with integral over 3-surfaces. There is therefore only single minimal
generalized Feynman diagram (or twistor diagram, or whatever is the appropriate term). It would
be nice if this diagram had interpretation as the shortest possible computation leading from the
initial state to the final state specified by 3-surfaces and basically fermionic states at them. This
would of course simplify enormously the theory and the connection to the twistor Grassmann
approach is very suggestive. A further motivation comes from the observation that the state basis
created by the fermionic Clifford algebra has an interpretation in terms of Boolean quantum logic
and that in ZEO the fermionic states would have interpretation as analogs of Boolean statements
A→ B.

To see whether and how this idea could be realized in TGD framework, let us try to find
counterparts for the basic operations ⊗ and ◦ and identify the algebra involved. Consider first the
basic geometric objects.

1. Tensor product could correspond geometrically to two disjoint 3-surfaces representing 3-
particles. Partonic 2-surfaces associated with a given 3-surface represent second possibility.
The splitting of a partonic 2-surface to two could be the geometric counterpart for co-product.

2. Partonic 2-surfaces are however connected to each other and possibly even to themselves
by strings. It seems that partonic 2-surface cannot be the basic unit. Indeed, elementary
particles are identified as pairs of wormhole throats (partonic 2-surfaces) with magnetic
monopole flux flowing from throat to another at first space-time sheet, then through throat
to another sheet, then back along second sheet to the lower throat of the first contact and
then back to the thirst throat. This unit seems to be the natural basic object to consider.
The flux tubes at both sheets are accompanied by fermionic strings. Whether also wormhole
throats contain strings so that one would have single closed string rather than two open ones,
is an open question.

3. The connecting strings give rise to the formation of gravitationally bound states and the
hierarchy of Planck constants is crucially involved. For elementary particle there are just two
wormhole contacts each involving two wormhole throats connected by wormhole contact.
Wormhole throats are connected by one or more strings, which define space-like boundaries
of corresponding string world sheets at the boundaries of CD. These strings are responsible
for the formation of bound states, even macroscopic gravitational bound states.

12.5.3 Does Super-Symplectic Yangian Define The Arithmetics?

Super-symplectic Yangian would be a reasonable guess for the algebra involved.

1. The 2-local generators of Yangian would be of form TA1 = fABCT
B ⊗ TC , where fABC are the

structure constants of the super-symplectic algebra. n-local generators would be obtained
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by iterating this rule. Note that the generator TA1 creates an entangled state of TB and TC

with fABC the entanglement coefficients. TAn is entangled state of TB and TCn−1 with the same
coefficients. A kind replication of TAn−1 is clearly involved, and the fundamental replication
is that of TA. Note that one can start from any irreducible representation with well defined
symplectic quantum numbers and form similar hierarchy by using TA and the representation
as a starting point.

That the hierarchy TAn and hierarchies irreducible representations would define a hierarchy of
states associated with the partonic 2-surface is a highly non-trivial and powerful hypothesis
about the formation of many-fermion bound states inside partonic 2-surfaces.

2. The charges TA correspond to fermionic and bosonic super-symplectic generators. The geo-
metric counterpart for the replication at the lowest level could correspond to a fermionic/bosonic
string carrying super-symplectic generator splitting to fermionic/bosonic string and a string
carrying bosonic symplectic generator TA. This splitting of string brings in mind the basic
gauge boson-gauge boson or gauge boson-fermion vertex.

The vision about emission of virtual particle suggests that the entire wormhole contact pair
replicates. Second wormhole throat would carry the string corresponding to TA assignable
to gauge boson naturally. TA should involve pairs of fermionic creation and annihilation op-
erators as well as fermionic and anti-fermionic creation operator (and annihilation operators)
as in quantum field theory.

3. Bosonic emergence suggests that bosonic generators are constructed from fermion pairs with
fermion and anti-fermion at opposite wormhole throats: this would allow to avoid the prob-
lems with the singular character of purely local fermion current. Fermionic and anti-fermionic
string would reside at opposite space-time sheets and the whole structure would correspond to
a closed magnetic tube carrying monopole flux. Fermions would correspond to superpositions
of states in which string is located at either half of the closed flux tube.

4. The basic arithmetic operation in co-vertex would be co-multiplication transforming TAn
to TAn+1 = fABCT

B
n ⊗ TC . In vertex the transformation of TAn+1 to TAn would take place.

The interpretations would be as emission/absorption of gauge boson. One must include
also emission of fermion and this means replacement of TA with corresponding fermionic
generators FA, so that the fermion number of the second part of the state is reduced by one
unit. Particle reactions would be more than mere braidings and re-grouping of fermions and
anti-fermions inside partonic 2-surfaces, which can split.

5. Inside the light-like orbits of the partonic 2-surfaces there is also a braiding affecting the
M-matrix. The arithmetics involved would be therefore essentially that of measuring and
”co-measuring” symplectic charges.

Generalized Feynman diagrams (preferred extremals) connecting given 3-surfaces and many-
fermion states (bosons are counted as fermion-anti-fermion states) would have a minimum
number of vertices and co-vertices. The splitting of string lines implies creation of pairs of
fermion lines. Whether regroupings are part of the story is not quite clear. In any case,
without the replication of 3-surfaces it would not be possible to understand processes like e-e
scattering by photon exchange in the proposed picture.

It is easy to hear the comments of the skeptic listener in the back row.

1. The attribute ”minimal” - , which could translate to minimal value of Kähler function - is
dangerous. It might be very difficult to determine what the minimal diagram is - consider
only travelling salesman problem or the task of finding the shortest proof of theorem. It
would be much nicer to have simple calculational rules.

The original proposal might help here. The generalization of string model duality was in
question. It stated that that it is possible to move the positions of the vertices of the dia-
grams just as one does to transform s-channel resonances to t-channel exchange. All loops
of generalized diagrams could be be eliminated by transforming the to tadpoles and snipped
away so that only tree diagrams would be left. The variants of the diagram were identified as
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different continuation paths between different paths connecting sectors of WCW correspond-
ing to different 3-topologies. Each step in the continuation procedure would involve product
or co-product defining what continuation between two sectors means for WCW spinors. The
continuations between two states require some minimal number of steps. If this is true, all
computations connecting identical states are also physically equivalent. The value of the
vacuum functional be same for all of them. This looks very natural.

That the Kähler action should be same for all computational sequences connecting the same
initial and final states looks strange but might be understood in terms of the vacuum degen-
eracy of Kähler action.

2. QFT perturbation theory requires that should have superposition of computations/continuations.
What could the superposition of QFT diagrams correspond to in TGD framework?

Could it correspond to a superposition of generators of the Yangian creating the physical
state? After all, already quantum computer perform superpositions of computations. The
fermionic state would not be the simplest one that one can imagine. Could AdS/CFT
analogy allow to identify the vacuum state as a superposition of multi-string states so that
single super-symplectic generator would be replaced with a superposition of its Yangian
counterparts with same total quantum numbers but with a varying number of strings? The
weight of a given superposition would be given by the total effective string world sheet area.
The sum of diagrams would emerge from this superposition and would basically correspond
to functional integration in WCW using exponent of Kähler action as weight. The stringy
functional integral (“functional” if also wormhole contacts contain string portion, otherwise
path integral) would give the perturbation theory around given string world sheet. One
would have effective reduction of string theory.

12.5.4 How Does This Relate To The Ordinary Perturbation Theory?

One can of course worry about how to understand the basic results of the usual perturbation theory
in this picture. How does one obtain a perturbation theory in powers of coupling constant, what
does running coupling constant mean, etc...? I have already discussed how the superposition of
diagrams could be understood in the new picture.

1. The QFT picture with running coupling constant is expected at QFT limit, when many-
sheeted space-time is replaced with a slightly curved region of M4 and gravitational field
and gauge potentials are identified as sums of the deviations of induced metric from M4

metric and classical induced gauge potentials associated with the sheets of the many-sheeted
space-time. The running coupling constant would be due to the dependence of the size scale
of CD, and p-adic coupling constant evolution would be behind the continuous one.

2. The notion of running coupling constant is very physical concept and should have a descrip-
tion also at the fundamental level and be due to a finite computational resolution, which
indeed has very concrete description in terms of Noether charges of super-symplectic Yan-
gian creating the states at the ends of space-time surface at the boundaries of CD. The
space-time surface and the diagram associated with a given pair of 3-surfaces and stringy
Noether charges associated with them can be characterized by a complexity measured in
terms of the number of vertices (3-surface at which three 3-surfaces meet).

For instance, 3-particle scattering can be possible only by using the simplest 3-vertex defined
by product or co-product for pairs of 3-surfaces. In the generic case one has more complex
diagram and what looks first 3-particle vertex has complex substructure rather than being
simple product or co-product.

3. Complexity seems to have two separate aspects: the complexities of the positive and negative
parts of zero energy state as many-fermion states and the complexity of associated 3-surfaces.
The generalization of AdS/CFT however suggests that once the string world sheets and
partonic 2-surfaces appearing in the diagram have been fixed, the space-time surface itself is
fixed. The principle also suggests that the fixing partonic 2-surface and the strings connecting
them at the boundaries of CD fixes the 3-surface apart from the action of sub-algebra of
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Yangian acting as gauge algebra (vanishing classical Noether charges). If one can determine
the minimal sequence of allowed algebraic operation of Yangian connecting initial and final
fermion states, one knows the minimum number of vertices and therefore the topological
structure of the connecting minimal space-time surface.

4. In QFT spirit one could describe the finite measurement resolution by introducing effective
3-point vertex, which is need not be product/co-produce anymore. 3-point scattering am-
plitudes in general involve microscopic algebraic structure involving several vertices. One
can however give up the nice algebraic interpretation and just talk about effective 3-vertex
for practical purposes. Just as the QFT vertex described by running coupling constant de-
composes to sum of diagrams, product/co-product in TGD could be replaced with effective
product/co-product expressible as a longer computation. This would imply coupling constant
evolution.

Fermion lines could however remain as such since they are massless in 8-D sense and mass
renormalization does not make sense.

Similar practical simplification could be done the initial and final states to get rid of su-
perposition of the Yangian generators with different numbers of strings (“cloud of virtual
particles”). This would correspond to wave function renormalization.

5. The number of vertices and wormhole contact orbits serves as a measure for the complexity
of the diagram. Since fermion lines are associated with wormhole throats assignable with
wormhole contacts identifiable as deformations CP2 type vacuum extremals, one expects that
the exponent of the Kähler function defining vacuum functional is in the first approximation
the total CP2 volume of wormhole contacts giving a measure for the importance of the
contribution in functional integral. If it converges very rapidly only Gaussian approximation
around maximum is needed.

6. Convergence depends on how large the fraction of volume of CP2 is associated with a given
wormhole contact. The volume is proportional to the length of the wormhole contact orbit.
One expects exponential convergence with the number of fermion lines and their lengths
for long lines. For short distances the exponential damping is small so that diagrams with
microscopic structure of diagrams are needed and are possible. This looks like adding small
scale details to the algebraic manipulations.

7. One must be of course be very cautious in making conclusions. The presence of 1/αK ∝ heff
in the exponent of Kähler function would suggest that for large values of heff only the 3-
surfaces with smallest possible number of wormhole contact orbits contribute. On the other
hand, the generalization of AdS/CFT duality suggests that Kähler action reducible to area of
string world sheet in the effective metric defined by canonical momentum currents of Kähler
action behaves as α2

K ∝ 1/h2
eff . What does this mean?

To sum up, the identification of vertex as a product or co-product in Yangian looks highly
promising approach. The Nother charges of the super-symplectic Yangian are associated with
strings and are either linear or bilinear in the fermion field. The fermion fields associated with
the partonic 2-surface defining the vertex are contracted with fermion fields associated with other
partonic 2-surfaces using the same rule as in Wick expansion in quantum field theories. The
contraction gives fermion propagator for each leg pair associated with two vertices. Vertex factor
is proportional to the contraction of spinor modes with the operators defining the Noether charge
or super charge and essentially Kähler-Dirac gamma matrix and the representation of the action of
the symplectic generator on fermion realizable in terms of sigma matrices. This is very much like
the corresponding expression in gauge theories but with gauge algebra replaced with symplectic
algebra. The possibility of contractions of creation and annihilation operator for fermion lines
associated with opposite wormhole throats at the same partonic 2-surface (for Noether charge
bilinear in fermion field) gives bosonic exchanges as lines in which the fermion lines turns in time
direction: otherwise only regroupings of fermions would take place.



480 Chapter 12. TGD variant of Twistor Story

12.5.5 This Was Not The Whole Story Yet

The proposed amplitude represents only the value of WCW spinor field for single pair of 3-surfaces
at the opposite boundaries of given CD. Hence Yangian construction does not tell the whole story.

1. Yangian algebra would give only the vertices of the scattering amplitudes. On basis of
previous considerations, one expects that each fermion line carries propagator defined by
8-momentum. The structure would resemble that of super-symmetric YM theory. Fermionic
propagators should emerge from summing over intermediate fermion states in various vertices
and one would have integrations over virtual momenta which are carried as residue integra-
tions in twistor Grassmann approach. 8-D counterpart of twistorialization would apply.

2. Super-symplectic Yangian would give the scattering amplitudes for single space-time surface
and the purely group theoretical form of these amplitudes gives hopes about the independence
of the scattering amplitude on the pair of 3-surfaces at the ends of CD near the maximum
of Kähler function. This is perhaps too much to hope except approximately but if true, the
integration over WCW would give only exponent of Kähler action since metric and poorly
defined Gaussian and determinants would cancel by the basic properties of Kähler metric.
Exponent would give a non-analytic dependence on αK .

The Yangian supercharges are proportional to 1/αK since covariant Kähler-Dirac gamma
matrices are proportional to canonical momentum currents of Kähler action and thus to
1/αK . Perturbation theory in powers of αK = g2

K/4π~eff is possible after factorizing out
the exponent of vacuum functional at the maximum of Kähler function and the factors 1/αK
multiplying super-symplectic charges.

The additional complication is that the characteristics of preferred extremals contributing
significantly to the scattering amplitudes are expected to depend on the value of αK by quan-
tum interference effects. Kähler action is proportional to 1/αK . The analogy of AdS/CFT
correspondence states the expressibility of Kähler function in terms of string area in the
effective metric defined by the anti-commutators of K-D matrices. Interference effects elimi-
nate string length for which the area action has a value considerably larger than one so that
the string length and thus also the minimal size of CD containing it scales as heff . Quan-
tum interference effects therefore give an additional dependence of Yangian super-charges on
heff leading to a perturbative expansion in powers of αK although the basic expression for
scattering amplitude would not suggest this.

3. Non-planar diagrams of quantum field theories should have natural counterpart and linking
and knotting for braids defines it naturally. This suggests that the amplitudes can be inter-
preted as generalizations of braid diagrams defining braid invariants: braid strands would
appear as legs of 3-vertices representing product and co-product. Amplitudes could be con-
structed as generalized braid invariants transforming recursively braided tree diagram to an
un-braided diagram using same operations as for braids. In [L17] I considered a possible
breaking of associativity occurring in weak sense for conformal field theories and was led
to the vision that there is a fractal hierarchy of braids such that braid strands themselves
correspond to braids. This hierarchy would define an operad with subgroups of permutation
group in key role. Hence it seems that various approaches to the construction of amplitudes
converge.

12.6 Appendix: Some Mathematical Details About Gras-
mannian Formalism

In the following I try to summarize my amateurish understanding about the mathematical structure
behind the Grassmann integral approach. The representation summarizes what I have gathered
from the articles of Arkani-Hamed and collaborators [B38, B39]. These articles are rather sketchy
and the article of Bullimore provides additional details [B60] related to soft factors. The article
of Mason and Skinner provides excellent introduction to super-twistors [B31] and dual super-
conformal invariance. I apologize for unavoidable errors.
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Before continuing a brief summary about the history leading to the articles of Arkani-Hamed
and others is in order. This summary covers only those aspects which I am at least somewhat
familiar with and leaves out many topics about existence which I am only half-conscious.

1. It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a′ with λ̃ defined as complex conjugate of

λ and having opposite chirality. When λ is scaled by a complex number λ̃ suffers an opposite
scaling. The bi-spinors allow the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′λ
a′µb

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (12.6.1)

If the particle has spin one can assign it a positive or negative helicity h = ±1. Positive
helicity can be represented by introducing artitrary negative (positive) helicity bispinor µa
(µa′) not parallel to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (12.6.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

2. Tree amplitudes are considered and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n− 2 gluons
have the same helicity vanish. MHV amplitudes have exactly n− 2 gluons of same helicity-
taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(12.6.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].

3. The article of Witten [B33] proposed that twistor approach could be formulated as a twistor
string theory with string world sheets “living” in 6-dimensional CP3 possessing Calabi-Yau
structure and defining twistor space. In this article Witten introduced what is known as
half Fourier transform allowing to transform momentum integrals over light-cone to twistor
integrals. This operation makes sense only in space-time signature (2, 2). Witten also demon-
strated that maximal helicity violating (MHV) twistor amplitudes (two gluons with negative
helicity) with n particles with k + 2 negative helicities and l loops correspond in this ap-
proach to holomorphic 2-surfaces defined by polynomials defined by polynomials of degree
D = k − 1 + l, where the genus of the surface satisfies g ≤ l. AdS/CFT duality provides a
second stringy approach to N = 4 theory allowing to understand the scattering amplitudes
in terms of Wilson loops with light-like edges: about this I have nothing to say. In any case,
the generalization of twistor string theory to TGD context is highly attractive idea and will
be considered later.
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4. In the article [B27] Cachazo, Svrcek, and Witten propose the analog of Feynman diagrammat-
ics in which MHV amplitudes can be used as analogs of vertices and ordinary 1/P 2 propagator
as propagator to construct tree diagrams with arbitrary number of negative helicity gluons.
This approach is not symmetric with respect to the change of the sign of helicities since the
amplitudes with two positive helicities are constructed as tree diagrams. The construction
is non-trivial because one must analytically continue the on mass shell tree amplitudes to
off mass shell momenta. The problem is how to assign a twistor to these momenta. This
is achieved by introducing an arbitrary twistor ηa

′
and defining λa as λa = paa′η

a′ . This
works for both massless and massive case. It however leads to a loss of the manifest Lorentz
invariance. The paper however argues and the later paper [B26, B26] shows rigorously that
the loss is only apparent. In this paper also BCFW recursion formula is introduced allowing
to construct tree amplitudes recursively by starting from vertices with 2 negative helicity
gluons. Also the notion which has become known as BCFW bridge representing the massless
exchange in these diagrams is introduced. The tree amplitudes are not tree amplitudes in
gauge theory sense where correspond to leading singularities for which 4 or more lines of
the loop are massless and therefore collinear. What is important that the very simple MHV
amplitudes become the building blocks of more complex amplitudes.

5. The nex step in the progress was the attempt to understand how the loop corrections could be
taken into account in the construction BCFW formula. The calculation of loop contributions
to the tree amplitudes revealed the existence of dual super-conformal symmetry which was
found to be possessed also by BCFW tree amplitudes besides conformal symmetry. Together
these symmetries generate infinite-dimensional Yangian symmetry [B31].

6. The basic vision of Arkani-Hamed and collaborators is that the scattering amplitudes of
N = 4 SYM are constructible in terms of leading order singularities of loop diagrams. These
singularities are obtained by putting maximum number of momenta propagating in the lines
of the loop on mass shell. The non-leading singularities would be induced by the leading
singularities by putting smaller number of momenta on mass shell are dictated by these
terms. A related idea serving as a starting point in [B38] is that one can define loop integrals
as residue integrals in momentum space. If I have understood correctly, this means that
one an imagine the possibility that the loop integral reduces to a lower dimensional integral
for on mass shell particles in the loops: this would resemble the approach to loop integrals
based on unitarity and analyticity. In twistor approach these momentum integrals defined
as residue integrals transform to residue integrals in twistor space with twistors representing
massless particles. The basic discovery is that one can construct leading order singularities
for n particle scattering amplitude with k+2 negative helicities as Yangian invariants Yn,k for
momentum twistors and invariants constructed from them by canonical operations changing
n and k. The correspondence k = l does not hold true for the more general amplitudes
anymore.

12.6.1 Yangian Algebra And Its Super Counterpart

The article of Witten [B30] gives a nice discussion of the Yangian algebra and its super counterpart.
Here only basic formulas can be listed and the formulas relevant to the super-conformal case are
given.

Yangian algebra

Yangian algebra Y (G) is associative Hopf algebra. The elements of Yangian algebra are labelled by
non-negative integers so that there is a close analogy with the algebra spanned by the generators
of Virasoro algebra with non-negative conformal weight. The Yangian symmetry algebra is defined
by the following relations for the generators labeled by integers n = 0 and n = 1. The first half of
these relations discussed in very clear manner in [B30] follows uniquely from the fact that adjoint
representation of the Lie algebra is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (12.6.4)
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Besides this Serre relations are satisfied. These have more complex and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(12.6.5)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor gAB
or gAB . {A,B,C} denotes the symmetrized product of three generators.

Repeated commutators allow to generate the entire algebra whose elements are labeled by
non-negative integer n. The generators obtain in this manner are n-local operators arising in
(n− 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases the first
Serre relation implies the second one so the relations are redundant. Why Witten includes it is
for the purposed of demonstrating the conditions for the existence of Yangians associated with
discrete one-dimensional lattices (Yangians exists also for continuum one-dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representa-
tion for the Yangian algebra. One assumes that each lattice point allows a representation R of JA

so that one has JA =
∑
i J

A
i acting on the infinite tensor power of the representation considered.

The expressions for the generators J1A are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (12.6.6)

This formula gives the generators in the case of conformal algebra. This representation exists if
the adjoint representation of G appears only one in the decomposition of R ⊗R. This is the case
for SU(N) if R is the fundamental representation or is the representation of by kth rank completely
antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-
product ∆ is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(12.6.7)

∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-triviality
comes from the addition of the dual generator to the trivial co-product. In the case that the single
spin representation of J (1)A is trivial, the co-product gives just the expression of the dual generator
using the ordinary generators as a non-local generator. This is assumed in the recent case and also
for the generators of the conformal Yangian.

Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P
refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM and this super group
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is a real form of PSU(4|4). The main point of interest is whether this algebra allows Yangian
representation and Witten demonstrated that this is indeed the case [B30].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anti-commutator of fermionic generators can contain besides identity also bosonic generators
if the symmetrized tensor product in question contains adjoint representation. This is the case
if fermions are in the fundamental representation and its conjugate. For SU(3) the symmetrize
tensor product of adjoint representations contains adjoint (the completely symmetric structure
constants dabc) and this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters
involved) can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n×m and m×n matrices, whose anti-commutator is the direct sum of n×n and n×n
matrices. For n = m bosonic generators transform like Lie algebra generators of SU(n) × SU(n)
whereas fermionic generators transform like n ⊗ n ⊕ n ⊗ n under SU(n) × SU(n). Supertrace is
defined as Str(x) = Tr(a) − Tr(b). The vanishing of Str defines SU(n|m). For n 6= m the super
trace condition removes identity matrix and PU(n|m) and SU(n|m) are same. That this does not
happen for n = m is an important delicacy since this case corresponds to N = 4 SYM. If any two
matrices differing by an additive scalar are identified (projective scaling as now physical effect) one
obtains PSU(n|n) and this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗
R holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization
of the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4).
The defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J

(1)C′ = gCC′f
C′

AB

∑
i<j

JAi J
B
j

= gCC′f
C′

ABg
AA′gBB

′∑
i<j

J iA′J
j
B′ .

(12.6.8)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.

Generators of super-conformal Yangian symmetries

The explicit formula for the generators of super-conformal Yangian symmetries in terms of ordinary
twistors is given by

jAB =

n∑
i=1

ZAi ∂ZBi ,

j
(1)A
B =

∑
i<j

(−1)C
[
ZAi ∂ZCj Z

C
j ∂ZBj

]
. (12.6.9)

This formula follows from completely general formulas for the Yangian algebra discussed above

and allowing to express the dual generators j
(1)
N as quadratic expression of jN involving structures

constants. In this rather sketchy formula twistors are ordinary twistors. Note however that in the
recent case the lattice is replaced with its finite cutoff corresponding to the external particles of the
scattering amplitude. This probably corresponds to the assumption that for the representations
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considered only finite number of lattice points correspond to non-trivial quantum numbers or to
cyclic symmetry of the representations.

In the expression for the amplitudes the action of transformations is on the delta functions
and by partial integration one finds that a total divergence results. This is easy to see for the linear
generators but not so for the quadratic generators of the dual super-conformal symmetries. A

similar formula but with jAB and j
(1)A
B interchanged applies in the representation of the amplitudes

as Grassmann integrals using ordinary twistors. The verification of the generalization of Serre
formula is also straightforward.

12.6.2 Twistors And Momentum Twistors And Super-Symmetrization

In [B31] the basics of twistor geometry are summarized. Despite this it is perhaps good to collect
the basic formulas here.

Conformally compactified Minkowski space

Conformally compactified Minkowski space can be described as SO(2, 4) invariant (Klein) quadric

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0 . (12.6.10)

The coordinates (T, V,W,X, Y, Z) define homogenous coordinates for the real projective space
RP 5. One can introduce the projective coordinates Xαβ = −Xβα through the formulas

X01 = W − V , X02 = Y + iX , X03 = i√
2
T − Z ,

X12 = − i√
2
(T + Z) , X13 = Y − iX , X23 = 1

2 (V +W ) .
(12.6.11)

The motivation is that the equations for the quadric defining the conformally compactified Minkowski
space can be written in a form which is manifestly conformally invariant:

εαβγδXαβXγδ = 0 per. (12.6.12)

The points of the conformally compactified Minkowski space are null separated if and only
if the condition

εαβγδXαβYγδ = 0 (12.6.13)

holds true.

Correspondence with twistors and infinity twistor

One ends up with the correspondence with twistors by noticing that the condition is equivalent
with the possibility to expression Xαβ as

Xαβ = A[αBβ] , (12.6.14)

where brackets refer to antisymmetrization. The complex vectors A and B define a point in
twistor space and are defined only modulo scaling and therefore define a point of twistor space
CP3 defining a covering of 6-D Minkowski space with metric signature (2, 4). This corresponds
to the fact that the Lie algebras of SO(2, 4) and SU(2, 2) are identical. Therefore the points of
conformally compactified Minkowski space correspond to lines of the twistor space defining spheres
CP1 in CP3.

One can introduce a preferred scale for the projective coordinates by introducing what is
called infinity twistor (actually a pair of twistors is in question) defined by
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Iαβ =

(
εA
′B′ 0

0 0

)
. (12.6.15)

Infinity twistor represents the projective line for which only the coordinate X01 is non-vanishing
and chosen to have value X01 = 1.

One can define the contravariant form of the infinite twistor as

Iαβ = εαβγδIγδ =

(
0 0
0 εAB

)
. (12.6.16)

Infinity twistor defines a representative for the conformal equivalence class of metrics at the Klein
quadric and one can express Minkowski distance as

(x− y)2 =
XαβYαβ

IαβXαβIµνY µν
. (12.6.17)

Note that the metric is necessary only in the denominator. In twistor notation the distance can
be expressed as

(x− y)2 =
ε(A,B,C,D)

〈AB〉〈CD〉
. (12.6.18)

Infinite twistor Iαβ and its contravariant counterpart project the twistor to its primed and unprimed

parts usually denoted by µA
′

and λA and defined spinors with opposite chiralities.

Relationship between points of M4 and twistors

In the coordinates obtained by putting X01 = 1 the relationship between space-time coordinates
xAA

′
and Xαβ is

Xαβ =

(
− 1

2ε
A′B′x2 −ixA′B

ix B′

A εA,B

)
, Xαβ =

(
εA′B ′x

2 −ix B
A′

ixAB′ − 1
2ε
ABx2

)
, (12.6.19)

If the point of Minkowski space represents a line defined by twistors (µU , λU ) and (µV , λV ),
one has

xAC
′

= i
(µV λU − µUλV )AC

′

〈UV 〉
(12.6.20)

The twistor µ for a given point of Minkowski space in turn is obtained from λ by the twistor
formula by

µA
′

= −ixAA
′
λA . (12.6.21)

Generalization to the super-symmetric case

This formalism has a straightforward generalization to the super-symmetric case. CP3 is replaced
with CP3|4 so that Grassmann parameters have four components. At the level of coordinates this
means the replacement [WI ] = [Wα, χα]. Twistor formula generalizes to

µA
′

= −ixAA′λA , χα = θAαλA . (12.6.22)

The relationship between the coordinates of chiral super-space and super-twistors generalizes to
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(x, θ) =

(
i
(µV λU − µUλV )

〈UV 〉
,

(χV λU − χUλV )

〈UV 〉

)
(12.6.23)

The above formulas can be applied to super-symmetric variants of momentum twistors to
deduce the relationship between region momenta x assigned with edges of polygons and twistors
assigned with the ends of the light-like edges. The explicit formulas are represented in [B31].
The geometric picture is following. The twistors at the ends of the edge define the twistor pair
representing the region momentum as a line in twistor space and the intersection of the twistor
lines assigned with the region momenta define twistor representing the external momenta of the
graph in the intersection of the edges.

Basic kinematics for momentum twistors

The super-symmetrization involves replacement of multiplets with super-multiplets

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηiΓ
aλ, λ̃) + · · ·+ εabcdη

aηbηcηdG−(λ, λ̃) . (12.6.24)

Momentum twistors are dual to ordinary twistors and were introduced by Hodges. The light-like
momentum of external particle a is expressed in terms of the vertices of the closed polygon defining
the twistor diagram as

pµi = xµi − x
µ
i+1 = λiλ̃i , θi − θi+1 = λiηi . (12.6.25)

One can say that massless momenta have a conserved super-part given by λiηi. The dual of the
super-conformal group acts on the region momenta exactly as the ordinary conformal group acts
on space-time and one can construct twistor space for dua region momenta.

Super-momentum conservation gives the constraints

∑
pi = 0 ,

∑
λiηi = 0 . (12.6.26)

The twistor diagrams correspond to polygons with edges with lines carrying region momenta and
external massless momenta emitted at the vertices.

This formula is invariant under overall shift of the region momenta xµa . A natural interpre-
tation for xµa is as the momentum entering to the vertex where pa is emitted. Overall shift would
have interpretation as a shift in the loop momentum. xµa in the dual coordinate space is associated
with the line Za−1Za in the momentum twistor space. The lines Za−1Za and ZaZa+1 intersect at
Za representing a light-like momentum vector pµa .

The brackets 〈abcd〉 ≡ εIJKLZ
I
aZ

J
b Z

K
c Z

L
d define fundamental bosonic conformal invariants

appearing in the tree amplitudes as basic building blocks. Note that Za define points of 4-D complex
twistor space to be distinguished from the projective twistor space CP3. Za define projective
coordinates for CP3 and one of the four complex components of Za is redundant and one can take
Z0
a = 1 without a loss of generality.

12.6.3 Brief Summary Of The Work Of Arkani-Hamed And Collabora-
tors

The following comments are an attempt to summarize my far from complete understanding about
what is involved with the representation as contour integrals. After that I shall describe in more
detail my impressions about what has been done.
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Limitations of the approach

Consider first the limitations of the approach.

1. The basis idea is that the representation for tree amplitudes generalizes to loop amplitudes.
On other words, the amplitude defined as a sum of Yangian invariants expressed in terms
of Grassmann integrals represents the sum of loops up to some maximum loop number.
The problem is here that shifts of the loop momenta are essential in the UV regularization
procedure. Fixing the coordinates x1, · · · , xn having interpretation as momenta associated
with lines in the dual coordinate space allows to eliminate the non-uniqueness due to the
common shift of these coordinates.

2. It is not however not possible to identify loop momentum as a loop momentum common
to different loop integrals unless one restricts to planar loops. Non-planar diagrams are
obtained from a planar diagram by permuting the coordinates xi but this means that the
unique coordinate assignment is lost. Therefore the representation of loop integrands as
Grassmann integrals makes sense only for planar diagrams. From TGD point of view one
could argue that this is one good reason for restricting the loops so that they are for on mass
shell particles with non-parallel on mass shell four-momenta and possibly different sign of
energies for given wormhole contact representing virtual particle.

3. IR regularization is needed even in N = 4 for SYM given by “moving out on the Coulomb
branch theory” so that IR singularities remain the problem of the theory.

What has been done?

The article proposes a generalization of the BCFW recursion relation for tree diagrams of N = 4
for SYM so that it applies to planar diagrams with a summation over an arbitrary number of loops.

1. The basic goal of the article is to generalize the recursion relations of tree amplitudes so that
they would apply to loop amplitudes. The key idea is following. One can formally represent
loop integrand as a contour integral in complex plane whose coordinate parameterizes the
deformations Zn → Zn + εZn−1 and re-interpret the integral as a contour integral with
oppositely oriented contour surrounding the rest of the complex plane which can be imagined
also as being mapped to Riemann sphere. What happens only the poles which correspond to
lower number of loops contribute this integral. One obtains a recursion relation with respect
to loop number. This recursion seems to be the counterpart for the recursive construction of
the loops corrections in terms of absorptive parts of amplitudes with smaller number of loop
using unitarity and analyticity.

2. The basic challenge is to deduce the Grassmann integrands as Yangian invariants. From these
one can deduce loop integrals by integration over the four momenta associated with the lines
of the polygonal graph identifiable as the dual coordinate variables xa. The integration over
loop momenta can induce infrared divergences breaking Yangian symmetry. The big idea
here is that the operations described above allow to construct loop amplitudes from the
Yangian invariants defining tree amplitudes for a larger number of particles by removing
external particles by fusing them to form propagator lines and by using the BCFW bridge to
fuse lower-dimensional invariants. Hence the usual iterative procedure (bottom-up) used to
construct scattering amplitudes is replaced with a recursive procedure (top-down). Of course,
once lower amplitudes has been constructed they can be used to construct amplitudes with
higher particle number.

3. The first guess is that the recursion formula involves the same lower order contributions as
in the case of tree amplitudes. These contributions have interpretation as factorization of
channels involving single particle intermediate states. This would however allow to reduce
loop amplitudes to 3-particle loop amplitudes which vanish inN = 4 SYM by the vanishing of
coupling constant renormalization. The additional contribution is necessary and corresponds
to a source term identifiable as a “forward limit” of lower loop integrand. These terms are
obtained by taking an amplitude with two additional particles with opposite four-momenta
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and forming a state in which these particles are entangled with respect to momentum and
other quantum numbers. Entanglement means integral over the massless momenta on one
hand. The insertion brings in two momenta xa and xb and one can imagine that the loop is
represented by a branching of propagator line. The line representing the entanglement of the
massless states with massless momentum define the second branch of the loop. One can of
course ask whether only massless momentum in the second branch. A possible interpretation
is that this state is expressible by unitarity in terms of the integral over light-like momentum.

4. The recursion formula for the loop amplitude Mn,k,l involves two terms when one neglects
the possibility that particles can also suffer trivial scattering (cluster decomposition). This
term basically corresponds to the Yangian invariance of n arguments identified as Yangian
invariant of n− 1 arguments with the same value of k.

(a) The first term corresponds to single particle exchange between particle groups obtained
by splitting the polygon at two vertices and corresponds to the so called BCFW bridge
for tree diagrams. There is a summation over different splittings as well as a sum over
loop numbers and dimensions k for the Grassmann planes. The helicities in the two
groups are opposite.

(b) Second term is obtained from an amplitude obtained by adding of two massless particles
with opposite momenta and corresponds to n+ 2, k + 1, l− 1. The integration over the
light-like momentum together with other operations implies the reduction n + 2 → n.
Note that the recursion indeed converges. Certainly the allowance of added zero energy
states with a finite number of particles is necessary for the convergence of the procedure.

12.6.4 The General Form Of Grassmannian Integrals

If the recursion formula proposed in [B39] is correct, the calculations reduce to the construction
of NkMHV (super) amplitudes. MHV refers to maximal helicity violating amplitudes with 2
negative helicity gluons. For NkMHV amplitude the number of negative helicities is by definition
k + 2 [B38]. Note that the total right handed R-charge assignable to 4 super-coordinates ηi of
negative helicity gluons can be identified as R = 4k. BCFW recursion formula [B26, B26] allows
to construct from MHV amplitudes with arbitrary number of negative helicities.

The basic object of study are the leading singularities of color-stripped n-particle NkMHV
amplitudes. The discovery is that these singularities are expressible in terms Yangian invariants
Yn,k(Z1, · · · , Zn), where Zi are momentum super-twistors. These invariants are defined by residue
integrals over the compact nk − 1-dimensional complex space G(n, k) = U(n)/U(k) × U(n − k)
of k-planes of complex n-dimensional space. n is the number of external massless particles, k is
the number negative helicity gluons in the case of NkMHV amplitudes, and Za, i = 1, · · · , n
denotes the projective 4-coordinate of the super-variant CP 3|4 of the momentum twistor space
CP3 assigned to the massless external particles is following. Gl(n) acts as linear transformations
in the n-fold Cartesian power of twistor space. Yangian invariant Yn,k is a function of twistor
variables Za having values in super-variant CP3|3 of momentum twistor space CP3 assigned to the
massless external particles being simple algebraic functions of the external momenta.

It is also possible to defineNkMHV amplitudes in terms of Yangian invariants Ln,k+2(W1, · · · ,Wn)
by using ordinary twistors Wa and identical defining formula. The two invariants are related by
the formula Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Here M tree
MHV is the tree contri-

bution to the maximally helicity violating amplitude for the scattering of n particles: recall that
these amplitudes contain two negative helicity gluons whereas the amplitudes containing a smaller
number of them vanish [B27]. One can speak of a factorization to a product of n-particle ampli-
tudes with k − 2 and 2 negative helicities as the origin of the duality. The equivalence between
the descriptions based on ordinary and momentum twistors states the dual conformal invariance of
the amplitudes implying Yangian symmetry. It has been conjectured that Grassmannian integrals
generate all Yangian invariants.

The formulas for the Grassmann integrals for twistors and momentum twistors appearing
in the expressions of NkMHV amplitudes are given by following expressions.

1. The integrals Ln,k(W1, · · · ,Wn) associated with Nk−2MHV amplitudes in the description
based on ordinary twistors correspond to k negative helicities and are given by
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Ln,k(W1, · · · ,Wn) =
1

V ol(GL(2))

∫
dk×nCαa

(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)
×

×
k∏

α=1

d4|4Yα

n∏
i=1

δ4|4(Wi − CαiYα) .

(12.6.27)

Here Cαa denote the n× k coordinates used to parametrize the points of Gk,n.

2. The integrals Yn,k(W1, · · · ,Wn) associated with NkMHV amplitudes in the description
based on momentum twistors are defined as

Yn,k(Z1, · · · , Zn) =
1

V ol(GL(k))
×
∫

dk×nCαa
(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)

×
k∏

α=1

δ4|4(CαaZa) .

(12.6.28)

The possibility to select Z0
a = 1 implies

∑
k Cαk = 0 allowing to eliminate Cαn so that

the actual number of coordinates Grassman coordinates is nk − 1. As already noticed,
Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Momentum twistors are obviously cal-
culationally easier since the value of k is smaller by two units.

The 4k delta functions reduce the number of integration variables of contour integrals from
nk to (n− 4)k in the bosonic sector (the definition of delta functions involves some delicacies not
discussed here). The n quantities (m, · · ·m + k) are k × k-determinants defined by subsequent
columns from m to m+ k − 1 of the k × n matrix defined by the coordinates Cαa and correspond
geometrically to the k-volumes of the k-dimensional parallel-pipeds defined by these column vectors.
The fact that the scalings of twistor space coordinates Za can be compensated by scalings of Cαa
deforming integration contour but leaving the residue integral invariant so that the integral depends
on projective twistor coordinates only.

Since the integrand is a rational function, a multi-dimensional residue calculus allows to
deduce the values of these integrals as residues associated with the poles of the integrand in a
recursive manner. The poles correspond to the zeros of the k × k determinants appearing in the
integrand or equivalently to singular lower-dimensional parallel-pipeds. It can be shown that local
residues are determined by (k − 2)(n− k − 2) conditions on the determinants in both cases. The
value of the integral depends on the explicit choice of the integration contour for each variable
Cαa left when delta functions are taken into account. The condition that a correct form of tree
amplitudes is obtained fixes the choice of the integration contours.

For the ordinary twistors W the residues correspond to projective configurations in CPk−1,
or more precisely in the space CPnk−1/Gl(k), which is (k− 1)n− k2-dimensional space defining the
support for the residues integral. Gl(k) relates to each other different complex coordinate frames
for k-plane and since the choice of frame does not affect the plane itself, one has Gl(k) gauge
symmetry as well as the dual Gl(n− k) gauge symmetry.

CPk−1 comes from the fact that Cαk are projective coordinates: the amplitudes are indeed
invariant under the scalings Wi → tiWi, Cαi → tCαi. The coset space structure comes from
the fact that Gl(k) is a symmetry of the integrand acting as Cαi → Λ β

α Cβi . This analog of
gauge symmetry allows to fix k arbitarily chosen frame vectors Cαi to orthogonal unit vectors.
For instance, one can have Cαi = δαi for α = i ∈ 1, · · · , k. This choice is discussed in detail
in [B38]. The reduction to CPk−1 implies the reduction of the support of the integral to line in
the case of MHV amplitudes and to plane in the case of NMHV as one sees from the expression
dµ =

∏
α d

4|4Yα
∏n
i=1 δ

4|4(Wi − CαiYα). For (i1, · · · , ik) = 0 the vectors i1, ..ik belong to k − 2-
dimensional plane of CPk−1. In the case of NMHV (N2MHV ) amplitudes this translates at
the level of twistors to the condition that the corresponding twistors {i1, i2, i3} ({i1, i2, i3, i4}) are



12.6. Appendix: Some Mathematical Details About Grasmannian Formalism 491

collinear (in the same plane) in twistor space. This can be understood from the fact that the delta
functions in dµ allow to express Wi in terms of k − 1 Yα: s in this case.

The action of conformal transformations in twistor space reduces to the linear action of
SU(2, 2) leaving invariant Hermitian sesquilinear form of signature (2, 2). Therefore the conformal
invariance of the Grassmannian integral and its dual variant follows from the possibility to perform
a compensating coordinate change for Cαa and from the fact that residue integral is invariant
under small deformations of the integration contour. The above described relationship between
representations based on twistors and momentum twistors implies the full Yangian invariance.

12.6.5 Canonical Operations For Yangian Invariants

General l-loop amplitudes can be constructed from the basic Yangian invariants defined byNkMHV
amplitudes by various operations respecting Yangian invariance apart from possible IR anomalies.
There are several operations that one can perform for Yangian invariants Yn,k and all these op-
erations appear in the recursion formula for planar all loop amplitudes. These operations are
described in [B39] much better than I could do it so that I will not go to any details. It is possible
to add and remove particles, to fuse two Yangian invariants, to merge particles, and to construct
from two Yangian invariants a higher invariant containing so called BCFW bridge representing
single particle exchange using only twistorial methods.

Inverse soft factors

Inverse soft factors add to the diagram a massless collinear particles between particles a and b and
by definition one has

On+1(a, c, b, · · · ) =
〈ab〉
〈ac〉〈cb〉

On(a′b′) . (12.6.29)

At the limit when the momentum of the added particle vanishes both sides approach the original
amplitude. The right-handed spinors and Grassmann parameters are shifted

λ̃′a = λ̃a + 〈cb〉
〈ab〉 λ̃c , λ̃′b = λ̃b + 〈ca〉

〈ba〉 λ̃c ,

η′a = ηa + 〈cb〉
〈ab〉ηc , η′b = ηb + 〈ca〉

〈ba〉ηc .
(12.6.30)

There are two kinds of inverse soft factors.

1. The addition of particle leaving the value k of negative helicity gluons unchanged means just
the re-interpretation

Y ′n,k(Z1, · · · , Zn−1, Zn) = Yn−1,k(Z1, · · · , Zn−1) (12.6.31)

without actual dependence on Zn. There is however a dependence on the momentum of the
added particle since the relationship between momenta and momentum twistors is modified
by the addition obtained by applying the basic rules relating region super momenta and
momentum twistors (light-like momentum determines λi and twistor equations for xi and
λi, ηi determine (µi, χi)) is expressible assigned to the external particles [B60]. Modifications
are needed only for the new vertex and its neighbors.

2. The addition of a particle increasing k with single unit is a more complex operation which can
be understood in terms of a residue of Yn,k proportional to Yn−1,k−1 and Yangian invariant
[z1 · · · z5] with five arguments constructed from basic Yangian invariants with four arguments.
The relationship between the amplitudes is now

Y ′n,k(.., Zn−1Zn, Z1 · · · ) = [n− 2 n− 1 n 1 2]× Yn−1,k−1(· · · Ẑn−1, Ẑ1, · · · ) .(12.6.32)
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Here

[abcde] =
δ0|4(ηa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (12.6.33)

denoted also by R(a, b, c, d, e) is the fundamental R-invariant appearing in one loop correc-
tions of MHV amplitudes and will appears also in the recursion formulas. 〈abcd〉 is the
fundamental super-conformal invariant associated with four super twistors defined in terms
of the permutation symbol.

Ẑn−1, Ẑ1 are deformed momentum twistor variables. The deformation is determined from the
relationship between external momenta, region momenta and momentum twistor variables.
Ẑ1 is the intersection Ẑ1 = (n−2 n−1 2)∩(12) of the line (12) with the plane (n−2 n−1 2)
and Ẑn−1 the intersection Ẑ1 = (12n)∩ (n− 2 n− 1) of the line (n− 2 n− 1) with the plane
(12n). The interpretation for the intersections at the level of ordinary Feynman diagrams is
in terms of the collinearity of the four-momenta involved with the underlying box diagram
with parallel on mass shell particles. These result from unitarity conditions obtained by
putting maximal number of loop momenta on mass shell to give the leading singularities.

The explicit expressions for the momenta are

Ẑ1 ≡ (n− 2 n− 1 2) ∩ (12)Z1 = 〈2 n− 2 n− 1 n〉+ Z2〈n− 2 n− 1 n 1〉 ,
Ẑn−1 ≡ (12n) ∩ (n− 2 n− 1) = Zn−2〈n− 2 n− 1 n 2〉+ Zn−1〈n 1 2 n− 2〉 .

(12.6.34)

These intersections also appear in the expressions defining the recursion formula.

Removal of particles and merge operation

Particles can be also removed. The first manner to remove particle is by integrating over the twistor
variable characterizing the particle. This reduces k by one unit. Merge operation preserves the
number of loops but removes a particle particle by identifying the twistor variables of neighboring
particles. This operation corresponds to an integral over on mass shell loop momentum at the level
of tree diagrams and by Witten’s half Fourier transform can be transformed to twistor integral.

The product

Y ′(Z1, · · ·Zn) = Y1(Z1, · · ·Zm)× Y2(Zm+1, · · ·Zn) (12.6.35)

of two Yangian invariants is again a Yangian invariant. This is not quite trivial since the depen-
dence of region momenta and momentum twistors on the momenta of external particles makes the
operation non-trivial.

Merge operation allows to construct more interesting invariants from the products of Yan-
gian invariants. One begins from a product of Yangian invariants (Yangian invariant trivially)
represented cyclically as points of circle and identifies the last twistor argument of given invariant
with the first twistor argument of the next invariant and performs integrals over the momentum
twistor variables appearing twice. The soft k-increasing and preserving operations can be described
also in terms of this operation for Yangian invariants such that the second invariant corresponds
to 3-vertex. The cyclic merge operation applied to four MHV amplitudes gives NMHV amplitudes
associated with on mass shell momenta in box diagrams. By applying similar operation to NMHV
amplitudes and MHV amplitudes one obtains 2-loop amplitudes. In [B39] examples about these
operations are described.
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BCFW bridge

BCFW bridge allows to build general tree diagrams from MHV tree diagrams [B26, B26] and
recursion formula of [B39] generalizes this to arbitrary diagrams. At the level of Feynman diagrams
it corresponds to a box diagram containing general diagrams labeled by L and R and MHV and
MHV 3-vertices (MHV 3-vertex allows expression in terms of MHV diagrams) with the lines of
the box on mass shell so that the three momenta emanating from the vertices are parallel and give
rise to a one-loop leading singularity.

At the level of Feynman diagrams BCFW bridge corresponds to so called “two-mass hard”
leading singularities associated with box diagrams with light-like momenta at the four lines of the
diagram [B38]. The motivation for the study of these diagrams comes from the hypothesis the
leading order singularities obtained by putting as many particles as possible on mass shell contain
the data needed to construct scattering amplitudes of N = 4 SYM completely. This representation
of the leading singularities generalizes to arbitrary loops. The recent article is a continuation of
this program to planar amplitudes.

Also BCFW bridge allows an interpretation as a particular kind fusion for Yang invariants
and involves all the basic operations. One starts from the amplitudes Y LnL,kL and Y RnR,kR and
constructs an amplitude Y ′nL+nR,kL+kR+1 representing the amplitude which would correspond to a
generalization of the MHV diagrams with the two tree diagrams connected by the MHV propagator
(BCFW bridge) replaced with arbitrary loop diagrams. Particle “1” resp. “j+1” is added by the
soft k-increasing factor to YnL+1,kL+1 resp. YnR+1,kR+1 giving amplitude with n+ 2 particles and
with k-charge equal to kL + kR + 2. The subsequent operations must reduce k-charge by one unit.
First repeated “1” and “j+1” are identified with their copies by k conserving merge operation,
and after that one performs an integral over the twistor variable ZI associated with the internal
line obtained and reducing k by one unit. The soft k-increasing factors bring in the invariants
[n− 1 n 1 I j + 2] associated with YL and [1 I j + 1 j j − 1] associated with YR. The integration
contour is chosen so that it selects the pole defined by ∠n − 1 n 1 I〉 in the denominator of
[n− 1 n 1 I j + 2] and the pole defined by 〈1 I j + 1 j〉 in the denominator of [1 I j + 1 j j − 1].

The explicit expression for the BCFW bridge is very simple:

(YL ⊗BCFW YR)(1, · · · , n) = [n− 1 n 1 j j + 1]× YR(1, · · · , j, I)YL(I, j + 1, · · · , n− 1, n̂) ,

n̂ = (n− 1 n) ∩ (j j + 1 1) , I = (j j + 1) ∩ (n− 1 n 1) .(12.6.36)

Single cuts and forward limit

Forward limit operation is used to increase the number of loops by one unit. The physical picture
is that one starts from say 1-loop amplitude and cuts one line by assigning to the pieces of the
line opposite light-like momenta having interpretation as incoming and outgoing particles. The
resulting amplitude is called forward limit. The only reasonable interpretation seems to be that
the loop integration is expressed by unitarity as forward limit meaning cutting of the line carrying
the loop momentum. This operation can be expressed in a manifestly Yangian invariant way as
entangled removal of two particles with the merge operation meaning the replacement Zn → Zn−1.
Particle n+ 1 is added adjacent to A,B as a k-increasing inverse soft factor and then A and B are
removed by entangled integration, and after this merge operation identifies n+ 1 and 1.

Forward limit is crucial for the existence of loops and for Yangian invariants it corresponds
to the poles arising from 〈(AB)qZn(z)Z1)〉 the integration contour Zn + zZn−1 around Zb in the
basic formula M =

∮
(dz/z)Mn leading to the recursion formula. A and B denote the momentum

twistors associated with opposite light-like momenta. In the generalized unitarity conditions the
singularity corresponds to the cutting of line between particles n and 1 with momenta q and −q,
summing over the multiplet of stats running around the loop. Between particles n2 and 1 one has
particles n−1, n with momenta q,−q. q = x1−xn = −xn+xn−1 giving x1 = xn−1. Light-likeness
of q means that the lines (71) = (76) and (15) intersect. At the forward limit giving rise to the pole
Z6 and Z7 approach to the intersection point (76) ∩ (15). In a generic gauge theories the forward
limits are ill-defined but in super-symmetric gauge theories situation changes.

The corresponding Yangian operation removes two external particles with opposite four-
momenta and involves integration over two twistor variables Za and Zb and gives rise to the
following expression
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∫
GL(2)

Y (· · · , Zn, ZA, ZB , Z1, · · · ) . (12.6.37)

The integration over GL(2) corresponds to integration over twistor variables associated ZA and
ZB . This operation allows addition of a loop to a given amplitude. The line ZaZb represents loop
momentum on one hand and the dual x-coordinate identified as momentum propagating along the
line on the other hand.

The integration over these variables is equivalent to an integration over loop momentum as
the explicit calculation of [B39] (see pages 12-13) demonstrates. If the integration contours are
products in the product of twistor spaces associated with a and b the and gives lower order Yangian
invariant as answer. It is however also possible to choose the integration contour to be entangled in
the sense that it cannot be reduced to a product of integration contours in the Cartesian product
of twistor spaces. In this case the integration gives a loop integral. In the removal operation
Yangian invariance can be broken by IR singularities associated with the integration contour and
the procedure does not produce genuine Yangian invariant always.

What is highly interesting from TGD point of view is that this integral can be expressed as
a contour integral over CP1 × CP1 combined with integral over loop momentum. If TGD vision
about generalized Feynman graps in zero energy ontology is correct, the loop momentum integral
is discretized to an an integral over discrete mass shells and perhaps also to a sum over discretized
momenta and one can therefore avoid IR singularities.

12.6.6 Explicit Formula For The Recursion Relation

Recall that the recursion formula is obtained by considering super-symmetric momentum-twistor
deformation Zn → Zn + zZn−1 and by integrating over z to get the identity

Mn,k,l =

∮
dz

z
M̂n,k,l(z) . (12.6.38)

This integral equals to integral with reversed integration contour enclosing the exterior of the
contour. The challenge is to deduce the residues contributing to the residue integral and the claim
of [B39] is that these residues reduce to simple basic types.

1. The first residue corresponds to a pole at infinity and reduces the particle number by one
giving a contribution Mn−1,k,l(1, · · · , n − 1) to Mn,k,l(1, · · · , n − 1, n). This is not totally
trivial since the twistor variables are related to momenta in different manner for the two
amplitudes. This gives the first contribution to the right hand side of the formula below.

2. Second pole corresponds to the vanishing of 〈Zn(z)Z1ZjZj+1〉 and corresponds to the factor-
ization of channels. This gives the second BCFW contribution to the right hand side of the
formula below. These terms are however not enough since the recursion formula would imply
the reduction to expressions involving only loop corrections to 3-loop vertex which vanish in
N = 4 SYM.

3. The third kind of pole results when 〈(AB)qZn(z)Z1〉 vanishes in momentum twistor space.
(AB)q denotes the line in momentum twistor space associated with q: th loop variable.

The explicit formula for the recursion relation yielding planar all loop amplitudes is obtained
by putting all these pieces together and reads as

Mn,k,l(1, · · · , n) = Mn−1,k,l(1, · · · , n− 1)

+
∑

nL,kL,lL;j

[j j + 1 n− 1 n 1]MR
nR,kR,lR(1, · · · , j, Ij)×ML

nL,kL,lL(Ij , j + 1, · · · , n̂j)

+

∫
GL(2)

[AB n− 1 n 1]Mn+2,k+1,n,k−1(1, · · · , n̂AB , Â, B) ,

nL + nR = n+ 2 , kL + kR = k − 1 , lR + lL = l .

(12.6.39)
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The momentum super-twistors are given by

n̂j = (n− 1 n) ∩ (j j + 1 1) , Ij = (j j + 1 1) ∩ (n− 1 n 1) ,

n̂AB = (n− 1 n) ∩ (AB 1) , Â = (AB) ∩ (n− 1 n 1) .
(12.6.40)

The index l labels loops in n+ 2-particle amplitude and the expression is fully symmetrized with
equal weight for all loop integration variables (AB)l. A and B are removed by entangled integration
meaning that GL(2) contour is chosen to encircle points where both points A,B on the line (AB)
are located at the intersection of the line (AB) with the plane (n− 1 n 1). GL(2) integral can be
done purely algebraically in terms of residues.

In [B39] and [B60] explicit calculations for NkMHV amplitudes are carried out to make
the formulas more concrete. For N1MHV amplitudes second line of the formula vanishes and the
integrals are rather simple since the determinants are 1× 1 determinants.



Chapter 13

From Principles to Diagrams

13.1 Introduction

The generalization of twistor diagrams to TGD framework has been very inspiring (and also fright-
ening) mission impossible and allowed to gain deep insights about what TGD diagrams could be
mathematically. I of course cannot provide explicit formulas but the general structure for the
construction of twistorial amplitudes in N = 4 SUSY suggests an analogous construction in TGD
thanks to huge symmetries of TGD and unique twistorial properties of M4 × CP2. The twistor
program in TGD framework has been summarized in [K76].

Contrary to the original expectations, the twistorial approach is not a mere reformulation
but leads to a first principle identification of cosmological constant and perhaps also of gravitational
constant and to a modification of the dynamics of Kähler action however preserving the known
extremals and basic properties of Kähler action and allowing to interpret induced Kähler form in
terms of preferred imaginary unit defining twistor structure.

There are some new results forcing a profound modification of the recent view about TGD
but consistent with the general picture. A more explicit realization of twistorialization as lifting
of the preferred extremal X4 of Kähler action to corresponding 6-D twistor space X6 identified as
surface in the 12-D product of twistor spaces of M4 and CP2 allowing Kähler structure suggests
itself. The fiber F of Minkowskian twistor space must be identified with sphere S2 with signature
(−1,−1) and would be a variant of the complex space with complex coordinates associated with S2

and transversal space E2 in the decomposition M4 = M2×E2 and one hyper-complex coordinate
associated with M2.

The action principle in 6-D context is also Kähler action, which dimensionally reduces to
Kähler action plus cosmological term. This brings in the radii of spheres S2(M4) and S2(CP2)
associated with the twistors space of M4 and CP2. For S(CP2) the radius is of order CP2 radius
R. R(S2(M4)) could be of the order of Planck length lP , which would thus become purely classical
parameter contrary the expectations. An alternative option is R(S2(M4)) = R The radius of S2

associated with space-time surface is determined by the induced metric and is emergent length
scale. The normalization of 6-D Kähler action by a scale factor 1/L2 with dimension, which is
inverse length squared brings in a further length scale closely related to cosmological constant
which is also dynamical and has correct sign to explain accelerated expansion of the Universe. The
order of magnitude for L must be radius of the S2(X4) and therefore small. This could mean a
gigantic cosmological constant. Just as in GRT based cosmology!

This issue can be solved by using the observation that thanks to the decomposition H =
M4×CP2 6-D Kähler action is a sum of two independent terms. The first term corresponds to the
6-D lift of the ordinary Kähler action and for it the contribution from S2(CP2) fiber is assumed
to be absent: this could be due to the imbedding of S2(X4) reducing to identification S2(M4) and
is not true generally. Second term in action is assumed to come from the S2(M4) fiber of twistor
space T (M4). The independency implies that couplings strengths are independent for them.

The analog for Kähler coupling strength (analogous to critical temperature) associated with
S2(M4) must be extremely large - so large that one has αK(M4) × R(M4)2 ∼ L2, L size scale
of the recent Universe. This makes possible the small value of cosmological constant assignable

496
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to the volume term given by this part of the dimensionally reduced action. Both Kähler coupling
strengths are assumed to have a spectrum determined by quantum criticality and the spectrum
of αK(M4) comes essentially as p-adic primes satisfying p-adic length scale hypothesis p ' 2k,
k prime. In fact, it turns that one can assumed that the entire 6-D Kähler action contributes if
one assumes that the winding numbers (w1, w2) for the map S2(X4)→ S2(M4)×S2(CP2) satisfy
(w1, w2) = (n, 0) in cosmological scales. The identification of w1 as heff/h = n is highly suggestive.

The dimensionally reduced dynamics is a highly non-trivial modification of the dynamics of
Kähler action however preserving the known extremals and basic properties of Kähler action and
allowing to interpret induced Kähler form in terms of preferred imaginary unit defining twistor
structure. Strong constraints come also from the condition that induced spinor structure coming
from that for twistor space T (H) is essentially that coming from that of H.

Second new element is the fusion of the twistorial approach with the vision that diagrams
are representations for computations. This as also quantum criticality demands that the dia-
grams should allow huge symmetries allowing to transform them to braided generalizations of
tree-diagrams. Several guiding principles are involved and what is new is the observation that they
indeed seem to form a coherent whole.

In the sequel I will discuss the recent understanding of twistorizalization, which is consider-
ably improved from that in the earlier formulation. I formulate the dimensional reduction of 6-D
Kähler action and consider the physical interpretation. There are considerable uncertainties at
the level of details I dare believe that basically the situation is understood. After that I proceed
to discuss the basic principles behind the recent view about scattering amplitudes as generalized
Feynman diagrams.

13.2 twistor lift of Kähler action

First I will try to clarify the mathematical details related to the twistor spaces and how they emerge
in the recent context. I do not regard myself as a mathematician in technical sense and I can only
hope that the representation based on physical intuition does not contain serious mistakes.

13.2.1 Imbedding space is twistorially unique

It took roughly 36 years to learn that M4 and CP2 are twistorially unique. Space-times are surfaces
in H = M4×CP2. M4 and CP2 are unique 4-manifolds in the sense that both allow twistor space
with Kähler structure: Kähler structure is the crucial concept. Strictly speaking, it is E4 and
S4 allow twistor space with Kähler structure [A63] : in the case of M4 signature could cause
problems. The standard identification for the twistor space of M4 would be Minkowskian variant
PT = P3 = SU(2, 2)/SU(2, 1)× U(1) of 6-D twistor space PT = CP3 = SU(4)/SU(3)× U(1) of
E4. The twistor space of CP2 is 6-D T (CP2) = SU(3)/U(1) × U(1), the space for the choices of
quantization axes of color hypercharge and isospin.

The case of M4 is however problematic. It is often stated that the twistor space is PT =
CP3 = SU(4)/SU(3) × U(1). The metric of twistor space does not appear in the construction of
twistor amplitudes. Already the basic structure of PT suggests that this identification cannot be
correct.

As if the situation were not complicated enough, there are two notions of twistor space: the
twistor space identified as P3 and as a trivial sphere bundle M4 × CP1 having Kähler structure -
what Kähler structure actually means in case of M4 is hower not quite clear.

These considerations lead to a proposal - just a proposal - for the formulation of TGD in
which space-time surfaces X4 in H are lifted to twistor spaces X6, which are sphere bundles over
X4 and such that they are surfaces in 12-D product space T (M4) × T (CP2) such the twistor
structure of X4 are in some sense induced from that of T (M4)× T (CP2). In the following T (M4)
therefore denotes the trivial sphere bundle M4 × CP1 over M4 and twistorialization of scattering
amplitudes would involve the projection from T (M4) to P3. What is nice in this formulation
is that one could use all the machinery of algebraic geometry so powerful in superstring theory
(Calabi-Yau manifolds).
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13.2.2 Some basic definitions

What twistor structure in Minkowskian signature does really mean geometrically has remained
a confusing question for me. The problems associated with the Minkowskian signature of the
metric are encountered also in twistor Grassmann approach to the scattering amplitudes but are
circumvented by performing Wick rotation that is using E4 or S4 instead of M4 and applying
algebraic continuation. Also complexification of Minkowksi space for momenta is used. These
tricks do not apply now.

To make this more concrete, let us sum up the basic definitions.

1. Bi-spinors in representations (1/2,0) and (0,1/2) of Lorentz group are the building bricks of
twistors. Bi-spinors va and their conjugates va

′
have the following inner products:

〈vw〉 = εabv
awb , [vw] = εa′b′v

a′wb
′
,

εab = (0, 1;−1, 0) , εa′b′ = (0, 1;−1, 0) .
(13.2.1)

Unprimed spinor and its primed variant of the spinor are related by complex conjugation.
Index raising is by the inverse εab of εab.

2. Twistors are identified as pairs of 2-spinor and its conjugate

Zα = (λa, µ
a′) , Zα = (µa, λa′) (13.2.2)

The norm for Zα is defined as

ZαZ
α

= 〈λµ〉+
[
λµ
]
. (13.2.3)

One can write the metric explicitly as direct sum of terms of form dudv (metric of M2)
and each of the can be taken to diagonal form (1,-1). Hence the metric can be written as
diag(1, 1, 1, 1,−1,−1,−1,−1).

3. This norm allows to decompose PT to 3 parts PT+,PT− and PN in a projectively invariant
manner depending on whether the sign of the norm is negative, positive, or whether it
vanishes. PT+ and PT− serve as loci for the twistor lifts of positive and negative energy
modes of massless fields. PN corresponds to the 5-D boundary of the lightcone of M(2, 4).
By projective identification along light-like radial coordinate it reduces to what is known
as conformal compactification of M4, whose metric is defined only apart from a conformal
factor. The natural metric of PT = P3 does not seem to play any role in the construction of
the amplitudes relying on projective invariants. The signature of M4 metric however makes
itself visible in the structure of PT : for the Euclidian variant of twistor space one would not
have this decomposition to three parts.

Another definition of twistor space - to be used in the geometrization of twistor approach to
be proposed - is as a trivial S2 bundle M4×CP1 over M4. Since the twistor spheres associated with
the points of M4 with light-like separation intersect, these two definitions cannot be equivalent.
In fact, the proper definition of twistor space relies on double fibration involving both views about
twistor space discussed in [B72] (see http://tinyurl.com/yb4bt74l).

1. The twistor bundle denoted as PS is the product M4×CP1 with CP1 realized as projective
space and having coordinates (xaa

′
, λa), {xaa′} ↔ xµσµ, where the spinor λa is projective

2-spinor in (1/2, 0) representation.

http://tinyurl.com/yb4bt74l
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2. The twistors defined in this manner have a trivial projection q to M4 and non-trivial projec-
tion p to P3 with local projective coordinates (λa, µ

a′). The projection p is defined by the
projectively invariant incidence relation

µa
′

= ixaa
′
λa

If yaa
′

and aaa
′

differ by light-like vector there exists spinor λ annihilated by the difference
vector and there exists twistor (λa, µ

a′) to which both (x, λ) and (y, λ) are mapped by the
incidence relation. Thus the images of twistor spheres associated for points with light-like
separation intersect so that one does not have a proper CP1 bundle structure.

3. The trivial twistor bundle T (M4) = M4 × CP1 would define the twistor space of M4 in
geometric sense. For this space the metric matters and the radius of CP1 turns out to allow
identification in terms of Planck length. Gravitational interaction would bring in Planck
length as a basic scale in this manner. PT in turn would define the twistor space in which
the twistor lifts of imbedding space-spinor fields are defined. For this space the metric,
which is degenerate and seems to be only projectively defined should not be relevant as the
construction of twistorial amplitudes suggests. Note however that the identification as the
Minkowskian variant of P3 allows also the introduction of metric.

This picture has an important immediate implication for the construction of quantum TGD.
Positive and negative energy parts of zero energy states are defined at light-like boundaries of
CD × CP2, where CD is the intersection of future and past directed light-cones. The twistor lifts
of the amplitudes from δCD×CP2 must be single valued. The strongest condition guaranteing this
is that they do not depend on the radial light-like coordinate at δCD. Super-symplectic symmetry
implying the analog of conformal gauge symmetry for the radial light-like coordinate could guar-
antee this. There is however a hierarchy of conformal gauge symmetry breakings corresponding to
the inclusion hierarchy of isomorphic sub-algebras so that this condition is too strong. A weaker
condition is that the amplitude F (m,λ) in T (M4) is constant along the light-like ray for the λ
associated with the m along this ray. An even stronger condition is that F (m,λ) vanishes along
the ray. Particle would not propagate along δCD and would avoid remaining at the boundary of
CD, a condition which is perfectly sensible physically.

13.2.3 What does twistor structure in Minkowskian signature really
mean?

The following considerations relate to T (M4) identified as trivial bundle M4 × CP1 with natural
coordinates (maa′ , λa), where λa is projective spinor. The challenge is to generalize the complex
structure of twistor space of E4 to that for M4. It turns out that the assumption that twistor
space has ordinary complex structure fails. The first guess was that the fiber of twistor space
is hyperbolic sphere with metric signature (1,−1) having infinite area so that the 6-D Kähler
action would be infinite. This makes no sense. The only alternative, which comes in mind is a
hypercomplex generalization of the Kähler structure for M4 lifted to twistor space, which locally
means only adding of S2 fiber with metric signature (−1,−1).

1. To proceed one must make an explicit the definition of twistor space. The 2-D fiber S2 consists
of antisymmetric tensors of X4 which can be taken to be self-dual or anti-self-dual by taking
any antisymmetric form and by adding to its plus/minus its dual. Each tensor of this kind
defines a direction - point of S2. These points can be also regarded as quaternionic imaginary
units. One has a natural metric in S2 defined by the X4 inner product for antisymmetric
tensors: this inner product depends on space-time metric. Kähler action density is example
of a norm defined by this inner product in the special case that the antisymmetric tensor is
induced Kähler form. Induced Kähler form defines a preferred imaginary unit and is needed
to define the imaginary part ω(X,Y ) = ig(X,−JY ) of hermitian form h = h+ iω.

2. To define the analog of Kähler structure for M4, one must start from a decomposition of
M4 = M2×E2 (M2 is generated by light-like vector and its dual) and E2 is orthogonal to it.
M2 allows hypercomplex structure, which light-like coordinates (u = t− z, v = t+ z) and E2
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complex structure and the metric has form ds2 = dudv + dzdz. Hypercomplex numbers can
be represented as h = t+ iez, i2 = −1, e2 = −1 i2 = −1, e2 = −1. Hyper-complex numbers
do not define number field since for light-like hypercomplex numbers t + iez, t = ±z do
not have finite inverse. Hypercomplex numbers allow a generalization of analytic functions
used routinely in physics. Kähler form representing hypercomplex imaginary unit would be
replaced with eJ . One would consider sub-spaces of complexified quaternions spanned by real
unit and units eIk, k = 1, 2, 3 as representation of the tangent space of space-time surfaces
in Minkowskian regions. This is familiar already from M8 duality [K111].

M4 = M2 × E2 decomposition can depend on point of M4 (polarization plane and light-
like momentum direction depend on point of M4. The condition that this structure allows
global coordinates analogous to (u, v, z, z) requires that the distributions for M2 and E2 are
integrable and thus define 2-D surfaces. I have christened this structure Hamilton-Jacobi
structure. It emerges naturally in the construction of extremals of Kähler action that I have
christened massless extremals (MEs, [K7]) and also in the proposal for the generalization of
complex structure to Minkowskian signature [K103].

One can define the analog of Kähler form by taking sum of induced Kähler form J and its
dual ∗J defined in terms of permutation tensor. The normalization condition is that this
form integrates to the negative of metric (J±∗J)2 = −g. This condition is possible to satisfy.

3. How to lift the Hamilton Jacobi structure of M4 to Kähler structure of its twistor space?
The basic definition of twistors assumes that their exists a field of time-like directions, and
that one considers projections of 4-D antisymmetric tensors to the 3-space orthogonal to
the time-like direction at given point. One can say that the projection yields magnetic part
of the antisymmetric tensor (say induced Kähler form J) with positive norm with respect
to natural metric induced to the twistor fiber from the inner product between two-forms.
This unique time direction would be defined the light-like vector defining M2 and its dual.
Therefore the signature of the metric of S2 would be (−1,−1). In quaternionic picture this
direction corresponds to real quaternionic unit.

4. To sum up, the metric of the Minkowskian twistor space has signature (−1,−1, 1,−1,−1,−1).
The Minkowskian variant of the twistor space would give 2 complex coordinates and one
hyper-complex coordinate. Cosmological term would be finite and the sign of the cosmo-
logical term in the dimensionally reduced action would be positive as required. Also metric
determinant would be imaginary as required. At this moment I cannot invent any killer
objection against this option.

It must be made clear that the proposed definition of twistor space of M4 does not seem to
be equivalent with the twistor space assignable to conformally compactified M4. One has trivial S2

bundle and Hamilton-Jacobi structure, which is hybrid of complex and hyper-complex structure.

13.2.4 What does the induction of the twistor structure to space-time
surface really mean?

Consider now what the induction of the twistor structure to space-time surface X4 could mean.

1. The induction procedure for Kähler structure of 12-D twistor space T requires that the
induced metric and Kähler form of the base space X4 of X6 obtained from T is the same as
that obtained by inducing from H = M4×CP2. Since the Kähler structure and metric of T
is lift from H this seems obvious. Projection would compensate the lift.

2. This is not yet enough. The Kähler structure and metric of S2 projected from T must be same
as those lifted from X4. The connection between metric and ω implies that this condition
for Kähler form is enough. The antisymmetric Kähler forms in fiber obtained in these two
manners co-incide. Since Kähler form has only one component in 2-D case, one obtains single
constraint condition giving a commutative diagram stating that the direct projection to S2

equals with the projection to the base followed by a lift to fiber. The resulting induced Kähler
form is not covariantly constant but in fiber S2 one has J2 = −g.
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As a matter of fact, this condition might be trivially satisfied as a consequence of the bundle
structure of twistor space. The Kähler form from S2 × S2 can be projected to S2 associated
with X4 and by bundle projection to a two-form in X4. The intuitive guess - which might
be of course wrong - is that this 2-form must be same as that obtained by projecting the
Kähler form of CP2 to X4. If so then the bundle structure would be essential but what does
it really mean?

3. Intuitively it seems clear that X6 must decompose locally to a product X4 × S2 in some
sense. This is true if the metric and Kähler form reduce to direct sums of contributions from
the tangent spaces of X4 and S2. This guarantees that 6-D Kähler action decomposes to a
sum of 4-D Kähler action and Kähler action for S2.

This could be however too strong a condition. Dimensional reduction occurs in Kaluza-Klein
theories and in this case the metric can have also components between tangent spaces of the
fiber and base being interpreted as gauge potentials. This suggests that one should formulate
the condition in terms of the matrix T ↔ gαµgβν − gανgβµ defining the norm of the induced
Kähler form giving rise to Kähler action. T maps Kähler form J ↔ Jαβ to a contravariant
tensor Jc ↔ Jαβ and should have the property that Jc(X

4) (Jc(S
2)) does not depend on

J(S2) (J(X4)).

One should take into account also the self-duality of the form defining the imaginary unit.
In X4 the form S = J ± ∗J is self-dual/anti-self dual and would define twistorial imaginary
unit since its square equals to −g representing the negative of the real unit. This would
suggest that 4-D Kähler action is effectively replaced with (J±∗J)∧ (J±∗J) = J∗J±J ∧J ,
where ∗J is the Hodge dual defined in terms of 4-D permutation tensor ε. The second term is
topological term (Abelian instanton term) and does not contribute to field equations. This in
turn would mean that it is the tensor T ± ε for which one can demand that Sc(X

4) (Sc(S
2))

does not depend on S(S2) (S(X4)).

4. The preferred quaternionic imaginary unit should be represented as a projection of Kähler
form of 12-D twistor space T (H). The preferred imaginary unit defining twistor structure as
sum of projections of both T (CP2) and T (M4) Kähler forms would guarantee that vacuum
extremals like canonically imbedded M4 for which T (CP2) Kähler form contributes nothing
have well-defined twistor structure. T (M4) or T (CP2) are treated completely symmetrically
but the maps of S2(X4) to S2(M4) and S2(CP2) characterized by winding numbers induce
symmetry breaking.

For Kähler action M4 − CP2 symmetry does not make sense. 4-D Kähler action to which
6-D Kähler action dimensionally reduces can depend on CP2 Kähler form only. I have also
considered the possibility of covariantly constant self-dual M4 term in Kähler action but given
it up because of problems with Lorentz invariance. One should couple the gauge potential of
M4 Kähler form to induced spinors. This would mean the existence of vacuum gauge fields
coupling to sigma matrices of M4 so that the gauge grop would be non-compact SO(3, 1)
leading to a breakdown of unitarity.

There is still one difficulty to be solved.

1. The normalization of 6-D Kähler action by a scale factor 1/L2 with dimension, which is
inverse length squared, brings in a further length scale. The first guess is that 1/L2 is closely
related to cosmological constant, which is also dynamical and 1/L2has indeed correct sign to
explain accelerated expansion of the Universe. Unfortunately, if 1/L2 is of order cosmological
constant, the value of the ordinary Kähler coupling strength αK would be enormous. As a
matter of fact, the order of magnitude for L2 must be equal to the area of S2(X4) and in
good approximation equal to L2 = 4πR2(S2(M4)) and therefore in the same range as Planck
length lP and CP2 radius R. This would imply a gigantic value of cosmological constant.
Just as in GRT based cosmology!

2. This issue can be solved by using the observation that thanks to the decomposition H =
M4 × CP2, 6-D Kähler action is sum of two independent terms. The first term corresponds
to the 6-D lift of the ordinary Kähler action. For it the contribution from S2(CP2) fiber
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is absent if the imbedding of S2(X4) to S2(M4) × S2(CP2) reduces to identification with
S2(M4) so that S2(CP2) is effectively absent: this is not true generally. Second term in the
action is assumed to come from the S2(M4) fiber of twistor space T (M4), which can indeed
contribute without breaking of Lorentz symmetry. In fact, one can assume that also the
Kähler form of M4 contributes as will be found.

3. The independency implies that Kähler couplings strengths are independent for them. If one
wants that cosmological constant has a reasonable order of magnitude, L ∼ R(S2(M4)) must
hold true and the analog αK(S2(M4)) of the ordinary Kähler coupling strength (analogous
to critical temperature) must be extremely large - so large that one has

αK(M4)× 4πR(M4)2 ∼ L2 ,

where L is the size scale of the recent Universe.

This makes possible the small value of cosmological constant assignable to the volume term
given by this part of dimensionally reduced action. Both Kähler coupling strengths are
assumed to have a spectrum determined by quantum criticality and the spectrum of αK(M4)
would be essentially as p-adic primes satisfying p-adic length scale hypothesis p ' 2k, k prime.
One can criticize this identification of 6-D Kähler action as artificial but it seems to be the
only option that works. Interestingly also the contribution from M4 Kähler form can be
allowed since it is also extremely small. For canonically imbedded M4 this contribution
vanishes by self-duality of M4 Kähler form and is extremely small for the vacuum extremals
of Kähler action.

4. For general winding numbers of the map S2(X4)→ S2(M4)×S2(CP2) also S2(CP2) Kähler
form contributes and cosmological constant is gigantic. It would seem that only the winding
numbers (w1, w2) = (n, 0) are consistent with the observed value of cosmological constant.
Hence it seems that there is no need to pose any additional conditions to the Kähler action
if one uses the fact that T (M4) and T (CP2) parts are independent!

It is good to list the possible open issues related to the precise definition of the twistor
structure and of M4 Kähler action.

1. The proposed definition of M4 twistor space a Cartesian product of M4 and S2(M4) parts
involving Hamilton-Jacobi structure does not seem to be equivalent with the twistor identifi-
cation as SU(2, 2)/SU(2, 1)×U(1) having conformally compactified M4 as base space. There
exists an entire moduli space of Hamilton-Jacobi structures. If the M4 part of Kähler form
participates in dynamics, one must include the specification of the Hamilton-Jacobi structure
to the definition of CD and integrate over Hamilton Jacobi-structures as part of integral over
WCW in order to gain Lorentz invariance. Note that Hamilton-Jacobi structure enters to
dynamics also through the construction of massless extremals [K7].

2. The presence of M4 part of Kähler form in action implies breaking of Lorentz invariance for
extremals of lifted Kähler action. The same happens at the level of induced spinors if this
Kähler form couples to imbedding space spinors. If T (M4) is trivial bundle, one can include
only the T (S2(M4)) part of Kähler form to Kähler action and couple only this to the spinors
of T (H). The integration over Hamilton-Jacobi structures becomes un-necessary.

3. If one includes M4 part of Kähler form to 6-D Kähler action, one has several options. One
can have sum of the Kähler actions for T (M4) and T (CP2) or Kähler action defined by the
sum J(T (M4)/gK and J(T (CP2)/αK with αK(M4) = g2

K(M4)/4π~ and αK = g2
K/4π~ with

a proper normalization to guarantee that the squares of induced Kähler forms give sum of
Kähler actions as in the first option. In this case one obtains interference term proportional
to Tr(J(M4)J(CP2). For the proposed value of αK also the interference term is extremely
small as compared to Kähler action in recent cosmology.
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13.2.5 Could M4 Kähler form introduce new gravitational physics?

The introduction of M4 Kähler form could bring in new gravitational physics.

1. As found, the twistorial formulation of TGD assigns to M4 a self dual Kähler form whose
square gives Minkowski metric. It can (but need not if M4 twistor space is trivial as bundle)
contribute to the 6-D twistor counterpart of Kähler action inducing M4 term to 4-D Kähler
action vanishing for canonically imbedded M4.

2. Self-dual Kähler form in empty Minkowski space satisfies automatically Maxwell equations
and has by Minkowskian signature and self-duality a vanishing action density. Energy mo-
mentum tensor is proportional to the metric so that Einstein Maxwell equations are satisfied
for a non-vanishing cosmological constant! M4 indeed allows a large number of self dual
Kähler fields (I have christened them as Hamilton-Jacobi structures). These are probably
the simplest solutions of Einstein-Maxwell equations that one can imagine!

3. There however exist quite a many Hamilton-Jacobi structures. However, if this structure is
to be assigned with a causal diamond (CD) it must satisfy additional conditions, say SO(3)
symmetry and invariance under time translations assignable to CD. Alternatively, covariant
constancy and SO(2) ⊂ SO(3) symmetry might be required.

This raises several questions. Could M4 Kähler form replace CP2 Kähler form in the picture
for how gravitational interaction is mediated at quantal level? Could one speak of flux tubes of
the magnetic part of this Kähler form? Or should one consider the Kähler field as a sum of the
two Kähler forms weighted by the inverses 1/gK of corresponding Kähler couplings. If so then
M4 contribution would be negligible except for canonically imbedded M4 in the recent cosmology.
Note that αK and αK(M4) have interpretation as analogs of quantum critical temperatures but
can depend on the p-adic lengths scale defining the cosmology.

1. The natural expectation is that Kähler form characterizes CD having preferred time direction
suggested strongly by number theoretical considerations involving quaternionic structure with
preferred direction of time axis assignable to real unit quaternion.

Self-duality gives rise to Kähler magnetic and electric fields in the same spatial direction
identifiable as a local quantization axis for spin assignable to CD assignable to observer. CD
indeed serves as a correlate for conscious entity in TGD inspired theory of consciousness.
Flux tube would connect mass M to mass m assignable to observer and flux tube direction
would define spin quantization axes for the CD of the observer. Spin quantization axis would
be naturally in the direction of magnetic field, which is direction of the flux tube.

2. The self-dual Kähler form could be spherically symmetric for CDs and represent self dual
magnetic monopole field (dyon) with monopole charge at the line connecting the tips of CD
and have non-vanishing components J tr = εtrθφJθφ, Jθφ = sin(θ). One would have genuine
monopole, which is somewhat questionable feature. Only the entire radial flux would be
quantized. CD could be associated with the mass M of the central object. The gauge
potential associated with J could be chosen to be Aµ ↔ (1/r, 0, 0, cos(θ). I have considered
this kind of possibility earlier in context of TGD inspired model of anyons but gave up the
idea.

The moduli space for CDs with second tip fixed would be hyperbolic spaceH3 = SO(3, 1)/SO(3)
or a space obtained by identifying points at the orbits of some discrete subgroup of SO(3, 1)
as suggested by number theoretic considerations. This induced Kähler field could make the
blackholes with center at this line to behave like M4 magnetic monopoles if the M4 part of
Kähler form is induced into the 6-D lift of Kähler action with extremely small coefficients of
order of magnitude of cosmological constant. Cosmological constant and the possibility of
CD monopoles would thus relate to each other.

3. The self-dual M4 Kähler form could be also covariantly constant (Jtz = Jxy = 1) and
represent electric and magnetic fluxes in a fixed direction identifiable as a quantization axes
for spin and characterizing CD. In this case the CD would be associated with the mass m
of observer. The moduli space of CDs would be now SO(3, 1)/SO(1, 1) × SO(2) which is
completely analogous to the twistor space SU(3)/U(1)× U(1).
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4. Boundary conditions (allowing no boundaries!) demand that the flux tubes have closed cross
section - say sphere S2 - rather than disk: stability is guaranteed if the S2 cross section is
mapped to homologically non-trivial surface of CP2 or is projection of it. This would give
monopole flux also for CP2 Kähler form so that the original hypothesis would be correct.

5. Radial flux tubes are possible both spherically symmetric and covariantly constant Kähler
form possibly mediating gravitational interaction but the flux is not quantized unless pre-
ferred extremal property implies this: in any case M4 flux would be very small unless one
has large value of gravitational Planck constant implying n-sheeted covering of M4 and flux
is scale up by n since every sheet gives a contribution. For spherically symmetric M4 Kähler
form the flux tubes would have naturally conical structure spanning a constant solid angle.
For covariantly constant Kähler form the flux tubes would be cylindrical.

There are further interpretational problems.

1. The classical coupling of M4 Kähler gauge potential to induced spinors is not small. Can
one really tolerate this kind of coupling equivalent to a coupling to a self dual monopole field
carrying electric and magnetic charges? One could of course consider the condition that the
string world sheets carrying spinor modes are such that the induced M4 Kähler form vanishes
and gauge potential become pure gauge. M4 projection would be 2-D Lagrange manifold
whereas CP2 projection would carry vanishing induce Wand possibly also Z0 field in order
that em charge is well defined for the modes. These conditions would fix the string world
sheets to a very high degree in terms of maps between this kind of 2-D sub-manifolds of M4

and CP2. Spinor dynamics would be determined by the avoidance of interaction!

Recall that one could interpret the localization of spinor modes to 2-surfaces in the sense of
strong form of holography: one can continued induced spinor fields to the space-time interior
as indeed assumed but the continuation is completely determined by the data at 2-D string
world sheets.

It must be emphasized that the imbedding space spinor modes characterizing the ground
states of super-symplectic representations would not couple to the monopole field so that at
this level Poincare invariance is not broken. The coupling would be only at the space-time
level and force spinor modes to Lagrangian sub-manifolds.

2. At the static limit of GRT and for gij ' δij implying SO(3) symmetry there is very close
analogy with Maxwell’s equations and one can speak of gravi-electricity and gravi-magnetism
with 4-D vector potential given by the components of gtα. The genuine U(1) gauge potential
does not however relate to the gravimagnetism in GRT sense. Situation would be analogous
to that for CP2, where one must add to the spinor connection U(1) term to obtain respectable
spinor structure. Now the U(1) term would be added to trivial spinor connection of flat M4:
its presence would be justified by twistor space Kähler structure. If the induced M4 Kähler
form is present as a classical physical field it means genuinely new contribution to U(1)
electroweak of standard model. If string world sheets carry vanishing M4 Kähler form, this
contribution vanishes classically.

13.2.6 A connection with the hierarchy of Planck constants?

A connection with the hierarchy of Planck constants is highly suggestive. Since also a connection
with the p-adic length scale hierarchy suggests itself for the hierarchy of p-adic length scales it
seems that both length scale hierarchies might find first principle explanation in terms of twistor
lift of Kähler action.

1. Cosmological considerations encourage to think that R1 ' lP and R2 ' R hold true. One
would have in early cosmology (w1, w2) = (1, 0) and later (w1, w2) = (0, 1) guaranteeing
RDgrows from lP to R during cosmological evolution. These situations would correspond
the solutions (w1 = n, 0) and (0, w2 = n) one has A = n4πR2

1 and A = n × 4πR2
2 and both

Kähler coupling strengths are scaled down to αK/n. For ~eff/h = n exactly the same thing
happens!
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There are further intriguing similarities. heff/h = n is assumed to correspond multi-sheeted
(to be distinguished from many-sheeted!) covering space structure for space-time surface.
Now one has covering space defined by the lift S2(X4) → S2(M4) × S2(CP2). These lifts
define also lifts of space-time surfaces.

Could the hierarchy of Planck constants correspond to the twistorial surfaces for which
S2(M4) is n-fold covering of S2(X4)? The assumption has been that the n-fold multi-sheeted
coverings of space-time surface for heff/h = n are singular at the ends of space-time surfaces
at upper and lower boundaries if causal diamond (CD). Could one consider a more precise
definition of twistor space in such a manner that CD replaces M4 and the covering becomes
singular at the light-like boundaries of CD - the branches of space-time surface would collapse
to single one.

Does this collapse have a clear geometric meaning? Are the projections of various branches
of the S2 lift automatically identical so that one would have the original picture in which one
has n identical copies of the same space-time surface? Or can one require identical projections
only at the light-like boundaries of CD?

2. w1 = w2 = w is essentially the first proposal for conditions associated with the lifting of
twistor space structure. w1 = w2 = n gives ds2 = (R2

1 + R2
2)(dθ2 + w2dφ2) and A =

n × 4π(R2
1 + R2

2). Also now Kähler coupling strength is scaled down to α/n. Again a
connection with the hierarchy of Planck constants suggests itself.

3. One can consider also the option R1 = R2 option giving ds2 = R2
1(2dθ2 + (w2

1 + w2
2)dφ2. If

the integers wi define Pythagorean square one has w2
1 +w2

2 = n2 and one has R1 = R2 option
that one has A = n× 4πR2. Also now the connection with the hierarchy of Planck constants
might make sense.

13.2.7 Twistorial variant for the imbedding space spinor structure

The induction of the spinor structure of imbedding space is in key role in quantum TGD. The
question arises whether one should lift also spinor structure to the level of twistor space. If so
one must understand how spinors for T (M4) and T (CP2) are defined and how the induced spinor
structure is induced.

1. In the case of CP2 the definition of spinor structure is rather delicate and one must add to
the ordinary spinor connection U(1) part, which corresponds physically to the addition of
classical U(1) gauge potential and indeed produces correct electroweak couplings to quarks
and leptons. It is assumed that the situation does not change in any essential manner: that is
the projections of gauge potentials of spinor connection to the space-time surface give those
induced from M4 × CP2 spinor connection plus possible other parts coming as a projection
from the fiber S2(M2) × S2(CP2). As a matter of fact, these other parts should vanish if
dimensional reduction is what it is meant to be.

2. The key question is whether the complications due to the fact that the geometries of twistor
spaces T (M4) and T (CP2) are not quite Cartesian products (in the sense that metric could
be reduced to a direct sum of metrics for the base and fiber) can be neglected so that one
can treat the sphere bundles approximately as Cartesian products M4 × S2 and CP2 × S2.
This will be assumed in the following but should be carefully proven.

3. Locally the spinors of the twistorspace T (H) are tensor products of imbedding spinors and
those for of S2(M4) × S2(CP2) expressible also as tensor products of spinors for S2(M4)
and S2(CP2). Obviously, the number of spinor components increases by factor 2 × 2 = 4
unless one poses some additional conditions taking care that one has dimensional reduction
without the emergence of any new spin like degrees of freedom for which there is no physical
evidence. The only possible manner to achieve this is to pose covariant constancy conditions
already at the level of twistor spaces T (M4) and T (CP2) leaving only single spin state in
these degrees of freedom.
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4. In CP2 covariant constancy is possible for right-handed neutrino so that CP2 spinor structure
can be taken as a model. In the case of CP2 spinors covariant constancy is possible for right-
handed neutrino and is essentially due to the presence of U(1) part in spinor connection
forced by the fact that the spinor structure does not exist otherwise. Ordinary S2spinor
connection defined by vielbein exists always. One can however add a coupling to a suitable
multiple of Kähler potential satisfying the quantization of magnetic charge (the magnetic
flux defined by U(1) connection is multiple of 2π so that its imaginary exponential is unity).

S2 spinor connections must must have besides ordinary vielbein part determined by S2 metric
also U(1) part defined by Kähler form coupled with correct coupling so that the curvature
form annihilates the second spin state for both S2(M4) and S2(CP2). U(1) part of the
spinor curvature is proportional to Kähler form J ∝ sin(theta)dθdφ so that this is possible.
The vielbein and U(1) parts of the spinor curvature ear proportional Pauli spin matrix
σz = (1, 0; 0,−1)/2 and unit matrix (1, 0; 0, 1) respectively so that the covariant constancy is
possible to satisfy and fixes the spin state uniquely.

5. The covariant derivative for the induced spinors is defined by the sum of projections of
spinor gauge potentials for T (M4) and T (CP2). With above assumptions the contributions
gauge potentials from T (M4) and T (CP2) separately annihilate single spinor component. As
a consequence there are no constraints on the winding numbers wi, i = 1, 2 of the maps
S2(X4)→ S2(M4) and S2(X4)→ S2(CP2). Winding number wi corresponds to the imbed-
ding map (Θi = θ,Φi = wiφ).

6. If the square of the Kähler form in fiber degrees of freedom gives metric to that its square
is metric, one obtains just the area of S2 from the fiber part of action. This is given by the
area A = 4π

√
2(w2

1R
2
1 + w2

2R
2
2) since the induced metric is given by ds2 = (R2

1 + R2
2)dθ2 +

(w2
1R

2
1 + w2

2R
2
2)dφ2 for (Θ1 = θ,Φ = n1φ,Φ2 = n2φ).

13.2.8 Twistor googly problem transforms from a curse to blessing in
TGD framework

There was a nice story with title “Michael Atiyahs Imaginative State of Mind” about mathe-
matician Michael Atyiah in Quanta Magazine (see http://tinyurl.com/jta2va8). The works
of Atyiah have affected profoundly the development of theoretical physics. What was pleasant to
hear that Atyiah belongs to those scientists who do not care what others think. As he tells, he can
afford this since he has got all possible prices. This is consoling and encouraging even for those
who have not cared what others think and for this reason have not earned any prizes. Nor even a
single coin from what they have been busily doing their whole lifetime!

In the beginning of the story “twistor googly problem” was mentioned. I had to refresh
my understanding about googly problem. In twistorial description the modes of massless fields
(rather than entire massless fields) in space-time are lifted to the modes in its 6-D twistor-space
and dynamics reduces to holomorphy. The analog of this takes place also in string models by
conformal invariance and in TGD by its extension.

One however encounters what is known as googly problem: one can have twistorial descrip-
tion for circular polarizations with well-defined helicity +1/-1 but not for general polarization
states - say linear polarizations, which are superposition of circular polarizations. This reflects
itself in the construction of twistorial amplitudes in twistor Grassmann program for gauge fields
but rather implicitly: the amplitudes are constructed only for fixed helicity states of scattered
particles. For gravitons the situation gets really bad because of non-linearity.

Mathematically the most elegant solution would be to have only +1 or -1 helicity but not
their superpositions implying very strong parity breaking and chirality selection. Parity parity
breaking occurs in physics but is very small and linear polarizations are certainly possible! The
discusion of Penrose with Atyiah has inspired a possible solution to the problem known as “palatial
twistor theory” (see http://tinyurl.com/hr7hmh2). Unfortunately, the article is behind paywall
too high for me so that I cannot say anything about it.

What happens to the googly problem in TGD framework? There is twistorialization at
space-time level and imbedding space level.

http://tinyurl.com/jta2va8
http://tinyurl.com/hr7hmh2
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1. One replaces space-time with 4-surface in H = M4 × CP2 and lifts this 4-surface to its 6-D
twistor space represented as a 6-surface in 12-D twistor space T (H) = T (M4) × T (CP2).
The twistor space has Kähler structure only for M4 and CP2 so that TGD is unique. This
Kähler structure is needed to lift the dynamics of Kähler action to twistor context and the lift
leads to the a dramatic increase in the understanding of TGD: in particular, Planck length
and cosmological constant with correct sign emerge automatically as dimensional constants
besides CP2 size.

2. Twistorialization at imbedding space level means that spinor modes in H representing ground
states of super-symplectic representations are lifted to spinor modes in T(H). M4 chirality
is in TGD framework replaced with H-chirality, and the two chiralities correspond to quarks
and leptons. But one cannot superpose quarks and leptons! “Googly problem” is just what
the superselection rule preventing superposition of quarks and leptons requires in TGD!

One can look this in more detail.

1. Chiral invariance makes possible for the modes of massless fields to have definite chirality:
these modes correspond to holomorphic or antiholomorphic amplitudes in twistor space and
holomorphy (antiholomorphy is holomorphy with respect to conjugates of complex coordi-
nates) does not allow their superposition so that massless bosons should have well-defined
helicities in conflict with experimental facts. Second basic problem of conformally invariant
field theories and of twistor approach relates to the fact that physical particles are massive
in 4-D sense. Masslessness in 4-D sense also implies infrared divergences for the scattering
amplitudes. Physically natural cutoff is required but would break conformal symmetry.

2. The solution of problems is masslessness in 8-D sense allowing particles to be massive in
4-D sense. Fermions have a well-defined 8-D chirality - they are either quarks or leptons
depending on the sign of chirality. 8-D spinors are constructible as superpositions of tensor
products of M4 spinors and of CP2 spinors with both having well-defined chirality so that
tensor product has chiralities (ε1, ε2), εi = ±1, i = 1, 2. H-chirality equals to ε = ε1ε2. For
quarks one has ε = 1 (a convention) and for leptons ε = −1. For quark states massless
in M4 sense one has either (ε1, ε2) = (1, 1) or (ε1, ε2) = (−1,−1) and for massive states
superposition of these. For leptons one has either (ε1, ε2) = (1,−1) or (ε1, ε2) = (−1, 1) in
massless case and superposition of these in massive case.

3. The twistor lift to T (M4)×T (CP2) of the ground states of super-symplectic representations
represented in terms of tensor products formed from H-spinor modes involves only quark and
lepton type spinor modes with well-defined H-chirality. Superpositions of amplitudes in which
different M4 helicities appear but M4 chirality is always paired with completely correlating
CP2 chirality to give either ε = 1 or ε = −1. One has never a superposition of of different
chiralities in either M4 or CP2 tensor factor. I see no reason forbidding this kind of mixing
of holomorphicities and this is enough to avoid googly problem. Linear polarizations and
massive states represent states with entanglement between M4 and CP2 degrees of freedom.
For massless and circularly polarized states the entanglement is absent.

4. This has interesting implications for the massivation. Higgs field cannot be scalar in 8-D sense
since this would make particles massive in 8-D sense and separate conservation of B and L
would be lost. Theory would also contain a dimensional coupling. TGD counterpart of Higgs
boson is actually CP2 vector, and one can say that gauge bosons and Higgs combine to form
8-D vector. This correctly predicts the quantum numbers of Higgs. Ordinary massivation
by constant vacuum expectation value of vector Higgs is not an attractive idea since no
covariantly constant CP2 vector field exists so that Higgsy massivation is not promising
except at QFT limit of TGD formulated in M4. p-Adic thermodynamics gives rise to 4-D
massivation but keeps particles massless in 8-D sense. It also leads to powerful and correct
predictions in terms of p-adic length scale hypothesis.

Anonymous reader gave me a link to the paper of Penrose and this inspired further more
detailed considerations of googly problem.
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1. After the first reading I must say that I could not understand how the proposed elimination
of conjugate twistor by quantization of twistors solves the googly problem, which means that
both helicities are present (twistor Z and its conjugate) in linearly polarized classical modes
so that holomorphy is broken classically.

2. I am also very skeptic about quantizing of either space-time coordinates or twistor space
coordinates. To me quantization is natural only for linear objects like spinors. For bosonic
objects one must go to higher abstraction level and replace superpositions in space-time with
superpositions in field space. Construction of “World of Classical Worlds” (WCW) in TGD
means just this.

3. One could however think that circular polarizations are fundamental and quantal linear
combination of the states carrying circularly polarized modes give rise to linear and elliptic
polarizations. Linear combination would be possible only at the level of field space (WCW
in TGD), not for classical fields in space-time. If so, then the elimination of conjugate of Z
by quantization suggested by Penrose would work.

4. Unfortunately, Maxwell’s equations allow classically linear polarisations! In order to achieve
classical-quantum consistency, one should modify classical Maxwell’s equations somehow so
that linear polarizations are not possible. Googly problem is still there!

What about TGD?

1. Massless extremals representing massless modes are very “quantal”: they cannot be su-
perposed classically unless both momentum and polarisation directions for them (they can
depend space-time point) are exactly parallel. Optimist would guess that the classical local
classical polarisations are circular. No, they are linear! Superposition of classical linear po-
larizations at the level of WCW can give rise to local linear but not local circular polarization!
Something more is needed.

2. The only sensible conclusion is that only gauge boson quanta (not classical modes) repre-
sented as pairs of fundamental fermion and antifermion in TGD framework can have circular
polarization! And indeed, massless bosons - in fact, all elementary particles- are constructed
from fundamental fermions and they allow only two M4, CP2 and M4 × CP2 helicities/-
chiralities analogous to circular polarisations. B and L conservation would transform googly
problem to a superselection rule as already described.

To sum up, both the extreme non-linearity of Kähler action, the representability of all
elementary particles in terms of fundamental fermions and antifermions, and the generalization
of conserved M4 chirality to conservation of H-chirality would be essential for solving the googly
problem in TGD framework.

13.3 Surprise: Twistorial Dynamics Does Not Reduce to a
Trivial Reformulation of the Dynamics of Kähler Ac-
tion

I have thought that twistorialization classically means only an alternative formulation of TGD.
This is definitely not the case as the explicit study demonstrated. Twistor formulation of TGD is
in terms of of 6-D twistor spaces T (X4) of space-time surfaces X4 ⊂M4 ×CP2 in 12-dimensional
product T = T (M4) × T (CP2) of 6-D twistor spaces of T (M4) of M4 and T (CP2) of CP2. The
induced Kähler form in X4 defines the quaternionic imaginary unit defining twistor structure: how
stupid that I realized it only now! I experienced during single night many other “How stupid I
have been” experiences.

Classical dynamics is determined by 6-D variant of Kähler action with coefficient 1/L2 having
dimensions of inverse length squared. Since twistor space is bundle, a dimensional reduction of
6-D Kähler action to 4-D Kähler action plus a term analogous to cosmological term - space-time
volume - takes place so that dynamics reduces to 4-D dynamics also now. Here one must be careful:
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this happens provided the radius of S2 associated with X4 does not depend on point of X4. The
emergence of cosmological term was however completely unexpected: again “How stupid I have
been” experience. The scales of the spheres and the condition that the 6-D action is dimensionless
bring in 3 fundamental length scales!

13.3.1 New scales emerge

The twistorial dynamics gives to several new scales with rather obvious interpretation. The new
fundamental constants that emerge are the radii of the spheres associated with T (M4) and T (CP2).
The radius of the sphere associated with X4 is not a fundamental constant but determined by
the induced metric. By above argument the fiber is sphere for both Euclidian signature and
Minkowskian signatures.

1. For CP2 twistor space the radius of S2(CP2) must be apart from numerical constant equal
to CP2 radius R. For S2(M4) one an consider two options. The first option is that also now
the radius for S2(M4) equals to R(M4) = R so that Planck length would not emerge from
fundamental theory classically as assumed hitherto. Second imaginable option is that it does
and one has R(M4) = lP .

2. If the signature of S2(M4) is (−1,−1) both Minkowskian and Euclidian regions have S2(X4)
with the same signature (−1,−1). The radius RD of S2(X4) is dynamically determined.

Recall first how the cosmological constant emerges from TGD framework. The key point is
that the 6-D Kähler action contains two terms.

1. The first term is essentially the ordinary Kähler action multiplied by the area of S2(X4)
which is compensated by the length scale, which can be taken to be the area 4πR2(M4) of
S2(M4). This makes sense for winding numbers (w1, w2) = (1, 0) meaning that S2(CP2) is
effectively absent but S2(M4) is present.

2. Second term is the analog of Kähler action assignable assignable to the projection of S2(M4)
Kähler form. The corresponding Kähler coupling strength αK(M4) is huge - so huge that one
has αK(M4)4πR2(M4) ≡ L2, where 1/L2 is of the order of cosmological constant and thus of
the order of the size of the recent Universe. αK(M4) is also analogous to critical temperature
and the earlier hypothesis that the values of L correspond to p-adic length scales implies that
the values of come as αK(M4) ∝ p ' 2k, p prime, k prime.

The assignment of different value of αK to M4 and CP2 degrees of freedom can be criticized
as ad hoc assumption. In [L38] a scenario in which the value of αK is universal. This option
has very nice properties and one can overcome the problem associated with cosmological
constant by assuming that it the entire 4-D action corresponds to the effective cosmological
constant. The cancellation between Kähler action and volume term would give rise to very
small cosmological constant and also its p-adic evolution could be understood.

3. One can get an estimate for the relative magnitude of the Kähler action S(CP2) = π/8αK
assignable to CP2 type vacuum extremal and the corresponding cosmological term. The
magnitude of the volume term is of order 1/4παK(M4) with αK(M4) given by αK(M4) =
L2/4πR2(M4). The sequel the magnitude of L is estimated to be L = (23/2πlP /RD)× RU ,
where RU is the recent size of the Universe. This estimate follows from the identification of
the volume term as cosmological constant term.

For RD = RM = lP this gives αK(M4) = 2π(RU/lP )2 ∼ 2 × 1018. For αK ' 1/137 the
ratio of the two terms is of order 10−20. The cosmological terms is completely negligible in
elementary particle scales. For vacuum extremals the situation changes and the overall effect
is presumably the transformation of 4-D spin glass degeneracy so that the potentials wells
in the analog spin glass energy landscape do not correspond to vacuum extremal anymore
and perturbation theory around them is in principle possible. The huge value of αK(M4)
implies that the system corresponds mathematically to an extremely strongly interacting
system so that perturbation theory fails to converge. The geometry of “world of classical
worlds” (WCW) provides the needed non-perturbative approach and leads to to strong form
of holography.
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4. One could argue that the Kähler form assignable to M4 cannot contribute to the action since
it does not contribute to spinor connection of M4 - an assumption that can be challenged.
For canonically imbedded M4 self-duality implies that this contribution to action vanishes.
For vacuum extremals of ordinary Kähler action the contribution to the action density is
proportional to the CP2 part of induced metric and to 1/αK(M4), and therefore extremely
small.

The breaking of Lorentz invariance can be seen as a possible problem for the induced spinor
fields coupling to the self-dual Kähler potential. This corresponds to coupling to constant
magnetic field and constant electric field, which are duals of each other. This would give rise
to the analogs of cyclotron energy states in transversal directions and to the analogs of states
in constant electric field in longitudinal directions. Could this extremely small effect serve as
a seed for the generation of Kähler magnetic flux tubes carrying longitudinal electric fields in
various scales? Note also that the value of αK(M4) is predicted to decrease as p-adic length
scale so that the effect would be larger in early cosmology and in short length scales.

Hence one can consider the possibility that the action is just the sum of full 6-D Kähler
actions assignable to T (M4) and T (CP2) but with different values of αK if one has (w1, w2) = (n, 0).
Also other w2 6= 0 is possible but corresponds to gigantic cosmological constant.

Given the parameter L2 as it is defined above, one can deduce an expression for cosmological
constant Λ and show that it is positive.

1. 6-D Kähler action has dimensions of length squared and one must scale it by a dimensional
constant: call it 1/L2. L is a fundamental scale and in dimensional reduction it gives rise
to cosmological constant. Cosmological constant Λ is defined in terms of vacuum energy
density as Λ = 8πGρvac can have two interpretations. Λ can correspond to a modification of
Einstein-Hilbert action or - as now - to an additional term in the action for matter. In the
latter case positive Λ means negative pressure explaining the observed accelerating expansion.
It is actually easy to deduce the sign of Λ.

1/L2 multiplies both Kähler action - F ijFij (∝ E2 − B2 in Minkowskian signature). The
energy density is positive. For Kähler action the sign of the multiplier must be positive so
that 1/L2 is positive. The volume term is fiber space part of action having same form as
Kähler action. It gives a positive contribution to the energy density and negative contribution
to the pressure.

In Λ = 8πGρvac one would have ρvac = π/L2R2
D as integral of the −F ijFij over S2 given the

π/R2
D (no guarantee about correctness of numerical constants). This gives Λ = 8π2G/L2R2

D.
Λ is positive and the sign is same as as required by accelerated cosmic expansion. Note that
super string models predict wrong sign for Λ. Λ is also dynamical since it depends on RD,
which is dynamical. One has 1/L2 = kΛ, k = 8π2G/R2

D apart from numerical factors.

The value of L of deduced from Euclidian and Minkowskian regions in this formal manner
need not be same. Since the GRT limit of TGD describes space-time sheets with Minkowskian
signature, the formula seems to be applicable only in Minkowskian regions. Again one can
argue that one cannot exclude Euclidian space-time sheets of even macroscopic size and
blackholes and even ordinary concept matter would represent this kind of structures.

2. L is not size scale of any fundamental geometric object. This suggests that L is analogous
to αK and has value spectrum dictated by p-adic length scale hypothesis. In fact, one can
introduce the ratio of ε = R2/L2 as a dimensionless parameter analogous to coupling strength
what it indeed is in field equations. If so, L could have different values in Minkowskian and
Euclidian regions.

3. I have earlier proposed that RU ≡ 1/
√

1/Λ is essentially the p-adic length scale Lp ∝
√
p =

2k/2, p ' 2k, kprime, characterizing the cosmology at given time and satisfies RU ∝ a
meaning that vacuum energy density is piecewise constant but on the average decreases as
1/a2, a cosmic time defined by light-cone proper time. A more natural hypothesis is that
L satisfies this condition and in turn implies similar behavior or RU . p-Adic length scales
would be the critical values of L so that also p-adic length scale hypothesis would emerge from
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quantum critical dynamics! This conforms with the hypothesis about the value spectrum of
αK labelled in the same manner [L16].

4. At GRT limit the magnetic energy of the flux tubes gives rise to an average contribution to
energy momentum tensor, which effectively corresponds to negative pressure for which the
expansion of the Universe accelerates. It would seem that both contributions could explain
accelerating expansion. If the dynamics for Kähler action and volume term are coupled, one
would expect same orders of magnitude for negative pressure and energy density - kind of
equipartition of energy.

Consider first the basic scales emerging also from GRT picture. RU ∼
√

1/Λ ∼ 1026 m = 10
Gly is not far from the recent size of the Universe defined as c × t ∼ 13.8 Gly. The derived size
scale L1 ≡ (RU × lP )1/2 is of the order of L1 = .5 × 10−4 meters, the size of neuron. Perhaps
this is not an accident. To make life of the reader easier I have collected the basic numbers to the
following table.

m(CP2) ' 5.7× 1014 GeV , mP = 2.435× 1018 GeV , R(CP2)
lP

' 4.1× 103 ,

RU = 10 Gy , t = 13.8 Gy , L1 =
√
lPRU = .5× 10−4 m .

(13.3.1)

Let us consider now some quantitative estimates. R(X4) depends on homotopy equivalence
classes of the maps from S2(X4) → S2(M4) and S2(X4) → S2(CP2) - that is winding numbers
wi, i = 1, 2 for these maps. The simplest situations correspond to the winding numbers (w1, w2) =
(1, 0) and (w1, w2) = (0, 1). For (w1, w2) = (1, 0) M4 contribution to the metric of S2(X4)
dominates and one has R(X4) ' R(M4). For R(M4) = lP so Planck length would define a
fundamental length and Planck mass and Newton’s constant would be quantal parameters. For
(w1, w2) = (0, 1) the radius of sphere would satisfy RD ' R (CP2 size): now also Planck length
would be quantal parameter.

Consider next additional scales emerging from TGD picture.

1. One has L = (23/2πlP /RD) × RU . In Minkowskian regions with RD = lP this would give
L = 8.9 × RU : there is no obvious interpretation for this number in recent cosmology. For
(RD = R) one obtains the estimate L = 29 Mly. The size scale of large voids varies from
about 36 Mly to 450 Mly (see http://tinyurl.com/jyqcjhl).

2. Consider next the derived size scale L2 = (L× lP )1/2 =
√
L/RU ×L1 =

√
23/2πlP /RD×L1.

For RD = lP one has L2 ' 3L1. For RD = R making sense in Euclidian regions, this is of
the order of size of neutrino Compton length: 3 µm, the size of cellular nucleus and rather
near to the p-adic length scale L(167) = 2.6 m, corresponds to the largest miracle Gaussian
Mersennes associated with k = 151, 157, 163, 167 defining length scales in the range between
cell membrane thickness and the size of cellular nucleus. Perhaps these are co-incidences are
not accidental. Biology is something so fundamental that fundamental length scale of biology
should appear in the fundamental physics.

The formulas and predictions for different options are summarized by the following table.

Option L = 23/2πlP
RD

×RU L2 =
√
LlP =

√
23/2πlP
RD

× L1

RD = R , 29 Mly , ' 3 µm ,

RD = lP , 8.9RU , ' 3L1 = 1.5× 10−4 m ,

(13.3.2)

In the case of M4 the radius of S2 cannot be fixed it remains unclear whether Planck length
scale is fundamental constant or whether it emerges.

http://tinyurl.com/jyqcjhl
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13.3.2 Estimate for the cosmic evolution of RD

One can actually get estimate for the evolution of RD as function of cosmic time if one accepts
Friedman cosmology as an approximation of TGD cosmology.

1. Assume critical mass density so that one has

ρcr =
3H2

8πG
.

2. Assume that the contribution of cosmological constant term to the mass mass density dom-
inates. This gives ρ ' ρvac = Λ/8πG. From ρcr = ρvac one obtains

Λ = 3H2 .

3. From Friedman equations one has H2 = ((da/dt)/a)2, where a corresponds to light-cone
proper time and t to cosmic time defined as proper time along geodesic lines of space-time
surface approximated as Friedmann cosmology. One has

Λ =
3

gaaa2

in Robertson-Walker cosmology with ds2 = gaada
2 − a2dσ2

3 .

4. Combining this equations with the TGD based equation

Λ =
8π2G

L2R2
D

one obtains

8π2G

L2R2
D

=
3

gaaa2
. (13.3.3)

5. Assume that quantum criticality applies so that L has spectrum given by p-adic length scale
hypothesis so that one discrete p-adic length scale evolution for the values of L. There are two
options to consider depending on whether p-adic length scales are assigned with light-cone
proper time a or with cosmic time t

T = a (Option I) , T = t (Option II) (13.3.4)

Both options give the same general formula for the p-adic evolution of L(k) but with different
interpretation of T (k).

L(k)
Lnow

= T (k)
Tnow

, T (k) = L(k) = 2(k−151)/2 × L(151) , L(151) ' 10 nm . (13.3.5)

Here T (k) is assumed to correspond to primary p-adic length scale. An alternative - less
plausible - option is that T (k) corresponds to secondary p-adic length scale L2(k) = 2k/2L(k)
so that T (k) would correspond to the size scale of causal diamond. In any case one has
L ∝ L(k). One has a discretized version of smooth evolution

L(a) = Lnow ×
T

Tnow
. (13.3.6)
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6. Feeding into this to Eq. 13.3.3 one obtains an expression for RD(a)

RD
lP

= (
8

3
)1/2π × a

L(a)
× g1/2

aa . (13.3.7)

Unless the dependences on cosmic time compensate each other, RD is dynamical and becomes
very small at very early times since gaa becomes very small. R(M4) = lP however poses a
lower boundary since either of the maps S2(X4) → S2(M4) and S2(X4) → S2(CP2) must
be homotopically non-trivial. For R(M4) = lP one would obtain RD/lP = 1 at this limit
giving also lower bound for gaa. For T = t option a/L(a) becomes large and gaa small.

As a matter of fact, in very early cosmic string dominated cosmology gaa would be extremely
small constant [K67]. In late cosmology gaa → 1 holds true and one obtains at this limit

RD(now)

lP
= (

8

3
)1/2π × anow

Lnow
× lP ' 4.4

anow
Lnow

. (13.3.8)

7. For T = t option RD/lP remains constant during both matter dominated cosmology, ra-
diation dominated cosmology, and string dominated cosmology since one has a ∝ tn with
n = 1/2 during radiation dominated era, n = 2/3 during matter dominated era, and n = 1
during string dominated era [K67]. This gives

RD
lP

= (
8

3
)1/2π × a

t

√
gaa

t(end)

L(end)
= (

8

3
)1/2π

n

t(end)

L(end)
.

Here “end” refers the end of the string or radiation dominated period or to the recent time
in the case of matter dominated era. The value of n would have evolved as RD/lP ∝
(1/n)(tend/Lend), n ∈ {1, 3/2, 2}. During radiation dominated cosmology RD ∝ a1/2 holds
true. The value of RD would be very nearly equal to R(M4) and R(M4) would be of the
same order of magnitude as Planck length. In matter dominated cosmology would would
have RD ' 2.2(t(now)/L(now))× lP .

8. For RD(now) = lP one would have

Lnow
anow

= (
8

3
)1/2π ' 4.4 .

In matter dominated cosmology gaa = 1 gives tnow = (2/3)× anow so that predictions differ
only by this factor for options I and II. The winding number for the map S2(X4)→ S2(CP2)
must clearly vanish since otherwise the radius would be of order R.

9. For RD(now) = R one would obtain

anow
Lnow

= (
8

3
)1/2 × R

lP
' 2.1× 104 .

One has Lnow = 106 ly: this is roughly the average distance scale between galaxies. The size
of Milky Way is in the range 1− 1.8× 105 ly and of an order of magnitude smaller.

10. An interesting possibility is that RD(a) evolves from RD ∼ R(M4) ∼ lP to RD ∼ R. This
could happen if the winding number pair (w1, w2) = (1, 0) transforms to (w1, w2) = (0, 1)
during transition to from radiation (string) dominance to matter (radiation) dominance.
RD/lP radiation dominated cosmology would be related by a factor

RD(rad)

RD(mat)
= (3/4)

t(rad, end)

L(rad, end)
× L(now)

t(now)
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to that in matter dominated cosmology. Similar factor would relate the values of RD/lP in
string dominated and radiation dominated cosmologies. The condition RD(rad)/RD(mat) =
lP /R expressing the transformation of winding numbers would give

L(now)

L(rad, end)
=

4

3

lP
R

t(now)

t(rad, end)
.

One has t(now)/t(rad, end) ' .5× 106 and lP /R = 2.5× 10−4 giving L(now)/L(rad, end) '
125, which happens to be near fine structure constant.

11. For the twistor lifts of space-time surfaces for which cosmological constant has a reasonable
value , the winding numbers are equal to (w1, w2) = (n, 0) so that RD =

√
nR(S2(M4))

holds true in good approximation. This conforms with the observed constancy of RD during

various cosmological eras, and would suggest that the ratio t(end)
L(end) characterizing these periods

is same for all periods. This determines the evolution for the values of αK(M4).

R(M4) ∼ lP seems rather plausible option so that Planck length would be fundamental
classical length scale emerging naturally in twistor approach. Cosmological constant would be
coupling constant like parameter with a spectrum of critical values given by p-adic length scales.

13.3.3 What about the extremals of the dimensionally reduced 6-D
Kähler action?

It seems that the basic wisdom about extremals of Kähler action remains unaffected and the
motivations for WCW are not lost in the case that M4 Kähler form does not contribute to 6-D
Kähler action (the case to be considered below): otherwise the predicted effects are extremely
small in the recent Universe. What is new is that the removal of vacuum degeneracy is forced by
twistorial action.

1. All extremals, which are minimal surfaces remain extremals. In fact, all the known extremals
except vacuum extremals. For minimal surfaces the dynamics of the volume term and 4-D
Kähler action separate and field equations for them are separately satisfied. The vacuum
degeneracy motivating the introduction of WCW is preserved. The induced Kähler form
vanishes for vacuum extremals and the imaginary unit of twistor space is ill-defined. Hence
vacuum extremals cannot belong to WCW. This correspond to the vanishing of WCW metric
for vacuum extremals.

2. For non-minimal surfaces Kähler coupling strength does not disappear from the field equa-
tions and appears as a genuine coupling very much like in classical field theories. Mini-
mal surface equations are a generalization of wave equation and Kähler action would define
analogs of source terms. Field equations would state that the total isometry currents are
conserved. It is not clear whether other than minimal surfaces are possible, I have even
conjectured that all preferred extremals are always minimal surfaces having the property
that being holomorphic they are almost universal extremals for general coordinate invariant
actions.

3. Thermodynamical analogy might help in the attempts to interpret. Quantum TGD in zero
energy ontology (ZEO) corresponds formally to a complex square root of thermodynamics.
Kähler action can be identified as a complexified analog of free energy. Complexification
follows both from the fact that

√
g is real/imaginary in Euclidian/Minkowskian space-time

regions. Complex values are also implied by the proposed identification of the values of
Kähler coupling strength in terms of zeros and pole of Riemann zeta in turn identifiable
as poles of the so called fermionic zeta defining number theoretic partition function for
fermions [K111] [L16, L18]. The thermodynamical for Kähler action with volume term is
Gibbs free energy G = F − TS = E − TS + PV playing key role in chemistry.

4. The boundary conditions at the ends of space-time surfaces at boundaries of CD generalize
appropriately and symmetries of WCW remain as such. At light-like boundaries between
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Minkowskian and Euclidian regions boundary conditions must be generalized. In Minkowkian
regions volume can be very large but only the Euclidian regions contribute to Kähler function
so that vacuum functional can be non-vanishing for arbitrarily large space-time surfaces since
exponent of Minkowskian Kähler action is a phase factor.

5. One can worry about almost topological QFT property. Although Kähler action from
Minkowskian regions at least would reduce to Chern-Simons terms with rather general as-
sumptions about preferred extremals, the extremely small cosmological term does not. Could
one say that cosmological constant term is responsible for “almost”?

It is interesting that the volume of manifold serves in algebraic geometry as topological invari-
ant for hyperbolic manifolds, which look locally like hyperbolic spaces Hn = SO(n, 1)/SO(n)
[A31] [K90]. See also the article “Volumes of hyperbolic manifolds and mixed Tate motives”
(see http://tinyurl.com/yargy3uw). Now one would have n = 4. It is probably too much
to hope that space-time surfaces would be hyperbolic manifolds. In any case, by the extreme
uniqueness of the preferred extremal property expressed by strong form of holography the
volume of space-time surface could also now serve as topological invariant in some sense as
I have earlier proposed. What is intriguing is that AdSn appearing in AdS/CFT correspon-
dence is Lorentzian analogue Hn.

6. α(M4) is extremely large so that there is no hope of quantum perturbation theory around
canonically imbedded M4 although the propagator for CP2 coordinate exists. In the new
framework WCW can be seen as a solution to how to construct non-perturbative quantum
TGD.

To sum up, I have the feeling that the final formulation of TGD has now emerged and it
is clear that TGD is indeed a quantum theory of gravitation allowing to understand standard
model symmetries. The existence of twistorial formulation is all that is needed to fix the theory
completely. It makes possible gravitation and predicts standard model symmetries. This cannot
be said about any competitor of TGD.

13.4 Basic Principles Behind Construction of Amplitudes

Basic principles of the construction summarized in this section could be seen as axioms trying to
abstract the essentials. The explicit construction of amplitudes is too heavy challenge at this stage
and at least for me.

13.4.1 Imbedding space is twistorially unique

It took roughly 36 years to learn that M4 and CP2 are twistorially unique.

1. As already explained, M4 and CP2 are unique 4-manifolds in the sense that both allow twistor
space with Kähler structure: Kähler structure is the crucial concept as one might guess from
the fact that the projection of Kähler form naturally defines the preferred quaternionic imag-
inary unit defining the twistor structure for space-time surface. Both M4 and its Euclidian
variant E4 allow twistor space. The first guess is that the twistor space of M4 is Minkowskian
variant T (M4) = SU(2, 2)/SU(2, 1)×U(1) of 6-D twistor space CP3 = SU(4)/SU(3)×U(1)
of E4. This is sensible assumption at the level of momentum space but the second candi-
date, which is simply T (M4) = M4 × CP1, is the only sensible option at space-time level.
The twistor space of CP2 is 6-D T (CP2) = SU(3)/U(1)× U(1), the space for the choices of
quantization axes of color hypercharge and isospin.

2. This leads to a proposal for the formulation of TGD in which space-time surfaces X4 in H
are lifted to twistor spaces X6, which are sphere bundles over X4 and such that they are
surfaces in 12-D product space T (M4)×T (CP2) such the twistor structure of X4 are in some
sense induced from that of T (M4)× T (CP2).

What is nice in this formulation is that one might be able to use all the machinery of
algebraic geometry so powerful in superstring theory (Calabi-Yau manifolds) provided one

http://tinyurl.com/yargy3uw
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can generalize the notion of Kähler structure from Euclidian to Minkowskian signature. It
has been already described how this approach leads to a profound understanding of the
relationship between TGD and GRT. Planck length emerges whereas fundamental constant
as also cosmological constant emerges dynamically from the length scale parameter appearing
in 6-D Kähler action. One can say, that twistor extension is absolutely essential for really
understanding the gravitational interactions although the modification of Kähler action is
extremely small due to the huge value of length scale defined by cosmological constant.

3. Masslessness (masslessness in complex sense for virtual particles in twistorialization) is es-
sential condition for twistorialization. In TGD massless is masslessness in 8-D sense for
the representations of superconformal algebras. This suggests that 8-D variant of twistors
makes sense. 8-dimensionality indeed allows octonionic structure in the tangent space of
imbedding space. One can also define octonionic gamma matrices and this allows a possible
generalization of 4-D twistors to 8-D ones using generalization of sigma matrices represent-
ing quaternionic units to to octonionic sigma “matrices” essential for the notion of twistors.
These octonion units do not of course allow matrix representation unless one restricts to units
in some quaternionic subspace of octonions. Space-time surfaces would be associative and
thus have quaternionic tangent space at each point satisfying some additional conditions.

13.4.2 Strong form of holography

Strong form of holography (SH) following from general coordinate invariance (GCI) for space-
times as surfaces states that the data assignable to string world sheets and partonic 2-surfaces
allows to code for scattering amplitudes. The boundaries of string world sheets at the space-like
3-surfaces defining the ends of space-time surfaces at boundaries of causal diamonds (CDs) and
the fermionic lines along light-like orbits of partonic 2-surfaces representing lines of generalized
Feynman diagrams become the basic elements in the generalization of twistor diagrams (I will
not use the attribute “Feynman” in precise sense, one could replace it with “twistor” or even
drop away). One can assign fermionic lines massless in 8-D sense to flux tubes, which can also
be braided. One obtains a fractal hierarchy of braids with strands, which are braids themselves.
At the lowest level one has braids for which fermionic lines are braided. This fractal hierarchy is
unavoidable and means generalization of the ordinary Feynman diagram. I have considered some
implications of this hierarchy in [L17].

The precise formulation of strong form of holography (SH) is one of the technical problems
in TGD. A comment in FB page of Gareth Lee Meredith led to the observation that besides the
purely number theoretical formulation based on commutativity also a symplectic formulation in the
spirit of non-commutativity of imbedding space coordinates can be considered. One can however
use only the notion of Lagrangian manifold and avoids making coordinates operators leading to a
loss of General Coordinate Invariance (GCI).

13.4.3 The existence of WCW demands maximal symmetries

Quantum TGD reduces to the construction of Kähler geometry of infinite-D “world of classical
worlds” (WCW), of associated spinor structure, and of modes of WCW spinor fields which are
purely classical entities and quantum jump remains the only genuinely quantal element of quantum
TGD. Quantization without quantization, would Wheeler say.

By its infinite-dimensionality, the mere mathematical existence of the Kähler geometry of
WCW requires maximal isometries. Physics is completely fixed by the mere condition that its
mathematical description exists. Super-symplectic and other symmetries of “world of classical
worlds” (WCW) are in decisive role. These symmetry algebras have conformal structure and
generalize and extend the conformal symmetries of string models (Kac-Moody algebras in partic-
ular). These symmetries give also rise to the hierarchy of Planck constants. The super-symplectic
symmetries extend to a Yangian algebra, whose generators are polylocal in the sense that they
involve products of generators associated with different partonic surfaces. These symmetries leave
scattering amplitudes invariant. This is an immensely powerful constraint, which remains to be
understood.
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13.4.4 Quantum criticality

Quantum criticality (QC) of TGD Universe is a further principle. QC implies that Kähler coupling
strength is mathematically analogous to critical temperature and has a discrete spectrum. Coupling
constant evolution is replaced with a discrete evolution as function of p-adic length scale: sequence
of jumps from criticality to a more refined criticality or vice versa (in spin glass energy landscape
you at bottom of well containing smaller wells and you go to the bottom of smaller well). This
implies that either all radiative corrections (loops) sum up to zero (QFT limit) or that diagrams
containing loops correspond to the same scattering amplitude as tree diagrams so that loops can
eliminated by transforming them to arbitrary small ones and snipping away moving the end points
of internal lines along the lines of diagram (fundamental description).

Quantum criticality at the level of super-conformal symmetries leads to the hierarchy of
Planck constants heff = n× h labelling a hierarchy of sub-algebras of super-symplectic and other
conformal algebras isomorphic to the full algebra. Physical interpretation is in terms of dark
matter hierarchy. One has conformal symmetry breaking without conformal symmetry breaking
as Wheeler would put it.

13.4.5 Physics as generalized number theory, number theoretical uni-
versality

Physics as generalized number theory vision has important implications. Adelic physics is one of
them. Adelic physics implied by number theoretic universality (NTU) requires that physics in real
and various p-adic numbers fields and their extensions can be obtained from the physics in their
intersection corresponding to an extension of rationals. This is also enormously powerful condition
and the success of p-adic length scale hypothesis and p-adic mass calculations can be understood
in the adelic context.

In TGD inspired theory of consciousness various p-adic physics serve as correlates of cog-
nition and p-adic space-time sheets can be seen as cognitive representations, “thought bubbles”.
NTU is closely related to SH. String world sheets and partonic 2-surfaces with parameters (WCW
coordinates) characterizing them in the intersection of rationals can be continued to space-time
surfaces by preferred extremal property but not always. In p-adic context the fact that p-adic
integration constants depend on finite number of pinary digits makes the continuation easy but in
real context this need not be possible always. It is always possible to imagine something but not
always actualize it!

13.4.6 Scattering diagrams as computations

Quantum criticality as possibility to eliminate loops has a number theoretic interpretation. Gener-
alized Feynman diagram can be interpreted as a representation of a computation connecting given
set X of algebraic objects to second set Y of them (initial and final states in scattering) (trivial
example: X = {3, 4} → 3 × 4 = 12 → 2 × 6 → {2, 6} = Y . The 3-vertices (a × b = c) and their
time-reversals represent algebraic product and co-product.

There is a huge symmetry: all diagrams representing computation connecting given X and Y
must produce the same amplitude and there must exist minimal computation. This generalization
of string model duality implies an infinite number of dualities unless the finite size of CD allows
only a finite number of equivalent computations. These dualities are analogous to the dualities of
super-string model, in particular mirror symmetry stating that same quantum physical situation
does not correspond to a unique space-time geometry and topology (Calabi-Yau and its mirror
represent the same situation). The task of finding this computation is like finding the simplest
representation for the formula X=Y and the noble purpose of math teachers is that we should learn
to find it during our school days. This generalizes the duality symmetry of old fashioned string
models: one can transform any diagram to a tree diagram without loops. This corresponds to
quantum criticality in TGD: coupling constants do not evolve. The evolution is actually there but
discrete and corresponds to infinite number critical values for Kahler coupling strength analogous
to temperature.
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13.4.7 Reduction of diagrams with loops to braided tree-diagrams

1. In TGD pointlike particles are replaced with 3-surfaces and by SH by partonic 2-surfaces.
The important implication of 3-dimensionality is braiding. The fermionic lines inside light-
like orbits of partonic 2-surfaces can be knotted and linked - that is braided (this is dynamical
braiding analogous to dance). Also the fermionic strings connecting partonic 2-surfaces at
space-like 3-surfaces at boundaries of causal diamonds (CDs) are braided (space-like braid-
ing).

Therefore ordinary Feynman diagrams are not enough and one must allow braiding for tree
diagrams. One can also imagine of starting from braids and allowing 3-vertices for their
strands (product and co-product above). It is difficult to imagine what this braiding could
mean. It is better to imagine braid and allow the strands to fuse and split (annihilation and
pair creation vertices).

2. This braiding gives rise in the planar projection representation of braids to a generalization
of non-planar Feynman diagrams. Non-planar diagrams are the basic unsolved problem of
twistor approach and have prevented its development to a full theory allowing to construct
exact expressions for the full scattering amplitudes (I remember however that Nima Arkani-
Hamed et al have conjectured that non-planar amplitudes could be constructed by some
procedure: they notice the role of permutation group and talk also about braidings (de-
scribable using covering groups of permutation groups)). In TGD framework the non-planar
Feynman diagrams correspond to non-trivial braids for which the projection of braid to plane
has crossing lines, say a and b, and one must decide whether the line a goes over b or vice
versa.

3. An interesting open question is whether one must sum over all braidings or whether one
can choose only single braiding. Choice of single braiding might be possible and reflect the
failure of string determinism for Kähler action and it would be favored by TGD as almost
topological quantum field theory (TQFT) vision in which Kähler action for preferred extremal
is topological invariant.

13.4.8 Scattering amplitudes as generalized braid invariants

The last big idea is the reduction of quantum TGD to generalized knot/braid theory (I have talked
also about TGD as almost TQFT). The scattering amplitude can be identified as a generalized braid
invariant and could be constructed by the generalization of the recursive procedure transforming
in a step-by-step manner given braided tree diagram to a non-braided tree diagram: essentially
what Alexander the Great did for Gordian knot but tying the pieces together after cutting. At
each step one must express amplitude as superposition of amplitudes associated with the different
outcomes of splitting followed by reconnection. This procedure transforms braided tree diagram
to a non-braided tree diagrams and the outcome is the scattering amplitude!

13.5 Tensor Networks and S-matrices

The concrete construction of scattering amplitudes has been the toughest challenge of TGD and
the slow progress has occurred by identification of general principles with many side tracks. One of
the key problems has been unitarity. The intuitive expectation is that unitarity should reduce to a
local notion somewhat like classical field equations reduce the time evolution to a local variational
principle. The presence of propagators have been however the obstacle for locally realized unitarity
in which each vertex would correspond to unitary map in some sense.

TGD suggests two approaches to the construction of S-matrix.

1. The first approach is generalization of twistor program [K76]. What is new is that one
does not sum over diagrams but there is a large number of equivalent diagrams giving the
same outcome. The complexity of the scattering amplitude is characterized by the minimal
diagram. Diagrams correspond to space-time surfaces so that several space-time surfaces give
rise to the same scattering amplitude. This would correspond to the fact that the dynamics
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breaks classical determinism. Also quantum criticality is expected to be accompanied by
quantum critical fluctuations breaking classical determinism. The strong form of holography
would not be unique: there would be several space-time surfaces assignable as preferred
extremals to given string world sheets and partonic 2-surfaces defining “space-time genes”.

2. Second approach relies on the number theoretic vision and interprets scattering amplitudes as
representations for computations with each 3-vertex identifiable as a basic algebraic operation
[K76]. There is an infinite number of equivalent computations connecting the set of initial
algebraic objects to the set of final algebraic objects. There is a huge symmetry involved:
one can eliminate all loops moving the end of line so that it transforms to a vacuum tadpole
and can be snipped away. A braided tree diagram is left with braiding meaning that the
fermion lines inside the line defined by light-like orbit are braided. This kind of braiding can
occur also for space-like fermion lines inside magnetic flux tubes and defining correlate for
entanglement. Braiding is the TGD counterpart for the problematic non-planarity in twistor
approach.

Third approach involving local unitary as an additional key element is suggested by tensor
networks relying on the notion of perfect entanglement discussed by Preskill et al [B43].

1. Tensor networks provide an elegant representation of holography mapping interior states
isometrically (in Hilbert space sense) to boundary states or vice versa for selected subsets
of states defining the code subspace for holographic quantum error correcting code. Again
the tensor net is highly non-unique but there is some minimal tensor net characterizing the
complexity of the entangled boundary state.

2. Tensor networks have two key properties, which might be abstracted and applied to the
construction of S-matrix in zero energy ontology (ZEO): perfect tensors define isometry for
any subspace defined by the index subset of perfect tensor to its complement and the non-
unique graph representing the network. As far as the construction of Hilbert space isometry
between local interior states and highly non-local entangled boundary states is considered,
these properties are enough.

One cannot avoid the question whether these three constructions could be different aspects
of one and same construction and that tensor net construction with perfect tensors representing
vertices could provide and additional strong constraint to the long sought for explicit recipe for
the construction of scattering amplitudes.

13.5.1 Objections

It is certainly clear from the beginning that the possibly existing description of S-matrix in terms
of tensor networks cannot correspond to the perturbative QFT description in terms of Feynman
diagrams.

1. Tensor network description relates interior and boundary degrees in holography by a isometry.
Now however unitary matrix has quite different role. It could correspond to U-matrix relating
zero energy states to each other or to the S-matrix relating to each other the states at
boundary of CD and at the shifted boundary obtained by scaling. These scalings shifting
the second boundary of CD and increasing the distance between the tips of CD define the
analog of unitary time evolution in ZEO. The U-matrix for transitions associated with the
state function reductions at fixed boundary of CD effectively reduces to S-matrix since the
other boundary of CD is not affected.

The only manner one could see this as holography type description would be in terms of
ZEO in which zero energy states are at boundaries of CD and U-matrix is a representation
for them in terms of holography involving the interior states representing scattering diagram
in generalized sense.

2. The appearance of small gauge coupling constant tells that the entanglement between “states”
in state spaces whose coordinates formally correspond to quantum fields is weak and just
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opposite to that defined by a perfect tensor. Quite generally, coupling constant might be the
fatal aspect of the vertices preventing the formulation in terms of perfect entanglement.

One should understand how coupling constant emerges from this kind of description - or
disappears from standard QFT description. One can think of including the coupling constant
to the definition of gauge potentails: in TGD framework this is indeed true for induced gauge
fields. There is no sensical manner to bring in the classical coupling constants in the classical
framework and the inverse of Kähler coupling strength appears only as multiplier of the
Kähler action analogous to critical temperature.

More concretely, there are WCW spin degrees of freedom (fermionic degrees of freedom)
and WCW orbital degrees of freedom involving functional integral over WCW. Fermionic
contribution would not involve coupling constants whereas the functional integral over WCW
involving exponential of vacuum functional could give rise to the coupling constants assignable
to the vertices in the minimal tree diagram.

3. The decomposition S = 1 + iT of unitary S-matrix giving unitarity as the condition −i(T −
T †) +T †T = 0 reflects the perturbative thinking. If one has only isometry instead of unitary
transformation, this decomposition becomes problematic since T and T † whose some appears
in the formula act in different spaces. One should have the generalization of Id as a “trivial”
isometry. Alternatively, one should be able to extend the state space Hin by adding a tensor
factor mapped trivially in isometry.

4. There are 3- and 4-vertices rather than only -say, 3-vertices as in tensor networks. For non-
Abelian Chern-Simons term for simple Lie group one would have besides kinetic term only
3-vertex Tr(A∧A∧A) defining the analog of perfect tensor entanglement when interpreted as
co-product involving 3-D permutation symbol and structure constants of Lie algebra. Note
also that for twistor Grassmannian approach the fundamental vertices are 3-vertices. It must
be however emphasized that QFT description emerges from TGD only at the limit when one
identifies gauge potentials as sums of induced gauge potentials assignable to the space-time
sheets, which are replaced with single piece of Minkowski space.

5. Tensor network description does not contain propagators since the contractions are between
perfect tensors. It is to make sense propagators must be eliminated. The twistorial factor-
ization of massless fermion propagator suggest that this might be possible by absorbing the
twistors to the vertices.

These reasons make it clear that the proposed idea is just a speculative question. Perhaps
the best strategy is to look this crazy idea from different view points: the overly optimistic view
developing big picture and the approach trying to debunk the idea.

13.5.2 The overly optimistic vision

With these prerequisites on one can follow the optimistic strategy and ask how tensor networks
could the allow to generalize the notion of unitary S-matrix in TGD framework.

1. Tensor networks suggests the replacement of unitary correspondence with the more general
notion of Hilbert space isometry. This generalization is very natural in TGD since one
must allow phase transitions increasing the state space and it is quite possible that S-matrix
represents only isometry: this would mean that S†S = Idin holds true but SS† = Idout does
not even make sense. This conforms with the idea that state function reduction sequences
at fixed boundary of causal diamonds defining conscious entities give rise evolution implying
that the size of the state space increases gradually as the system becomes more complex.
Note that this gives rise to irreversibility understandandable in terms of NMP [K41]. It
might be even impossible to formally restore unitary by introducing formal additional tensor
factor to the space of incoming states if the isometric map of the incoming state space to
outgoing state space is inclusion of hyperfinite factors.

2. If the huge generalization of the duality of old fashioned string models makes sense, the
minimal diagram representing scattering is expected to be a tree diagram with braiding



13.5. Tensor Networks and S-matrices 521

and should allow a representation as a tensor network. The generalization of the tensor
network concept to include braiding is trivial in principle: assign to the legs connecting the
nodes defined by perfect tensors unitary matrices representing the braiding - here topological
QFT allows realization of the unitary matrix. Besides fermionic degrees of freedom having
interpretation as spin degrees of freedom at the level of “World of Classical Worlds” (WCW)
there are also WCW orbital degrees of freedom. These two degrees of freedom factorize in
the generalized unitarity conditions and the description seems much simpler in WCW orbital
degrees of freedom than in WCW spin degrees of freedom.

3. Concerning the concrete construction there are two levels involved, which are analogous to
descriptions in terms of boundary and interior degrees of freedom in holography. The level of
fundamental fermions assignable to string world sheets and their boundaries and the level of
physical particles with particles assigned to sets of partonic 2-surface connected by magnetic
flux tubes and associated fermionic strings. One could also see the ends of causal diamonds
as analogous to boundary degrees of freedom and the space-time surface as interior degrees
of freedom.

The description at the level of fundamental fermions corresponds to conformal field theory
at string world sheets.

1. The construction of the analogs of boundary states reduces to the construction of N-point
functions for fundamental fermions assignable to the boundaries of string world sheets. These
boundaries reside at 3-surfaces at the space-like space-time ends at CDs and at light-like 3-
surfaces at which the signature of the induced space-time metric changes.

2. In accordance with holography, the fermionic N-point functions with points at partonic 2-
surfaces at the ends of CD are those assignable to a conformal field theory associated with
the union of string world sheets involved. The perfect tensor is assignable to the fundamental
4-fermion scattering which defines the microscopy for the geometric 3-particle vertices having
twistorial interpretation and also interpretation as algebraic operation.

What is important is that fundamental fermion modes at string world sheets are labelled
by conformal weights and standard model quantum numbers. No four-momenta nor color
quantum numbers are involved at this level. Instead of propagator one has just unitary
matrix describing the braiding.

3. Note that four-momenta emerging in somewhat mysterious manner to stringy scattering
amplitudes and mean the possibility to interpret the amplitudes at the particle level.

Twistorial and number theoretic constructions should correspond to particle level construc-
tion and also now tensor network description might work.

1. The 3-surfaces are labelled by four-momenta besides other standard model quantum numbers
but the possibility of reducing diagram to that involving only 3-vertices means that momen-
tum degrees of freedom effectively disappear. In ordinary twistor approach this would mean
allowance of only forward scattering unless one allows massless but complex virtual momenta
in twistor diagrams. Also vertices with larger number of legs are possible by organizing large
blocks of vertices to single effective vertex and would allow descriptions analogous to effective
QFTs.

2. It is highly non-trivial that the crucial factorization to perfect tensors at 3-vertices with
unitary braiding matrices associated with legs connecting them occurs also now. It allows to
split the inverses of fermion propagators into sum of products of two parts and absorb the
halves to the perfect tensors at the ends of the line. The reason is that the inverse of massless
fermion propagator (also when masslessness is understood in 8-D sense allowing M4 mass to
be non-vanishing) to be express as bilinear of the bi-spinors defining the twistor representing
the four-momentum. It seems that this is absolutely crucial property and fails for massive
(in 8-D sense) fermions.
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13.5.3 Twistorial and number theoretic visions

Both twistorial and number theoretical ideas have given a strong boost to the development of ideas.

1. With experience coming from twistor Grassmannian approach, twistor approach is conjec-
tured to allow an extension of super-symplectic and other superconformal symmetry algebras
to Yangian algebras by adding a hierarchy of multilocal generators [K76]. The twistorial di-
agrams for N = 4 SUSY can be reduced to a finite number and there is large number of
equivalent diagrams. One expects that this is true also in TGD framework.

Twistorial approach is extremely general and quite too demanding to my technical skills but
its is a useful guideline. An important outcome of twistor approach is that the intermediate
states are massless on-mass-shell states but with complex momenta. Does this generalize
and could each vertex define unitary scattering event with complex four-momenta in possibly
complexified Minkowski space? Or could even real momenta be possible for massive particles,
which would be massless in 8-D sense thanks to the existence of octonionic tangent space
structure of 8-D imbedding space? And what is the role of the unique twistorial properties
of M4 and CP2?

2. Number theoretical vision suggests that the scattering amplitudes correspond to sequences
of algebraic operations taking inputs and producing outputs, which in turn serve as inputs
for a neighboring node [K76]. The vertices form a diagram defining a network like structure
defining kind of distributed computations leading from given inputs to given outputs. A
computation leading from given inputs to given outputs is suggestive. There exists an infinite
number of this kind of computations and there must be the minimal one which defines the
complexity of the scattering. The maximally simplifying guess is that this diagram would
correspond to a braided tree diagram. At space-time level these diagrams would correspond
to different space-time surfaces defining same physics: this is because of holography meaning
that only the ends of space-time surfaces at boundaries of CD matter.

This vision generalizes of the old-fashioned stringy duality. It states that all diagrams can
be reduced to minimal diagrams. This is achieved by by moving the ends of internal lines
so that loops becomes vacuum tadpoles and can be snipped off. Tree diagrams must be
however allowed to braid and outside the vertices the diagrams look like braids. Braids for
which threads can split and glue together is the proper description for what the diagrams
could be. Braiding would provide the counterpart for the non-planar twistor diagrams.

The fermion lines inside the light-like 3-surfaces can get braided. Smaller partonic 2-surfaces
can topologically condense at given bigger partonic 2-surface (electronic parton surface can
topologically condense to nano-scopic parton surface) and the orbits of the condensed partonic
2-surfaces at the light-like orbit of the parton surface can get braided. This gives rise to a
hierarchy of braids with braids.

13.5.4 Generalization of the notion of unitarity

The understanding of unitarity has been the most difficult issue in my attempts to understand S-
matrix in TGD framework. When something turns out to be very difficult to understand, it might
make sense to ask whether the definition of this something involves un-necessary assumptions.
Could unitarity be this kind of notion?

The notion of tensor network suggests that unitarity can generalized and that this gener-
alization allows the realization of unitarity in extremely simple manner using perfect tensors as
building bricks of diagrams.

1. Both twistorial and number theoretical approaches define M-matrix and associated S-matrix
as a map between the state spaces Hin and Hout assignable to the opposite boundaries of CD
- say positive and negative energy parts of zero energy state. In QFT one has Hin = Hout

and the map would be Hilbert space unitary transformation satisfying SS† = S†S = Id.

2. The basic structure of TGD (NMP favoring generation of negentropic entanglement, the hi-
erarchy of Planck constants, length scale hierarchies, and hierarchy of space-time sheets)
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suggests that the time evolution leads to an increasingly complex systems with higher-
dimensional Hilbert space so that Hin = Hout need not hold true but is replaced with
Hin ⊂ Hout . This view is very natural since one must allow quantum phase transitions
increasing the value of heff and the value of p-adic prime defining p-adic length scale.

S-matrix would thus define isometric map Hin ⊂ Hout. Isometry property requires U†U =
Idin. If the inclusion of Hin to Hout is a genuine subspace of Hout, the condition UU† = Idout
does not make sense anymore. This means breaking of reversibility and is indeed implied by
the quantum measurement theory based on ZEO.

3. It would be at least formally possible to fuse all state spaces to single very large state space
by replacing isometry Hin ⊂ Hout with unitary map Hout → Hout by adding a tensor factor
in which the map acts as identity transformation. This is not practical since huge amounts
of redundant information would be introduced. Also the information about hierarchical
structure essential for the idea of evolution would be lost. This hierarchical of inclusions
should also be crucial for understanding the construction of S-matrix or rather, the hierarchy
of S-matrices of isometric inclusions including as a special case unitary S-matrices.

4. There is also a further intricacy, which might prevent the formal unitarization by the addition
of an inert tensor factor. I have talked a lot about HFFs referring to hyper-finite factors of
type II1 (possibly also of type III1) and their inclusions [K87]. The reason is that WCW
spinors form a canonical representation for these von Neumann algebras.

Could the isometries replacing unitary S-matrix correspond to inclusions of HFFs? In the
recent interpretation the included factor (now Hin) corresponds to the degrees of freedom
below measurement resolution. Certainly this does not make sense now. The interpretation
in terms of finite measurement resolution need not however be the only possible interpreta-
tion and the interpretation in terms of measurement resolution might of course be wrong.
Therefore one can ask whether the relation between Hin and Hout could be more complex
than just Hout = Hin ⊗H1 so that formal unitarization would fail.

13.5.5 Scattering diagrams as tensor networks constructed from perfect
tensors

Preskill’s tensor network construction [B43] realizes isometric maps as representations of hologra-
phy and as models for quantum error correcting codes. These tensor networks have remarkable
similarities with twistorial and number theoretical visions, which suggests that it could be used
to construct scattering amplitudes. A further idea inspired by holography is that the description
of scattering amplitudes in terms of fundamental fermions and physical particles are dual to each
other.

1. In the construction of quantum error codes tensor network defines an isometric imbedding of
local states in the interior to strongly entangled non-local states at boundary. Their vertices
correspond to tensors, which in the proposal of Preskill et al [B43] are perfect tensors such
that one can take any m legs of the vertex and the tensor defines isometry from the state
space of m legs to that of n−m legs. When the number of indices is 2n, the entanglement
defined by perfect tensor between any n-dimensional subspace and its complement is maximal

TGD framework maximal entanglement corresponds to negentropic entanglement with den-
sity matrix proportional to identity matrix. What is important that the isometry is con-
structed by composing local isometries associated with a network. Given isometry can be
constructed in very many manners but there is some minimal realization.

2. The tensor networks considered in [B43] are very special since they are determined by tes-
selations of hyperbolic space H2. This kind of tesselations of H3 could be crucial for un-
derstanding the analog of condensed matter physics for dark matter and could appear in
biology [L23]. What is crucial is that only the graph property and perfect tensor property
matter as far as isometricity is considered so that it is possible to construct very general
isometries by using tensor networks.
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13.5.6 Eigenstates of Yangian co-algebra generators as a manner to gen-
erate maximal entanglement?

Negentropically entangled objects are key entities in TGD inspired theory of consciousness and
also of tensor networks, and the challenge is to understand how these could be constructed and
what their properties could be. These states are diametrically opposite to unentangled eigenstates
of single particle operators, usually elements of Cartan algebra of symmetry group. The entangled
states should result as eigenstates of poly-local operators. Yangian algebras involve a hierarchy of
poly-local operators, and twistorial considerations inspire the conjecture that Yangian counterparts
of super-symplectic and other algebras made poly-local with respect to partonic 2-surfaces or end-
points of boundaries of string world sheet at them are symmetries of quantum TGD [L22]. Could
Yangians allow to understand maximal entanglement in terms of symmetries?

1. In this respect the construction of maximally entangled states using bi-local operator Qz =
Jx ⊗ Jy − Jx ⊗ Jy is highly interesting since entangled states would result by state function.
Single particle operator like Jz would generate un-entangled states. The states obtained as
eigenstates of this operator have permutation symmetries. The operator can be expressed as
Qz = fzijJ

i⊗Jj , where fABC are structure constants of SU(2) and could be interpreted as co-
product associated with the Lie algebra generator Jz. Thus it would seem that unentangled
states correspond to eigenstates of Jz and the maximally entangled state to eigenstates of
co-generator Qz. Kind of duality would be in question.

2. Could one generalize this construction to n-fold tensor products? What about other repre-
sentations of SU(2)? Could one generalize from SU(2) to arbitrary Lie algebra by replac-
ing Cartan generators with suitably defined co-generators and spin 1/2 representation with
fundamental representation? The optimistic guess would be that the resulting states are
maximally entangled and excellent candidates for states for which negentropic entanglement
is maximized by NMP [K41].

3. Co-product is needed and there exists a rich spectrum of algebras with co-product (quan-
tum groups, bialgebras, Hopf algebras, Yangian algebras). In particular, Yangians of Lie
algebras are generated by ordinary Lie algebra generators and their co-generators subject to
constraints. The outcome is an infinite-dimensional algebra analogous to one half of Kac-
Moody algebra with the analog of conformal weight N counting the number of tensor factors.
Witten gives a nice concrete explanation of Yangian [B30] for which co-generators of TA are
given as QA =

∑
i<j f

A
BCT

B
i ⊗ TCj , where the summation is over discrete ordered points,

which could now label partonic 2-surfaces or points of them or points of string like object
(see http://tinyurl.com/y727n8ua). For a practically totally incomprehensible description
of Yangian one can look at the Wikipedia article (see http://tinyurl.com/y7heufjh).

4. This would suggest that the eigenstates of Cartan algebra co-generators of Yangian could
define an eigen basis of Yangian algebra dual to the basis defined by the totally unentan-
gled eigenstates of generators and that the quantum measurement of poly-local observables
defined by co-generators creates entangled and perhaps even maximally entangled states. A
duality between totally unentangled and completely entangled situations is suggestive and
analogous to that encountered in twistor Grassmann approach where conformal symmetry
and its dual are involved. A beautiful connection between generalization of Lie algebras,
quantum measurement theory and quantum information theory would emerge.

13.5.7 Two different tensor network descriptions

The obvious question is whether also unitary S-matrix of TGD could be constructed using tensor
network built from perfect tensors. In ZEO the role of boundary would be taken by the ends of
the space-time at upper and lower light-like boundaries of CD carrying the particles characterized
by standard model quantum numbers. Strong form of holography would suggest that partonic
surfaces and strings at the ends of CD provide information for the description of zero energy states
and therefore of scattering amplitudes. The role of interior would be taken by the space-time
surface - in particular the light-like orbits of partonic surfaces carrying the fermion lines identified

http://tinyurl.com/y727n8ua
http://tinyurl.com/y7heufjh


13.5. Tensor Networks and S-matrices 525

as boundaries of string world sheets. Conformal field theory description would apply to fermions
residing at string world sheets with boundaries at light-like orbits of partonic 2-surfaces.

In QFT Feynman diagrammatics one obtains a sum over diagrams with arbitrary numbers of
loops. In both twistorial and number theoretic approach however only a finite number of diagrams
with possibly complex on mass shell massless momenta are needed. If the vertices are however
such that particles remain on-mass-shell but are allowed to have complex four-momenta then the
integration over internal momenta (loops) is not present and tensor network description could
make sense. This encourages the conjecture that tensor networks could be used to construct the
scattering amplitudes in TGD framework.

What could perfect tensor property mean for the vertices identified as nodes of a tensor
network? There are two levels to be considered: the geometric level identifying particles as 3-
surfaces with net quantum numbers and the fermion level identifying particles as fundamental
fermions at the boundaries of string world sheets.

1. At the geometric level vertices corresponds to light-like orbits of partonic 2-surfaces meeting
at common end which is partonic 2-surface. This is 3-D generalization of Feynman diagram
as a geometric entity. At the level of fermion lines associated with the light-like 3-surfaces
one the basic interaction corresponds to the scattering of 2-fermions leading to re-sharing
of fermion lines between outgoing light-like 3-surfaces, which include also representations
for virtual particles. One has 4-fermion vertex but not in the sense that it appears in the
interaction of weak interactions at low energies.

Geometrically the basic vertex could be 3-vertex: n > 3-vertices are unstable against defor-
mation to lower vertices. For 3-vertex perfect tensor property means that the tensor defining
the vertex maps any 1-particle subspaces to 2-particle subspace isometrically. The geomet-
ric vertices define a network consisting of 3-D “lines” and 2-D vertices but one cannot tell
what is within the 3-D lines and what happens in the 2-D nodes. The lines would consist of
braided fundamental fermion lines and in nodes the basic process would be 2+2 scattering
for fermions. In the case of 3-vertex momentum conservation would effectively eliminate the
four-momentum and the state spaces associated with vertex would be effectively discrete.
This is p-adically of utmost importance.

2. At the level of fundamental fermion lines in the interior of particle lines one would have
4-vertices and if a perfect tensor describes it, it gives rise to a unitary map of any 2-fermion
subspace to its complement plus isometric maps of 1-fermion subspaces to 3-fermion sub-
spaces. In this case momenta cannot act as labels of fermion lines for rather obvious reasons:
the solution of the problem is that conformal weights label fundamental fermion lines

The conservation of discrete quark and lepton numbers allows only vertices of type qL→ qL
and its variants obtained by crossing. In this case the isometries might allow realization.
The isometries must be defined to take into account quark and lepton number conservation
by crossing replacing fermion with antifermion. By allowing the states of Hilbert space in
node to be both quarks and leptons, difficulties can be avoided.

Tensor network description in terms of fundamental fermions and CFT

Consider first fundamental fermions. What are the labels characterizing the states of fundamen-
tal fermions fermions propagating along the lines? There are two options: the labels are either
conformal weights or four-momenta.

1. Since fermions corresponds to strings defining the boundaries of string world sheets and
since strong form of holography implies effective 2-dimensionality also in fermion sector, the
natural guess is that the conformal weights plus some discrete quantum numbers - standard
model quantum numbers at least - are in question. The situation would be well-defined also
p-adically for this option. In this case one can hope that conformal field theory at partonic
2-surface could define the fermionic 4-vertex more or less completely. There would be no need
to assign propagators between different four-fermion vertices. The scattering diagram would
define a composite formed from light-like 3-surfaces and one would have single isometry build
from 4-fermion perfect tensors. There would be no integrations over internal momenta.
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2. Second option is that fundamental fermions are labelled by four-momenta. The outgoing
four-momenta in 4-vertices would not be completely fixed by the values of the incoming
momenta and this extends the state space. Concerning p-adicization this integral is not
desirable and this forces to consider seriously discrete labelling. The unitarity condition for
2+2 scattering would involve integral over 2-sphere. Four-fermion scattering must be unitary
process in QFT so that this condition might be possible to satisfy. The problem would be
how to fix this fundamental scattering matrix uniquely. This option does not look attractive
number theoretically.

The most plausible option is that holography means that conformal field theory describes
the scattering of fundamental fermions and QFT type description analogous to twistorial approach
describes the scattering of physical fermions. If only 3-vertices are allowed, and if masslessness
corresponds to masslessness in 8-D sense, one obtains non-trivial scattering vertices (for ordinary
twistor approach all massless momenta would be collinear if real).

Tensor network description for physical particles

Could the twistorial description expected to correspond to the description in terms of particles
allow tensor network description?

1. Certainly one must assign four-momenta to incoming physical particles - also fermions -
but they correspond to pairs of wormhole contacts rather than fundamental fermions at the
boundaries of string world sheets. It would be natural to assign four-momenta also to the
virtual physical fermions appearing in the diagram and the geometric view about scattering
would allow only 3-vertices so that momentum conservation would eliminate momentum
degrees of freedom effectively. This would be a p-adically good news.

2. At the level of fundamental fermions entanglement is described as a tensor contraction of the
CFT vertices. This locality is natural since the vertices are at null distance from each other.
At QFT limit the entanglement between the ends of the line is characterized the propagator.

One must get rid of propagators in order to have tensor network description. The inclusion
of propagators to the fundamental tensor diagrams would break the symmetry between the
legs of vertex since the propagator cannot be included to its both ends. Situation changes
if one can represent the propagator as a bilinear of something more primitive and include
the halves to the opposite ends of the line. Twistor representation of four-momentum indeed

defines this kind of representation as a bilinear pab̃ = λµ̃b̃ of twistors λ and µ̃. There is
problem due to the diverging 1/p2 factor but residue integral eliminates this factor and one

can write directly the fermionic propagator factors as pab̃.

3. In QFT description the perturbative expansion is in powers of coupling constant. If the
reduction to braided tree diagrams analogous to twistor diagrams occurs, power gN−2 of
coupling constant is expected to factorize as a multiplier of a tree diagram with N external
legs. One should understand this aspect in the tensor net-work picture.

For N = 4 SUSY there is coupling constant renormalization. Similar prediction is expected
from TGD. Coupling constant evolution is expected to be discrete and induced by the discrete
evolution of Kähler coupling strength defined by the spectrum of its critical values. The
conjecture is that critical values are naturally labelled by p-adic primes p ' 2k, k prime,
labelling p-adic length scales. Therefore one might hope that problems could be avoided.

These observations encourage the expectation that twistorial approach involving only 3-
vertices allows to realize tensor network idea also at the level of physical particles. It might be
essential that twistors can be generalized to 8-D twistors. Octonionic representation of gamma
matrices might make this possible. Also the fact twistorial uniqueness of M4 and CP2 might be
crucial.

Gauge theory follows as QFT limit of TGD so that one cannot in principle require that
gauge theory vertices satisfy the isometricity conditions. Nothing however prevents from checking
whether gauge theory limit might inherit this property.
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1. For instance, could 3-vertices of Yang-Mills theory define isometric imbedding of 1-particle
states to 2 particle states? For a given gauge boson there should exist always a pair of gauge
bosons, which can fuse to it. Consider a basis for Lie-algebra generators of the gauge group.
If the generator T is such that there exists no pair [A,B] with the property [A,B] = T ,
Jacobi identity implies that T must commute with all generators and one has direct sum of
Lie algebras generated by T and remaining generators.

2. In the case of weak algebra SU(2) × U(1) the weak mixing of Y and I3 might allow the
isometric imbeddings of type 1 → 2. Does this mean that Weinberg angle must be non-
vanishing in order to have consistent theory? A realistic manner to get rid of the problem
is to allow at QFT limit the lines to be also fermions so that also U(1) gauge boson can be
constructed as fermion pair.

How the two tensor network descriptions would be related?

There are two descriptions for the zero energy states providing representation of scattering ampli-
tudes: the CFT description in terms of fundamental fermions at the boundaries of string world
sheets, and the description in terms of physical particles to which one can assign light-like 3-surfaces
as virtual lines and total quantum numbers.

1. CFT description in terms of fundamental fermions in some aspects very simple because of its
2-dimensionality and conformal invariance. The description is in terms of physical particles
having light-like 3-surfaces carrying some total quantum numbers as correlates and is simpler
in different sense. These descriptions should be related by an Hilbert space isometry.

2. The perfect tensor property for 4-fermion vertices makes fundamental fermion states anal-
ogous to physical states realizing logical qubits as highly entangled structures. Geometric
description in terms of 3-surfaces is in turn analogous to the description in terms of logical
qubits.

3. Holography-like correspondence between these descriptions of zero energy states (scattering
diagrams) should exist. Physical particles should correspond to the level, at which resolution
is smaller and which should be isometrically mapped to the strongly entangled level defined by
fundamental fermions and analogous to boundary degrees of freedom (fundamental fermions
are at the boundaries of string world sheets!).

The map relating the two descriptions seems to exist. One can assign four-momenta to the
legs of conformal four-point function as parameters so that one obtains a mapping from the
states labelled by conformal weights to the states labelled by four-momenta! The appearance
of 4-momenta from conformal theory is somewhat mysterious looking phenomenon but this
duality makes it rather natural.

13.5.8 Taking into account braiding and WCW degrees of freedom

One must also take intro account braiding and orbital degrees of freedom of WCW. The general-
ization of tensor network to braided tensor network is trivial. Thanks to the properties of tensor
network orbital and spinor degrees of freedom factorize so that also the treatment of WCW degrees
of freedom seems to be possible.

What about braiding?

The scattering diagrams would be tree diagrams with braiding of fermionic lines along light-like
3-surfaces - dance of fundamental quarks and leptons at parquette defined by the partonic 2-surface
one might say. Also space-like braiding at magnetic flux tubes at the ends of CD is possible and its
time evolution between the ends of space-time surfaces defines 2-braiding which is generalization
of the ordinary braiding but will not be discussed here. This gives rise to a hierarchy of braidings.
One can talk about flux tubes within flux tubes and about light-like 3-surface within light-like
3-surfaces. The smaller light-like 3-surface would be glued by a wormhole contact to the larger one
and contact could have Euclidian signature of induced metric.
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How can one treat the braiding in the tensor network picture? The answer is simple.
Braiding corresponds to an element of braid group and one can represent it by a unitary matrix
as one does in topological QFT as one constructs knot invariants. In particular, the trace of this
unitary matrix defines a knot invariant. The generalization of the tensor network is simple. One
attaches to the links connecting two nodes unitary transformation defining a representation of the
braid involved. Local variant of unitarity would mean isometricity at nodes and unitarity at links.

What about WCW degrees of freedom?

The above considerations are about fermions that its WCW spinor degrees of freedom and the
space-time surface itself has been regarded as a fixed background. How can one take into account
WCW degrees of freedom?

The scattering amplitude involves a functional integral over the 3-surfaces at the ends of
CD. The functional integration over WCW degrees of freedom gives an expression depending on
Kähler coupling strength αK and determines the dependence on various gauge coupling strengths
expressible in terms of αK . This makes it possible to have the tensor network description in
fermionic degrees of freedom without losing completely the dependence of the scattering amplitudes
on gauge couplings. By strong form of holography the functional integral should reduce to that
over partonic 2-surfaces and strings connecting them. Number theoretic discretization with a
cutoff determined by measurement resolution forces the parameters characterizing the 2-surfaces
to belong to an algebraic extension of rationals and is expected to reduce functional integral to a
sum over discretized WCW so that it makes sense also in p-adic sectors [K110, K111].

A brief summary of quantum measurement theory in ZEO is necessary. The repeated state
function reduction shifts active boundary A of CD and affects the states at it. The passive boundary
of CD- call it P - and the states at it - remain unaffected. The repeated state function reductions
leaving P unaffected and giving usually rise to Zeno effect, correspond now to the TGD counterpart
of unitary time evolution by shifts between subsequent state function reductions. Call A and its
shifted version Ain and Aout and the corresponding state spaces Hin and Hout. The unitary (or
more generally isometric) Smatrix represents this shift. This is the TGD counterpart of a unitary
evolution of QFTs. S forms a building brick of a more general unitary matrix U acting in the
space of zero energy states but U is not considered now.

Consider now the isometricity conditions.

1. Unitarity conditions generalized to isometricity conditions apply to S. Isometricity conditions
S†S = Idin can be applied at Ain. The states appearing in the isometry conditions as initial
and final states correspond to Ain and Aout. There is a trace over WCW spin indices (labels
for many-fermion states) of Hout in the conditions S†S = Idin. Isometricity conditions
involve also an integral over WCW orbital degrees of freedom at both ends: these degrees of
freedom are strongly correlated and for a strict classical determinism the correlation between
the ends is complete. If the tensor network idea works, the summation over spinor degrees
of freedom at Aout gives just a unit matrix in the spinor indices at Ain and leaves only the
WCW orbital degrees of freedom in consideration. This factorization of spinor and orbital
WCW degrees of freedom simplifies the situation dramatically.

2. One can express isometricity conditions for modes with Ψin,M and Ψout,N at Ain and Aout:
this requires functional integration over 3-surfaces WCW at Ain and Aout. The conditions are
formulated in terms of the labels - call themMin, Nin - of WCW spinor modes atAin including
standard model quantum numbers and labels characterizing the states of supersymplectic and
super-conformal representations. The trace is over the corresponding indices Rout at Aout.
The WCW functional integrals in the generalized unitarity conditions are therefore over Ain
and Aout and should give Kronecker delta

∑
Rout

S†MinRout
SRoutNin = δMin,Nin .

3. The simplest view would be that Kähler action with boundary conditions implies completely
deterministic dynamics. The conditions expressing strong form of holography state that sub-
algebras of super-symplectic algebra and related conformal algebras isomorphic to the entire
algebra give rise to vanishing Noether charges. Suppose that these conditions posed at the
ends of CD are so strong that they fix the time evolution of the space-time surface as preferred
extremal completely when posed at either boundary. In this case the isometricity conditions
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would be so strong that the double functional integration appearing in the matrix product
reduces to that at Ain and the isometricity conditions would state just the orthonormality
of the basis of WCW spinor modes at Ain.

4. Quantum criticality and in particular, the hierarchy of Planck constants providing a geometric
description for non-deterministic long range fluctuations, does not support this view. Also
the fact that string world sheets connect the boundaries of CD suggests that determinism
must be broken. The inner product defining the completeness of the WCW state basis in
orbital degrees of freedom can be however generalized to a bi-local inner product involving
functional integration over 3-surfaces at both Ain and Aout. There is however a very strong
correlation so that integration volume at Aout is expected to be small. This also suggests
that one can have only isometricity conditions.

13.5.9 How do the gauge couplings appear in the vertices?

Reader is probably still confused and wondering how the gauge couplings appear in the vertices
from the functional integral over WCW degrees of freedom. In twistorial approach, the vanishing
of loops in N = 4 SYM theory gives just gN , N the number of 3-vertices. Each vertex should give
gauge coupling. Or equivalently, each propagator line connecting vertices should give αK . The
functional integral should give this factor for each propagator line. Generalization of conformal
invariance is expected to give this picture.

To proceed some basic facts about N-point functions of CFTs are needed.

1. In conformal field theory the functional form of two-point function is completely fixed by
conformal symmetry:

G(2)(zi, zi) =
C12

z2h
12 z

2h
12

,

zij = zi − zj , zij = zi − zj ,

h1 = h2 = h = ha + ihb , h = ha + ihb . (13.5.1)

h1 = h2 ≡ h and its conjugate h are conformal weights of conformal field and its conjugate.
Note that the conformal weights of conformal fields Φ1 and Φ2 must be same. In TGD
context C12 is expected to be proportional to αK and this would give to each vertex gK
when couplings are absorbed into vertices.

2. The 3-point function for 3 conformal fields Φi, i = 1, 2, 3 is dictated by conformal symmetries
apart from constant C123:

G(3)(zi, zi) = C123 ×
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31

× 1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31

.

(13.5.2)

Here C123 should bef fixed by super-symplectic and related symmetries and determined the
numerical coefficients various couplings when expressed in terms of gK .

3. 4-point functions have analogous form

G(4)(zi, zi) = f1234(x, x)
∏
i<j

z
−(hi+hj)+h/3
ij

∏
i<j

z
−(hi+hj)+h/3
ij ,

h =
∑
i

hi ,

(13.5.3)
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but are proportional to an arbitrary function f1234 of conformal invariant x = z12z34/z13z24

and its conjugate.

If only 3-vertices appear/are needed for physical particles - as both twistorial and number
theoretic approaches strongly suggest - the conformal propagators and vertices are fixed apart from
constants Cijk, which in turn should be fixed by the huge generalization of conformal symmetries.
αK emerges in the expected manner.

This picture seems to follow from first principles.

1. One can fix the partonic 2-surfaces at the boundaries of CD but there is a functional integral
over partonic 2-surfaces defining the vertices: their deformations induce deformations of the
legs. One can expand the exponent of Kähler action and in the lowest order the perturbation
term is trilinear and non-local in the perturbations. This gives rise to 3-point function of
CFT nonlocal in zi. The functional integral over perturbations gives the propagators in legs
proportional to αK in terms of two point function of CFT. Note that the external propagator
legs can be eliminated in S-matrix.

2. The cancellation of higher order perturbative corrections in WCW functional integral is
required by the quantum criticality and means trivial coupling constant evolution for αK
and other coupling constants. Coupling constant evolution is discretized with values of
αK analogous to critical temperatures and should correspond to p-adic coupling constant
evolution [L16].

3. This picture leaves a lot of details open. An integration over the values of zi is needed and
means a kind of Fourier analysis leading from complex domain. The analog of Fourier analysis
would be for deformations of partonic 2-surface labelled by some natural labels. Conformal
weights could be natural labels of this kind.

It is easy to get confused since there are several diagrammatics involved: the topological
diagrammatics of 3-surfacse assignable to the physical particles with partonic 2-surfaces as vertices,
the diagrammatics associated with the perturbative functional integral for the Kähler action, and
the fermionic diagrammatics suggested to reduce to tensor network. The conjectures are as follows.

1. The “primary” vertices G(n), n > 3 assignable to single partonic 2-surface and coming from
a functional integral for Kähler action vanishes. This corresponds to quantum criticality and
trivial RG evolution.

2. G(n), n > 3 in the sense of topological diagrammatics without loops and involving n partonic
2-surfaces do not vanish. One can construct the analog of G(4) from two G(3):s at different
partonic 2-surfaces and propagator defined by 2-point function connecting them as string
diagram.

Also topological variant of G(4) assignable to single partonic 2-surface can be constructed
by allowing the 3-D propagator “line” to return back to the partonic 2-surface. This would
correspond to an analog of loop. Similar construction applies to “primary” G(n),n > 4. In
number theoretic vision these loops are eliminated as redundant representations so that one
has only braided tree diagrams. Also twistor Grassmann approach supports this view.

To sum up, the tensor network description would apply to fermionic degrees of freedom.
In bosonic degrees of freedom functional integral would give CFT picture with 3-vertex as the
only “primary” vertex and from this twistorial and number theoretic visions follow via the super-
symplectic symmetries of the vertex coefficients Cijk extended to Yangian symmetries.



Chapter 14

About Twistor Lift of TGD

14.1 Introduction

The twistor lift of classical TGD [L22] is attractive physically but it is still unclear whether it
satisfies all constraints. The basic implication of twistor lift would be the understanding of gravi-
tational and cosmological constants. Volume term in action removes the infinite vacuum degeneracy
of Kähler action but because of the extreme smallness of cosmological constant Λ playing the role
of inverse of gauge coupling strength, the situation for nearly vacuum extremals of Kähler action
in the recent cosmology is non-perturbative.

What is remarkable that twistor lift is possible only in zero energy ontology (ZEO) since the
volume term would be infinite by infinite volume of space-time surface in ordinary ontology: by the
finite size of causal diamond (CD) the space-time volume is however finite in ZEO. Furthermore,
the condition that the destructive interference does not cancel vacuum functional implies Bohr
quantization for the action in ZEO. The scale of CD corresponds naturally to the length scale
LΛ =

√
8π/Λ defined by the cosmological constant.

One motivation for introducing the hierarchy of Planck constants [K22, K106] was that
the phase transition increasing Planck constant makes possible perturbation theory in strongly
interacting system. Nature itself would take care about the converge of the perturbation theory
by scaling Kähler coupling strength αK to αK/n, n = heff/h. This hierarchy might allow to
construct gravitational perturbation theory as has been proposed already earlier. This would for
gravitation to be quantum coherent in astrophysical and even cosmological scales.

In this chapter two options for the twistor lift are studied in detail.

1. Option I (the original option): The values of αK(M4) and αK(CP2) are widely different with
αK(M4) being extremely large so that M4 part of the 6-D Kähler action gives in dimensional
reduction extremely small cosmological term. Allowing Kähler coupling strength αK(CP2)
to correspond to zeros of zeta implies that for complex zeros the preferred extremals for
αK(M4) having different phase are mimimal surface extremals of Kähler action so that the
values of coupling constants do not matter and extremals depend on couplings only through
the boundary conditions stating the vanishing of certain super-symplectic conserved charges.

It has turned out that this option has several shortcomings. First of all, αK(M4) 6= αK(CP2)
looks like ad hoc assumption tailored to make cosmological constant small. Secondly, the
decoupling between Kähler action and volume term implies separately conserved Noether
charges which looks strange. Thirdly, for

√
g4 instead of

√
|g4| in the volume element assumed

hitherto, there is no charge transfer between Minkowski and Euclidian regions.

2. Option II: αK(M4) = αK(CP2) is satisfied. Now entire action is identified as the cosmolog-
ical term. A small effective value of cosmological constant is obtained if the Kähler action
and volume term tend to cancel each other. Minimal surface extremals of Kähler action
correspond naturally to asymptotic dynamics near the boundaries of CDs, where the analog
of free geodesic motion as minimal surfaces is expected. For

√
|g4| option there is charge

transfer between Minkowski and Euclidian regions.
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The two options provide different generalizations of Chladni mechanism [K113] [L27, L28]
(see “An Amazing Resonance Experiment” at http://tinyurl.com/kcbmrzz)to a “dynamics of
avoidance”. Both options have profound implications for the views about what happens in particle
physics experiment and in quantum measurement, and for consciousness theory and for quantum
biology. It is however clear that Option II is the favored one.

The need to understand the twistor lift leads to a critics of the formulation of the basic action
principle and the outcome is a more elegant formulation with non-trivial physical consequences.

1. Dimensionless gauge field is obtained from dimension 2 induced Kähler form by division
with constant R2

1 with dimension two. This parameter defines a hidden coupling parameter
in the action and the identification in terms of CP2 radius made hitherto rather implicitly
is probably reasonable but ad hoc. The simple idea is to use the induced Kähler form as
basic object and formulate the action principle accordingly. This brings in the dimensional
parameter 1/R4

1 compensating for the dimension of
√
g4 in the action.

2. One ends up to a general formulation of both bosonic and fermionic action principles showing
that the overall scaling factor of fermionic and bosonic actions - call it X, disappears from
classical dynamics so that extremals have no explicit independence on X. This is crucial for
number theoretical universality.

Quantum Classical Correspondence (QCC) realized as the condition that classical Noether
charges in Cartan algebra correspond to eigenvalues of quantal fermionic charges however
breaks the invariance with respect to scalings of action via fermionic anticommutation rela-
tions which depend on the scaling factor. The new formulation leads to a unique guesses for
the 6-D actions, their 4-D dimensionally reduced variants, and 2-D effective actions.

3. The formulation helps to realize that Number Theoretical Universality (NTU) requires that√
|g4| option is the only possible one. Physically the need to have charge transfer between

Euclidian and Minkowskian space-time regions implies the same result.

This leads to two different views about cosmological constant.

1. For Option I the explanation for dark energy is in terms of volume term of the action and
small value of cosmological constant obeying p-adic coupling constant evolution as function
of p-adic length scale. For Option II the cancellation of Kähler action and volume term would
give rise to a small value of cosmological constant and its p-adic evolution.

2. Either Lλ =
√

8π/Λ or the length L characterizing vacuum energy density as ρvac = ~/L4

or both can obey p-adic length scale hypothesis as analogs of coupling constant parameters.
The third option makes sense if the ratio R/lP of CP2 radius and Planck length is power of
two: it can be indeed chosen to be R/lP = 212 within measurement uncertainties. L(now)
corresponds to the p-adic length scale L(k) ∝ 2k/2 for k = 175, size scale of neuron and axon.

3. A microscopic explanation for the vacuum energy realizing strong form of holography (SH)
is in terms of vacuum energy for radial flux tubes emanating from the source of gravita-
tional field. The independence of energy from the value of heff/h = n implies analog of
Uncertainty Principle: the product Nn for the number N of flux tubes and the value of n
defining the number of sheets of the covering associated with heff = n× h is constant. This
picture suggests that holography is realized in biology in terms of pixels whose size scale is
characterized by L rather than Planck length.

4. A interesting observation is that a fundamental length scale of biology - size scale of neuron
and axon - would correspond to the p-adic length scale assignable to vacuum energy density
characterized by cosmological constant and be therefore a fundamental physics length scale.
An especially interesting result is that in the recent cosmology the size scale of a large neuron
would be fundamental physical length scale determined by cosmological constant. This gives
additional boost to the idea that biology and fundamental physics could relate closely to each
other: the size scale of neuron would not be an accident but “determined in stars” and even
beyond them!

http://tinyurl.com/kcbmrzz
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14.2 More about twistor lift of Kähler action

The following piece of text was motivated by some observations relating to the twistor lift of Kähler
action forcing a criticism of the earlier view about twistor lift.

The first observation was that the correct formulation of 6-D Kähler action in the framework
of adelic physics implies that the classical physics of TGD does not depend on the overall scaling
of Kähler action. This implies that the preferred extremals need not be minimal surface extremals
of Kähler action. It is enough that they are so asymptotically - near the boundaries of CDs where
they behave like free particles. This also nicely conforms with the physical idea that they are 4-D
generalizations for orbits of particles in induced Kähler field.

The independence of the classical physics on the scale of the action inspires a detailed dis-
cussion of the number theoretic vision. Quantum Classical Correspondence (QCC) breaks the
invariance with respect to the scalings via fermionic anti-commutation relations and Number The-
oretical Universality (NTU) can fix the spectrum of values of the over-all scaling parameter of
the action. One ends up to a condition guaranteeing NTU of the action exponential and finds an
answer to the nagging question whether one should use

√
g4 (imaginary in Minkowskian regions)

or
√
|g4| in the action. Complex αK allows

√
|g4| and NTU assuming that 1/αK = s, s = 1/2 + iy

zero of Riemann zeta, implies y = qπ, q rational as proposed also in [L16].
Second observation relates to cosmological constant. The proposed vision for the p-adic

evolution of cosmological constant assumes that αK(M4) and αK(CP2) are different for the twistor
lift. One however finds that single value of αK is the natural choice. This destroys the original
proposal for the p-adic length scale evolution of cosmological constant explaining why it is so small
in cosmological scale.

The solution to the problem of the cosmological constant would be that the entire 6-D action
decomposing to 4-D Kähler action and volume term is identified in terms of cosmological constant.
The cancellation of Kähler electric contribution and remaining contributions would explain why
the cosmological constant is so small in cosmological scales and also allows to understand p-adic
coupling constant evolution of cosmological constant. One must however remain cautious: also the
original proposal can be defended.

14.2.1 Kähler action contains overall scale as a hidden coupling param-
eter

The first observation leads to a more precise understanding of 6-D Kähler action relates to the
induction procedure.

1. Kähler form has dimension two since its square gives metric: J2 = −g. Gauge fields are
however 2-forms, which are usually taken to be dimensionless (this requires that coupling
constant g is included as multiplicative factor to gauge potential). Accordingly, I have as-
sumed that induced Kähler form is obtained by diving Kähler form by 1/R2, R the radius of
CP2 identified as the radius of its geodesic sphere. One can however argue that the identifi-
cation of the scaling factor is ad hoc since its value does not affect classical field equations.

2. What would happen if one induces the dimensional Kähler form as such? Kähler action den-
sity LK

√
g4 would have dimension of volume so that 1/αK must be replaced with 1/8παKR

4
1,

where R1 a fundamental coupling constant with dimension of length. This coupling however
disappears from the classical field equations and in the recent adelic formulation also from
quantum theory [L38].

3. For the 6-D twistor lift of Kähler action one must introduce an additional dimensional factor
to get a dimensionless action. One has R4

1 → R4
1R

2
0, where R2

0 has dimensions of area. The
4-D action density obtained from dimensional reduction for twistor sphere S2(X4) assuming
that the induced Kähler form for the sphere satisfies J4 = −g for S2(X4) is proportional to

L = X × (J · J − 2)
√
g4 , X = 1

2αK

Area(S2(X4))
S0

1
R4

1
, S0 = 4πR2

0 . (14.2.1)

The shift of Kähler action density by -2 comes from S2(X4) part of 6-D Kähler action.
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4. From this form one can immediately see that the factor X in Eq. 14.2.1 disappears from field
equations, and the functional form of preferred extremals has no dependence on coupling
parameters! The quantum classical correspondence (QCC) stating that fermionic Noether
charges in Cartan algebra have eigenvalues equals to their classical counterparts however
implies this dependence.

Modified Dirac action and string world sheet action in the new formalism

What about the modified Dirac action related super-symmetrically to Kähler action in the new
formalism? The 6-D formalism for the induced spinors doubles the number of spinor components
and dimensional reduction must eliminate half of them to give something equivalent with the
ordinary induced spinor structure. Chirality condition is the most plausible manner to achieve
this. This answers the old question whether one could assume only leptonic spinors as fundamental
spinors and construct quarks as some of anyonic leptons. This would require two chirality conditions
and this is very probably not possible. The 6-D modified Dirac action can be written using the
same rules as applied in 4-D case. The possible delicacies of the fermionic dimensional reduction
require a separate discussion.

The 4-D dimensionally reduced part of 6-D modified Dirac action must reduce to the 4-D
modified Dirac action associated with the full bosonic action. The modified gamma matrices Γα

are expressible as contractions of the canonical momentum currents with imbedding space gamma
matrices (this applies also in D = 6). Therefore they are proportional to the dimensionless quantity
X
√
g4. Γα has dimension 1/L so that induced spinors must have dimension L1/2. In the usual

approach the dimension would be 1/L3/2.
With these conventions X apparently drop from the equations stating QCC as identity of

eigenvalues of fermionic Noether charges and corresponding classical Noether charges in Cartan
algebra. This not true. The anti-commutations for Ψ and time component J0 of the canonical
momentum density Jα = ∂L/∂(∂αΨ) = ΨΓα involve X and affect the scale of anti-commutation
relations and therefore QCC. That the anti-commutations can be indeed realized under these
dimensional constraints, requires a proof.

What about the spinors restricted to 2-D string world sheets and corresponding space-time
action? Perhaps the most plausible option is that they do not appear at the fundamental level and
appear only as the effective action suggested by SH. If this is the case, it is rather easy to guess
the form of the bosonic and fermion 2-D effective actions. Their forms could be exactly the same
as the form of 4-D actions. The only modification would be in the bosonic case the replacement of
1/R4

1 with 1/R2
1 to get the dimensions correctly! The bosonic action would dictate the fermionic

action by above rules.
The bosonic string world sheet action would differ from the area action. The action density

would be XR2
1(J · J − 2)

√
g in complete analogy with the 4-D case. Two special cases deserve to

be mentioned.

1. This action vanishes for string world sheets with J · J = 2. This is the case if one has
J = M(M4) and J is self-dual. This is true if string world sheet is the preferred plane M2

defining the symplectic structure of M4 (there is moduli space form them in order to gain
Lorentz invariance and giving rise to sectors of WCW).

Small deformations of this plane would give rise to strings with small string tension and
be naturally relating to the small value of the cosmological constant. These strings should
accompany long strings mediating gravitational interaction in long length scales. The small
action would require large value of heff/h = n = hgr for the perturbation theory to work.

2. Second special case corresponds to Lagrangian surfaces for which J(M4) + J(CP2) induced
to string world sheet vanishes. One would have ordinary strings with area action. String
tension would be determined by CP2 size scale. The appearance of also light strings would
distinguish between TGD and super string models.

Kähler action can contain also a topological instanton term affecting the field equations only
via boundary condition. This term could induce to the string world sheet action a magnetic flux
term reducing to a boundary term at the boundaries of string world sheets adding an interaction
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term to the usual action defined by word-line length. The outcome would be equation of motion
for a point-like particle experiencing Kähler force. These topological terms give additional terms
to corresponding modified Dirac equations.

It would seem that the new approach to action principle allows a more unified approach to
the details of the variational principle in dimension D = 4 and allows also to deduce the general
form of 6-D and 2-D effective action. It must be however made clear that one could have brane like
hierarchy of structures already at fundamental level. Also in this case the new approach applies.

Action principle, quantum classical correspondence, and number theoretical univer-
sality

The above observations force to reconsider the interpretation of the action principle. Here the
adelic physics based vision can be used as a guideline.

1. It is good to list the geometric parameters and coupling constant like parameters of TGD.
CP2 scale R(CP2) certainly appears in the theory. The radius of S2(M4) makes l2P a natural
scale factor of M4 metric. One can re-scale J(M4) and the M4 part of the metric of T (M4)
but not the entire metric.

2. r = R1/R(CP2) can be seen as a dimensionless coupling constant like parameter and in
principle quantum criticality allows it to have a spectrum values determined by the extension
of rationals defining adeles. The QCC condition stating the quantized values of the fermionic
Noether charges are equal to their classical counterparts having non-local expressions forces
to consider the possibility that the value of R1 can indeed vary and has value guaranteeing
that QCC holds true. Also αK has spectrum of values: one possible spectrum corresponds
to the zeros of Riemann zeta [L16]. Even the number theoretically problematic exponent of
action could belong to the extension with a suitable choice of R1.

This would allow to speak about the exponent of action and of Kähler function making sense
also p-adically in the intersection of real and p-adic WCWs. Both action and its exponent
should exist in the extension. This is true if the action is of form q1+q2π, qi rational numbers.
One might hope that a suitable choice of R1 could make possible to realize QCC and this
condition.

QCC and the value spectrum of R1

Classical field equations do not depend at all on the value on the overall coefficient X of the action
in Eq. 14.2.1. Also boundary conditions are independent of the scaling of X. Does this mean that
one has projective invariance in the sense that the value of R1 does not matter at all? No!

1. QCC for the Cartan algebra of fermionic and classical Noether charges gives meaning for
the scale R1. QCC states that the eigenvalues of the Cartan algebra charges are equal to
the corresponding values of classical Noether charges. Since the normalization of quantal
charges is fixed by the value of ~, this fixes the normalization of classical charges and thus
the parameter R1. If Ψ is taken dimensionless, the modified Dirac action can be taken to
be proportional to factor 1/R3

1. Therefore R1 has physical meaning. The above argument
suggests that R1 is fixed by quantum criticality and characterizes the extension of rationals.

2. Could one require that the values of classical charges belong to the extension of rationals
defining the adeles in question? This condition involves in real context integral over 3-surface
and is thus a non-local operation. How can one know, which 3-surfaces satisfy the condition?
Is the choice of R1 dictated by this condition so that it depends on the extension of rationals
involved and obeys number theoretic coupling constant evolution?

Note that classical Noether charges serve as WCW coordinates, and the interpretation would
be the same as at space-time level: these special 3-surfaces would form a kind of cognitive
representation analogous to that formed by the points of space-time surface with coordinates
in extension. The quantization of these WCW coordinates would give a cognitive represen-
tation!
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3. The action would be same for the symmetry related 3-surfaces and one could have WCW
wave functions at the orbits of symmetries with coordinates which are conjugate variables
for the quantized Noether charges. For the orbits of symmetry groups the allowed points in
WCW would correspond to values of group parameters in the extension. Besides isometries
and corresponding Kac-Moody algebras supersymplectic symmetry gives rise to this kind of
wave functions. In case of four-momentum, the basic number theoretic conditions would be
for rest masses.

Strong form of holography (SH) could be realized by the reduction of both bosonic and
fermionic action to an effective action restricted to string world sheets and partonic 2-surfaces.
This option looks more attractive from the point of view of SH than fundamental action
containing terms located at lower-dimensional surfaces.

Number theoretical universality and action exponential

In adelic physics number theoretical universality plays a key role.

1. Adelic physics leads to the proposal that the action exponentials appearing in the scattering
amplitudes disappear. The normalization factor defined by functional integral of action
exponential to which also the scattering amplitude is proportional would cancel them as in
QFTs [L38].

This would require that each maximum of Kähler function with respect to variations of 3-
surface and having fixed topological scattering diagram defined by light-like partonic orbits
and same action defines its own zero energy state as functional integral and these states can be
freely superposed. One would not functionally integrate over different topological scattering
diagrams: this would allow to interpret topological scattering diagram as a representation of
computation.

2. At the level of scattering amplitudes - but not at the level of WCW geometry - the absence of
exponents would allow to get rid of the grave difficulty posed by the fact that the exponent of
Kähler action belongs to an extension of rationals only when powerful additional conditions
are satisfied. The cancellation of exponents of action from scattering amplitudes looks com-
pelling if one requires number theoretical universality since there are no practical means for
checking that the exponent of action is in the extension of rationals for an arbitrary preferred
extremal. Also the definition of the action as integral is problematic in p-adic context and
the only possible means to define it seems to be in terms of algebraic continuations from the
real sector.

One can however argue against number theoretical extremism. Action exponentials are
needed for the interpretation of the theory. Maxima of Kähler function, which also cor-
respond to stationary phase correspond to the most probable 3-surfaces. Hence one can
argue that the exponents should appear in the scattering amplitudes. Number theoretical
cognition theorist could however argue that the points of WCW, which correspond to maxima
have WCW coordinates in an extension of rationals and thus define cognitive representation
at the level of WCW. Furthermore, one can argue that scattering amplitudes are not the
entire physics. Kähler action and its exponent have real meaning independent of scattering
amplitudes.

3. On the other hand, if the value of R1 adjusts to guarantee that the action is of form

S = q1 + iq2π . (14.2.2)

exponents can appear in the amplitudes and the standard approach allowing functional in-
tegral giving sum of several exponents makes sense. In this case the scattering amplitudes
are proportional to Xi/X, X =

∑
iXi, where Xi denotes action exponent for a particular

maximum of action as function of WCW coordinates. Note however that the action itself is
not number theoretically universal: only its exponent. This is completely analogous with the
fact that angles do not make sense p-adically and one can speak about corresponding phases
identified as roots of unity.
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Number theoretical universality (NTU) allows two options to consider depending on whether
the action exponentials can appear in the scattering amplitudes or not. In WCW geometry action
and also its exponent certainly appear.

1. The elimination of exponents of 6-D action from the scattering amplitudes would be a huge
simplification and make practical calculations possible. This kind of assumption is in practice
made also in standard path integral approach as approximation. ZEO allows this and the
interpretation is in terms of the notion of quantum phase of matter: different topologies for
partonic 2-surfaces correspond to different phases and the localization to single phase for
zero energy states is possible: space-time would be much more classical object than without
localization. One must however remain critical: the value of R1 depending on extension of
rationals could allow to achieve QCC conditions.

2. If something is gained, something is also lost. The earlier arguments involving exponent
of Kähler function are lost if the exponentials do not appear in scattering amplitudes. In
particular, the estimate for the value of gravitational coupling strength in terms of exponent
of Kähler function and αK (see the last section of [K3]) is lost if exponents do not appear
anywhere. One can argue that this argument was actually lost already when the twistor lift
was introduced and Planck length was transformed to a fundamental parameter appearing
as scaling factor of M4 Kähler form and metric.

There is a further challenge for the adelic physics. What could fix the value of the funda-
mental parameter l2P /R

2(CP2) (of order 10−7)? It seems that quantum criticality cannot help
here. Both l2P and R2 appear in the induced metric of space-time surface and number theoretical
universality for field equations demands that l2P /R

2(CP2) is a rational number. The p-adic evo-
lution scenario of cosmological constant and empirical input for the cosmological constant gives
l2P /R

2(CP2) = 2−12 [L24]. Why power of 2 which having unit p-adic norm for all odd primes and
why just this power?

To sum up, a more precise adelic formulation of the classical action has allowed to detect
a hitherto hidden scaling parameter in the action appearing as an additional coupling parameter
depending on the extension of rationals, to understand better the number theoretical role of QCC,
and allowed to answer a nagging question about whether to use metric determinant or its absolute
value in the action assuming NTU for the exponential of action, and deduce the earlier conjecture
for the zeros of zeta.

Answer to an old nagging question

Eq. 15.4.1 can be applied to the situation in which the extremal is known. For CP2 type extremals
volume and Kähler action (-4 times volume) are indeed known. Quite surprisingly, this suggest
a solution to an old problem whether one should use

√
g4 giving imaginary volume element in

Minkowskian space-time regions or
√
|g4| used usually.

1. The action exponent

e
x

2αK , x = 6V ol(CP2)
R4

1

is a number in an extension of rationals guaranteed if one has

(1/2)Re( 1
αK

)× x = q1 , (1/2)Im( 1
αK

)× x = q2π .

.

2. Suppose that the volume integral uses volume element
√
g4, which is imaginary in Minkowskian

space-time regions and real in Euclidian regions. The motivation is that for real αK the action
exponential from Minkowskian space-time regions is phase as QFT picture demands.

For 1/αK = is = i/2 + y, s a complex zero of zeta, the phase of the action exponential
coming from Minkowskian regions is proportional to iy and in a good approximation equal
to 1/Re(αK). The conditions give V ol(CP2)/R4

1 ∝ π and y = q. Note that V ol(CP2) is
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proportional to π2 so that the normalization volume R4
1 would be proportional to π. Since

R4
1 = q×V ol(CP2) is natural normalization factor one would have expected x to be rational.

This does not look promising.

That the zeros of zeta should be complex rationals is totally unexpected but would conform
with the number theoretical universality. This would be of course very nice from TGD point
of view strongly suggesting that zeros belong to some extension of rationals. I have proposed
that the zeros of zeta appear as conformal weights in TGD framework [L16].

3. Suppose that the volume element is given by
√
|g4| as was done originally. If αK is complex,

the phase factor is obtained in any case. This option favours 1/αK = s, s a complex zero
of zeta. Eq. 15.4.1 would predict V ol(CP2)/R4

1 = q and y = qπ. These predictions conform
with the physical intuition. I have proposed earlier [L16] that the exponents of imaginary
parts for the zeros of zeta could correspond to roots of unity. Only the exponents of zeros of
zeta would be number theoretically universal and continuable to the p-adic sectors.

To sum up, a more precise adelic formulation of the classical action has allowed to detect
a hitherto hidden scaling parameter in the action appearing as an additional coupling parameter
depending on the extension of rationals, to understand better the number theoretical role of QCC,
and allowed to answer a nagging question about whether to use metric determinant or its absolute
value in the action assuming NTU for the exponential of action, and deduce the earlier conjecture
for the zeros of zeta.

There is however a further challenge for the adelic physics. What could fix the value of the
fundamental parameter l2P /R

2(CP2) (of order 10−7)? It seems that quantum criticality cannot
help here. Both l2P and R2 appear in the induced metric of space-time surface and number theo-
retical universality for field equations demands that l2P /R

2(CP2) is a rational number. The p-adic
evolution scenario of cosmological constant and empirical input for the cosmological constant gives
l2P /R

2(CP2) = 2−12 [L24]. Why power of 2 which having unit p-adic norm for all odd primes and
why just this power?

14.2.2 The problem with cosmological constant

Second (unpleasant) observation was that the previous proposal for the twistor lift of Kähler action
has an ad hoc feature.

Can the original proposal for the twistor lift of Kähler action be correct?

Consider first the unpleasant observation about cosmological constant.

1. αK is also assumed to be complex and the conjecture [L16] has been that its values correspond
to zeros of Riemann zeta. In the earlier proposal for twistor lift cosmological constant and αK
are assumed to obey independent p-adic evolutions, and cosmological constant was assumed
to be real and to behave like 1/p as function of p-adic prime in p-adic length scale evolution
so that its extreme smallness in cosmological scales could be understood [L22, L24].

The motivation for the proposal was the decomposition T (H) = T (M4) × T (CP2) of the
twistor space of H. It was argued that this allows to decompose the Kähler action of T (H)
to a sum of two parts with different values of αK . For M4 part the value of αK , call it
αK(M4), would be enormous and the resulting volume term in the dimensionally reduced
6-D Kähler action would have cosmological constant ~/l4D as its coefficient: lD would be of
the order of the size about 10−4 meters of a large neuron in cosmological length scales.

2. If the value of αK(M4) is real or has different phase than 1/αK , whose spectrum is proposed
to correspond to zeros of zeta [L16], the action is complex, and one has separate field equations
for real and imaginary part of action. The extremals would be minimal surface extremals of
Kähler action. That all known extremals of Kähler action have this property was seen as a
support for the hypothesis.

The physically problematic aspect is that Kähler action and volume term effectively decouple.
This would make sense asymptotically but looks strange as a general property [?] On the
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other hand, the independence of the extremals on coupling constants is a highly desirable
outcome from the point of view of number theoretical universality.

3. The assumption about different Kähler coupling strengths admittedly looks somewhat ad
hoc. If one assumes that also M4 possesses Kähler form J(M4) [L40], and induced Kähler
form corresponds to the sum J(M4) + J(M2), universal value of αK is the natural option.
This assumption however allowed to understand the smallness of cosmological term in 4-D
action and also the p-adic coupling constant evolution for the cosmological constant.

4. Also boundary conditions are problematic for this option. It would be highly desirable to
have flow of classical Noether charges between Euclidian and Minkowskian space-time regions
as a correlate for classical interactions between physical objects having Euclidian regions as
space-time correlates (analogous to lines of scattering diagrams). The conditions stating
the conservation of sums of complex Kähler and volume charges from Minkowskian and
Euclidian regions however give 2+2 conditions if the phases of Kähler action and volume
term are different and the metric determinant

√
g4 is imaginary for Minkowskian regions. It

is easy to see that Kähler and volume charges are conserved separately and that there is no
charge transfer between Euclidian and Minkowskian regions. The alternative

√
|g4| allows

the flow of real and imaginary charges between the two regions. One can however insist that
the existence of two separate conserved energies should have been discovered long time ago.

What if one gives up the assumption αK(M4) 6= αK(CP2)?

1. The volume term would be also proportional to 1/αK so that the phases of both Kähler
action and volume term would be identical. The pleasant surprise is that coupling constants
disappear from the field equations altogether! It is not necessary to postulate minimal surface
property of the preferred extremals anymore to guarantee number theoretical universality.

Minimal surface property could be however asymptotic so that there would be no exchange of
conserved quantities between these degrees of freedom. This would conform with the idea that
incoming and outgoing particles are free and thus minimal surfaces as 4-D generalization of
a geodesic line resulting when 4-D generalization of Abelian Maxwell force vanishes. Causal
diamond (CD) would represent a region with the property that the extremals approach
minimal surfaces at its boundary. One can loosely say that interactions are coupled on and
off near the opposite boundaries of CD: CD corresponds to scattering volume.

The vertices of topological diagrams defined by as 2-D intersections of the ends of orbits of
partonic 2-surfaces - analogous to vertices of Feynman diagrams - would be also accompanied
by transient regions, where there the motion of 3-surface is not geodesic. The results are
extremely nice from the point of view of number theoretical universality.

2. Also in this case the charge transfer between Euclidian and Minkowskian regions is impossible
if
√
g4 defines volume element (imaginary in Minkowskian regions).

√
|g4| this is not the case.

As found, also NTU favors this option.

3. The above result is extremely nice. What makes the shower cold is that one ends up with
problems with cosmological constant since Kähler and volume terms in the action are of same
order of magnitude. Also the proposed p-adic evolution scenario for the cosmological constant
is lost. The only cure that I can imagine is that the entire 4-D action has interpretation as
a cosmological term, and that a cancellation between Kähler action and volume term take
place giving rise to a very small effective value of cosmological constant.

Can one understand the p-adic evolution of cosmological constant?

The above findings lead to a problem with cosmological constant.

1. If the cosmological constant corresponds to the volume term in the dimensionally reduced
6-D Kähler action with scaling factor X = 1/2αKR

2
1S0, one has from Eq. 14.2.1

ρvac =
1

l4D
=

2

αKR4
1

Area(S2(X4))

S0
=

Λ

8πl2P
. (14.2.3)
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Here lD corresponds to a length scale which is roughly the size 10−4 meters of large neuron
for cosmological constant in cosmic scales. Also Kähler action would be extremely small. It
would however seem that the ratio of these actions should be extremely small. The simplest

solution corresponds to Area(S2(X4))
S0

= 1.

2. The Kähler action for CP2 type extremal with light-like geodesic as M4 projection the action
would be

S = −3
V ol(CP2)

l4D
.

The action has totally different order of magnitude than assumed earlier if R1 corresponds
to the value of cosmological constant. If one assumes R1 = R(CP2), cosmological constant
is enormous. Something seems to go wrong.

How could one overcome this problem?

1. Could lD be small and imply large cosmological constant? Could the parameter X =
Area(S2(X4)

S0
be small and increase the effective size of lD? Could the time-like signature

for S2(M4) allow this by reducing the value of Area(S2(X4)?

One can study the imbedding of S2(X4) to S2(M4) and S2(CP2) characterized by winding
numbers n1 and n2. One can choose S0 to be the area for the imbedding with n1 = n2 = 1.

This gives Area(S2(X4)
S0

= (n1X
2 − n2)(X2 − 1), X2 = (R2(CP2)/l2P ) for time-like signature

for S2(M4). The condition Area(S2(X4)
S0

= 1/p would give p-adic length scales but could be
satisfied for finite number of primes p only. Second problem is that this would not affect the
ratio of Kähler and volume contributions to the action.

2. Could effective cosmological constant correspond to the entire action so that Kähler would
cancel the real cosmological term in cosmological scales?

Could J · J − 2 should become small in Minkowskian regions and be necessarily large in
Euclidian regions? The positive Kähler electric contribution to the action should sum up to
almost zero with the negative magnetic contribution and cosmological term. This cancellation
should take place in cosmic scales at least and require long range induced Kähler electric fields.
They are assumed to be present in the model for large voids. If M4 Kähler form is present
as CP breaking and some other arguments suggest [L40] [L24], it could give a large Kähler
electric contribution in long scales if CP2 contribution becomes small as one might expect.

The values of 6-D Kähler action should have tendency to concentrate around values inversely
proportional to prime p near power of 2 (also other small primes can be considered). The
values of Kähler action for the maxima of Kähler function could have this property. This
conjecture was made earlier in an attempt to understand gravitational constant in terms of
p-adic length scale hypothesis and the exponent of Kähler action for CP2 type extremals (see
the last section of [K3]).

3. This interpretation would mean that for strings like objects having both vanishing induced
M4 and CP2 parts of induced Kähler fields the action would be large and coming from
cosmological constant in CP2 scale, and one could at least formally say that the situation
is perturbative. Strings could however carry non-vanishing and large M4 parts of Kähler
electric fields and the action could be small in this case.

4. I must be added that the interpretation of cosmological constant has varied during years.
For the 4-D Kähler action the proposal was that cosmological constant corresponds to the
magnetic part of Kähler action with magnetic tension responsible for the negative pressure.
The twistor lift in turn led to ask whether Kähler action and volume term could provide alter-
native, dual manners to understand cosmological constant. For the recent option the small
effective cosmological constant results from the cancellation of Kähler action and volume
term.
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The cautious conclusion would be following. If the 6-D Kähler action contains only single
αK , the cosmological constant is very large at short scales and for Euclidian space-time regions.
The cancellation of Minkowskian Kähler electric contribution and Kähler magnetic action in 6-D
sense however makes the effective value of cosmological very small. The solution of the problem of
cosmological constant would be dynamical. The previous option for which Kähler action decom-
poses to M4 and CP2 parts with different values of αK(M4) and αK(CP2) ≤≤ αK(M4) cannot
be however excluded.

14.3 Twistor lift of TGD, hierarchy of Planck constant, quan-
tum criticality, and p-adic length scale hypothesis

Kähler action is characterized by enormous vacuum degeneracy: any four-surface, whose CP2

projection is Lagrangian sub-manifold of CP2 having therefore vanishing induced Kähker form,
defines a vacuum extremal. The perturbation theory around canonically imbedded M4 in M4×CP2

defined in terms of path integral fails completely as also canonical quantization. This led to the
construction of quantum theory in “world of classical worlds” (WCW) and to identification of
quantum theory as classical physics for the spinor fields of WCW: WCW spinors correspond to
fermionic Fock states. The outcome is 4-D spin glass degeneracy realizing non-determinism at
classical space-time level [K34, K15, K88, K110].

The twistor lift of TGD is based on unique properties of the twistor spaces of M4 and CP2.
Note that M4 allows two notions of twistor space. The first one involves conformal compactification
allowing only conformal equivalence class of metrics. Second one is equal to Cartesian product
M4 × S2 [B72] (see http://tinyurl.com/yb4bt74l). CP2 has flag manifold SU(3)/U(1)× U(1)
as twistor space having interpretation as the space for the choices for quantization axis of color
hypercharge and isospin. Both these spaces Kähler structure (strictly speaking E4 and S4 allow
it but the notion generalizes to M4) and there are no others. Therefore TGD is unique both from
standard model symmetries and twistorial considerations.

The existence of Kähler structure is a unique hint for how to proceed in the twistorial
formulation of classical TGD. One must lift Kähler action to that in the twistor space of space-
time surface having also S2 as a fiber and identify the preferred extremals of this 6-D Kähler
action as those of dimensionally reduced Kähler action, which is 4-D Kähler action plus volume
term identifiable in terms of cosmological constant. As found, there are two options to consider.

1. Option I: The values of αK(M4) and αK(CP2) are widely different with αK(M4) being
extremely large so that M4 part of the 6-D Kähler action gives in dimensional reduction
extremely small cosmological term. Allowing Kähler coupling strength αK(CP2) to corre-
spond to zeros of zeta implies that for complex zeros the preferred extremals for αK(M4)
having different phase are mimimal surface extremals of Kähler action so that the values
of coupling constants do not matter and extremals depend on couplings only through the
boundary conditions stating the vanishing of certain super-symplectic conserved charges. In
this case the cosmological constant would correspond to running αK(M4) and would behave
like 1/p, p p-adic prime. This was the original proposal.

2. Option II: αK(M4) = αK(CP2) is satisfied. A small effective value of cosmological constant
is obtained if the Kähler action and volume term tend to cancel each other. In this case
minimal surface extremals of Kähler action correspond naturally to asymptotic dynamics
near the boundaries of CDs, where the analog of free geodesic motion as minimal surfaces
is expected. In this case effective cosmological constant would correspond to the entire
action: volume term and Kähler action receiving also M4 contribution would cancel almost
completely in cosmic scales.

One can in fact argue that one cannot distinguish between Kähler and volume contributions
to the action so that Option II remains the only possible one. Option I also breaks the
symmetry between Kähler forms of M4 and CP2. It is natural that the induced Kähler form
is the sum of both and appears in the Kähler action: hence αK(M4) = αK(CP2) .

Option I might be argued to be adhoc but at this moment it is not yet wise to select between
these two options. The most conservative assumption is that the twistorial approach is only an

http://tinyurl.com/yb4bt74l
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alternative for the space-time formulation: in this formulation preferred extremal property might
reduce to twistor space property.

Kähler action gives as fundamental constants the radius R ' 212lP of CP2 serving as the
TGD counterpart of the unification scale of GUTs and Kähler coupling strength αK in terms
of which gauge coupling strengths can be expressed. Twistor lift gives 2 additional dimensional
constants. The radius of S2 fiber of M4 twistor space M4 × S2 is essentially Planck length
lP =

√
G/~, and the cosmological constant Λ = 8πGρvac defining vacuum energy density is

dynamical in the sense that it allows p-adic coupling constant evolution as does also αK .
For both Option I and II one can imagine two options for the p-adic coupling constant

evolution of cosmological constant.

1. ρvac = k1×~/L4
p, where p ' 2k characterizes a given level in the p-adic length scale hierarchy

for space-time sheets. Here one can in principle allow k1 6= 1.

2. Λ/8π = k2/L
2
Λ ∝ 1

p2
Λ

. Also k2 could differ from unity. Number theoretical universality

suggests k1 = k2 = 1. The that here secondary p-adic length scale is assumed.

The first option seems more natural physically. During very early cosmology ΛR2/8π ap-
proaches l2P /R

2 for the first option, where R ' 212lP is the size scale of CP2 so that one has
ΛR2/8π ' 2−24 ' 6 × 10−8 at this limit. Therefore perturbation theory would fail for Op-
tion I also in early cosmology near vacuum extremals. In the recent cosmology Λ is extremely
small. Note that vacuum energy density would be always smaller than ~/R4 and thus by a factor
(lP /R)4 ' 2−48 ' 3.6× 10−15 lower than in GRT based cosmology.

It it is good go recall that the earlier identification of the cosmological constant was in terms
of the effective description for the magnetic energy density of the magnetic flux tubes. Magnetic
tension would give rise to effective negative pressure. For Option II the cosmological constant
would correspond to the entire action with magnetic and volume contributions slightly larger than
Kähler electric contribution. For Option I it wold correspond to the volume term.

14.3.1 Twistor lift brings volume term back

Concerning volume term the situation changed as I introduced twistor lift of TGD. One could say
that twistor lift forces cosmological constant. As already described, there are two options: Option
I and Option II. The following arguments developed for Option I apply with small modifications
also to Option II. The only difference is that the volume term has complex phase for complex
αK [L16] and effective cosmological constant follows from the compensation of Kähler and volume
contributions.

1. The twistor lift of Kähler action is 6-D Kähler action for the twistor space T (X4) of space-
time surface X4. The analog of twistor structure would be induced from the product T (M4)×
T (CP2), of twistor spaces T (M4) = M4×S2 of M4 [B72] and T (CP2) = SU(3)/U(1)×U(1)
of CP2 having Kähler structure so that the induction of Kähler structure to T (X4) makes
sense. Besides M4 and CP2 only the spaces E4 and the S4, which are variants of M4 have
twistor space with Kähler structure or analog of it. The induction conditions would imply
dimensional reduction so that the 6-D Kähler action for the twistor lift would reduce to 4-D
Kähler action plus volume term identifiable in terms of cosmological constant Λ.

2. 4-D Kähler action has Kähler coupling strength αK as coupling parameter and volume term
has coefficient 1/L4 identifiable in terms of cosmological constant

1

L4
≡ Λ

8πl2P
.

lP =
√
G/~ would correspond to the radius of twistor sphere for M4 and thus becomes

fundamental length scale of twistorially lifted TGD besides radius of CP2. Note that the
radius of twistor sphere of CP2 is naturally CP2 radius.

L is in the role of coupling constant and expected to obey discrete p-adic coupling constant
evolution L ∝ √p, prime or prime near power of two if p-adic length scale hypothesis is
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accepted. In the recent cosmology L could correspond to the p-adic length scale L(175) ' 40
µm, the size of large neuron.

 L ' 40µm corresponds to the energy scale E = 1/L ' .031 eV, which is thermal energy
at temperature of 310 K (40 C) - the physiological temperature. A deep connection with
quantum biology is suggestive. Also the energy scale defined by cell membrane potential is in
this energy scale. This energy scale about 10 times smaller than the mass scale of neutrinos.

Also LΛ =
√

8π/Λ would satisfy p-adic coupling constant evolution as already discussed.
Now the p-adic length scale would be secondary p-adic length scale LΛ = L(2, p) =

√
p ×

(R/lP ), lP Planck length. p-Adic length scale hypothesis demands that R/lP - the ratio for
the radii of CP2 and twistor sphere is power of 2. p-Adic mass calculations indeed allow this
ratio can be indeed chosen to be equal to R/lP = 212.

14.3.2 ZEO and twistor lift

The volume term, which I gave up 38 years ago, has creeped back to the theory! The infinite
value of volume for space-time surfaces of infinite duration? This would not make the notion of
vacuum functional poorly defined. Should one forget twistor lift because of this? No! ZEO saves
the situation.

In ZEO given CD defines a sub-WCW consisting of space-time surfaces inside CD. This
implies that the volumes for the M4 projections of allowed space-time surfaces are smaller than
CD volume having the order of magnitude L4(CD), L(CD) is the temporal distance between the
tips of CD (one has c = 1). I have also proposed that L(CD) is quantized in multiples of integers,
primes or primes near power of two so that the identification might make sense. L(CD) = L is
not possible due to the small value 40 µm of L but L(CD) = LΛ could make sense.

Stationary phase condition and ZEO

The preferred extremal property realizing SH poses extremely strong constraints on the value of
total action and it should force the phase defined by action to be stationary so that interference
effects would be practically absent. This argument assumes that the action exponentials indeed
appear in the scattering amplitudes defined by the WCW spinor fields in ZEO. NTU however forces
to challenge this assumption unless one assumes that action is quantized as q1 + iq2π: this might
be achieved by the quantization of the overall scale factor X of the action. The construction of
twistor scattering amplitude suggests that the cancellation of action exponentials might be indeed
achieved. If the exponents are present, the question is how the stationarity of phase could be
achieved.

1. The most general possibility is that the phase of the vacuum functional can be large but
is localized around very narrow range of values. The imaginary part of the action SIm for
preferred extremals should be around values SIm = A0 + n2π. Standard Bohr orbitology
indeed assumes the quantization of action in this manner. One could also argue that just the
absence of destructive interference demands Bohr quantization of the action in the vacuum
functional. Whether preferred extremal property indeed gives rise to this kind of Bohr
quantization, is an open problem. The real exponent of the vacuum functional should in
turn be large enough and positive values are favored. They are however bounded in ZEO
because of the finite size of CDs.

2. To proceed further one must say something about the value spectrum of αK . In the most
general situation αK is complex number: the proposal of [L16] is that the discrete p-adic
coupling constant evolution for 1/αK corresponds to a complex zero s = 1/2+ iy of Riemann
zeta: also the trivial real zeros can be considered. For large values of y the imaginary part
of y would determine 1/αK and Re(s) = 1/2 would be responsible for complex value of αK .
This makes sense since quantum TGD can be regarded formally as a complex square root of
thermodynamics.

3. Denote by S = SRe + iSIm the exponent of vacuum functional. For complex values of 1/αK
SIm and SRe receive a contribution from both Euclidian and Minkowskian regions and a
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contribution also from the Minkowskian regions. For SIm the contributions should obey the
condition

SIm = SIm(M) + SIm(E) ' A0 + n2π (14.3.1)

to achieve constructive interference.

For real parts the condition SRe = SRe(M)+SRe(E) must be small if negative. Large positive
values of SRe are favored. SRe automatically selects the configurations, which contribute most
and among these configurations the phase exp(iSIm) must be stationary. The conditions for
SIm relate the values of action in the Euclidian and Minkowskian regions. If αK is real,
one has SIm(M) ' A0 + n2π and SRe(E) small if negative and Euclidian and Minkowskian
regions effectively decouple in the conditions. It seems that complex values of αK are indeed
needed.

4. SRe(E) = SRe(M)+SRe(E) receives a positive contribution from Euclidian regions. Minkowskian
regions a contributions for complex value αK . Both positive and negative contributions are
present and the character of these contributions depends on sign of the imaginary part of
αK . Depending on the sign factor ±1 of Im(1/αK) Minkowskian regions give negative
(positive) contribution from the space-time regions dominated by Kähler electric fields and
positive (negative) contribution from the volume term and the regions dominated by Kähler
magnetic field.

The option ”+” for which Kähler magnetic action and volume term give positive contribution
to SRe(M) looks physically attractive. ”+” option would have no problems in ZEO since the
contribution to SRe would be automatically positive but bounded by the finite size of CD:
this would give a deep reason for the notion of CD (also the realization of super-symplectic
symmetries gives it). For ”-” option Minkowskian regions containing Kähler electric fields
would be essential in order to obtain SRe > 0: Kähler magnetic fields would not be favored
and the unavoidable volume term would give wrong sign contribution to SRe > 0.

The condition SIm ≤ π/2 is not realistic

One can look what the mere volume term contributes to SIm assuming SIm ≤ π/2. Volume term
dominates for near to vacuum extremals with a small Kähler action: in particular, for string like
objects X2 × S2, S2 a homologically trivial geodesic sphere with vanishing induced Kähler form.
It turns out that these conditions are not physically plausible and that SIm ' A0 +n2π is the only
realistic option.

1. Cosmological constant (parametrizable using the scale L) together with the finite size of CD
gives a very stringent upper bound for the volume term of the action: A = vol(X4)/L4. The
rough estimate is that for the largest CDs involved the volume action is not much larger than
L4π/2 in the recent cosmology. In the recent cosmology L would be only about 40 µm so
that the bound is extremely strong! and suggests that SIm < π/2 is not a realistic condition.

2. L(CD) = L is certainly excluded. Can one have L(CD) = LΛ? How can one achieve space-
time volume not much larger that L4 for space-time surfaces with duration L(CD)? Could
magnetic flux tubes help! For the simplest string like objects X2 × Y 2, where X2 ⊂ M4 is
minimal surface and Y 2 a 2-D surface (complex sub-manifold of CP2) the volume action is
essentially

Action = V
l2PL

2
Λ

= Area(X2)
L2

Λ
× Area(Y 2)

l2P
. (14.3.2)

The conservative condition for the absence of destructive interference is roughly Action < π/2
.
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3. To get a more concrete idea about the situation one can use the parameterization

Area(string) = L(CD)× L(string) , Area(Y 2) = x× 4πR2 . (14.3.3)

x is a numerical parameter, which can be quite large for deformations of cosmic strings with
thick transversal M4 projection. The condition for the absence of destructive interference is
roughly

L(CD)×L(string))
L2

Λ
× x× 4πR2

l2P
< π

2 . (14.3.4)

For L(string)� L(CD) one can have space-time surfaces of temporal duration L(CD) = LΛ.
For these the condition reduces to

y × x < π
l2P

4πR2 = 2−13π ,

y ≡ L(string)
LΛ

.

(14.3.5)

For deformations the transversal area of string like object can be also chosen to be consid-
erably larger than the area of geodesic sphere. For flux tubes of length of order 1 AU the
one have y ∼ 10−16. This would require x ≤ 1013. This would correspond to a radius L(Y 2)
about 106R much smaller than required.

For L(string) ∼ L this would give y ∼ 10−31 giving x ≤ 1028 L(Y 2) ≤ 1014R, which
corresponds to elementary particle scale. Still this fails to fit with intuitive expectations,
which are of course inspired by the standard positive energy ontology.

4. One could try to invent mechanisms making volume term small. The required reduction
would be enormous. This does look sensible. One can have vacuum extremals of Kähler action
for which CP2 projection is a geodesic line: Φ = ωt. The time component gtt = 1 − R2ω2

of the flat metric can be arbitrarily small so that the volume proportional to
√
gtt can

be arbitrarily small. One expects that this happens in early cosmology but as a general
mechanism this is not plausible. Also very rapidly rotating string like objects with small
area of string world sheet are in principle possible but do not represent a realistic option.

The cautious conclusion is that Bohr quantization SIm ' A0 + n2π is the only sensible
option. The hypothesis that the coupling constant evolution for 1/αK is given in terms of zeros
of Riemann zeta seems to be consistent with this picture and correlates the values of actions in
Minkowskian and Euclidian regions.

14.3.3 Hierarchy of Planck constants

One motivation (besides motivations from bio-electromagnetism and Nottale’s work [E1]) for
the hierarchy of Planck constants heff = n × h identified as gravitational Planck constants
~gr = GMm/v0 at the magnetic flux tubes mediating the gravitational interaction was that it
effectively replaces the large coupling parameter GMm with dimensionless coupling v0/c < 1.
This assumes quantum coherence in even astrophysical length and time scales. For gauge interac-
tion corresponding to gauge coupling g one ~g = Q1Q2α/v0. Also Kähler coupling strength αK to
αK/n and makes perturbation theory converging for large enough value of n.

The geometric interpretation for heff = n × h emerges if one asks how to make the action
large for very large value of coupling parameter to guarantee convergence of functional integral.
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1. The answer is simple: space-time surfaces are replaced with n-fold coverings of a space-space
giving n-fold action and effectively scaling h to heff = n× h so that coupling strength scale
down by 1/n. The coverings would be singular in the sense that at the 3-D ends of space-time
surface at the boundaries of causal diamond (CD) the sheets co-incide.

2. The branches of the space-time surface would be related by discrete symmetries. The sym-
metry group could be Galois group in number theoretic vision about finite measurement
resolution realized in terms of what I call monadic or adelic geometries [L26] [K117].

On the other hand, the twistor lift suggests that covering could be induced by the covering of
the fiber S2(X6) by the spheres S2(M4×S2) and the twistor space S2(SU(3)/U(1)×U(1))
defining fibers of twistor spaces of M4 and CP2. There would be gauge transformations
transforming the light-like parton orbits to each other and the discrete set would consists of
gauge equivalence classes. These two identifications for the symmetries could be equivalent.

heff = hgr = n×h would make perturbation theory possible for the space-time surfaces near
vacuum extremals. For far from vacuum extremals Kähler action dominates and one would have
heff = hgK = n× h. This picture would conform with the idea that gravitational interactions are
mediated by massless extremals (MEs) topologically condensed at magnetic flux tubes obtained as
deformations of string like objects X2×S2

I , S2
I a homologically trivial geodesic sphere of CP2. The

other interactions could be mediated in the similar manner. The flux tubes would be deformations
of X2 × S2

II , S
2
II a homologically non-trivial sphere so that the flux tubes would carry monopole

flux.

The enormously small value of cosmological constant would require large value of heff/h = n
explaining the huge value of hgr whereas for other interactions the value of n would be much smaller.
Since only the size of the action matters, this is true for both Option I and Option II. One can
consider also variants of this working hypothesis. For instance, all long range interactions mediated
by massless quanta could correspond to extremals for which cosmological constant is small.

What smallness requires depends on option. For Option I the reason is that very long
homologically non-trivial magnetic flux tubes tend to have large energy (the energy goes as 1/S)
so that homologically trivial flux tubes having only vacuum energy are favored. For Option II
the cancellation of Kähler action and volume term is necessary. The compensating Kähler electric
action could come from the M4 Kähler from J(M4). These flux tubes could be also homologically
non-trivial

Quantum criticality would suggest that both homologically trivial and non-trivial phases
are important. In TGD inspired quantum biology [K37] I have considered the possibility that
structures with size scaled by heff/h = n can transform to structures with n = 1 but p-adic length
scale scaled up by n. Here n would be power of two by p-adic length scale hypothesis.

This would have interpretation in terms of quantum criticality. Homologically non-trivial
string like objects with given string tension determined by Kähler action would be transformed
to homologically trivial string like objects with the same string tension but determined by the
cosmological constant term. This would give a condition on the value of the cosmological constant
and thickness of flux tubes to be discussed later.

14.3.4 Magnetic flux tubes as mediators of interactions

The gravitational Planck constant ~gr = GMm/v0 [K66, K53, K109, K106] introduced originally
by Nottale [E1] depends on the large central mass M and small mass m. This makes sense only if
hgr characterizes a magnetic flux tube connecting the two masses. Similar conclusion holds true
for hg. This leads to a picture in which mass M has involves a collection of radial flux tubes
emanating radially from it. This assumption makes sense in many-sheeted space-time since the
fluxes can go to the another space-time sheets through wormhole contacts associated also with
elementary particles. For single-sheeted space-time one should have genuine magnetic charges.

This picture encourages a strongly simplified vision about how holography is realized. From
center mass flux tubes emanate and in given size scale of the space-time sheet from by the flux
tubes having say spherical boundary, the boundary is decomposed of pixels representing finite
number of qubits. Each pixel receives one flux tube.
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Vacuum energy for Options I and II

For Option I and magnetic flux tubes with vanishing Kähler form carry mere vacuum energy and
are candidates for the mediators of long range interactions including gravitation. The homologically
trivial flux tubes carry vacuum energy, which by flux conservation is proportional to 1/S, where
S is surface area. Long flux tubes are necessarily thick.

For Option II the thin magnetic flux tubes with vanishing induced Kähler form have very
large tension and could be perturbative so that there would be no need for large values of heff/h =
n. These flux tubes are expected to be short. The string world sheets mediating gravitational
interaction should be long and have small string tension. They would naturally carry non-vanishing
Kähler electric field in the direction of string (and flux tube).

1. Gravitational action (interaction energy from J(M4)) and volume action (energy) would
compensate to give a small cosmological constant forcing heff/h = n hierarchy describing
dark matter. Thus J(M4) crucial for understanding CP breaking and matter antimatter
asymetry would be also crucial for the smallness of cosmological constant. This option looks
physically rather attractive.

2. For flux tubes with vanishing induced J(CP2) the condition for cancellation would be J ·J −
2 ' 0. The compensating Kähler field would be electric and would naturally due to J(M4)
and also responsible for the gravitational field along flux tube at QFT limit. Compensation
of actions giving a small and scale dependent cosmological constant requiring large heff/h =
n = hgr/h is possible.

3. For flux tubes with Kähler magnetic tube carrying magnetic monopole flux the cancellation
condition would J(M4) · J(M4) − 2 − J(CP2) · J(CP2) ' 0. The thickening of flux tubes
weakening the value of J(CP2) behaving from flux conservation like J(CP2) ∝ 1/S, S the
cross sectional area of the flux tube, should make approximate cancellation possible. Elemen-
tary particles would represent an example of structures formed by closed monopole flux tubes
assignable with a pair of space-time sheets. Homologically non-trivial magnetic flux tubes
with small string tension could explain the mysterious cosmic magnetic fields: homological
non-triviality implies that no current is needed to create the fields.

Magnetic flux tubes as carriers of magnetic energy

The holographic picture leads to a picture about vacuum energy. The following arguments devel-
oped originally for Option I should apply to both options since it is enough that magnetic flux
tubes have only low vacuum energy density. Possible delicacies relate to the fact that small Kähler
action (E2 − B2) does not necessarily mean small Kähler energy. For Option II this situation is
however not encountered.

1. Vacuum energy can be expressed as a sum of energies assignable to the flux tubes. Same
applies to Kähler interaction energy. The contribution of individual flux tube is proportional
to its length given by radius r of the large sphere considered. The total vacuum energy must
be proportional to r3 so that the number of flux tubes must be proportional to r2. This
implies that single flux tube correponds to constant area ∆S of the boundary sphere for
given value of cosmological constant. The natural guess is that ∆S is of the same order of
magnitude as the area defined by the length scale defined L by the vacuum energy density
ρvac = Λ/8πG allowing parameterization ρvac = k1~/L4.

2. In the recent cosmology one has ~/L(now) ' .029 eV, which equals roughly to M/10, where
M =

∑
m(νi) ' .032 ± 0.081 eV is the sum of the three neutrino masses. L is given as a

geometric mean

L =
√
LΛlP ' .42× 10−4

meters of length scales lP =
√
G/~ and LΛ = (8π/Λ)1/2. L(now) corresponds to the size

scale of large neuron. This is perhaps not an accident.
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The area of pixel must be of order L2(now) suggesting strongly a p-adic length scale assignable
with neuron: maybe neuronal system wold realize holography. L(151) = 10 nm (cell length
scale thickness) and L(k) ∝ √p ' 2k/2 gives the estimate p ' 2k, k = 175: the p-adic length
scale is 4 per cent smaller than L(now).

3. The pixel area would be by a factor L2(now)/l2P larger than Planck length squared usually
assumed to define the pixel size but would conform with the p-adic variant of Hawking-
Bekenstein law in which p-adic length scale replaces Planck length [K49].

The value of the vacuum energy density for a given flux tube is proportional to the value of
heff/h = n by the multi-sheeted covering property. Vacuum energy cannot however depend on n.
There are two manners to achieve this: local and global.

1. For the local option the energy of each flux tube would remain invariant under h → n × h
as would also the number N of flux tubes. This requires that the cross section S of the
radial gravitational flux tube to which energy is proportional, scales down as S/n. This
looks strange.

2. For the global option flux tubes are not changed but the number N of the radial flux tubes
scales down as N ∝ 1/n: one has Nn = constant. In the situation in which Kähler magnetic
energy dominant local option demands S ∝ n and global option N ∝ 1/n. Nn constant
conditions brings in mind something analogous to Uncertainty Principle. The resolutions
characterized by N and n are associated with complementary variables.

The global option applies to both homologically trivial and non-trivial options and is more
promising.

Could the value of endogenous dark magnetic field relate to cosmological constant?

TGD development of inspired model for quantum biology was initiated by the observation [J2]
that ELF em fields have non-trivial effects on the brain physiology and behavior of vertebrates
[K94, K59]. Since the energies of ELF photons (with frequencies in EEG range) are many orders of
magnitude below thermal energy, the proposal was that one has dark photons having heff/h = n
increasing the value of the energy E = hefff of ELF photons above thermal energy, possibly even
to the energies of bio-photons in visible and UV range identified as resulting in a phase transition
reducing heff to its value for visible matter.

The effects appear at multiples of cyclotron frequencies of biologically important ions in
endogenous (“dark”) magnetic field of Bend ' .2 Gauss. This corresponds to magnetic length
1/
√
eB not far from the size of large neuron. Could this field strength correspond to the Kähler

magnetic field assignable to the flux tubes carrying monopole magnetic field, whose strength is
determined by the value of cosmological constant? This would give a direct connection between
cosmology and biology!

1. In recent cosmology the value of BK (more precisely, gKBK using ordinary conventions) at
criticality would be

BK =
Φ0

4π

1

L2(175)
.

BK corresponds to the U(1) magnetic field in standard model and is therefore as such not the
ordinary magnetic field. For S2

II Kähler magnetic field is non-vanishing. If Z0 field vanishes,
classical em field (with e included as normalization factor) equals to γ = 3J , where J is
K”ahler induced Kähler form (see [L2]. One has

BK =
eBem

3
. (14.3.6)
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2. An interesting question is whether one could identify physically the ordinary magnetic field
assignable to the critical Kähler magnetic field.

Earth’s magnetic field BE = .5 Gauss corresponds to magnetic length LB =
√
~eB = 5µm.

Endogenous magnetic field Bend ' 2BE/5 explaining the findings of Blackman [J2] about
the effects of ELF em fields on vertebrate brain in terms of cyclotron transitions corresponds
to LB = 12.5 µm to be compared with the p-adic length scale L(175) = 40 µm. Also these
findings served as inspiration of heff = n× h hypothesis [K94, K93].

I have assigned large Planck constant phases with the flux tubes of Bend, which have however
remained somewhat mysterious entity. Could Bend correspond to quantum critical value of
BK and therefore relate directly to cosmology?

One can check whether BK = eBend/3 holds true. The hypothesis would give

eBend =
1

L2
B

= 3× Φ0

4π~
1

L2(175)
.

implying

r =
L2(175)

L2
B

=
3Φ0

4π~
.

The left hand side gives r = 10.24. For Φ0 = 8π~ the right hand side gives r = 6. BE = .34
Gauss left and right hand sides of the formula are identical.

3. One can wonder the proposed formulas might be exact for preferred extremals satisfying
extremely powerful conditions to guarantee strong form of holography. This would require
in both cases bundle structure with transversal cross section action as fiber. In the case
of extremals of Kähler this would require that induce Kähler magnetic field is covariantly
constant.

14.3.5 Two variants for p-adic length scale hypothesis for cosmological
constant

There are two options for the dependence string tension Tandarea S of the cross section of the
flux tube on p-adic length scale: either LΛ =

√
8π/Λ or L = (~/ρvac)1/4 satisfies p-adic length

scale hypothesis. The “boundary condition” is that the radius of flux tubes would be of the order
of neutron size scale in recent cosmology.

1. L(now) = Lp scaling gives

S = S(now)
p(now)

p
(14.3.7)

with pnow ' 2175 by p-adic length scale hypothesis. L(175) is by about 4 per cent smaller
than the Compton length assignable to ~/L(now) = .029 eV.

If one wants L(now) = L(175) exactly, one must increase R by 4 per cent, which is allowed
by p-adic mass calculations fixing the value of R only with 10 per cent accuracy. Indeed, the
second order contribution in p-adic mass calculations is uncertain and the ratio of maximal
and minimal values of R is Rmax/Rmin =

√
6/5 ' 1.1.

As already noticed, L(now) corresponds to neutron size scale, which conforms with p-adic
mass calculations since the radius of flux tubes would correspond to p-adic length scale. This
option looks more natural and suggest a profound connection with biology and fundamental
physics.
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2. Lλ ≡
√

8π/Λ could be proportional to secondary p-adic length scale L(2, pΛ) ≡ √pΛLpΛ
.

The scaling law

LΛ ∝
pΛ(now)

pΛ
(14.3.8)

gives

L2
Λ(now) =

8π

Λ(now)
= (

p

p(now)
)2 × L4(now)

l2P
. (14.3.9)

LΛ(now) ∼ 50 Gly (roughly the age of the Universe) holds true. Note that one has S ∝√
pnow/pS(now) and T = Tnow

√
p/pnow.

1/p-dependence for the string tension T looks more natural in light of p-adic mass calcula-
tions. One must however notice that the L = L(175) is 4 per cent small than L(now).

The density of dark energy is uncertain by few per cent at least and one can ask whether
L(now) = L(175) could fix it. The change induced to ρvac by that of L(now) is

∆ρvac
ρvac

= −4
∆L(now)

L(now)

and the reduction L by 4 per cent would reduce vacuum density by 16 per cent, which looks
rather large change. The value of R can be determined by 10 per cent accuracy and the
increase of R by four per cent is another manner to achieve L(now) = L(175).

One can of course ask, whether both variants of p-adic length scale hypothesis could be
correct. The reader night protest that this leads to the murky waters of p-adic numerology.

1. Could LΛ be proportional to the secondary p-adic length scale L(p, 2) =
√
pLp = 2k/2×L(k)

associated with p characterizing L such that the proportionality constant is power of
√

2.
The application of the condition defining L in terms of L2

Λ = 8π/Λ gives

L2
Λ =

L4

l2P
.

Using LΛ =
√
pΛR and taking square roots, this gives

√
pΛ = pk2 , k =

RCP2

lP
. (14.3.10)

This conforms with the p-adic length scales hypothesis in its simplest form if k is power of√
2.

2. The estimate from p-adic mass calculations for r ≡ R(CP2)/lP is r = 4.167 × 103 and is 2
per cent larger than 212. Could the R(CP2)/lP = 212 for the radii of CP2 and M4 twistorial
sphere be an exact formula between fundamental length scales? As noticed, the second order
contribution in p-adic mass calculations is uncertain by 10 per cent. This would allow the
reduction of R(CP2) by 2 percent.

This looks an attractive option. The bad news is that the increase of R(CP2) by about 4
per cent to achieve L(now) = L(175) is in conflict with its reduction by 2 per cent to achieve
R(CP2)/lP = 212: this would reduce L(175) by 2 per cent and increase ρvac by about 8 per
cent. ρvac is however an experimental parameter depending on theoretical assumption and
it value could allow this tuning. Therefore
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RCP2

lP
= 212 ,

pΛ = 248 × p2 . (14.3.10)

is an attractive option fixing completely the value of R(CP2)/lP and predicting relation
between cosmological scale LΛ and a fundamental scale in recent biology, which could be
assigned to magnetic flux tubes assignable to axons. Note that for know = 175 the value of
kΛ = know + 48 is kΛ = 175 + 48 = 223 which corresponds to p-adic length scale of 64 m.

3. Needless to say that one must be take these estimates with a big grain of salt. Number
theoretical universality suggests that one might apply number theoretical constraints to fun-
damental constants like R, lP , and Λ but one should be very critical concerning the values
of empirical parameters such as ρvac depending on theoretical assumptions. Furthermore,
p-adic length scale hypothesis is applied at the level of imbedding space metric and one can
ask whether it actually applies for the induced metric (Robertson-Walker metric now).

14.4 What happens for the extremals of Kähler action in
twistor lift

As I started to work with TGD around 1977, I adopted path integral and canonical quantization
as the first approaches. One of the first guesses for the action principle was 4-volume in induced
metric giving minimal surfaces as preferred extremals. The field equations are a generalization of
massless field equation and at least in the case of string models Hamiltonian formalism and second
quantization is possible. The reason why for giving up this option was that for space-time surfaces
of infinite duration the volume is infinite. This is not pleasant news concerning quantization since
subtraction of exponent of infinite volume factor looked really ugly thing to do. At that time I did
of course have no idea about ZEO and CDs.

For Kähler action there is however infinite vacuum degeneracy. All space-time surfaces with
CP2 projection, which is Lagrangian manifold (at most 2-dimensional) are vacuum extremals and
canonical quantization fails completely. This implies classical non-determinism also for non-vacuum
extremals obtained as small deformations of vacuum extremals. This feature seems to have nice
implications such as 4-D spin glass degeneracy. It would however make WCW metric singular for
nearly vacuum extremals.

The twistor lift brings volume term to the action. For option II there is also coupling
between Kähler action and volume term but asymptotically one expects minimal surface extremals
as analogs for free geodesic motion. The question is what happens to the known extremals of
Kähler action, most of which are minimal surfaces.

14.4.1 The coupling between Kähler action and volume term

The addition of the volume term to Kähler action has very nice interpretation as a generalization
of equations of motion for a world-line extended to a 4-D space-time surface. The field equations
generalize in the same manner for 3-D light-like surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian, for 2-D string world sheets, and for their 1-D
boundaries defining world lines at the light-like 3-surfaces. For 3-D light-like surfaces the volume
term is absent. Either light-like 3-surface is freely choosable in which case one would have Kac-
Moody symmetry as gauge symmetry or that the extremal property for Chern-Simons term fixes
the gauge.

The condition that the dynamics based on Kähler action and volume term is number theo-
retically universal demands that coupling constants do not appear in it. This leaves only Option
I (αK(M4) 6= αK(CP2) with different phases) and option II (αK(M4) = αK(CP2) with the same
phase). This condition is taken as granted in the following.
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The dynamics of twistor lift as a generalization of the dynamics of point like particle
coupling to Maxwell field

Almost all the known non-vacuum extremals are minimal surface extremals of Kähler action [K7,
K112] and it might well be that the preferred extremal property realizing SH quite generally
demands this. CP2 type vacuum extremals are also minimal surfaces if one assumes that the M4

projection is light-like geodesic rather than only geodesic line.
The addition of the volume term could however make Kähler coupling strength a manifest

coupling parameter also classically when the phases of Λ and αK are same. Therefore quantum
criticality for Λ and αK would have a precise local meaning also classically in the interior of space-
time surface. The equations of motion for a world line of U(1) charged particle would generalize
to field equations for a “world line” of 3-D extended particle.

This is an attractive idea consistent with standard wisdom but for Option I one can invent
strong objections against it.

1. The conjecture is that αK has zeros of zeta as its spectrum of critical values [L16]. If so
then all preferred extremals are minimal surface extremals of Kähler action for a real value
of cosmological constant Λ possible for Option I (αK(M2) would be real). Hence the two
actions decouple: this does not look nice. For Option II the phase is same and there is
interaction between these degrees of freedom. One could of course force also the phase for
Option I to be same.

2. All known non-vacuum extremals of Kähler action are minimal surfaces and the minimal
surface vacuum extremals of Kähler action become non-vacuum extremals. This allows to
consider the possibility that preferred extremals are minimal surface extremals of Kähler
action so that the two dynamics apparently decouple. For Option II this makes sense since
the solutions do not depend at all on the common over-all scaling factor of Kähler action and
volume term. Minimal surface extremals are analogs for geodesics in the case of point-like
particles: one might say that one has only gravitational interaction. This conforms with SH
stating that gauge interactions at boundaries (orbits of partonic 2-surfaces and 2-surfaces
at the ends of CD) correspond classically to the gravitational dynamics in the space-time
interior.

Note that at the boundaries of the string world sheets at light-like 3-surfaces the situation
is different: one has equations of motion for geodesic line coupled to induce Kähler gauge
potential and gauge coupling indeed appears classically as one might expect! For string world
sheets one has only the topological magnetic flux term and minimal surface equation in string
world sheet. Magnetic flux term gives the Kähler coupling at the boundary.

3. For Option I decoupling implied by extremal property of both real and imaginary parts of
action would allow to realize number theoretical universality [K111] since the field equations
would not depend on coupling parameters at all. For Option II same is achieved even without
decoupling.

4. One can argue that the decoupling for Option I makes it impossible to understand coupling
constant evolution. This need not be the case. The point is that the classical charges
assignable to super-symplectic algebra are sums over contributions from Kähler action and
volume term and therefore depend on the coupling parameters. Their vanishing conditions
for sub-algebra and its commutator with entire algebra give boundary conditions on preferred
extremals so that coupling constant evolution creeps in classically!

Quantum classical correspondence realized as the condition that the eigenvalues of fermionic
charge operators are equal to the classical charges brings in the dependence of quantum
charges on coupling parameters. Since the elements of scattering matrix are expected to
involve as building bricks the matrix elements of super-symplectic algebra and Kac-Moody
algebra of isometry charges, one expects that discrete coupling constant evolution creeps in
also quantally via the boundary conditions for preferred extremals.

Options I and II and Chladni mechanism

One can compare Options I and II.
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1. For Option I the coupling between the two dynamics could be induced just by the condition
that the space-time surface becomes an analog of geodesic line by arranging its interior so that
the U(1) force vanishes! This would generalize Chladni mechanism (see http://tinyurl.

com/j9rsyqd)!

The interaction would be present but be based on going to the nodal surfaces! Also the dy-
namics of string world sheets is similar: if the string sheets carry vanishing W boson classical
fields, em charge is well-defined and conserved. One would also avoid the problems pro-
duced by large coupling constant between the two-dynamics present already at the classical
level. At quantum level the fixed point property of quantum critical couplings would be the
counterparts for decoupling. This option however seems to be missing the transient phase
preceding the Chladni configuration.

2. For Option II the coupling would be present during transient periods leading to decoupling..
The alternative view is that the deviation from minimal surface and can act as a controller
of the dynamics defined by the volume term providing a small push or pull now and then.
Could this sensitivity relate to quantum criticality and to the view about morphogenesis
relying on Chladni mechanism in which field patterns control the dynamics with charged
flux tubes ending up to the nodal surfaces of (Kähler) electric field [L27]? Magnetic flux
tubes containing dark matter would in turn control and serve as template for the dynamics
of ordinary matter.

Chladni mechanism would not be instantaneous but lead via transient phase to minimal
surface extremals near either or both boundaries of CDs analogous to external particles in
particle reaction. The space-time regions assignable to particle interaction vertices identified
as 2-surfaces at which the ends of three 3-D light-like partonic orbits meet, would correspond
to transient regions, where the coupling is present. This option looks clearly more realistic.

Admittedly Option II looks more attractive.
As an example one can consider a typical particle physics experiment. There are incoming

and outgoing free particles moving along geodesics, these particles interact, and emanate as free
particles from the interaction volume. This phenomenological picture does not follow from QFT
but is put in by hand, in particular the idea about interaction couplings becoming non-zero is
involved. Also the role of the observer remains poorly understood.

The motion of incoming and outgoing particles is analogous to free motion along geodesic
lines with particles generalized to 3-D extended objects. For both options these would correspond
to the preferred extremals in the complement of CD within larger CD representing observer or
measurement instrument. Decoupling would take place. In interaction volume interactions are
“coupled on” and particles interact inside the volume characterized by causal diamond (CD).
What could be the TGD view translation of this picture?

1. For Option I one would still have decoupling and the interpretation would be in terms of
twistor picture in which one always has also in the internal lines on mass shell particles but
with complex four-momenta. In TGD framework the momenta would be always complex due
to the contribution of Euclidian regions defining the lines of generalized scattering diagrams.
Note however that the real and imaginary parts of the conserved charges are predicted to
be proportional to each other. This result is obtained also in twistor approach from 8-D
light-likeness and is crucial for twistorialization in TGD sense [L38]. As explained, coupling
constant evolution can be understood also in this case and also classical dynamics depends
on coupling parameters via the boundary conditions. There would be no counterpart for
transitory period (interaction on) leading to the decoupled situation so that Option I is not
attractive.

2. For Option II the transitory period would correspond to the coupling between the two classical
dynamics in regions assignable to the vertices of topological scattering diagrams at which the
ends of the parton orbits meet. Near the ends the dynamics would decouple and one would
have the analog of free geodesic motion.

Second example comes from biology. The free geodesic line dynamics with vanishing U(1)
Kähler force indeed brings in mind the proposed generalization of Chladni mechanism generating

http://tinyurl.com/j9rsyqd
http://tinyurl.com/j9rsyqd
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nodal surfaces at which charged magnetic flux tubes are driven [K113] [L27, L28] . Chlandi
mechanism could be seen as a basic mechanism behind morphogenesis.

1. For Option I the interiors of all space-time surfaces would be analogous to nodal surfaces
and “big” state function reductions would correspond to transition periods between different
nodal surfaces. The decoupling would be dynamics of avoidance and could highly analogous
to Chladni mechanism.

2. For Option II transition period would correspond to a period during which nodal surfaces
are formed.

It seems that Option II is favored by both SH, number theoretical universality, and gener-
alization of Chladni mechanism to a dynamics of avoidance.

14.4.2 Twistor lift and the extremals of Kähler action

The addition of the volume term makes Kähler coupling strength a genuine coupling parameter
also classically when the variation of Kähler action is non-vanishing. Therefore quantum criticality
for Λ and αK gets precise meaning also classically. The equations of motion for a worldline of U(1)
charged particle generalize to field equations for a “world line” of 3-D extended particle.

The field equations generalize in the same manner for 3-D light-like surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian, for 2-D string world
sheets, and for their 1-D boundaries defining world lines at the light-like 3-surfaces. For 3-D light-
like surfaces the volume term is absent. Either light-like 3-surface is freely choosable in which
case one would have Kac-Moody symmetry as gauge symmetry or that the extremal property for
Chern-Simons term fixes the gauge.

What happens to the extremals of Kähler action?

What happens to the extremals of Kähler action when volume term is introduced?

1. The known non-vacuum extremals [K7, K112] such as massless extremals (topological light
rays) and cosmic strings are minimal surfaces.

2. For J(M4) = 0 these extremals remain extremals for both Option I and II and only the
classical Noether charges receive an additional volume term. In particular, string tension is
modified by the volume term. Homologically non-trivial cosmic strings are of form X2×Y 2,
where X2 ⊂ M4 is minimal surface and Y 2 ⊂ CP2 is complex 2-surface and therefore also
minimal surface.

3. For J(M4) 6= 0 essential for obtaining small cosmological constant for Option II, the situation
changes and minimal surface property is possible only under additional conditions. For
instance, one can have minimal surfaces of form X2 × Y 2 ⊂M4 × Y 2, where Y 2 is minimal
surface in CP2. X2 cane be M2 ⊂ N2×E2 defining the J(M4) giving J(M4) ·J(M4)−2 = 0.
X2 can be also minimal surface, which is an analog of Lagrangian manifold for J(M4).

4. Vacuum degeneracy is lifted for both options. For J(M4) = 0 vacuum extremals, which are
minimal surfaces survive as extremals for both options. For J(M4) 6= 0 the situation is more
complex.

Vacuum extremals

For CP2 type vacuum extremals [K7, K112] the roles of M4 and CP2 are changed. M4 projection
is light-like curve, and can be expressed as mk = fk(s) with light-likeness conditions reducing to
Virasoro conditions. These surfaces are isometric to CP2 and have same Kähler and symplectic
structures as CP2 itself. What is new as compared to GRT is that the induced metric has Euclidian
signature. The interpretation is as lines of generalized scattering diagrams. The addition of the
volume term forces the random light-like curve to be light-like geodesic and the action becomes
the volume of CP2 in the normalization provided by cosmological constant. What looks strange is
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that the volume of any CP2 type vacuum extremals equals to CP2 volume but only the extremal
with light-like geodesic as M4 projection is extremal of volume term. A little calculation shows
that for CP2 type extremals the contribution of the volume term to the action would be completely
negligible as compared to the Kähler action.

Consider next vacuum extremals, which have vanishing induced Kähler form and are thus
have CP2 projection belonging to at most 2-D Lagrangian manifold of CP2 [K7, K112].

1. Vacuum extremals with 2-D projections to CP2 and M4 are possible and are of form X2×Y 2,
X2 arbitrary 2-surface and Y 2 a Lagrangian manifold. Volume term forcesX2 to be a minimal
surface and Y 2 is Lagrangian minimal surface unless the minimal surface property destroys
the Lagrangian character.

If the Lagrangian sub-manifold is homologically trivial geodesic sphere, one obtains string
like objects with string tension determined by the cosmological constant alone.

Do more general 2-D Lagrangian minimal surfaces than geodesic sphere exist? For general
Kähler manifold there are obstructions but for Kähler-Einstein manifolds such as CP2, these
obstructions vanish (see http://tinyurl.com/gtkpya6). The case of CP2 is also discussed
in the slides “On Lagrangian minimal surfaces on the complex projective plane” (see http://
tinyurl.com/jrhl6gy). The discussion is very technical and demonstrates that Lagrangian
minimal surfaces with all genera exist. In some cases these surfaces can be also lifted to
twistor space of CP2.

2. More general vacuum extremals have 4-D M4 projection. Could the minimal surface con-
dition for 4-D M4 projection force a deformation spoiling the Lagrangian property? The
physically motivated expectation is that string like objects give as deformations magnetic
flux tubes for which string is thicknened so that it has a 2-D cross section. This would sug-
gest that the deformations of string like objects X2 × Y 2, where Y 2 is Lagrangian minimal
surface, give rise to homologically trivial magnetic flux tubes. In this case Kähler magnetic
field would vanish but the spinor connection of CP2 would give rise to induced magnetic field
reducing to some U(1) subgroup of U(2). In particular, electromagnetic magnetic field could
be present.

3. p-Adically Λ behaves like 1/p as also string tension. Could hadronic string tension be under-
stood also in terms of cosmological constant in hadronic p-adic length scale for strings if one
assumes that cosmological constant for given space-time sheet is determined by its p-adic
length scale?

Maxwell phase

What might be called Maxwell phase which would correspond to small perturbations of M4 is also
possible for 4-D Kähler action. For the twistor lift the volume term makes this phase possible.
Maxwell phase is highly interesting since it corresponds to the intuitive view about what QFT
limit of TGD could be. The following arguments apply only for J(M4) = 0.

1. The field equations are a generalization of massless field equations for fields identifiable as
CP2 coordinates and with a coupling to the deviation of the induced metric from M4 metric.
It representes very weak perturbation. Hence the linearized field equations are expected to
be an excellent approximation. The general challenge would be however the construction
of exact solutions. One should also understand the conditions defining preferred extremals
and stating that most of symplectic Noether charges vanish at the ends of space-time surface
about boundaries of CD.

2. Maxwell phase is the TGD analog for the perturbative phase of gauge theories. The smallness
of the cosmological constant in cosmic length scales would make the perturbative approach
useless in the path integral formulation. In TGD approach the path integral is replaced
by functional integral involving also a phase but also now the small value of cosmological
constant is a problem in long length scales. As proposed, the hierarchy of Planck constants
would provide the solution to the problem.

http://tinyurl.com/gtkpya6
http://tinyurl.com/jrhl6gy
http://tinyurl.com/jrhl6gy
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3. The value of cosmological constant behaving like Λ ∝ 1/p as the function of p-adic prime could
be in short p-adic length scales large enough to allow a converging perturbative expansion in
Maxwellian phase. This would conform with the idea that Planck constant has its ordinary
value in short p-adic length scales.

4. Does Maxwell phase allow extremals for which the CP2 projection is 2-D Lagrangian manifold
- say a perturbation of a minimal Lagrangian manifold? This perturbation could be seen
also as an alternative view about thickened minimal Lagrangian string allowing also M4

coordinates as local coordinates. If the projection is homologically trivial geodesic sphere
this is the case. Note that solutions representable as maps M4 → CP2 are also possible for
homologically non-trivial geodesic sphere and involve now also the induced Kähler form.

5. The simplest deformations of canonically imbedded M4 are of form Φ = k · m, where Φ
is an angle coordinate of geodesic sphere. The induced metric in M4 coordinates reads
as gkl = mkl − R2kkkl and is flat and in suitably scaled space-time coordinates reduces to
Minkowski metric or its Euclidian counterpart. kk is proportional to classical four-momentum
assignable to the dark energy. The four-momentum is given by

P k = A× ~kk , A = V ol(X3)
L4

Λ
× 1+2x

1+x , x = R2k2 .

Here kk is dimensionless since the the coordinates mk are regarded as dimensionless.

6. There are interesting questions related to the singularities forced by the compactness of CP2.
Eguchi-Hanson coordinates (r, θ,Φ,Ψ) [L2] (see http://tinyurl.com/z86o5qk) allow to get
grasp about what could happen.

For the cyclic coordinates Ψ and Φ periodicity conditions allow to get rid of singularities.
One can however have n-fold coverings of M4 also now.

(r, θ) correspond to canonical momentum type canonical coordinates. Both of them corre-
spond to angle variables (r/

√
1 + r2 is essentially sine function). It is convenient to express

the solution in terms of trigonometric functions of these angle variables. The value of the
trigonometric function can go out of its range [−1, 1] at certain 3-surface so that the solution
ceases to be well-defined. The intersections of these surfaces for r and θ are 2-D surfaces.
Many-sheeted space-time suggests a possible manner to circumvent the problem by gluing
two solutions along the 3-D surfaces at which the singularities for either variable appear.
These surfaces could also correspond to the ends of the space-time surface at the boundaries
of CD or to the light-like orbits of the partonic 2-surfaces.

Could string world sheets and partonic 2-surfaces correspond to the singular 2-surfaces at
which both angle variables go out of their allowed range. If so, 2-D singularities would code
for data as assumed in strong form of holography (SH). SH brings strongly in mind analytic
functions for which also singularities code for the data. Quaternionic analyticity which makes
sense would indeed suggest that co-dimension 2 singularities code for the functions in absence
of 3-D counterpart of cuts (light-like 3-surfaces?) [L22].

7. A more general picture might look like follows. Basic objects come in two classes. Surfaces
X2× Y 2, for which Y 2 is either homologically non-trivial complex minimal 2-surface of CP2

of Lagrangian minimal surface. The perturbations of these two surfaces would also produce
preferred extremals, which look locally like perturbations of M4. Quaternionic analyticity
might be shared by both solution types. Singularities force many-sheetedness and strong
form of holography.

Astrophysical and cosmological solutions

Cosmological constant is expected to obey p-adic evolution and in very early cosmology the volume
term becomes large. What are the implications for the vacuum extremals representing Robertson-
Walker metrics having arbitrary 1-D CP2 projection? [K7, K112, K67]. One can also ask what is
the fate of spherically symmetric solutions of GRT providing a model of star.

http://tinyurl.com/z86o5qk
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Already the existing physical picture explaining hgr/hheff/h = n in terms of flux tubes
mediating gravitational interactions suggests that Robertson-Walker metrics and spherically sym-
metric metrics are possible only at QFT limit. The presence of covariantly constant J(M4) breaking
Lorentz symmetry and rotational symmetry makes this obvious. One could consider variants of
J(M4) invariant under Lorentz group or some subgroup of Lorentz group but J(M4) would not
be covariantly constant anymore. It is not clear when it makes sense to extend the moduli space
for J(M4).

1. The TGD inspired cosmology involves primordial phase during a gas of cosmic strings in
M4 with 2-D M4 projection dominates. The value of cosmological constant at that period
could be fixed from the condition that homologically trivial and non-trivial cosmic strings
have the same value of string tension. After this period follows the analog of inflationary
period when cosmic strings condense are the emerging 4-D space-time surfaces with 4-D M4

projection and the M4 projections of cosmic strings are thickened. A fractal structure with
cosmic strings topologically condensed at thicker cosmic strings suggests itself.

2. GRT cosmology is obtained as an approximation of the many-sheeted cosmology as the sheets
of the many-sheeted space-time are replaced with region of M4, whose metric is replaced
with Minkowski metric plus the sum of deformations from Minkowski metric for the sheet.
The vacuum extremals with 4-D M4 projection and arbitrary 1-D projection could serve as
an approximation for this GRT cosmology. Note however that this representability is not
required by basic principles.

3. For cosmological solutions with 1-D CP2 projection minimal surface property forces the CP2

projection to belong to a geodesic circle S1. Denote the angle coordinate of S1 by Φ and its
radius by R. For the future directed light-cone M4

+ use the Robertson-Walker coordinates

(a =
√
m2

0 − r2
M , r = arM , θ, φ), where (m0, rM , θ, φ) are spherical Minkowski coordinates.

The metric of M4
+ is that of empty cosmology and given by ds2 = da2 − a2dΩ2, where Ω2

denotes the line element of hyperbolic 3-space identifiable as the surface a = constant.

One can can write the ansatz as a map from M4
+ to S1 given by Φ = f(a). One has

gaa = 1→ gaa = 1−R2(df/da)2. The field equations are minimal surface equations and the
only non-trivial equation is associated with Φ and reads d2f/da2 = 0 giving Φ = ωa, where
ω is analogous to angular velocity. The metric corresponds to a cosmology for which mass
density goes as 1/a2 and the gravitational mass of comoving volume (in GRT sense) behaves
is proportional to a and vanishes at the limit of Big Bang smoothed to “Silent whisper
amplified to rather big bang” for the critical cosmology for which the 3-curvature vanishes.
This cosmology is proposed to results at the limit when the cosmic temperature approaches
Hagedorn temperature [K67].

4. The TGD counterpart for inflationary cosmology corresponds to a cosmology for which CP2

projection is homologically trivial geodesic sphere S2 (presumably also more general La-
grangian (minimal) manifolds are allowed). This cosmology is vacuum extremal of Kähler
action. The metric is unique apart from a parameter defining the duration of this period
serving as the TGD counterpart for inflationary period during which the gas of string like
objects condensed at space-time surfaces with 4-D M4 projection. This cosmology could
serve as an approximate representation for the corresponding GRT cosmology.

The form of this solution is completely fixed from the condition that the induced metric of
a = constant section is transformed from hyperbolic metric to Euclidian metric. It should
be easy to check whether this condition is consistent with the minimal surface property. It
seems that one cannot satisfy minimal surface equations.

5. For J(M4) 6= 0 the spherical and Lorentz symmetries are lost and the only cosmological
solution are light-cones M4

±. Also the existence of stationary spherically symmetric minimal
surface extremals is impossible for J(M4) 6= 0. Spherically symmetric metrics and Robertson-
Walker metric would serve only as long length scale approximations providing a statistical
description of the gravitational interaction described microscopically in terms of a flux tube
network.
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14.4.3 Are minimal surface extremals of Kähler action holomorphic sur-
faces in some sense?

If the spectrum for the critical value of Kähler coupling strength is complex - say given by the
complex zeros of zeta [L16] - the preferred extremals of Kähler action are minimal surfaces for
Option I. For Option II they correspond to asymptotic solutions.

I have considered several ansätze for the general solutions of the field equations for the
preferred extremals. One proposal is that preferred extremals as 4-surfaces of imbedding space
with octonionic tangent space structure have quaternionic tangent space or normal space (so called
M8 − H duality [K74]). Second proposal is that preferred extremals can be seen as quaternion
analytic [A94] surfaces [K110, K76] [L14]. Third proposal relies on a fusion of complex and hyper-
complex structures to what I call Hamilton-Jacobi structure [K79, K112]. In Euclidian regions this
would correspond to complex structure. Twistor approach [L22] suggests that the condition that
the twistor lift of the space-time surface to a 6-D surface in the product of twistor spaces of M4

and CP2 equals to the twistor space of CP2. This proposal is highly interesting since twistor lift
works only fr M4 × CP2. The intuitive picture is that the field equations are integrable and all
these views might be consistent.

Preferred extremals of Kähler action as minimal surfaces would be a further proposal. Can
one make conclusions about general form of solutions assuming that one has minimal surface
extremals of Kähler action?

In D = 2 case minimal surfaces are holomorphic surfaces or they hyper-complex variants
and the imbedding space coordinates can be expressed as complex-analytic functions of complex
coordinate or a hypercomplex analog of this. Field equations stating the vanishing of the trace
gαβHk

αβ if the second fundamental form Hk
αβ ≡ Dα∂βh

k are satisfied because the metric is tensor
of type (1, 1) and second fundamental form of type (2, 0) ⊕ (2, 0). Field equations reduce to an
algebraic identity and functions involved are otherwise arbitrary functions. The constraint comes
from the condition that metric is of form (1, 1) as holomorphic tensor.

This raises the question whether this finding generalizes to the level of 4-D space-time
surfaces and perhaps allows to solve the field equations exactly in coordinates generalizing the
hypercomplex coordinates for string world sheet and complex coordinates for the partonic 2-surface.

Almost all the known non-vacuum extremals are minimal surface extremals of Kähler action
[K7, K112] and it might well be that the preferred extremal property realizing SH quite generally
demands this. CP2 type vacuum extremals are also minimal surfaces if one assumes that the
M4 projection is light-like geodesic rather than only geodesic line. The common feature suggested
already earlier to be common for all preferred extremals is the existence of generalization of complex
structure.

1. For Minkowskian regions this structure would correspond to what I have called Hamilton-
Jacobi structure [K79, K112]. The tangent space of the space-time surface X4 decomposes
to local direct sum T (X4) = T (X2) ⊕ T (Y 2), where the 2-D tangent places T (X2) and
T (Y 2) define an integrable distribution integrating to a decomposition X4 = X2 × Y 2. The
complex structure is generalized to a direct some of hyper-complex structure in X2 meaning
that there is a local light-like direction defining light-like coordinate u and its dual v. Y 2 has
complex complex coordinate (w,w). Minkowski space M4 has similar structure. It is still an
open question whether metric decomposes to a direct sum of orthogonal metrics assignable
to X2 and Y 2 or is the most general analog of complex metric in question. guv and gww
are certainly non-vanishing components of the induced metric. Metric could allow as non-
vanishing components also guw and gvw. This slicing by pairs of surfaces would correspond
to decomposition to a product of string world sheet and partonic 2-surface everywhere.

In Euclidian regions ne would have 4-D complex structure with two complex coordinates
(z, w) and their conjugates and completely analogous decompositions. In CP2 one has similar
complex structure and actually Kähler structure extending to quaternionic structure. I have
actually proposed that quaternion analyticity could provide the general solution of field
equations.

2. Assuming minimal surface property the field equations for Kähler action reduce to the van-
ishing of a sum of two terms. The first term comes from the variation with respect to the
induced metric and is proportional to the contraction
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A = JαγJ
γβHk

αβ . (14.4.1)

Second term comes from the variation with respect to induced Kähler form and is proportional
to

B = jαP ksJ
s
l∂αh

l . (14.4.2)

Here P kl is projector to the normal space of space-time surface and jα = DβJ
αβ is the

conserved Kähler current.

For the known extremals j vanishes or is light-like (for massless extremals) in which case A
and B vanish separately.

3. An attractive manner to satisfy field equations would be by assuming that the situation for
2-D minimal surface generalizes so that minimal surface equations are identically satisfied.
Extremal property for Kähler action could be achieved by requiring that energy momentum
tensor also for Kähler action is of type (1, 1) so that one would have A = 0. This implies
jα∂αs

k = 0. This is true if j vanishes or is light-like as it is for the known extremals. In
Euclidian regions one would have j = 0.

4. The proposed generalization is especially interesting in the case of cosmic string extremals
of form X2 × Y 2, where X2 ⊂ M4 is minimal surface (string world sheet) and Y 2 is com-
plex homologically non-trivial sub-manifold of CP2 carrying Kähler magnetic charge. The
generalization would be that the two transversal coordinates (w,w) in the plane orthogonal
to the string world sheet defining polarization plane depend holomorphically on the complex
coordinates of complex surface of CP2. This would transform cosmic string to flux tube.

5. There are also solutions of form X2 × Y 2, where Y 2 is Lagrangian sub-manifold of CP2

with vanishing Kähler magnetic charge and their deformations with (w,w) depending on the
complex coordinates of Y 2 (see the slides “On Lagrangian minimal surfaces on the complex
projective plane” at http://tinyurl.com/jrhl6gy). In this case Y 2 is not complex sub-
manifold of CP2 with arbitrary genus and induced Kähler form vanishes. The simplest choice
for Y 2 would be as homologically trivial geodesic sphere. Because of its 2-dimensionality Y 2

has a complex structure defined by its induced metric so that solution ansatz makes sense
also now.

14.5 About string like objects

String like objects and partonic 2-surfaces carry the information about quantum states and about
space-time surfaces as preferred extremals if strong form of holography (SH) holds true. SH has
of course some variants. The weakest variant states that fundamental information carrying ob-
jects are metrically 2-D. The light-like 3-surfaces separating space-time regions with Minkowskian
and Euclidian signature of the induced metric are indeed metrically 2-D, and could thus carry
information about quantum state.

The original observation was that string world sheets should carry vanishing W boson fields
in order that the em charge for the modes of the induced spinor field is well-defined. This condition
can be satisfied in certain situations also for the entire space-time surface. This raises several
questions. What is the fundamental condition forcing the restriction of the spinor modes to string
world sheets - or more generally, to a surface of given dimension?

Can one have an analog of brane hierarchy in which also higher-D objects can carry modes
of induced spinor field [K95]. Or should one identify 2-surfaces in terms of effective action, which
by SH allows to describe the dynamics in terms of 2-D data? Both options have their nice features.

http://tinyurl.com/jrhl6gy
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14.5.1 Two options for fundamental variational principle

String world sheets and partonic 2-surfaces seems to be fundamental for TGD - especially so in
the fermionic sector - but also the 4-D action seems to necessary and supersymmetry forces 4-D
modified Dirac action too. The interpretation of the situation is far from obvious. One ends up to
two options for the fundamental variational principle.

Option A: The fundamental action principle for space-time surfaces contains besides 4-D
action also 2-D action assignable to string world sheets, whose topological part (magnetic flux) gives
rise to a coupling term to Kähler gauge potentials assignable to the 1-D boundaries of string world
sheets containing also geodesic length part. Super-symplectic symmetry demands that modified
Dirac action has 1-, 2-, and 4-D parts: spinor modes would exist at both string boundaries, string
world sheets, and space-time interior. A possible interpretation for the interior modes would be as
generators of space-time super-symmetries [K95].

This option is not quite in the spirit of SH and string tension appears as an additional
parameter. Also the conservation of em charge forces 2-D string world sheets carrying vanishing
induced W fields and this is in conflict with the existence of 4-D spinor modes unless they satisfy
the same condition. This looks strange.

Option B: Stringy action and its fermionic counterpart are effective actions only and justi-
fied by SH. In this case there are no problems of interpretation. SH requires only that the induced
spinor fields at string world sheets determine them in the interior much like the values of analytic
function at curve determine it in an open set of complex plane. At the level of quantum theory
the scattering amplitudes should be determined by the data at string world sheets. If the induced
W fields at string world sheets are vanishing, the mixing of different charge states in the interior
of X4 would not make itself visible at the level of scattering amplitudes!

If string world sheets are generalized Lagrangian sub-manifolds, only the induced em field
would be non-vanishing and electroweak symmetry breaking would be a fundamental prediction.
This however requires that M4 has the analog of symplectic structure suggested also by twisto-
rialization. This in turn provides a possible explanation of CP breaking and matter-antimatter
asymmetry. In this case 4-D spinor modes do not define space-time super-symmetries.

The latter option conforms with number theoretically broken SH and would mean that
the theory is amazingly simple. String world sheets together with number theoretical space-time
discretization meaning small breaking of SH would provide the basic data determining classical and
quantum dynamics. The Galois group of the extension of rationals defining the number-theoretic
space-time discretization would act as a covering group of the covering defined by the discretization
of the space-time surface, and the value of heff/h = n would correspond to the dimension of the
extension dividing the order of its Galois group. The phase transitions reducing ord(G) ≥ n would
correspond to spontaneous symmetry breaking leading from Galois group to a subgroup H so that
ord(H) would divide ord(G) and the new value of n would divide n.

The ramified primes of the extension would be preferred primes of given extension. The
extensions for which the number of p-adic space-time surfaces representable also as a real algebraic
continuation of string world sheets to preferred extrenal is especially large would be physically
favored as also corresponding ramified primes. In other words, maximal number of p-adic imagi-
nations would be realizable so that these extensions and corresponding ramified primes would be
winners in the number-theoretic fight for survival. Whether this conforms with p-adic length scale
hypothesis, remains an open question.

An attractive possibility is that this information is basically topological. For instance, the
value of Planck constant heff = n × h would tell the number sheets of the singular covering
defining this surface such that the sheets co-incide at partonic 2-surfaces at the ends of space-time
surface at boundaries of CD. In the following some questions related to string world sheets are
considered. The information could be also number theoretical. Galois group for the algebraic
extension of rationals defining particular adelic physics would transform to each other the number
theoretic discretizations of light-like 3-surfaces and give rise to covering space structure. The action
is trivial at partonic 2-surfaces should be trivial if one wants singular covering: this would mean
that discretizations of partonic 2-surfaces consist of rational points. heff/h = n could in this case
be a factor of the order of Galois group.
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14.5.2 How to achieve low value of string tension?

String tension should be low for string world sheets in long scales. If string actions are effective
actions (Option B), the same should be true for the string tensions of the magnetic flux tubes
accompanying strings. Minimal surface property for string world sheets is natural. Let us consider
only Option B in the following.

1. Could the analogs of Lagrangian sub-manifolds of X4 ⊂ M4 × CP2 satisfying J(M4) +
J(CP2) = 0 define string world sheets and their variants with varying dimension? For
Option I (αK(M4) 6= αK(CP2)) this could make sense if the flux tubes are homologically
trivial. Homologically non-trivial (monopole) flux tubes should be thick enough to have small
enough string tension, which is inversely proportional to the cross sectional area of the flux
tube.

2. For Option II (αK(M4) = αK(CP2)) the action density is proportional to J · J − 2 also
for stringy action and this does not seem to make sense. Could the additional condition be
J(M4) ·J(M4)− 2 ∼ 0 holding true in 4-D sense for space-time regions with a small value of
cosmological constant behaving like 1/p, p preferred p-adic prime near power of 2. That low
string tension and small cosmological constant would have the same origin, would be nice.

The cancellation mechanism involving in an essential manner J(M4) would give rise to low
mass strings and light hadron like particles and small cosmological constant instead of only
high mass strings as in super string models. p-Adic thermodynamic for CP2-mass excita-
tions assignable to wormhole throats would determine elementary particle masses and long
monopole flux tubes with small string tension connecting pairs of wormhole contacts would
give stringy contribution to particle masses. In the case of hadrons this contribution from
color magnetic flux tubes would dominate over quark masses. Clearly, Option II seems to
conform with the existing picture about masses of elementary particles and hadrons.

14.5.3 How does the gravitational coupling emerge?

The appearance of G = l2P has coupling constant remained for a long time actually somewhat of
a mystery in TGD. lP defines the radius of the twistor sphere of M4 replaced with its geometric
twistor space M4 × S2 in twistor lift. G makes itself visible via the coefficients ρvac = 8πΛ/G
volume term but not directly and if preferred extremals are minimal surface extremals of Kähler
action ρvac makes itself visible only via boundary conditions. How G appears as coupling constant?

Somehow the M4 Kähler form should appear in field equations. 1/G could naturally appear
in the string tension for string world sheets as string models suggest. p-Adic mass calculations
identify the analog of string tension as something of order of magnitude of 1/R2 [K39]. This
identification comes from the fact that the ground states of super-conformal representations corre-
spond to imbedding space spinor modes, which are solutions of Dirac equation in M4×CP2. This
argument is rather convincing and allows to expect that the p-adic mass scale is not determined
by string tension.

The problem is that the length of string like objects would be given by Planck length or
CP2 length if either of these pictures is the whole truth. One expects long gravitational flux tubes
mediating gravitational interactions. The hypothesis ~eff = n~ = ~gr = GMm/v0, where v0 < c
is a parameter with dimensions of velocity, suggests that the string tension assignable to the flux
tubes mediating gravitational interaction between masses M and m is apart from a numerical
factor equal to Λ−2

gr , where gravitational Compton length is Λgr = hgr/m = GM/v0 so that the
length of the flux tubes is of order Λgr.

The problem is that the length of string like objects would be given by Planck length or
CP2 length if either of these pictures is the whole truth. One would like to have long gravitational
flux tubes mediating gravitational interactions. Strong form of holography (SH) indeed suggests
that stringy action appears as effective action expressing 4-D space-time action and modified Dirac
action as 2-D actions assignable to string world sheets [L34] (see http://tinyurl.com/zylrd7w).
This view would allow to understand the localization of spinor modes to string world sheets carrying
vanishingW fields in terms as an effective description implying well-defineness of classical em charge
and conservation of em charge at the level of scattering amplitudes. In fact that the introduction

http://tinyurl.com/zylrd7w


562 Chapter 14. About Twistor Lift of TGD

of the Kähler form J(M4) would allow to understand string world sheets as analogs of Lagrangian
sub-manifolds.

14.5.4 Non-commutative imbedding space and strong form of hologra-
phy

Quantum group theorists have studied the idea that space-time coordinates are non-commutative
and tried to construct quantum field theories with non-commutative space-time coordinates (see
http://tinyurl.com/z3m8sny). My impression is that this approach has not been very successful.
The non-commutativity is introduced by postulating the Minkowskian analog of symplectic form
and J(M4) forced by Option II indeed is symplectic form. The loss of Lorentz invariance induced
by J(M4) is the basic stumbling block. In TGD framework the moduli space for J(M4) emerges
already when one introduces the moduli space for CDs. J(M4) would define quantization axis of
energy (rest system) and quantization axis of spin. The nice features of J(M4) is that it could
allow to understand CP breaking and matter antimatter asymmetry at fundamental level.

The analog of non-commutative space-time in TGD framework

In Minkowski space one introduces antisymmetry tensor Jkl and uncertainty relation in linear M4

coordinates mk would look something like [mk,ml] = l2PJ
kl, where lP is Planck length. This would

be a direct generalization of non-commutativity for momenta and coordinates expressed in terms
of symplectic form Jkl.

1+1-D case serves as a simple example. The non-commutativity of p and q forces to use
either p or q. Non-commutativity condition reads as [p, q] = ~Jpq and is quantum counterpart
for classical Poisson bracket. Non-commutativity forces the restriction of the wave function to be
a function of p or of q but not both. More geometrically: one selects Lagrangian sub-manifold
to which the projection of Jpq vanishes: coordinates become commutative in this sub-manifold.
This condition can be formulated purely classically: wave function is defined in Lagrangian sub-
manifolds to which the projection of J vanishes. Lagrangian manifolds are however not unique
and this leads to problems in this kind of quantization. In TGD framework the notion of “World
of Classical Worlds” (WCW) allows to circumvent this kind of problems and one can say that
quantum theory is purely classical field theory for WCW spinor fields. “Quantization without
quantization” would have Wheeler stated it.

General Coordinate Invariance (GCI) poses however a problem if one wants to generalize
quantum group approach from M4 to general space-time: linear M4 coordinates assignable to Lie-
algebra of translations as isometries do not generalize. In TGD space-time is surface in imbedding
space H = M4×CP2: this changes the situation since one can use 4 imbedding space coordinates
(preferred by isometries of H) also as space-time coordinates. The analog of symplectic structure
J for M4 makes sense and number theoretic vision involving octonions and quaternions leads to
its introduction. Note that CP2 has naturally symplectic form.

Could it be that the coordinates for space-time surface are in some sense analogous to
symplectic coordinates (p1, p2, q1, q2) so that one must use either (p1, p2) or (q1, q2) providing
coordinates for a Lagrangian sub-manifold. This would mean selecting a Lagrangian sub-manifold
of space-time surface? Could one require that the sum Jµν(M4) + Jµν(CP2) for the projections
of symplectic forms vanishes and forces in the generic case localization to string world sheets
and partonic 2-surfaces. In special case also higher-D surfaces - even 4-D surfaces as products
of Lagrangian 2-manifolds for M4 and CP2 are possible: they would correspond to homologically
trivial cosmic strings X2×Y 2 ⊂M4×CP2, which are not anymore vacuum extremals but minimal
surfaces if the action contains besides Käction also volume term.

But why this kind of restriction? In TGD one has strong form of holography (SH): 2-D string
world sheets and partonic 2-surfaces code for data determining classical and quantum evolution.
Could this projection of M4 × CP2 symplectic structure to space-time surface allow an elegant
mathematical realization of SH and bring in the Planck length lP defining the radius of twistor
sphere associated with the twistor space of M4 in twistor lift of TGD? Note that this can be done
without introducing imbedding space coordinates as operators so that one avoids the problems
with general coordinate invariance. Note also that the non-uniqueness would not be a problem as
in quantization since it would correspond to the dynamics of 2-D surfaces.

http://tinyurl.com/z3m8sny
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The analog of brane hierarchy at fundamental level or from SH?

The analog of brane hierarchy for the localization of spinors - space-time surfaces; string world
sheets and partonic 2-surfaces; boundaries of string world sheets - is suggestive (note however that
SH does not favour it). Could this hierarchy correspond to a hierarchy of Lagrangian sub-manifolds
of space-time in the sense that J(M4) + J(CP2) = 0 is true at them? Boundaries of string world
sheets would be trivially Lagrangian manifolds. String world sheets allowing spinor modes should
have J(M4)+J(CP2) = 0 at them. The vanishing of induced W boson fields is needed to guarantee
well-defined em charge at string world sheets and that also this condition allow also 4-D solutions
besides 2-D generic solutions. As already found, for the physically favoured Option II the more
plausible option is J(M4) ·J(M4)−2 ∼ 0 for space-time regions with small cosmological constant.
Despite this one can discuss this idea.

This condition is physically obvious but mathematically not well-understood: could the con-
dition J(M4) + J(CP2) = 0 force the vanishing of induced W boson fields? Lagrangian cosmic
string type minimal surfaces X2 × Y 2 would allow 4-D spinor modes. If the light-like 3-surface
defining boundary between Minkowskian and Euclidian space-time regions is Lagrangian surface,
the total induced Kähler form Chern-Simons term would vanish. The 4-D canonical momentum
currents would however have non-vanishing normal component at these surfaces. I have consid-
ered the possibility that TGD counterparts of space-time super-symmetries could be interpreted
as addition of higher-D right-handed neutrino modes to the 1-fermion states assigned with the
boundaries of string world sheets [K95].

Induced spinor fields at string world sheets could obey the “dynamics of avoidance” in the
sense that both the induced weak gauge fields W,Z0 and induced Kähler form (to achieve this U(1)
gauge potential must be sum of M4 and CP2 parts) would vanish for the regions carrying induced
spinor fields. They would couple only to the induced em field (!) given by the R12 part of CP2

spinor curvature [L2] for D = 2, 4. For D = 1 at boundaries of string world sheets the coupling
to gauge potentials would be non-trivial since gauge potentials need not vanish there. Spinorial
dynamics would be extremely simple and would conform with the vision about symmetry breaking
of electro-weak group to electromagnetic gauge group.

It seems relatively easy to construct am infinite family of Lagrangian string world sheets
satisfying J(M4) + J(CP2) = 0 using generalized symplectic transformations of M4 and CP2 as
Hamiltonian flows to generate new ones from a given Lagrangian string world sheets. One must
pose minimal surface property as a separate condition. Consider a piece of M2 with coordinates
(t, z) and homologically non-trivial geodesic sphere S2 of CP2 with coordinates (u = cos(Θ),Φ).
One has J(M4)tz = 1 and JuΦ = 1. Identify string world sheet via map (u,Φ) = (kz, ωt) from M2

to S2. The induced CP2 Kahler form is J(CP2)tz = kω. kω = −1 guarantees J(M4)+J(CP2) = 0.
The strings have necessarily finite length from L = 1/k ≤ z ≤ L. One can perform symplectic
transformations of CP2 and symplectic transformations of M4 to obtain new string world sheets.
In general these are not minimal surfaces and this condition would select some preferred string
world sheets.

Number theoretic vision about the analog of brane hierarchy

An alternative - but of course not necessarily equivalent - attempt to formulate SH would be in
terms of number theoretic vision. Space-time surfaces would be associative or co-associative de-
pending on whether tangent space or normal space in imbedding space is associative - that is quater-
nionic. These two conditions would reduce space-time dynamics to associativity and commutativity
conditions. String world sheets and partonic 2-surfaces would correspond to maximal commutative
or co-commutative sub-manifolds of imbedding space. Commutativity (co-commutativity) would
mean that tangent space (normal space as a sub-manifold of space-time surface) has complex tan-
gent space at each point and that these tangent spaces integrate to 2-surface. SH would mean
that data at these 2-surfaces plus number theoretic discretization of space-time surface would be
enough to construct quantum states. Therefore SH would be thus slightly broken. String world
sheet boundaries would in turn correspond to real curves of the complex 2-surfaces intersecting par-
tonic 2-surfaces at points so that the hierarchy of classical number fields would have nice realization
at the level of the classical dynamics of quantum TGD.

To sum up, one cannot exclude the possibility that J(M4) is present implying a universal
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transversal localization of imbedding space spinor harmonics and the modes of spinor fields in
the interior of X4: this could perhaps relate to somewhat mysterious de-coherence interaction
producing locality and to CP breaking and matter-antimatter asymmetry. The moduli space for
M4 Kähler structures proposed by number theoretic considerations would save from the loss of
Poincare invariance and the number theoretic vision based on quaternionic and octonionic structure
would have rather concrete realization. This moduli space would only extend the notion of WCW.



Chapter 15

Some Questions Related to the
Twistor Lift of TGD

15.1 Introduction

During last couple years (I am writing this in the beginning of 2017) a kind of palace revolution
has taken place in the formulation and interpretation of TGD. The notion of twistor lift and 8-D
generalization of twistorialization have dramatically simplified and also modified the view about
what classical TGD and quantum TGD are.

The notion of adelic physics suggests the interpretation of scattering diagrams as repre-
sentations of algebraic computations with diagrams producing the same output from given input
are equivalent. The simplest possible manner to perform the computation corresponds to a tree
diagram [L22]. As will be found, it is now possible to even propose explicit twistorial formulas
for scattering formulas since the horrible problems related to the integration over WCW might be
circumvented altogether.

From the interpretation of p-adic physics as physics of cognition, heff/h = n could be
interpreted dimension of extension dividing the the order of its Galois group. Discrete coupling
constant evolution would correspond to phase transitions changing the extension of rationals and
its Galois group. TGD inspired theory of consciousness is an essential part of TGD and the crucial
Negentropy Maximization Principle in statistical sense follows from number theoretic evolution as
increase of the order of Galois group for extension of rationals defining adeles.

In the sequel I consider the questions related to both classical and quantum aspects of
twistorialization.

15.1.1 Questions related to the classical aspects of twistorialization

Classical aspects are related to the twistor lift of classical TGD replacing space-time surfaces with
their twistor spaces realized as extremals of 6-D analog of Kähler action in the product T (M4)×
T (CP2) of twistor space of M4 and CP2 such that twistor structure is induced. The outcome is 4-D
Kähler action with volume term having interpretation in terms of cosmological constant. Hence
the twistorialization has profound physical content rather than being mere alternative formulation
for TGD.

1. What does the induction of the twistor structure really mean? What is meant with twistor
space. For instance, is the twistor sphere for M4 time-like or space-like. The induction
procedure involves dimensional reduction forced by the condition that the projection of the
sum of Kähler forms for the twistor spaces T (M4) and T (CP2) gives Kähler form for the
twistor sphere of X4. Better understanding of the details is required.

2. Can the analog of Kähler form J(M4) assignable to M4 suggested by the symmetry between
M4 and CP2 and by number theoretical vision appear in the theory? What would be the
physical implications?
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The basic objection is the loss of Poincare invariance. This can be however avoided by
introducing the moduli space for Kähler forms. This moduli space is actually the moduli
space of causal diamonds (CDs) forced in any case by zero energy ontology (ZEO) and playing
central role in the generalization of quantum measurement theory to a theory of consciousness
and in the explanation of the relationship between geometric and subjective time [K41].

Why J(M4) would be needed? J(M4) corresponds to parallel constant electric and magnetic
fields in given direction. Constant E and B = E fix directions of quantization axes for energy
(rest system) and spin. One implication is transversal localization of imbedding space spinor
modes: imbedding space spinor modes are products of harmonic oscillator Gaussians in
transversal degrees of freedom very much like quarks inside hadrons.

Also CP breaking is implied by the electric field and the question is whether this could explain
the observed CP breaking as appearing already at the level of imbedding space M4 × CP2.
The estimate for the mass splitting of neutral kaon and anti-kaon is of correct order of
magnitude.

Whether stationary spherically symmetric metric as minimal surface allows a sensible physical
generalization is a killer test for the hypothesis that J(M4) is covariantly constant. The
question is basically about how large the moduli space of forms J(M4) can be allowed to
be. The mere self duality and closedness condition outside the line connecting the tips of
CD allows also variants which are spherically symmetric in either Minkowski coorinates or
Robertson-Walker coordinates for light-cone.

3. How does gravitational coupling emerge at fundamental level? The first naive guess is ob-
vious: string area action is scaled by 1/G as in string models. The objection is that p-adic
mass calculations suggest that string tension is determined by CP2 size R: the analog of
string tension appearing in mass formula given by p-adic mass calculations would be by a
factor about 10−8 smaller than that estimated from string tension. The discrepancy evapo-
rates by noticing that p-adic mass calculations rely on p-adic thermodynamics at imbedding
space level whereas string world sheets appear at space-time level. Furthermore, if the ac-
tion assignable to string world sheets is effective action expressing 4-D action in 2-D form
as strong form of holography (SH) suggests string tension is expected to be function of the
parameters appearing in the 4-D action.

4. Could one regard the localization of spinor modes to string world sheets as a localization to
Lagrangian sub-manifolds of space-time surface having by definition vanishing induced Kähler
form: J(M4)+J(CP2) = 0. Lagrangian sub-manifolds would be commutative in the sense of
Poisson bracket? Could string world sheets be minimal surfaces satisfying J(M4)+J(CP2) =
0. The Lagrangian condition allows also more general solutions - even 4-D space-time surfaces
and one obtains analog of brane hierarchy. Could one allow spinor modes also at these analogs
of branes. Is Lagrangian condition equivalent with the original condition that induced W
boson fields making the em charge of induced spinor modes ill-defined vanish and allowing also
solution with other dimensions. How Lagrangian property relates to the idea that string world
sheets correspond to complex (commutative) surfaces of quaternionic space-time surface in
octonionic imbedding space.

During the re-processing of the details related to twistor lift, it became clear that the earlier
variant for the twistor lift [L24] contained an error. This led to much simpler view about twistor
lift, to the conclusion that minimal surface extremals of Kähler action represent only asymptotic
situation (external particles in scattering), and also to a re-interpretation for the p-adic evolution
of the cosmological constant.

15.1.2 Questions related to the quantum aspects of twistorialization

Also the questions related to the quantum aspects of twistorialization of TGD are discussed.

1. There are several notions of twistor. Twistor space for M4 is T (M4) = M4 × S2 [B72]
(see http://arxiv.org/pdf/1308.2820.pdf) having projections to both M4 and to the
standard twistor space T1(M4) often identified as CP3. T (M4) = M4 × S2 is necessary for

http://arxiv.org/pdf/1308.2820.pdf
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the twistor lift of space-time dynamics. CP2 gives the factor T (CP2) = SU(3)/U(1)× U(1)
to the classical twistor space T (H). The quantal twistor space T (M8) = T1(M4)× T (CP2)
assignable to momenta. The possible way out is M8 − H duality relating the momentum
space M8 (isomorphic to the tangent space H) and H by mapping space-time associative
and co-associative surfaces in M8 to the surfaces which correspond to the base spaces of in
H: they construction would reduce to holomorphy in complete analogy with the original idea
of Penrose in the case of massless fields.

2. The standard twistor approach has problems. Twistor Fourier transform reduces to ordinary
Fourier transform only in signature (2,2) for Minkowski space: in this case twistor space is
real RP3 but can be complexified to CP3. Otherwise the transform requires residue integral
to define the transform (in fact, p-adically multiple residue calculus could provide a nice
manner to define integrals and could make sense even at space-time level making possible to
define action).

Also the positive Grassmannian requires (2,2) signature. In M8 −H relies on the existence
of the decomposition M2 ⊂ M2 = M2 × E2 ⊂ M8. M2 could even depend on position but
M2(x) should define an integrable distribution. There always exists a preferred M2, call
it M2

0 , where 8-momentum reduces to light-like M2 momentum. Hence one can apply 2-D
variant of twistor approach. Now the signature is (1,1) and spinor basis can be chosen to be
real! Twistor space is RP3 allowing complexification to CP3 if light-like complex momenta
are allowed as classical TGD suggests!

3. A further problem of the standard twistor approach is that in M4 twistor approach does not
work for massive particles. In TGD all particles are massless in 8-D sense. In M8 M4-mass
squared corresponds to transversal momentum squared coming from E4 ⊂ M4 × E4 (from
CP2 in H). In particular, Dirac action cannot contain anyo mass term since it would break
chiral invariance.

Furthermore, the ordinary twistor amplitudes are holomorphic functions of the helicity
spinors λi and have no dependence on λ̃i: no information about particle masses! Only
the momentum conserving delta function gives the dependence on masses. These amplitudes
would define as such the M4 parts of twistor amplitudes for particles massive in TGD sense.
The simplest 4-fermion amplitude is unique.

Twistor approach gives excellent hopes about the construction of the scattering amplitudes
in ZEO. The construction would split into two pieces corresponding to the orbital degrees of
freedom in ”world of classical worlds” (WCW) and to spin degrees of freedom in WCW: that is
spinors, which correspond to second quantized induced spinor fields at space-time surface (actually
string world sheets- either at fundamental level or for effective action implied by strong form of
holography (SH)).

1. At WCW level there is a perturbative functional integral over small deformations of the
3-surface to which space-time surface is associated. The strongest assumption is that this
3-surface corresponds to maximum for the real part of action and to a stationary phase for
its imaginary part: minimal surface extremal of Kähler action would be in question. A
more general but number theoretically problematic option is that an extremal for the sum of
Kähler action and volume term is in question.

By Kähler geometry of WCW the functional integral reduces to a sum over contributions
from preferred extremals with the fermionic scattering amplitude multiplied by the ration
Xi/X, where X =

∑
iXi is the sum of the action exponentials for the maxima. The ratios

of exponents are however number theoretically problematic.

Number theoretical universality is satisfied if one assigns to each maximum independent zero
energy states: with this assumption

∑
Xi reduces to single Xi and the dependence on action

exponentials becomes trivial! ZEO allow this. The dependence on coupling parameters
of the action essential for the discretized coupling constant evolution is only via boundary
conditions at the ends of the space-time surface at the boundaries of CD.

Quantum criticality of TGD [K106, K110, K111] demands that the sum over loops associated
with the functional integral over WCW vanishes and strong form of holography (SH) suggests
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that the integral over 4-surfaces reduces to that over string world sheets and partonic 2-
surfaces corresponding to preferred extremals for which the WCW coordinates parametrizing
them belong to the extension of rationals defining the adele [L34]. Also the intersections of
the real and various p-adic space-time surfaces belong to this extension.

2. Second piece corresponds to the construction of twistor amplitude from fundamental 4-
fermion amplitudes. The diagrams consists of networks of light-like orbits of partonic two
surfaces, whose union with the 3-surfaces at the ends of CD is connected and defines a
boundary condition for preferred extremals and at the same time the topological scattering
diagram.

Fermionic lines correspond to boundaries of string world sheets. Fermion scattering at par-
tonic 2-surfaces at which 3 partonic orbits meet are analogs of 3-vertices in the sense of
Feynman and fermions scatter classically. There is no local 4-vertex. This scattering is
assumed to be described by simplest 4-fermion twistor diagram. These can be fused to
form more complex diagrams. Fermionic lines runs along the partonic orbits defining the
topological diagram.

3. Number theoretic universality [K111] suggests that scattering amplitudes have interpretation
as representations for computations. All space-time surfaces giving rise to the same compu-
tation wold be equivalent and tree diagrams corresponds to the simplest computation. If the
action exponentials do not appear in the amplitudes as weights this could make sense but
would require huge symmetry based on two moves. One could glide the 4-vertex at the end
of internal fermion line along the fermion line so that one would eventually get the analog of
self energy loop, which should allow snipping away. An argument is developed stating that
this symmetry is possible if the preferred M2

0 for which 8-D momentum reduces to light-like
M2-momentum having unique direction is same along entire fermion line, which can wander
along the topological graph.

The vanishing of topological loops would correspond to the closedness of the diagrams in what
might be called BCFW homology. Boundary operation involves removal of BCFW bridge
and entangled removal of fermion pair. The latter operation forces loops. There would be
no BCFW bridges and entangled removal should give zero. Indeed, applied to the proposed
four fermion vertex entangled removal forces it to correspond to forward scattering for which
the proposed twistor amplitude vanishes.

To sum up, the twistorial approach leads to a proposal for an explicit construction of scat-
tering amplitudes for the fundamental fermions. Bosons and fermions as elementary particles are
bound states of fundamental fermions assignable to pairs of wormhole contacts carrying fundamen-
tal fermions at the throats. Clearly, this description is analogous to a quark level description of
hadron. Yangian symmetry with multilocal generators is expected to crucial for the construction of
the many-fermion states giving rise to elementary particles. The problems of the standard twistor
approach find a nice solution in terms of M8 − H duality, 8-D masslessness, and holomorphy of
twistor amplitudes in λi and their indepence on λ̃i.

15.2 More details about the induction of twistor structure

The notion of twistor lift of TGD [L22] [L40] has turned out to have powerful implications concern-
ing the understanding of the relationship of TGD to general relativity. The meaning of the twistor
lift really has remained somewhat obscure. There are several questions to be answered. What does
one mean with twistor space? What does the induction of twistor structure of H = M4 × CP2 to
that of space-time surface realized as its twistor space mean?

15.2.1 What does one mean with twistor space?

The notion of twistor space has been discussed in [L22] from TGD point of view.

1. In the case of twistor space of M4 the starting point of Penrose was the isomorphism between
the conformal group of Spin(4,2) of 6-D Minkowski space M4,2 and the group SU(2,2) acting
on 2+2 complex spinors.
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6-D twistor space could be identified as 6-D coset space SU(2, 2)/SU(2, 1)×U(1). For E6 this
would give projective space CP3 = SU(4)/SU(3)×U(1) and in twistor Grassmann approach
this definition is indeed used. It is thought that the problems caused by Euclidization are
not serious.

2. One can think SU(2, 2) as 4× 4 complex matrices with orthogonal complex row vector Zi =
(Zi1, ..., Zi4), and norms (1, 1,−1− 1) in the metric s2 =

∑
εi|zi|2, εi ↔ (1, 1,−1,−1). The

sub-matrices defined by (Zk2, Zk3, Zk4), k = 2, 3, 4, can be regarded apart from normalization

elements of SU(1, 2). The column vector with components Zi1 with Z11 =
√

1 + ρ2, ρ2 =
|Z21|2 − |Z31|2 − |Z41|2 corresponds to a point of the twistor space. The S2 fiber for given
values of ρ and (Z31, Z41) could be identified as the space spanned by the values of Z21.
Note that S2 would have time-like signature and the signature of twistor space would be
(3,3), which conforms with the existence of complex structure. There would be dimensional
democracy at this level.

3. The identification of 4-D base of the twistor space is unclear to me. The base space of the
this twistor space should correspond to the conformal compactification M4

c of M4 having
metric defined only apart from conformal scaling. The concrete realization M4

c would be in
terms of M4,2 light-cone with points projectively identified. As a metric object this space is
ill-defined and can appear only at the level of scattering amplitudes in conformally invariant
quantum field theories in M4.

4. Mathematicians define also a second variant of twistor space with S2 fiber and this space
is just M4 × S2 [B72] (see http://tinyurl.com/yb4bt74l). This space has a well-defined
metric and seems to be the only possible one for the twistor lift of classical TGD replacing
space-time surfaces with their twistor spaces. Whether the signature of S2 is time-like or
space-like has remained an open question but time-like signature looks natural. The radius
RP of S2 has been proposed to be apart from a numerical constant equal to Planck length lP .
Note that the isometry group is 9-D SO(3, 1) × SU(2) rather than 15-D SU(2, 2). In TGD
light-likeness in 8-D sense replaces light-likeness in 4-D sense: does this somehow replace
the conformal symmetry group SO(4, 2) with SO(3, 1) × SO(3)? Could SU(2) rotate the
direction of spin quantization axis.

I must confess that I have found the notions of twistor and twistor sphere very difficult to
understand. Perhaps this is not solely due to my restricted mathematical skills. Also the physics
of twistors looks confusing to me.

The twistor space assignable to Minkowski space and corresponding twistor sphere have
several meanings. Consider first the situation in standard framework.

1. One can define twistor space as complex 8-D space C4. Given four-momentum corresponds
however to projective line so that one can argue that twistor space is 6-D space T1(M4) =
CP3 = SU(4)/SU(3)× U(1) of projective lines of C4 in C4. One could also argue that one
must take the signature of Minkowski space into account. SU(2, 2) acts as symmetries of
twistor bilinear form and one would have T1(M4) = SU(2, 2)/SU(2, 1) × U(1). In this case
twistor sphere could correspond to the projective line in C4.

2. Incidence relations µȧ = maȧλa relate M4 points to those of twistor space. In the usual
twistor formalism twistor sphere corresponds to the projective line of 8-D C4. When m is
not light-like, it corresponds to a matrix which is invertible and one can solve µ from λ and
vice versa. The twistor spheres associated with m1 and m2 are said to intersect if m1 −m2

is a complex light-like vector defining a complexified light ray. One could identify twistor
sphere of T1(M4) as the Riemann sphere defined by these complex points and going to CP3

one actually eliminates it altogether, which is somewhat unsatisfactory.

3. When m is light-like and thus expressible as µ = λ ⊗ λ̃ one has µ = µ0 + tλ̃, t a complex
number. One can say that one has a full Riemann sphere S2 of solutions. There is also
additional degeneracy due to the scaling of both λ and µ. For light-like M4 points (say
momenta) one obtains a Riemann sphere in 6-D twistor space. Which twistor sphere is the
correct one: the sphere associated with all points of M4 and 8-D twistor space or the sphere
associated with light-like points of M4 and 6-D twistor space?

http://tinyurl.com/yb4bt74l
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Consider now the situation in TGD.

1. For the twistor lift of Kähler action lifting the dynamics of space-time surfaces to the dynamics
of their twistor spaces, the twistor lift of M4 corresponds to T (M4) = M4 × CP2. This
might look strange but the proper mathematical definition of twistor space relies on double
fibration involving both views about twistor space discussed in [B72] (see http://tinyurl.

com/yb4bt74l). This double fibration would be crucially involved with M8−H duality. The
fiber space is T (M4) = M4×CP1, where CP1 corresponds to the projective sphere assignable
to complex spinors λ. This fiber is trivially projected both to M4 and less trivially to a subset
of 6-dimensional complex projective space T!(M

4) = CP3.

At space-time level T (M4) is the only correct choice since twistor space must have isometries
of M4. This choices brings into the dynamics Planck length essentially as the radius of
S2 and cosmological constant as volume term resulting in the dimensional reduction of 6-D
Kähler action forced by twistor space property of 6-surface.

At the level of momentum space - perhaps the M8 appearing in M8 −H duality identifiable
as tangent space of H - the twistor space would correspond to twistor space assignable to
momentum space and should relate to the ordinary twistor space T1(M4) - whatever it is!

2. In M8 picture the twistor space is naturally associated with preferred M2 ⊂ M4, where
M4 is quaternionic space. The moduli space of M2 ⊂ M4 for time direction assigned with
real octonion, is parametrized by S2 and a possible interpretation is as twistor sphere of
M2 × CP1. Interestingly, M2 ⊂ M4 is characterized by light-like vector together with its
unique dual light-like vector.

By restricting 4-D conformal invariance to 2-D situation, one finds that the twistor space
becomes RP3 but can be complexified to CP3 to allowing complexified M2 momenta. The
signature (1,1) of M2 and reality of spinor basis gives hopes of resolving the conceptual
problems of the ordinary twistor approach. For the real spinor spinor pair (λ, µ) the solutions
to the co-incidence relations real M2 spinors but one can allowing their complex multiples.

3. M8 − H correspondence allows to map M4 points to each other: this involves a choice of
M4 ⊂ M8. M8 − H correspondence maps quaternionic (and co-quaternionic) surfaces in
M8 to preferred extremals of Kähler in H proposed to correspond to the base bases of of
twistor bundles T (X4) ⊂ T (M4)× T (CP2) constructible using holomorphic maps. One can
thus argue that there should be also a correspondence between the twistor spaces T (M4) and
T1(M4) - the correspondence between the twistor spheres would be enough.

The two M4:s correspond to each other naturally. What is required is a map of twistorial
spheres S2 to each other. Suppose that the twistorial sphere of H corresponds to that
assignable to the choice of M2 ⊂ M8 by a choice of quaternionic imaginary unit in M4 of
equivalently by a choice of a light-like vector n of M2 plane. But by incidence relations the
light-like vector n has twistor sphere CP1 as a pre-image in complexified T1(M2) = CP3

characterized by the shifts µ → µ + λ̃. Therefore the two twistor spheres can be identified
by mapping n of S2(T (M4) to its counterpart of T1(M2) isometrically.

It therefore seems that the double fibration is essential in TGD framework and the usual
twistor space is assignable to the M8 interpreted asthe space of complexified octonion momenta
subject to the quaternionicity condition. Sharply defined transversed quaternionic momentum
eigenstates in E2 × E4 are replaced with wave functions in T (CP2) reducing locally to CP2 ×
U(2)/U(1) × U(1) with em charge identifiable as the analog of angular momentum for the wave
functions in CP1 = U(2)/U(1) × U(1). In M4 × CP2 picture one has spinor modes labelled by
electroweak quantum numbers.

15.2.2 Twistor lift of TGD

In TGD one replaces imbedding space H = M4 ×CP2 with the product T = T (M4)× T (CP2) of
their 6-D twistor spaces, and calls T (H) the twistor space of H. For CP2 the twistor space is the
flag manifold T (CP2) = SU(3)/U(1)× U(1) consisting of all possible choices of quantization axis
of color isospin and hypercharge.

http://tinyurl.com/yb4bt74l
http://tinyurl.com/yb4bt74l
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1. The basic idea is to generalize Penrose’s twistor program by lifting the dynamics of space-
time surfaces as preferred extremals of Kähler action to those of 6-D Kähler action in twistor
space T (H). The conjecture is that field equations reduce to the condition that the twistor
structure of space-time surface as 4-manifold is the twistor structure induced from T (H).

Induction requires that dimensional reduction occurs effectively eliminating twistor fiber
S2(X4) from the dynamics. Space-time surfaces would be preferred extremals of 4-D Kähler
action plus volume term having interpretation in terms of cosmological constant. Twistor
lift would be more than an mere alternative formulation of TGD.

2. The reduction would take place as follows. The 6-D twistor space T (X4) has S2 as fiber and
can be expressed locally as a Cartesian product of 4-D region of space-time and of S2. The
signature of the induced metric of S2 should be space-like or time-like depending on whether
the space-time region is Euclidian or Minkowskian. This suggests that the twistor sphere of
M4 is time-like as also standard picture suggests.

3. Twistor structure of space-time surface is induced to the allowed 6-D surfaces of T (H), which
as twistor spaces T (X4) must have fiber space structure with S2 as fiber and space-time
surface X4 as base. The Kähler form of T (H) expressible as a direct sum

J(T (H)) = J(T (M4))⊕ J(T (CP2))

induces as its projection the analog of Kähler form in the region of T (X4) considered.

There are physical motivations (CP breaking, matter antimatter symmetry, the well-definedness
of em charge) to consider the possibility that also M4 has a non-trivial symplectic/Kähler
form of M4 obtained as a generalization of ordinary symplectic/Kähler form [L40]. This
requires the decomposition M4 = M2 × E2 such that M2 has hypercomplex structure and
E2 complex structures.

This decomposition might be even local with the tangent spaces M2(x) and E2(x) integrat-
ing to locally orthogonal 2-surfaces. These decomposition would define what I have called
Hamilton-Jacobi structure [K79]. This would give rise to a moduli space of M4 Kähler forms
allowing besides covariantly constant self-dual Kähler forms with decomposition (m0,m3)
and (m1,m2) also more general self-dual closed Kähler forms assignable to integrable local
decompositions. One example is spherically symmetric stationary self-dual Kähler form cor-
responding to the decomposition (m0, rM ) and (θ, φ) suggested by the need to get spherically
symmetric minimal surface solutions of field equations. Also the decomposition of Robertson-
Walker coordinates to (a, r) and (θ, π) assignable to light-cone M4

+ can be considered.

The moduli space giving rise to the decomposition of WCW to sectors would be finite-
dimensional if the integrable 2-surfaces defined by the decompositions correspond to orbits of
subgroups of the isometry group of M4 or CD. This would allow planes of M4, and radial half-
planes and spheres of M4 in spherical Minkowski coordinates and of M4

+ in Robertson-Walker
coordinates. These decomposition could relate to the choices of measured quantum numbers
inducing symmetry breaking to the subgroups in question. These choices would chose a sector
of WCW [K41] and would define quantum counterpart for a choice of quantization axes as
distinct from ordinary state function reduction with chosen quantization axes.

4. The induced Kähler form of S2 fiber of T (X4) is assumed to reduce to the sum of the induced
Kähler forms from S2 fibers of T (M4) and T (CP2). This requires that the projections of
the Kähler forms of M4 and CP2 to S2(X4) are trivial. Also the induced metric is assumed
to be direct sum and similar conditions holds true.These conditions are analogous to those
occurring in dimensional reduction.

Denote the radii of the spheres associated with M4 and CP2 as RP = klP and R and the
ratio RP /R by ε. Both the Kähler form and metric are proportional to R2

p resp. R2 and
satisfy the defining condition Jkrg

rsJsl = −gkl. This condition is assumed to be true also for
the induced Kähler form of J(S2(X4).

Let us introduce the following shorthand notations
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S2
1 = S2(X4) , S2

2 = S2(CP2) , S2
3 = S2(M4) ,

Ji =
J(S2

i )
R2 , gi =

g(S2
i ))

R2 .

(15.2.1)

This gives the following equations.

J1 = J2 + εJ3 , g1 = g2 + εg3 , J1g1J1 = −g1 .

(15.2.2)

Projections to S2
1 = S2(X4) are assumed at r.h.s.. The product of the third equation is

defined as tensor contraction and involves contravariant form of g.

15.2.3 Solutions to the conditions defining the twistor lift

Consider now solutions to the conditions defining the twistor lift.

1. The simplest solution type corresponds to the situation in which either S2
2 (S2

3) equals to
S2

1) and S2
3 (S2

2) projection of T (X4) is single point. In this case the conditions of Eq.
are trivially satisfied. These two solutions could correspond to Euclidian and Minkowskian
space-time regions. Also the solution for which twistor sphere degenerates to a point must
be considered and form J(M4) = 0 this would correspond to the reduction of dimensionally
reduced action to Kähler action defining the original variant of TGD. Note that preferred
extremals are conjectured to be minimal surfaces extremals of Kähler action always [L19].

2. One can consider also more general solutions. Depending on situation, one can use for S2(X4)
either the coordinates of S2

2 or S2
3 . Let us choose S2

2 . One can of course change the roles of
the spheres.

Consider an ansatz for which the projections of J2 and J3 to S2
1 are in constant proportionality

to each other. This is guaranteed if the spherical coordinates (u = cos(Θ),Φ) of S2
2 and S2

3 are
related by (u(M4),Φ(M4)) = (u(CP2), nΦ(CP2)) so that the map between the two spheres
has winding number n. With this assumption one has

J1 = (1 + εn)J2 ,
g1 = (1 + εn2)g2 ,

(15.2.3)

The third condition of Eq. 1 equation gives

(1 + nε)2 = (1 + n2ε)2 . (15.2.4)

This in turn gives

1 + nε = δ(1 + n2ε) , δ = ±1 .

(15.2.5)

The only solution for δ = +1 is n = 0 or n = 1. For δ = −1 there are no solutions.

One has 3+1 different solutions corresponding to the degenerate solution (n1, n2) = (0, 0)
and 3 solutions with (n1, n2) equal (1, 0), (0, 1) or (1, 1). The conditions are very stringent
and it is not clear whether there are any other solutions.
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3. The further conditions implying locally direct sum for g and J pose strong restrictions on
space-time surfaces. The conjecture that the solutions of these conditions correspond to
preferred extremals of 6-D Kähler action leads by dimensional reduction to the conclusion
that the 4-D action contains besides 4-D Kähler action also a volume term coming from S2

Kähler actions and giving rise to cosmological constant.

What is of special interest is that for the degenerate solution the volume term vanishes,
and one has mere 4-D Kähler action with induced Kähler form possibly containing also
J(M4), which leads to a rather sensible cosmology having interpretation as infinite volume
limit for causal diamond (CD) inside which space-time surfaces exist. This limit could be
appropriate for QFT limit of TGD, which indeed corresponds to infinite-volume limit at
which cosmological constant approaches zero.

What could be the physical interpretation of the solutions?

1. Physical intuition suggests that S2
1 must be space-like for Euclidian signature of space-time

region [(n1, n2) = (1, 0)] and time-like for Minkowskian signature [(n1, n2) = (0, 1)].

2. By quantum classical correspondence one can argue that the non-vanishing of space-time
projection of J(M4) resp. J(CP2) is necessary to fix local quantization axis of spin resp.
weak isospin. If so, then n1 = 1/0 resp. n2 = 1/0 would tell that the projection of J(CP2)
resp. J(M2) is non-vanishing/vanishes. If both contributions vanish [(n1, n2) = (0, 0)] one
has generalized Lagrangian 4-surface, which would be vacuum extremal. The products of 2-D
Lagrangian manifolds for M4 and CP2 would be vacuum extremals. One can wonder whether
there exist 4-surfaces representable as a graph of a map M4 → CP2 such that the induced
Kähler form vanishes. This picture allows only the imbeddings of trivial Robertson-Walker
cosmology as vacuum extremal of Kähler action since both M4 contribution to Kähler action
and volume term would be non-vanishing [(n1, n2) = (0, 1)].

15.2.4 Twistor lift and the reduction of field equations and SH to holo-
morphy

It has become clear that twistorialization has very nice physical consequences. But what is the deep
mathematical reason for twistorialization? Understanding this might allow to gain new insights
about construction of scattering amplitudes with space-time surface serving as analogs of twistor
diatrams.

Penrose’s original motivation for twistorilization was to reduce field equations for massless
fields to holomorphy conditions for their lifts to the twistor bundle. Very roughly, one can say that
the value of massless field in space-time is determined by the values of the twistor lift of the field
over the twistor sphere and helicity of the massless modes reduces to cohomology and the values
of conformal weights of the field mode so that the description applies to all spins.

I want to find the general solution of field equations associated with the Kähler action lifted
to 6-D Kähler action. Also one would like to understand strong form of holography (SH). In TGD
fields in space-time are are replaced with the imbedding of space-time as 4-surface to H. Twistor
lift imbeds the twistor space of the space-time surface as 6-surface into the product of twistor
spaces of M4 and CP2. Following Penrose, these imbeddings should be holomorphic in some sense.

Twistor lift T (H) means that M4 and CP2 are replaced with their 6-D twistor spaces.

1. If S2 for M4 has 2 time-like dimensions one has 3+3 dimensions, and one can speak about
hyper-complex variants of holomorphic functions with time-like and space-like coordinate
paired for all three hypercomplex coordinates. For the Minkowskian regions of the space-
time surface X4 the situation is the same.

2. For T (CP2) Euclidian signature of twistor sphere guarantees this and one has 3 complex
coordinates corresponding to those of S2 and CP2. One can also now also pair two real
coordinates of S2 with two coordinates of CP2 to get two complex coordinates. For the
Euclidian regions of the space-time surface the situation is the same.

Consider now what the general solution could look like. Let us continue to use the shorthand
notations S2

1 = S2(X4);S2
2 = S2(CP2);S2

3 = S2(M4).
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1. Consider first solution of type (1, 0) so that coordinates of S2
2 are constant. One has holomor-

phy in hypercomplex sense (light-like coordinate t− z and t+ z correspond to hypercomplex
coordinates).

(a) The general map T (X4) to T (M4) should be holomorphic in hyper-complex sense. S2
1 is

in turn identified with S2
3 by isometry realized in real coordinates. This could be also

seen as holomorphy but with different imaginary unit. One has analytical continuation of
the map S2

1 → S2
3 to a holomorphic map. Holomorphy might allows to achieve this rather

uniquely. The continued coordinates of S2
1 correspond to the coordinates assignable

with the integrable surface defined by E2(x) for local M2(x) × E2(x) decomposition
of the local tangent space of X4. Similar condition holds true for T (M4). This leaves
only M2(x) as dynamical degrees of freedom. Therefore one has only one holomorphic
function defined by 1-D data at the surface determined by the integrable distribution
of M2(x) remains. The 1-D data could correspond to the boundary of the string world
sheet.

(b) The general map T (X4) to T (CP2) cannot satisfy holomorphy in hyper-complex sense.
One can however provide the integrable distribution of E2(x) with complex structure
and map it holomorphically to CP2. The map is defined by 1-D data.

(c) Altogether, 2-D data determine the map determining space-time surface. These two
1-D data correspond to 2-D data given at string world sheet: one would have SH.

2. What about solutions of type (0, 1) making sense in Euclidian region of space-time. One has
ordinary holomorphy in CP2 sector.

(a) The simplest picture is a direct translation of that for Minkowskian regions. The map
S2

1 → S2
2 is an isometry regarded as an identification of real coordinates but could be

also regarded as holomorphy with different imaginary unit. The real coordinates can be
analytically continued to complex coordinates on both sides, and their imaginary parts
define coordinates for a distribution of transversal Euclidian spaces E2

2(x) on X4 side
and E2(x) on M4 side. This leaves 1-D data.

(b) What about the map to T (M4)? It is possible to map the integrable distribution E2
2(x)

to the corresponding distribution for T (M4) holomorphically in the ordinary sense of the
word. One has 1-D data. Altogether one has 2-D data and SH and partonic 2-surfaces
could carry these data. One has SH again.

3. The above construction works also for the solutions of type (1, 1), which might make sense
in Euclidian regions of space-time. It is however essential that the spheres S2

2 and S2
3 have

real coordinates.

SH thus would thus emerge automatically from the twistor lift and holomorphy in the
proposed sense.

1. Two possible complex units appear in the process. This suggests a connection with quaternion
analytic functions [L22] suggested as an alternative manner to solve the field equations.
Space-time surface as associative (quaterionic) or co-associate (co-quaternionic) surface is a
further solution ansatz.

Also the integrable decompositions M2(x) × E2(x) resp. E2
1(x) × E2

2(x) for Minkowskian
resp. Euclidian space-time regions are highly suggestive and would correspond to a foliation
by string wold sheets and partonic 2-surfaces. This expectation conforms with the number
theoretically motivated conjectures [K111].

2. The foliation gives good hopes that the action indeed reduces to an effective action consisting
of an area term plus topological magnetic flux term for a suitably chosen stringy 2-surfaces
and partonic 2-surfaces. One should understand whether one must choose the string world
sheets to be Lagrangian surfaces for the Kähler form including also M4 term. Minimal surface
condition could select the Lagrangian string world sheet, which should also carry vanishing
classical W fields in order that spinors modes can be eigenstates of em charge.
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The points representing intersections of string world sheets with partonic 2-surfaces defining
punctures would represent positions of fermions at partonic 2-surfaces at the boundaries of
CD and these positions should be able to vary. Should one allow also non-Lagrangian string
world sheets or does the space-time surface depend on the choice of the punctures carrying
fermion number (quantum classical correspondence)?

3. The alternative option is that any choice produces of the preferred 2-surfaces produces the
same scattering amplitudes. Does this mean that the string world sheet area is a constant for
the foliation - perhaps too strong a condition - or could the topological flux term compensate
for the change of the area?

The selection of string world sheets and partonic 2-surfaces could indeed be also only a gauge
choice. I have considered this option earlier and proposed that it reduces to a symmetry
identifiable as U(1) gauge symmetry for Kähler function of WCW allowing addition to it of a
real part of complex function of WCW complex coordinates to Kähler action. The additional
term in the Kähler action would compensate for the change if string world sheet action in
SH. For complex Kähler action it could mean the addition of the entire complex function.

15.3 How does the twistorialization at imbedding space level
emerge?

An objection against twistorialization at imbedding space level is that M4-twistorialization requires
4-D conformal invariance and massless fields. In TGD one has towers of particle with massless
particles as the lightest states. The intuitive expectation is that the resolution of the problem is
that particles are massless in 8-D sense as also the modes of the imbedding space spinor fields are.

To explain the idea, let us select a fixed decomposition M8 = M4
0 ×E4

0 and assume that the
momenta are complex - for motivations see below.

1. With inspiration coming fromM8−H duality [K74] suppose that for the allowed compositions
M8 = M4×E4 one has M4 = M2

0 ×E2 with M2
0 fixed, and corresponding to real octonionic

unit and preferred imaginary unit. Obviously 8-D light-likeness for M8 = M4
0 × E4

0 reduces
to 4-D light-likeness for a preferred choice of M8 = M4 × CP2 decomposition.

2. This suggests that in the case of massive M4
0 momenta one can apply twistorialization to the

light-like M4-momentum and code the information about preferred M4 by a point of CP2 and
about 8-momentum in M8 = M4

0 ×E4
0 by an SU(3) transformation taking M4

0 to M4. Pairs
of twistors and SU(3) transformations would characterize arbitrary quaternionic 8-momenta.
8-D masslessness gives however 2 additional conditions for the complex 8-momenta probably
reducing SU(3) to SU(3)/U(1)×U(1) - the twistor space of CP2! This would also solve the
basic problem of twistor approach created by the existence of massive particles.

The assumption of complex momenta in previous considerations might raise some worries.
The space-time action of TGD is however complex if Kähler coupling strength is complex, and
there are reasons to believe that this is the case. Both four-momenta and color quantum numbers
- all Noether charges in fact - could be complex. A possible physical interpretation for complex
momenta could be in terms of the natural width of states induced by the finite size of CD. Also in
twistor Grassmannian approach one encounters complex but light-like four-momenta. Note that
complex light-like space-time momenta correspond in general to massive real momenta. It is not
clear whether it makes sense to speak about width of color quantum numbers: their reality would
give additional constraint. The emergence of M4 mass in this manner could be involved with the
classical description for the emergence of the third helicity.

The observation that octonionic twistors make sense and their restriction to quaternionic
twistors produce ordinary M4 twistors provides an alternative view point to the problem. Also
M8 −H duality proposed to map quaternionic 4-D surfaces in octonionic M8 to (possibly quater-
nionic) 4-D surfaces in M4 × CP2 is expected to be relevant. The twistor lift of M8 −H duality
would give T (M8)− T (H) duality.

Twistor Grassmann approach [B33, B27, B26, B38, B39, B20] uses as twistor space the space
T1(M4) = SU(2, 2)/SU(2, 1)× U(1) whereas the twistor lift of classical TGD uses M4 × S2. The
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formulation of the twistor amplitudes in terms of SH using the data assignable to the 2-D surfaces
- string world sheets and partonic 2-surfaces perhaps - identified as surfaces in T (M4) × T (CP2)
requires the mapping of these twistor spaces to each other - the incidence relations of Penrose
indeed realize this map.

15.3.1 M8 −H duality at space-time level

Twistors emerge as a description of massless particles with spin [B69] but are not needed for spin
zero particles. Therefore one can consider first mere momenta.

1. Consider first space-time surfaces of M8 with Minkowskian signature of the induced metric
so that the tangent space is M4. M8−H duality [K74] implies that CP2 points parameterize
quaternionic sub-spaces M4 of octonions containing fixed M2

0 ⊂ M4. Using the decomposi-
tion 1 + 1 + 3 + 3 of complexified octonions to representations of SU(3), it is easy to see that
this space is indeed CP2. M4 correspond to the sub-space 1+1+2 where 2 is SU(2) ⊂ SU(3)
doublet.

CP2 spinor mode would be spinor mode in the space of quaternionic sub-spaces M4 ⊂ M8

with M2
0 ⊂M4 with real octonionic unit defining preferred time like direction and imaginary

unit defining preferred spin quantization axis. M8 −H duality allows to map quaternionic
4-surfaces of M4 ⊃M2

0 to 4-surfaces in H. The latter could be quaternionic but need not to.

2. For Euclidian signature of the induced metric tangent space is E4. In this case co-associative
surfaces are needed since the above correspondence make sense only if the tangent space
corresponds to M4. For instance, for CP2 type exremals tangent space corresponds to E4.
M4 and E4 change roles. Also now the space of co-associative tangent spaces is CP2 since co-
associative tangent space is the octonionic orthogonal complement of the associative tangent
space. One would have Euclidian variant of the associative case.

M8−H correspondence raises the question whether the octonionic M8 or M4×CP2 repre-
sents the level, which deserves to be called fundamental. Or are they just alternative descriptions
made possible by the quaternionicity of space-time surface in M8 and quaternionic momentum
space necessitating quaternionicity of the tangent space of X4? In any case, one should demon-
strate that the spectrum of states withM4×E4 with quaternionic light-like 8-momenta is equivalent
with the spectrum of states for M4 × CP2

15.3.2 Parametrization of light-like quaternionic 8-momenta in terms of
T (CP2)

The following argument shows that the twistor space T (CP2) emerges naturally from M8 − H
correspondence for quaternionic light-like M8 momenta.

1. Continue to assume a fixed decomposition M8 = M4
0 × E4

0 , and that for the allowed com-
positions M8 = M4 × E4 one has M4 = M2

0 × E2 with M2
0 fixed. Light-like quaternionic

8-momentum in M8 = M4
0 × E4

0 can be reduced to light-like M4 momentum and vanishing
E4 momentum for some preferred M8 = M4 × E4 decomposition.

One can therefore describe the situation in terms of light-like M4-momentum and U(2)
transformation (as it turns out) mapping this momentum to 8-D momentum in given frame
and giving the M4

0 and E4
0 momenta. The alternative description is in terms M4

0 massive
momentum and the E4

0 momentum. The space of light-like complex M4 momenta with fixed
M2

0 part and non-vanishing E2 part is given by CP2 as also the space of quaternionic planes.
Given quaternionic plane is in turn characterized by massless M4-momentum.

2. The description of M4-massive momentum should be based on twistor associated with the
light-like M4 momentum plus something describing the SU(3) transformation leaving the
preferred imaginary unit of M2

0 un-affected. The transformations leaving unaffected the
M4 part of M8-momentum coded by the SU(2) doublet 2 of color triplet 3 in the color
decomposition of complex 8-momentum 1+1+3+3 but acting on E4 part 1+3 non-trivially
correspond to U(2) subgroup. U(2) element thus codes for the E4 part of the light-like
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momentum and SU(3) code for quaternionic 8-momenta, which can be also massive. Massless
and complex M4 momenta are coded by SU(3)/U(2) = CP2 as also the tangent spaces of
Minkowskian space-time regions (by M8 −H duality).

The complexity of particle 8-momenta -and more generally Noether charges - is not in conflict
with the hermiticity of quantal Noether charges if total classical and quantal Noether charges
are real (and equal by QCC). This would give rise to a kind of confinement condition applying
to many-particle states. I have earlier proposed that single particle conformal weights are
complex but that conformal confinement holds in the sense that the total conformal weights
are real.

3. General complex quaternionic momenta with fixed M4 part are parameterized by SU(3).
Complex light-like 8-momenta satisfy two additional constraints from light-likenes condi-
tion, and one expects the reduction of SU(3) to SU(3)/U(1) × U(1) - the twistor space
of CP2. Therefore the light-like 8-momentum is coded by a twistor assignable to massless
M4-momentum by an point of SU(3)/U(1)× U(1) giving T (M4)× T (CP2).

By the previous arguments, the inclusion of helicities and electroweak charges gives twistor
lift of M8 −H correspondence.

1. In the case of E4 the helicities would correspond to two SO(4) spins to be mapped to right
and left-handed electroweak spins or weak spin and weak charges. Twistor space T (CP2)
gives hopes about a unified description of color - and electro-weak quantum numbers in terms
of partial waves in the space SU(3)/U(1)×U(1) for selections of quantization axes for color
quantum numbers.

2. A possible problem relates to the particles massive in M4 sense having more helicity states
than massless particles. How can one describe the presence of additional helicities. Should one
introduce the analog of Higgs mechanism providing the missing massless helicities? Quantum
view about twistors describes helicity as a quantum number - conformal weight - of a wave
function in the twistor sphere S2. In the case of massive gauge bosons which would require
the introduction of zero helicity as a spin 0 wave function in twistor space.

3. One should relate the description in terms of M8 momenta to the description in terms of M4×
CP2 color partial waves massless in 8-D sense. The number of partial waves for given CP2

mass squared is finite and this should be the case for quaternionic E4 momenta. How color
quantum numbers determining the M4 mass relate to complex E4 momenta parameterized
by U(2) plus two constraints coming from complex light-likeness. The number of degrees of
freedom is 2 for given U(2) orbit and the quantization suggests dramatic reduction in the
number of 8-momenta. This strongly suggests that it is only possible to talk about wave
functions in the space of allowed E4 momenta - that is in the twistor space T (CP2). Fixing
the M4-part of 8-momentum parameterized by a point of CP2 leaves only a wave function
in the fiber S2.

The discussion leaves some questions to ponder.

1. M8 −H correspondence raises the question whether the octonionic M8 or M4 ×CP2 repre-
sents the fundamental level. Or are they just alternative descriptions made possible by the
quaternionicity of space-time surface in M8 and quaternionic momentum space necessitating
quaternionicity of the tangent space of X4?

2. What about more general SO(1, 7) transformations? Are they needed? One could consider
the possibility that SO(1, 7) acts in the moduli space of octonion structures of M8. If so,
then these additional moduli must be included. Otherwise given 8-D momenta have M2

0

part fixed and orbit of given M4 momentum is the smaller, the smaller the E2 part of M4

momentum is. It reduces to point if M4 momentum reduces to M2
0 .
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15.3.3 A new view about color, color confinement, and twistors

To my humble opinion twistor approach to the scattering amplitudes is plagued by some mathe-
matical problems. Whether this is only my personal problem is not clear.

1. As Witten shows in [B33], the twistor transform is problematic in signature (1,3) for Minkowski
space since the the bi-spinor µ playing the role of momentum is complex. Instead of defining
the twistor transform as ordinary Fourier integral, one must define it as a residue integral.
In signature (2,2) for space-time the problem disappears since the spinors µ can be taken to
be real.

2. The twistor Grassmannian approach works also nicely for (2,2) signature, and one ends up
with the notion of positive Grassmannians. Could it be that something is wrong with the
ordinary view about twistorialization rather than only my understanding of it?

3. For M4 the twistor space should be non-compact SU(2, 2)/SU(2, 1) × U(1) rather than
CP3 = SU(4)/SU(3)×U(1), which is taken to be. I do not know whether this is only about
short-hand notation or a signal about a deeper problem.

4. Twistorilizations does not force SUSY but strongly suggests it. The super-space formalism
allows to treat all helicities at the same time and this is very elegant. This however forces
Majorana spinors in M4 and breaks fermion number conservation in D = 4. LHC does not
support N = 1 SUSY. Could the interpretation of SUSY be somehow wrong? TGD seems
to allow broken SUSY but with separate conservation of baryon and lepton numbers.

In number theoretic vision something rather unexpected emerges and I will propose that this
unexpected might allow to solve the above problems and even more, to understand color and even
color confinement number theoretically. First of all, a new view about color degrees of freedom
emerges at the level of M8.

1. One can always find a decomposition M8 = M2
0 × E6 so that the possibly complex light-

like quaternionic 8-momentum restricts to M2
0 . The preferred octonionic imaginary unit

represent the direction of imaginary part of quaternionic 8-momentum. The action of G2 to
this momentum is trivial. Number theoretic color disappears with this choice. For instance,
this could take place for hadron but not for partons which have transversal momenta.

2. One can consider also the situation in which one has localized the 8-momenta only to M4 =
M2

0 × E2. The distribution for the choices of E2 ⊂ M2
0 × E2 = M4 is a wave function in

CP2. Octonionic SU(3) partial waves in the space CP2 for the choices for M2
0 × E2 would

correspond ot color partial waves in H. The same interpretation is also behind M8 − H
correspondence.

3. The transversal quaternionic light-like momenta in E2 ⊂M2
0×E2 give rise to a wave function

in transversal momenta. Intriguingly, the partons in the quark model of hadrons have only
precisely defined longitudinal momenta and only the size scale of transversal momenta can be
specified. This would of course be a profound and completely unexpected connection! The
introduction of twistor sphere of T (CP2) allows to describe electroweak charges and brings in
CP2 helicity identifiable as em charge giving to the mass squared a contribution proportional
to Q2

em so that one could understand electromagnetic mass splitting geometrically.

The physically motivated assumption is that string world sheets at which the data determin-
ing the modes of induced spinor fields carry vanishing W fields and also vanishing generalized
Kähler form J(M4) + J(CP2). Em charge is the only remaining electroweak degree of free-
dom. The identification as the helicity assignable to T (CP2) twistor sphere is natural.

4. In general case the M2 component of momentum would be massive and mass would be
equal to the mass assignable to the E6 degrees of freedom. One can however always find
M2

0 ×E6 decomposition in which M2 momentum is light-like. The naive expectation is that
the twistorialization in terms of M2 works only if M2 momentum is light-like, possibly in
complex sense. This however allows only forward scattering: this is true for complex M2

momenta and even in M4 case.
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The twistorial 4-fermion scattering amplitude is however holomorphic in the helicity spinors
λi and has no dependence on λ̃i. Therefore carries no information about M2 mass! Could
M2 momenta be allowed to be massive? If so, twistorialization might make sense for massive
fermions!

M2
0 momentum deserves a separate discussion.

1. A sharp localization of 8-momentum to M2
0 means vanishing E2 momentum so that the ac-

tion of U(2) would becomes trivial: electroweak degree of freedom would simply disappear,
which is not the same thing as having vanishing em charge (wave function in T (CP2) twisto-
rial sphere S2 would be constant). Neither M2

0 localization nor localization to single M4

(localization in CP2) looks plausible physically - consider only the size scale of CP2. For the
generic CP2 spinors this is impossible but covariantly constant right-handed neutrino spinor
mode has no electro-weak quantum numbers: this would most naturally mean constant wave
function in CP2 twistorial sphere.

For the preferred extremals of twistor lift of TGD either M4 or CP2 twistor sphere can
effectively collapse to a point. This would mean disappearence of the degrees of freedom
associated with M4 helicity or electroweak quantum numbers.

2. The localization to M4 ⊃ M2
0 is possible for the tangent space of quaternionic space-time

surface in M8. This could correlate with the fact that neither leptonic nor quark-like induced
spinors carry color as a spin like quantum number. Color would emerge only at the level
of H and M8 as color partial waves in WCW and would require de-localization in the CP2

cm coordinate for partonic 2-surface. Note that also the integrable local decompositions
M4 = M2(x) × E2(x) suggested by the general solution ansätze for field equations are
possible.

3. Could it be possible to perform a measurement localization the state precisely in fixed M2
0

always so that the complex momentum is light-like but color degrees of freedom disappear?
This does not mean that the state corresponds to color singlet wave function! Can one say
that the measurement eliminating color degrees of freedom corresponds to color confinement.
Note that the subsystems of the system need not be color singlets since their momenta need
not be complex massless momenta in M2

0 . Classically this makes sense in many-sheeted
space-time. Colored states would be always partons in color singlet state.

4. At the level of H also leptons carry color partial waves neutralized by Kac-Moody generators,
and I have proposed that the pion like bound states of color octet excitations of leptons
explain so called lepto-hadrons [K78]. Only right-handed covariantly constant neutrino is an
exception as the only color singlet fermionic state carrying vanishing 4-momentum and living
in all possible M2

0 :s, and might have a special role as a generator of supersymmetry acting
on states in all quaternionic subs-spaces M4.

5. Actually, already p-adic mass calculations performed for more than two decades ago [K39,
K12, K47], forced to seriously consider the possibility that particle momenta correspond
to their projections o M2

0 ⊂ M4. This choice does not break Poincare invariance if one
introduces moduli space for the choices of M2

0 ⊂ M4 and the selection of M2
0 could define

quantization axis of energy and spin. If the tips of CD are fixed, they define a preferred time
direction assignable to preferred octonionic real unit and the moduli space is just S2. The
analog of twistor space at space-time level could be understood as T (M4) = M4 × S2 and
this one must assume since otherwise the induction of metric does not make sense.

What happens to the twistorialization at the level of M8 if one accepts that only M2
0 momentum

is sharply defined?

1. What happens to the conformal group SO(4, 2) and its covering SU(2, 2) when M4 is re-
placed with M2

0 ⊂ M8? Translations and special conformational transformation span both
2 dimensions, boosts and scalings define 1-D groups SO(1, 1) and R respectively. Clearly,
the group is 6-D group SO(2, 2) as one might have guessed. Is this the conformal group
acting at the level of M8 so that conformal symmetry would be broken? One can of course
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ask whether the 2-D conformal symmetry extends to conformal symmetries characterized by
hyper-complex Virasoro algebra.

2. Sigma matrices are by 2-dimensionality real (σ0 and σ3 - essentially representations of real
and imaginary octonionic units) so that spinors can be chosen to be real. Reality is also
crucial in signature (2, 2), where standard twistor approach works nicely and leads to 3-D
real twistor space.

Now the twistor space is replaced with the real variant of SU(2, 2)/SU(2, 1) × U(1) equal
to SO(2, 2)/SO(2, 1), which is 3-D projective space RP 3 - the real variant of twistor space
CP3, which leads to the notion of positive Grassmannian: whether the complex Grass-
mannian really allows the analog of positivity is not clear to me. For complex momenta
predicted by TGD one can consider the complexification of this space to CP3 rather than
SU(2, 2)/SU(2, 1)×U(1). For some reason the possible problems associated with the signa-
ture of SU(2, 2)/SU(2, 1)×U(1) are not discussed in literature and people talk always about
CP3. Is there a real problem or is this indeed something totally trivial?

3. SUSY is strongly suggested by the twistorial approach. The problem is that this requires
Majorana spinors leading to a loss of fermion number conservation. If one has D = 2 only
effectively, the situation changes. Since spinors in M2 can be chosen to be real, one can
have SUSY in this sense without loss of fermion number conservation! As proposed earlier,
covariantly constant right-handed neutrino modes could generate the SUSY but it could be
also possible to have SUSY generated by all fermionic helicity states. This SUSY would be
however broken.

There is an delicacy involved. If J(M4) is present, the action of the gauge commutator
[Dk, Dl] = Jkl(M

4) on right-handed neutrino is non-vanishing and gives rise to the con-
stant term Jkl(M4)Σkl appearing in the square of Dirac equation at imbedding space level.
Neutrino would become massive at imbedding space level and also other states receive an
additional contribution to mass squared. String world sheets can be however analogs of La-
grangian sub-manifolds so that J(M4) projected to them vanishes, and one can have massless
right-handed neutrino. Also the right- or left M4-handedness of operator Jkl(M4)Σkl makes
it possible to annihilate the spinor mode at string world sheet. The physical interpretation
of this picture is still unclear.

4. The selection of M2
0 could correspond at space-time level to a localization of spinor modes to

string world sheets. Could the condition that the modes of induced spinors at string world
sheets are expressible using real spinor basis imply the localization? Whether this localization
takes place at fundamental level or only for effective action being due to SH, is a question to
be settled. The latter options looks more plausible.

To sum up, these observation suggest a profound re-evaluqtion of the beliefs related to color
degrees of freedom, to color confinement, and to what twistors really are.

15.3.4 How do the two twistor spaces assignable to M4 relate to each
other?

Twistor Grassmann approach [B33, B27, B26, B38, B39, B20] uses as twistor space the space
T1(M4) = SU(2, 2)/SU(2, 1) × U(1). Twistor lift of classical TGD uses M4 × S2: this seems
to be necessary since T1(M4) does not allow M4 as space-space. The formulation of the twistor
amplitudes in terms of SH using the data assignable to the 2-D surfaces - string world sheets
and partonic 2-surfaces perhaps - identifed as surfaces in T (M4) × T (CP2) is an attractive idea
suggesting a very close correspondence with twistor string theory of Witten and construction of
scattering amplitudes in twistor Grassmann approach.

One should be able to relate these two twistor spaces and map the twistor spaces T (X4)
identified as surfaces in T (H) = T (M4) × T (CP2) to those in T1(H) = T1(M4) × T (CP2). This
map is strongly suggested also by twistor string theory. This map raises hopes about the analogs
of twistor Grassmann amplitudes based on introduction of T (CP2).
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At least the projections of 2-surfaces to T (M4) should be mappable to those in T1(M4). A
stronger condition is that T (M4) is mappable to T1(M4). Incidence relations for twistors Z = (λ, µ)
assigning to given M4 coordinates twistor sphere, are given by

µα̇ = mαα̇λ
α .

This condition determines a 2-D sub-space - complex light ray - of complexified Minkowski space
M4
c . Also complex scaling of Z determines the same sub-space. Therefore twistor sphere corre-

sponds to a complex light ray M4
c , whose points differ by a shift by a complex light-like vector (λ

is null bi-spinor annihilated by light-like m).

Since twistor line (projective sphere) determines a point of M4
c , two points of twistor sphere

labelled by A and B are needed to determined m:

mαα̇ =
λA,αµB,α̇
〈λAλB〉〉

+
λB,αµA,α̇
〈λBλA〉

.

The solutions are invariant under complex scalings (λ, µ) → k(λ, µ). Therefore co-incidence rela-
tions allow to assign projective line - sphere S2 - to a point of M4 in T (M4). This sphere naturally
corresponds to S2 in T (M4) = M4×S2. This allows to assign pairs (m×S2) in T (M4) to spheres
of T1(M4) and one can map the projections of 2-surfaces to T (M4) to T1(M4).

Thus one cannot assign M4 point to single twistor but can map any pair of points at twistor
sphere of T1(M4) to the same point of M4 in T (M4) = M4 × S2 and also identify the twistor
sphere with S2. Twistor spheres are labelled by the base space of T1(M4) and therefore base space
can be mapped to M4.

Two M4 points separated by light-like distance correspond to twistor spheres intersecting
at one point as is clear from the fact that the difference m1 − m2 of the points annihilates the
twistor λ. T1(M4) is singular as fiber bundle over M4 since the same point of fiber is projected to
two different points of M4.

Could one replace T (M4) with T1(M4) by modifying the induction procedure suitable?

1. T1(M4) = SU(2, 2)/SU(2, 1)×U(1) has SU(2, 2) invariant metric and SU(2, 2) corresponds
to the 15-D spin covering group of SO(4, 2) having SO(3, 1) as sub-group. What does one
obtain if one induces the metric of the base space of T1(M4) to M4 via the above identifica-
tion?

The induced metric would depend on the choice of the base space, and one would have
analog of gauge invariance since for a given point of the base the point of the fiber sphere
can be chosen freely. A reasonable guess is that the induced metric is determined apart from
conformal scaling. One could fix the gauge by - say - assuming that the S2 point is constant
but it is not clear whether this allows to get the flat M4 metric with any choice.

2. If the twistor sphere of T1(M4) has radius of order Planck length lP , the overall scaling
factor of the metric of T1(M4) is of order l2P . Also the induced M4 metric would have this
scaling factor. For T1(M4) one could not perform this scaling. This need not be a problem
in T (M4) since one scale up the flat metric of M4 by scaling the coordinates. This kind of
scaling would in fact smooth out the possible deviations from flat M4 metric very effectively.
In any case, it seems that one must assume that imbedding space corresponds to T (M4).

15.3.5 Can the Kähler form of M4 appear in Kähler action?

I have already earlier considered the question whether the analog of Kähler form assignable to M4

could appear in Kähler action. Could one replace the induced Kähler form J(CP2) with the sum
J = J(M4) + J(CP2) such that the latter term would give rise to a new component of Kähler
form both in space-time interior at the boundaries of string world sheets regarded as point-like
particles? This could be done both in the Kähler action for the interior of X4 and also in the
topological magnetic flux term

∫
J associated with string world sheet and reducing to a boundary

term giving couplings to U(1) gauge potentials Aµ(CP2) and Aµ(M4) associated with J(CP2) and
J(M4). The interpretation of this coupling is an interesting challenge.
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Conditions on J(M4)

What conditions one can pose on J(M4)?

1. The simplest possibility is that J(M4) is covariantly constant and self-dual and satisfies
J2(M4) = −g(M4) meaning that J(M4) resp. g(M4) represents imaginary resp. real unit.
Hypercomplexity for M2 would suggest the restriction J2(M2) = g(M2) and J2(E2) =
−g(E2). Since complexified octonions are used, it is convenient to include imaginary unit
to J(M2) so that one indeed obtains J2(M4) = −g(M4). J(M4) would define a global
decomposition M4 = M2 × E2 in terms of parallel constant electric and magnetic fields
of equal magnitude. CD with this variant of J(M4) would be naturally associated with
planewave like radiative solutions.

2. One could however give up the covariant constancy. In this case spherically symmetric
variants of J(M4) naturally associated with spherically symmetric stationary metric and
possible analogs of Robertson-Walker metrics. J(M4) would be closed except at the world
line connecting the tips of CD and carry identical magnetic and electric charges.

3. J(M4) would define Hamilton Jacobi-structure and an attractive idea is that the orthogonal
2-surfaces associated with the foliation of M4 are orbits of a subgroup of Poincare group.
This structure would characterize quantum measurement at the level of WCW and quantum
measurement would involve selection of a sector of WCW characterized by J(M4) [K41].

The most plausible assumption is that J(M4) is covariantly constant.

Objections against J(M4)

Consider now the objections against introducing J(M4) to the Kähler action at imbedding space
level.

1. J(M4) would would break translational and Lorentz symmetries at the level of imbedding
space since J(M4) cannot be Lorentz invariant. For imbedding space spinor modes this
term would bring in coupling to the self-dual Kähler form in M4. The simplest choice is
A = (At = z,Az = 0, Ax = y,Ay = 0) defining decomposition M4 = M2 × E2. For Dirac
equation in M4 one would have free motion in preferred time-like (t,z)-plane plane M2 in
whereas in x- and y-directions (E2 plane) would one have harmonic oscillator potentials due
to the gauge potentials of electric and magnetic fields. One would have something very similar
to quark model of hadron: quark momenta would have conserved longitudinal part and non-
conserved transversal part. The solution spectrum has scaling invariance Ψ(mk)→ Ψ(λmk)
so that there is no preferred scale and the transversal scales scale as 1/E and 1/kx.

2. Since J(M4) is not Lorentz invariant, Lorentz boosts would produce new M2 × E2 decom-
position (or its local variant). If one assumes above kind of linear gauge as gauge invariance
suggests, the choices with fixed second tip of causal diamond (CD) define finite-dimensional
moduli space SO(3, 1)/SO(1, 1)×SO(2) having in number theoretic vision an interpretation
as a choice of preferred hypercomplex plane and its orthogonal complement. This is the
moduli space for hypercomplex structures in M4 with the choices of origins parameterized
by M4. The introduction of the moduli space would allow to preserve Poincare invariance.

3. If one generalizes the condition for Kähler metric to J2(M4) = −g(M4) fixing the scaling
of J , the coupling to A(M4) is also large and suggests problems with the large breaking
of Poincare symmetry for the spinor modes of the imbedding space for given moduli. The
transversal localization by the self-dual magnetic and electric fields for J(M4) would produce
wave packets in transversal degrees of freedom: is this physical?

This moduli space is actually the moduli space introduced for causal diamonds (CDs) in
zero energy ontology (ZEO) forced by the finite value of volume action: fixing of the line
connecting the tips of CD the Lorentz boost fixing the position for the second tip of CD
parametrizes this moduli space apart from division with the group of transformations leaving
the planes M2 and E2 having interpretation a plane defined by light-like momentum and
polarization plane associated with a given CD invariant.
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4. Why this kind of symmetry breaking for Poincare invariance? A possible explanation pro-
posed already earlier is that quantum measurement involves a selection of quantization axis.
This choice necessarily breaks the symmetries and J(M4) would be an imbedding space cor-
relate for the selection of rest frame and quantization axis of spin. This conforms with the
fact that CD is interpreted as the perceptive field of conscious entity at imbedding space level:
the contents of consciousness would be determined by the superposition of space-time sur-
faces inside CD. The choice of J(M4) for CD would select preferred rest system (quantization
axis for energy as a line connecting tips of CD) via electric part of J(M4) and quantization
axis of spin (via magnetic part of J(M4). The moduli space for CDs would be the space for
choices of these particular quantization axis and in each state function reduction would mean
a localization in this moduli space. Clearly, this reduction would be higher level reduction
and correspond to a decision of experimenter.

To summarize, for J(M4) = 0 Poincare symmetries are realized at the level of imbedding
space but obviously broken slightly by the geometry of CD. The allowance of J(M4) 6= 0 implies
that both translational and rotational symmetries are reduced for a given CD: the interpretation
would be in terms of a choice of quantization axis in state function reduction. They are however
lifted to the level of moduli space of CDs and exact in this more abstract sense. This is nothing
new: already the introduction of ZEO and CDs force by volume term in action forced by twistor
lift of TGD implies the same. Also the view about state function reduction requires wave functions
in the moduli space of CDs. This is also essential for understanding how the arrow of geometric
time is inherited from that of subjective time in TGD inspired theory of consciousness [K4, K118].

Situation at space-time level

What about the situation at space-time level?

1. The introduction of J(M4) part to Kähler action has nice number theoretic aspects. In
particular, J selects the preferred complex and quaternionic sub-space of octonionic space of
imbedding space. The simplest possibility is that the Kähler action is defined by the Kähler
form J(M4) + J(CP2).

Since M4 and CP2 Kähler geometries decouple it should be possible to take the counterpart
of Kähler coupling strength in M4 to be much larger than in CP2 degrees of freedom so that
M4 Kähler action is a small perturbation and slowly varying as a functional of preferred
extremal. This option is however not in accordance with the idea that entire Kähler form is
induced.

2. Whether the proposed ansätze for general solutions make still sense is not clear. In particular,
can one still assume that preferred extremals are minimal surfaces? Number theoretical vision
strongly suggests - one could even say demands - the effective decoupling of Kähler action
and volume term. This would imply the universality of quantum critical dynamics. The
solutions would not depend at all on the coupling parameters except through the dependence
on boundary conditions. The coupling between the dynamics of Kähler action and volume
term would come also from the conservation conditions at light-like 3-surfaces at which the
signature of the induced metric changes.

3. At space-time level the field equations get more complex if the M4 projection has dimension
D(M4) > 2 and also for D(M4) = 2 if it carries non-vanishing induced J(M4). One would
obtain cosmic strings of form X2 × Y 2 as minimal surface extremals of ordinary Kähler
action or X2 Lagrangian manifold of M4 as also CP2 type vacuum extremals and their
deformations with M4 projection Lagrangian manifold. Thus the differences would not be
seen for elementary particle and string like objects. Simplest string worlds sheet for which
J(M4) vanishes would correspond to a piece of plane M2.

M4 is the simplest minimal surface extremal of Kähler action necessarily involving also
J(M4). The action in this case vanishes identically by self-duality (in Euclidian signature
self-duality does not imply this). For perturbations of M4 such as spherically symmetric
stationary metric the contribution of M4 Kähler term to the action is expected to be small
and the come mainly from cross term mostly and be proportional to the deviation from flat
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metric. The interpretation in terms of gravitational contribution from M4 degrees of freedom
could make sense.

4. What about massless extremals (MEs)? How the induced metric affects the situation and
what properties second fundamental form has? Is it possible to obtain a situation in which the
energy momentum tensor Tα and second fundamental form Hk

αβ have in common components

which are proportional to light-like vector so that the contraction TαβHk
αβ vanishes?

Minimal surface property would help to satisfy the conditions. By conformal invariance one
would expect that the total Kähler action vanishes and that one has JαγJ

γβ ∝ agαβ +bkαkβ .
These conditions together with light-likeness of Kähler current guarantee that field equations
are satisfied.

In fact, one ends up to consider a generalization of MEs by starting from a generalization
of holomorphy. Complex CP2 coordinates ξi would be functions of light-like M2 coordinate
u+ = k · m, k light-like vector, and of complex coordinate w for E2 orthogonal to M2.
Therefore the CP2 projection would 3-D rather than 2-D now.

The second fundamental form has only components of form Hk
u+w, Hk

u+w
and Hk

ww, Hk
ww.

The CP2 contribution to the induced metric has only components of form ∆gu+w, ∆g
+w,

and gww. There is also contribution gu+u− = 1, where v is the light-like dual of u in plane
M2. Contravariant metric can be expanded as a power series for in the deviation (∆gu+w,
∆gu+w) of the metric from (gu+u− , gww). Only components of form gu+,ui and gw,w are
obtained and their contractions with the second fundamental form vanish identically since
there are no common index pairs with simultaneously non-vanishing components. Hence it
seems that MEs generalize!

I have asked earlier whether this construction might generalize for ordinary MEs. One can in-
troduce what I have called Hamilton-Jacobi structure for M4 consisting of locally orthogonal
slicings by integrable 2-surfaces having tangent space having local decomposition M2

x × E2
x

with light-like direction depending on point x. An objection is that the direction of light-like
momentum depends on position: this need not be inconsistent with momentum conserva-
tion but would imply that the total four-momentum is not light-like anymore. Topological
condensation for MEs and at MEs could imply this kind modification.

5. There is also a topological magnetic flux type term for string world sheet. Topological term
can be transformed to a boundary term coupling classical particles at the boundary of string
world sheet to CP2 Kähler gauge potential (added to the equation for a light-like geodesic
line). Now also the coupling to M4 gauge potential would be obtained. The condition
J(M4) +J(CP2) = 0 at string world sheets [L22] is very attractive manner to identify string
world sheets as analogs of Lagrangian manifolds but does not imply the vanishing of the net
U(1) couplings at boundary since the induce gauge potentials are in general different.

Also topological term including also M4 Kähler magnetic flux for string world sheet con-
tributes also to the modified Dirac equation since the gamma matrices are modified gamma
matrices required by super-conformal symmetries and defined as contractions of canonical
momentum densities with imbedding space gamma matrices [K88]. This is true both in
space-time interior, at string world sheets and at their boundaries. CP2 (M4) term gives a
contribution proportional to CP2 (M4) gamma matrices.

At imbedding space level transversal localization would be the outcome and a good guess
is that the same happens also now. This is indeed the case for M4 defining the simplest
extremal. The general interpretation of M4 Kähler form could be as a quantum tool for
transversal dynamical localization of wave packets in Kähler magnetic and electric fields of
M4. Analog for decoherence occurring in transversal degrees of freedom would be in question.
Hadron physics could be one application.

Testing the existence of J(M4)

How to test the idea about J(M4)?
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1. It might be possible to kill the assumption that J(M4) is covariantly constant by showing
that one does not obtain spherically symmetric Schwartschild type metric as a minimal
surface extremal of generalized Kähler action: these extremals are possible for ordinary
Kähler action [L19] [L20]. For the canonical imbedding of M4 field equations are satisfied
since energy momentum tensor vanishes identically. For the small deformations the presence
of J(M4) would reduce rotational symmetry to cylindrical symmetry.

The question is basically about how large the moduli space of forms J(M4) can be allowed
to be. The mere self duality and closedness condition outside the line connecting the tips
of CD allows also variants which are spherically symmetric in either Minkowski coorinates
or Robertson-Walker coordinates for light-cone.An attractive proposal is that the pairs of
orthogonal 2-surface correspond to Hamilton-Jacobi structures for which the two surfaces
are orbits of subgroups of Poincare group.

2. J(M4) could make its presence manifest in the physics of right-handed neutrino having no
direct couplings to electroweak gauge fields. Mixing with left handed neutrino is however
induced by mixing of M4 and CP2 gamma matrices. The transversal localization of right-
handed neutrino in a background, which is a small deformation of M4 could serve as an
experimental signature.

3. CP breaking in hadronic systems is one of the poorly understood aspects of fundamental
physics and relates closely to the mysterious matter-antimatter asymmetry. The constant
electric part of self dual J(M4) implies CP breaking. I have earlier consider that Kähler
electric fields could cause this breaking but now the electric field is not constant. Second
possibility is that matter and antimatter correspond to different values of heff and are
dark relative to each other. The question is whether J(M4) could explain the observed CP
breaking as appearing already at the level of imbedding space M4 × CP2 and whether this
breaking could explain hadronic CP breaking and matter anti-matter asymmetry. Could M4

part of Kähler electric field induce different heff/h = n for particles and antiparticles.

Kerr effect, breaking of T symmetry, and Kähler form of M4

I encountered in Facebook a link to a very interesting article [D1] (see http://tinyurl.com/

h5lmplw). Here is the abstract of the article.
We prove an instance of the Reciprocity Theorem that demonstrates that Kerr rotation, also

known as the magneto-optical Kerr effect, may only arise in materials that break microscopic time
reversal symmetry. This argument applies in the linear response regime, and only fails for nonlinear
effects. Recent measurements with a modified Sagnac Interferometer have found finite Kerr rotation
in a variety of superconductors. The Sagnac Interferometer is a probe for nonreciprocity, so it must
be that time reversal symmetry is broken in these materials.

Magneto-optic Kerr effect (see http://tinyurl.com/hef8xgv) occurs when a circularly
polarized light beam (plane wave) (often with normal incidence) reflects from a sample. For
instance, reflected circular polarized beams suffers a phase change in the reflection: as if they would
spend some time at the surface before reflecting. Linearly polarized light reflects as elliptically
polarized light. In magneto-optic Kerr effect there are many options depending on the relative
directions of the reflection plane (incidence is not normal in the general case so that one can talk
about reflection plane) and magnetization.

Kerr angle θK is defined as 1/2 of the difference of these phase angle increments caused by
reflection for oppositely circularly polarized plane wave beams. As the name tells, magneto-optic
Kerr effect is often associated with magnetic materials. Kerr effect has been however observed also
for high Tc superconductors and this has raised controversy. As a layman in these issues I can
safely wonder whether the controversy is created by the expectation that there are no magnetic
fields inside the super-conductor. Anti-ferromagnetism is however important for high Tc supercon-
ductivity. In TGD based model for high Tc superconductors the supracurrents would flow along
pairs of flux tubes with the members of S = 0 (S = 1) Cooper pairs at parallel flux tubes carrying
magnetic fields with opposite (parallel) magnetic fluxes. Therefore magneto-optic Kerr effect could
be in question after all.

The author claims to have proven that Kerr effect in general requires breaking of microscopic
time reversal symmetry. Time reversal symmetry breaking (TRSB) caused by the presence of

http://tinyurl.com/h5lmplw
http://tinyurl.com/h5lmplw
http://tinyurl.com/hef8xgv
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magnetic field and in the case of unconventional superconductors is explained nicely at http:

//tinyurl.com/jbabcjt. Magnetic field is required. Magnetic field is generated by a rotating
current and by right-hand rule time reversal changes the direction of the current and also of
magnetic field. For spin 1 Cooper pairs the analog of magnetization is generated, and this leads
to T breaking.

This result is very interesting from the point of TGD. The reason is that twistorial lift of
TGD requires that imbedding space M4×CP2 has Kähler structure in generalized sense [L24, L38].
M4 has the analog of Kähler form, call it J(M4). J(M4) is assumed to be self-dual and covariantly
constant as also CP2 Kähler form, and contributes to the Abelian electroweak U(1) gauge field
(electroweak hypercharge) and therefore also to electromagnetic field. By definition it satisfies
J2(M4) = −g(M4) saying that it represents imaginary unit geometrically.

J(M4) implies breaking of Lorentz invariance since it defines decomposition M4 = M2×E2

implying preferred rest frame and preferred spatial direction identifiable as direction of spin quan-
tization axis. In zero energy ontology (ZEO) one has moduli space of causal diamonds (CDs) and
therefore also moduli space of Kähler forms and the breaking of Lorentz invariance cancels. Note
that a similar Kähler form is conjectured in quantum group inspired non-commutative quantum
field theories and the problem is the breaking of Lorentz invariance.

What is interesting that the action of P,CP, and T on Kähler form transforms it from self-
dual to anti-self-dual form and vice versa. If J(M4) is self-dual as also J(CP2), all these 3 discrete
symmetries are broken in arbitrarily long length scales. On basis of tensor property of J(M4) one
expects P: (J(M2), J(E2) → (J(M2),−J(E2) and T: (J(M2), J(E2) → (−J(M2), J(E2). Under
C one has (J(M2), J(E2)→ (−J(M2),−J(E2). This gives CPT: (J(M2), J(E2)→ (J(M2), J(E2)
as expected.

One can imagine several consequences at the level of fundamental physics.

1. One implication is a first principle explanation for the mysterious CP violation and matter
antimatter asymmetry not predicted by standard model (see below).

2. A new kind of parity breaking is predicted. This breaking is separate from electroweak parity
breaking and perhaps closely related to the chiral selection in living matter.

3. The breaking of T might in turn relate to Kerr effect if the argument of authors is correct.
It could occur in high Tc superconductors in macroscopic scales. Also large heff/h = n
scaling up quantum scales in high Tc superconductors could be involved as with the breaking
of chiral symmetry in living matter. Strontium ruthenate for which Cooper pairs are in
S = 1 state is is indeed found to exhibit TRSB (for references and explanation see http:

//tinyurl.com/jbabcjt).

In TGD based model of high Tc superconductivity [K57, K58] the members of the Cooper
pair are at parallel magnetic flux tubes with the same spin direction of magnetic field. The
magnetic fields and thus the direction of spin component in this direction changes under T
causing TRSB. The breaking of T for S = 1 Cooper pairs is not spontaneous but would occur
at the level of physics laws: the time reversed system finds itself experiences in the original
self-dual J(M4)) rather than in (−J(M2), J(E2)) demanded by T symmetry.

15.3.6 What causes CP violation?

CP violation and matter antimatter asymmetry involving it represent white regions in the map
provided by recent day physics. Standard model does not predict CP violation necessarily accom-
panied by the violation of time reflection symmetry T by CPT symmetry assumed to be exact. The
violation of T must be distinguished from the emergence of time arrow implies by the randomness
associated with state function reduction.

CP violation was originally observed for mesons via the mixing of neutral kaon and antikaon
having quark content ns and ns. The lifetimes of kaon and antikaon are different and they transform
to each other. CP violation has been also observed for neutral mesons of type nb. Now it has
been observed also for baryons Λb with quark composition u-d-b and its antiparticle (see http:

//tinyurl.com/zyk8w44). Standard model gives the Feynman graphs describing the mixing in
standard model in terms of CKM matrix (see http://tinyurl.com/hvpz2su).

http://tinyurl.com/jbabcjt
http://tinyurl.com/jbabcjt
http://tinyurl.com/jbabcjt
http://tinyurl.com/jbabcjt
http://tinyurl.com/zyk8w44
http://tinyurl.com/zyk8w44
http://tinyurl.com/hvpz2su
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The CKM mixing matrix associated with weak interactions codes for the CP violation.
More precisely, the small imaginary part for the determinant of CKM matrix defines the invariant
coding for the CP violation. The standard model description of CP violation involves box diagrams
in which the coupling to heavy quarks takes place. b quark gives rise to anomalously large CP
violation effect also for mesons and this is not quite understood. Possible new heavy fermions in
the loops could explain the anomaly.

Quite generally, the origin of CP violation has remained a mystery as also CKM mixing. In
TGD framework CKM mixing has topological explanation in terms of genus of partonic 2-surface
assignable to quark (sphere, torus or sphere with two handles). Topological mixings of U and
D type quarks are different and the difference is not same for quarks and antiquarks. But this
explains only CKM mixing, not CP violation.

Classical electric field - not necessary electromagnetic - prevailing inside hadrons could cause
CP violation. So called instantons are basic prediction of gauge field theories and could cause strong
CP violation since self-dual gauge field is involved with electric and magnetic fields having same
strength and direction. That this strong CP violation is not observed is a problem of QCD. There
are however proposals that instantons in vacuum could explain the CP violation of hadron physics
(see http://tinyurl.com/zptbd4j).

What says TGD? I have considered this in [L40] and earlier blog posting (see http://

tinyurl.com/hvzqjua).

1. M4 and CP2 are unique in allowing twistor space with Kähler structure (in generalized sense
for M4). If the twistor space T (M4) = M4 × S2 having bundle projections to both M4

and to the conventional twistor space CP3, or rather its non-compact version) allows Kähler
structure then also M4 allow the generalized Kähler structure and the analog symplectic
structure.

This boils down to the existence of self-dual and covariantly constant U(1) gauge field J(M4)
for which electric and magnetic fields E and B are equal and constant and have the same
direction. This field is not dynamical like gauge fields but would characterize the geometry
of M4. J(M4) implies violation Lorentz invariance. TGD however leads to a moduli space
for causal diamonds (CDs) effectively labelled by different choices of direction for these self-
dual Maxwell fields. The common direction of E and B could correspond to that for spin
quantization axis. J(M4) has nothing to do with instanton field. It should be noticed that
also the quantum group inspired attempts to build quantum field theories for which space-
time geometry is non-commutative introduce the analog of Kähler form in M4, and are
indeed plagued by the breaking of Lorentz invariance. Here there is no moduli space saving
the situation.

2. The choice of quantization axis would therefore have a correlate at the level of “world of
classical worlds” (WCW). Different choices would correspond to different sectors of WCW.
The moduli space for the choices of preferred point of CP2 and color quantization axis corre-
sponds to the twistor space T (CP2) = SU(3)/U(1)×U(1) of WCW. One could interpret also
the twistor space T (M4) = M4 × S2 as the space with given point representing the position
of the tip of CD and the direction of the quantization axis of angular momentum. This choice
requires a characterization of a unique rest system and the directions of quantization axis and
time axes defines plane M2 playing a key role in TGD approach to twstorialization [L24, L38].

3. The prediction would be CP violation for a given choice of J(M4). Usually this violation
would be averaged out in the average over the moduli space for the choices of M2 but in some
situation this would not happen. Why the CP violation does not average out when there
is CKM mixing of quarks? Why the parity violation due to the preferred direction is not
compensated by C violation meaning that the directions of E and B fields would be exactly
opposite for quarks and antiquarks. Could the fact that quarks are not free but inside hadron
induce CP violation? Could a more abstract formulation say that the wave function in the
moduli space for J(M4) (wave function for the choices of spin quantization axis!) is not CP
symmetric and this is reflected in the CKM matrix.

4. An important delicacy is that J(M4) can be both self-dual and anti-self-dual depending on
whether the magnetic and electric field have same or opposite directions. It will be found

http://tinyurl.com/zptbd4j
http://tinyurl.com/hvzqjua
http://tinyurl.com/hvzqjua
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that reflection P and CP transform self-dual J(M4) to anti-self-dual one. If only self-dual
J(M4) is allowed, one has both parity breaking and CP violations.

Can one understand the emergence of CP violation in TGD framework?

1. Zero energy state is pair of two positive and negative energy parts. Let us assume that
positive energy part is fixed - one can call corresponding boundary of CD passive. This state
corresponds to the outcome of state function reduction fixing the direction of quantization
axes and producing eigenstates of measured observables, for instance spin. Single system
at passive boundary is by definition unentangled with the other systems. It can consists
of entangled subsystems hadrons are basic example of systems having entanglement in spin
degrees of freedom of quarks: only the total spin of hadron is precisely defined.

The states at the active boundary of CD evolve by repeated unitary steps by the action
of the analog of S-matrix and are not anymore eigenstates of single particle observables
but entangled. There is a sequence of trivial state function reductions at passive boundary
inducing sequence of unitary time evolutions to the state at the active boundary of CD and
shifting it. This gives rise to self as a generalized Zeno effect.

Classically the time evolution of hadron corresponds to a superposition of space-time surfaces
inside CD. The passive ends of the space-time surface or rather, the quantum superposition
of them - is fixed. At the active end one has a superposition of 3-surfaces defining classical
correlates for quantum states at the active end: this superposition changes in each unitary
step during repeated measurements not affecting the passive end. Also time flows, which
means that the distance between the tips of CD defining clock-time increases as the active
boundary of CD shifts farther away.

2. The classical field equations for space-time surface follow from an action, which at space-
time level is sum of Kähler action and volume term. If Kähler form at space-time surface
is induced (projected to space-time surface) from J = J(M4) + J(CP2), the classical time
evolution is CP violating. CKM mixing is induced by different topological mixings for U
and D type quarks (recall that 3 particle generations correspond to different genera for
partonic 2-surfaces: sphere, torus, and sphere with two handles). J(M4) + J(CP2) defines
the electroweak U(1) component of electric field so that J(M4) contributes to U(1) part of
em field and is thus physically observable.

3. Topological mixing of quarks corresponds to a superposition of time evolutions for the par-
tonic 2-surfaces, which can also change the genus of partonic 2-surface defined as the number
of handles attached to 2-sphere. For instance, sphere can transform to torus or torus to a
sphere with two handles. This induces mixing of quantum states. For instance, one can say
that a spherical partonic 2-surface containing quark would develop to quantum superposi-
tion of sphere, torus, and sphere with two handles. The sequence of state function reductions
leaving the passive boundary of CD unaffected (generalized Zeno effect) by shifting the active
boundary from its position after the first state function reduction to the passive boundary
could but need not give rise to a further evolution of CKM matrix.

4. The determinant of CKM matrix is equal to phase factor by unitarity (UU† = 1) and its
imaginary part characterizes CP breaking. The imaginary part of the determinant should be
proportional to the Jarlskog invariant J = ±Im(VusVcbV ubV cs) characterizing CP breaking
of CKM matrix (see http://tinyurl.com/kakxwl8).

If the topological mixings are different for U and D type quarks, one obtains CKM mixing.
How could the classical time evolution for quarks and for antiquarks as their CP transforms differ?
To answer the question one must look how J(M4) transforms under C, P , T and CP .

1. J(M4) = (J0z, Jxy = εJ0z), ε = ±1, characterizes hadronic space-time sheet (all space-time
sheets in fact). Since J(M4) is tensor, P changes only the sign of J0z giving J(M4) →
(−J0z, Jxy). Since C changes the signs of charges and therefore the signs of fields created
by them, one expects J(M4) → −J(M4) under C. CP would give J(M4) → (J0z,−Jxy)
transforming selfdual J(M4) to anti-selfdual J(M4). If WCW has no anti-self-dual sector,
CP is violated at the level of WCW.

http://tinyurl.com/kakxwl8
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2. If CPT leaves J(M4) invariant, one must have J(M4) → (J0z,−Jxy) under T rather than
J(M4) → (−J0z, Jxy). The anti-unitary character of T could correspond for additional
change of sign under T . Otherwise CPT should act as J(M4)→ −J(M4) and only (CPT )2

would correspond to unity.

3. Same considerations apply to J(CP2) but the difference would be that induced J(M4) for
space-time surfaces, which are small deformations of M4 covariantly constant in good ap-
proximation. Also for string world sheets corresponding to small cosmological constant
J(M4) × J(M4) − 2 ' 0 holds true in good approximation and induced J(M4) at string
world sheet is in good approximation covariantly constant. If the string world sheet is just
M2 characterizing J(M4) the condition is exact and was has Kähler electric field induced by
J(M4) but no corresponding magnetic field. This would make the CP breaking effect large.

If CP is not violated, particles and their CP transforms correspond to different sectors of
WCW with self dual and anti-self dual J(M4). If only self-dual sector of WCW is present then CP
is violated. Also P is violated at the level of WCW and this parity breaking is different from that
associated with weak interactions and could relate to the geometric parity breaking manifesting
itself via chiral selection in living matter. Classical time evolutions induce different CKM mixings
for quarks and antiquarks reflecting itself in the small imaginary part of the determinant of CKM
matrix. CP breaking at the level of WCW could explain also matter-antimatter asymmetry. For
instance, antimatter could be dark with different value of heff/h = n.

What is interesting that P is badly broken in long length scales as also CP. The same could
be true for T. Could this relate to the thermodynamical arrow of time? In ZEO state function
reductions to the opposite boundary change the direction of clock time. Most physicist believe
that the arrow of thermodynamical time and thus also clock time is always the same. There is
evidence that in living matter both arrows are possible. For instance, Fantappie has introduced
the notion of syntropy as time reversed entropy [J3]. This suggests that thermodynamical arrow of
time could correspond to the dominance of the second arrow of time and be due to self-duality of
J(M4) leading to breaking of T . For instance, the clock time spend in time reversed phase could
be considerably shorter than in the dominant phase. A quantitative estimate for the ratio of these
times might be given some power of the ratio X = lP /R.

15.3.7 Quantitative picture about CP breaking in TGD

One must specify the value of α1 and the scaling factor transforming J(CD) having dimension
length squared as tensor square root of metric to dimensionless U(1) gauge field F = J(CD)/S.
This leads to a series of questions.

How to fix the scaling parameter S?

1. The scaling parameter relating J(CD) and F is fixed by flux quantization implying that the
flux of J(CD) is the area of sphere S2 for the twistor space M4 × S2. The gauge field is
obtained as F = J/S, where S = 4πR2(S2) is the area of S2.

2. Note that in Minkowski coordinates the length dimension is by convention shifted from the
metric to linear Minkowski coordinates so that the magnetic field B1 has dimension of inverse
length squared and corresponds to J(CD)/SL2, where L is naturally be taken to the size
scale of CD defining the unit length in Minkowski coordinates. The U(1) magnetic flux would
the signed area using L2 as a unit.

How R(S2) relates to Planck length lP ? lP is either the radius lP = R of the twistor sphere
S2 of the twistor space T = M4 × S2 or the circumference lP = 2πR(S2) of the geodesic of S2.
Circumference is a more natural identification since it can be measured in Riemann geometry
whereas the operational definition of the radius requires imbedding to Euclidian 3-space.

How can one fix the value of U(1) coupling strength α1? As a guideline one can use CP
breaking in K and B meson systems and the parameter characterizing matter-antimatter symmetry.

1. The recent experimental estimate for so called Jarlskog parameter characterizing the CP
breaking in kaon system is J ' 3.0 × 10−5. For B mesons CP breading is about 50 times
larger than for kaons and it is clear that Jarlskog invariant does not distinguish between
different meson so that it is better to talk about orders of magnitude only.
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2. Matter-antimatter asymmetry is characterized by the number r = nB/nγ ∼ 10−10 telling
the ratio of the baryon density after annihilation to the original density. There is about one
baryon 10 billion photons of CMB left in the recent Universe.

Consider now the identification of α1.

1. Since the action is obtained by dimensional reduction from the 6-D Kähler action, one could
argue α1 = αK . This proposal leads to unphysical predictions in atomic physics since
neutron-electron U(1) interaction scales up binding energies dramatically.

U(1) part of action can be however regarded a small perturbation characterized by the
parameter ε = R2(S2)/R2(CP2), the ratio of the areas of twistor spheres of T (M4) and
T (CP2). One can however argue that since the relative magnitude of U(1) term and ordinary
Kähler action is given by ε, one has α1 = ε× αK so that the coupling constant evolution for
α1 and αK would be identical.

2. ε indeed serves in the role of coupling constant strength at classical level. αK disappears
from classical field equations at the space-time level and appears only in the conditions for
the super-symplectic algebra but ε appears in field equations since the Kähler forms of J
resp. CP2 Kähler form is proportional to R2(S2) resp. R2(CP2) times the corresponding
U(1) gauge field. R(S2) appears in the definition of 2-bein for R2(S2) and therefore in the
modified gamma matrices and modified Dirac equation. Therefore

√
ε = R(S2)/R(CP2)

appears in modified Dirac equation as required by CP breaking manifesting itself in CKM
matrix.

NTU for the field equations in the regions, where the volume term and Kähler action couple
to each other demands that ε and

√
ε are rational numbers, hopefully as simple as possible.

Otherwise there is no hope about extremals with parameters of the polynomials appearing
in the solution in an arbitrary extension of rationals and NTU is lost. Transcendental values
of ε are definitely excluded. The most stringent condition ε = 1 is also unphysical. ε = 22r

is favoured number theoretically.

Concerning the estimate for ε it is best to use the constraints coming from p-adic mass
calculations.

1. p-Adic mass calculations [K39] predict electron mass as

me =
~

R(CP2)
√

5 + Y
.

Expressing me in terms of Planck mass mP and assuming Y = 0 (Y ∈ (0, 1)) gives an
estimate for lP /R(CP2) as

lP
R(CP2)

' 2.0× 10−4 .

2. From lP = 2πR(S2) one obtains estimate for ε, α1, g1 =
√

4πα1 assuming αK ' α ' 1/137
in electron length scale.

ε = 2−30 ' 1.0× 10−9 ,
α1 = εαK ' 6.8× 10−12 ,
g1 =

√
4πα1 ' 9.24× 10−6 .

There are two options corresponding to lP = R(S2) and lP = 2πR(S2). Only the length
of the geodesic of S2 has meaning in the Riemann geometry of S2 whereas the radius of S2 has
operational meaning only if S2 is imbedded to E3. Hence lP = 2πR(S2) is more plausible option.

For ε = 2−30 the value of l2P /R
2(CP2) is l2P /R

2(CP2) = (2π)2 × R2(S2)/R2(CP2) ' 3.7 ×
10−8. lP /R(S2) would be a transcendental number but since it would not be a fundamental
constant but appear only at the QFT-GRT limit of TGD, this would not be a problem.

One can make order of magnitude estimates for the Jarlskog parameter J and the fraction
r = n(B)/n(γ). Here it is not however clear whether one should use ε or α1 as the basis of the
estimate
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1. The estimate based on ε gives

J ∼
√
ε ' 3.2× 10−5 , r ∼ ε ' 1.0× 10−9 .

The estimate for J happens to be very near to the recent experimental value J ' 3.0× 10−5.
The estimate for r is by order of magnitude smaller than the empirical value.

2. The estimate based on α1 gives

J ∼ g1 ' 0.92× 10−5 , r ∼ α1 ' .68× 10−11 .

The estimate for J is excellent but the estimate for r by more than order of magnitude
smaller than the empirical value. One explanation is that αK has discrete coupling constant
evolution and increases in short scales and could have been considerably larger in the scale
characterizing the situation in which matter-antimatter asymmetry was generated.

There is an intriguing numerical co-incidence involved. heff = ~gr = GMm/v0 in solar
system corresponds to v0 ' 2−11 and appears as coupling constant parameter in the perturbative
theory obtained in this manner [K66]. What is intriguing that one has α1 = v2

0/4π
2 in this

case. Where does the troublesome factor (1/2π)2 come from? Could the p-adic coupling constant
evolutions for v0 and α1 correspond to each other and could they actually be one and the same
thing? Can one treat gravitational force perturbatively either in terms of gravitational field or
J(CD)? Is there somekind of duality involved?

Atomic nuclei have baryon number equal the sum B = Z+N of proton and neutron numbers
and neutral atoms have B = N . Only hydrogen atom would be also U(1) neutral. The dramatic
prediction of U(1) force is that neutrinos might not be so weakly interacting particles as has
been thought. If the quanta of U(1) force are not massive, a new long range force is in question.
U(1) quanta could become massive via U(1) super-conductivity causing Meissner effect. As found,
U(1) part of action can be however regarded a small perturbation characterized by the parameter
ε = R2(S2)/R2(CP2). One can however argue that since the relative magnitude of U(1) term and
ordinary Kähler action is given by ε, one has α1 = ε× αK .

Quantal U(1) force must be also consistent with atomic physics. The value of the parameter
α1 consistent with the size of CP breaking of K mesons and with matter antimatter asymmetry
is α1 = εαK = 2−30αK .

1. Electrons and baryons would have attractive interaction, which effectively transforms the em
charge Z of atom Zeff = rZ, r = 1 + (N/Z)ε1, ε1 = α1/α = ε × αK/α ' ε for αK ' α
predicted to hold true in electron length scale. The parameter

s = (1 + (N/Z)ε)2 − 1 = 2(N/Z)ε+ (N/Z)2ε2

would characterize the isotope dependent relative shift of the binding energy scale.

The comparison of the binding energies of hydrogen isotopes could provide a stringent bounds
of the value of α1. For lP = 2πR(S2) option one would have α1 = 2−30αK ' .68×10−11 and
s ' 1.4 × 10−10. s is by order of magnitude smaller than α4 ' 2.9 × 10−9 corrections from
QED (see http://tinyurl.com/kk9u4rh). The predicted differences between the binding
energy scales of isotopes of hydrogen might allow to test the proposal.

2. B = N would be neutralized by the neutrinos of the cosmic background. Could this occur
even at the level of single atom or does one have a plasma like state? The ground state binding
energy of neutrino atoms would be α2

1mν/2 ∼ 10−24 eV for mν = .1 eV! This is many many
orders of magnitude below the thermal energy of cosmic neutrino background estimated to
be about 1.95 × 10−4 eV (see http://tinyurl.com/ldu95o9). The Bohr radius would be
~/(α1mν) ∼ 106 meters and same order of magnitude as Earth radius. Matter should be
U(1) plasma. U(1) superconductor would be second option.

http://tinyurl.com/kk9u4rh
http://tinyurl.com/ldu95o9
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15.4 About the interpretation of the duality assignable to
Yangian symmetry

The D = 4 conformal generators acting on twistors have a dual representation in which they
act on momentum twistors: one has dual conformal symmetry, which becomes manifest in this
representation. These two separate symmetries extend to Yangian symmetry providing a powerful
constraint on the scattering amplitudes.

In TGD the conformal Yangian extends to super-symplectic Yangian - actually, all symmetry
algebras have a Yangian generalization with multi-locality generalized to multi-locality with respect
to partonic 2-surfaces. The generalization of the dual conformal symmetry has remained obscure.
In the following I describe what the generalization of the two conformal symmetries and Yangian
symmetry would mean in TGD framework. I also propose an information theoretic duality between
Euclidian and Minkowskian regions of space-time surface. I am not algebraist and apologize for
the unavoidable inaccuracies.

15.4.1 Formal definition associated with Yangian

The notion of Yangian appears as two very different looking variants. The first variant can be
found from Wikipedia (see goo.gl/q1twRZ) and second variant assignable to gauge theories can
be found from [B30, B31].

Consider first the Wikipedia definition. The definition is in terms of quantum group notion
in which the elements of matrix representing group element are made non-commuting operators.

1. The generators of Yangian algebra are labelled by an integer n ≥ −1 with n = −1 generator
identified as unit matrix. n ≥ 1 generators generate the algebra and commutators with
n = 1 generators preserving the weight allow to assign quantum numbers to them. From the

Wikipedia article one learns that Yangian is generated by elements t
(p)
ij , 1 ≤ i, j ≤ N , p ≥ 0

of quantum matrices satisfy the relations

[
t
(p+1)
ij , t

(q)
kl

]
−
[
t
(p)
ij , t

(q+1)
kl

]
= −(t

(p)
kj t

(q)
il − t

(q)
kj t

(p)
il ) . (15.4.1)

Note there are two operations involved: commutator and operator product. The formula here
is not consistent with the formula used in Yang-Mills theories for the commutators between
m = 0 generators and generators with generators having n ∈ {0, 1}, and it seems that this
formula suggesting m,n→ m+ n− 1 in commutator cannot hold true for the commutators
with m = 0 generators.

By defining t
(−1)
ij = δij and setting

T (z) =
∑
p≥−1

t
(p)
ij z

−p+1 . (15.4.2)

T (z) is thus a quantum matrix depending on the point of 2-D space.

2. Introduce R-matrix R(z) = 1+z−1P acting on CN ⊗CN , where P is the operator permuting
the tensor factors. This allows to write the defining relations as Yang-Baxter equation (see
http://tinyurl.com/gogn75s):

R12(z − w)T1(z)T2(w) = T2(w)T1(z)R12(z − w) . (15.4.3)

R12, which depends only on the difference z−w, performs the permutation of the generators
T1(z) and T2(w).

goo.gl/q1twRZ
http://tinyurl.com/gogn75s
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Yangian is a Hopf algebra with co-multiplication ∆ mapping T (z) acting in V to operator
acting in V ⊗ V , co-unit ε and antipode s given by

(∆⊗ id)T (z) = T12(z)T13(z) , (ε⊗ id)T (z) = I , (s⊗ id)T (z) = T (z)−1 .(15.4.4)

∆ taking generator T (z) acting in V to generator ∆(T ) = T12(z) acting in V ⊗ V . ∆
transforms a generator acting on single-particle states to a generator acting on 2-particles
states.

3. The Yangian weight of the commutator of elements with weights m and n is m + n − 1
rather than m + n as for Virasoro and Kac-Moody algebras. This means that generators
with conformal weight 1 do not affect the conformal weight and Cartan algebra elements
defining quantum numbers of generators have weight 1. For conformal algebras the Cartan
algebra defining quantum numbers has conformal weight 0.

For Virasoro algebra having integer valued conformal weights the scaling L0 = zd/dz appears
as basic derivative operation and generators are products Ln = znzd/dz. By taking trans-
lation operator T = d/dz as the derivative operator and writing Kn = znd/dz, the weight
of commutator becomes m + n − 1. This is a trivial change. The map u = exp(z) relates
these two representations. That n ≤ 2 appear in generators distinguishes the representations
from Virasoro and Kac-Moody representations - note however that also for these algebras
the generators with positive weight generate physical states.

What bothers me in this definition is that only the action of the generators with p = 1 leaves
the weight unaffected whereas for the dual conformal symmetry generators with both p = 0 and
p = 1 do this and define conformal symmetry and its dual.

15.4.2 Dual conformal symmetry in N = 4 SUSY

Yangian symmetry appears also in gauge theories and the definition looks very different from the
Wikipedia definition. In N = 4 SUSY conformal symmetry (in 4-D sense) has two representa-
tions. There is a duality between two representations of conformal generators crucial for twistor
Grassmannian approach [B30, B31] (see http://tinyurl.com/n22lwuy).

1. In the first representation conformal symmetry generators J
(0)
a are local and act in the space

of external momenta. This induces a local and linear action in twistor space.

2. The generators J
(1)
a of the dual conformal symmetry act in a local manner in the space of

region momenta and associated momentum twistor space whereas the action of J
(1)
a is bi-local

in the momentum space and corresponding twistor space.

Region momenta can be assigned with a twistor diagram defined by a closed polygon of
Minkowski space having region momenta (, which need not be light-like) as edges having
external light-like momenta emitted at the corners. The dual of this representation is the
representation in which the light-like external momenta summing up to zero form a closed
polygon.

Yangian is generated by ordinary generators J
(0)
a and bi-local dual generators J

(1)
a .

1. They satisfy the commutations

[
J (0)
a , J

(1)
b

]
= f c

ab J
(1)
c . (15.4.5)

This condition is perfectly sensible physically but is not consistent with the above general
consistency condition pf Eq. 15.4.1 from R-matrix requiring that the commutator has van-
ishing weight. Now the weights are additive in commutator.

http://tinyurl.com/n22lwuy
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2. The generators J
(1)
a have an easy-to-guess representation:

J (1)
a = f cb

a

∑
0≤i<j≤n

J
(0)
ib J

(0)
jc (15.4.6)

making explicit the bi-locality. The commutators of these generators have also weight 1.
This is consistent with the above general formula unlike the formula the commutators of
generators with vanishing weight. Both generators form a closed sub-algebra of Yangian and

this must be behind the possibility to represent J
(1)
a locally.

3. Also so called Serre relations are satisfied. They look rather complex and look different from
the relations associated with R-matrix.

X(a, b, c) + ε(a, b, c)X(b, c, a) + ε(c, a, b)X(c, a, b) = hεrm,tnY (l,m, n)f larf
m
bsf

n
ctf

rst ,

X(a, b, c) =
[
J (1)
a ,

[
J

(1)
b , J (0)

c }} , Y (l,m, n) = {J (0)
l , J (0)

m , J (0)
n

]
ε(a, b, c) = (−1)|a|(|b|+|c|) , εrm,tn = (−1)|r|m|+|t|n| .

(15.4.7)

Here the mixed brackets the [., } denote the graded commutator, and {., ..] denotes the
graded symmetrizer. h is a parameter characterizing the Yangian and should correspond to
the parameter characterizing quantum group.

These conditions are sufficient to give a representation of graded Yangian if the tensor product
R⊗R of the representation R and its conjugate R contains adjoint representation only once.
The higher generators can be generate by applying co-product operation to the generators.

4. Both local and bi-local generators form two closed sub-algebras. This is not consistent
with the consistency conditions of appearing in Wikipedia definition. The Wikipedia defi-

nition seems to be wrong for commutators of generators [J
(m)
A , J

(n)
B ] with weights (m,n) ∈

{(0, 0), (0, 1), (1, 0)}.

5. Co-product ∆ has representation

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(QA) = QA ⊗ 1 + 1⊗QA + fABCJ
B ⊗ JC . (15.4.8)

The first formula is obvious. Single particle generator lifted to a tensor product is sum of
the single particle generators acting on the tensor factors. When QA annihilates single spin
representations, one obtains just the defining formula for the bi-local generators.

One could have a situation in which single particle states are actually many-particle states
annihilated by QA and satisfying the condition that adjoint is contained only once in R⊗R.
In TGD framework one might argue that this kind of effective single particle states could
quite generally define bound states behaving like single particle states physically. One would
obtain infinite hierarchy of this kind of states realizing concretely the vision about fractal
hierarchy.
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15.4.3 Possible TGD based interpretation of Yangian symmetries

In TGD partonic 2-surfaces replace point-like objects and multi-locality is with respect to these.
The proposal is that the TGD counterpart of the Yangian algebra [B31] of gauge theories could act
as symmetries of many-parton states characterized by n partonic 2-surfaces assignable to the same
3-D surface at the boundary of causal diamond (CD). What is remarkable that this symmetry
would relate particle states with different particle numbers to each other unlike the usual single
particle symmetries.

1. This condition forces the partons to form a bound state with partonic 2-surfaces having space-
like separations. Note that the separations along orbits of wormhole throats at opposite ends
of CD are space-like or light-like. This must be taken into account when correlation functions
are calculated. In QFT there is no description of this kind and this could explain the general
failure of QFT in the description of bound states already in QED, where Bethe-Salpeter
equation predicts large numbers of non-existing states.

2. Yangian algebra involves complex (hypercomplex) coordinate z which could be associated
with the boundaries of string world sheets connecting partonic surfaces at the same boundary
(at opposite boundaries) of CD. One can also assign complex coordinate with partonic 2-
surfaces and the braiding of fermionic lines would be described by the matrix R assignable to
the Yangian. The Cartan algebra of local and bi-local string like operators define quantum
numbers for states. That point-like and string-like operators generate the algebra conforms
with the idea about tensor networks with nodes connected by edges.

On can think that partonic 2-surfaces form a single connected unit consisting of partonic
surfaces connected by boundaries of string world sheets assignable to the topological Feynman
diagram defined by the light-like 3-surface defining the boundary between Euclidian and
Minkowskian regions of the space-time surface.

3. The operation ∆ for Yangian would assign to the generators acting on single parton states
generators acting on 2-parton states. R12 would act as an exchange operation for parton
states, which could reduces to many-fermion states at partonic 2-surfaces.

4. R12 can appear in many contexts in TGD. It can be associated with braiding of fermionic
lines inside partonic orbits or magnetic flux tubes at the ends of space-time surfaces. It can
be also associated with the fermionic lines in the preferred plane M2 associated with twistor
scattering amplitudes.

From the twistorial point of view the preferred M2 defined by light-like quaterionic 8-
momentum is of special interest. M2 identified as octonionic complex plane and its com-
plexification brings in mind integrable field theories in M2 allowing Yangian symmetry char-
acterized by R-matrix. The scattering matrix is trivial for these field theories: scattering
involves only a phase shift. In twistorial approach to TGD scattering is non-trivial. The
R-matrix would be present also now and exchange the momentum projections in preferred
M2 plane. If the entire scattering diagram -apart from external lines corresponds to the same
M2, the braiding operation permutes also fermions at different partonic 2-surfaces located
at the ends of string.

The possibility to localize the action of generators J (1) in momentum twistor representation
leads to ask whether the stringy generators appearing TGD framework could allow local action
using the analog of the space of region momenta. Could M8 −H duality [K74, K110] make this
possible? At M8 level the light-like momenta (in 8-D sense) would correspond to differences of
region momenta assignable to strings connecting the partonic 2-surfaces. The 8-D region momenta
should be quaternionic. They cannot be light-like as is easy to see.

The notion of region momentum and thus localization would make sense only in M8, where
the wave functions are completely localizable to quaternionic light-like momenta in M8, whereas
in H one has localization to light-like momenta only in preferred M2 plus wave functions in the
space of planes M4 and in the space of transverse momenta in E2 ⊂M4. This would suggest that
M8 −H duality corresponds to the duality of twistor and momentum twistor representations.

What would be new that this duality would be realized also at the level of space-time sur-
faces. One would have associative/quaternionic space-time surfaces in M8 and preferred extremals
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of dimensionally reduced Kähler action in H identifiable as 6-D holomorphic surfaces representing
twistor spaces of space-time surfaces.

Note that M8 − H duality could be seen as a number-theoretic analog of spontaneous
compactification. Non-perturbative effects would force a delocalization in the space of light-like
8-momenta in M8 to give states having interpretation as wave functions in H. Nothing would
happen to the topology of M8. Only the state space would be compactified.

15.4.4 A new kind of duality of old duality from a new perspective?

M8−H duality [K74, K110] maps the preferred extremals in H to those M4×CP2 and vice versa.
The tangent spaces of an associative space-time surface in M8 would be quaternionic (Minkowski)
spaces.

In M8 one can consider also co-associative space-time surfaces having associative normal
space [K74]. Could the co-associative normal spaces of associative space-time surfaces in the case
of preferred extremals form an integrable distribution therefore defining a space-time surface in
M8 mappable to H by M8 −H duality? This might be possible but the associative tangent space
and the normal space correspond to the same CP2 point so that associative space-time surface in
M8 and its possibly existing co-associative companion would be mapped to the same surface of H.

This dead idea however inspires an idea about a duality mapping Minkowskian space-time
regions to Euclidian ones. This duality would be analogous to inversion with respect to the sur-
face of sphere, which is conformal symmetry. Maybe this inversion could be seen as the TGD
counterpart of finite-D conformal inversion at the level of space-time surfaces. There is also an
analogy with the method of images used in some 2-D electrostatic problems used to reflect the
charge distribution outside conducting surface to its virtual image inside the surface. The 2-D
conformal invariance would generalize to its 4-D quaterionic counterpart. Euclidian/Minkowskian
regions would be kind of Leibniz monads, mirror images of each other.

1. If strong form of holography (SH) holds true, it would be enough to have this duality at
the informational level relating only 2-D surfaces carrying the holographic information. For
instance, Minkowskian string world sheets would have duals at the level of space-time surfaces
in the sense that their 2-D normal spaces in X4 form an integrable distribution defining
tangent spaces of a 2-D surface. This 2-D surface would have induced metric with Euclidian
signature.

The duality could relate either a) Minkowskian and Euclidian string world sheets or b)
Minkowskian/Euclidian string world sheets and partonic 2-surfaces common to Minkowskian
and Euclidian space-time regions. a) and b) is apparently the most powerful option infor-
mation theoretically but is actually implied by b) due to the reflexivity of the equivalence
relation. Minkowskian string world sheets are dual with partonic 2-surfaces which in turn
are dual with Euclidian string world sheets.

(a) Option a): The dual of Minkowskian string world sheet would be Euclidian string world
sheet in an Euclidian region of space-time surface, most naturally in the Euclidian
”wall neighbour” of the Minkowskian region. At parton orbits defining the light-like
boundaries between the Minkowskian and Euclidian regions the signature of 4-metric
is (0,−1,−1,−1) and the induced 3-metric has signature (0,−1,−1) allowing light-like
curves. Minkowskian and Euclidian string world sheets would naturally share these
light-like curves aas common parts of boundary.

(b) Option b): Minkowskian/Euclidian string world sheets would have partonic 2-surfaces
as duals. The normal space of the partonic 2-surface at the intersection of string world
sheet and partonic 2-surface would be the tangent space of string world sheets so that
this duality could make sense locally. The different topologies for string world sheets
and partonic 2-surfaces force to challenge this option as global option but it might hold
in some finite region near the partonic 2-surface. The weak form of electric-magnetic
duality [K105] could closely relate to this duality.

In the case of elementary particles regarded as pairs of wormhole contacts connected by flux
tubes and associated strings this would give a rather concrete space-time view about stringy
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structure of elementary particle. One would have a pair of relatively long (Compton length)
Minkowskian string sheets at parallel space-time sheets completed to a parallelepiped by
adding Euclidian string world sheets connecting the two space-time sheets at two extremely
short (CP2 size scale) Euclidian wormhole contacts. These parallelepipeds would define lines
of scattering diagrams analogous to the lines of Feynman diagrams.

This duality looks like new but as already noticed is actually just the old electric-magnetic
duality [?]een from number-theoretic perspective.

15.5 TGD view about construction of twistor amplitudes

In the following TGD view about twistorialization and its relation to other visions about TGD
is discussed. I start with a brief summary of twistor approach to scattering amplitudes and then
describe the application of this approach TGD.

15.5.1 Some key ideas of the twistor Grassmann approach

In the following I summarize the basic technical ideas of twistor Grassmann approach. I am not
a specialist. On the other hand, my views about twistorialization of TGD differ in many aspects
about those applied in the twistorialization of gauge theories, and my own attention is directed
towards the physical interpretation and mathematical consistency rather than calculational tech-
niques.

Variants of twistor formalism

The reader can find details about twistors in the article of Witten [B33] and in the thesis of
Trnka [B75] (see http://tinyurl.com/zbj9ad7).

1. Helicity spinor formalism assigns to light-like momentum pair of conjugate spinors (λa, λ̃ȧ)
transforming in conjugate representations of Lorentz group SL(2, C). Light-like momentum
is expressible as pkσk using Pauli sigma matrices and this gives the representation as matrix
components paȧ = λaλȧ. The determinant of the matrix equals to pkpk = 0 since its rows
are linearly dependent.

One can introduce the bilinears [λ̃1, λ̃2] = −[λ̃2, λ̃1] and 〈λ1, λ2〉 = −〈λ2, λ1〉 using the

antisymmetric Lorentz invariant bilinear defined by permutation symbols εab and εȧḃ. The
inner product p1 · p2 is expressible as p1 · p2 = 〈λ1, λ2〉[λ̃1, λ̃2].

One could express also polarization vectors of massless bosons using pair (λ, µ̃) of helicity
spinors. There is however a more elegant approach available. The spinors (tλ, λ̃/t) correspond
to same momentum for all non-vanishing complex values of t. t represents an element of little
group of Lorentz group leaving the helicity state invariant. The helicity dependence of the
scattering amplitude is fixed by the transformation property under little group and coded to
the weight under the scalings by t: A(taλ, t

−1
a λ̃a) = t−2ha

a A(λ, λ̃). Thus the formalism allows
very elegant description of spin and can be applied in SUSYs.

For Minkowski signature (2,2) the spinors are real and this makes this signature preferred.
Personally I see this as a basic problem of twistorialization. A possible TGD inspired solution
of the problem is provided by the effective replacement of M4 with M2 with signature (1, 1)
and thus allowing real spinors.

2. Twistors (λa, µȧ) are obtained by performing a twistor Fourier transform of scattering am-
plitude A(λ, λ̃) with respect to λ̃.

At local level [B33] the twistor transform corresponds to Fourier transform

λ̃ȧ → i ∂µȧ ,

−i ∂
λ̃ȧ
→ µȧ .

http://tinyurl.com/zbj9ad7
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The action of little group corresponds now to the scaling (λ, µ)→ t(λ, µ) and does not affect
the helicity state. For this reason twistors differing by complex scaling can be identified. The
proper twistor space is CP3 rather than C4.

The twistor transform of the amplitude transforms as A(taλ, taλ̃a) = t−2ha−2
a A(λ, µ).

In signature (2,2) the helicity spinors (λ, λ̃) are real so that the twistor Fourier transform
reduces to an ordinary Fourier transform. In signature (1,3) the rigorous definition is rather
challenging and is discussed by Penrose [B69]. One manner to define the transform is by
using residue integral. Residue integral is also p-adically attractive.

The incidence relation of Penrose given by

µȧ = −xaȧλa

relates M4 coordinates to λ, µ. By little group invariance entire complex twistor line corre-
sponds to a given point of M4.

The twistor transform of plane wave allows to construct the twistor transform of momentum
space wave function, and is given by δ2(µȧ+xaȧλ

a), which is non-vanishing at complex light
ray. Twistor Fourier transform in real Minkowski space is therefore non-vanishing at light
ray and maps light rays to twistors.

If the incidence relation for given (λ, µ) is satisfied at two space-time points m1,m2, the
difference m1−m2 is a light-like vector since corresponding matrix has vanishing determinant.
Two intersecting twistor lines correspond to M4 points with light-like distance. This allows
to develop geometric picture about twistor diagrams in which the external light-like momenta
correspond to intersections of twistor lines assignable to the internal lines of graph.

3. Momentum twistors define a third basic notion. It is convenient to describe particle scattering
with external light-like momenta in terms of a diagram in which the external momenta are
assigned with the vertices of a polygon such that the lines carry possibly complex momenta.
Clearly, the polygon like object is obtained by repeatedly adding light-like momenta to the
polygon and since the sum of the external momenta vanishes, the polygon closes.

The vertices of polygon correspond to intersections of twistor lines defining light-like momenta
as differences of the momenta associated with the lines meeting at the vertex. One can assign
to the complex momenta of internal lines twistors known as momentum twistors.

Dual momentum twistor is a further variant of twistor concept being defined in terms of three
adjacent momentum twistors contracting them with the 4-D permutation symbol defined in
the representation of twistor as a point of C4 [B75].

Leading singularities

Twistor Grassmann approach to planar loop amplitudes relies on the idea that the discontinuities
associated with the singularities of the scattering amplitudes carry all information about the am-
plitudes. This of course holds true already for the tree diagrams having only poles as singularities.

The idea is same as in the case of analytic continuation: 1-D data at poles and cuts allows
to construct the functions. This idea generalizes to functions of several variables and leads to a
generalization of residue calculus. At space-time level strong form of holography (SH) relies on the
same idea: the 3-D data determine 4-D dynamics and in TGD allowing strong form of holography
2-D data is almost enough.

The discontinuities assignable to singularities can have lower-dimensional singularities so
that a hierarchical structure is obtained. The leading singularities are those for which maximal
number of propagators are on mass shell and the diagram decomposes to a product of diagrams
with virtual particle on mass shell. For one loop diagrams the maximal number of propagators
is N = 4 corresponding to the fixing of four components of loop momentum. For L loops it is
N = 4L.

Non-leading singularities have less than the maximal number of propagators on shell and
this leaves integral over a subset of loop momenta. If the number of propagator is larger than 4L,
one can have kinematical singularities for some combinations of external momenta.
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In the case of scattering amplitudes in twistor Grassmann formulation one encounters a
similar situation. In twistor Grassmann approach one defines also the loop integrals in momentum
space as residue integrals in the space of complexified momenta. If the functions involved are
rational functions the residue integrals are well-defined.

One of the surprising findings is that the leading singularities of MHV loop amplitudes
always proportional to tree amplitudes. Second finding is that for N = 4 theory the leading
singularities determine completely the scattering amplitudes [B75].

In TGD framework quantum criticality suggests that locally all loop corrections vanish and
coupling constant evolution is discrete. This would mean that the only singularities correspond
to poles of propagators and this indeed leads to diagrams in which internal lines have complex on
mass shell momenta. If this vision is correct, this part of twistor Grassmann approach does not
look relevant from TGD point of view.

BCFW recursion formula

The original form of BCFW recursion formula [B26] was derived for tree diagrams. The finding was
that the diagrams can be decomposed to two pieces containing with a propagator line connecting
them.

1. The proof of this result was rather simple in spinor helicity formalism and based on modifi-
cation of two momenta pk and pn by BCFW shift:

pk(z) = λk(λ̃k − zλ̃n) ,

pn(z) = (λn + zλk)λ̃n) ,
(15.5.1)

Obviously, the modification is induced by modifications λ̃k and λn. With some assumptions
about asymptotic behaviour of scattering amplitude A, one can express the original amplitude
A = A(z = 0) as residue integral

A(z = 0) =
1

2π

∮
C

dz
A(z)

z
. (15.5.2)

Here C does not close any other poles than z = 0. This integral is the negative of the residue
integral around the complement of the region closed by C.

2. It is assumed that poles are the only singularities in this region. Hence one can express A(z)
as sum of its poles

A(z) =
∑
i

ci
z − zi

. (15.5.3)

3. With these assumptions the residue integral gives

A = A(0) =
1

2π

∑
i

ci
zi

. (15.5.4)

This leads to the desired factorization with ci reducing to a product of amplitudes and
zi identifiable as a complex pole for the propagator connecting the sub-diagrams in the
decomposition.
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In [B35] details of the BCFW shift in the general case are given. One assumes a more
general shift pi → p̂i = pi + zri such that ri are light-like, mutually orthogonal, orthogonal to pi,
and sum up to zero. The modified momenta are complex massless and sum up to zero. One can

define PI =
∑
i<I pi and RI =

∑
i<I ri. The shifted variant P̂I

2
= P 2

I + 2zP ·RI is linear in z and
vanishes for z = zI = −P 2

I /PI ·RI . ZI define the counterparts zi. Performing the residue integral
one obtains A(0) = 1

2π

∑
I
cI
zI

.
This formula allows a recursive construction of tree diagrams by starting from the basic

vertices of YM theory. BCFW recursion formula was later generalized to a recursion for the sum
planar loops diagrams in terms of diagrams with lower number of loops [B35, B75].

Scattering amplitudes in terms of Yangian invariants defined as multiple residue in-
tegrals in Grassmannian manifolds

The generators of Yangian are ordinary conformal generators with conformal weight 0 and dual
generators with conformal weight 1. The latter generators act in simple manner in momentum
twistor space.

Twistor Grassmannian approach utilizing either twistors or momentum twistors allows to
demonstrate that these both conformal symmetry and its dual are present.

The construction of Yangian invariants is summarize in [B75]. Grassmannian residues are
Yangian invariants. Yangian transformation introduces total divergence and is exact if its integral
vanishes. The operations producing new Yangian invariant can change n or k or both.

1. There are several relatively trivial manners to construct Yangian invariants. One can take
the integrand of n-1-D invariant and formally interpret it as integrand of n-D invariant. One
can integrate over one twistor variable so that n decreases by one unit.

Invariants can be multiplied. One can a merge invariants by identifying the twistors in the
factors of the product. For instance, one can take the fundamental invariants defining 3-
vertices and multiply them to build twistor box giving rise to four particles. One can also
merge invariants by integrating over the identified invariants.

2. Inverse soft factor [B60] adds to the diagram expressed in terms of spinor helicity formalism
one new particle but keeps k constant. Therefore this operation does cannot be applied in
TGD where one has only fermions as external particles. The operation can be formulated as
a linear shift for λ̃a and λ̃b.

3. One can prove the BCFW recursion formula for tree diagrams [B26] by using a deformation of
the twistor amplitude in helicity spinor formalism allowing to deduce the factorized formula
of the amplitude, two adjacent external lines and deform the twistors λ and λ̃ in helicity
spinor representation by performing the BCFW shift [B68].

This deformation describes interaction between the external lines, and is essential in the
construction of the scattering amplitudes using BCFW recursion. One takes the sum over
the products of diagrams with left and right helicities obtained by putting internal particle
on mass shell and adds BCFW bridge. BCFW allows to construct all tree amplitudes by
starting from fundamental 3-particle amplitudes.

4. Entangled removal [?, B75, B35] removing two external particles producing a loop in the
sense of Feynman diagrammatics but residue of the pole of the propagator is possible and
appears as part of the boundary operation for the diagrams. The resulting recursion formula
allows to deduce loop corrections.

Twistor Grassmann diagrams are known to allow “moves” [B75, B37]. For instance, moves
can be used to remove boxes: it is known that apart from scaling factors depending on momenta
the diagrams are reducible to ordinary tree diagrams [B75] (http://tinyurl.com/zbj9ad7). This
allows to consider the possibility that twistor trees could allow to construct all diagrams. Note
however that the moves reducing the twistor diagram to a counterpart of tree diagram gives an
overall multiplicative factor depending on momenta and helicities.

From TGD point the definition of loop integrals and Grassmannian integrals as residue
integrals is of great potential importance. Scattering amplitudes should be number theoretically

http://tinyurl.com/zbj9ad7
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universal but in p-adic context the definition of definite integral is very difficult. Residue integral
provides however a manner to define multiple residue integrals using only holomorphy and the
notion of pole. This could be the deep reason for why one should be able to reduce loop integrals
to residue integrals.

There is however a potential problem involved related to number theoretic universality. 2π
does not exist p-adically in any reasonable sense (if one wants to define it one must introduce
infinite-D extension of rationals by powers of 2π. One might hope that 2π cancels from the
scattering amplitudes by normalization. Another possibility is that for an extension containing
exp(i2π/N) as the highest root of unity, one can define π approximately as iπ ≡ N×(exp(iπ/N)−
1). An alternative option is that only the analogs of tree diagrams having only poles as singularities
are possible

Linearization of the twistorial representation of overall momentum delta function

An little but not insignificant technical detail [B38] is the linearization of the constraint expressing
the overall momentum conservation by interpreting it as a condition in Grassmannian G(k, n),
where k is the number of negative helicities and n is the number of particles, and allowing to
reduce integrations over G(k, n) to those over G(k − 2, n− 4).

Spinor helicity diagrams and twistor diagrams are proportional to a delta function express-
ing overall momentum conservation. Dropping twistor indices this delta function one reads as
δ(
∑
k Pk) = δ(λiλ̃i). One can combine the 2 components of λi and λ̃i to form 2+2 n-component

vectors and interpret momentum conservation as orthogonality conditions for the 2-planes spanned
by λa and λ̃ȧ for k > 2. These plane spanned by 2 n-component λ vectors can be interpreted as 2
vectors in G(k, n− k) defining rows of G(k, n− k) matrix. λ̃ defines a similar plane in G(n− k, k).

These conditions are equivalent with the condition that there exists in G(k, n) a 2-D C and
its n−k-dimensional orthogonal complement C̃ such that the 2-plane spanned by λa is orthogonal
to C̃ and the two-plane spanned by λ̃ȧ is orthogonal to C. These conditions can be expressed as
a product of delta functions δ(C · λ̃) and δ(C̃ · λ).

Since G(k) acts as a ”gauge symmetry” for G(k, n), the first k× k block of the k×n matrix
representing a point of C can be transformed to a unit matrix so that k× (n−k) variables remain..
Same can be carried out for the last n × (n − k) block of C̃ by G(n) ”gauge invariance” so that
(n− k)× n variables remain. With these gauge choices the orthogonality conditions can be solved
explicitly and corresponding integrations can be carried out. The integration over delta functions
leaves (k−2)(n−k−2) variables, the dimension of G(k−2, n−4). G(k, n) reduces to G(k−2, n−4)
by momentum conservation.

15.5.2 Basic vision behind scattering amplitudes

It is good to summarize the basic vision about TGD first.

Separation of WCW functional integral and fermionic dynamics

The works of Penrose and Witten have served as inspiration in the attempts to twistorialize TGD
and led to the conjecture that the twistor lift of TGD is possible and means that space-time
surfaces are replaced with their twistor spaces representable as 6-D surfaces in 12-D product of
twistor spaces of M4 and CP2. What makes this idea so attractive is that S4 and CP2 are the only
4-D compact manifolds with Euclidian signature having twistor space with Kähler structure [A63].
TGD would be unique both from the existence of the lift of Kähler action to the product of twistor
spaces of M4 and CP2!

What the twistor space of M4 is, is however not at all clear. It can be defined in two manners:
as the usual CP3 very natural at the level of momentum space or as the trivial bundle T (M4) =
M4 × S2 natural in the twistorialization at classical space-time level. Standard twistorialization
has however problems.

1. There is problem associated with the signature. Twistorialization works best at signature
(2, 2) for Minkowski space and gives rise to real projective space P 3.
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2. Second problem is that CP3 should be actually SU(2, 2)/SU(2, 1) × U(1). There is clearly
something not so well understood.

In the number theoretic vision about TGD twistor space would be replaced with commu-
tative hyper-complex M2 ⊂ M4 ⊂ M8 and this space is just RP 3 and problems wth signature
disappear since 2-D spinors can be chosen to have real basis. For complex momenta this extends to
CP3. Number theory would also justify the identification of geometric twistor sphere as M4 × S2.

In TGD the dynamics of fields is replaced with that for 4-surfaces. Penrose’s idea about
generalization of holomorphy of field modes in twistor space generalizes to the holomorphy of the
representation of 6-surface representing twistor bundle of space-time leads to a concrete ansatz for
space-time surfaces as preferred extremals [L24] [L40].

SH leads to the proposal that the data determining space-surfaces are preferred extremals
is given at 2-D surfaces and these 2-D surfaces bring in mind Witten’s twistor strings [B33]. By
SH the functional integral over them would correspond to that over WCW and twistor amplitudes
asignable to given space-time surface would be constructed at fermionic level by the analog of
twistor Grassmannian approach. This integral over 2-surfaces corresponds to the deviation of
TGD from QFT in fixed background and cannot be equivalent with the introduction of twistor
strings.

Adelic physics and scattering diagram as a representation of computation

Adelic physics [L34] suggested to provide quantum physical correlates also for cognition is in a
central role. Adelic physics predicts the hierarchy heff = n × h, where n as dimension of the
extension is divisor of the order its Galois group identified in terms of dark matter regarded as
a phase of ordinary matter. p-Adic physics and p-adic length scale hypothesis could be also
understood.

The number theoretic universality of scattering amplitudes suggests that all loops vanish
identically and the evolution of various couplings constants is discrete occurring by phase transitions
changing the extension of rationals and values of various coupling parameters.

1. The vanishing of loops at the level of space-time action would mean that the loops associ-
ated with the functional integral defined by the action, which is sum of Kähler action and
volume term. This vanishing would state essentially local quantum criticality as invariance
of coupling parameters under local renormalization group evolution. One would obtain only
a sum of action exponentials since Gaussian and metric determinants cancel each other in
Kähler metric.

2. Exponents of Kähler action represent a number theoretical nightmare.

(a) The functional integral expressions for scattering amplitudes are normalized by a func-
tional integral for for the vacuum state. This implies that only the ratios Xi/X of the
exponents Xi for the extrema and sum

∑
Xi appear in the amplitudes [L34] so that

there are slightly better hopes of achieving number theoretic universality.

(b) Number theoretical universality forces to imagine even more attractive option making
sense in ZEO but not in standard ontology. If the amplitude is sum over the contri-
butions normalized by corresponding exponentials Xi rather than

∑
Xi, exponentials

cancel altogether and the couplings constants appear only in boundary conditions. In
this case one could speak of a basis of zero energy states assignable to various extrema
of the action. The real part of the action is maximum and the the imaginary part of
the action saddle point if preferred extrema are minimal surface extremals of Kähler
action [L24]. Number-theoretical universality more or less forces this option.

3. An even stronger proposal is based on the idea that that the TGD analogs of stringy diagrams.
The lines of these diagrams correspond to light-like parton orbits carrying fermion lines
and meeting at vertices which are partonic 2-surfaces. The proposal is that the topological
diagrams involving analogs of loops represent algebraic computations so that all diagrams
with given initial and final collection of algebraic objects are equivalent.
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If this is the case, all topological diagrams should reduce to topological tree diagrams by a
generalization of the duality symmetry of the old-fashioned hadronic string model stating
that the sum of s-channel resonances equals to the sum of t-channel exchanges and that
these diagrams can be constructed as twistor Grassmann diagrams by allowing on mass shell
fermions with complex momenta at internal lines. For external particles the momenta could
be real and light-like in 8-D sense. A weaker condition is that real and imaginary parts of
complex momenta 8-D momenta are separately light-like and orthogonal.

One could indeed argue that one cannot allow loops of this kind since it would be impossible to
decide which kind graph experimental scattering situation corresponds if all these graphs are
different since one observes only the initial and final states. Therefore all scattering diagrams
with same real particles in the final states correspond to identical scattering amplitudes.

These diagrams would correspond to the same amplitude but it might be possible to perform
a localization to any of them. p-Adically however the corresponding space-time surface
would be different by p-adic non-determinism (the number theoretic discretization - cognitive
representation - defined by the common points of reality and p-adicities as space-time surfaces
would be different): one might say that the tree representation involves smallest cognitive
representation and is therefore the shortest one.

If the action exponentials Xi cancel from the scattering amplitudes, this option can indeed
make sense. Otherwise it is extremely implausible since different contributions would have
different vacuum weights.

4. If only the twistor analogs from tree diagrams in Feynman sense are allowed, the scattering
amplitudes are rational functions of external momenta as strongly suggested by the number
theoretic universality and by the requirement that the diagrams can be interpreted in terms
of algebraic computations so that the simplest manner to do the computation corresponds
to a tree diagram. Even tree diagrams in Feynman sense are planar so that one would get
rid of the basic problem of the twistor approach to SUSY.

Quantum classical correspondence (QCC) states that scattering diagrams have classical
counterparts in the sense that fermion lines correspond to the boundaries of string worlds sheets
assignable to the light-like orbits of partonic 2-surfaces and topological 3.vertices correspond to
2-surfaces at which the ends of light-like orbits meet. This correlation is extremely restrictive and
it is not at all clear whether it leaves room for loops.

In the most general case one would have a superposition of allowed space-time surfaces real-
izing scattering diagram with given initial and final quantum numbers identified as corresponding
classical charges.

The idea about diagram as computation suggests that the simplest possible diagram - tree
diagram - is realized together with the corresponding space-time topology. If diagrams with topo-
logical loops are possible this requires the existence of moves transforming diagrams to each other.
This condition might be not consistent with the condition that the move acts on the space-time
surface too. Very simple diagrammatics - even twistor tree diagrammatics - could follow from mere
QCC.

Classical number fields and M8 −H duality

Quaternionicity and octonionicity is second central aspect of number theoretical vision.

1. The key concept is M8 −M4 ×CP2 duality allowing to see space-time surfaces quaternionic
surface in M8 or as holomorphic surfaces in the twistor space T (M4)× T (CP2). This would
realize SH. Physical states are characterized by quaternionic (possibly complexified-) octonion
valued 8-momenta in accordance with the vision that tangent space Minkowskian region
of space-time surface is quaternionic and contains preferred hyper-complex M2, which can
depend on point provided that tangent spaces M2(x) integrate to 2-D surface. This view
leads to a new view about QCD color as octonionic color.

2. Twistor space reduces to that associated with M2 and 2-D variant of conformal invariance
corresponds to SO(2,2) and leads to the identification real projective space P 3 as twistor
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space. One can however complexify it to CP3 since momenta are in general complex. The
signature is (1,1) so that bi-spinors λ, λ̃ have real basis and twistor Fourier transform can be
defined as ordinary Fourier transform. The reality of M2 or induced spinors at string world
sheets might allow to have SUSY without Majorana spinors.

The reduction of external momenta to M2 implies that real and imaginary parts are parallel
and light-like. At classical level this poses strong conditions on preferred extremals. This
does not require that color and electroweak quantum numbers are complex. The reason
is that they emerge as labels of wave functions in twistor space T (CP2) representing wave
functions in the moduli space of transversal E2s with corresponding helicity identifiable as
em charge.

Localization of the light-like 8-momentum is possible to preferred M2
0 . Localization does not

imply the disappearance of color wave function. The transversal E2 momentum degrees of
freedom however disappear. In the case of leptons and hadrons complete localization could
be a good approximation but not in the case of quarks.

Elementary particles have fundamental fermions as building bricks

The assumption that the physics of elementary particles reduces at fundamental level to that
of fundamental fermions has strong implications, when combined with the twistor Grassmann
approach.

1. In TGD elementary particle would correspond to a pair of wormhole throats of wormhole
connecting two space-time sheets with Minkowski signature. Wormhole itself would have
Euclidian signature. Wormhole contacts would be connected by monopole flux tube with
fermionic quantum numbers at the 4 wormhole throats defining the partonic 2-surfaces.

2. Fundamental vertices are associated with 2-surfaces at which light-like 3-surfaces carrying
fermions and antifermions as string world sheet boundaries are glued together along their
ends. Note that these surfaces are analogous to vertices of Feynman diagrams and singular
as 4-surfaces but 3-surfaces are smooth unlike for stringy vertices.

3. Fermion lines correspond to the boundaries of string world sheets at the light-like orbits
of partonic 2-surface at which the signature of the induced metric changes. At momentum
space M8 this picture should also make sense since space-time surfaces in M8 and H would
correspond to each other by M8 −H duality. At the level of M8 the orbits of fermion lines
could be seen as light-like geodesics along with twistor spheres move. At the edges of string
world sheets they would intersect at single point and give rise to external massless particle.

4. The basic vertex is 4-fermion vertex in which fermions scatter classically and assignable to
the 2-surface at which the ends of light-like 3-surfaces representing partonic orbits intersect.
There would be no local 4-fermion vertex. Fermions would move as free particles in the
background and the background would gives rise to the interaction between fermions at
partonic vertices analogous to vertices of Feynman diagrams. This would automatically
resolve possible problems caused by divergences and would be analogous to the vanishing of
bosonic loops from WCW functional integration.

5. FFB couplings could be identified in terms of FF (FF ) couplings, where FF is associated
with the same partonic orbit. These couplings would not be fundamental.

What could SUSY mean in TGD?

Extended super-conformal invariance is basic symmetry of TGD but it is not whether it possible
to have SUSY (space-time supersymmetry) in TGD framework. Certainly the SUSY in question
is not N = 1 SUSY since Majorana spinors are definitely excluded. N = 2 SUSY generated by
right-handed neutrino and antineutrino can be however considered.

1. If one allows the boundaries of string world sheets carry fermion number bounded only by
statistics (all spin-charge states for quarks and leptons would define maximal N for SUSY).
This would allow local vertices for fermions and does not look like an attractive option unless
SUSY manages to cancel the divergences.
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2. SUSY could mean addition of fermions as separate lines to the orbits of wormhole throat.
This SUSY would be broken and only approximately local. The question what the propagator
for the many-fermion state at same string line is, is not quite obvious. SUSY would suggest
propagator determined by the total spin of the state. I have also considered the possibility
that the propagator is just the product of fermionic propagators acting on tensor power of
single fermion spaces. The propagator behaves as 1/pN for N fermion state and only for
N = 1, 2 one would have the usual behavior. This option is not attractive.

3. SUSY could mean addition of right-handed neutrino or its antiparticle to the throat. The
short range of weak interactions is explained by assuming that pair of right-handed neu-
trino and left-handed neutrino compensates the weak isospin at the second wormhole throat
carrying quantum numbers of quark or lepton.

Addition of right-handed neutrino or its antiparticle or both to a given boundary component
could give rise to N = 2 SUSY. The breaking of SUSY could correspond to different p-adic
length scales for spartners. Mass formula could be exactly the same and provided by p-
adic thermodynamics. Why the p-adic mass scale would depend so much on the presence of
covariantly constant νR having no color and ew interactions nor even gravitational interaction,
remains to be understood. If the extensions of rationals are different for the members of SUSY
multiplet, the corresponding preferred p-adic primes would be different and this could explain
the widely different p-adic mass scales. One can of course ask the covariant constancy means
that νR does not have any coupling to anything and its presence is undetectable.

15.5.3 Options for the construction of scattering amplitudes

There are several guidelines in the construction of scattering amplitudes.

1. SH in strongest form would mean that string word sheets and partonic 2-surfaces are all that
is needed. In number theoretical vision also fixing the extension of rationals associated with
the intersection of realities and p-adicities is needed and leads to a hierarchy of extensions
which could realized discrete coupling constant evolution. SH would suggest that hybrids for
analogs of string diagrams and Feynman diagrams code for the scattering amplitudes.

2. QCC suggests that the eigenvalues of the Cartan algebra generators of symmetries are equal to
classical Noether charges. A weaker condition is that the eigenvalues of fermionic generators
not affecting space-time surfaces are equal to the classical Noether charges. The generators
have also bosonic parts acting in WCW.

A prediction following from the condition that there is charge transfer between Euclidian
and Minkowskian space-time regions is that the classical charges must be complex valued
guaranteed if Kähler coupling strength as a spectrum of complex values. One proposal is
that the spectrum of zeros of Riemann zeta determines if [L16]. This supports the twistorial
view that momenta in the internal lines can be regarded as complex light-like on mass shell
momenta.

3. QCC also suggests that scattering diagrams have space-time correlates. The lines of diagrams
correspond to light-like orbits of partons at which the signature of induced metric changes.
Vertices correspond to partonic 2-surfaces at which these 3-D lines meet. At fermion level
fermion lines at partonic orbits correspond to boundaries of string world sheets.

This however leaves several alternative visions concerning the construction of scattering
amplitudes.

What scattering diagrams are?

What does one mean with scattering diagrams is not at alle clear.

1. Are they counterparts of Feynman diagrams so that one would have a superposition of all
space-time topologies corresponding to these diagrams? Probably not.
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2. Or are they counterparts of twistor Grassmannian diagrams in which all particles are on
mass shell but with possibly complex light-like quaternionic 8-momenta in M8 = M4 × E4

with M4 = M2
0 × E2. Why this option is interesting is that twistor Grassmann diagrams

allow large number of moves reducing their number.

This would translate to a conserved and massive longitudinal M2-momentum; which for a
special choice of M2 is light-like, a wave function in the space of transversal E2 momenta;
color partial wave in the moduli space of E2 planes for given M2

0 ; and em charge describable
as CP2 helicity and allowing twistorialization.

There is however a problem: the transverse E6-momentum makes M2 momentum massive
and twistorialization fails. But what if the 8-momenta are real and in twistorial description
M2 momentum becomes complex but light-like. The square for the real part of M2 momen-
tum would be equal to the square of real E6 momentum and twistor approach would apply!
This map would be define the essence of M2-twistorialization.

In ZEO one can interpret the construction of preferred extremals as a boundary value
problem with ends of space-time surfaces at the boundaries of CD and the light-like orbits of
partonic 2-surfaces defining a closed 3-surface and defining the scattering diagram as 3-D boundary.
If so, it might be possible to construct rather large number of diagrams, even counterpartz of loop
diagrams.

The situation would be analogous to the construction of soap films spanned by wires with
wire network analogous to the network formed by the partonic orbits. Also an analogy with 4-D
tensor network suggests strongly itself and scattering diagrams representing zero energy states
would correxpond to the states of the tensor network.

The basic space-time vertex would be 3-vertex defined by partonic 2-surface.The basic
fermionic vertex would be 4-fermion vertex in which fermions do not exchange gauge boson but
interact classically at the 2-D vertex. All particles emerge as bound states of fundamental fermions
at boundaries of string world sheets.

1. The basic view would be that M2 momenta, and transversal momenta correspond to M4-
momenta. The moduli space for M2

0 × E2 planes corresponds to CP2 and color quantum
numbers. M2 helicities and electroweak quantum numbers would be coded to the weights
twistor wave functions in twistor space if M2 × CP2.

2. One approach to scattering amplitudes relies on symmetries. Twistor Grassmannian ap-
proach suggest strongly Yangian symmetry. The diagrams should be representations of
multi-local Yangian algebra with basic algebra being that of the conformal group of M4

restricted to M2.

This would give nicely real projective space RP 3 allowing to solve some problems of the stan-
dard twistor approach. In color degrees of freedom one would have color Yangian: hadrons
could correspond to the multilocal generators created by multi-local Yangian generators. The
E2 degrees of freedom would correspond to states generated by Kac-Moody algebra and also
now one could have Yangian algebra. The states for the representation of Yangian itself
would be singlets.

Besides fermionic lines there are string world sheets. Infinite-D 2-D conformal group and Kac-
Moody symmetries act as symmetries for string world sheets. The super-symplectic group
would the isometry group of WCW and would give rise to conditions analogous to Super
Virasoro conditions. These conditions would be satisfied by preferred extremals realizing
number theoretic variant of SH. Also these symmetries would be extended to their Yangian
versions naturally.

3. One can argue that classical field equations do not allow all possible diagrams. More precisely,
for a given extension of rationals adelic physics allows only finite number diagrams and the
extension induces a natural cutoff as minimal distance between points with coordinates in
the extension representing intersection of reality and p-adicities [L34].

The assumption that the end points of fermionic lines at partonic 2-surfaces at ends of CD and
at the vertices carry fermions would give an immediate connection with the adelic physics. As
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the dimension of the extension increases, the number of the points in the intersection increases
and more lines appear in the allowed diagrams. This would give rise to a discrete coupling
constant evolution, hierarchy of Planck constants, and p-adic length scale hypothesis.

Quantum criticality strongly suggests that coupling constant evolution is locally trivial and
is discretized with discrete steps realized as phase transitions changing the extension. Galois
group would be the fundamental number theoretic symmetry group acting on the intersection
and its order would correspond to heff/h = n allowing to realize the analogs of perturbative
phases of gauge theories as perturbative phases.

4. The discreteness of coupling constant evolution demands that loop corrections vanish. This
makes perfect sense for the functional integral over WCW. But what about fermionic degrees
of freedom and topological counterparts of scattering diagrams, which very probably do
not correspond to Feynman diagrams but could be analogous to twistor diagrams? For
fermions there is actually no perturbation theory since effective 4-fermion vertices correspond
to classical scattering of external fermions at partonic 2-surfaces defining the vertices. This
is not a problem since thanks to heff guaranteeing the existence of perturbative expansion.

Three roads to follow

In ZEO construction of scattering amplitudes is basically a construction of zero energy states and
one must be very cautious in applying QFT intuitions relying on positive energy ontology. One
ends up to to a road fork.

Option I: Can one interpret the topological space-time diagrams as analogs of Feynman
diagrams and assume that by quantum criticality the sum over the topological loops vanish? This
option looks rather ad hoc.

Option II: Can one assume - with inspiration coming from adelic physics - that the number
of these loops with fixed states at the boundaries of CD is finite and one just sums over these states
with weights given by the exponential of the space-time action?

Here one encounters problems with number theoretical universality [L34]. One has super-
position of vacuum exponentials over the diagrams and number theoretical universality demands
that the ratio of given exponential to the sum is in the extension of rationals involved. This is very
tough order - perhaps too tough.

Option III: Can one follow number theoretical vision suggesting that scattering diagrams
correspond to computations in some sense [L22]. This leads to a new road fork.

1. Option IIIa): Could one generalize the old-fashioned string duality and require that there
exist a huge symmetry allowing to transform the scattering diagrams using basic moves
to tree diagrams? The basic moves would allow to shift the end of line past vertex and
to remove self energy loop and hence the transformation to tree diagrams would become
possible. Originally it was inspired by the idea that the vertices of the scattering diagram
correspond to products and co-products in quantum algebra and that the condition involved
can be interpreted as algebraic identities.

Twistor Grassmannian diagrams indeed allow moves allowing surprising simplification allow-
ing to show that all loop corrections with a given number of loops sum up to something
proportional to a tree diagram [B75].

The assumption that the states moving in the internal lines have light-like quaternionic
M8 momenta gives very strong constraints on the moves and it might well be that the
moves are not possible in the general case. Even if the move is possible, the value of the
action exponential can change so that this option seems to demand mathematical miracles.
The proposed manner to achieve number theoretical universality however eliminates action
exponentials.

The mathematical miracle might be made possible by the possibility to find preferred M2
0 in

which the 2-momentum of fermion line is light-like. If M2
0 is constant along entire fermion

line, it seems to be possible perform the gliding operation past vertices as will be found. Note
that ach fermion can wander around the network formed by the partonic orbits.
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Note that the different space-time surface realizing equivalent computations would be cogni-
tively non-equivalent since the cognitive representation defined by the points in extension of
rationals would be different. Optimum computation would have smallest number of points
and would correspond to tree diagram.

2. Option IIIb): Should one sum over the possible diagrams so that one would have quantum
superposition of computations. This is done for loop diagrams in twistor Grassmann ap-
proach. Infinite sum is however awkward number theoretically. Adelic vision suggests that
the number of loops is finite. The action exponentials would not disappear from the scat-
tering amplitudes and are very problematic from the point of view of number theoretical
universality.

3. Option IIIc): Could one regard the light-like partonic orbits as part of the dynamical system -
this is what effectively is done if they form part of connected 3-surface defining the topological
scattering diagram - and assume that each such diagram corresponds to a different physical
situation analogous to a computation?

One can argue that one must be also able to localize the zero energy state to single compu-
tation by state function reduction [L39]! State function reduction to single diagram should
be possible. A rather classical picture about space-time would emerge: one would have just
a superposition of space-time surfaces with the same topology and same action apart from
quantum fluctuations around the point which is maximum with stationary phase. One would
also have color wave functions and momentum wave functions in cm degrees of freedom of
partonic 2-surfaces as WCW degrees of freedom.

The action exponential, which is very problematic from the point of view of number the-
oretic vision, would be cancelled from the functional integral since it is normalized by the
action exponential. The dependence on coupling parameters is however visible in the bound-
ary conditions at boundaries of CD stating the vanishing of most supersymplectic charges
and identifying the remaining super-symplectic charges and also isometry charge with the
fermionic counterparts.

This picture would be extremely simple and would be analogous to that of integrable quantum
field theories in which the integral over small fluctuations gives Gaussian determinant and
action exponential (now Gaussian determinant is cancelled by the metric determinant coming
the Kähler metric of WCW) [K110].

One can argue that the absence of loops makes it impossible to have non-perturbative effects.
This is not true in adelic physics. Recall that the original motivation for heff = n × h was
that this phase is generated with perturbation theory ceases to converge [K106]. The large
value of heff scales down the coupling strengths proportional to 1/heff and perturbation
theory works again.

It must be admitted that one must accept all these options. Number theoretical universality
of scattering amplitudes would select IIIa) and the need to realize given topological diagram using
complex enough extension of rationals supports Option IIIc). I believe that the large number of
the options reflects my limited mathematical understanding of the situation a careful analysis of
the general implications of the options allows to pinpoint the most feasible one.

15.5.4 About problems related to the construction of twistor amplitudes

The dream is to construct twistorially fermionic scattering amplitudes and this requires the iden-
tification of fermionic 4-vertex. There are however several conceptual problems to be solved.

Could M2 momenta be massive?

The naive objection against massive particles is that one loses the twistorial description both
in M4 sense and M2 sense. Real quaternionic M8 momenta are massless but the transversal
momentum in E6 degrees of freedom makes M2 momenta and M4 momenta for arbitrary choice
of M4 are massive, and one cannot describe the M2 and M4 momenta using the helicity spinor
pair (λ, ˜lambda). The beautiful formalism seems to be lost.
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1. The naive argument is however wrong in TGD framework where particles are massless in
M8 sense. This means that mass does not correspond to ΨΨ in Dirac action but to comes
from E4 momentum (CP2 ”momentum”). 8-D chiral symmetry is unbroken as required by
separate conservation of lepton and baryon numbers. In preferred M2

0 one can indeed make
M2-momentum light-like.

2. Furthermore, 4-fermion twistor amplitudes are holomorphic functions of λi . There is no
dependence of λ̃ and therefore no information about light-likeness! Why this amplitude
could not describe the scattering of fermions only apparently massive in TGD Universe? Note
that the momentum conserving delta function depends on the masses of the particles so that
mass-dependence would be purely kinematical and analogous to the dependence on transverse
momentum squared. Note that this argument makes sense also for M4 twistorialization. If
this view is correct then twistors are something more profound than momenta.

3. For M2 twistorialization end would end up to effective (2,2) signature favored by twistori-
alization. (1,1) signature of real M2 becomes (2,2) signature for complexified M2 and real
twistor space RP 3 is replaced with CP3. This looks attractive description. If this picture
is correct, all the nice results such as the possibility to assume reduction of amplitudes to
positive Grassmannian remain unaffected.

Momentum conservation and mass shell conditions in 4-vertex

What is the exact meaning of the mass shell condition?

1. H = M4 ×CP2 harmonics would suggest that it mass squared in M4 is eigenvalue of spinor
d’Alembertian plus possible super-conformal contribution from Super Virasoro algebra, which
is integer valued in suitable units. M4-momentum decomposes to longitudinal M2

0 momen-
tum and transversal E2 momentum. Super Virasoro algebra in transversal degrees of freedom
suggests quantization of E2 mass squared in integer multiples of a basic unit.

2. The CP2 part of wave function in H corresponds in M8 to a wave function in the moduli
space of transversal planes E2 assignable to M2

0 and is involved only if the deformations of
M4 (or equivalently E2) are present.

3. In the preferred frame M4
0 the wave function would be strictly localized in single point of

CP2 and have maximally uncertain color quantum numbers. This kind of localization does
look feasible physically. For instance, for color singlet CP2 wave function of right-handed
neutrino there is no localization. For sharp localization of 8-momentum to M2

0 both color
degrees and transvervsal E2 degrees of freedom would effectively disappear.

4. The wave function in transversal E2 momentum space with interpretation in terms of transver-
sal momentum distribution - this at least in the case of hadrons.

5. The physically motivated assumption is that string world sheets at which the data determin-
ing the modes of induced spinor fields carry vanishing W fields and also vanishing generalized
Kähler form J(M4)+J(CP2). Em charge would be the only remaining electroweak degree of
freedom. The identification as the helicity assignable to T (CP2) twistor sphere looks there-
fore natural. Note that the contribution to mass squared would be proportional to Q2

em so
that one would obtain the electroweak mass splitting automatically. This is true also for CP2

spinor harmonics.

How plausible topological loops are?

Topological loops are associated with the networks formed from the orbits of partonic 2-surfaces
meeting at their ends (this would define topological 3-vertex containing fermionic 4-vertex). The
tree topologies would provide a nice space-time description of particle reactions but loops could be
possible? The original vision about construction of WCW geometry indeed was that the space-time
surfaces with fixed ends are unique.

In the original vision the non-determinism of Kähler action inspired the hypothesis that
loops are possible but volume term removes to high extent this non-determinism. In the recent
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vision the fusion of 3-surfaces at the ends of CD with light-like parton orbits to single 3-surface as
a boundary condition (analogous to a fixing of a frame for soap films) would define the scattering
diagram classically. There is no reason why it could not contain topological loops. Option IIIa)
assuming that one can transform the diagrams ot tree diagrams, is therefore attractive.

1. There are also conditions from space-time dynamics. Twistor graph topologies correlate with
space-time topologies since fermion line are inside the parton orbits and at vertices the ends
of the orbits meet. Topological vertices would be basically 3-vertices for partonic 2-surfaces.
The fermion and anti-fermion lines associated with the effective boson exchange would be
naturally associated with opposite throats of wormhole contact.

By above argument one can in ZEO pose at space-time level conditions fixing the vertices
and identify the graph topology as a topology of the network of light-like 3-surfaces defining
the diagram as boundary of 3-surface defined by the union of the ends of space-time and by
parton orbits forming a connected surface.

2. There is a further delicacy to be taken into account - measurement resolution coded by the
extension of rationals involved. This might allow to interpret addition of loops as in quantum
field theories: as a result of increased measurement resolution determined dynamically by the
intersection of reality and p-adicities. Different computation yielding the same result would
not be cognitively equivalent since these intersections would be different.

3. If this view is correct, one can obtain also loops but non-negativity of energy for a given
arrow of time for quantum state would allow only loops resulting from the decay and re-
fusion of partonic 2-surfaces. Tadpoles appearing in BCFW recursion formula are impossible
if the energy is non-negative. One can of course ask whether the sign of energy could be also
negative if complex four-momenta are allowed. If so, one could have also tadpoles classically.

Identification of the fundamental 4-fermion vertex

The fundamental 4-fermion vertex would not be local 4-fermion vertex but correspond to classical
scattering at partonic 2-surface. This saves from the TGD counterparts of the problems of QFT
approach produced by non-renormalizability.

What would be this 4-fermion vertex? Yangian invariance suggests that the classical interac-
tion between fermions must be expressible in terms of fictive 3-vertex of SUSY theories describing
classical interaction as exchange of a fictive boson. This leaves 3 options.

Option I: 4-fermion vertex could be fusion of two 3-vertices with complex massless 8-
momenta in M8 picture. For instance, the exchanged momentum could be complex massless
momentum and external momenta real on-mass-shell momenta. This vertex does not have QFT
counterpart as such.

Loops could be absent either in the strong sense twistorial loops are absent (Option Ia) or
in the sense that corresponding Feynman diagrams contain no loops (Option Ib). In particular,
formation of BCFW bridge would not be allowed for Option Ia). Given diagram would be twistorial
tree diagram obtained by replacing the vertices of ordinary tree diagram with these 4-vertices with
complex massless fermions in 8-D sense.

Option II: 4-fermion could be identified as BCFW bridge associated with a tree Feynman
diagram describing an exchange of a fictive boson. This 4-vertex would be analogous to an exchange
of ordinary boson and counterpart for a QFT tree diagram. One can even forget the presence of
the fictive boson exchange and write the formula for the simplest Yangian invariant as a candidate
for four-fermion vertex.

Option III: If one allows higher fermion numbers at the same line, it is also natural to allow
branching of lines. This requires allowance of 3-vertex as branching of fermion line as analog of
splitting of open string (now strings are actually closed if they continue to another space-time sheet
through wormhole contact). The situation would resemble that in SUSY. One cannot completely
exclude this possibility.

Consider now the construction of 4-fermion vertex in more detail.

1. The helicities of fermions are hi = ±1 and the general conjecture for the 4-fermion twistorial
scattering amplitude is the simplest possible holomorphic rational function in λi, which does
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not depend on λ̃i, and satisfies the condition that the scaling λi → tλi introduces the scaling
factor t−2.

2. The rule is that fermions correspond to 2 positive powers of λi and antifermions to 2 negative
powers in λi: schematically the F1F2F̄3F̄4 vertex is of form λ2

1λ
1
2/λ

2
3λ

2
4 and constructible from

〈λi, λj . One can multiply any term in the expression of vertex by a rational function of for
which the weights associated with λi vanish. Ratios Pi(f)/Pj(f) of functions P (f) obtained
by via odd permutations P of the arguments λi of function

f(λ1, λ2, λ3, λ4) = 〈λ1, λ2〉〈λ2, λ3〉〈λ3, λ4〉〈λ4, λ1〉

3. invariant under 4 cyclic permutations. The number of these functions would be 4!/4 = 3! = 6
corresponding to the 6 orbits of an odd permutation under the cyclic group Z4. The simplest
assumption is that these functions are not involved.

The simplest guess for the 4-fermion scattering amplitude would be following:

T (F1, F2, F 3, F 4) = J × 〈λ1, λ2〉2

〈λ3, λ4〉2
. (15.5.5)

Charge conjugation would take the function to itse inverse. J is constant.

4. In 4-fermion vertex one has exchange of fictive boson and annihilation to fictive boson and
the particles i, j in the vertex should contribute 〈λi, λj〉 to the scattering amplitudes.

Remarkably, this amplitude is holomorphic in λi and has no dependence on λ̃i and therefore
carries no information about whether the momenta are light-like or not. It seems that one could
allow massive fermions characterized by (λi, µi) and fermion masses would not be a problem! As
already explained in TGD mass is not M8-scalar and states are massless in 8-D sense: hence
twistorialization should work!

One could construct more complex diagrams in very simple manner using these basic dia-
grams as building bricks just as in the twistor Grassmann approach. One could form product of
diagrams A and B using merge operation [B75] identifying twistor variables Za and Zb belonging
to the two diagrams A and B to be fused.

For Option Ia) the diagram would represent repeated on mass shell 4-fermion scatterings
but with of mass shell particles having complex momenta in 8-D sense. Real on mass shell particles
would have massless but real 8-D momenta and physical polarizations.

The conservation of baryon and lepton numbers implies for all options that only G(m,n =
2×m) Grassmannians are needed. This simplifies considerably the twistor Grassmannian approach.

Why fermions as fundamental particles (to be distinguished from elementary particles in
TGD) are so special?

1. The mass of the fundamental fermion is not visible in the holomorphic basic amplitude being
visible only via momentum conserving delta function δ(

∑
i λiµ̃i). This property holds true

also for more complex diagrams. Massivation does not require in TGD framework Ψ̄Ψ term
in Dirac action since M4-massive fermions are M8-massless and have only chiral couplings in
8-D sense. Scalar coupling would also break separate baryon and lepton conservation. Mass
term correspond to a momentum in E4 ⊂ M4 × E4 = M8 degrees of freedom. Massivation
without losing 8-D light-likeness is consistent with conformal symmetry and with 8-D twistor
approach.

2. Fermions are exceptional in the sense that the number of helicities is same for both mas-
sive and massless fermions. In particular, 4-fermion amplitude has k = n/2 and positive
Grassmannian G(n/2, n) with special symmetry property that one can take either negative
or positive helicities in preferred role, could be important. For massless states with higher
spin the number of helicities is 2 and maximal spin is Jmax = hmax/2. For M4 -massive
states also the lower helicities hmax − 2k are possible. The scattering amplitudes remain
holomorphic.
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3. For SUSY one would have all helicities h(k) = hmax − k and the general form of amplitude
could be written from the knowledge of h(k). The number of fermions at the boundary of
string world sheets could be maximal allowed by statistics. This would give SUSY in TGD
sense but would require splitting of string boundaries: it is not clear whether this can be
allowed. For light-like orbits of partonic 2-surface it has been assumed.

Sparticles could correspond to states with higher fermion number at given partonic orbits.
In this case one expects only approximate SUSY: the p-adic primes characterizing different
SUSY states could be different. In adelic physics different p-adic prime could correspond to
a different extension of rationals: one might say that the particles inside super-multiplets are
at different levels in number theoretic evolution!

BCFW recursion formula as a consistency condition: BCFW homology

The basic consistency condition is that the boundary operation in the BCFW recursion formula
gives zero so that the recursion formula can be solved without introducing sum over topological
loops. The twistorial trees would have no boundaries but would not be boundaries and would be
therefore closed in what might be called BCFW homology. Diagrams would correspond to closed
forms.

Consider first the proposal assuming that all diagrams are equivalent with twistorial string
diagrams with fermionic 4-vertex as the basic vertex. The boundary operation appearing in BCFW
formula gives two terms [B38, B75, B35]. Recall that options I, II, and III correspond to twistorial
diagrams without loops created by BCFW bridges, to twistor diagrams assignable to Feynman
diagrams without loops, and to diagrams analogous to SUSY diagrams for which fermion lines
carry also higher fermion number and can split.

1. The first term results as one BCFW bridge by contracting the three lines connecting the
external particles to a larger diagram to a point in all possible manners. The non-vanishing
of this term does not force loops in the sense of Feynman diagrams. For Option Ia) (no
twistorial loops) there are no BCFW boxes to be reduced so that the outcome is zero.

For option Ib) (no Feynman loops) a BCFW box diagram for which the two outward direct
lines of the bridge are fictive, this operation makes sense and reduces the box to that describ-
ing the basic 4-fermion vertex. Same is true for the option II. For option III the operation
would be essentially the same as in SUSY.

2. Second term corresponds to entangled removal of a fermion and anti-fermion and if it is
non-vanishing, loops are unavoidable. This operation creates a closed fermionic loop to
which several internal lines couple. By QCC the fermionic loop would be associated with a
topological loop. One can argue that the topological tadpole loop must be closed time loop
and that this is not possible since the sign of energy must change at the top and bottom
of the loop, where the arrow of time changes: actually the energy should vanish. The same
result would obtained if one requires that the energy identified as real part of complexified
energy is non-negative for all on mass shell particles.

Consider the 4-fermion vertex to which the fermionic tadpole loop is associated. Entangled
removal gives for the members of a pair of external lines opposite momenta and helicities in
twistor-diagrammatics. If so, there exist a vertex for which one fermion scatters in forward
direction. Momentum conservation implies the same for the second fermion. One would ob-
tain amplitude, which equals to unity rather than vanishing! Integration over four-momenta
would give divergence. However, if the 4-momentum in the tadpole vanishes, the correspond-
ing helicity spinor and also the amplitude vanishes. QCC indeed demands that fermionic
loop corresponds to a time loop possible only only if the energy and by time-likeness also
3-momentum vanishes.

It seems that only the simplest option - Option Ia) - is consistent with the BCFW reduction
formula. One can say that scattering diagrams are closed objects in the BCFW cohomology.
Closedness condition might allow also topological loops, which are not tadpole loops: say decay of
fermion to 3 fermions fusing back to the fermion.
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Under what conditions fermionic self energy loop is removable?

Scattering diagram as a representation of computation demands that the fermionic ”self energy”
loop involving two external fermions gives free propagator. The situation in which the vertex
contains only light-like complex momenta in M2

0 can be considered as an example. In fact, one can
always choose in M8 the frame for given component of state in this manner.

1. The three fermion/antifermion internal lines in the loop would be light-like in complex 2-D
sense as also external momentum. For external momenta Re(p(M2)) would be light-like and
orthogonal to light-like Im(p(M2)): it is not clear whether Im(p(M2)) vanishes.

Light-likeness condition gives Re(k)2 − Im(k)2 = 0 and Re(k) · Im(k) = 0, and Re(k) =
±Im(k) as a solution meaning that Re(k) is proportional to a light-like vector (1, 1) or
(1 − 1). This applies to p, k1,k2, and p − k1 − k2. All these vectors are proportional to the
same light-like vector in M2.

Apart from the degeneracy for sign factors the situation is equivalent with real 2-D case
and one has from momentum conservation that the real parts of the virtual momenta are
light-like and parallel and one has Re(ki) = λip leaving two real parameters λi.

2. The only possible outcome from the integral is proportional to DF (p). The outcome is non-
vanishing if the proportionality constant is proportional to 1/p2. This dependence should
come from 4-fermion vertices. The integrand is proportional to the product λ1λ2(1−λ1−λ2)
and involves times the DF (p). Vertices give the inverses of these scaling factors. Since the
outcome should be proportional to 1/DF and lines are proportional to p3, the 4- vertices
should give a factor 1/p2 each.

Assuming this one obtains integrand 1/(λ1λ2(1 − (λ1 − λ2)2. The integral over λi is of
proportional to

I =

∫
dλ1dλ2/λ1λ2(1− λ1 − λ2) .

The ranges of integration are from (−∞,∞).

One can decompose the integral to four parts so that integration ranges are positive. The
outcome is

I =

∫
dlog(λ1)dlog(λ2)

[
1

1− λ1 − λ2
+

1

1 + λ1 + λ2
− 1

1 + λ1 − λ2
− 1

1− λ1 + λ2

]
.

The change of variables (u, v) = (λ1 + λ2, λ1 − λ2) transforms the integral to a product of
integrals

I =

∫
dudv

1

1− u2

∫
dv

1

1− v2
.

The interpretation as residue integral gives the outcome I = (4π)2.

Residue integration gives finite result for this integrals. One can worry about the singularity
of the vertices for M2

0 on mass shell momenta. The problem is that p is on mass shell so that
the outcome from loop diverges. The outcome is DFwould be however finite.

Gliding conditions for 4-vertices

One can construct also loop diagrams with loops understood in twistorial sense. The interpretation
of twistor diagram as computation requires that there exist moves reducing general loopy diagrams
to tree diagrams. This requires that the vertices connected by a fermionic loop lines can be glided
along fermion lines such that they become nearest neighbors and that these loops can be removed
without affective the diagram.

If these diagrams are acceptable mathematically, moves reducing these loop diagrams to
twistorial tree diagrams should exist. Could the basic rule be following?
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1. One can glide the vertices past each other along fermion lines and reduce loops connecting
points at different part of graph to the analogs of self-energy loops located at single fermion
lines. These loops involve decay of fermion to 2 fermions and 1 anfifermion which then fuse to
single fermion. All fermions are on mass shell in complex sense. The situation thus reduces
to single fermion self energy loop if the gliding is possible always. Mass shell conditions could
however prevent this.

2. To single fermion line one can assign DF - the inverse of massless fermion propagator - having
formal interpretation as a density matrix. The loop would not vanish but would give rise to a
inverse of fermionic propagator so that the overall outcome should be just DF . Is it possible
to achieve this?

Under what conditions the gliding is possible?

1. Suppose that the 4-vertex V1 is glided along fermion line past second 4-vertex V1. V1 cor-
responds to momenta (Pi,in, Pi1,in − P, Pi,1, Pi,2). The momentum Pi =

∑2
k=1 Pi,k of 2

particles emanates from Vi so that the outgoing and incoming momenta are Pi,in − Pi, and
Pi,in i = 1, 2. Furthermore P1,in = P2,in − P2. These complex momenta are on M2 mass
shell in the proposed sense.

2. Can one perform the gliding without changing the M2
0 -momenta Pi,1 and Pi,2? Gliding is

possible if the on mass shell condition is satisfied also for P2,in − P1 + P2 rather than only
P2,in + P2. If the mass squared spectrum is integer valued in suitable units the condition
reduces to the requirement that 2P2,in · P1 is real and integer valued.

These conditions are independent of the conditions for 2P2,in ·P2 coming from V2, the condi-
tions would correlate P1 and P2. The construction of the amplitude would involve non-local
conditions on vertices rather than only momentum conservation and mass shell conditions at
vertices as expected.

M2-momentum is however light-like for a special choiceM2 = M2
0 . If M2

0 same along con-
nected fermion lines, the gliding condition would make sense. M2

0 is constant of motion along
fermion line which can wander along the network formed by partonic orbits.

In fact, M2
0 must be same for all fermions in given vertex so that its is constant for all

connected regions of fermionic part of the graph. Is there any hope of having non-trivial
scattering amplitude or must all momenta be light-like and parallel in plane M2

0 ? Tree
diagrams certainly give rise to non-trivial scattering. One can also assign to all internal lines
this kind of networks with M2

0 that assignable to the internal line. It is quite possible that
for general graphs allowing different M2

0 s in internal lines and loops, the reduction to tree
graph is not possible.

3. The analogs of these conditions apply also to tree graphs. So that one must either sum over
trees with different orderings of vertices or pose additional conditions on the M2-momenta
say the assumption that they are light-like and proportional to the same real momentum
(1,±1) along the fermion line.

To conclude: if M2
0 is constant of motion along the connected networks of fermion lines, the

gliding conditions could be satisfied. Action exponentials do not produce trouble if one identifies
the basis of zero energy states in such a manner that every maximum of action gives its own
separate amplitude (state) as also number theoretic universality demands. The most attractive
option number theoretically is the option IIIa) assuming that localization of zero energy state to
single computation is possible as quantum measurement: different localizations would have differ-
ent intersections between reality and p-adicities and would correspond to different computation
sequences as cognitive processes. The idea that twistor diagrams are closed forms in the sense that
tadpole diagrams vanish is also very attractive and natural in this framework.

Permutation as basic data for a scattering diagram

In twistor Grassmannian approach to N = 4 SUSY the data determining the Yangian invariants
defining the basic building bricks of the amplitudes can be constructed using two 3-vertices. For
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the first (second) kind of vertex the helicity spinors λi (λ̃i) are parallel that is λ1 ∝ λ2 ∝ λ3

(λ1 ∝ λ2 ∝ λ3) and can be chosen to be identical by complex scaling invariant: momentum
conservation reduces to that for λ̃i (λi). The graphical notation for the two vertices is as a small
white resp. black disk [B75, B35] (see Fig. 3.3.35 http://tinyurl.com/zbj9ad7).

There are two basic moves leaving the amplitude unaffected (see Fig. 3.3.38 at http://

tinyurl.com/zbj9ad7). Merging symmetry implies that 4-vertices satisfy a symmetry analogous
to the duality of old-fashioned hadron physics: an internal line connecting black (white) vertices as
exchange in s-channel can be transformed to an exchange in t-channel: 1+2→ 3+4 ≡ 1+3→ 2+4.
Merging symmetry allows to transform the diagram into a form in which neighboring vertices
have opposite colors. Square move symmetry follows from the cyclic symmetry of the 4-particle
amplitude and means black↔white replacement in 4-vertex.

These two moves do not affect the permutation defining the diagram. A given diagram is
represented as a disk with external lines ordered cyclically along its boundary. The permutation
of the n external particles associated with the diagram is constructed from the two 3-particle
diagrams is defined by the following rule.

Start from k:th point at boundary end and go to the left in each white vertex and to the right
in each black vertex (see Fig. 3.3.35 at http: // tinyurl. com/ zbj9ad7 ).

This leads to a particle P (k) and the outcome is a permutation P : k → P (k) charactering
the twistor diagram.

Moves do not affect the permutation associated with the diagram and leave the amplitude
unaffected. BCFW bridge can be interpreted as a permutation of two neighboring external lines
and allows to generate non-equivalent diagrams.

This permutation symmetry generalizes to 4-D SUSY the role of permutations in 1+1-D
integrable field theories, where the scattering S-matrix induces only a phase shift of the wave func-
tions of identical particles. The scattering diagram depends only on the permutation of particles
induced by the scattering event. Yang-Baxter relation expresses this . Scattering corresponds to
particles passing by each other and diagram is drawn in M2 plane.

1. In 1+1-D integrable theory 3+3 scattering reduces to 2 particle scatterings. This can be illus-
trated using world lines in M2 plane (see the illustration of http://tinyurl.com/gogn75s).
The particle 2 can be taken to be at rest and 1 and 3 move with opposite velocities. There are
three 2-particle scatterings of i and j as crossings of world-lines of i and j (pass-by spatially):
denote the crossing by ij.

For the diagram on the left hand side one has crossings 12, 13 and 23 with this time order. For
the second case one has crossings 23, 13, and 12 in this time order. Graphically YB relation
(see the illustration of http://tinyurl.com/gogn75s) says that the scattering amplitude
fo 3+3 scattering does not depend on whether the position of the stationary particle 2 is
to the left or right from the point at which the second scattering occurs: the time order of
scatterings 12 and 23 does not matter.

2. Mathematically the two-particle scatterings are described by operators R12(u), R13(u+ v) ,
and R23(v) representing basic braiding operation ij → ji. u, u + v, and v are parameters
characterizing the Lorentz boosts determining the velocities of particles. YB equation reads
as

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) .

For a graphical illustration see http://tinyurl.com/gogn75s. The first and third R-
matrices are permuted and the outcome is trivial. In pass-by interpretation YB equation
states that the two manners to realize 123→ 321 give the same amplitude.

Instead of pass-by one could assume a reconnection of the world lines at the intersection:
world lines are split and future pieces are permuted and connected to the past pieces again.
With this interpretation one has 123→ 123 (the illustration of Wikipedia article corresponds
to this interpretation).

3. At the static limit u, v → 0 YB equation gives rise to an identity satisfied by braiding
matrices. The pass-by at this limit can be interpreted as permutation lifted to braiding
(braid groups is covering group of permutation group).

http://tinyurl.com/zbj9ad7
http://tinyurl.com/zbj9ad7
http://tinyurl.com/zbj9ad7
http://tinyurl.com/zbj9ad7
http://tinyurl.com/gogn75s
http://tinyurl.com/gogn75s
http://tinyurl.com/gogn75s
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2+2 vertices are fundamental in integrable theories in M2. Also in TGD 2+2 vertices for
fundamental fermions are proposed to be fundamental, and the effective reduction to M2 is crucial
in many respects and reflects M8 − CP2 duality and 8-D quaternionic light-likeness implying
that 2+2 fermion vertices reduce to vertices in M2. TGD could be an integrable theory able to
circumvent the limitations of integrable QFTs in M2.

1. How could the 2+2-fermionic scattering matrix relate to the R-matrix? In TGD framework
the scattering involves momentum transfer even in M2

0 frame: the parallel light-like M2

momenta are rescaled in momentum conserving manner. CouldR matrix appear as additional
factor in the scattering? The earlier picture indeed is that the fermion lines at partonic
orbits can experience braiding described by R-matrix at the static limit (string world sheet
boundaries would braid!).

2. In TGD the scattering of 2 fermions could occur in two manners by classical interactions at
partonic 2-surface. The world lines either cross each other or not. In M2 the first contribu-
tion is planar and second one non-planar. Both options should contribute to the 4-fermion
amplitude but this is not be visible in the proposed form of the amplitude. Does the proposed
4-fermion scattering amplitude allow this interpretation?

In N = 4 SUSY the addition of BCFW bridge would permute the two external particles.
In TGD the introduction of BCFW bridge would force to have bosonic lines in the BCFW
bridge. This is not possible. The only manner to have BCFW diagram is to allow SUSY
perhaps realized as and addition right-handed neutrinos to the fermion lines but this would
force to allow splitting of fermion lines requiring splitting of strings.

3. Annihilations of fermion-antifermion pairs to bosons are not possible in 1+1-D QFTs but
in TGD topological 3-vertices allow them. Boson would correspond to the final B ≡ FF
pair at same parton orbit. There are two manners to achieve the annihilation. In s-channel
FF → vacuum→ FF ≡ B is possible. Both F1 coming from past and F2 from future scatter
classically backwards in time to give F 1 travelling back to past and F 2 travelling back to
future. In t-channel one can have braiding (FF → FF ≡ B.

About unitarity for scattering amplitudes

The first question is what one means with S-matrix in ZEO. I have considered several proposals
for the counterparts of S-matrix [K91].In the original U-matrix, M-matrix and S-matrix were
introduced but it seems that U-matrix is not needed.

1. The first question is whether the unitary matrix is between zero energy states or whether
it characterizes zero energy states themselves as time-like entanglement coefficients between
positive and negative energy parts of zero energy states associated with the ends of CD. One
can argue that the first option is not sensible since positive and negative energy parts of zero
energy states are strongly correlated rather than forming a tensor product: the S-matrix
would in fact characterize this correlation partially.

The latter option is simpler and is natural in the proposed identification of conscious entity -
self - as a generalized Zeno effect, that is as a sequence of repeated state function reductions
at either boundary of CD shifting also the boundary of CD farther away from the second
boundary so that the temporal distance between the tips of CD increases. Each shift of this
kind is a step in which superposition of states with different distances of upper boundary from
lower boundary results followed by a localization fixing the active boundary and inducing
unitary transformation for the states at the original boundary.

2. The proposal is that the the proper object of study for given CD is M-matrix. M-matrix is a
product for a hermitian square root of diagonalized density matrix ρ with positive elements
and unitary S-matrix S : M =

√
ρS. Density matrix ρ could be interpreted in this approach

as a non-trivial Hilbert space metric. Unitarity conditions are replaced with the conditions
MM† = ρ and M†M = ρ. For the single step in the sequence of reductions at active
boundary of CD one has M →MS(∆T ) so that one has S → SS(∆T ). S(∆T ) depends on
the time interval ∆T measured as the increase in the proper time distance between the tips
of CD assignable to the step.
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What does unitarity mean in the twistorial approach?

1. In accordance with the idea that scattering diagrams is a representation for a computation,
suppose that the deformations of space-time surfaces defining a given topological diagram as
a maximum of the exponent of Kähler function, are the basic objects. They would define
different quantum phases of a larger quantum theory regarded as a square root of thermody-
namics in ZEO and analogous to those appearing also in QFTs. Unitarity would hold true
for each phase separately.

The topological diagrams would not play the role of Feynman diagrams in unitarity conditions
although their vertices would be analogous to those appearing in Feynman diagrams. This
would reduce the unitarity conditions to those for fermionic states at partonic 2-surfaces at
the ends of CDs, actually at the ends of fermionic lines assigned to the boundaries of string
world sheets.

2. The unitarity conditions be interpreted stating the orthonormality of the basis of zero en-
ergy states assignable with given topological diagram. Since 3-surfaces as points of WCW
appearing as argument of WCW spinor field are pairs consisting of 3-surfaces at the opposite
boundaries of CD, unitarity condition would state the orthonormality of modes of WCW
spinor field. If might be even that no mathematically well-defined inner product assignable
to either boundary of CD exists since it does not conform with the view provided by WCW
geometry. Perhaps this approach might help in identifying the correct form of S-matrix.

3. If only tree diagrams constructed using 4-fermion twistorial vertex are allowed, the unitarity
relations would be analogous to those obtained using only tree diagrams. They should express
the discontinuity for T in S = 1 + iT along unitary cut as Disc(T ) = TT †. T and T † would
be T-matrix and its time reversal.

4. The correlation between the structure of the fermionic scattering diagram and topological
scattering diagrams poses very strong restrictions on allowed scattering reactions for given
topological scattering diagram. One can of course have many-fermion states at partonic 2-
surfaces and this would allow arbitrarily high fermion numbers but physical intuition suggests
that for given partonic 2-surface (throat of wormhole contact) the fermion number is only 0,
1, or perhaps 2 in the case of supersymmetry possibly generated by right-handed neutrino.

The number of fundamental fermions both in initial and final states would be finite for this
option. In quantum field theory with only masive particles the total energy in the final state
poses upper bound on the number of particles in the final state. When massless particles are
allowed there is no upper bound. Now the complexity of partonic 2-surface poses an upper
bound on fermions.

This would dramatically simplify the unitarity conditions but might also make impossible to
satisfy them. The finite number of conditions would be in spirit with the general philosophy
behind the notion of hyper-finite factor. The larger the number of fundamental fermions
associated with the state, the higher the complexity of the topological diagram. This would
conform with the idea about QCC. One can make non-trivial conclusions about the total
energy at which the phase transitions changing the topology of space-time surface defined by
a topological diagram must take place.

15.5.5 Criticism

One can criticize the proposed vision.

What about loops of QFT?

The idea about cancellation of loop corrections in functional integral and moves allowing to trans-
form scattering diagrams represented as networks of partonic orbits meeting at partonic 2-surfaces
defining topological vertices is nice.

Loops are however unavoidable in QFT description and their importance is undeniable.
Photon-photon (see http://tinyurl.com/lqhdujm) scattering is described by a loop diagram in

http://tinyurl.com/lqhdujm
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which fermions appear in box like loop. Magnetic moment of muon see http://tinyurl.com/

p7znfmd) involves a triangle loop. A further, interesting case is CP violation for mesons (see
http://tinyurl.com/oop4apy) involving box-like loop diagrams.

Apart from divergence problems and problems with bound states, QFT works magically well
and loops are important. How can one understand QFT loops if there are no fundamental loops?
How could QFT emerge from TGD as an approximate description assuming lengths scale cutoff?

The key observation is that QFT basically replaces extended particles by point like particles.
Maybe loop diagrams can be “unlooped” by introducing a better resolution revealing the non-point
like character of the particles. What looks like loop for a particle line becomes in an improved
resolution a tree diagram describing exchange of particle between sub-lines of line of the origi-
nal diagram. In the optimal resolution one would have the scattering diagrams for fundamental
fermions serving as building bricks of elementary particles.

To see the concrete meaning of the “unlooping” in TGD framework, it is necessary to recall
the qualitative view about what elementary particles are in TGD framework.

1. The fundamental fermions are assigned to the boundaries of string world sheets at the light-
like orbits of partonic 2-surfaces: both fermions and bosons are built from them. The classical
scatterings of fundamental fermions at the 2-D partonic 2-surface defining the vertices of
topological scattering diagrams give rise to scattering amplitudes at the level of fundamental
fermions and twistor lift with 8-D light-likeness suggests essentially unique expressions for
the 4-fermion vertex.

2. Elementary particle is modelled as a pair of wormhole contacts (Euclidian signature of metric)
connecting two space-time sheets with throats at the two sheets connected by monopole flux
tubes. All elementary particles are hadronlike systems but at recent energies the substructure
is not visible. The fundamental fermions at the wormhole throats at given space-time sheet
are connected by strings. There are altogether 4 wormhole throats per elementary particle
in the simplest model.

Elementary boson corresponds to fundamental fermion and antifermion at opposite wormhole
throats with very small size (CP2 size). Elementary fermion has only single fundamental
fermion at either throat. There is νLνR pair or its CP conjugate at the other end of the
flux tube to neutralize the weak isospin. The flux tube has length of order Compton length
(or elementary particle or of weak boson) gigantic as compared to the size of the wormhole
contact.

3. The vertices of topological diagram involve joining of the stringy diagrams associated with
elementary particles at their ends defined by wormhole contacts. Wormhole contacts defining
the ends of partonic orbits of say 3 interacting particles meet at the vertex - like lines in
Feynman diagram - and fundamental fermion scattering redistributes fundamental fermions
between the outgoing partonic orbits.

4. The important point is that there are 2 × 2 = 4 manners for the wormhole contacts at the
ends of two elementary particle flux tubes to join together. This makes a possible a diagrams
in which particle described by a string like object is emitted at either end and glued back at
the other end of string like object. This is basically tree diagram at the level of wormhole
contacts but if one looks it at a resolution reducing string to a point, it becomes a loop
diagram.

5. Improvement of the resolution reveals particles inside particles, which can scatter by tree
diagrams. This allows to “unloop” the QFT loops. By increasing resolution new space-time
sheets with smaller size emerge and one obtains “unlooped” loops in shorter scales. The
space-time sheets are characterized by p-adic length scale and primes near powers of 2 are
favored. p-Adic coupling constant evolution corresponds to the gradual “unlooping” by going
to shorter and shorter p-adic length scales revealing smaller and smaller space-time sheets.

The loop diagrams of QFTs could thus be seen as a direct evidence of the fractal many-
sheeted space-time and quantum criticality and number theoretical universality (NTU) of TGD
Universe. Quantum critical dynamics makes the dynamics universal and this explains the un-
reasonable success of QFT models as far as length scale dependence of couplings constants is

http://tinyurl.com/p7znfmd
http://tinyurl.com/p7znfmd
http://tinyurl.com/oop4apy
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considered. The weak point of QFT models is that they are not able to describe bound states: this
indeed requires that the extended structure of particles as 3-surfaces is taken into account.

Can action exponentials really disappear?

The disappearance of the action exponentials from the scattering amplitudes can be criticized.
In standard approach the action exponentials associated with extremals determine which config-
urations are important. In the recent case they should be the 3-surfaces for which Kähler action
is maximum and has stationary phase. But what would select them if the action exponentials
disappear in scattering amplitudes?

The first thing to notice is that one has functional integral around a maximum of vacuum
functional and the disappearance of loops is assumed to follow from quantum criticality. This would
produce exponential since Gaussian and metric determinants cancel, and exponentials would cancel
for the proposal inspired by the interpretation of diagrams as computations. One could in fact
define the functional integral in this manner so that a discretization making possible NTU would
result.

Fermionic scattering amplitudes should depend on space-time surface somehow to reveal
that space-time dynamics matters. In fact, QCC stating that classical Noether charges for bosonic
action are equal to the eigenvalues of quantal charges for fermionic action in Cartan algebra would
bring in the dependence of scattering amplitudes on space-time surface via the values of Noether
charges. For four-momentum this dependence is obvious. The identification of heff/h = n as the
dimension of the extension dividing the order of its Galois group would mean that the basic unit for
discrete charges depends on the extension characterizing the space-time surface. Also the cognitive
representations defined by the set of points for which preferred imbedding space coordinates are
in this extension. Could the cognitive representations carry maximum amount of information for
maxima? For instance, the number of the points in extension be maximal. Could the maximum
configurations correspond to just those points of WCW, which have preferred coordinates in the
extension of rationals defining the adele? These 3-surfaces would be in the intersection of reality
and p-adicities and would define cognitive representation.

These ideas suggest that the usual quantitative criterion for the importance of configurations
could be equivalent with a purely number theoretical criterion. p-Adic physics describing cognition
and real physics describing matter would lead to the same result. Maximization for action would
correspond to maximization for information.

Irrespective of these arguments, the intuitive feeling is that the exponent of the bosonic
action must have physical meaning. It is number theoretically universal if action satisfies S =
q1 + iq2π. This condition could actually be used to fix the dependence of the coupling parameters
on the extension of rationals [L24]. By allowing sum over several maxima of vacuum functional
these exponentials become important. Therefore the above ideas are interesting speculations but
should be taken with a big grain of salt.

15.6 Appendix: Some background about twistors

In the following I try to summarize my view about how the ideas related to the twistor approach to
scattering amplitudes evolved. A readable summary of specialist about twistor approach is given
in the article Scattering amplitudes of Elvang and Huang [B35]. Also the thesis Grassmannian
Origin of Scattering Amplitudes of Trnka [B75] gives a good summary about the work done in
association with Nima Arkani-Hamed. I am not a specialist and have not been endowed with
practical calculations so that my representation considers only the basic ideas and their relationship
to TGD. In the following I summarize my very partial view about the development of ideas.

15.6.1 The pioneering works of Penrose and Witten

The pioneering work of Penrose discussed in The Central Programme of Twistor Theory [B69]
on twistors initiated the twistor program, which had already had applications in Yang-Mills the-
ories int he description of instantons. The key vision is that massless field equations reduce to
holomorphy in twistor formulation.
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Witten’s Perturbative Gauge Theory As a String Theory In Twistor Space [B33] in 2003
initiated the progress leading to dramatic understanding of the planar scattering amplitudes of
N = 4 SUSY and eventually to the notion of amplituhedron. The abstract gives some idea about
the key ideas.

Perturbative scattering amplitudes in Yang-Mills theory have many unexpected properties,
such as holomorphy of the maximally helicity violating amplitudes. To interpret these results, we
Fourier transform the scattering amplitudes from momentum space to twistor space, and argue
that the transformed amplitudes are supported on certain holomorphic curves. This in turn is
apparently a consequence of an equivalence between the perturbative expansion of N = 4 super
Yang-Mills theory and the D-instanton expansion of a certain string theory, namely the topological
B model whose target space is the Calabi-Yau supermanifold CP3|4.

Witten’s observation was that the twistor Fourier transform of the scattering amplitudes of
YM theories seem to be localized at 2-dimensional complex surfaces of twistor space and this led him
to propose that twistor string theory in the twistor space CP3 could allow to describe the scattering
amplitudes. The basic problem of the twistor approach relates to space-time signature: all works
nicely in signature (2,2), which suggests that something might be wrong in the basic assumptions.

15.6.2 BCFW recursion formula

BCFW recursion was first derived for tree amplitudes and later generalized to planar loop diagrams.

1. Twistor diagram recursion for all gauge-theoretic tree amplitudes by Hodges [B15] in 2005
and Direct Proof of Tree-Level Recursion Relation in Yang- Mills Theory by Britto, Cachazo,
Feng, and Witten [B26] in 2005 proposed at tree level a recursion formula for the tree level
MHV amplitudes of Yang-Mills theory in twistor space.

2. Scattering Amplitudes and BCFW Recursion in Twistor Space By Mason and Skinner [B26]
discussed BCFW recursion relations for tree diagrams of YM theories.

3. The S-Matrix in Twistor Space by Arkani-Hamed, Cachazo, Cheung and Kaplan [B36] in 2009
discussed NkMHV amplitudes with more than two negative helicities (MHV amplitudes have
2 negative helicities are are extremely simple).

This work is carried out in metric signature (2,2), where the twistor transform reduces to
ordinary Fourier transform. The other signatures are problematic. Only planar diagrams are
considered. On-Shell Structures of MHV Amplitudes Beyond the Planar Limit [B41] in 2014 of
Arkani-Hamed et al consider the problem posed by the non-planar diagrams.

15.6.3 Yangian symmetry and Grassmannian

The discovery of dual super-conformal invariance is one of the key steps of progress. This symmetry
means extension of the conformal algebra from space-time level to the level of twistor space so that
the dual superconformal invariance acts also on so called momentum twistors assigned with the
twistor diagram. These dual conformal symmetries extend to a Yangian algebra containing besides
local generators also multilocal generators. The dual conformal generators are bi-local generators
and have weight n = 1. The Yangian symmetry is completely general and expected to generalize.

In the following I list the abstracts of some important articles.

1. Magic identities for conformal four-point integrals by Drummond, Henn, Smirnov, and Sokatchev
[B42] in 2006 initiated the development of ideas. The interpretation is as dual conformal in-
variance generator by the weight 1 generators of Yangian.

We propose an iterative procedure for constructing classes of off-shell four-point conformal
integrals which are identical. The proof of the identity is based on the conformal properties
of a sub-integral common for the whole class. The simplest example are the so-called ”triple
scalar box” and ”tennis court” integrals. In this case we also give an independent proof using
the method of Mellin-Barnes representation which can be applied in a similar way for general
off-shell Feynman integrals.
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2. Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory [B31] by
Drummond, Henn, and Plefka in 2009 continued this work and discussed Yangian algebra as
as a symmetry having besides local generators also multilocal generators.

Tree-level scattering amplitudes in N = 4 super Yang-Mills theory have recently been shown
to transform covariantly with respect to a ”dual” superconformal symmetry algebra, thus
extending the conventional superconformal symmetry algebra psu(2, 2|4) of the theory. In
this paper we derive the action of the dual superconformal generators in on-shell superspace
and extend the dual generators suitably to leave scattering amplitudes invariant. We then
study the algebra of standard and dual symmetry generators and show that the inclusion of
the dual superconformal generators lifts the psu(2,2|4) symmetry algebra to a Yangian. The
non-local Yangian generators acting on amplitudes turn out to be cyclically invariant due to
special properties of psu(2,2|4). The representation of the Yangian generators takes the same
form as in the case of local operators, suggesting that the Yangian symmetry is an intrinsic
property of planar N = 4 super Yang-Mills, at least at tree level.

3. Dual Superconformal Invariance, Momentum Twistors and Grassmannians [B63] by Mason
and Skinner introduces momentum twistors and Grassmannians.

Dual superconformal invariance has recently emerged as a hidden symmetry of planar scat-
tering amplitudes in N = 4 super Yang-Mills theory. This symmetry can be made manifest
by expressing amplitudes in terms of ”momentum twistors”, as opposed to the usual twistors
that make the ordinary superconformal properties manifest. The relation between momentum
twistors and on-shell momenta is algebraic, so the translation procedure does not rely on any
choice of space-time signature. We show that tree amplitudes and box coefficients are suc-
cinctly generated by integration of holomorphic delta-functions in momentum twistors over
cycles in a Grassmannian. This is analogous to, although distinct from, recent results ob-
tained by Arkani-Hamed et al. in ordinary twistor space. We also make contact with Hodges
polyhedral representation of NMHV amplitudes in momentum twistor space.

4. A Duality For The S Matrix [B38] in 2009 by Arkani-Hamed et al discusses also Yan-
gian invariance and introduces central ideas in algebraic geometry: Grassmannians, higher-
dimensional residue theorems, intersection theory, and the Schubert calculus.

We propose a dual formulation for the S Matrix of N = 4 SYM. The dual provides a basis for
the leading singularities of scattering amplitudes to all orders in perturbation theory, which
are sharply defined, IR safe data that uniquely determine the full amplitudes at tree level
and 1-loop, and are conjectured to do so at all loop orders. The scattering amplitude for
n particles in the sector with k negative helicity gluons is associated with a simple integral
over the space of k planes in n dimensions, with the action of parity and cyclic symmetries
manifest. The residues of the integrand compute a basis for the leading singularities. A given
leading singularity is associated with a particular choice of integration contour, which we
explicitly identify at tree level and 1-loop for all NMHV amplitudes as well as the 8 particle
N2MHV amplitude. We also identify a number of 2-loop leading singularities for up to 8
particles. There are a large number of relations among residues which follow from the multi-
variable generalization of Cauchys theorem known as the ”global residue theorem”. These
relations imply highly non-trivial identities guaranteeing the equivalence of many different
representa- tions of the same amplitude. They also enforce the cancellation of non-local poles
as well as consistent infrared structure at loop level. Our conjecture connects the physics
of scattering amplitudes to a particular subvariety in a Grassmannian; space-time locality is
reflected in the topological properties of this space.

5. The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM [B39] by Arkani-
Hamed et al in 2010.

We give an explicit recursive formula for the all L-loop integrand for scattering amplitudes in
N = 4 SYM in the planar limit, manifesting the full Yangian symmetry of the theory. This
generalizes the BCFW recursion relation for tree amplitudes to all loop orders, and extends
the Grassmannian duality for leading singularities to the full amplitude. It also provides a new
physical picture for the meaning of loops, associated with canonical operations for removing
particles in a Yangian-invariant way. Loop amplitudes arise from the ”entangled” removal of
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pairs of particles, and are naturally presented as an integral over lines in momentum-twistor
space. As expected from manifest Yangian-invariance, the integrand is given as a sum over
non-local terms, rather than the familiar decomposition in terms of local scalar integrals with
rational coefficients. Knowing the integrands explicitly, it is straightforward to express them
in local forms if desired; this turns out to be done most naturally using a novel basis of
chiral, tensor integrals written in momentum-twistor space, each of which has unit leading
singularities. As simple illustrative examples, we present a number of new multi-loop results
written in local form, including the 6- and 7-point 2-loop NMHV amplitudes. Very concise
expressions are presented for all 2-loop MHV amplitudes, as well as the 5-point 3-loop MHV
amplitude. The structure of the loop integrand strongly suggests that the integrals yielding
the physical amplitudes are ”simple”, and determined by IR-anomalies. We briefly comment
on extending these ideas to more general planar theories.

15.6.4 Amplituhedron

The latest development in twistorial revolution was the notion of amplituhedron. Since I do not
have intuitive understanding about amplituhedron and since amplituhedron does not have role in
the twistorialization of TGD as I understand it now, I provide only abstracts about two articles to
it.

1. The Amplituhedron [B20] by Arkani-Hamed and Trnka in 2013.

Perturbative scattering amplitudes in gauge theories have remarkable simplicity and hidden
infinite dimensional symmetries that are completely obscured in the conventional formulation
of field theory using Feynman diagrams. This suggests the existence of a new understanding
for scattering amplitudes where locality and unitarity do not play a central role but are derived
consequences from a different starting point. In this note we provide such an understanding
for N = 4 SYM scattering amplitudes in the planar limit, which we identify as ”the volume”
of a new mathematical object–the Amplituhedron–generalizing the positive Grassmannian.
Locality and unitarity emerge hand-in-hand from positive geometry.

2. Positive Amplitudes in the Amplituhedron [B19] by Arkani-Hamed et al in 2014.

The all-loop integrand for scattering amplitudes in planar N = 4 SYM is determined by
an ”amplitude form” with logarithmic singularities on the boundary of the amplituhedron.
In this note we provide strong evidence for a new striking property of the superamplitude,
which we conjecture to be true to all loop orders: the amplitude form is positive when eval-
uated inside the amplituhedron. The statement is sensibly formulated thanks to the natural
”bosonization” of the superamplitude associated with the amplituhedron geometry. However
this positivity is not manifest in any of the current approaches to scattering amplitudes, and
in particular not in the cellulations of the amplituhedron related to on-shell diagrams and
the positive Grassmannian. The surprising positivity of the form suggests the existence of a
”dual amplituhedron” formulation where this feature would be made obvious. We also suggest
that the positivity is associated with an extended picture of amplituhedron geometry, with the
amplituhedron sitting inside a co-dimension one surface separating ”legal” and ”illegal” local
singularities of the amplitude. We illustrate this in several simple examples, obtaining new
expressions for amplitudes not associated with any triangulations, but following in a more
invariant manner from a global view of the positive geometry.



Chapter 16

The Recent View about
Twistorialization in TGD
Framework

16.1 Introduction

The construction of scattering amplitudes is a dream that I have had since the birth of TGD for
four decades ago. Various ideas have gradually emerged, some of them have turned out to be
wrong, and some of them have survived. At this age I must admit that the dream about explicit
algorithms that any graduate student could apply to construct the scattering amplitudes, would
require a collective effort and probably will not be realized during my lifetime.

I have however identified a set of general powerful principles leading to a generalization of
the recipes for constructing twistorial amplitudes and already now these principles suggest the
possibility of rather concrete realizations. In the sequel several additional insights are developed in
more detail. Some of them are discussed already earlier in the formulation of M8−H duality [L33]
in adelic framework [L35, L36] and in the chapters developing the TGD based generalization of
twistor Grasmannian approach [K76, L22, L24, L38].

1. A proposal made already earlier [L38] is that scattering diagrams as analogs of twistor di-
agrams are constructible as tree diagrams for CDs connected by free particle lines. Loop
contributions are not even well-defined in zero energy ontology (ZEO) and are in conflict
with number theoretic vision. The coupling constant evolution would be discrete and asso-
ciated with the scale of CDs (p-adic coupling constant evolution) and with the hierarchy of
extensions of rationals defining the hierarchy of adelic physics.

2. Logarithms appear in the coupling constant evolution in QFTs. The identification of their
number theoretic versions as rational number valued functions required by number-theoretical
universality for both the integer characterizing the size scale of CD and for the hierarchy of
Galois groups leads to an answer to a long-standing question what makes small primes and
primes near powers of them physically special. The primes p ∈ {2, 3, 5} indeed turn out to
be special from the point of view of number theoretic logarithm.

3. The reduction of the scattering amplitudes to tree diagrams is in conflict with unitarity
in 4-D situation. The imaginary part of the scattering amplitude would have discontinuity
proportional to the scattering rate only for many-particle states with light-like total momenta.
Scattering rates would vanish identically for the physical momenta for many-particle states.

In TGD framework the states would be however massless in 8-D sense. Massless pole cor-
responds now to a continuum for M4 mass squared and one would obtain the unitary cuts
from a pole at P 2 = 0! Scattering rates would be non-vanishing only for many-particle states
having light-like 8-momentum, which would pose a powerful condition on the construction
of many-particle states. Single particle momenta cannot be however light-like for this kind
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of states unless they are parallel. They must be also complex as they indeed are already in
classical TGD.

In fact, BCFW deformation pi → pi + zri, ri · rj = 0 creates at z-poles of the resulting
amplitude pairs of zero energy states for which complex single particle momenta are not
light-like but sum up to massless momentum. One can interpret these zero energy analogs of
resonances, states inside CDs formed from massless external particles as they arrive to CD.
This strong form of conformal symmetry has highly non-trivial implications concerning color
confinement.

4. The key idea is number theoretical discretization [L35] in terms of “cognitive representations”
as space-time time points with M8-coordinates in an extension of rationals and therefore
shared by both real and various p-adic sectors of the adele. Discretization realizes measure-
ment resolution, which becomes an inherent aspect of physics rather than something forced
by observed as outsider. This fixes the space-time surface completely as a zero locus of real
or imaginary part of octonionic polynomial.

This must imply the reduction of “world of classical worlds” (WCW) corresponding to a fixed
number of points in the extension of rationals to a finite-dimensional discretized space with
maximal symmetries and Kähler structure [K34, K15, K110].

The simplest identification for the reduced WCW would be as complex Grassmannian - a
more general identification would be as a flag manifold. More complex options can of course
be considered. The Yangian symmetries of the twistor Grassmann approach known to act
as diffeomorphisms respecting the positivity of Grassmannian and emerging also in its TGD
variant would have an interpretation as general coordinate invariance for the reduced WCW.
This would give a completely unexpected connection with supersymmetric gauge theories
and TGD.

5. M8 picture [L33] implies the analog of SUSY realized in terms of polynomials of super-
octonions whereas H picture suggests that supersymmetry is broken in the sense that many-
fermion states as analogs of components of super-field at partonic 2-surfaces are not local.
This requires breaking of SUSY. At M8 level the breaking could be due to the reduction of
Galois group to its subgroup G/H, where H is normal subgroup leaving the point of cognitive
representation defining space-time surface invariant. As a consequence, local many-fermion
composite in M8 would be mapped to a non-local one in H by M8 −H correspondence.

16.2 General view about the construction of scattering am-
plitudes in TGD framework

Before twistorial considerations a general vision about the basic principles of TGD and construction
of scattering amplitudes in TGD framework is in order.

16.2.1 General principles behind S-matrix

Although explicit formulas for scattering amplitudes are probably too much to hope, one can try
to develop a convincing general view about principles behind the S-matrix.

World of Classical Worlds

The first discovery was what I called the “world of classical worlds” (WCW) [K34, K15, K110] as a
generalization of loop space allowing to replace path integral approach failing in TGD work. This
led to a generalization of Einstein’s geometrization program to an attempt to geometrize entire
quantum physics. The geometry of WCW would be essentially unique from its mere existence since
the existence of Riemann connection requires already in the case of loop spaces maximal isometries.
Super-symplectic and super-conformal symmetries generalizing the 2-D conformal symmetries by
replacing 2-D surfaces with light-like 3-surfaces (metrically 2-D!) would define the isometries.
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Physical states would be classical spinor fields in the infinite-dimensional WCW and spinors
at given point of WCW would be fermionic Fock states. Gamma matrices would be linear combi-
nations of fermionic oscillator operators associated with the analog of massless Dirac equation at
space-time surface determined by the variational principle whose preferred extremals the space-time
surfaces are. Strong form of holography implied by strong form of general coordinate invariance
would imply that it is enough to consider the restrictions of the induced spinor fields at string world
sheets and partonic 2-surfaces (actually at discrete points at them defining the ends of boundaries
of string world sheets) [K88, K110].

Zero Energy Ontology and generalization of quantum measurement theory to a theory
of consciousness

The attempts to understand S-matrix led to the question about what does state function reduc-
tion really mean. This eventually led to the discovery of Zero Energy Ontology (ZEO) in which
time=constant snapshot as a physical state is replaced with preferred extremal satisfying infinite
number of additional gauge conditions [L39]. Temporal pattern becomes the fundamental entity:
this conforms nicely with the view neuroscientists and computational scientists for whom behav-
ior and program are basic notions. One can say that non-deterministic state function reduction
replaces this kind time evolution with new one. One gets rid of the basic difficulty of ordinary
quantum measurement theory.

Causal diamond (CD) is the basic geometric object of ZEO. The members of the state pair
defining zero energy state - the analog of physical event characterized by initial and final states -
have opposite total conserved quantum numbers and reside at the opposite light-like boundaries
of CD being associated with 3-surfaces connected by a space-time surface, the preferred extremal.
CDs form a fractal hierarchy ordered by their discrete size scale.

One ends up to a quite radical prediction: the arrow of time changes in “big” state function
reduction changing the roles of active and passive boundaries of CD. The state function reductions
occurring in elementary reactions represent an example of “big” state function reduction. The
sequence of “small” state function reductions - analogs of so called weak measurements - defines
self as a conscious entity having CD as imbedding space correlate [L39].

In ZEO based view about WCW 3-surfaces X3 are pairs of 3-surfaces at boundaries of CD
connected by preferred extremals of the action principle. WCW spinors are pairs of fermionic Fock
states at these 3-surfaces and WCW spinor fields are WCW spinors depending on X3 . They
satisfy the analog of massless Dirac equation which boils down to the analogs of Super Virasoro
conditions including also gauge conditions for a sub-algebra of super-symplectic algebra. S-matrix
describing time evolution followed by “small” state function reduction relates two WCW spinor
fields of this kind.

Generalization of twistor Grassmannian approach to TGD framework

Twistorial approach generalizes from M4 to H = M4 × CP2. One possible motivation could
be the fact that ordinary twistor approach describes only scattering of massless particles. In
the proposed generalization particles are massless in 8-D sense and in general massive in 4-D
sense [K76, L22, L24, L38].

1. The existence of twistor lift of Kähler action as 6-D analog of Kähler action fixes the choice
of H uniquely: only M4 and CP2 allow twistor space with Kähler structure. The 12-D
product of the twistor spaces of M4 and CP2 induces twistor structure for 6-D surface X6

under additional conditions guaranteeing that the X6 is twistor space of 4-D surface X4 (S2

bundle over X4) - its twistor lift. The conjecture that 6-D Kähler action indeed gives rise to
twistor spaces of X4 as preferred extremals.

2. This conjecture is the analog for Penrose’s original twistor representation of Maxwellian
fields reducing dynamics of massless fields to homology. There is also an analogy with
massless fields. Dimensional reduction of Kähler action occurs for 6-surfaces, which represent
twistor spaces and the external particles entering CD would be minimal surfaces defining
simultaneous preferred extremals of Kähler action satisfying infinite number of additional
gauge conditions. Minimal surfaces indeed satisfy generalization of massless field equations.
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In the interior of CD defining interaction region there is a coupling to Kähler 4-force and one
has analog of massless particle coupling to Maxwellian field.

3. 6-D Kähler action would give the preferred extremals via the analog of dimensional reduction
essential for the twistor space property requiring that one has S2 bundle over space-time sur-
face. I have considered the generalization of the standard twistorial construction of scattering
amplitudes of N = 4 SUSY to TGD context. In particular, the crucial Yangian invariance
of the amplitudes holds true also now in both M4 and CP2 sectors.

4. Skeptic could argue that TGD generalization of twistors does not tell anything about the
origin of the Yangian symmetry. During writing of this contribution I however realized
that the hierarchy of Grassmannians realizing the Yangian symmetries could be seen as a
hierarchy of reduced WCWs associated with the hierarchy of adeles defined by the hierarchy
of extensions of rationals. The isometries of Grassmannian would emerge in the reduction
of the isometry group of WCW to a finite-D isometry group of Grassmannian and would be
caused by finite measurement resolution described number theoretically. Of course, one can
consider also more general flag manifolds with Kähler property as candidates for the analogs
of Grassmannians. I will represent the argument in more detail later.

This could also relate to the postulated infinite hierarchy of hyper-finite factors of type II1
(HFFs) [K87, K26] as a correlate for the finite measurement resolution with included sub-
factor inducing transformations which act trivially in the measurement resolution used.

Remark: There is an amusing connection with empiria. Topologist Barbara Shipman
observed that honeybee dance allows a description in terms of flag manifold F = SU(3)/U(1) ×
U(1), which is the space for the choices of quantization axes of color quantum numbers and also the
twistor space in CP2 degrees of freedom [A37]. This suggest that QCD type physics might make
sense in macroscopic length scales. p-Adic length scale hypothesis and the predicted long range
classical color gauge fields suggest a hierarchy of QCD type physics. One can indeed construct
a TGD based model of honeybee dance with aconcrete interpretation and representation for the
points of F at space-time level [L42].

M8 −H duality

M8 − H duality provides two equivalent manners to see the dynamics with either M8 or H =
M4×CP2 as imbedding space [L33]. One might speak of number theoretic compactification which
is a completely non-dynamical analog for spontaneous compactification.

1. In M8 picture the space-time corresponds to a zero locus for either imaginary part IM(P ) or
real part RE(P ) of octonionic polynomial (RE(o) and IM(o) are defined by the decomposi-
tion o = RE(o)+I4IM(o), where I4 is octonion unit orthogonal to quaternionic subalgebra).
The dynamics is purely algebraic and ultra-local.

2. At the level of H the dynamics is dictated by variational principle and partial differential
equations. Space-time surfaces are preferred extremals of the twistor lift of Kähler action
reduced to a sum of 4-D Kähler action and volume term analogous to cosmological term
in GRT. The equivalence of these descriptions gives powerful constraints and should follow
from the infinite number of gauge conditions at the level of H associated with a sub-algebra
of supersymplectic algebra implying the required dramatic reduction of degrees of freedom
[K15, K110]. One has a hierarchy of these sub-algebras, which presumably relates to the
hierarchy of HFFs and hierarchy of extensions of rationals.

H picture works very nicely in applications. For instance, the notions of field body and
magnetic body are crucial in all applications.

The notion of quaternionicity, which is a central element of M8 − H duality has a deep
connection with causality which I have not noticed earlier. At the level of momentum space
quaternionicity means that 8-momenta -, which by M8 −H-duality correspond to 4-momenta at
level of M4 and color quantum numbers at the level of CP2 - are quaternionic. Quaternionicity
means that the time component of 8-momentum, which is parallel to real octonion unit, is non-
vanishing. The 8-momentum itself must be time-like, in fact light-like. In this case one can always
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regard the momentum as momentum in some quaternionic sub-space. Causality requires a fixed
sign for the time component of the momentum.

It must be however noticed that 8-momentum can be complex: also the 4-momentum can be
complex at the level of M ×CP2 already classically. A possible interpretation is in terms of decay
width as part of momentum as it indeed is in phenomenological description of unstable particles.

Could one require that the quaternionic momenta form a linear space with respect to octo-
nionic sum? This is the case if the energy - that is the time-like part parallel to the real octonionic
unit - has a fixed sign. The sum of the momenta is quaternionic in this case since the sum of light-
like momenta is in general time-like and in special case light-like. If momenta with opposite signs
of energy are allowed, the sum can become space-like and the sum of momenta is co-quaternionic.

This result is technically completely trivial as such but has a deep physical meaning. Quater-
nionicity at the level of 8-momenta implies standard view about causality: only time-like or at most
light-like momenta and fixed sign of time-component of momentum.

Adelic physics

The adelization of ordinary physics fusing real number based physics and various p-adic variants
of physics in order to describe cognition.

1. Adelic physics [L35, L36] gives powerful number theoretic constraints when combined with
M8−H duality and leads to the vision about evolutionary hierarchy defined by extensions of
rationals. The higher the level in the hierarchy, the higher the dimension n of the extension
identified in terms of Planck constant heff/h = n labelling the levels of dark matter hierarchy.

2. Adelic hypothesis allows to sharpen the strong form of holography to a statement that discrete
cognitive representations consisting of a finite number of points identified as points of space-
time surface with M8 coordinates in the extension of rationals fixes the space-time surface
itself. This dramatic reduction would be basically due to finite measurement resolution
realized as an inherent property of dynamics. Cognitive representation in fact gives the
WCW coordinates of the space-time surface in WCW! WCW reduces to a number theoretic
discretization of a finite-dimensional space with Kähler structure and presumably maximal
isometries.

3. In ZEO space-time surface becomes analogous to a computer program determined in terms
of finite net of numbers! Of course, at the QFT limit of TGD giving standard model and
GRT space-time is locally much more complex since one approximates the many-sheeted
space-time with single slightly curved region of M4. This is the price paid for getting rid (or
losing) the topological richness of the many-sheeted space-time crucial for the understanding
living matter and even physics in galactic scales.

4. Skeptic can argue that this discretization of WCW leads to the loss of WCW geometry based
on real numbers. One can however consider also continuous values for the points of cognitive
representations and assigning metric to the points of cognitive representation. Metric could
be defined as kind of induced metric. One slices CD by parallel CDs by shift the CD along
the axis connecting its tips. This allows to see the point of cognitive representation as point
at one particular CD. One shifts slightly the point along its CD. Imbedding space metric
allows to deduce the infinitesimal line element ds2 and to deduce the metric components.
This allows a definition of differential geometry so that the analog of WCW metric makes
sense as a hierarchy of finite-dimensional metrics for space-time surfaces characterize by the
cognitive representations.

The interpretation in real context would be in terms of finite measurement resolution and the
hierarchy would correspond to a hierarchy of hyper-finite factors (HFFs) [K87, K26], whose
defining property is that they allow arbitrarily precise finite-dimensional approximations.
What would be new is that the hierarchy of extensions of rationals would define a hierarchy
of discretizations and hierarchy of HFFs.

Thabove list involves several unproven conjectures, which I can argue to be intuitively
obvious with the experience of four decades: I cannot of course expect that a colleague reading for
the first time about TGD would share these intuitions.
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16.2.2 Classical TGD

Classical TGD is now rather well understood both in both H = M4 × CP2 and M8 pictures.
Applications of classical TGD are in H picture and rather detailed phenomenology has emerged.
M8 picture has led to a rather precise vision about adelic physics and to understanding of finite
measurement resolution.

Classical TGD in M8 picture

Classical TGD in M8 picture is discussed in [L33].

1. In M8 picture one ends to an extremely simple number theoretic construction of space-time
surfaces fixing only discrete or even finite number of space-time points to obtain space-time
surface for a given extension of rationals. The reason is that space-time surfaces are zero loci
for RE(P ) or IM(P ) of octonionic polynomials obtained by continuing real polynomial with
coefficients in an extension of rationals to an octonionic polynomial.

Needless to say, the hierarchy of algebraic extensions of rationals is what makes the dynamics
at given level so simple. The coordinates of space-time surface as a point of WCW must be in
the extension of rationals. As noticed, the points of space-time surface defining the cognitive
representation determining the space-time surface serve as its natural WCW coordinates.

2. The highly non-trivial point is that no variational principle is involved with M8 construction.
Therefore it seems that neither WCW metric nor Kähler function is needed. If this is the
case, the exponential of Kähler function definable as action exponential does not appear in
scattering amplitudes and must disappear also at H-side from the scattering amplitudes.

3. Skeptic could argue that one loses general coordinate invariance in this approach. This is not
true. Linear M8 coordinates are the only possible option and forced already by symmetries.
The choice octonionic and quaternionic structures fixes the linear M8 coordinates almost
uniquely since time direction is associated with real octonion unit and one spatial direction
to special imaginary unit defining spin quantization axis. In algebraic approach identifying
space-time surface as a zero locus of RE(P ) or IM(P ) these coordinates define space-time
coordinates highly uniquely.

Skeptic could also argue that number theoretic discretization implies reduction of the basic
symmetry groups to their discrete sub-groups. This is true and one can argue that this loss
of symmetry is due to the use of cognitive representations with finite resolution. Points with
algebraic coordinates could be seen as a choices of representatives from a set of points, which
are equivalent as far as measurement resolution is considered.

4. A physically important complication related to M8 dynamics is the possibility of different
octonionic and quaternionic structures. For instance, external particles arriving into CD
correspond to different octonionic and quaternionic structures in general since Lorentz boost
affects the octonionic structure changing the direction of time axis, which corresponds to
the real octonionic unit. In color degrees of freedom one has wave function over different
quaternionic structures: essentially color partial waves labelled by color quantum numbers
[K39].

One can apply Poincare transformations and color rotations (or transformation in sub-groups
of these groups if one requires that the image points belong to the same extension) to the
discrete cognitive representation defining space-time surface. The moduli spaces for these
structures are essential for the understanding the standard Poincare and color quantum
numbers and standard conservation laws in M8 picture. Also the size scales of CDs define
moduli as also Lorentz boosts leaving either boundary of CD unaffected.

Classical TGD in H picture

At the H side one action principle has partial differential equations and infinite number of gauge
conditions associated with a sub-algebra of super-symplectic algebra selecting only extremely few
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preferred extremals of the action principle in terms of gauge conditions for a sub-algebra of super-
symplectic algebra. This dynamics is conjectured to follow from the assumption that 6-D lift of
space-time surface X4 to a CP1 bundle over X4 is twistor space of X4. This condition requires
the analog of dimensional reduction since S2 fiber is dynamically trivial.

For 6-D preferred extremals identifiable as twistor spaces of space-time surfaces the 6-D
Kähler action in the product of twistor spaces of M4 and CP2 is assumed to dimensionally reduce
to 4-D Kähler action plus volume term identifiable as the analog of cosmological constant term.
This picture reproduces a description of scattering events highly analogous to that emerging in
M8. External particles correspond to minimal surfaces as analogs of free massless fields and all
couplings disappear from the value of the action. The interior of CD corresponds to non-trivial
coupling to Kähler 4-force which does not vanish. In M8 picture one has associative and non-
associative regions as counterparts of these regions.

What is remarkable is that the dynamics determined by partial differential equations plus
gauge conditions would be equivalent with the number theoretic dynamics determined in terms of
zero loci for real or imaginary parts of octonionic polynomials.

16.2.3 Scattering amplitudes in ZEO

The construction of scattering amplitudes even at the level of principle is far from well-understood.
I have discussed rather concrete proposals for the twistorial construction but the feeling is that
something is still missing [K76, L22, L24, L38]. This feeling might well reflect my quite too
limited mathematical understanding of twistors and experience about practical construction of the
scattering amplitudes. Later I will discuss possible identification of the missing piece of puzzle.

Consider first the general picture about the construction of scattering amplitudes suggested
by ZEO inspired theory of quantum measurement theory defining also a theory of consciousness.

1. The portions of space-time surfaces outside CD correspond to external particles. They satisfy
associativity conditions at M8 side making possible to map them to minimal surfaces in
H = M4 × CP2 satisfying various infinite number of gauge conditions for a sub-algebra of
super-symplectic algebra isomorphic with it.

Remark: There is an additional condition requiring that associative tangent space or normal
space contains fixed complex subspace of quaternions. It is not quite clear whether this
condition can be generalized so that the distribution of these spaces is integrable.

At both sides the dynamics of external particles is in a well-defined sense critical at both
sides and does not depend at all on coupling constants.

2. Inside CDs associativity conditions break down in M8 and one cannot map this spacetime
region - call it X4 - to H [L33]. It is however possible to construct counterpart of X4 in H
as a preferred extremal for the twistor lift of Kähler action by fixing the 3-surfaces at the
boundaries of CD (boundary conditions). The dependence on couplings at the level of H
would come from the vanishing conditions for classical Noether charges, which depend on
coupling parameters.

3. If the two descriptions of the scattering amplitudes are equivalent, the dependence on coupling
parameters in H should have a counterpart in M8. Coupling constants making sense only
at H side are expected to depend on the size scale of CD and on the extension of rationals
defining the adele [L35, L36]. Coupling constants should be determined completely by the
boundary values of Noether charges at the ends of space-time surface, and therefore by the
3-D ends of associative space-time regions representing external particles at M8 side. This
would suggest that coupling constants are functions of the coefficients of the polynomials and
the points of cognitive representation.

Zero energy ontology and the life cycle of self

ZEO meant a decisive step in the understanding of quantum TGD since it solved the basic paradox
of quantum measurement problem by forcing to realize that subjective and geometric time are not
the same thing [L39].
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1. Both the passive boundary of CD and the members of state pairs at it are unaffected during
the sequence of state reductions analogous to weak measurements (see http://tinyurl.com/
zt36hpb) defining self as a generalized Zeno effect. The members of state pairs associated
with the active boundary change and the active boundary itself drifts farther away from the
passive one in the sequence of “small” state function reductions.

Also the space-time surfaces connecting passive and active boundaries change during the
sequence of weak measurements. Only the 3-surfaces at the passive boundary are unaffected.
Hence the geometric past relative to the active boundary changes during the life cycle of self.
In positive energy ontology (PEO) this is not possible.

2. In “big” state function reduction the roles of passive and active boundary are changed and
the arrow of time identifiable as the direction in which CD grows changes. In consciousness
theory “big” state function reduction corresponds to the death of self and subsequent re-
incarnations as a self with an opposite arrow of geometric time.

3. In ZEO the life cycle of self corresponds to a sequence of steps. Single step begins with a
unitary time evolution in which a superposition of states associated with CDs larger than the
original CD emerges. Then follows the analog of weak measurement leading to a localization
to a CD in the moduli space of CDs so that it has a fixed and in general larger size. A
measurement of geometric time occurs and gives rise to an experience about the flow of time.

This option would allow to identify the total S-matrix as a product of the S-matrices associ-
ated with various steps in spirit with the interpretation as a generalized Zeno effect.

Remark: In the usual description one fixes the time interval to which one assigns the S-
matrix. There is no division to steps giving rise to the experience of time flow.

4. The measurement of geometric time would be a partial measurement reducing more general
unitary time evolution to a unitary time evolution in the standard sense. Can one generalize
the notion of partial measurement to other observables so that one would still have unitary
time evolution albeit in more restricted sense? Or should one consider giving up the unitary
time evolution?

These observables should commute with the observables having the states at passive bound-
ary as eigenstates: otherwise the state at passive boundary would change. If this picture
makes sense, the “big” reduction to the opposite boundary meaning the death of self would
necessarily occur when all observables commuting with the eigen observables at the passive
boundary have been measured. It could of course occur already earlier.

Should one allow measurements of all observables commuting with the eigen observables at
the passive boundary. This would lead to partial de-coherence of the zero energy state. In
TGD inspired quantum biology this could allow to understand ageing as an unavoidable
gradual loss of the quantum coherence.

More detailed interpretation of ZEO

There are several questions related to the detailed interpretation of ZEO. The intuitive picture is
that inside CD representing self one has collection of sub-CDs representing sub-selves identified
as mental images of self. On can loosely say, that sub-CDs represent mind. The sub-CDs are
connected by on mass shell lines, which correspond to external particles - matter. Sub-CDs can
also have sub-CDs and the hierarchy can have several levels.

The states at the boundaries of CD have opposite total quantum numbers. One can consider
two interpretations.

1. In positive energy ontology (PEO) the notion of zero energy state could be seen only as an
elegant manner to express conservation laws. This is done in QFT quite generally - also
in twistor approach. Also the largest CD would have external particles emanating from its
boundaries travelling to the geometric past and future. One would have however have only
information about the interior of the CD possessed by conscious entity for which CD plus its
sub-CDs (mental images) serve as correlates.

http://tinyurl.com/zt36hpb
http://tinyurl.com/zt36hpb
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In this picture the arrow of time is fixed since it must be same for all sub-CDs in order to void
inconsistency with the basic idea about self as generalized Zeno effect realized as a sequence
of weak measurements.

2. ZEO suggest a more radical interpretation. Zero energy state defines an event. There would
be the largest CD defining self and sub-CDs would correspond to mental images. There would
be no external particles emanating from the boundaries of the largest CD. In this framework
it becomes possible to speak about the death of self as the first state function reduction to
the opposite boundary changing the roles of active and passive boundaries of self.

This picture should be consistent with what we know about arrow of time and in TGD
framework with the idea that the arrow of time can also change - in particular in living matter.

1. How would the standard arrow of time emerge in ZEO? One could see the emergence of the
global arrow of geometric time as a process in which the size of the largest CD increases:
the sub-CDs are forced to have the same arrow of time as the largest CD and cannot make
state function reductions on opposite boundary (die) independently of it. During evolution
the size of the networks with the same arrow of geometric time increases and fixed arrow of
geometric time is established in longer scales.

2. This picture cannot be quite correct. The applications of TGD inspired consciousness require
that the mental images of self can have arrow of geometric time opposite to that of self. For
instance, motor actions could be sensory perceptions in non-standard arrow of time. Memory
could be communications with brain of geometric past - seeing in time direction - involving
signals to geometric past requiring temporary reversals of the arrow of time at some level of
self-hierarchy. Hence space-time regions with different arrows of time but forming a connected
space-time surface ought to be possible.

Many-sheeted space-time means a hierarchy of space-time sheets connected by what I call
wormhole contacts having Euclidian signature of the induced metric. Space-time sheets at
different levels of the hierarchy are not causally connected in the sense that one cannot speak
of signal propagation in the regions of Euclidian signature. This suggests that the space-time
sheets connected by wormhole contacts can have different arrows of geometric time and are
associated with their own CDs.

In this manner one would avoid the paradox resulting when sub-self - mental image - dies
so that its passive boundary becomes active and the particles emanating from it end up to
the passive boundary of CD, where no changes are allowed during the life cycle of self. If
the particles emanating from time-reversed sub-self and up to boundaries of parallel CD, the
problem is circumvented.

3. Wormhole contacts induce an interaction between Minkowskian space-time sheets that they
connect. The interaction is not mediated by classical signals but by boundary conditions at
the boundaries between Minkowskian regions and Euclidian wormhole contact. These two
boundaries are light-like orbits of opposite wormhole throats (partonic 2-surfaces).

In number theoretic picture the presence of wormhole contact is reflected in the properties set
of points in extension of rationals defining the cognitive representation in turn defining the
space-time surface. In particular, the points associated with wormhole contact have space-
like distance although they are at opposite boundaries of CD and have time-like distance in
the metric of imbedding space. This kind of point pairs associated with wormhole contacts
serve serve as a tell-tale signature for them.

16.3 The counterpart of the twistor approach in TGD

The analogs of twistor diagrams could emerge in TGD [L22, L38] in the following manner in ZEO.

1. Portions of space-time surfaces inside CDs would appear as analogs of vertices and the
spacetime surfaces connecting them as analogs of propagator lines. The “lines” connecting
sub-CDs would carry massless on mass shell states but possibly with complex momenta
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analogous to those appearing in twistor diagrams. This is true also classically at level of H:
the coupling constants appearing in the action defining classical dynamics - at least Kähler
coupling strength - are complex so that also conserved quantities have also imaginary parts.

Remark: At the level of M8 one does not have action principle and cannot speak of Noether
charges. Here the conserved charged are associated with the symmetries of the moduli spaces
such as the moduli spaces for octonion and quaternion structures [L33]. The identification of
the classical charges in Cartan algebra at H level with the quantum numbers labeling wave
functions in moduli space at M8 level could be seen as a realization of quantum classical
correspondence.

2. At space-time level the vertices of twistor diagrams correspond to partonic 2-surfaces in the
interior of given CD. In H description fermionic lines along the light-like orbits of partonic
2-surfaces scatter at partonic 2-surfaces. If each partonic 2-surface defining a vertex is sur-
rounded by a sub-CD, these two views about TGD variants of twistor diagrams are unified.
Sub-CD can of course contain more complex structures such as pair of wormhole contacts
assignable to an elementary particle.

16.3.1 Could the classical number theoretical dynamics define the hard
core of the scattering amplitudes?

The natural hope is that the simple picture about classical dynamics at the level of M8 should
have similar counterpart at the level of scattering amplitudes in M8. The above arguments suggest
that the scattering diagrams correspond to CDs connected by external particle lines representing
on mass shell particles. These surfaces are associative at the level of M8 and minimal surfaces at
the level of H. This suggests that scattering amplitude for single CD serves as a building brick for
scattering amplitudes: the rest would be “just kinematics” dictated by the enormous symmetries
of WCW.

1. Everything in the construction should reduce to a hard core around which one would have
integrations (or sums for number theoretic realization of finite measurement resolution) over
various moduli characterizing the standard quantum numbers. Twistors for M4 and CP2 and
the moduli for the choices of CDs should correspond to essentially kinematic contribution
involving no genuine dynamics.

2. The scattering amplitudes should make sense in all sectors of adele. This poses powerful
constraints on them. The exponential of Kähler function reducing to action exponential can
in principle appear in the description at H-side but cannot be present at M8 side. Therefore
it should disappear also at the level of H.

If the scattering amplitude at the level of H is sum over contributions with the same value of
the action exponential, the exponentials indeed cancel and I have proposed that this condition
holds true. In perturbative quantum field theory it holds practically always and in integrable
theories is exact. This would mean enormous simplification since all information about the
action principle in H would appear in the vanishing conditions for the Noether charges of the
subalgebra of super-symplectic algebra at the ends of the space-time surface. These Noether
changes indeed depend on the action principle and thus on coupling constants.

3. Could the hard core in the construction of the scattering amplitudes be just the choice of
the cognitive representation as points if M8 belonging to the algebraic extension defining the
adele and determining space-time surface in terms of octonionic polynomial inside this CD
defining the interaction region?

The set of points of extension of rationals in the cognitive representation defines space-time
surface and also its WCW coordinates. The restriction to a cognitive representation with
given number of points in given extension of rationals would mean a reduction of WCW to
a finite-dimensional sub-space.

The first wild guess is that this space is Kähler manifold with maximal symmetries - just
as WCW is. A further wild guess is that these reduced WCWs are Grassmannians and
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correspond to those appearing in the twistor Grassmannian approach. A more general con-
jecture is inspired by the vision that super-symplectic gauge conditions effectively reduce the
super-symplectic algebra to a Kac-Moody algebra of a finite-dimensional Lie group - perhaps
belonging to ADE hierarchy. The flag manifolds associated with these Lie groups define more
general homogenous spaces as candidates for the reduced WCWs.

4. One must allow the action of Galois group and this gives several options for given set X of
points in algebraic extension.

(a) One can construct X4(X) in terms of octonionic polynomial and construct a represen-
tation of Galois group as superposition of space-time surfaces obtained from space-time
surface by the action of Galois group on X giving rise to new sets Xg = g(X).

(b) One can also consider the action of Galois group on X and get larger set Y of points
and construct single multi-sheeted surface X4(Y ). This surface corresponds to Planck
constant heff/h = n, where n is the dimension of algebraic extension.

(c) One can also consider the actions of sub-groups of H ⊂ Gal to X to get space-time
surface with heff/h = m dividing n. There are several options corresponding to repre-
sentations for all sub-groups of Galois group. A hierarchy of symmetry breakings seems
to be involved with unbroken symmetry associated with the largest value of heff/h.

5. In this picture the hard core would reduce to the classical number theoretical dynamics of
space-time surface in M8. The additional degrees of freedom would be due to the possibility
of different octonionic and quaternionic structures and choices of size scales and Lorentz
boosts and translations of CDs. The symmetries would dictate the S-matrix in the moduli
degrees of freedom: the dream is that this part of the dynamics reduces to kinematics, so to
say.

The discrete coupling constant evolution would be determined by the hierarchy of extensions
of rationals and by the hierarchy of p-adic length scales. The cancellation of radiative cor-
rections in the sense of sub-CDs inside CDs could be achieved by replacing coupling constant
evolution with its discrete counterpart.

If this dream has something to do with reality, the construction of scattering amplitudes
would reduce to their construction in moduli degrees of freedom and here the generalization of
twistorial approach relying on Yangian symmetry allowing to identify scattering amplitudes as
Yangian invariants might “trivialize” the situation. It will be found that the Yangian symmetry
could corresponds to general coordinate transformations for the reduced WCW forced by the
restriction of the spacetime surfaces to those allowed by octonionic polynomials with coefficients
in the extensiom of rationals.

16.3.2 Do loop contributions to the scattering amplitudes vanish in
TGD framework?

In TGD scattering amplitudes interpreted as zero energy states would correspond at imbedding
space level to collections of space-time surfaces inside CDs analogous to vertices and connected
by lines defined by the space-time surfaces representing on-mass-shell particles. One would have
massless particles in 8-D sense. The quaternionicity of 8-momentum leads to M4 × CP2 picture
and CP2 twistors should replace E4 twistors of M8 approach.

Why loop corrections should vanish?

There are several arguments suggesting that the loop contributions should vanish in TGD frame-
work. This would give rise to a discrete coupling constant evolution analogous to a sequence of
phase transitions between different critical coupling parameters. Amplitudes would be obtained as
tree diagrams.

1. In ZEO it is far from clear what the basic operation defining the loop contribution could even
mean. One would have zero energy state for which the members of added particle pair have
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opposite but momenta but the amplitude is superposition of states with varying momenta.
Why should one allow zero energy states containing one particle which is not an eigenstate of
momentum? This suggests that ZEO does not allow loop contributions at all: the distinction
between PEO and ZEO would make itself visible in rather dramatic manner.

2. The restriction of the BCFW to tree diagrams is internally consistent since the loop term
is identically vanishing in this case. The first term in the BCFW for diagram with l loops
involves a factor with l > 0 loops which vanishes. In l = 1 case the second term is obtained
from (n+ 2, l − 1 = 0) diagram by generating loop but this vanishes by assumption.

3. Number theoretic vision does not favor the decomposition of the amplitude to an infinite
sum of amplitudes since this is expected to lead to the emergence of transcendental numbers
and functions in the amplitude in conflict with the number theoretical universality.

Loops indeed give logarithms and poly-logarithms of rational functions of external momenta
in Grassmannian approach. This violates the number theoretical universality since the p-adic
counterpart of logarithm exist only for the argument of form x = 1 + O(p). This condition
cannot hold true for all primes simultaneously.

Discrete coupling constant evolution suggests the vanishing of loops. One can imagine two
alternative mechanisms for the vanishing of loop contributions. Either the loop contributions do
not make sense at all in ZEO, or the sum of loop contributions for the critical values of coupling
constants vanishes. The summing up of loop contributions to zero for critical values of couplings
should happen for all values of external momenta and other quantum numbers: this does not look
plausible.

General number theoretic ideas about coupling constant evolution

The discrete coupling constant evolution would be associated with the scale hierarchy for CDs and
the hierarchy of extensions of rationals.

1. Discrete p-adic coupling constant evolution would naturally correspond to the dependence of
coupling constants on the size of CD. For instance, I have considered a concrete but rather
ad hoc proposal for the evolution of Kähler couplings strength based on the zeros of Riemann
zeta [L16]. Number theoretical universality suggests that the size scale of CD identified as
the temporal distance between the tips of CD using suitable multiple of CP2 length scale
as a length unit is integer, call it l. The prime factors of the integer could correspond to
preferred p-adic primes for given CD.

2. I have also proposed that the so called ramified primes of the extension of rationals correspond
to the physically preferred primes. Ramification is algebraically analogous to criticality in
the sense that two roots understood in very general sense co-incide at criticality. Could the
primes appearing as factors of l be ramified primes of extension? This would give strong
correlation between the algebraic extension and the size scale of CD.

In quantum field theories coupling constants depend in good approximation logarithmically
on mass scale, which would be in the case of p-adic coupling constant evolution replaced with an
integer n characterizing the size scale of CD or perhaps the collection of prime factors of n (note
that one cannot exclude rational numbers as size scales). Coupling constant evolution could also
depend on the size of extension of rationals characterized by its order and Galois group.

In both cases one expects approximate logarithmic dependence and the challenge is to define
“number theoretic logarithm” as a rational number valued function making thus sense also for p-
adic number fields as required by the number theoretical universality.

1. Coupling constant evolution with respect to CD size scale

Consider first the coupling constant as a function of the length scale lCD(n)/lCD(1) = n.

1. The number π(n) of primes p ≤ n behaves approximately as π(n) = n/log(n). This suggests
the definition of what might be called “number theoretic logarithm” as Log(n) ≡ n/π(n).
Also iterated logarithms such log(log(x)) appearing in coupling constant evolution would
have number theoretic generalization.
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2. If the p-adic variant of Log(n) is mapped to its real counterpart by canonical identification
involving the replacement p → 1/p, the behavior can very different from the ordinary log-
arithm. Log(n) increases however very slowly so that in the generic case one can expect
Log(n) < pmax, where pmax is the largest prime factor of n, so that there would be no
dependence on p for pmax and the image under canonical identification would be number
theoretically universal.

For n = pk, where p is small prime the situation changes since Log(n) can be larger than
small prime p. Primes p near primes powers of 2 and perhaps also primes near powers of 3
and 5 - at least - seem to be physically special. For instance, for Mersenne prime Mk = 2k−1
there would be dramatic change in the step Mk → Mk + 1 = 2k, which might relate to its
special physical role.

3. One can consider also the analog of Log(n) as

Log(n) =
∑
p

kpLog(p) ,

where pki is a factor of n. Log(n) would be sum of number theoretic analogs for primes
factors and carry information about them.

One can extend the definition of Log(x) to the rational values x = m/n of the argument.
The logarithm Logb(n) in base b = r/s can be defined as Logb(x) = Log(x)/Log(b).

4. For p ∈ {2, 3, 5} one has Log(p) > log(p), where for larger primes one has Log(p) < log(p).
One has Log(2) = 2 > log(2) = .693..., Log(3) = 3k/2 > log(3) = 1.099, Log(5) = 5/3 =
1.666.. > log(5) = 1.609. For p = 7 one has Log(7) = 7/4 ' 1.75 < log(7) ' 1.946. Hence
these primes and CD size scales n involving large powers of p ∈ {2, 3, 5} ought to be physically
special as indeed conjectured on basis of p-adic calculations and some observations related
to music and biological evolution [K48, K51, K59, K113].

In particular, for Mersenne primes Mk = 2k− 1 one would have Log(Mk) ' klog(2) for large
enough k. For Log(2k) one would have k×Log(2) = 2k > log(2k) = klog(2): there would be
sudden increase in the value of Log(n) at n = Mk. This jump in p-adic length scale evolution
might relate to the very special physical role of Mersenne primes strongly suggested by p-adic
mass calculations [K39].

5. One can wonder whether one could replace the log(p) appearing as a unit in p-adic negentropy
[K41] with a rational unit Log(p) = p/π(p) to gain number theoretical universality? One
could therefore interpret the p-adic negentropy as real or p-adic number for some prime.
Interestingly, |Log(p)|p = 1/p approaches zero for large primes p (eye cannot see itself!)
whereas |Log(p)|q = 1/|π(p)|q has large values for the prime power factors qr of π(p).

2. The dependence of 1/αK on the extension of rationals

Consider next the dependence on the extension of rationals. The natural algebraization of
the problem is to consider the Galois group of the extension.

1. Consider first the counterparts of primes and prime factorization for groups. The counterparts
of primes are simple groups, which do not have normal subgroups H satisfying gH = Hg
implying invariance under automorphisms of G. Simple groups have no decomposition to
a product of sub-groups. If the group has normal subgroup H, it can be decomposed to a
product H ×G/H and any finite group can be decomposed to a product of simple groups.

All simple finite groups have been classified (see http://tinyurl.com/jn44bxe). There are
cyclic groups, alternating groups, 16 families of simple groups of Lie type, 26 sporadic groups.
This includes 20 quotients G/H by a normal subgroup of monster group and 6 groups which
for some reason are referred to as pariahs.

2. Suppose that finite groups can be ordered so that one can assign number N(G) to group G.
The roughest ordering criterion is based on ord(G). For given order ord(G) = n one has all

http://tinyurl.com/jn44bxe
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groups, which are products of cyclic groups associated with prime factors of n plus products
involving non-Abelian groups for which the order is not prime. N(G) > ord(G) thus holds
true. For groups with the same order one should have additional ordering criteria, which
could relate to the complexity of the group. The number of simple factors would serve as an
additional ordering criterion.

If its possible to define N(G) in a natural manner then for given G one can define the number
π1(N(G)) of simple groups (analogs of primes) not larger than G. The first guess is that
that the number π1(N(G)) varies slowly as a function of G. Since Zi is simple group, one
has π1(N(G)) ≥ π(N(G)).

3. One can consider two definitions of number theoretic logarithm, call it Log1.

a) Log1(N(G)) = N(G)
π1(N(G)) ,

b) Log1(G) =
∑
i kiLog1(N(Gi)) , Log1(N(Gi)) = N(Gi)

π1(N(Gi))
.

(16.3.1)

Option a) does not provide information about the decomposition of G to a product of simple
factors. For Option b) one decomposes G to a product of simple groups Gi: G =

∏
iG

ki
i and

defines the logarithm as Option b) so that it carries information about the simple factors of
G.

4. One could organize the groups with the same order to same equivalence class. In this case
the above definitions would give

a) Log1(ord(G)) = ord(G)
π1(ord(G)) < Log(ord(G)) ,

b) Log1(ord(G)) =
∑
i kiLog(ord(Gi)) , Log1(ord(Gi)) = ord(Gi)

π1(ord(Gi))
.

(16.3.2)

Besides groups with prime orders there are non-Abelian groups with non-prime orders. The
occurrence of same order for two non-isomorphic finite simple groups is very rare (see http:

//tinyurl.com/ydd6uomb). This would suggests that one has π1(ord(G)) < ord(G) so that
Log1(ord(G))/ord(G) < 1 would be true.

5. For orders n(G) ∈ {2, 3, 5} one has Log1(n(G)) = Log(n(G)) > log(n(G)) so that the
ordes n(G) involving large factors of p ∈ {2, 3, 5} would be special also for the extensions of
rationals. S3 with order 6 is the first non-abelian simple group. One has π(S3) = 4 giving
Log(6) = 6/4 = 1.5 < log(6) = 1.79 so that S3 is different from the simple groups below it.

To sum up, number theoretic logarithm could provide answer to the long-standing question
what makes Mersenne primes and also other small primes so special.

Considerations related to coupling constant evolution and Riemann zeta

I have made several number theoretic peculations related to the possible role of zeros of Riemann
zeta in coupling constant evolution. The basic problem is that it is not even known whether the
zeros of zeta are rationals, algebraic numbers or genuine transcendentals or belong to all these
categories. Also the question whether number theoretic analogs of ζ defined for p-adic number
fields could make sense in some sense is interesting.

1. Is number theoretic analog of ζ possible using Log(p) instead of log(p)?

The definition of Log(n) based on factorization Log(n) ≡
∑
p kpLog(p) allows to define the

number theoretic version of Riemann Zeta ζ(s) =
∑
n−s via the replacement n−s = exp(−log(n)s)→

exp(−Log(n)s).

http://tinyurl.com/ydd6uomb
http://tinyurl.com/ydd6uomb


16.3. The counterpart of the twistor approach in TGD 637

1. In suitable region of plane number-theoretic Zeta would have the usual decomposition to
factors via the replacement 1/(1 − p−s) → 1/(1 − exp(−Log(p)s). p-Adically this makes
sense for s = O(p) and thus only for a finite number of primes p for positive integer valued
s: one obtains kind of cut-off zeta. Number theoretic zeta would be sensitive only to a finite
number of prime factors of integer n.

2. This might relate to the strong physical indications that only a finite number of cognitive rep-
resentations characterized by p-adic primes are present in given quantum state: the ramified
primes for the extension are excellent candidates for these p-adic primes. The size scale n of
CD could also have decomposition to a product of powers of ramified primes. The finiteness
of cognition conforms with the cutoff: for given CD size n and extension of rationals the
p-adic primes labelling cognitive representations would be fixed.

3. One can expand the regions of converge to larger p-adic norms by introducing an extension
of p-adics containing e and some of its roots (ep is automatically a p-adic number). By
introducing roots of unity, one can define the phase factor exp(−iLog(n)Im(s)) for suitable
values of Im(s). Clearly, exp(−ipIm(s))/π(p)) must be in the extension used for all primes
p involved. One must therefore introduce prime roots exp(i/π(p)) for primes appearing in
cutoff. To define the number theoretic zeta for all p-adic integer values of Re(s) and all
integer values of Im(s), one should allow all roots of unity (ep(i2π/n)) and all roots e1/n:
this requires infinite-dimensional extension.

4. One can thus define a hierarchy of cutoffs of zeta: for this the factorization of Zeta to a
finite number of ”prime factors” takes place in genuine sense, and the points Im(s) = ikπ(p)
give rise to poles of the cutoff zeta as poles of prime factors. Cutoff zeta converges to zero
for Re(s)→∞ and exists along angles corresponding to allowed roots of unity. Cutoff zeta
diverges for (Re(s) = 0, Im(s) = ikπ(p)) for the primes p appearing in it.

Remark: One could modify also the definition of ζ for complex numbers by replacing
exp(log(n)s) with exp(Log(n)s) with Log(n) =

∑
p kpLog(p) to get the prime factorization formula.

I will refer to this variant of zeta as modified zeta (ζ̃) below. ζ̃ would carry explicit number theoretic
information via the dependence of its “prime factors” 1/(1− exp(−Log(p)s)).

2. Could the values of 1/αK be given as zeros of ζ or of ζ̃

In [L16] I have discussed the possibility that the zeros s = 1/2 + iy of Riemann zeta at
critical line correspond to the values of complex valued Kähler coupling strength αK : s = i/αK .
The assumption that piy is root of unity for some combinations of p and y [log(p)y = (r/s)2π] was
made. This does not allow s to be complex rational. If the exponent of Kähler action disappears
from the scattering amplitudes as M8 −H duality requires, one could assume that s has rational
values but also algebraic values are allowed.

1. If one combines the proposed idea about the Log-arithmic dependence of the coupling con-
stants on the size of CD and algebraic extension with s = i/αK hypothesis, one cannot
avoid the conjecture that the zeros of zeta are complex rationals. It is not known whether
this is the case or not. The rationality would not have any strong implications for number
theory but the existence irrational roots would have (see http://tinyurl.com/y8bbnhe3).
Interestingly, the rationality of the roots would have very powerful physical implications if
TGD inspired number theoretical conjectures are accepted.

The argument discussed below however shows that complex rational roots of zeta are not
favored by the observations [A66] about the Fourier transform for the characteristic function
for the zeros of zeta. Rather, the findings suggest that the imaginary parts [L15] should
be rational multiples of 2π, which does not conform with the vision that 1/αK is algebraic
number. The replacement of log(p) with Log(p) and of 2π with is natural p-adic approxima-
tion in an extension allowing roots of unity however allows 1/αK to be an algebraic number.
Could the spectrum of 1/αK correspond to the roots of ζ or of ζ̃?

2. A further conjecture discussed in [L16] was that there is 1-1 correspondence between primes
p ' 2k, k prime, and zeros of zeta so that there would be an order preserving map k → sk. The

http://tinyurl.com/y8bbnhe3
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support for the conjecture was the predicted rather reasonable coupling constant evolution
for αK . Primes near powers of 2 could be physically special because Log(n) decomposes to
sum of Log(p):s and would increase dramatically at n = 2k slightly above them.

In an attempt to understand why just prime values of k are physically special, I have proposed
that k-adic length scales correspond to the size scales of wormhole contacts whereas particle
space-time sheets would correspond to p ' 2k. Could the logarithmic relation between Lp
and Lk correspond to logarithmic relation between p and π(p) in case that π(p) is prime and
could this condition select the preferred p-adic primes p?

3. The argument of Dyson for the Fourier transform of the characteristic function for the
set of zeros of ζ

Consider now the argument suggesting that the roots of zeta cannot be complex rationals.
On basis of numerical evidence Dyson [A66] (http://tinyurl.com/hjbfsuv) has conjectured that
the Fourier transform for the characteristic function for the critical zeros of zeta consists of multiples
of logarithms log(p) of primes so that one could regard zeros as one-dimensional quasi-crystal.

This hypothesis makes sense if the zeros of zeta decompose into disjoint sets such that
each set corresponds to its own prime (and its powers) and one has piy = Um/n = exp(i2πm/n)
(see the appendix of [L15]). This hypothesis is also motivated by number theoretical universality
[K111, L35].

1. One can re-write the discrete Fourier transform over zeros of ζ at critical line as

f(x) =
∑
y

exp(ixy)) , y = Im(s) .

The alternative form reads as

f(u) =
∑
s

uiy , u = exp(x) .

f(u) is located at powers pn of primes defining ideals in the set of integers.

For y = pn one would have piny = exp(inlog(p)y). Note that k = nlog(p) is analogous to
a wave vector. If exp(inlog(p)y) is root of unity as proposed earlier for some combinations
of p and y, the Fourier transform becomes a sum over roots of unity for these combinations:
this could make possible constructive interference for the roots of unity, which are same or at
least have the same sign. For given p there should be several values of y(p) with nearly the
same value of exp(inlog(p)y(p)) whereas other values of y would interfere deconstructively.

For general values y = xn x 6= p the sum would not be over roots of unity and constructive
interference is not expected. Therefore the peaking at powers of p could take place. This
picture does not support the hypothesis that zeros of zeta are complex rational numbers so
that the values of 1/αK correspond to zeros of zeta and would be therefore complex rationals
as the simplest view about coupling constant evolution would suggest.

Remark: Mumford has argued (http://tinyurl.com/zemw27o) that the Fourier transform
should include also the trivial zeros at s = −2,−4,−6... giving and exponentially small
contributions and providing a slowly varying background to the Fourier transform.

2. What if one replaces log(p) with Log(p) = p/π(p), which is rational and thus ζ with ζ̃?
For large enough values of p Log(p) ' log(p) finite computational accuracy does not allow
distinguish Log(p) from log(p). For Log(p) one could thus understand the finding in terms
of constructive interference for the roots of unity if the roots of zeta are of form s = 1/2 +
i(m/n)2π. The value of y cannot be rational number and 1/αK would have real part equal to
y proportional to 2π which would require infinite-D extension of rationals. In p-adic sectors
infinite-D extension does not conform with the finiteness of cognition.

Remark: It is possible to check by numerical calculations whether the locus of complex
zeros of ζ̃ is at line Res(2) = 1/2. If so, then Fourier transform would make sense. One can

http://tinyurl.com/hjbfsuv
http://tinyurl.com/zemw27o
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also check whether the peaks at nlog(p) are shifted to nLog(p): for p = 2 one would have
Log(2) = 2 > log(2). The positions of peaks should shift to the right for p = 2, 3, 5 and to
the left for p > 5. This should be easy to check by numerical calculations.

3. Numerical calculations have however finite accuracy, and allow also the possibility that y is
algebraic number approximating rational multiple of 2π in some natural manner. In p-adic
sectors would obtain the spectrum of y and 1/αK as algebraic numbers by replacing 2π in
the formula is = αK = i/2 + q × 2π, q = r/s, with its approximate value:

2π → sin(2π/n)n = i
n

2
(exp(i2π/n)− exp(−i2π/n))

for an extension of rationals containing n:th of unity. Maximum value of n would give the
best approximation. This approximation performed by fundamental physics should appear in
the number theoretic scattering amplitudes in the expressions for 1/αK to make it algebraic
number.

y can be approximated in the same manner in p-adic sectors and a natural guess is that
n = p defines the maximal root of unity as exp(i2π/p). The phase exp(ilog(p)y) for y =
qsin(2π/n(y)), q = r/s, is replaced with the approximation induced by log(p)→ Log(p) and
2π → sin(2π/n)n giving

exp(ilog(p)y)→ exp(iq(y)sin(2π/n(y))
p

π(p)
) .

If s in q = r/s does not contain higher powers of p, the exponent exists p-adically for this
extension and can can be expanded in positive powers of p as∑

n

inqnsin(2π/p)n(p/π(p))n .

This makes sense p-adically.

Also the actual complex roots of ζ could be algebraic numbers:

s = i/2 + q × sin(
2π

n(y)
)n(y) .

If the proposed correlation between p-adic primes p ' 2k, k prime and zeros of zeta predicting
a reasonable coupling constant evolution for 1/αK is true, one can have naturally, n(y) = p(y),
where p is the p-adic prime associated with y: the accuracy in angle measurement would
increase with the size scale of CD. For given p there could be several roots y with same p(y)
but different q(y) giving same phases or at least phases with same sign of real part.

Whether the roots of tildeζ are algebraic numbers and at critical line Re(s) = 1/2 is an
interesting question.

Remark: This picture allows many variants. For instance, if one assumes standard zeta,
one could consider the possibility that the roots yp associated with p and giving rise to constructive
interference are of form y = q × (Log(p)/log(p))× sin(2π/p)p, q = r/s.

4. Could functional equation and Riemann hypothesis generalize?

It is interesting to list the elementary properties of the ζ̃ before trying to answer to the
questions of the title.

1. The replacement log(n) → Log(n) ≡ sumpkpLog(p) implies that ζ̃ codes explicitly number
theoretic information. Note that Log(n) satisfies the crucial identity Log(mn) = Log(m) +
Log(n). ζ̃ is an analog of partition function with rational number valued Log(n) taking the
role of energy and 1/s that of a complex temperature. In ZEO this partition function like
entity could be associated with zero energy state as a “square root” of thermodynamical
partition function: in this case complex temperatures are possible. |ζ̃|2 would be the analog
of ordinary partition function.
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2. Reduction of ζ̃ to a product of “prime factors” 1/[1−exp(−Log(p)s)] holds true by Log(n) ≡
sumpkpLog(p), Log(p) = p/π(p).

3. ζ̃ is a combination of exponentials exp(−Log(n)s), which converge for Re(s) > 0. For ζ one
has exponentials exp(−log(n)s), which also converge for Re(s) > 0: the sum

∑
n−s does not

however converge in the region Re(s) < 1. Presumably ζ̃ fails to converge for Re(s) ≤ 1.
The behavior of terms exp(−Log(n)s) for large values of n is very similar to that in ζ.

4. One can express ζ o in terms of η function defined as

η(s) =
∑

(−1)nn−s .

The powers (−1)n guarantee that η converges (albeit not absolutely) inside the critical strip
0 < s < 1.

By using a decomposition of integers to odd and even ones, one can express ζ in terms of η:

ζ =
η(s)

(−1 + 2−s+1)
.

This definition converges inside critical strip. Note the pole at s = 1 coming from the factor.

One can define also η̃:

η̃(s) =
∑

(−1)ne−Log(n)s .

The formula relating ζ̃ and η̃ generalizes: 2−s is replaced with exp(−2s) (Log(2) = 2):

ζ̃ =
η̃(s)

−1 + 2exp−2s
.

This definition ζ̃ converges in the critical strip Re(s) ∈ (0, 1) and also for Re(s) > 1. ζ̃(1−s)
converges for Re(s) < 1 so that in η̃ representation both converge.

Note however that the poles of ζ at s = 1 has shifted to that at s = log(2)/2 and is below
Re(s) = 1/2 line. If a symmetrically posioned pole at s = 1 − log(2)/2 is not present in η̃,
functional equation cannot be true.

5. Log(n) approaches log(n) for integers n not containing small prime factors p for which π(n)
differs strongly from p/log(p). This suggests that allowing only terms exp(−Log(n)s) in the
sum defining ζ̃ not divisible by primes p < pmax might give a cutoff ζ̃cut,pmax(s) behaving
very much like ζ from which “prime factors” 1/(1− exp(−Log(p)s) , p < pmax are dropped
of. This is just division of ζ̃ by these factors and at least formally, this does not affect the
zeros of ζ̃. Arbitrary number of factors can be droped. Could this mean that ζ̃cut has same
or very nearly same zeros as ζ at critical line? This sounds paradoxical and might reflect my
sloppy thinking: maybe the lack of the absolute implies that the conclusion is incorrect.

The key questions are whether ζ̃ allows a generalization of the functional equation ξ(s) =
ξ(1− s) with ξ(s) = 1

2s(s− 1)Γ(s/2)π−s/2ζ(s) and whether Riemann hypothesis generalizes. The
derivation of the functional equation is quite a tricky task and involves integral representation of
ζ .

1. One can start from the integral representation of ζ true for s > 0.

ζ(s) =
1

(1− 21−s)Γ(s)

∫ ∞
0

ts−1

et + 1
dt , Re(s) > 0 .

deducible from the expression in terms of η(s). The factor 1/(1 + et) can be expanded
in geometric series 1/(1 + et) =

∑
(−1)nexp(nt) converning inside the critical strip. One
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formally performs the integrations by taking nt as an integration variable. The integral gives
the result

∑
(−1)n/nz)Γ(s).

The generalization of this would be obtained by a generalization of geometric series:

1/(1 + et) =
∑

(−1)nexp(nt)→
∑

(−1)neexp(Log(n))t

in the integral representation. This would formally give ζ̃: the only difference is that one
takes u = exp(Log(n))t as integration variable.

One could try to prove the functional equation by using this representation. One proof (see
http://tinyurl.com/yak93hyr) starts from the alternative expression of ζ as

ζ(s) =
1

Γ(s)

∫ ∞
1

ts−1

et − 1
dt , Re(s) > 1 .

One modifies the integration contour to a contour C coming from +∞ above positive real
axis, circling the origin and returning back toc+∞ below the real axes to get a modified
representation of ζ:

ζ(s) =
1

2isin(πs)Γ(s)

∫ ∞
1

(−w)s−1

ew − 1
dw , Re(s) > 1 .

One modifies the C further so that the origin is circled around a square with vertices at
±(2n+ 1)π and ±i(2n+ 1)π.

One calculates the integral the integral along C as a residue integral. The poles of the
integrand proportional to 1/(1 − et) are at imaginary axis and correspond to w = ir2π,
r ∈ Z. The residue integral gives the other side of the functional equation.

2. Could one generalize this representation to the recent case? One must generalize the geo-
metric series defined by 1/(ew − 1) to −

∑
eexp(Log(n))w. The problem is that one has only a

generalization of the geometric series and not closed form for the counterpart of 1/(exp(w)−1)
so that one does not know what the poles are. The naive guess is that one could compute the
residue integrals term by term in the sum over n. An equally naive guess would be that for
the poles the factors in the sum are equal to unity as they would be for Riemann zeta. This
would give for the poles of n:th term the guess wn,r = r2π/exp(Log(n), r ∈ Z. This does
not however allow to deduce the residue at poles.Note that the poles of η̃ at s = log(2)/2
suggests that functional equation is not true.

There is however no need for a functional equation if one is only interested in F (s) ≡
ζ̃(s) + ζ̃(1− s) at the critical line! Also the analog of Riemann hypothesis follows naturally!

1. In the representation using η̃ F (s) converges at critical striple and is real(!) at the critical
line Re(s) = 1/2 as follows from the fact that 1 − s = s for Re(s) = 1/2! Hence F (s) is
expected to have a large number of zeros at critical line. Presumably their number is infinite,
since F (s)cut,pmax approaches 2ζcut,pmax for large enough pmax at critical line.

2. One can define a different kind of cutoff of ζ̃ for given nmax: n < nmax in the sum over
e−Log(n)s. Call this cutoff ζ̃cut,nmax . This cutoff must be distinguished from the cutoff
ζ̃cut,pmax obtained by dropping the “prime factors” with p < pmax. The terms in the cutoff
are of the form u

∑
kpp/π(p), u = exp(−s). It is analogous to a polymomial but with fractional

powers of u. It can be made a polynomial by a change of variable u→ v = exp(−s/a), where a
is the product of all π(p):s associated with all the primes involved with the integers n < nmax.

One could solve numerically the zeros of ˜ζ(s) + ˜ζ(s) using program modules calculating π(p)
for a given p and roots of a complex polynomial in given order. One can check whether also
all zeros of ˜ζ(s) + ˜ζ(s) might reside at critical line.

http://tinyurl.com/yak93hyr
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3. One an define also F (s)cut,nmax to be distinguished from F (s)cut,pmax . It reduces to a sum
of terms exp(−Log(n)/2)cos(−Log(n)y) at critical line, n < nmax. Cosines come from roots

of unity. F (s) function is not sum of rational powers of exp(−iy) unlike ˜ζ(s). The existence
of zero could be shown by showing that the sign of this function varies as function of y.
The functions cos(−Log(n)y) have period ∆y = 2π/Log(n). For small values of n the
exponential terms exp(−Log(n)/2) are largest so that they dominate. For them the periods
∆y are smallest so that one expected that the sign of both F (s) and F (s)cut,nmax varies and
forces the presence of zeros.

One could perhaps interpret the system as quantum critical system. The rather large rapidly
varying oscillatory terms with n < nmax with small Log(n) give a periodic infinite set of
approximate roots and the exponentially smaller slowly varying higher terms induce small
perturbations of this periodic structure. The slowly varying terms with large Log(n) become
however large near the Im(s) = 0 so that here the there effect is large and destroys the period

structure badly for small root of ζ̂.

Is the vanishing of the loop corrections consistent with unitarity?

Skeptic could argue that the vanishing of loop corrections is not consistent with unitarity. The
following argument however shows that the fact that momenta in TGD framework are 8-D light-
like momenta could save the situation. If not only single particle states but also many-particle
states have light-like 8-momenta, the discontinuity of the amplitude at pole P 2(M8) = 0 implies
the discontinuity of the amplitude as function of s ≡ P 2(M4) along s-axis.

Minkowskian contribution to mass squared would essentially the sum of conformal (stringy)
contribution from vibrational degrees of freedom and color contribution from CP2 degrees of free-
dom. This suggests a weak form of color confinement: many-particle states could have vanishing
color hyper charge and isospin but the eigenvalue value of color Casimir operator would be non-
vanishing.

To get more concrete view about the situation the reader is encouraged to study the slides
of Jaroslav Trnka explaining BCFW recursion formula [B54] (see http://tinyurl.com/pqjzffj)
or the article [B35] of Elvang and Huang (see http://tinyurl.com/y9rhbzhk).

1. Unitarity condition SS† = Id for S-matrix S = 1 + iT gives i(T − T †) = TT †. For forward
scattering the physical interpretation is that the discontinuity of −2Im(T ) = i(T − T †) in
forward scattering as a function of total mass s above kinematical threshold along real axis
is essentially the total scattering rate.

2. For a given tree amplitude, which is rational function, one replaces external momenta pi
with p̂i = pi + zri. ri real, light-like and orthogonal to each other and their sum vanishes.
This gives on mass shell scattering amplitude with complex light-like momenta satisfying
conservation conditions.

3. One can consider any non-trivial subset I of momenta and for this set one has P̂ 2
I = P 2

i +
2zP ·RI , where one has PI =

∑
i pi and RI =

∑
i ri. This gives

P̂ 2
I = −P 2

I

(z − zI)
zI

, zI =
P 2
I

2PI ·RI
.

The poles of the modified amplitude Ân(z) come from the propagators at P̂ 2
I = 0 and

correspond to the points z = zI .

4. From the modified scattering amplitude Ân(z) one can obtain the original scattering ampli-
tude by performing a residue integral for Ân(z)/z along a curve enclosing the poles zI . This
gives

An = Ân(z = 0) +
∑
zI

Resz=zI (
Ân(z)

z
) +Bn .

http://tinyurl.com/pqjzffj
http://tinyurl.com/y9rhbzhk
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Bn comes from the possible pole at z = ∞ and is often assumed to vanish. If so, the
amplitude factorizes into a sum of products

Resz=zI
Ân(z)

z
=
∑
I

ÂL(zI)
1

P 2
I

ÂR(zI) .

The amplitudes appearing in the product are for modified complex momenta.

The vanishing of loop corrections thus implies that the product terms ÂL(1/P 2)ÂR in
the BCFW formula give rational functions having no cuts just as the number theoretical vision
demands. The discontinuities of the imaginary part of the amplitude are at poles and reduce to
the products ÂLÂR with complex on-mass- shell light-like momenta as unitarity demands.

For forward scattering the discontinuity would be essentially positive definite total scattering
rate. It would be however non-vanishing only at P 2 = 0 so that scattering rate could be non-
vanishing only for P 2 = 0! This does not make sense in 4-D physics. Is it possible to overcome
this difficulty in TGD framework?

1. The first thing to notice is that classical TGD predicts complex Noether charges since for
instance Kähler coupling strength has imaginary part. This would suggest that the momenta
of incoming particles could be complex. Could complex value of P (M4) ≡ P implying

P 2 = Re(P )2 − Im(P )2 + i2Re(P ) · Im(P ) = 0

save the situation? The condition requires that Re(P ) and Im(P ) are light-like and parallel
so that one would obtain only light-like four-momenta as total M4 momenta.

2. However, in TGD light-likeness holds true in 8-D sense for single particle states: this led to the
proposed generalization of twistor approach allowing particles to be massive in 4-D sense.
M8 − H duality allows to speak about light-like M8 momenta satisfying quaternionicity
condition. The wave functions in CP2 degrees of freedom emerge from momentum wave
functions in M8 degrees of freedom respecting quaternionicity. The condition P 2(M8) = 0
implies that Re[P (M8)] and Im[P (M8)] are light-like and parallel. Im[P (M8)] can be
arbitrarily small. One has also Re[P (M4)]2 = Re[P (E4)]2 and Im[P (M4)]2 = Im[P (E4)]2.

3. Could one pose the condition P 2(M8) = 0 also on many-particle states or only to the many-
particle states appearing as complex massless poles in the BCFW conditions? Kind of strong
form of conformal invariance would be in question: not only single-particle states but also
many-particle states would be massless in 8-D sense. Now s = Re[P (M4))]2 = Re[P (E4))]2

could have a continuum of values. The discontinuity along s-axis required by unitarity
would would emerge from the discontinuity due to the pole at P 2(M8) = 0! Hence 8-
dimensional light-likeness in strong sense would be absolutely essential for having vanishing
loop corrections together with non-vanishing scattering rates!

Here one must be however extremely careful.

(a) In BCFW approach the expression of residue integral as sum of poles in the variable z
associated with the amplitude obtained by the deformation pi → pi + zri of momenta
(
∑
ri = 0, ri · rj = 0) leads to a decomposition of the tree scattering amplitude to a

sum of products of amplitudes in resonance channels with complex momenta at poles.
The products involve 1/P 2 factor giving pole and the analog of cut in unitary condition.
Proof of tree level unitarity is achieved by using complexified momenta as a mere formal
trick and complex momenta are an auxiliary notion. The complex massless poles are
associated with groups I of particles whereas the momenta of particles inside I are
complex and non-light-like.

(b) Could BCFW deformation give a description of massless bound states massless particles
so that the complexification of the momenta would describe the effect of bound state
formation on the single particle states by making them non-light-like? This makes sense
if one assumes that all 8-momenta - also external - are complex. The classical charges
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are indeed complex already classically since Kähler coupling strength is complex [L16].
A possible interpretation for the imaginary part is in terms of decay width characterizing
the life-time of the particle and defining a length of four-vector.

(c) The basic question in the construction of scattering amplitudes is what happens inside
CD for the external particles with light-like momenta. The BCFW deformation lead-
ing to factorization suggests an answer to the question. The factorized channel pair
corresponds to two CDs inside which analogs of M and N −M particle bound states
of external massless particles would be formed by the deformation pi → pi + zri mak-
ing particle momenta non-light-like. The allowed values of z would correspond to the
physical poles. The factorization of BCFW scattering amplitude would correspond to
a decomposition to products of bound state amplitudes for pairs of CDs. The analogs
of bound states for zero energy states would be in question. BCFW factorization could
be continued down to the lowest level below which no factorization is possible.

(d) One can of course worry about the non-uniqueness of the BCFW deformation. For
instance, the light-like momenta ri must be parallel (ri = λir) but the direction of r is
free. Also the choice of λi is free to a high extent. BCFW expression for the amplitude
as a residue integral over z is however unique. What could this non-uniqueness mean?

Suppose one accepts the number theoretic vision that scattering amplitudes are repre-
sentations for sequences of algebraic manipulations. These representations are bound to
be highly non-unique since very many sequences can connect the same initial and final
expressions. The space-time surface associated with given representation of the scatter-
ing amplitude is not unique since each computation corresponds to different space-time
surface. There however exists a representation with maximal simplicity.

Could these two kinds of non-uniqueness relate?

It is indeed easy to see that many-particle states with light-like single particle momenta
cannot have light-like momenta unless the single-particle momenta are parallel so that in
non-parallel case one must give up light-likeness condition also in complex sense.

(a) The condition of light-likeness in complex sense allows the vanishing of real and imagi-
nary mass squared for individual particles

Im(pi) = λiRe(pi) , (Re(pi))
2 = (Im(pi))

2 = 0 . (16.3.3)

Real and imaginary parts are parallel and light-like in 8-D sense. All λi have same
sign and pi has positive or negative time component depending on whether positive or
negative energy part of zero energy state is in question.

(b) The remaining two conditions come from the vanishing of the real and imaginary parts
of the total mass squared:

∑
i6=j Re(pi) ·Re(pj)− Im(pi) · Im(pj) = 0 ,

∑
i 6=j Re(pi) · Im(pj) = 0 .(16.3.4)

By using proportionality of Im(pi) and Re(pi) one can express the conditions in terms
of the real momenta

∑
i 6=j(1− λiλj)Re(pi) ·Re(pj) = 0 ,

∑
i 6=j λjRe(pi) ·Re(pj) = 0 . (16.3.5)

For positive/negative energy part of zero energy state the sign of time component of
momentum is fixed and therefore λi have fixed sign. Suppose that λi have fixed sign.
Since the inner products pi · pj of time-like vectors with fixed sign of time compomemet
are all positive or negative the second term can vanish only if one has pi · pj = 0. If the
sign of λi can vary, one can satisfy the condition linear in λi but not the first condition
as is easy to see in 2-particle case.
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(c) States with light-like parallel 8-momenta are allowed and one can ask whether this
kind of states might be realized inside magnetic flux tubes identified as carriers of dark
matter in TGD sense. The parallel light-like momenta in 8-D sense would give rise
to a state analogous to super-conductivity. Could this be true also for quarks inside
hadrons assumed to move in parallel in QCD based model. This also brings in mind the
earlier intuitive proposal that the momenta of fermions and antifermions associated with
partonic 2-surfaces must be parallel so that the propagators for the states containing
altogether n fermions and antifermions would behave like 1/(p2)n/2 and would not
correspond to ordinary particles.

These arguments are formulated in M8 picture. What could this mean in M4×CP2 picture?

(a) The intuitive expectation is that Re[P (E4)]2 corresponds to the eigenvalue Λ of CP2

d’Alembertian so that the higher the momentum, the larger the value of Λ. CP2

d’Alembertian would be essentially the M4 mass squared of the state. This would al-
low vanishing color quantum numbers Y and I3 but force symmetry breaking SU(3)→
SU(2)×U(1). This picture is not quite accurate: also the vibrational degrees of freedom
contribute to the mass squared what might be called stringy contribution.

(b) Could the geometry of CP2 induce this symmetry breaking? For instance, Kähler gauge
potential depends on the U(2) invariant “radial” coordinate of CP2 and is invariant
only under U(2) rotations and changes by gauge transformation in other color rotations.
Could one assign the symmetry breaking to the choice of color quantization axes boiling
down at the classical level to the fixing of CP2 Kähler function would?

One would have color confinement in weak sense: in QCD picture physical states cor-
respond to color singlet representations. This is certainly very strong statement in a
sharp conflict with the standard view about color confinement. It would make sense in
TGD framework, where color as a spin like quantum number is replaced with angular
momentum like quantum number. One could say that macroscopic systems perform
macroscopic color rotation. The model for the honeybee dance [L42] conforms with this
view and actually led to the proposal for a modification of cosmic string type extremals
X4 = X2 × Y 2 ⊂M4 ×CP2 by putting Y 2 in 2-D rigid body color rotation along both
time axis and spatial axis of the string world sheet X2.

(c) This picture raises again the old question about the relationship of color and electroweak
quantum numbers in TGD framework. Could one regard electroweak quantum num-
bers as a spin related to color group SU(3) just as one can relate ordinary spin with
Lorentz transformations? Color quantum numbers of say quarks would be analogous
to orbital angular momentum. The realization of the action of the electroweak U(2)ew
on CP2 spinors indeed involves also geometric color rotation affecting the gauge poten-
tials in the general case and U(2)ew can be identified as holonomy group of CP2 spinor
connection and sugroup of SU(3). One could also see electroweak symmetry breaking
as a further symmetry breaking U(2) → U(1) × U(1) assignable with the flag mani-
fold SU(3)/U(1)×U(1) parameterizing different choices of color quantization axes and
having interpretation as CP2 twistor space.

Remark: Number theoretic vision means that the quaternionic M8-momenta are discrete
with components having values in the extension of rationals. P 2(M4) becomes discrete if one
poses P 2(M8) = 0 condition for all states. The values of discontinuity of Im(T ) correspond
now to a discrete sequence of poles along s-axis approximating cut. At the continuum limit
this discrete sequence of poles becomes cut. Continuum limit would correspond to a finite
measurement resolution in which one cannot distinguish the poles from each other.

16.3.3 Grassmannian approach and TGD

Grassmannian approach has provided besides technical progress deeper views about twisto-
rialization and also led to the understanding of the Yangian symmetry.
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Grassmannian twistorialization - or what I understand about it

The twistorialization of the scattering amplitudes works for planar amplitudes in massless
theories and involves the following ingredients.

(a) All scattering amplitudes are expressible in terms of on-mass-shell scattering amplitudes
with massless on-mass-shell particles in complex sense.

(b) The scattering amplitude is sum over contributions with varying number of loops.
BCFW recursion relation allows to construct scattering amplitudes from their singu-
larities using 3-particle amplitudes as building brick amplitudes. There are two types
of singularities.

For the first type of singularity one has on-shell internal line and one obtains a sum
over all possible decompositions of the scattering amplitude to a product of on-mass-
shell scattering amplitudes multiplied by delta function for momentum squared of the
internal line. Second type of singularity corresponds to the so called forward limit and
is obtained from (n + 2, k) amplitude by contracting two added adjacent particles to
form a loop so that their momenta are opposite and integrating over the momentum.

(c) The singular term is algebraically analogous to an exterior derivative of the scattering
amplitude and can be integrated explicitly: the integration adds BCFW bridge to the
both terms such that the forward limit loop in the second term is under the bridge.
The outcome is BCFW formula for l-loop amplitude with n external particles with k
negative helicities consisting of these two terms.

Twistor Grassmannian approach expresses the on mass shell scattering amplitudes appearing
as building bricks as residue integrals over Grassmannian Gr(n, k), where n is the number
of particles and k is the the number of negative helicities. The Grassmannian approach is
described in a concise form in the slides by Jaroslav Trnka [B54] (see http://tinyurl.com/

pqjzffj).

(a) The construction of the on-mass-shell scattering amplitudes appearing in BCFW for-
mula as residue integrals in Grassmannians follows by expressing the momentum con-
serving delta functions in twistor description in terms of auxiliary variables serving as
coordinates of Grassmannian G(n, k, C) for the on mass shell tree amplitude with n ex-
ternal particles having k negative helicities. Grassmannian has dimension d = (n− k)k
and can be identified as the space of k-planes - or equivalently n−k-planes in CN . Gras-
mannian has a representation as homogenous space G(n, k, C) = U(n)/U(n−k)×U(k)
having SU(n) as the group of isometries. For k = 1 one obtains projective space which
is also symmetric space (allowing reflection along geodesic lines as isometries).

(b) Grassmannians emerge as an auxiliary construct, and the multiple residue integral over
Grassmannian gives sum of residues so that the introduction of Grassmannians might
look like un-necessary complication. The selection of points of Grassmannian for given
external quantum numbers by residue integral given at the same time the value of the
amplitude might however have some deeper meaning.

The construction involves standard mathematics, which is however new for physicists.
For instance, notions such as Plücker coordinates, Schubert cells and cell decomposition
appear. One can relate to each other various widely different looking expressions for the
amplitudes as being associated with different cell decompositions of Grassmannian. The
singularities of the integrand of the scattering amplitude defined as a multiple residue
integral over G(k, n) define a hierarchy of Schubert cells.

(c) The so called positive Grassmannian [B37] defines a subset of singularities appearing
in the scattering amplitudes of N = 4 SUSY. The points of positive Grassmannian
Gr+(k, n) are representable as k × n matrices with positive k × k determinants. The
singularities correspond to the boundaries of Gr+(k, n) with some k × k determinants
vanishing. For tree diagrams the singularities correspond to poles appearing in the
factorized term of the BCFW decomposition of the scattering amplitude. The positivity
conditions hold true also for the twistors representing external particles.

http://tinyurl.com/pqjzffj
http://tinyurl.com/pqjzffj
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(d) Positivity conditions guarantee the convexity of the integration region determined by
the C-matrix as point of Gr+(k, n) appearing in the conditions dictating the integration
region.

To better understand the meaning of positivity one can first consider triangle call it
T - as a representation of positive Grassmannian Gr+(1, 3) = P 2

+. Any interior points
of T can be regarded as center of mass for suitable positive masses at the vertices of
the triangle. These conditions generalizes to the case of general polygons, which must
be convex. If the number of vertices of the polygon is larger than 3, convexity is not
automatically satisfied, and requires additional conditions.

This description generalizes to Grassmannians Gr+(k, n). Masses define the analog of
C-matrix as element of Gr+(k, n) appearing in the twistor approach and the vertices of
the triangle are analogous to the twistors associated with external particles combining
to form a point of Gr(4, n). Positivity condition is generalized to the condition that
k × k minors of the k × n matrix are positive.

(e) Also the twistors associated with the external particles must satisfy analogs of the
positivity conditions. This involves the replacement of Gr(4, n) associated with twistors
of the external particles with Gr+(k+4, n). The additional k components of the twistors
are Grassman numbers and determined by the superparts of the twistors (see the slides
of Trnka at http://tinyurl.com/pqjzffj. I must admit that I did not understand
this.

(f) Residue integral can be defined in terms of what is called canonical form Ω - analog
of volume form - having logarithmic singularities at the boundaries of the Gr+(k, n).
Hence one can perform a reduction of the residue integral to a sum of integrals over
G(k, k+ 4) instead of G(k, n) (actually not so surprising since the residue integrals give
as outcome the residues at discrete points!).

This leads to a reduction of the residue integral over Gr+(k, n) to a sum of lower
dimensional residue integrals over triangulation defined by Gr+(k, k + 4) represented
as surfaces of Gr+(k, n) glued together along sides. The geometric analog would be
decomposition of polygon to a union of triangles.

This simplifies the situation dramatically [B75, B54, B37] and leads to the notion of
amplituhedron [B20, B19]. What is so remarkable, is the simplicity of the expressions
for all-loop amplitudes and the fact that positivity implies locality and unitarity for
N = 4 SUSY.

(g) It should be possible to construct Ω explicitly having the desired singularities which
would be in TGD framework poles with P 2(M8) = P 2(M4 × CP2) = 0 if the proposed
realization of unitary makes sense? Could one just assumes that Ω vanishes for that
part of the boundary of Gr+(k, n), which gives loop singularities? Could these points
Gr+(k, n) be transcendental and excluded for this reason?

If loop corrections are vanishing as ZEO strongly suggests, only tree amplitudes are needed.
Therefore it is appropriate to summarize what I have managed to understand about the
construction of the tree amplitudes with general value of k in the amplituhedron approach.

(a) The notion of amplituhedron relies on the mapping of G(k, n) to G+(k, k+m) n ≥ k+m.
Actually a map from G(k, n) × G(k + 4, n) → G+(k, k + m) is in question. m = 4
identifiable as the apparent dimension of twistor space without projective identification
giving the actual dimension d = 3. n is the number of external particles and k the
number of negative helicities.

The value of m is m = 4 and follows from the conditions that amplitudes come out
correctly. The constraint Y = C · Z, where Y corresponds to point of G+(k, k + 4)
and Z to the point of G(k+ 4, n) performs this mapping, which is clearly many-to one.
One can decompose integral over G+(k, n) to integrals over positive regions G+(k, k+4)
intersecting only along their common boundary portions. The decomposition of a convex
polygon in plane to triangles represent the basic example of this kind of decomposition.
Obviously there are several decompositions of this kind.

http://tinyurl.com/pqjzffj
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(b) Each decomposition defines a sum of contributions to the scattering amplitude involving
integration of a projectively invariant volume form over the positive region in question.
The form has a logarithmic singularity at the boundaries of the integration region but
spurious singularities cancel so that only the contribution of the genuine boundary of
G+(k, k+ 4) remains. There are additional delta function constraints fixing the integral
completely in real case.

(c) In complex case one has residue integral. The proposed generalization to the complex
case is by analytic continuation. TGD inspired proposal is that the positivity condi-
tion in the real case is generalized to the condition that the positive coordinates are
replaced by complex coordinates of hyperbolic space representable as upper half plane
or equivalently as the unit disk obtained from upper half plane by exponential map-
ping w = exp(iz). The measure dα/α would correspond to dz = dw/w. If taken over
boundary circle labelled by discrete phase factors exp(iφ) given by roots of unity the
integral would be numerically a discrete Riemann sum making no sense p-adically but
residue theorem could allow to avoid the discretizaton and to define the p-adic variant
of the integral by analytic continuation. These conditions would be completely general
conditions on various projectively invariant moduli involved.

(d) One must extend the bosonic twistors Za of external particles by adding k coordinates.
This extension looks very difficult to understand intuitively. Somewhat surprisingly,
these coordinates are anti-commutative super-coordinates expressible as linear combi-
nations of fermionic parts of super-twistor using coefficients, which are also Grassmann
numbers. Integrating over these one ends up with the standard expression of the am-
plitude using canonical integration measure for the regions in the decomposition of
amplituhedron. An interesting question is whether the addition of k-dimensional anti-
commutative parts to Za expressible in terms of super-coordinates is only a trick or
whether it could have some physical interpretation.

Grassmannians as reduced WCWs?

Grassmannians appear as auxiliary spaces in twistor approach. Could Grassmannians and the
procedure assigning to external momenta and helicities discrete set of points of Grassmannian
and scattering amplitude have some concrete interpretation in TGD framework?

(a) The points of cognitive representation define WCW coordinates for space-time surface.
For a fixed number of points in cognitive representation WCW is effectively replaced
with a finite-dimensional reduced WCW. These points would naturally correspond to
the points defining ends of fermionic lines at partonic 2-surfaces. WCW has Kähler
metric with Euclidian signature. This could be true also for its reduction.

(b) The experience with twistorialization suggests that these spaces could be simply Grass-
mannians Gr(n, r, C) consisting or r-dimensional complex planes of n-dimensional com-
plex space representable as coset spaces U(n)/U(n − r) × U(r) appearing as auxiliary
spaces in the construction of twistor amplitudes.

Note that the correlation between quantum states and geometry would be present since
n corresponds to the number of external particles and r to those with negative helicity in
ordinary twistor Grassmann approach. In TGD framework discretized variants of these
spaces corresponding to the extension of rationals used would appear. Yangian sym-
metries could correspond to general coordinate transformations for the reduced WCW
acting as gauge symmetry. These transformations act as diffeomorphisms for so called
positive Grassmannians also in the standard twistorialization. If the reduced WCWs
indeed correspond to twistor Grassmannians, one would have a completely unexpected
connection with supersymmetric QFTs.

(c) The reduction of WCW to a finite dimensional Kähler manifold suggests that also WCW
spinors become ordinary spinors for Kähler manifold so that gamma matrices form a
finite-D fermionic oscillator operator algebra. WCW has maximal symmetries and it
would not be surprising if also the finite-D Kähler manifold would possess maximal
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symmetries. Note that WCW gamma matrices together with isometry generators of
WCW give rise to a super-symplectic algebra involving a generalization of 2-D conformal
invariance replacing 2-D surfaces with light-like 3-surfacs.

(d) The interpretation of supersymmetry would be different from the standard one. Kähler
structure implies that N is even and Majorana spinors are absent and both baryon and
lepton number can be conserved separately. The ordinary fermionic oscillator algebra
is a Clifford algebra and could be interpreted in terms of a broken supersymmetry.

Also more general flag manifolds than Grassmannians can be considered. If these spaces are
homogenous spaces they have maximal isometries. They should have also Kähler structure.
Compactness looks also a highly desirable property. The gauge conditions for the subalgebra
of super-symplectic algebra state that the sub-algebra and its commutator with the entire
algebra annihilate physical states and give rise to vanishing classical Noether charges. This
would effectively reduce the super-symplectic algebra to a finite-D Lie group or Kac-Moody
algebra of a finite-dimensional Lie group - perhaps belonging to the ADE hierarchy as the
hierarchy of inclusions of HFFs as an alternative correlate for the realization of finite mea-
surement resolution suggests. The flag manifolds associated with these Lie groups define
more general homogenous spaces as candidates for the reduced WCWs.

Interpretation for Grassmannian residue integrations

The identification of Grassmannians (or possibly more general spaces) as reduced WCWs
would give a genuine physical interpretation for the Grassmannian integrations as residue
integrations over reduced WCW. What looks mysterious and maybe even frustrating is that
the outcome of the entire process is sum over discrete residues: what does this mean?

(a) The residue integration is only over a surface of reduced WCW with dimension equal to
one half of that of WCW. One has integrand, which depends on the external quantum
numbers coded in terms of twistors and on coordinates of reduced WCW. The residue in-
tegration is analogous to summation over amplitude associated with space-time surfaces
coded by different cognitive representations.

(b) One can argue that a continuous residue integral over Grassmannian is not consistent
with the number theoretic discretization. The outcome is however discrete set of space-
time surfaces labelled by cognitive representations as points of Grassmannian. Of the
points in question are in the extension and if this is equivalent with the correspond-
ing property for the coordinates of Grassmannian, there should be no problems. The
restriction of external momenta to the extension of rationals might guarantee this.

(c) The full multiple residue integral leaves only pole contributions, which correspond to a
discrete collection of space-time surfaces (at least the set of space-time surfaces obtained
by the action of Galois group), that is discrete set of points of reduced WCW. It seems
that the entire residue integration is just a manner to realize quantum classical cor-
respondence by associating to the external quantum numbers space-time surfaces and
corresponding cognitive representations - and of course, also the scattering amplitude.

(d) One can also ask whether the positivity of Grassmannian might relate to the fact that
p-adic numbers as ordinary integers are always non-negative (most of them infinite).
The positivity might be necessary in order to have number theoretic universality. If the
minors associated with the C-matrix serve as coordinates for Gr+(k, n) they could be
interpreted also as p-adic numbers. If they are allowed to be negative, one encounters
problems since p-adic numbers are not well-ordered and one cannot say whether p-adic
number is negative or positive.

Posible description of SUSY and its breaking in TGD framework

Although twistor description make sense also in the absence of supersymmetry, super-symmetry
is an essential part of the elegance of the Grassmannian approach. For the ordinary SUSY
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one has gluons and their superpartners characterized in terms of super-twistors. In TGD one
has two pictures [L33, L38].

(a) At the level H fermions as fundamental particles are described in terms of second
quantized induced spinor fields, whose oscillator operators can be used to build gamma
matrices for WCW [K88, K110]. In TGD universe all known elementary particles would
be composites of fundamental fermions represented as lines at the light-like orbits of
partonic 2-surfaces (wormhole throats) and ordinary elementary particles involve a pair
of wormhole contacts with throats containing these fermion lines. It is assumed that
the fermions are at different points: this allows to avoid problems due to infinities.

In the proposed generalization of twistor approach 2→ 2 fermion scattering in the clas-
sical fields at partonic 2-surface would define the basic 2→ 2-vertex replacing 3-vertices
of twistorial SUSY. Essentially one has only two-vertices describing the redistribution
of fermions at partonic 2-surface between orbits of the partonic 2-surfaces meeting at it.
This is different from N = 4 SUSY [L22]. If one allows completely local multi-fermion
states at the level of H one cannot avoid fermionic contact interactions.

The many-fermion states associated with partonic 2-surfaces would define the analogs
of super-multiplets. One can wonder whether a SUSY type description could exist as a
limit when the partonic 2-surface is approximated with single point so that also positions
of fermions are approximated as single point. SUSY would be only approximate.

(b) At the level of M8 I have proposed the use of polynomials P of super-octonion serving
as analogs of super-gluon fields to construct scattering amplitudes [L33]. This allows
geometric description of all particles using super-multiplets. Each monomial of theta
parameters would give rise to its own space-time surface by the condition that either
IM(P ) or RE(P ) vanishes for the corresponding polynomial P . This condition would
reduce the components of super-field to algebraic surfaces.

There is however an important difference from H picture. The members of super-
multiplet defined by P correspond to the coefficients of monomials of theta parameters
having interpretation as analogs of oscillator operators. Super-partners would be in this
sense point-like objects unlike in H approach, where this can hold true only approxi-
mately.

Could H- and M8 pictures be equivalent and could one understand the breaking of SUSY in
this framework?

(a) M8−H correspondence as a map of associative space-time regions from M8 to minimal
surfaces in H makes sense for the external particles and thus at boundaries of CDs. It
assigns to a point of the partonic 2-surface X2 ⊂ X4 ⊂ M8 the quaternionic tangent
space of X4 at it characterized by a point of CP2. M4 point is mapped to itself. There
is additional condition requiring that quaternionic tangent space contains fixed complex
sub-space but this is not relevant now.

(b) Could this map be one-to-many so that super-field component describing purely many-
fermion state would be mapped to several points at the image of X2 in H describing
multi-local many-fermion state? This is possible if the points in M8 are singular in
the sense that the action of a normal subgroup H of Galois group Gal leaves the point
invariant so that Gal reduces to Gal/H: symmetry breaking takes place.

The tangent spaces of the degenerate points are however different and are mapped to
different points of CP2 in M8 −H correspondence making sense at boundaries of CDs
but not in their interiors. One would have several fermions with same M4 coordinates
but different CP2 coordinates and the outcome would be many-fermion state. In the case
of 2-fermion state the different values of CP2 coordinates would be associated with the
opposite throats of a wormhole contact whose orbit defines light-like 3-surface. Could
light-likeness inducing the reduction of the metric dimension of the tangent space from
4 to 3 somehow induce also this degeneration?

(c) Could symmetry breaking as a degeneration of Gal action to that for Gal/H take
place for the conditions defining the 4-surfaces associated with the higher components
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of super-octonion and induce the breaking of SUSY at the level of M8 manifesting as
the non-locality of the fermion state at the level of H? This degeneration would be a
typical manifestation of quantum criticality: criticality in general means co-incidence of
two roots.

Comments about coupling constant evolution

16.3.4 Summary

Since the contribution means in well-defined sense a breakthrough in the understanding
of TGD counterparts of scattering amplitudes, it is useful to summarize the basic results
deduced above as a polished answer to a Facebook question.

There are two diagrammatics: Feynman diagrammatics and twistor diagrammatics.

(a) Virtual state is an auxiliary mathematical notion related to Feynman diagrammatics
coding for the perturbation theory. Virtual particles in Feynman diagrammatics are
off-mass-shell.

(b) In standard twistor diagrammatics one obtains counterparts of loop diagrams. Loops
are replaced with diagrams in which particles in general have complex four-momenta,
which however light-like: on-mass-shell in this sense. BCFW recursion formula provides
a powerful tool to calculate the loop corrections recursively.

(c) Grassmannian approach in which Grassmannians Gr(k, n) consisting of k-planes in n-D
space are in a central role, gives additional insights to the calculation and hints about
the possible interpretation.

(d) There are two problems. The twistor counterparts of non-planar diagrams are not yet
understood and physical particles are not massless in 4-D sense.

In TGD framework twistor approach generalizes.

(a) Massless particles in 8-D sense can be massive in 4-D sense so that one can describe
also massive particles. If loop diagrams are not present, also the problems produced by
non-planarity disappear.

(b) There are no loop diagrams- radiative corrections vanish. ZEO does not allow to define
them and they would spoil the number theoretical vision, which allows only scattering
amplitudes, which are rational functions of data about external particles. Coupling
constant evolution - something very real - is now discrete and dictated to a high degree
by number theoretical constraints.

(c) This is nice but in conflict with unitarity if momenta are 4-D. But momenta are 8-D
in M8picture (and satisfy quaternionicity as an additional constraint) and the problem
disappears! There is single pole at zero mass but in 8-D sense and also many-particle
states have vanishing mass in 8-D sense: this gives all the cuts in 4-D mass squared for
all many-particle state. For many-particle states not satisfying this condition scattering
rates vanish: these states do not exist in any operational sense! This is certainly the
most significant new discovery in the recent contribution.

BCFW recursion formula for the calculation of amplitudes trivializes and one obtains
only tree diagrams. No recursion is needed. A finite number of steps are needed for the
calculation and these steps are well-understood at least in 4-D case - even I might be
able to calculate them in Grassmannian approach!

(d) To calculate the amplitudes one must be able to explicitly formulate the twistorial-
ization in 8-D case for amplitudes. I have made explicit proposals but have no clear
understanding yet. In fact, BCFW makes sense also in higher dimensions unlike Grass-
mannian approach and it might be that the one can calculate the tree diagrams in TGD
framework using 8-D BCFW at M8 level and then transform the results to M4 ×CP2.

What I said above does yet contain anything about Grassmannians.
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(a) The mysterious Grassmannians Gr(k, n) might have a beautiful interpretation in TGD:
they could correspond at M8 level to reduced WCWs which is a highly natural notion
at M4 × CP2 level obtained by fixing the numbers of external particles in diagrams
and performing number theoretical discretization for the space-time surface in terms of
cognitive representation consisting of a finite number of space-time points.

Besides Grassmannians also other flag manifolds - having Kähler structure and maximal
symmetries and thus having structure of homogenous space G/H - can be considered
and might be associated with the dynamical symmetries as remnants of super-symplectic
isometries of WCW.

(b) Grassmannian residue integration is somewhat frustrating procedure: it gives the am-
plitude as a sum of contributions from a finite number of residues. Why this work when
outcome is given by something at finite number of points of Grassmannian?!

In M8 picture in TGD cognitive representations at space-time level as finite sets of
points of space-time determining it completely as zero locus of real or imaginary part of
octonionic polynomial would actually give WCW coordinates of the space-time surface
in finite resolution.

The residue integrals in twistor diagrams would be the manner to realize quantum clas-
sical correspondence by associating a space-time surface to a given scattering amplitude
by fixing the cognitive representation determining it. This would also give the scattering
amplitude.

Cognitive representation would be highly unique: perhaps modulo the action of Galois
group of extension of rationals. Symmetry breaking for Galois representation would give
rise to supersymmetry breaking. The interpretation of supersymmetry would be however
different: many-fermion states created by fermionic oscillator operators at partonic 2-
surface give rise to a representation of supersymmetry in TGD sense.

16.4 New insights about quantum criticality for twistor
lift inspired by analogy with ordinary criticality

Quantum criticality (QC) is one of the basic ideas of TGD. Zero energy ontology (ZEO)
is second key notion and leads to a theory of consciousness as a formulation of quantum
measurement theory making observer part of the quantum system in terms of notion of self
identified as a generalized Zeno effect or analog for a sequence of weak measurements, and
solving the basic paradox of standard quantum measurement theory, which one usually tries
to avoid by introducing some “interpretation”.

ZEO allows to see quantum theory could be seen as “square root” of thermodynamics. It
occurred to me that it would be interesting to apply this vision in the case of quantum
criticality to perhaps gain additional insights about its meaning. We have a picture about
criticality in the framework of thermodynamics: what would be the analogy in ZEO based
interpretation of Quantum TGD? Could it help to understand more clearly the somewhat
poorly understood views about the notion of self, which as a quantum physical counterpart
of observer becomes in ZEO a key concept of fundamental physics?

The basic ingredients involved are discrete coupling constant evolution, zero energy ontology
(ZEO) implying that quantum theory is analogous to ”square root” of thermodynamics, self
as generalized Zeno effect as counterpart of observer made part of the quantum physical
system, M8 ↔ M4 × CP2 duality, and quantum criticality. A further idea is that vacuum
functional is analogous to a thermodynamical partition function as exponent of energy E =
TS − PV .

The correspondence rules are simple. The mixture of phases with different 3-volumes per
particle in a critical region of thermodynamical system is replaced with a superposition of
space-time surfaces of different 4-volumes assignable to causal diamonds (CDs) with different
sizes. Energy E is replaced with action S for preferred extremals defining Kähler function in
the “world of classical worlds” (WCW). S is sum of Kähler action and 4-volume term, and
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these terms correspond to entropy and volume in the generalization E = TS − PV → S.
P resp. T corresponds to the inverse of Kähler coupling strength αK resp. cosmological
constant Λ. Both have discrete spectrum of values determined by number theoretically
determined discrete coupling constant evolution. Number theoretical constraints force the
analog of micro-canonical ensemble so that S as the analog of E is constant for all 4-surfaces
appearing in the quantum superposition. This implies quantization rules for Kähler action
and volume, which are very strong since αK is complex.

This kind of quantum critical zero energy state is created in unitary evolution created in
single step in the process defining self as a generalized Zeno effect. This unitary process
implying time de-localization is followed by a weak measurement reducing the state to a
fixed CD so that the clock time identified as the distance between its tips is well-defined.
The condition that the action is same for all space-time surfaces in the superposition poses
strong quantization conditions between the value of Kähler action (Kähler coupling strength
is complex) and volume term proportional to cosmological constant. The outcome is that
after sufficiently large number of steps no space-time surfaces satisfying the conditions can
be found, and the first reduction to the opposite boundary of CD must occur - self dies. This
is the classical counterpart for the fact that eventually all state function reduction leaving
the members of state pairs at the passive boundary of CD invariant are made and the first
reduction to the opposite boundary remains the only option.

The generation of magnetic flux tubes provides a manner to satisfy the constancy conditions
for the action so that the existing phenomenology as well as TGD counterpart of cyclic
cosmology as re-incarnations of cosmic self follows as a prediction. This picture allows to
add details to the understanding of the twistor lift of TGD at classical level and allows an
improved understanding of the p-adic length scale evolution of cosmological constant solving
the standard problem caused by the huge value of Λ. The sign of Λ is predicted correctly.

This picture generalizes to the twistor lift of TGD and cosmology provides an interesting
application. One ends up with a precise model for the p-adic coupling constant evolution of
the cosmological constant Λ explaining the positive sign and smallness of Λ in long length
scales as a cancellation effect for M4 and CP2 parts of the Kähler action for the sphere of
twistor bundle in dimensional reduction, a prediction for the radius of the sphere of M4

twistor bundle as Compton length associated with Planck mass (2π times Planck length),
and a prediction for the p-adic coupling constant evolution for Λ and coupling strength of
M4 part of Kähler action giving also insights to the CP breaking and matter antimatter
asymmetry. The observed two values of Λ could correspond to two different p-adic length
scales differing by a factor of

√
2.

16.4.1 Some background

Some TGD background is needed to understand the ideas proposed in the sequel.

Discrete coupling constant evolution

The most obvious implication is discrete coupling constant evolution in which the set of
values for coupling constants is discrete and analogous to the set of the critical values of
temperature [L44] (see http://tinyurl.com/y9hlt3rp). Zeros of Riemann Zeta or its slight
modification suggest themselves as the spectrum for the Kähler coupling strength. This
discrete coupling constant evolution requires that loop corrections vanish. This vision is
realized concretely in the generalization of the twistorial approach to the construction of
scattering amplitudes [L44].

Non-manifest unitarity is the basic problem of the twistor Grassmann approach. A gen-
eralization of the BCFW formula without the loop corrections gives scattering amplitudes
satisfying unitary constraints. The needed cuts are be replaced by sequences of massless poles
in 8-D sense and cuts approximate these sequences (consider electrostatic analogy in which
line charge approximates a discrete sequences of poles). The replacement cuts with sequences

http://tinyurl.com/y9hlt3rp
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of poles is forced by the number theoretic discretization of momenta so that they belong to
an extension of rationals defining the adele [L35] (see http://tinyurl.com/ycbhse5c).

Non-planar loop diagrams are a chronic problem of twistor approach since there is no general
rule loop integrations allowing to combine them neatly. Also this problem disappears now.

M8 −H duality plays key role in the twistorial approach [L33] (see http://tinyurl.com/

yd43o2n2). In the ordinary twistor approach all momenta are light-like so that it does not
apply to massive particles. TGD solves this problem: at M8 level one has quaternionic
light-like 8-D momenta, which correspond to massive 4-D momenta in M8 picture. In H =
M4×CP2 picture ground states of super-conformal representations are constructed in terms
of spinor harmonics of in M4×CP2, which are products plane-waves characterized by massive
4-momenta and color wave functions associated with massless Dirac equation in H. Also the
analog of Dirac equation for the induced spinor fields at space-time surface is massless [K88]
(see http://tinyurl.com/yc2po5gf).

ZEO and self as generalized Zeno effect

ZEO allows to see self as generalized Zeno effect [L39](see http://tinyurl.com/ycxm2tpd).

(a) Generalized Zeno effect can be regarded as a sequence of “small” state function reduc-
tions analogous to weak measurements performed at active boundary of causal diamond
(CD). In usual Zeno effect the state is unaffected under repeated measurements: now
the same is true at passive boundary of CD whereas the members of state pairs at the
active boundary change. The unitary evolutions followed by these evolutions leave thus
passive boundary and states at it invariant whereas active boundary shifts farther away
from the passive boundary and the members of state pairs at it are affected. This gives
rise to the experienced flow of time.

The change of states is characterized unitary S-matrix. Each unitary evolution involves
de-localization in the space of CDs so that one has quantum superposition of CDs with
sizes not smaller than the CD to which the state was localized at previous reduction.
This gives rise to a steady increase of clock time defined as the distance between the tips
of CD. Self dies and reincarnates as a self with opposite direction of clock time when
the first unitary evolution at the passive boundary followed by a weak measurement
at it takes place. Self dies when all observables leaving the states at passive boundary
invariant are measured. There are no choices to be made anymore.

(b) Quantum TGD as “square root ” of thermodynamics means that the partition function
of thermodynamics is replaced by its “square root” defined by the vacuum functional
identified as exponent of Kähler function of “world of classical worlds” (WCW). Kähler
function is analogous to energy E = TS−PV in thermodynamics with T replaced with
the inverse of complex Kähler coupling strength and P with cosmological constant,
which have discrete spectrum of values.

One has the analog of micro-canonical ensemble for which only states with given en-
ergy are possible. Now the action (Kähler function) is same for the space-time surfaces
assignable to the zero energy states involved. This condition allows to get rid of the
exponentials defining the vacuum functional otherwise appearing in the scattering am-
plitudes. This condition is strongly suggested by number theoretic universality for which
these exponentials are extremely troublesome since both the exponent and exponential
should belong to the extension of rationals used.

This implies a huge simplification in the construction of the amplitudes [L33] (see http:
//tinyurl.com/yd43o2n2) because finite measurement resolution effectively replaces
space-time surfaces with their cognitive representation defined by a discrete set of space-
time points with imbedding space coordinates in the extension of rationals defining
the adele.This representation codes for the space-time surface if it corresponds to zero
locus of real or imaginary part (in quaterionic sense) of an octonionic polynomial with
real coefficients. WCW coordinates are given by the cognitive representation and are
discrete. One is led to enumerative algebraic geometry.

http://tinyurl.com/ycbhse5c
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yc2po5gf
http://tinyurl.com/ycxm2tpd
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yd43o2n2
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M8 −H duality

M8−H duality [L33] (see http://tinyurl.com/yd43o2n2) states that the purely algebraic
dynamics determined by the vanishing of real or imaginary part for octonionic polynomial is
dual to the dynamics dictated by partial differential equations for an action principle.

(a) The M8 counterparts of space-time surfaces are obtained as M8 projections of algebraic
surfaces in the complexification M8

c by imaginary unit commuting with octonionic units.
One can decompose these surfaces to regions with associative (quaternionic) tangent
space or normal space and they are analogous to external particles of a twistor diagram
entering CD and to interaction regions in which associativity does not hold true and
which correspond to interiors of CD.

(b) At the level of H external particles correspond to minimal surfaces, which are also
extremals of Kähler action and in accordance with the number theoretical universality
and quantum criticality do not depend on the coupling parameters at all. They are
obtained by a map taking the 4-surfaces in M8 to those in H. These conditions should
be equivalent with the condition that the 6-D surfaces X6 in 12-D twistor space of H
define twistor bundles of space-time surfaces X4.

(c) The space-time regions in the interiors of CDs are not minimal surfaces so that Kähler
action and volume term couple dynamically and coupling parameters characterize the
extremals. The analog is motion of point like particle in the Maxwell field defined by
induced Kähler form: this is generalize to the motion of 3-D object with purely internal
Kähler field and that associated with wormhole contacts and mediating interaction with
larger and smaller space-time sheets.

In these regions the map mediating M8 − H duality does not exist since one cannot
label the tangent spaces of space-time surface by points of CP2. The non-existence of
this map is due to the failure of either associativity of tangent space or normal space at
M8 level. The initial values at boundaries of CD for the incoming preferred extremals
however allows to fix the time evolution in the interior of CD. This is essentially due to
the infinite number of gauge conditions for the super-symplectic algebra.

Quantum criticality

Quantum criticality is a further key notion of TGD and was originally motivated by the idea
that Kähler coupling strength must be unique in order that the theory is unique.

(a) The first implication of quantum criticality is quantization of various coupling strengths
as analogs of critical temperature and of other critical parameters such as pressure. This
quantization is required also by number theoretical universality in the adelic approach:
coupling constant parameters must belong to the extension of rationals used.

(b) Second implication of quantum criticality is a huge generalization of conformal symme-
tries to their 4-D analogs. The key observation is that 3-D light-like surfaces allow a
generalization of conformal invariance to get the Kac-Moody algebra associated with
the isometries of H (at least) as symmetries. In the case of boundary of CD this leads to
what I call supersymplectic invariance: the symplectic transformations of the two com-
ponents of δCD×CP2 act as isometries of WCW. This algebra allows a fractal hierarchy
of sub-algebras isomorphic to the algebra itself and gauge conditions state that this kind
of sub-algebra and its commutator with the entire algebra annihilate physical states and
classical Noether charges for them vanish [L44] (see http://tinyurl.com/y9hlt3rp).
By quantum classical correspondence (QCC) the eigenvalues of quantum charges are
equal to the classical Noether charges in Cartan algebra of supersymplectic algebra.

(c) The third implication is the understanding of preferred extremals in H = M4×CP2 and
their counterparts at the level of M8. Associativity condition at the level of M8 satisfied
by the spacetime surfaces representing external particles arriving into CD corresponds
to quantum criticality posing conditions on the coefficients of octonionic polynomials.

http://tinyurl.com/yd43o2n2
http://tinyurl.com/y9hlt3rp
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The space-time regions inside CD the space-time surfaces do not satisfy associativity
conditions and are not critical.

(d) TGD as “square root” of thermodynamics idea suggests a fourth application of quantum
criticality. This analogy might allow a better understanding of self as Zeno effect. This
application will be studied in the sequel.

16.4.2 Analogy of the vacuum functional with thermodynamical
partition function

Consider first the thermodynamical view about criticality. I have discussed criticality from
slightly different perspective in [L43] (see http://tinyurl.com/ydhknc2c).

(a) Thermodynamical states in critical region, where phases with different densities - say
liquid and gas - are present serves as a basic example. This situation is actually a prob-
lem of the approach relying on partition function as van der Waals equation predicting 3
different densities for the density of molecules as function of pressure and temperature.
Cusp catastrophe gives a view about situation: number density n is behavior variable
and P and T are the control variables.

(b) The experimental fact is that the density is constant as function of volume V for fixed
temperature T whereas van der Waals predicts dependence on V . The phase corre-
sponding to the middle sheet of the cusp is not at all present and the portions of liquid
and gas phases vary. Maxwell’s rules (area rule and lever rule) allow to solve the prob-
lem plaguing actually all approaches based on partition function. Lever rule assumes
that there are actually two kinds of “elements” present. Molecules are the first element
but what the second element could be? TGD identification is as magnetic tubes [L43].

(c) In the more general case in which the catastrophe is more general than cusp and has
more sheets, two or more phases with different volumes are present and their volumes
and possibly other behavior variables analogous to volume vary at criticality.

(d) If one applies criticality in stronger sense by requiring that the function which has
extremum as function of n at the surface represented by cusp catastrophe has same
value at different sheets of the cusp, only the boundary line of the cusp having V-shaped
projection in (p, T )-plane remains.

Generalization of thermodynamical criticality to TGD context

The generalization of this picture to TGD framework replaces the mixture of thermodynam-
ical phases with different volumes with quantum superposition of space-time surfaces with
different 4-volumes assignable to CDs with different quantized sizes (by number theoretical
constraints).

(a) Vacuum functional, which is exponent of Kähler function of WCW expressible as Kähler
action for its preferred extremal, can be regarded as a complex “square root” of ther-
modynamical partition function Z meaning that its real valued modulus squared is
analogous to partition function [K76, L22, L24, L38].

Action S, whose value for preferred extremal defines Kähler function of WCW serves
as the analog of energy assumed to have expression E = PV − TS, which is not gener-
ally true but implied by the condition that E is homogenous as function of conjugate
variable pairs P, V and T, S. The analogs of P and T correspond to coupling constant
parameters. Pressure p is replaced with the coefficient of volume term in action - essen-
tially cosmological constant. T is replaced with the coefficient 1/αK of Kähler action
representing entropy (or negentropy depending on situation).

Remark: Note that T corresponds now to 1/αK rather than αK analogous to temper-
ature when Kähler action SK is regarded as analog of energy E rather than entropy
S.

http://tinyurl.com/ydhknc2c
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(b) Quantum criticality in the sense of ZEO is the counterpart for the criticality in thermo-
dynamics. The mixture of thermodynamical phases with different 3-volumes is replaced
with quantum superposition of zero energy states with 4-surface having same action S
but different 4-volumes assignable to different CDs. Critical system consists of several
phases with same values of coupling parameters αK and Λ but different 4-volume.

There is also a number theoretic constraint identifiable as the counterpart of the constant
energy condition defining micro-canonical ensemble. The exponent of action S must
cancel from the scattering amplitudes to avoid serious existence problems in the p-adic
sectors of adele associated with given extension of rationals. Criticality means thus that
exp(S) has same value for all preferred extremals involved. Real parts are same for all
of them and imaginary parts of the action exponential are fixed modulo multiple of 2π.
The analog in the case of van der Waals equation of state that the allowed states are
associated with the boundary of the projection of the cusp catastrophe to (p, T ) plane.

Critical quantum states are superpositions of space-time surfaces with different 4-volumes
associated with CDs with quantized size scales (distance between tips) and are gener-
ated by unitary evolution. The value of time as size of CD (distance between its tips)
is not well-defined in these states.

Remark: Quantum critical states are “timeless” as meditative practices would express
it.

This kind of superposition is created by unitary evolution operator at each step in the
sequence of unitary evolutions followed by a state function reduction measuring clock
time as the distance between the tips of CD. Localization to single CD is the outcome and
only superposition with same time-scale and same S but possibly different 4-volumes.

(c) The condition that action is same is very strong and applies to both real and imaginary
parts of action (αK is complex). The proposal [L16, L44] (see http://tinyurl.com/

yas6ofhv and http://tinyurl.com/y9hlt3rp) is that the coupling constant evolution
as p-adic length scale p ' 2k, k prime corresponds to zero of Riemann ζ for 1/αK
or is proportional to it by rational multiplier q. For q = 1 Re(1/αK) analogous to
the ordinary temperature would be equal to Re(s) = 1/2 for the zeros at the critical
line and imaginary parts would correspond to the imaginary parts Im(s) of the zeros.
Constancy of the action S would boil down to the conditions

Re(SK) +Re(Svol) = constant , Im(SK) + Im(Svol) = constant mod 2π .(16.4.1)

Note that the condition for imaginary part is a typical quantization condition.

4-volume can can have arbitrary large values but for SK this is probably not the case
- this already by the quantization conditions. Hence one expects that there is some
maximal possible volume for preferred extremals and thus maximal distance between
the tips of CDs involved.

When the zero energy state is a superposition of only space-time surfaces with this
maximal volume, further unitary evolutions are not possible and the first state function
reduction to the opposite boundary of CD happens (death of self and reincarnation with
opposite direction of clock time). Self has finite lifetime! This would be the classical
correlate for the situation in which no quantum measurements leaving invariant the
members of state pairs at the passive boundary of CD are possible.

The constancy of Re(S)

How the cancellation of real part of ∆(Re(SK)) + ∆(Re(Svol)) could take place?

(a) The physical picture is that the time evolution giving rise to self starts from flux tube
dominated phase obtained in the first state function reduction to the opposite boundary
of CD and that also asymptotically one obtains flux tube dominated phase again but the
flux tubes are scaled up. This is the TGD view about quantum cosmology as a sequences
of selves and of their time reversals [K67] [L21] (see http://tinyurl.com/y7fmaapa).

http://tinyurl.com/yas6ofhv
http://tinyurl.com/yas6ofhv
http://tinyurl.com/y9hlt3rp
http://tinyurl.com/y7fmaapa
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This picture suggests that the generation of magnetic flux tubes allows to satisfy the
∆Re(SK)+∆Re(Svol) = 0 condition: in Minkowskian regions the change magnetic part
of ∆Re(SK) tends to cancel ∆Re(Svol) whereas the electric part is of the same sign.
Therefore magnetic flux tubes are favored.

If the sign of the volume term is negative the exponential defining the vacuum functional
decreases with volume. If the relative sign of SK and Svol is negative, the magnetic part
of the action is positive. The generation of flux tubes generates positive magnetic action
∆SK helping to cancel the change ∆Svol.

The additional conditions coming from the imaginary parts are analogous to semiclas-
sical quantization conditions.

(b) The proposed picture can be realized by a proper choice of the relative signs of volume
term and Kähler action term. The relative sign comes automatically correct for a
positive value of cosmological constant Λ. For this choice the total action density is

Ltot = (LK +
Λ

8πG
)
√
g4 . (16.4.2)

This choice gives positive vacuum energy density associated with the volume term.

(c) The density of Kähler action associated with CP2 degrees of freedom is

LK,CP2
= − 1

4g2
JµνJµν . (16.4.3)

The action is proportional to E2 − B2 in Minkowskian regions and magnetic term has
sign opposite to that of volume term so that these terms can compensate with the
condition guaranteeing constant action. The overall sign of action in the exponent can
be chosen so that the exponential vanishes for large volumes. This suggests that the
volume term is negative in the vacuum functional (Kähler function as negative of the
action for preferred extremal). Euclidian regions, where CP2 part of Kähler action is of
form B2 + E2 and tends to cancel the volume term.

(d) There is also Kähler action in M4 degrees of freedom. In twistor lift dimensional reduc-
tion occurs for 6-D Kähler action and M4 part and CP2 part contribute to Kähler action.
The S2 parts of these actions must give rise to a cosmological constant decreasing like
the inverse of p-adic length scale squared. This is achieved if the Kähler contributions
have opposite signs so that M4 contribution has a non-standard sign. This is possible
if M4 Kahler form is proportional to imaginary unit and M4 Kähler coupling strength
contains additional scaling factor.

The induced Kähler form must be sum of the M4 parts and CP2 parts and also the
action must be sum of M4 and CP2 parts. This is achieved if the charge matrices
of these two Kähler forms are orthogonal (the trace of their product vanishes). Since
CP2 part couples to both 1 and Γ9 giving rise to Kähler charges proportional to 1 for
quarks and 3 for leptons having opposite chiralities, the corresponding charges would
be proportional to 3 for quarks and -1 for leptons.

The imaginary unit multiplying M4 Kähler form disappears in action and field equations
and one obtains

LK = − 1

4g2
K

(ε2J2(M4) + J2(CP2) , (16.4.4)

where ε is purely imaginary so that one has ε2 < 0. Since the fields are induced, negative
sign for M4 Kähler action is not expected to lead to difficulties if M4 term is small.

Some examples are in order.
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(a) For cosmic string extremals Kähler action is multiple of volume action. The condition
that the two actions cancel would give a constraint between Λ and αK . Net string
tension would be reduced from the value determined by CP2 scale to a rather small
value. This need not occur generally but might be true for very short p-adic length
scales, where Λ is large as required by the large value of string tension associated with
Kähler action. For thickened cosmic strings (magnetic flux tubes) the value of string
tension assignable to Kähler action is reduced and the condition can be satisfied for
smaller values of Λ.

(b) For CP2 type extremals assignable to wormhole contacts serving as basic building bricks
of elementary particles the action would be finite for all size scales of CD. Both magnetic
and electric contribution to the action are of same sign. For Euclidian regions with 4-D
space-time projection with so strong electric field that it changes the signature of the
induced metric the same is true.

(c) One can ask whether blackhole interiors as Euclidian regions correspond to these Eu-
clidian space-time sheets or to highly tangled magnetic flux tubes with length con-
siderably longer than Schwartschild radius for which cancellation also can occur (see
http://tinyurl.com/ydhknc2c). Both pictures are consistent in many-sheeted space-
time: magnetic flux tube tangle could topologically condense to a space-time sheet
with Euclidian signature. Cancellation cannot last for ever so that also blackholes are
unstable against big state function reduction changing the arrow of time. Blackhole
evaporation might relate to this instability.

The constancy of Im(S) modulo 2π

If cosmological constant is real, the condition for the constancy of imaginary part of ∆S
modulo 2π applies only to the case of SK and implies that ∆SK is fixed modulo 2π in the
superposition of space-time surfaces. If zeros of ζ [L16] (see http://tinyurl.com/yas6ofhv)
or its modification ) [L44]) (see http://tinyurl.com/y9hlt3rp) give the spectrum of 1/αK
the value of ∆SK,red =

∫
Tr(J2)dV is given as multiples of 2πn/y, where y is imaginary part

for a zero of zeta. The constancy of Re(S) implies that the 4-volume ∆V is quantized as
multiples of 2πn/Λ. These conditions bring in mind semiclassical quantization of the action
in multiples of ~.

It however turns out that twistor lift forces same phase for M4 and CP2 parts of the Kähler
action so that the quantization condition for volume is lost. The reason is that 1/αK(M4)
and 1/αK(CP2) are proportional to

1

αK,6
=

1

αK,4R2
, (16.4.5)

where R2 has dimensions of length squared.

16.4.3 Is the proposed picture consistent with twistor lift of Kähler
action?

Is it possible to realize the cancellation of real parts of ∆Svol and ∆SK (modulo 2π for
imaginary part) for the twistor lift of Kähler action? Does the sign of the cosmological
constant Λ come out correctly (wrong sign of Λ is the probably fatal problem of M-theory)?
Can one understand the p-adic evolution of the cosmological constant Λ implying that Λ
becomes small in long p-adic length scales and thus solving the key problem related to Λ?

http://tinyurl.com/ydhknc2c
http://tinyurl.com/yas6ofhv
http://tinyurl.com/y9hlt3rp
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Dimensional reduction of the twistor lift

The condition that the induction of the product of twistor bundles of M4 and CP2 to the
space-time surface gives the twistor bundle of the space-time surface is conjectured to deter-
mine the dynamics of the space-time surfaces. A generalization of 4-D Kähler action to 6-D
Kähler action is proposed to give this dynamics, and to dimensionally reduce to a sum of
Kähler actions associated with M4 and CP” Kähler forms plus cosmological term.

(a) Twistor bundles are sphere bundles. For the extremals of 6-D Kähler action dimensional
reduction takes place since 6-D extremals must be twistor bundle of corresponding space-
time surface. Therefore S2 degrees of freedom are frozen and become non-dynamical.

One could say that the spheres appearing as fibers of twistor bundles of M4 and CP2

are identified in the imbedding map. The simplest correspondence between S2(M4)
and S2(CP2) identifies (θ1, φ1) for S2(M4) with (θ2, φ2) for S2(CP2). This means that
S2(X6) is mapped in the same manner to S2(M4) and S2(CP2).

One can imagine also correspondence with n-fold winding based on the identification
(θ1, φ1) = (θ2, nφ2). The area of S2(M4) are becomes n-fold and the S2 part of the
Kähler action using θ2 as coordinate transforms as SK(S2(M4)n = 1)→ SK(S2(M4)n) =
n2SK(S2(M4)). n = 1 is the most plausible option physically.

(b) What the proposed general vision implies for cosmological constant as a sum of S2(M4)
and S2(CP2) parts of 6-D Kähler action giving in dimensional reduction 4-D volume
term responsible for the cosmological constant and 4-D Kähler action. If the charge
matrices of M4 and CP2 parts of Kähler form are orthogonal one can induce Kähler
form. If the coupling to M4 Kähler form is imaginary, M4 and CP2 contributions to
the total Kähler action have opposite signs. M4 and CP2 parts have opposite signs of
magnetic terms and the sign of CP2 magnetic part is opposite to the volume term.

(c) The dimensionally reduced action is obtained by integrating the 6-D Kähler action over
S2 fiber. The integration gives the area A(S2) of the S2 fiber, which in the metric
induced from the spheres of twistor space of X4 is given by

A(S2) = (1 + r2)4πR2(S2(CP2)) , r = R(S2(CP2))
R(S2(M4)) . (16.4.6)

The very natural but un-checked assumption is that the radius of S2(CP2) equals to
the radius R(CP2) of the geodesic sphere of CP2:

R(S2(CP2)) = R(CP2) . (16.4.7)

One obtains

L = − 1

16παK,6

[
J2(CP2) + ε2J2(M4) + J2(S2(CP2)) + ε2J2(S2(M4))

]
A(S2) .(16.4.8)

The immediate conclusion is that the phases of Kähler action and volume term are same
so that the quantization condition for imaginary part of the action is not obtained.

(d) The Kähler coupling strengths αK(CP2) and αK(M4) can be read from the first term

1
αK(CP2) = 1

αK,44π(1+r2)
R2(CP2)

R2 ,

1
αK(M4) = ε2

αK(CP2) .

(16.4.9)

One can choose the factor R2 to be the area of S2 by suitably renormalizing 1/αK . This
would give simpler expression
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1
αK(CP2) = 1

αK,4
,

1
αK(M4) = ε2

αK(CP2) .

(16.4.10)

(e) One can deduce constraints on the value of the ε2 from the smallness of the contributions
of the corresponding U(1) gauge potential to the ordinary Coulomb potential affecting
the energies of atoms by a coupling proportional to mass number A rather than Z as
for Coulomb potential. This allows to distinguish between isotopes. This gives very
stringent bounds on ε2. I have earlier derived an upper bound treating this term as a
perturbation and by considering the contribution to the Coulomb energy of hydrogen
atom [L31] (see http://tinyurl.com/y8xcem2d). One obtains ε2 ≤ 10−10. The upper
bound is also the size scale of CP breaking induced by M4 part and characterizes also
matter-antimatter asymmetry.

Cosmological constant

Consider next the prediction for the cosmological constant term.

(a) The S2 parts of the actions have constant values. The natural normalization of Kähler
form of J(S2(X)), X = M4, CP2 is as J2 = −2. This a convention is the overall scale
of normalization can be chosen freely by rescaling 1/αK,4. Taking into account the fact
that index raising is carried out by induced metric one finds that the cosmological term
given the sum of M4 and CP2 contributions to S2 part of Kähler action multiplied by
A(S2)

Λ =
1

16παK

2

(1 + r2)R2(CP2)
(1 +

ε2

r4
) . (16.4.11)

If ε is imaginary one can achieve the cancellation giving rise to small cosmological
constant.

(b) The empirical condition on cosmological constant (see https://en.wikipedia.org/

wiki/Cosmological_constant) can be expressed in terms of critical mass density cor-
responding to flat 3-space as

Λ = 3ΩΛH
2 , Ω ' .691 ,

H = da
dt a

da
dt = 1√

gaa
.

(16.4.12)

Here a corresponds to the proper time for the light-cone M4
+ and t for the proper time

for the space-time surface, which is Lorentz invariant under the Lorentz group leaving
the boundary δM4

+.

From this one obtains a condition for allowing to get idea about the discrete evolution
of Λ with p-adic length scale occurring in jumps:

1 +
ε2

r4
= 24παK(1 + r2)R2(CP2)× ΩΛH

2 . (16.4.13)

In an excellent approximation one must have ε ' r2, r = R(M4)/(CP2). One can
consider two obvious guesses. One has either R(M4) = LPl =

√
G - that is Planck length

- or one has the Compton length associated with Planck mass given by R(M4) = 2πlPl.
The first option gives in reasonable approximation r = 2−11 and ε2 = r4 = 2−44 ∼
.6 × 10−13. The second option gives ε2 ' .9 × 10−10. This values corresponds roughly
to the CP2 breaking parameter and matter-antimatter asymmetry and M4 part of the

http://tinyurl.com/y8xcem2d
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Cosmological_constant
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Kähler action indeed gives rise to CP2 breaking. I have earlier derived an upper bound
for ε by demanding that the Kähler U(1) forces does not give rise to observable effects
in the energy levels of hydrogen atom. The upper bound is of the same magnitude as
the estimate for ε2 for the Compton scale option.

(c) If one accepts p-adic length scale hypothesis Lp ∝
√
p , p ' 2k [K100], one expects

Λ(k) ∝ 1/L(k)2 [L24] (see http://tinyurl.com/ybrhguux). How to achieve this? The
only possibility is that the parameter ε2 is subject to coupling constant evolution. One
would have for the cosmological constant

Λ(k) ∝ ε2

r4
− 1 ∝ 1

L2(k)
∝ 2−k . (16.4.14)

This would suggest for the 2-adic coupling constant evolution of ε the expression

ε2 = −r4(1−X) , X = 24παK(1 + r2)R2(CP2)× ΩΛH
2 = q × 2−k .(16.4.15)

where q is rational number. Note that from p-adic length scale hypothesis one has
2−k ∝ 1/L2(k). One can consider also p-adic primes near powers of small prime in
which case one obtains different evolution.

(d) For ΩΛ constant this would predict quantization of Hubble constant as ΩΛH
2 ∝ 1/L(k)2

determined by naive scaling dimension. The ratio of Hubble constants for two subse-
quent scales would be H(k)/H(k + 1) =

√
2 if Ω is constant. The observed - and

poorly understood - variation of Hubble constant from cosmological studies and dis-
tance ladder studies is in the range 50 − 73.2 km/s/Mpc. Cosmological studies cor-
respond to longer scales so that the smaller value of H is consistent with the de-
crease of H. The ratio of these upper and lower bounds is 1.46 <

√
2 ' 1.141 (see

http://tinyurl.com/yd6m8sca and http://tinyurl.com/ycr4ffm4).

Remark: The uncertainty in the value of Hubble constant is reflected as uncertainty
in the distances D deduced from cosmic redshift z ' HD/c. This is taken into account
in the definition of cosmological distant unit h−1Mpc, where h is in the range .5 − .75
corresponding to a scale factor 1.5 rather near to

√
2.

(e) Piecewise constant evolution means that acceleration parameter is positive since con-
stant value of H gives

d2a

dt2
=

(da/dt)2

a
= aH2 > 0 . (16.4.16)

If the phase transitions reducing H by factor 1/2 occur at a(k) = 2k/2a0, one has

d2a

dt2
∝ 2−k/2 . (16.4.17)

Acceleration would be reduced gradually with rate determined by its naive scaling di-
mension.

http://tinyurl.com/ybrhguux
http://tinyurl.com/yd6m8sca
http://tinyurl.com/ycr4ffm4
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Chapter 17

Category Theory and Quantum
TGD

17.1 Introduction

TGD predicts several hierarchical structures involving a lot of new physics. These structures
look frustratingly complex and category theoretical thinking might help to build a bird’s
eye view about the situation. I have already earlier considered the question how category
theory might be applied in TGD [K13, K11]. Besides the far from complete understanding
of the basic mathematical structure of TGD also my own limited understanding of category
theoretical ideas have been a serious limitation. During last years considerable progress in the
understanding of quantum TGD proper has taken place and the recent formulation of TGD is
in terms of light-like 3-surfaces, zero energy ontology and number theoretic braids [K84, K82].
There exist also rather detailed formulations for the fusion of p-adic and real physics and for
the dark matter hierarchy. This motivates a fresh look to how category theory might help to
understand quantum TGD.

The fusion rules for the symplectic variant of conformal field theory, whose existence is
strongly suggested by quantum TGD, allow rather precise description using the basic notions
of category theory and one can identify a series of finite-dimensional nilpotent algebras as
discretized versions of field algebras defined by the fusion rules. These primitive fusion
algebras can be used to construct more complex algebras by replacing any algebra element by
a primitive fusion algebra. Trees with arbitrary numbers of branches in any node characterize
the resulting collection of fusion algebras forming an operad. One can say that an exact
solution of symplectic scalar field theory is obtained.

Conformal fields and symplectic scalar field can be combined to form symplecto-formal fields.
The combination of symplectic operad and Feynman graph operad leads to a construction
of Feynman diagrams in terms of n-point functions of conformal field theory. M-matrix
elements with a finite measurement resolution are expressed in terms of a hierarchy of
symplecto-conformal n-point functions such that the improvement of measurement resolution
corresponds to an algebra homomorphism mapping conformal fields in given resolution to
composite conformal fields in improved resolution. This expresses the idea that composites
behave as independent conformal fields. Also other applications are briefly discussed.

Years after writing this chapter a very interesting new TGD related candidate for a cat-
egory emerged. The preferred extremals would form a category if the proposed duality
mapping associative (co-associative) 4-surfaces of imbedding space respects associativity (co-
associativity) [K74]. The duality would allow to construct new preferred extremals of Kähler
action.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using
CMAP realized as html files. Links to all CMAP files can be found at http://tgdtheory.
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fi/cmaphtml.html [L11]. Pdf representation of same files serving as a kind of glossary can
be found at http://tgdtheory.fi/tgdglossary.pdf [L12].

17.2 S-Matrix As A Functor

John Baez’s [A71] discusses in a physicist friendly manner the possible application of category
theory to physics. The lessons obtained from the construction of topological quantum field
theories (TQFTs) suggest that category theoretical thinking might be very useful in attempts
to construct theories of quantum gravitation.

The point is that the Hilbert spaces associated with the initial and final state n-1-manifold
of n-cobordism indeed form in a natural manner category. Morphisms of Hilb in turn are
unitary or possibly more general maps between Hilbert spaces. TQFT itself is a functor
assigning to a cobordism the counterpart of S-matrix between the Hilbert spaces associated
with the initial and final n-1-manifold. The surprising result is that for n ≤ 4 the S-matrix
can be unitary S-matrix only if the cobordism is trivial. This should lead even string theorist
to raise some worried questions.

In the hope of feeding some category theoretic thinking into my spine, I briefly summarize
some of the category theoretical ideas discussed in the article and relate it to the TGD vision,
and after that discuss the worried questions from TGD perspective. That space-time makes
sense only relative to imbedding space would conform with category theoretic thinking.

17.2.1 The *-Category Of Hilbert Spaces

Baez considers first the category of Hilbert spaces. Intuitively the definition of this category
looks obvious: take linear spaces as objects in category Set, introduce inner product as
additional structure and identify morphisms as maps preserving this inner product. In finite-
D case the category with inner product is however identical to the linear category so that the
inner product does not seem to be absolutely essential. Baez argues that in infinite-D case the
morphisms need not be restricted to unitary transformations: one can consider also bounded
linear operators as morphisms since they play key role in quantum theory (consider only
observables as Hermitian operators). For hyper-finite factors of type II1 inclusions define
very important morphisms which are not unitary transformations but very similar to them.
This challenges the belief about the fundamental role of unitarity and raises the question
about how to weaken the unitarity condition without losing everything.

The existence of the inner product is essential only for the metric topology of the Hilbert
space. Can one do without inner product as an inherent property of state space and reduce it
to a morphism? One can indeed express inner product in terms of morphisms from complex
numbers to Hilbert space and their conjugates. For any state Ψ of Hilbert space there is a
unique morphisms TΨ from C to Hilbert space satisfying TΨ(1) = Ψ. If one assumes that
these morphisms have conjugates T ∗Ψ mapping Hilbert space to C, inner products can be
defined as morphisms T ∗ΦTΨ. The Hermitian conjugates of operators can be defined with
respect to this inner product so that one obtains *-category. Reader has probably realized
that TΨ and its conjugate correspond to ket and bra in Dirac’s formalism.

Note that in TGD framework based on hyper-finite factors of type II1 (HFFs) the inclusions
of complex rays might be replaced with inclusions of HFFs with included factor representing
the finite measurement resolution. Note also the analogy of inner product with the represen-
tation of space-times as 4-surfaces of the imbedding space in TGD.

17.2.2 The Monoidal *-Category Of Hilbert Spaces And Its Coun-
terpart At The Level Of Ncob

One can give the category of Hilbert spaces a structure of monoid by introducing explicitly
the tensor products of Hilbert spaces. The interpretation is obvious for physicist. Baez

http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/tgdglossary.pdf
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describes the details of this identification, which are far from trivial and in the theory of
quantum groups very interesting things happen. A non-commutative quantum version of
the tensor product implying braiding is possible and associativity condition leads to the
celebrated Yang-Baxter equations: inclusions of HFFs lead to quantum groups too.

At the level of nCob the counterpart of the tensor product is disjoint union of n-1-manifolds.
This unavoidably creates the feeling of cosmic loneliness. Am I really a disjoint 3-surface in
emptiness which is not vacuum even in the geometric sense? Cannot be true!

This horrifying sensation disappears if n-1-manifolds are n-1-surfaces in some higher-dimensional
imbedding space so that there would be at least something between them. I can emit a lit-
tle baby manifold moving somewhere perhaps being received by some-one somewhere and I
can receive radiation from some-one at some distance and in some direction as small baby
manifolds making gentle tosses on my face!

This consoling feeling could be seen as one of the deep justifications for identifying funda-
mental objects as light-like partonic 3-surfaces in TGD framework. Their ends correspond
to 2-D partonic surfaces at the boundaries of future or past directed light-cones (states of
positive and negative energy respectively) and are indeed disjoint but not in the desperately
existential sense as 3-geometries of General Relativity.

This disjointness has also positive aspect in TGD framework. One can identify the color
degrees of freedom of partons as those associated with CP2 degrees of freedom. For instance,
SU(3) analogs for rotational states of rigid body become possible. 4-D space-time surfaces
as preferred extremals of Kähler action connect the partonic 3-surfaces and bring in classical
representation of correlations and thus of interactions. The representation as sub-manifolds
makes it also possible to speak about positions of these sub-Universes and about distances
between them. The habitants of TGD Universe are maximally free but not completely alone.

17.2.3 TSFT As A Functor

The category theoretic formulation of TQFT relies on a very elegant and general idea. Quan-
tum transition has as a space-time correlate an n-dimensional surface having initial final states
as its n-1-dimensional ends. One assigns Hilbert spaces of states to the ends and S-matrix
would be a unitary morphism between the ends. This is expressed in terms of the category
theoretic language by introducing the category nCob with objects identified as n-1-manifolds
and morphisms as cobordisms and *-category Hilb consisting of Hilbert spaces with inner
product and morphisms which are bounded linear operators which do not however preserve
the unitarity. Note that the morphisms of nCob cannot anymore be identified as maps be-
tween n-1-manifolds interpreted as sets with additional structure so that in this case category
theory is more powerful than set theory.

TQFT is identified as a functor nCob → Hilb assigning to n-1-manifolds Hilbert spaces, and
to cobordisms unitary S-matrices in the category Hilb. This looks nice but the surprise is that
for n ≤ 4 unitary S-matrix exists only if the cobordism is trivial so that topology changing
transitions are not possible unless one gives up unitarity.

This raises several worried questions.

(a) Does this result mean that in TQFT sense unitary S-matrix for topology changing
transitions from a state containing ni closed strings to a state containing nf 6= ni strings
does not exist? Could the situation be same also for more general non-topological
stringy S-matrices? Could the non-converging perturbation series for S-matrix with
finite individual terms matrix fail to no non-perturbative counterpart? Could it be that
M-theory is doomed to remain a dream with no hope of being fulfilled?

(b) Should one give up the unitarity condition and require that the theory predicts only
the relative probabilities of transitions rather than absolute rates? What the proper
generalization of the S-matrix could be?

(c) What is the relevance of this result for quantum TGD?
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17.2.4 The Situation Is In TGD Framework

The result about the non-existence of unitary S-matrix for topology changing cobordisms
allows new insights about the meaning of the departures of TGD from string models.

Cobordism cannot give interesting selection rules

When I started to work with TGD for more than 28 years ago, one of the first ideas was that
one could identify the selection rules of quantum transitions as topological selection rules for
cobordisms. Within week or two came the great disappointment: there were practically no
selection rules. Could one revive this naive idea? Could the existence of unitary S-matrix
force the topological selection rules after all? I am skeptic. If I have understood correctly
the discussion of what happens in 4-D case [A47] only the exotic diffeo-structures modify the
situation in 4-D case.

Light-like 3-surfaces allow cobordism

In the physically interesting GRT like situation one would expect the cobordism to be medi-
ated by a space-time surface possessing Lorentz signature. This brings in metric and temporal
distance. This means complications since one must leave the pure TQFT context. Also the
classical dynamics of quantum gravitation brings in strong selection rules related to the dy-
namics in metric degrees of freedom so that TQFT approach is not expected to be useful
from the point of view of quantum gravity and certainly not the limit of a realistic theory of
quantum gravitation.

In TGD framework situation is different. 4-D space-time sheets can have Euclidian signature
of the induced metric so that Lorentz signature does not pose conditions. The counterparts
of cobordisms correspond at fundamental level to light-like 3-surfaces, which are arbitrarily
except for the light-likeness condition (the effective 2-dimensionality implies generalized con-
formal invariance and analogy with 3-D black-holes since 3-D vacuum Einstein equations are
satisfied). Field equations defined by the Chern-Simons action imply that CP2 projection
is at most 2-D but this condition holds true only for the extremals and one has functional
integral over all light-like 3-surfaces. The temporal distance between points along light-like
3-surface vanishes. The constraints from light-likeness bring in metric degrees of freedom but
in a very gentle manner and just to make the theory physically interesting.

Feynman cobordism as opposed to ordinary cobordism

In string model context the discouraging results from TQFT hold true in the category of
nCob, which corresponds to trouser diagrams for closed strings or for their open string
counterparts. In TGD framework these diagrams are replaced with a direct generalization of
Feynman diagrams for which 3-D light-like partonic 3-surfaces meet along their 2-D ends at
the vertices. In honor of Feynman one could perhaps speak of Feynman cobordisms. These
surfaces are singular as 3-manifolds but vertices are nice 2-manifolds. I contrast to this, in
string models diagrams are nice 2-manifolds but vertices are singular as 1-manifolds (say
eye-glass type configurations for closed strings).

This picture gains a strong support for the interpretation of fermions as light-like throats
associated with connected sums of CP2 type extremals with space-time sheets with Minkowski
signature and of bosons as pairs of light-like wormhole throats associated with CP2 type
extremal connecting two space-time sheets with Minkowski signature of induced metric. The
space-time sheets have opposite time orientations so that also zero energy ontology emerges
unavoidably. There is also consistency TGD based explanation of the family replication
phenomenon in terms of genus of light-like partonic 2-surfaces.

One can wonder what the 4-D space-time sheets associated with the generalized Feynman
diagrams could look like? One can try to gain some idea about this by trying to assign 2-D
surfaces to ordinary Feynman diagrams having a subset of lines as boundaries. In the case of



17.2. S-Matrix As A Functor 669

2→2 reaction open string is pinched to a point at vertex. 1→2 vertex, and quite generally,
vertices with odd number of lines, are impossible. The reason is that 1-D manifolds of finite
size can have either 0 or 2 ends whereas in higher-D the number of boundary components is
arbitrary. What one expects to happen in TGD context is that wormhole throats which are
at distance characterized by CP2 fuse together in the vertex so that some kind of pinches
appear also now.

Zero energy ontology

Zero energy ontology gives rise to a second profound distinction between TGD and standard
QFT. Physical states are identified as states with vanishing net quantum numbers, in partic-
ular energy. Everything is creatable from vacuum - and one could add- by intentional action
so that zero energy ontology is profoundly Eastern. Positive resp. negative energy parts of
states can be identified as states associated with 2-D partonic surfaces at the boundaries of
future resp. past directed light-cones, whose tips correspond to the arguments of n-point
functions. Each incoming/outgoing particle would define a mini-cosmology corresponding to
not so big bang/crunch. If the time scale of perception is much shorter than time interval
between positive and zero energy states, the ontology looks like the Western positive energy
ontology. Bras and kets correspond naturally to the positive and negative energy states and
phase conjugation for laser photons making them indeed something which seems to travel in
opposite time direction is counterpart for bra-ket duality.

The new element would be quantum measurements performed separately for observables
assignable to positive and negative energy states. These measurements would be character-
ized in terms of Jones inclusions. The state function reduction for the negative energy states
could be interpreted as a detection of a particle reaction.

Finite temperature S-matrix defines genuine quantum state in zero energy on-
tology

In TGD framework one encounters two S-matrix like operators.

(a) U-matrix is the analog of the ordinary S-matrix and constructible in terms of it and or-
thonormal basis of square roots of density matrices expressible as products of hermitian
operators multiplied by unitary S-matrix [K91].

(b) The S-matrix like operator describing what happens in laboratory corresponds to the
time-like entanglement coefficients between positive and negative energy parts of the
state. Measurement of reaction rates would be a measurement of observables reduc-
ing time like entanglement and very much analogous to an ordinary quantum mea-
surement reducing space-like entanglement. There is a finite measurement resolution
described by inclusion of HFFs and this means that situation reduces effectively to a
finite-dimensional one.

p-Adic thermodynamics strengthened with p-adic length scale hypothesis predicts particle
masses with an amazing success. At first the thermodynamical approach seems to be in con-
tradiction with the idea that elementary particles are quantal objects. Unitarity is however
not necessary if one accepts that only relative probabilities for reductions to pairs of initial
and final states interpreted as particle reactions can be measured.

The beneficial implications of unitarity are not lost if one replaces QFT with thermal QFT.
Category theoretically this would mean that the time-like entanglement matrix associated
with the product of cobordisms is a product of these matrices for the factors. The time
parameter in S-matrix would be replaced with a complex time parameter with the imaginary
part identified as inverse temperature. Hence the interpretation in terms of time evolution
is not lost.

In the theory of hyper-finite factors of type III1 the partition function for thermal equilibrium
states and S-matrix can be neatly fused to a thermal S-matrix for zero energy states and
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one could introduce p-adic thermodynamics at the level of quantum states. It seems that
this picture applies to HFFs by restriction. Therefore the loss of unitarity S-matrix might
after all turn to a victory by more or less forcing both zero energy ontology and p-adic
thermodynamics. Note that also the presence of factor of type I coming from imbedding
space degrees of freedom forces thermal S-matrix.

Time-like entanglement coefficients as a square root of density matrix?

All quantum states do not correspond to thermal states and one can wonder what might be
the most general identification of the quantum state in zero energy ontology. Density matrix
formalism defines a very general formulation of quantum theory. Since the quantum states
in zero energy ontology are analogous to operators, the idea that time-like entanglement
coefficients in some sense define a square root of density matrix is rather natural. This would
give the defining conditions

ρ+ = SS† , ρ− = S†S ,

Tr(ρ±) = 1 . (17.2.1)

ρ± would define density matrix for positive/negative energy states. In the case HFFs of type
II1 one obtains unitary S-matrix and also the analogs of pure quantum states are possible
for factors of type I. The numbers p+

m,n = |S2
m,n|/ρ+

m,m and p−m,n = |S2
n,m|/ρ−m,m give the

counterparts of the usual scattering probabilities.

A physically well-motivated hypothesis would be that S has expression S =
√
ρS0 such that

S0 is a universal unitary S-matrix, and
√
ρ is square root of a state dependent density matrix.

Note that in general S is not diagonalizable in the algebraic extension involved so that it is
not possible to reduce the scattering to a mere phase change by a suitable choice of state
basis.

What makes this kind of hypothesis aesthetically attractive is the unification of two funda-
mental matrices of quantum theory to single one. This unification is completely analogous
to the combination of modulus squared and phase of complex number to a single complex
number: complex valued Schrödinger amplitude is replaced with operator valued one.

S-matrix as a functor and the groupoid structure formed by S-matrices

In zero energy ontology S-matrix can be seen as a functor from the category of Feynman
cobordisms to the category of operators. S-matrix can be identified as a “square root” of

the positive energy density matrix S = ρ
1/2
+ S0, where S0 is a unitary matrix and ρ+ is the

density matrix for positive energy part of the zero energy state. Obviously one has SS† = ρ+.
S†S = ρ− gives the density matrix for negative energy part of zero energy state. Clearly, S-
matrix can be seen as matrix valued generalization of Schrödinger amplitude. Note that the
“indices” of the S-matrices correspond to WCW spinor s (fermions and their bound states
giving rise to gauge bosons and gravitons) and to WCW degrees of freedom. For hyper-
finite factor of II1 it is not strictly speaking possible to speak about indices since the matrix
elements are traces of the S-matrix multiplied by projection operators to infinite-dimensional
subspaces from right and left.

The functor property of S-matrices implies that they form a multiplicative structure analo-
gous but not identical to groupoid [A6]. Recall that groupoid has associative product and
there exist always right and left inverses and identity in the sense that ff−1 and f−1f are
always defined but not identical and one has fgg−1 = f and f−1fg = g.

The reason for the groupoid like property is that S-matrix is a map between state spaces
associated with initial and final sets of partonic surfaces and these state spaces are different
so that inverse must be replaced with right and left inverse. The defining conditions for
groupoid are replaced with more general ones. Also now associativity holds but the role
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of inverse is taken by hermitian conjugate. Thus one has the conditions fgg† = fρg,+
and f†fg = ρf,−g, and the conditions ff† = ρ+ and f†f = ρ− are satisfied. Here ρ± is
density matrix associated with positive/negative energy parts of zero energy state. If the
inverses of the density matrices exist, groupoid axioms hold true since f−1

L = f†ρ−1
f,+ satisfies

ff−1
L = Id+ and f−1

R = ρ−1
f,−f

† satisfies f−1
R f = Id−.

There are good reasons to believe that also tensor product of its appropriate generalization
to the analog of co-product makes sense with non-triviality characterizing the interaction
between the systems of the tensor product. If so, the S-matrices would form very beautiful
mathematical structure bringing in mind the corresponding structures for 2-tangles and N-
tangles. Knowing how incredibly powerful the group like structures have been in physics
one has good reasons to hope that groupoid like structure might help to deduce a lot of
information about the quantum dynamics of TGD.

A word about nomenclature is in order. S has strong associations to unitarity and it might
be appropriate to replace S with some other letter. The interpretation of S-matrix as a
generalized Schrödinger amplitude would suggest Ψ-matrix. Since the interaction with Kea’s
M-theory blog at (see http://tinyurl.com/yb3lsbjq (M denotes Monad or Motif in this
context) was led ot the realization of the connection with density matrix, also M -matrix
might be considered. S-matrix as a functor from the category of Feynman cobordisms in
turn suggests C or F. Or could just Matrix denoted by M in formulas be enough? Certainly
it would inspire feeling of awe!

17.3 Further Ideas

The work of John Baez and students has inspired also the following ideas about the role of
category theory in TGD.

17.3.1 Operads, Number Theoretical Braids, And Inclusions Of HFFs

The description of braids leads naturally to category theory and quantum groups when the
braiding operation, which can be regarded as a functor, is not a mere permutation. Discrete-
ness is a natural notion in the category theoretical context. To me the most natural manner
to interpret discreteness is - not something emerging in Planck scale- but as a correlate for
a finite measurement resolution and quantum measurement theory with finite measurement
resolution leads naturally to number theoretical braids as fundamental discrete structures
so that category theoretic approach becomes well-motivated. Discreteness is also implied by
the number theoretic approach to quantum TGD from number theoretic associativity con-
dition [L7] central also for category theoretical thinking as well as from the realization of
number theoretical universality by the fusion of real and p-adic physics to single coherent
whole.

Operads are formally single object multi-categories [A15, A77]. This object consist of an
infinite sequence of sets of n-ary operations. These operations can be composed and the
compositions are associative (operations themselves need not be associative) in the sense
that the is natural isomorphism (symmetries) mapping differently bracketed compositions
to each other. The coherence laws for operads formulate the effect of permutations and
bracketing (association) as functors acting as natural isomorphisms. A simple manner to
visualize the composition is as an addition of n1, ...nk leaves to the leaves 1, ..., k of k-leaved
tree.

An interesting example of operad is the braid operad formulating the combinatorics for a
hierarchy of braids formed from braids by grouping subsets of braids having n1, ...nk strands
and defining the strands of a k-braid. In TGD framework this grouping can be identified in
terms of the formation bound states of particles topologically condensed at larger space-time
sheet and coherence laws allow to deduce information about scattering amplitudes. In con-
formal theories braided categories indeed allow to understand duality of stringy amplitudes
in terms of associativity condition.

http://tinyurl.com/yb3lsbjq
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Planar operads [A39] define an especially interesting class of operads. The reason is that
the inclusions of HFFs give rise to a special kind of planar operad [A16]. The object of this
multi-category [A13] consists of planar k-tangles. Planar operads are accompanied by planar
algebras. It will be found that planar operads allow a generalization which could provide
a description for the combinatorics of the generalized Feynman diagrams and also rigorous
formulation for how the arrow of time emerges in TGD framework and related heuristic ideas
challenging the standard views.

17.3.2 Generalized Feynman Diagram As Category?

John Baez has proposed a category theoretical formulation of quantum field theory as a
functor from the category of n-cobordisms to the category of Hilbert spaces [A71, A38]. The
attempt to generalize this formulation looks well motivated in TGD framework because TGD
can be regarded as almost topological quantum field theory in a well defined sense and braids
appear as fundamental structures. It however seems that formulation as a functor from nCob
to Hilb is not general enough.

In zero energy ontology events of ordinary ontology become quantum states with positive
and negative energy parts of quantum states localizable to the upper and lower light-like
boundaries of causal diamond (CD).

(a) Generalized Feynman diagrams associated with a given CD involve quantum superposi-
tion of light-like 3-surfaces corresponding to given generalized Feynman diagram. These
superpositions could be seen as categories with 3-D light-like surfaces containing braids
as arrows and 2-D vertices as objects. Zero energy states would represent quantum
superposition of categories (different topologies of generalized Feynman diagram) and
M-matrix defined as Connes tensor product would define a functor from this category
to the Hilbert space of zero energy states for given CD (tensor product defines quite
generally a functor).

(b) What is new from the point of view of physics that the sequences of generalized lines
would define compositions of arrows and morphisms having identification in terms of
braids which replicate in vertices. The possible interpretation of the replication is in
terms of copying of information in classical sense so that even elementary particles
would be information carrying and processing structures. This structure would be more
general than the proposal of John Baez that S-matrix corresponds to a function from
the category of n-dimensional cobordisms to the category Hilb.

(c) p-Adic length scale hypothesis follows if the temporal distance between the tips of CD
measured as light-cone proper time comes as an octave of CP2 time scale: T = 2nT0.
This assumption implies that the p-adic length scale resolution interpreted in terms of
a hierarchy of increasing measurement resolutions comes as octaves of time scale. A
weaker condition would be Tp = pT0, p prime, and would assign all p-adic time scales
to the size scale hierarchy of CDs.

This preliminary picture is of course not far complete since it applies only to single CD.
There are several questions. Can one allow CDs within CDs and is every vertex of generalized
Feynman diagram surrounded by this kind of CD. Can one form unions of CDs freely?

(a) Since light-like 3-surfaces in 8-D imbedding space have no intersections in the generic
position, one could argue that the overlap must be allowed and makes possible the
interaction of between zero energy states belonging to different CDs. This interaction
would be something new and present also for sub-CDs of a given CD.

(b) The simplest guess is that the unrestricted union of CDs defines the counterpart of
tensor product at geometric level and that extended M-matrix is a functor from this
category to the tensor product of zero energy state spaces. For non-overlapping CDs
ordinary tensor product could be in question and for overlapping CDs tensor product
would be non-trivial. One could interpret this M-matrix as an arrow between M-matrices
of zero energy states at different CDs: the analog of natural transformation mapping
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two functors to each other. This hierarchy could be continued ad infinitum and would
correspond to the hierarchy of n-categories.

This rough heuristics represents of course only one possibility among many since the notion
of category is extremely general and the only limits are posed by the imagination of the
mathematician. Also the view about zero energy states is still rather primitive.

17.4 Planar Operads, The Notion Of Finite Measure-
ment Resolution, And Arrow Of Geometric Time

In the sequel the idea that planar operads or their appropriate generalization might allow
to formulate generalized Feynman diagrammatics in zero energy ontology will be considered.
Also a description of measurement resolution and arrow of geometric time in terms of operads
is discussed.

17.4.1 Zeroth Order Heuristics About Zero Energy States

Consider now the existing heuristic picture about the zero energy states and coupling constant
evolution provided by CDs.

(a) The tentative description for the increase of the measurement resolution in terms CDs
is that one inserts to the upper and/or lower light-like boundary of CD smaller CDs by
gluing them along light-like radial ray from the tip of CD. It is also possible that the
vertices of generalized Feynman diagrams belong inside smaller CD: s and it turns out
that these CD: s must be allowed.

(b) The considerations related to the arrow of geometric time suggest that there is asym-
metry between upper and lower boundaries of CD. The minimum requirement is that
the measurement resolution is better at upper light-like boundary.

(c) In zero energy ontology communications to the direction of geometric past are possible
and phase conjugate laser photons represent one example of this.

(d) Second law of thermodynamics must be generalized in such a manner that it holds
with respect to subjective time identified as sequence of quantum jumps. The arrow of
geometric time can however vary so that apparent breaking of second law is possible in
shorter time scales at least. One must however understand why second law holds true
in so good an approximation.

(e) One must understand also why the contents of sensory experience is concentrated around
a narrow time interval whereas the time scale of memories and anticipation are much
longer. The proposed mechanism is that the resolution of conscious experience is higher
at the upper boundary of CD. Since zero energy states correspond to light-like 3-surfaces,
this could be a result of self-organization rather than a fundamental physical law.

i. CDs define the perceptive field for self. Selves are curious about the space-time
sheets outside their perceptive field in the geometric future of the imbedding space
and perform quantum jumps tending to shift the superposition of the space-time
sheets to the direction of geometric past (past defined as the direction of shift!).
This creates the illusion that there is a time=snapshot front of consciousness moving
to geometric future in fixed background space-time as an analog of train illusion.

ii. The fact that news come from the upper boundary of CD implies that self concen-
trates its attention to this region and improves the resolutions of sensory experience
and quantum measurement here. The sub-CD: s generated in this manner corre-
spond to mental images with contents about this region. As a consequence, the
contents of conscious experience, in particular sensory experience, tend to be about
the region near the upper boundary.
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iii. This mechanism in principle allows the arrow of the geometric time to vary and
depend on p-adic length scale and the level of dark matter hierarchy. The occurrence
of phase transitions forcing the arrow of geometric time to be same everywhere are
however plausible for the reason that the lower and upper boundaries of given CD
must possess the same arrow of geometric time.

iv. If this is the mechanism behind the arrow of time, planar operads can provide a
description of the arrow of time but not its explanation.

This picture is certainly not general enough, can be wrong at the level of details, and at best
relates to the whole like single particle wave mechanics to quantum field theory.

17.4.2 Planar Operads

The geometric definition of planar operads [A17, A15, A16, A39] without using the category
theoretical jargon goes as follows.

(a) There is an external disk and some internal disks and a collection of disjoint lines
connecting disk boundaries.

(b) To each disk one attaches a non-negative integer k, called the color of disk. The disk
with color k has k points at each boundary with the labeling 1, 2, ...k running clockwise
and starting from a distinguished marked point, decorated by “*”. A more restrictive
definition is that disk colors are correspond to even numbers so that there are k = 2n
points lines leaving the disk boundary boundary. The planar tangles with k = 2n
correspond to inclusions of HFFs.

(c) Each curve is either closed (no common points with disk boundaries) or joins a marked
point to another marked point. Each marked point is the end point of exactly one curve.

(d) The picture is planar meaning that the curves cannot intersect and diks cannot overlap.

(e) Disks differing by isotopies preserving *’s are equivalent.

Given a planar k-tangle-one of whose internal disks has color ki- and a ki-tangle S, one can
define the tangle T ◦i S by isotoping S so that its boundary, together with the marked points
and the *’s co-incides with that of Di and after that erase the boundary of Di. The collection
of planar tangle together with the composition defined in this manner- is called the colored
operad of planar tangles.

One can consider also generalizations of planar operads.

(a) The composition law is not affected if the lines of operads branch outside the disks.
Branching could be allowed even at the boundaries of the disks although this does not
correspond to a generic situation. One might call these operads branched operads.

(b) The composition law could be generalized to allow additional lines connecting the points
at the boundary of the added disk so that each composition would bring in something
genuinely new. Zero energy insertion could correspond to this kind of insertions.

(c) TGD picture suggests also the replacement of lines with braids. In category theoretical
terms this means that besides association one allows also permutations of the points at
the boundaries of the disks.

The question is whether planar operads or their appropriate generalizations could allow a
characterization of the generalized Feynman diagrams representing the combinatorics of zero
energy states in zero energy ontology and whether also the emergence of arrow of time could
be described (but probably not explained) in this framework.
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17.4.3 Planar Operads And Zero Energy States

Are planar operads sufficiently powerful to code the vision about the geometric correlates
for the increase of the measurement resolution and coupling constant evolution formulated
in terms of CDs? Or perhaps more realistically, could one improve this formulation by
assuming that zero energy states correspond to wave functions in the space of planar tangles
or of appropriate modifications of them? It seems that the answer to the first question is
almost affirmative.

(a) Disks are analogous to the white regions of a map whose details are not visible in
the measurement resolution used. Disks correspond to causal diamonds (CDs) in zero
energy ontology. Physically the white regions relate to the vertices of the generalized
Feynman diagrams and possibly also to the initial and final states (strictly speaking, the
initial and final states correspond to the legs of generalized Feynman diagrams rather
than their ends).

(b) The composition of tangles means addition of previously unknown details to a given
white region of the map and thus to an increase of the measurement resolution. This
conforms with the interpretation of inclusions of HFFs as a characterization of finite
measurement resolution and raises the hope that planar operads or their appropriate
generalization could provide the proper language to describe coupling constant evolution
and their perhaps even generalized Feynman diagrams.

(c) For planar operad there is an asymmetry between the outer disk and inner disks. One
might hope that this asymmetry could explain or at least allow to describe the arrow of
time. This is not the case. If the disks correspond to causal diamonds (CDs) carrying
positive resp. negative energy part of zero energy state at upper resp. lower light-cone
boundary, the TGD counterpart of the planar tangle is CD containing smaller CD: s
inside it. The smaller CD: s contain negative energy particles at their upper boundary
and positive energy particles at their lower boundary. In the ideal resolution vertices
represented 2-dimensional partonic at which light-like 3-surfaces meet become visible.
There is no inherent asymmetry between positive and negative energies and no inherent
arrow of geometric time at the fundamental level. It is however possible to model the
arrow of time by the distribution of sub-CD: s. By previous arguments self-organization
of selves can lead to zero energy states for which the measurement resolution is better
near the upper boundary of the CD.

(d) If the lines carry fermion or anti-fermion number, the number of lines entering to a given
CD must be even as in the case of planar operads as the following argument shows.

i. In TGD framework elementary fermions correspond to single wormhole throat as-
sociated with topologically condensed CP2 type extremal and the signature of the
induced metric changes at the throat.

ii. Elementary bosons correspond to pairs of wormhole throats associated with worm-
hole contacts connecting two space-time sheets of opposite time orientation and
modellable as a piece of CP2 type extremal. Each boson therefore corresponds to
2 lines within CP2 radius.

iii. As a consequence the total number of lines associated with given CD is even and
the generalized Feynman diagrams can correspond to a planar algebra associated
with an inclusion of HFFs.

(e) This picture does not yet describe zero energy insertions.

i. The addition of zero energy insertions corresponds intuitively to the allowance of
new lines inside the smaller CD: s not coming from the exterior. The addition of
lines connecting points at the boundary of disk is possible without losing the basic
geometric composition of operads. In particular one does not lose the possibility to
color the added tangle using two colors (colors correspond to two groups G and H
which characterize an inclusion of HFFs [A39] ).

ii. There is however a problem. One cannot remove the boundaries of sub-CD after
the composition of CDs since this would give lines beginning from and ending to



676 Chapter 17. Category Theory and Quantum TGD

the interior of disk and they are invisible only in the original resolution. Physically
this is of course what one wants but the inclusion of planar tangles is expected to
fail in its original form, and one must generalize the composition of tangles to that
of CD: s so that the boundaries of sub-CD: s are not thrown away in the process.

iii. It is easy to see that zero energy insertions are inconsistent with the composition of
planar tangles. In the inclusion defining the composition of tangles both sub-tangle
and tangle induce a color to a given segment of the inner disk. If these colors are
identical, one can forget the presence of the boundary of the added tangle. When
zero energy insertions are allowed, situation changes as is easy to see by adding a
line connecting points in a segment of given color at the boundary of the included
tangle. There exists no consistent coloring of the resulting structure by using only
two colors. Coloring is however possible using four colors, which by four-color
theorem is the minimum number of colors needed for a coloring of planar map: this
however requires that the color can change as one moves through the boundary of
the included disk - this is in accordance with the physical picture.

iv. Physical intuition suggests that zero energy insertion as an improvement of mea-
surement resolution maps to an improved color resolution and that the composition
of tangles generalizes by requiring that the included disk is colored by using new
nuances of the original colors. The role of groups in the definition of inclusions of
HFFs is consistent with idea that G and H describe color resolution in the sense
that the colors obtained by their action cannot be resolved. If so, the improved res-
olution means that G and H are replaced by their subgroups G1 ⊂ G and H1 ⊂ H.
Since the elements of a subgroup have interpretation as elements of group, there
are good hopes that by representing the inclusion of tangles as inclusion of groups,
one can generalize the composition of tangles.

(f) Also CD: s glued along light-like ray to the upper and lower boundaries of CD are possi-
ble in principle and -according the original proposal- correspond to zero energy insertions
according. These CD: s might be associated with the phase transitions changing the
value of ~ leading to different pages of the book like structure defined by the generalized
imbedding space.

(g) p-Adic length scale hypothesis is realized if the hierarchy of CDs corresponds to a
hierarchy of temporal distances between tips of CDs given as a = Tn = 2−nT0 using
light-cone proper time.

(h) How this description relates to braiding? Each line corresponds to an orbit of a partonic
boundary component and in principle one must allow internal states containing arbi-
trarily high fermion and anti-fermion numbers. Thus the lines decompose into braids
and one must allow also braids of braids hierarchy so that each line corresponds to a
braid operad in improved resolution.

17.4.4 Relationship To Ordinary Feynman Diagrammatics

The proposed description is not equivalent with the description based on ordinary Feynman
diagrams.

(a) In standard physics framework the resolution scale at the level of vertices of Feynman
diagrams is something which one is forced to pose in practical calculations but cannot
pose at will as opposed to the measurement resolution. Light-like 3-surfaces can be
however regarded only locally orbits of partonic 2-surfaces since generalized conformal
invariance is true only in 3-D patches of the light-like 3-surface. This means that
light-like 3-surfaces are in principle the fundamental objects so that zero energy states
can be regarded only locally as a time evolutions. Therefore measurement resolution
can be applied also to the distances between vertices of generalized Feynman diagrams
and calculational resolution corresponds to physical resolution. Also the resolution can
be better towards upper boundary of CD so that the arrow of geometric time can
be understood. This is a definite prediction which can in principle kill the proposed
scenario.
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(b) A further counter argument is that generalized Feynman diagrams are identified as
light-like 3-surfaces for which Kähler function defined by a preferred extremal of Kähler
action is maximum. Therefore one cannot pose any ad hoc rules on the positions of the
vertices. One can of course insist that maximum of Kähler function with the constraint
posed by Tn = 2nT0 (or Tp = pnT0) hierarchy is in question.

It would be too optimistic to believe that the details of the proposal are correct. However,
if the proposal is on correct track, zero energy states could be seen as wave functions in the
operad of generalized tangles (zero energy insertions and braiding) as far as combinatorics is
involved and the coherence rules for these operads would give strong constraints on the zero
energy state and fix the general structure of coupling constant evolution.

17.5 Category Theory And Symplectic QFT

Besides the counterpart of the ordinary Kac-Moody invariance quantum TGD possesses so
called super-symplectic conformal invariance. This symmetry leads to the proposal that a
symplectic variant of conformal field theory should exist. The n-point functions of this theory
defined in S2 should be expressible in terms of symplectic areas of triangles assignable to a set
of n-points and satisfy the duality rules of conformal field theories guaranteeing associativity.
The crucial prediction is that symplectic n-point functions vanish whenever two arguments
co-incide. This provides a mechanism guaranteeing the finiteness of quantum TGD implied
by very general arguments relying on non-locality of the theory at the level of 3-D surfaces.

The classical picture suggests that the generators of the fusion algebra formed by fields at
different point of S2 have this point as a continuous index. Finite quantum measurement
resolution and category theoretic thinking in turn suggest that only the points of S2 corre-
sponding the strands of number theoretic braids are involved. It turns out that the category
theoretic option works and leads to an explicit hierarchy of fusion algebras forming a good
candidate for so called little disk operad whereas the first option has difficulties.

17.5.1 Fusion Rules

Symplectic fusion rules are non-local and express the product of fields at two points sk an
sl of S2 as an integral over fields at point sr, where integral can be taken over entire S2 or
possibly also over a 1-D curve which is symplectic invariant in some sense. Also discretized
version of fusion rules makes sense and is expected serve as a correlate for finite measurement
resolution.

By using the fusion rules one can reduce n-point functions to convolutions of 3-point func-
tions involving a sequence of triangles such that two subsequent triangles have one vertex
in common. For instance, 4-point function reduces to an expression in which one integrates
over the positions of the common vertex of two triangles whose other vertices have fixed.
For n-point functions one has n-3 freely varying intermediate points in the representation in
terms of 3-point functions.

The application of fusion rules assigns to a line segment connecting the two points sk and sl a
triangle spanned by sk, sl and sr. This triangle should be symplectic invariant in some sense
and its symplectic area Aklm would define the basic variable in terms of which the fusion
rule could be expressed as Cklm = f(Aklm), where f is fixed by some constraints. Note that
Aklm has also interpretations as solid angle and magnetic flux.

17.5.2 What Conditions Could Fix The Symplectic Triangles?

The basic question is how to identify the symplectic triangles. The basic criterion is certainly
the symplectic invariance: if one has found N-D symplectic algebra, symplectic transforma-
tions of S2 must provide a new one. This is guaranteed if the areas of the symplectic triangles
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remain invariant under symplectic transformations. The questions are how to realize this con-
dition and whether it might be replaced with a weaker one. There are two approaches to the
problem.

Physics inspired approach

In the first approach inspired by classical physics symplectic invariance for the edges is
interpreted in the sense that they correspond to the orbits of a charged particle in a magnetic
field defined by the Kähler form. Symplectic transformation induces only a U(1) gauge
transformation and leaves the orbit of the charged particle invariant if the vertices are not
affected since symplectic transformations are not allowed to act on the orbit directly in this
approach. The general functional form of the structure constants Cklm as a function f(Aklm)
of the symplectic area should guarantee fusion rules.

If the action of the symplectic transformations does not affect the areas of the symplectic
triangles, the construction is invariant under general symplectic transformations. In the case
of uncharged particle this is not the case since the edges are pieces of geodesics: in this case
however fusion algebra however trivializes so that one cannot conclude anything. In the case
of charged particle one might hope that the area remains invariant under general symplectic
transformations whose action is induced from the action on vertices. The equations of motion
for a charged particle involve a Kähler metric determined by the symplectic structure and
one might hope that this is enough to achieve this miracle. If this is not the case - as it
might well be - one might hope that although the areas of the triangles are not preserved,
the triangles are mapped to each other in such a manner that the fusion algebra rules remain
intact with a proper choice of the function f(Aklm). One could also consider the possibility
that the function f(Aklm) is dictated from the condition that the it remains invariant under
symplectic transformations. It however turns that this approach does not work as such.

Category theoretical approach

The second realization is guided by the basic idea of category theoretic thinking: the prop-
erties of an object are determined its relationships to other objects. Rather than postulating
that the symplectic triangle is something which depends solely on the three points involved
via some geometric notion like that of geodesic line of orbit of charged particle in magnetic
field, one assumes that the symplectic triangle reflects the properties of the fusion algebra,
that is the relations of the symplectic triangle to other symplectic triangles. Thus one must
assign to each triplet (s1, s2, s3) of points of S2 a triangle just from the requirement that
braided associativity holds true for the fusion algebra.

All symplectic transformations leaving theN points fixed and thus generated by Hamiltonians
vanishing at these points would give new gauge equivalent realizations of the fusion algebra
and deform the edges of the symplectic triangles without affecting their area. One could even
say that symplectic triangulation defines a new kind geometric structure in S2. The quantum
fluctuating degrees of freedom are parameterized by the symplectic group of S2 × CP2 in
TGD so that symplectic the geometric representation of the triangulation changes but its
inherent properties remain invariant.

The elegant feature of category theoretical approach is that one can in principle construct
the fusion algebra without any reference to its geometric realization just from the braided
associativity and nilpotency conditions and after that search for the geometric realizations.
Fusion algebra has also a hierarchy of discrete variants in which the integral over intermediate
points in fusion is replaced by a sum over a fixed discrete set of points and this variant is
what finite measurement resolution implies. In this case it is relatively easy to see if the
geometric realization of a given abstract fusion algebra is possible.
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The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time
correlate for the finite measurement resolution. The notion of braid was inspired by the
idea about quantum TGD as almost topological quantum field theory. Although the original
form of this idea has been buried, the notion of braid has survived: in the decomposition of
space-time sheets to string world sheets, the ends of strings define representatives for braid
strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of num-
ber theoretic braid requiring that the points in the intersection of the braid with the partonic
2-surface correspond to rational or at most algebraic points of H in preferred coordinates
fixed by symmetry considerations. The challenge has been to find a unique identification of
the number theoretic braid or at least of the end points of the braid. The following consider-
ation suggest that the number theoretic braids are not a useful notion in the generic case but
make sense and are needed in the intersection of real and p-adic worlds which is in crucial
role in TGD based vision about living matter [K41].

It is only the braiding that matters in topological quantum field theories used to classify
braids. Hence braid should require only the fixing of the end points of the braids at the
intersection of the braid at the light-like boundaries of CDs and the braiding equivalence
class of the braid itself. Therefore it is enough is to specify the topology of the braid and
the end points of the braid in accordance with the attribute “number theoretic”. Of course,
the condition that all points of the strand of the number theoretic braid are algebraic is
impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-
adic sense using appropriate algebraic extension of p-adic number field is central in the
TGD based vision about living matter [K41]. The reason is that in this case the notion of
number entanglement theoretic entropy having negative values makes sense and entanglement
becomes information carrying. This motivates the identification of life as something in the
intersection of real and p-adic worlds. In this situation the identification of the ends of the
number theoretic braid as points belonging to the intersection of real and p-adic worlds is
natural. These points -call them briefly algebraic points- belong to the algebraic extension of
rationals needed to define the algebraic extension of p-adic numbers. This definition however
makes sense also when the equations defining the partonic 2-surfaces fail to make sense in
both real and p-adic sense. In the generic case the set of points satisfying the conditions is
discrete. For instance, according to Fermat’s theorem the set of rational points satisfying
Xn + Y n = Zn reduces to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be
quite enough in the intersection of real and p-adic worlds where the choice of the algebraic
extension is unique.

One can however criticize this proposal.

(a) One must fix the number of points of the braid and outside the intersection and the
non-uniquencess of the algebraic extension makes the situation problematic. Physical
intuition suggests that the points of braid define carriers of quantum numbers assignable
to second quantized induced spinor fields so that the total number of fermions anti-
fermions would define the number of braids. In the intersection the highly non-trivial
implication is that this number cannot exceed the number of algebraic points.

(b) In the generic case one expects that even the smallest deformation of the partonic 2-
surface can change the number of algebraic points and also the character of the algebraic
extension of rational numbers needed. The restriction to rational points is not expected
to help in the generic case. If the notion of number theoretical braid is meant to be
practical, must be able to decompose WCW to open sets inside which the numbers of
algebraic points of braid at its ends are constant. For real topology this is expected to
be impossible and it does not make sense to use p-adic topology for WCW whose points
do not allow interpretation as p-adic partonic surfaces.

(c) In the intersection of real and p-adic worlds which corresponds to a discrete subset of
WCW , the situation is different. Since the coefficients of polynomials involved with the
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definition of the partonic 2-surface must be rational or at most algebraic, continuous
deformations are not possible so that one avoids the problem.

(d) This forces to ask the reason why for the number theoretic braids. In the generic case
they seem to produce only troubles. In the intersection of real and p-adic worlds they
could however allow the construction of the elements of M -matrix describing quantum
transitions changing p-adic to real surfaces and vice versa as realizations of intentions
and generation of cognitions. In this the case it is natural that only the data from the
intersection of the two worlds are used. In [K41] I have sketched the idea about number
theoretic quantum field theory as a description of intentional action and cognition.

There is also the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

(a) Infinite number of non-equivalent braidings are possible. Should one allow all possible
braidings for a fixed light-like 3-surface and say that their existence is what makes the
dynamics essentially three-dimensional even in the topological sense? In this case there
would be no problems with the condition that the points at both ends of braid are
algebraic.

(b) Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces
and corresponding 4-D tangent space distributions? The slicing of the space-time sheet
by partonic 2-surfaces and string word sheets suggests that the ends of string world
sheets could define the braid strands in the generic context when there is no algebraicity
condition involved. This could be taken as a very natural manner to fix the topology of
braid but leave the freedom to choose the representative for the braid. In the intersection
of real and p-adic worlds there is no good reason for the end points of strands in this
case to be algebraic at both ends of the string world sheet. One can however start from
the braid defined by the end points of string world sheets, restrict the end points to
be algebraic at the end with a smaller number of algebraic pointsandthen perform a
topologically non-trivial deformation of the braid so that also the points at the other
end are algebraic? Non-trivial deformations need not be possible for all possible choices
of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only
the algebraic points at which one has assign fermion or anti-fermion are used so that
the number of braid points is not always maximal.

(c) One can also ask whether one should perform the gauge fixing for the strands of the
number theoretic braid using algebraic functions making sense both in real and p-adic
context. This question does not seem terribly relevant since since it is only the topology
of the braid that matters.

Symplectic triangulations and braids

The identification of the edges of the symplectic triangulation as the end points of the braid
is favored by conceptual economy. The nodes of the symplectic triangulation would naturally
correspond to the points in the intersection of the braid with the light-like boundaries of CD
carrying fermion or anti-fermion number. The number of these points could be arbitrarily
large in the generic case but in the intersection of real and p-adic worlds these points corre-
spond to subset of algebraic points belonging to the algebraic extension of rationals associated
with the definition of partonic 2-surfaces so that the sum of fermion and anti-fermion num-
bers would be bounded above. The presence of fermions in the nodes would be the physical
prerequisite for measuring the phase factors defined by the magnetic fluxes. This could be
understood in terms of gauge invariance forcing to assign to a pair of points of triangulation
the non-integrable phase factor defined by the Kähler gauge potential.

The remaining problem is how uniquely the edges of the triangulation can be determined.

(a) The allowance of all possible choices for edges would bring in an infinite number of
degrees of freedom. These curves would be analogous to freely vibrating strings. This
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option is not attractive. One should be able to pose conditions on edges and whatever
the manner to specify the edges might be, it must make sense also in the intersection
of real and p-adic worlds. In this case the total phase factor must be a root of unity in
the algebraic extension of rationals involved and this poses quantization rules analogous
to those for magnetic flux. The strongest condition is that the edges are such that
the non-integrable phase factor is a root of unity for each edge. It will be found that
similar quantization is implied also by the associativity conditions and this justifies
the interpretation of phase factors defining the fusion algebra in terms of the Kähler
magnetic fluxes. This would pose strong constraints on the choice of edges but would
not fix completely the phase factors, and it seems that one must allow all possible
triangulations consistent with this condition and the associativity conditions so that
physical state is a quantum superposition over all possible symplectic triangulations
characterized by the fusion algebras.

(b) In the real context one would have an infinite hierarchy of symplectic triangulations and
fusion algebras satisfying the associativity conditions with the number of edges equal
to the total number N of fermions and anti-fermions. Encouragingly, this hierarchy
corresponds also to a hierarchy of N = N SUSY algebras [K24] (large values of N are
not a catastrophe in TGD framework since the physical content of SUSY symmetry is
not the same as that in the standard approach). In the intersection of real and p-adic
worlds the value of N would be bounded by the total number of algebraic points. Hence
the notion of finite measurement resolution, cutoff in N and bound on the total fermion
number would make physics very simple in the intersection of real and p-adic worlds.

Two kinds of symplectic triangulations are possible since one can use the symplectic forms
associated with CP2 and rM = constant sphere S2 of light-cone boundary. For a given
collection of nodes the choices of edges could be different for these two kinds of triangulations.
Physical state would be proportional to the product of the phase factors assigned to these
triangulations.

17.5.3 Associativity Conditions And Braiding

The generalized fusion rules follow from the associativity condition for n-point functions
modulo phase factor if one requires that the factor assignable to n-point function has inter-
pretation as n-point function. Without this condition associativity would be trivially satisfied
by using a product of various bracketing structures for the n fields appearing in the n-point
function. In conformal field theories the phase factor defining the associator is expressible
in terms of the phase factor associated with permutations represented as braidings and the
same is expected to be true also now.

(a) Already in the case of 4-point function there are three different choices corresponding
to the 4 possibilities to connect the fixed points sk and the varying point sr by lines.
The options are (1-2, 3-4), (1-3, 2-4), and (1-4, 2-3) and graphically they correspond
to s-, t-, and u-channels in string diagrams satisfying also this kind of fusion rules.
The basic condition would be that same amplitude results irrespective of the choice
made. The duality conditions guarantee associativity in the formation of the n-point
amplitudes without any further assumptions. The reason is that the writing explicitly
the expression for a particular bracketing of n-point function always leads to some
bracketing of one particular 4-point function and if duality conditions hold true, the
associativity holds true in general. To be precise, in quantum theory associativity must
hold true only in projective sense, that is only modulo a phase factor.

(b) This framework encourages category theoretic approach. Besides different bracketing
there are different permutations of the vertices of the triangle. These permutations can
induce a phase factor to the amplitude so that braid group representations are enough.
If one has representation for the basic braiding operation as a quantum phase q =
exp(i2π/N), the phase factors relating different bracketings reduce to a product of these
phase factors since (AB)C is obtained from A(BC) by a cyclic permutation involving to
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permutations represented as a braiding. Yang-Baxter equations express the reduction
of associator to braidings. In the general category theoretical setting associators and
braidings correspond to natural isomorphisms leaving category theoretical structure
invariant.

(c) By combining the duality rules with the condition that 4-point amplitude vanishes, when
any two points co-incide, one obtains from sk = sl and sm = sn the condition stating
that the sum (or integral in possibly existing continuum version) of U2(Aklm)|f |2(xkmr)
over the third point sr vanishes. This requires that the phase factor U is non-trivial
so that Q must be non-vanishing if one accepts the identification of the phase factor as
Bohm-Aharonov phase.

(d) Braiding operation gives naturally rise to a quantum phase. A good guess is that
braiding operation maps triangle to its complement since only in this manner orientation
is preserved so that area is Aklm is mapped to Aklm − 4π. If the f is proportional to
the exponent exp(−AklmQ), braiding operation induces a complex phase factor q =
exp(−i4πQ).

(e) For half-integer values of Q the algebra is commutative. For Q = M/N , where M
and N have no common factors, only braided commutativity holds true for N ≥ 3 just
as for quantum groups characterizing also Jones inclusions of HFFs. For N = 4 anti-
commutativity and associativity hold true. Charge fractionization would correspond
to non-trivial braiding and presumably to non-standard values of Planck constant and
coverings of M4 or CP2 depending on whether S2 corresponds to a sphere of light-cone
boundary or homologically trivial geodesic sphere of CP2.

17.5.4 Finite-Dimensional Version Of The Fusion Algebra

Algebraic discretization due to a finite measurement resolution is an essential part of quantum
TGD. In this kind of situation the symplectic fields would be defined in a discrete set of
N points of S2: natural candidates are subsets of points of p-adic variants of S2. Rational
variant of S2 has as its points points for which trigonometric functions of θ and φ have rational
values and there exists an entire hierarchy of algebraic extensions. The interpretation for the
resulting breaking of the rotational symmetry would be a geometric correlate for the choice
of quantization axes in quantum measurement and the book like structure of the imbedding
space would be direct correlate for this symmetry breaking. This approach gives strong
support for the category theory inspired philosophy in which the symplectic triangles are
dictated by fusion rules.

General observations about the finite-dimensional fusion algebra

(a) In this kind of situation one has an algebraic structure with a finite number of field values
with integration over intermediate points in fusion rules replaced with a sum. The most
natural option is that the sum is over all points involved. Associativity conditions reduce
in this case to conditions for a finite set of structure constants vanishing when two indices
are identical. The number M(N) of non-vanishing structure constants is obtained from
the recursion formula M(N) = (N − 1)M(N − 1) + (N − 2)M(N − 2) + ...+ 3M(3) =
NM(N − 1), M(3) = 1 given M(4) = 4, M(5) = 20, M(6) = 120, ... With a proper
choice of the set of points associativity might be achieved. The structure constants are
necessarily complex so that also the complex conjugate of the algebra makes sense.

(b) These algebras resemble nilpotent algebras (xn = 0 for some n) and Grassmann algebras
(x2 = 0 always) in the sense that also the products of the generating elements satisfy
x2 = 0 as one can find by using duality conditions on the square of a product x = yz
of two generating elements. Also the products of more than N generating elements
necessary vanish by braided commutativity so that nilpotency holds true. The inter-
pretation in terms of measurement resolution is that partonic states and vertices can
involve at most N fermions in this measurement resolution. Elements anti-commute
for q = −1 and commute for q = 1 and the possibility to express the product of two
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generating elements as a sum of generating elements distinguishes these algebras from
Grassman algebras. For q = −1 these algebras resemble Lie-algebras with the difference
that associativity holds true in this particular case.

(c) I have not been able to find whether this kind of hierarchy of algebras corresponds
to some well-known algebraic structure with commutativity and associativity possibly
replaced with their braided counterparts. Certainly these algebras would be category
theoretical generalization of ordinary algebras for which commutativity and associativity
hold true in strict sense.

(d) One could forget the representation of structure constants in terms of triangles and
think these algebras as abstract algebras. The defining equations are x2

i = 0 for gen-
erators plus braided commutativity and associativity. Probably there exists solutions
to these conditions. One can also hope that one can construct braided algebras from
commutative and associative algebras allowing matrix representations. Note that the
solution the conditions allow scalings of form Cklm → λkλlλmCklm as symmetries.

Formulation and explicit solution of duality conditions in terms of inner product

Duality conditions can be formulated in terms of an inner product in the function space
associated with N points and this allows to find explicit solutions to the conditions.

(a) The idea is to interpret the structure constants Cklm as wave functions Ckl in a discrete
space consisting of N points with the standard inner product

〈Ckl, Cmn〉 =
∑
r CklrCmnr . (17.5.1)

(b) The associativity conditions for a trivial braiding can be written in terms of the inner
product as

〈Ckl, Cmn〉 = 〈Ckm, Cln〉 = 〈Ckn, Cml〉 . (17.5.2)

(c) Irrespective of whether the braiding is trivial or not, one obtains for k = m the orthog-
onality conditions

〈Ckl, Ckn〉 = 0 . (17.5.3)

For each k one has basis of N − 1 wave functions labeled by l 6= k, and the conditions
state that the elements of basis and conjugate basis are orthogonal so that conjugate
basis is the dual of the basis. The condition that complex conjugation maps basis to a
dual basis is very special and is expected to determine the structure constants highly
uniquely.

(d) One can also find explicit solutions to the conditions. The most obvious trial is based
on orthogonality of function basis of circle providing representation for ZN−2 and is
following:

Cklm = Eklm × exp(iφk + φl + φm) , φm = n(m)2π
N−2 . (17.5.4)

Here Eklm is non-vanishing only if the indices have different values. The ansatz reduces
the conditions to the form

∑
r EklrEmnrexp(i2φr) =

∑
r EkmrElnrexp(i2φr) =

∑
r EknrEmlrexp(i2φr) .(17.5.5)

In the case of braiding one can allow overall phase factors. Orthogonality conditions
reduce to
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∑
r EklrEknrexp(i2φr) = 0 . (17.5.6)

If the integers n(m), m 6= k, l span the range (0, N − 3) ortogonality conditions are
satisfied if one has Eklr = 1 when the indices are different. This guarantees also duality
conditions since the inner products involving k, l,m, n reduce to the same expression

∑
r 6=k,l,m,n exp(i2φr) . (17.5.7)

(e) For a more general choice of phases the coefficients Eklm must have values differing from
unity and it is not clear whether the duality conditions can be satisfied in this case.

Do fusion algebras form little disk operad?

The improvement of measurement resolution means that one adds further points to an exist-
ing set of points defining a discrete fusion algebra so that a small disk surrounding a point is
replaced with a little disk containing several points. Hence the hierarchy of fusion algebras
might be regarded as a realization of a little disk operad [A11] and there would be a hierarchy
of homomorphisms of fusion algebras induced by the fusion. The inclusion homomorphism
should map the algebra elements of the added points to the algebra element at the center of
the little disk.

A more precise prescription goes as follows.

(a) The replacement of a point with a collection of points in the little disk around it replaces
the original algebra element φk0

by a number of new algebra elements φK besides already
existing elements φk and brings in new structure constants CKLM , CKLk for k 6= k0,
and CKlm.

(b) The notion of improved measurement resolution allows to conclude

CKLk = 0 , k 6= k0 , CKlm = Ck0lm . (17.5.8)

(c) In the homomorphism of new algebra to the original one the new algebra elements and
their products should be mapped as follows:

φK → φk0 ,
φKφL → φ2

k0
= 0 , φKφl → φk0φl .

(17.5.9)

Expressing the products in terms of structure constants gives the conditions

∑
M CKLM = 0 ,

∑
r CKlr =

∑
r Ck0lr = 0 . (17.5.10)

The general ansatz for the structure constants based on roots of unity guarantees that
the conditions hold true.

(d) Note that the resulting algebra is more general than that given by the basic ansatz since
the improvement of the measurement resolution at a given point can correspond to dif-
ferent value of N as that for the original algebra given by the basic ansatz. Therefore
the original ansatz gives only the basic building bricks of more general fusion algebras.
By repeated local improvements of the measurement resolution one obtains an infinite
hierarchy of algebras labeled by trees in which each improvement of measurement res-
olution means the splitting of the branch with arbitrary number N of branches. The
number of improvements of the measurement resolution defining the height of the tree is
one invariant of these algebras. The fusion algebra operad has a fractal structure since
each point can be replaced by any fusion algebra.
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How to construct geometric representation of the discrete fusion algebra?

Assuming that solutions to the fusion conditions are found, one could try to find whether
they allow geometric representations. Here the category theoretical philosophy shows its
power.

(a) Geometric representations for Cklm would result as functions f(Aklm) of the symplectic
area for the symplectic triangles assignable to a set of N points of S2.

(b) If the symplectic triangles can be chosen freely apart from the area constraint as the
category theoretic philosophy implies, it should be relatively easy to check whether the
fusion conditions can be satisfied. The phases of Cklm dictate the areas Aklm rather
uniquely if one uses Bohm-Aharonov ansatz for a fixed the value of Q. The selection of
the points sk would be rather free for phases near unity since the area of the symplectic
triangle associated with a given triplet of points can be made arbitrarily small. Only
for the phases far from unity the points sk cannot be too close to each other unless Q
is very large. The freedom to chose the points rather freely conforms with the general
view about the finite measurement resolution as the origin of discretization.

(c) The remaining conditions are on the moduli |f(Aklm)|. In the discrete situation it is
rather easy to satisfy the conditions just by fixing the values of f for the particular
triangles involved: |f(Aklm)| = |Cklm|. For the exact solution to the fusion conditions
|f(Aklm)| = 1 holds true.

(d) Constraints on the functional form of |f(Aklm)| for a fixed value of Q can be deduced
from the correlation between the modulus and phase of Cklm without any reference
to geometric representations. For the exact solution of fusion conditions there is no
correlation.

(e) If the phase of Cklm has Aklm as its argument, the decomposition of the phase factor to a
sum of phase factors means that the Aklm is sum of contributions labeled by the vertices.
Also the symplectic area defined as a magnetic flux over the triangle is expressible as
sum of the quantities

∫
Aµdx

µ associated with the edges of the triangle. These fluxes
should correspond to the fluxes assigned to the vertices deduced from the phase factors
of Ψ(sk). The fact that vertices are ordered suggest that the phase of Ψ(sj) fixes the
value of

∫
Aµdx

µ for an edge of the triangle starting from sk and ending to the next
vertex in the ordering. One must find edges giving a closed triangle and this should be
possible. The option for which edges correspond to geodesics or to solutions of equations
of motion for a charged particle in magnetic field is not flexible enough to achieve this
purpose.

(f) The quantization of the phase angles as multiples of 2π/(N − 2) in the case of N -
dimensional fusion algebra has a beautiful geometric correlate as a quantization of
symplecto-magnetic fluxes identifiable as symplectic areas of triangles defining solid
angles as multiples of 2π/(N − 2). The generalization of the fusion algebra to p-adic
case exists if one allows algebraic extensions containing the phase factors involved. This
requires the allowance of phase factors exp(i2π/p), p a prime dividing N − 2. Only the
exponents exp(i

∫
Aµdx

µ) = exp(in2π/(N − 2)) exist p-adically. The p-adic counter-
part of the curve defining the edge of triangle exists if the curve can be defined purely
algebraically (say as a solution of polynomial equations with rational coefficients) so
that p-adic variant of the curve satisfies same equations.

Does a generalization to the continuous case exist?

The idea that a continuous fusion algebra could result as a limit of its discrete version does
not seem plausible. The reason is that the spatial variation of the phase of the structure
constants increases as the spatial resolution increases so that the phases exp(iφ(s) cannot be
continuous at continuum limit. Also the condition Eklm = 1 for k 6= l 6= m satisfied by the
explicit solutions to fusion rules fails to have direct generalization to continuum case.
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To see whether the continuous variant of fusion algebra can exist, one can consider an approx-
imate generalization of the explicit construction for the discrete version of the fusion algebra
by the effective replacement of points sk with small disks which are not allowed to intersect.
This would mean that the counterpart E(sk, sl, sm) vanishes whenever the distance between
two arguments is below a cutoff a small radius d. Puncturing corresponds physically to the
cutoff implied by the finite measurement resolution.

(a) The ansatz for Cklm is obtained by a direct generalization of the finite-dimensional
ansatz:

Cklm = κsk,sl,smΨ(sk)Ψ(sl)Ψ(sm) . (17.5.11)

where κsk,sl,sm vanishes whenever the distance of any two arguments is below the cutoff
distance and is otherwise equal to 1.

(b) Orthogonality conditions read as

Ψ(sk)Ψ(sl)

∫
κsk,sl,srκsk,sn,srΨ

2(sm)dµ(sr) = Ψ(sk)Ψ(sl)

∫
S2(sk,sl,sn)

Ψ2(sr)dµ(sr) = 0 .(17.5.12)

The resulting condition reads as

∫
S2(sk,sl,sn)

Ψ2(sr)dµ(sr) = 0 (17.5.13)

This condition holds true for any pair sk, sl and this might lead to difficulties.

(c) The general duality conditions are formally satisfied since the expression for all fusion
products reduces to

Ψ(sk)Ψ(sl)Ψ(sm)Ψ(sn)X ,

X =

∫
S2

κsk,sl,sm,snΨ(sr)dµ(sr)

=

∫
S2(sk,sl,sm,sn)

Ψ(sm)dµ(sr)

= −
∫
D2(si)

Ψ2(sr)dµ(sr) , i = k, l, s,m . (17.5.14)

These conditions state that the integral of Ψ2 any disk of fixed radius d is same: this
result follows also from the orthogonality condition. This condition might be difficult
to satisfy exactly and the notion of finite measurement resolution might be needed.
For instance, it might be necessary to restrict the consideration to a discrete lattice of
points which would lead back to a discretized version of algebra. Thus it seems that the
continuum generalization of the proposed solution to fusion rules does not work.

17.6 Could Operads Allow The Formulation Of The Gen-
eralized Feynman Rules?

The previous discussion of symplectic fusion rules leaves open many questions.

(a) How to combine symplectic and conformal fields to what might be called symplecto-
conformal fields?
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(b) The previous discussion applies only in super-symplectic degrees of freedom and the
question is how to generalize the discussion to super Kac-Moody degrees of freedom.
One must of course also try to identify more precisely what Kac-Moody degrees of
freedom are!

(c) How four-momentum and its conservation in the limits of measurement resolution enters
this picture? Could the phase factors assocaited with the symplectic triangulation carry
information about four-momentum?

(d) At least two operads related to measurement resolution seem to be present: the operads
formed by the symplecto-conformal fields and by generalized Feynman diagrams. For
generalized Feynman diagrams causal diamond (CD) is the basic object whereas disks of
S2 are the basic objects in the case of symplecto-conformal QFT with a finite measure-
ment resolution. Could these two different views about finite measurement resolution
be more or less equivalent and could one understand this equivalence at the level of
details.

(e) Is it possible to formulate generalized Feynman diagrammatics and improved measure-
ment resolution algebraically?

17.6.1 How To Combine Conformal Fields With Symplectic Fields?

The conformal fields of conformal field theory should be somehow combined with symplectic
scalar field to form what might be called symplecto-conformal fields.

(a) The simplest thing to do is to multiply ordinary conformal fields by a symplectic scalar
field so that the fields would be restricted to a discrete set of points for a given realization
of N-dimensional fusion algebra. The products of these symplecto-conformal fields at
different points would define a finite-dimensional algebra and the products of these fields
at same point could be assumed to vanish.

(b) There is a continuum of geometric realizations of the symplectic fusion algebra since
the edges of symplectic triangles can be selected rather freely. The integrations over
the coordinates zk (most naturally the complex coordinate of S2 transforming linearly
under rotations around quantization axes of angular momentum) restricted to the circle
appearing in the definition of simplest stringy amplitudes would thus correspond to
the integration over various geometric realizations of a given N -dimensional symplectic
algebra.

Fusion algebra realizes the notion of finite measurement resolution. One implication is that
all n-point functions vanish for n > N . Second implication could be that the points appearing
in the geometric realizations of N -dimensional symplectic fusion algebra have some minimal
distance. This would imply a cutoff to the multiple integrals over complex coordinates zk
varying along circle giving the analogs of stringy amplitudes. This cutoff is not absolutely
necessary since the integrals defining stringy amplitudes are well-defined despite the singular
behavior of n-point functions. One can also ask whether it is wise to introduce a cutoff
that is not necessary and whether fusion algebra provides only a justification for the 1 + iε
prescription to avoid poles used to obtain finite integrals.

The fixed values for the quantities
∫
Aµdx

µ along the edges of the symplectic triangles
could indeed pose a lower limit on the distance between the vertices of symplectic trian-
gles. Whether this occurs depends on what one precisely means with symplectic triangle.

(a) The conformally invariant condition that the angles between the edges at vertices are
smaller than π for triangle and larger than π for its conjugate is not enough to exclude
loopy edges and one would obtain ordinary stringy amplitudes multiplied by the sym-
plectic phase factors. The outcome would be an integral over arguments z1, z2, ..zn for
standard stringy n-point amplitude multiplied by a symplectic phase factor which is
piecewise constant in the integration domain.
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(b) The condition that the points at different edges of the symplectic triangle can be con-
nected by a geodesic segment belonging to the interior of the triangle is much stronger
and would induce a length scale cutoff since loops cannot be used to create large enough
value of

∫
Aµdx

µ for a given side of triangle. Symplectic invariance would be obtained
for small enough symplectic transformations. How to realize this cutoff at the level of
calculations is not clear. One could argue that this problem need not have any nice solu-
tion and since finite measurement resolution requires only finite calculational resolution,
the approximation allowing loopy edges is acceptable.

(c) The restriction of the edges of the symplectic triangle within a tubular neighborhood of
a geodesic -more more generally an orbit of charged particle - with thickness determined
by the length scale resolution in S2 would also introduce the length scale cutoff with
symplectic invariance within measurement resolution.

Symplecto-conformal should form an operad. This means that the improvement of mea-
surement resolution should correspond also to an algebra homomorphism in which super-
symplectic symplecto-conformal fields in the original resolution are mapped by algebra ho-
momorphism into fields which contain sum over products of conformal fields at different
points: for the symplectic parts of field the products reduces always to a sum over the values
of field. For instance, if the field at point s is mapped to an average of fields at points sk,
nilpotency condition x2 = 0 is satisfied.

17.6.2 Symplecto-Conformal Fields In Super-Kac-Moody Sector

The picture described above applies only in super-symplectic degrees of freedom. The vertices
of generalized Feynman diagrams are absent from the description and CP2 Kähler form
induced to space-time surface which is absolutely essential part of quantum TGD is nowhere
visible in the treatment.

How should one bring in Super Kac-Moody (SKM) algebra? The condition that the basic
building bricks are same for the treatment of these degrees of freedom is a valuable guideline.

What does SKM algebra mean?

The first thing to consider is what SKM could mean. The recent view is that symplectic
algebra corresponds to symplectic transformations for the boundary of causal diamond CD
which looks locally like δM4

± × CP2. For this super-algebra fermionic generators would
be contractions of covariantly constant right-handed neutrino with the second quantized
induced spinor field to which the contractionjkAΓk of symplectic vector field with gamma
matrices acts. For SKM algebra corresponding generators would be similar contractions of
other spinor modes but involving only Killing vectors fields that is symplectic isometries.

The recent view about quantum criticality strongly suggests that the conformal symmetries
act as almost gauge symmetries producing from a given preferred extremal new ones with
same action and conserved charges. “Almost” means that sub-algebra of conformal algebra
annihilates the physical states. The subalgebras in question form a fractal hierarchy and
are isomorphic with the conformal algebra itself. They contain generators for which the
conformal weight is multiple of integer n characterizing also the value of Planck constant
given by heff = n× h. n defines the number of conformal equivalence classes of space-time
surfaces connecting fixed 3-surfaces at the boundaries of CD (see Fig. http://tgdtheory.

fi/appfigures/planckhierarchy.jpg or Fig. ?? in the appendix of this book).

Since Kähler action reduces for the general ansatz for the preferred extremals to 3-D Chern-
Simons terms, the action of the conformal symmetries reduces also to the 3-D space-like
surfaces where it is trivial by definition and to non-trivial action to the light-like 3-surfaces
at which the signature of the induced metric changes: I have used to call this surface partonic
orbits.

It must be however observed that one can consider also the possibility that SKM algebra
corresponds to the isometries of δM4± × CP2 continued to the space-time surface by field

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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equations. These isometries are conformal transformations of S2 (δM4
± = S2 × R+) with

conformal scaling compensated by the local scaling of the light-like radial coordinate rM to
guarantee that the metric reducing to that for S2 apart from conformal scaling factor R2

M

remains invariant. If this is the case the SKM contains also other than symplectic isometries.

Attempt to formulate symplectic triangulation for SKM algebra

The analog of symplectic triangulation for SKM algebra obviously requires that SKM algebra
corresponds to symplectic isometries rather than including all δM4

± = S2 ×R+ isometries in
one-one correspondence with conformal transformations of S2.

(a) In the transition from super-symplectic to SKM degrees of freedom the light-cone bound-
ary is naturally replaced with the light-like 3-surface X3 representing the light-like ran-
dom orbit of parton and serving as the basic dynamical object of quantum TGD. The
sphere S2 of light-cone boundary is in turn replaced with a partonic 2-surface X2. This
suggests how to proceed.

(b) In the case of SKM algebra the symplectic fusion algebra is represented geometrically
as points of partonic 2-surface X2 by replacing the symplectic form of S2 with the
induced CP2 symplectic form at the partonic 2-surface and defining U(1) gauge field.
This gives similar hierarchy of symplecto-conformal fields as in the super-symplectic
case. This also realizes the crucial aspects of the classical dynamics defined by Kähler
action. In particular, for vacuum 2-surfaces symplectic fusion algebra trivializes since
Kähler magnetic fluxes vanish identically and 2-surfaces near vacua require a large value
of N for the dimension of the fusion algebra since the available Kähler magnetic fluxes
are small.

(c) In super-symplectic case the projection along light-like ray allows to map the points at
the light-cone boundaries of CD to points of same sphere S2. In the case of light-like
3-surfaces light-like geodesics representing braid strands allow to map the points of the
partonic two-surfaces at the future and past light-cone boundaries to the partonic 2-
surface representing the vertex. The earlier proposal was that the ends of strands meet
at the partonic 2-surface so that braids would replicate at vertices. The properties of
symplectic fields would however force identical vanishing of the vertices if this were the
case. There is actually no reason to assume this condition and with this assumption
vertices involving total number N of incoming and outgoing strands correspond to
symplecto-conformal N -point function as is indeed natural. Also now Kähler magnetic
flux induces cutoff distance.

(d) SKM braids reside at light-like 3-surfaces representing lines of generalized Feynman
diagrams. If super-symplectic braids are needed at all, they must be assigned to the
two light-like boundaries of CD meeting each other at the sphere S2 at which future
and past directed light-cones meet.

17.6.3 The Treatment Of Four-Momentum

Four-momentum enjoys a special role in super-symplectic and SKM representations in that
it does not correspond to a quantum number assignable to the generators of these algebras.
It would be nice if the somewhat mysterious phase factors associated with the representation
of the symplectic algebra could code for the four-momentum - or rather the analogs of plane
waves representing eigenstates of four-momentum at the points associated with the geometric
representation of the symplectic fusion algebra.

Also the vision about TGD as almost topological QFT suggests that the symplectic degrees
of freedom added to the conformal degrees of freedom defining alone a mere topological QFt
somehow code for the physical degrees of freedom should and also four-momentum. If so,
the symplectic triangulation might somehow code for four-momentum.
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The representation of longitudinal momentum in terms of phase factors

The following argument suggests that S2 and X2 triangulations cannot naturally represent
four-momentum and that one needs extension into 3-D light-like triangulation to achieve this.

(a) The basic question is whether four-momentum could be coded in terms of non-integrable
phase factors appearing in the representations of the symplectic fusion algebras.

(b) In the symplectic case S2 triangulation suggests itself as a representation of angular
momentum only: it would be kind of spin network. In the SKM case X2 would suggest
representation of color hyper charge and isospin in terms of phases since CP2 symmetries
act non-trivially in Chern-Simons action. Does this mean that symplectic and SKM
triangulations must be extended so that they are 3-D and defined for space-like 3-surface
and the light-like orbit of partonic 2-surface. This would give additional phase factors
assignable to presumably light-like edges. Ligh-like momentum would be natural and
the recent twistorial formulation of quantum TGD indeed assigns massless momenta to
fermion lines.

Suppose that one has 3-D light-like triangulation eith at δCD or at light-like orbits of partonic
2-surface. Consider first coding of four-momentum assuming only Kähler gauge potential of
CP2 possibly having M4 part which is pure gauge.

(a) Four different phase factors are needed if all components of four-momentum are to be
coded. Both number theoretical vision about quantum TGD and the realization of the
hierarchy of Planck constants assign to each point of space-time surface the same plane
M2 ⊂ M4 having as the plane of non-physical polarizations. This condition allows to
assign to a given light-like partonic 3-surface unique extremal of Kähler action defining
the Kähler function as the value of Kähler action.

Also p-adic mass calculations support the view that the physical states correspond
to eigen states for the components of longitudinal momentum only (also the parton
model for hadrons assumes this). This encourages to think that only M2 part of four-
momentum is coded by the phase factors. Transversal momentum squared would be
a well defined quantum number and determined from mass shell conditions for the
representations of super-symplectic (or equivalently SKM) conformal algebra much like
in string model.

(b) The phase factors associated with the 3-D symplectic fusion algebra in S2×R+ mean a
deviation from conformal n-point functions, and the innocent question is whether these
phase factors could be identified as plane-wave phase factors in S2 could be associated
with the transversal part of the four-momentum so that the n-point functions would
be strictly analogous with stringy amplitudes. Alternative, and perhaps more natural,
interpretation is in terms of spin and angular momentum.

(c) Suppose one allows a gauge transformation of Kähler gauge potential inducing a pure
gauge M4 component to the Kähler gauge potential expressible as scalar function of M4

coordianates. This kind of term might allow to achieve the vanishing of jαAα term of at
least its integral over space-time surface in Kähler action implying reduction of Kähler
action to Chern-Simons terms if weak form of electric magnetic duality holds true. The
scalar function can be interpreted as integral of a position dependent momentum along
curve defined by S2 × R+ triangulation and gives hopes of coding four-momentum in
terms of Kähler gauge potential.

In fact, the identification of the phase factors exp(i
∫
Aµdx

µ/~) along a path as phase
factors exp(ipL,k∆mk) defined by the ends of the path and associated with the lon-
gitudinal part of four-momentum would correspond to an integral form of covariant
constancy condition dxµ

ds (∂µ − iAµ)Ψ = 0 along the edge of the symplectic triangle of
more general path.

(d) For the SKM triangulation associated with the light-like orbit X3
l of partonic 2-surface

analogous phase factor would come from the integral along the (most naturally) light-
like curve defining braid strand associated with the point in question. A geometric
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representation for the two projections of the four-momentum would thus result in SKM
degrees of freedom and apart from the non-uniqueness related to the multiples of a 2π
the components of M2 momentum could be deduced from the phase factors. If one is
satisfied with the projection of momentum in M2, this is enough.

(e) Neither of these phase factors is able to code all components of four-momentum. One
might however hope that together they could give enough information to deduce the
four-momentum if it is assumed to correspond to the rest system.

(f) The phase factors assignable to the symplectic triangles in S2 and X2have nothing to
do with momentum. Because the space-like phase factor exp(iSz∆φ/~) associated with
the edge of the symplectic triangle is completely analogous to that for momentum, one
can argue that the symplectic triangulation could define a kind of spin network utilized
in discretized approaches to quantum gravity. The interpretation raises the question
about the interpretation of the quantum numbers assignable to the Lorentz invariant
phase factors defined by the CP2 Kähler gauge potential.

The quantum numbers associated with phase factors for CP2 parts of Kähler
gauge potentials

Suppose that it is possible to assign two independent and different phase factors to the same
geometric representation, in other words have two independent symplectic fields with the
same geometric representation. The product of two symplectic fields indeed makes sense and
satisfies the defining conditions. One can define prime symplectic algebras and decompose
symplectic algebras to prime factors. Since one can allow permutations of elements in the
products it becomes possible to detect the presence of product structure experimentally
by detecting different combinations for products of phases caused by permutations realized
as different combinations of quantum numbers assigned with the factors. The geometric
representation for the product of n symplectic fields would correspond to the assignment of
n edges to any pair of points. The question concerns the interpretation of the phase factors
assignable to the CP2 parts of Kähler gauge potentials of S2 and CP” Kähler form.

(a) The natural interpretation for the two additional phase factors would be in terms of
color quantum numbers. Color hyper charge and isospin are mathematically completely
analogous to the components of four-momentum so that a possible identification of
the phase factors is as a representation of these quantum numbers. The representa-
tion of plane waves as phase factors exp(ipk∆mk/~) generalizes to the representation
exp(iQA∆ΦA/~), where ΦA are the angle variables conjugate to the Hamiltonians repre-
senting color hyper charge and isospin. This representation depends on end points only
so that the crucial symplectic invariance with respect to the symplectic transformations
respecting the end points of the edge is not lost (U(1) gauge transformation is induced
by the scalar jkAk, where jk is the symplectic vector field in question).

(b) One must be cautious with the interpretation of the phase factors as a representation for
color hyper charge and isospin since a breaking of color gauge symmetry would result
since the phase factors associated with different values of color isospin and hypercharge
would be different and could not correspond to same edge of symplectic triangle. This
is questionable since color group itself represents symplectic transformations. The con-
struction of CP2 as a coset space SU(3)/U(2) identifies U(2) as the holonomy group of
spinor connection having interpretation as electro-weak group. Therefore also the inter-
pretation of the phase factors in terms of em charge and weak charge can be considered.
In TGD framework electro-weak gauge potential indeed suffer a non-trivial gauge trans-
formation under color rotations so that the correlation between electro-weak quantum
numbers and non-integrable phase factors in Cartan algebra of the color group could
make sense. Electro-weak symmetry breaking would have a geometric correlate in the
sense that different values of weak isospin cannot correspond to paths with same values
of phase angles ∆ΦA between end points.
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(c) If the phase factors associated with the M4 and CP2 are assumed to be identical, the
existence of geometric representation is guaranteed. This however gives constraints
between rest mass, spin, and color (or electro-weak) quantum numbers.

Some general comments

Some further comments about phase factors are in order.

(a) By number theoretical universality the plane wave factors associated with four-momentum
must have values coming as roots of unity (just as for a particle in box consisting of
discrete lattice of points). At light-like boundary the quantization conditions reduce to
the condition that the value of light-like coordinate is rational of form m/N , if N : th
roots of unity are allowed.

(b) In accordance with the finite measurement resolution of four-momentum, four-momentum
conservation is replaced by a weaker condition stating that the products of phase fac-
tors representing incoming and outgoing four-momenta are identical. This means that
positive and negative energy states at opposite boundaries of CD would correspond to
complex conjugate representations of the fusion algebra. In particular, the product of
phase factors in the decomposition of the conformal field to a product of conformal
fields should correspond to the original field value. This would give constraints on the
trees physically possible in the operad formed by the fusion algebras. Quite generally,
the phases expressible as products of phases exp(inπ/p), where p ≤ N is prime must
be allowed in a given resolution and this suggests that the hierarchy of p-adic primes is
involved. At the limit of very large N exact momentum conservation should emerge.

(c) Super-conformal invariance gives rise to mass shell conditions relating longitudinal and
transversal momentum squared. The massivation of massless particles by Higgs mech-
anism and p-adic thermodynamics pose additional constraints to these phase factors.

17.6.4 What Does The Improvement Of Measurement Resolution
Really Mean?

To proceed one must give a more precise meaning for the notion of measurement resolution.
Two different views about the improvement of measurement resolution emerge. The first one
relies on the replacement of braid strands with braids applies in SKM degrees of freedom and
the homomorphism maps symplectic fields into their products. The homomorphism based on
the averaging of symplectic fields over added points consistent with the extension of fusion
algebra described in previous section is very natural in super-symplectic degrees of freedom.
The directions of these two algebra homomorphisms are different. The question is whether
both can be involved with both super-symplectic and SKM case. Since the end points of
SKM braid strands correspond to both super-symplectic and SKM degrees of freedom, it
seems that division of labor is the only reasonable option.

(a) Quantum classical correspondence requires that measurement resolution has a purely
geometric meaning. A purely geometric manner to interpret the increase of the mea-
surement resolution is as a replacement of a braid strand with a braid in the improved
resolution. If one assigns the phase factor assigned with the fusion algebra element with
four-momentum, the conservation of the phase factor in the associated homomorphism
is a natural constraint. The mapping of a fusion algebra element (strand) to a prod-
uct of fusion algebra elements (braid) allows to realize this condition. Similar mapping
of field value to a product of field values should hold true for conformal parts of the
fields. There exists a large number equivalent geometric representations for a given sym-
plectic field value so that one obtains automatically an averaging in conformal degrees
of freedom. This interpretation for the improvement of measurement resolution looks
especially natural for SKM degrees of freedom for which braids emerge naturally.
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(b) One can also consider the replacement of symplecto-conformal field with an average over
the points becoming visible in the improved resolution. In super-symplectic degrees of
freedom this looks especially natural since the assignment of a braid with light-cone
boundary is not so natural as with light-like 3-surface. This map does not conserve
the phase factor but this could be interpreted as reflecting the fact that the values
of the light-like radial coordinate are different for points involved. The proposed ex-
tension of the symplectic algebra proposed in the previous section conforms with this
interpretation.

(c) In the super-symplectic case the improvement of measurement resolution means im-
provement of angular resolution at sphere S2. In SKM sector it means improved resolu-
tion for the position at partonic 2-surface. This generalizes also to the 3-D symplectic
triangulations. For SKM algebra the increase of the measurement resolution related to
the braiding takes place inside light-like 3-surface. This operation corresponds naturally
to an addition of sub-CD inside which braid strands are replaced with braids. This is like
looking with a microscope a particular part of line of generalized Feynman graph inside
CD and corresponds to a genuine physical process inside parton. In super-symplectic
case the replacement of a braid strand with braid (at light-cone boundary) is induced
by the replacement of the projection of a point of a partonic 2-surface to S2 with a a
collection of points coming from several partonic 2-surfaces. This replaces the point s
of S2 associated with CD with a set of points sk of S2 associated with sub-CD. Note
that the solid angle spanned by these points can be rather larger so that zoom-up is in
question.

(d) The improved measurement resolution means that a point of S2 (X2) at boundary of
CD is replaced with a point set of S2 (X2) assignable to sub-CD. The task is to map
the point set to a small disk around the point. Light-like geodesics along light-like
X3 defines this map naturally in both cases. In super-symplectic case this map means
scaling down of the solid angle spanned by the points of S2 associated with sub-CD.

17.6.5 How Do The Operads Formed By Generalized Feynman Di-
agrams And Symplecto-Conformal Fields Relate?

The discussion above leads to following overall view about the situation. The basic oper-
ation for both symplectic and Feynman graph operads corresponds to an improvement of
measurement resolution. In the case of planar disk operad this means to a replacement of a
white region of a map with smaller white regions. In the case of Feynman graph operad this
means better space-time resolution leading to a replacement of generalized Feynman graph
with a new one containing new sub-CD bringing new vertices into daylight. For braid operad
the basic operation means looking a braid strand with a microscope so that it can resolve
into a braid: braid becomes a braid of braids. The latter two views are equivalent if sub-CD
contains the braid of braids.

The disks D2 of the planar disk operad has natural counterparts in both super-symplectic
and SKM sector.

(a) For the geometric representations of the symplectic algebra the image points vary in
continuous regions of S2 (X2) since the symplectic area of the symplectic triangle is a
highly flexible constraint. Posing the condition that any point at the edges of symplec-
tic triangle can be connected to any another edge excludes symplectic triangles with
loopy sides so that constraint becomes non-trivial. In fact, since two different elements
of the symplectic algebra cannot correspond to the same point for a given geometric
representation, each element must correspond to a connected region of S2 (X2). This
allows a huge number of representations related by the symplectic transformations S2

in super-symplectic case and by the symplectic transformations of CP2 in SKM case. In
the case of planar disk operad different representations are related by isotopies of plane.

This decomposition to disjoint regions naturally correspond to the decomposition of the
disk to disjoint regions in the case of planar disk operad and Feynman graph operad
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(allowing zero energy insertions). Perhaps one might say that N -dimensional elemen-
tary symplectic algebra defines an N -coloring of S2 (S2) which is however not the same
thing as the 2-coloring possible for the planar operad. TGD based view about Higgs
mechanism leads to a decomposition of partonic 2-surface X2 (its light-like orbit X3)
into conformal patches. Since also these decompositions correspond to effective dis-
cretizations of X2 (X3), these two decompositions would naturally correspond to each
other.

(b) In SKM sector disk D2 of the planar disk operad is replaced with the partonic 2-surface
X2 and since measurement resolution is a local notion, the topology of X2 does not
matter. The improvement of measurement resolution corresponds to the replacement
of braid strand with braid and homomorphism is to the direction of improved spatial
resolution.

(c) In super-symplectic case D2 is replaced with the sphere S2 of light-cone boundary.
The improvement of measurement resolution corresponds to introducing points near
the original point and the homomorphism maps field to its average. For the operad of
generalized Feynman diagrams CD defined by future and past directed light-cones is
the basic object. Given CD can be indeed mapped to sphere S2 in a natural manner.
The light-like boundaries of CDs are metrically spheres S2. The points of light-cone
boundaries can be projected to any sphere at light-cone boundary. Since the symplectic
area of the sphere corresponds to solid angle, the choice of the representative for S2 does
not matter. The sphere defined by the intersection of future and past light-cones of CD
however provides a natural identification of points associated with positive and negative
energy parts of the state as points of the same sphere. The points of S2 appearing in
n-point function are replaced by point sets in a small disks around the n points.

(d) In both super-symplectic and SKM sectors light-like geodesic along X3 mediate the
analog of the map gluing smaller disk to a hole of a disk in the case of planar disk
operad defining the decomposition of planar tangles. In super-symplectic sector the set
of points at the sphere corresponding to a sub-CD is mapped by SKM braid to the
larger CD and for a typical braid corresponds to a larger angular span at sub-CD. This
corresponds to the gluing of D2 along its boundaries to a hole in D2 in disk operad. A
scaling transformation allowed by the conformal invariance is in question. This scaling
can have a non-trivial effect if the conformal fields have anomalous scaling dimensions.

(e) Homomorphisms between the algebraic structures assignable to the basic structures of
the operad (say tangles in the case of planar tangle operad) are an essential part of the
power of the operad. These homomorphisms associated with super-symplectic and SKM
sector code for two views about improvement of measurement resolution and might lead
to a highly unique construction of M-matrix elements.

The operad picture gives good hopes of understanding how M-matrices corresponding to a
hierarchy of measurement resolutions can be constructed using only discrete data.

(a) In this process the n-point function defining M-matrix element is replaced with a super-
position of n-point functions for which the number of points is larger: n→

∑
k=1,...,m nk.

The numbers nk vary in the superposition. The points are also obtained by downwards
scaling from those of smaller S2. Similar scaling accompanies the composition of tangles
in the case of planar disk operad. Algebra homomorphism property gives constraints
on the compositeness and should govern to a high degree how the improved measure-
ment resolution affects the amplitude. In the lowest order approximation the M-matrix
element is just an n-point function for conformal fields of positive and negative energy
parts of the state at this sphere and one would obtain ordinary stringy amplitude in
this approximation.

(b) Zero energy ontology means also that each addition in principle brings in a new zero
energy insertion as the resolution is improved. Zero energy insertions describe actual
physical processes in shorter scales in principle affecting the outcome of the experiment
in longer time scales. Since zero energy states can interact with positive (negative)
energy particles, zero energy insertions are not completely analogous to vacuum bubbles
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and cannot be neglected. In an idealized experiment these zero energy states can be
assumed to be absent. The homomorphism property must hold true also in the presence
of the zero energy insertions. Note that the Feynman graph operad reduces to planar
disk operad in absence of zero energy insertions.

17.7 Possible Other Applications Of Category Theory

It is not difficult to imagine also other applications of category theory in TGD framework.

17.7.1 Categorification And Finite Measurement Resolution

I read a very stimulating article by John Baez with title “Categorification” (see http://

tinyurl.com/ych6a8oa) [A65] about the basic ideas behind a process called categorification.
The process starts from sets consisting of elements. In the following I describe the basic ideas
and propose how categorification could be applied to realize the notion of finite measurement
resolution in TGD framework.

What categorification is?

In categorification sets are replaced with categories and elements of sets are replaced with ob-
jects. Equations between elements are replaced with isomorphisms between objects: the right
and left hand sides of equations are not the same thing but only related by an isomorphism
so that they are not tautologies anymore. Functions between sets are replaced with functors
between categories taking objects to objects and morphisms to morphisms and respecting the
composition of morphisms. Equations between functions are replaced with natural isomor-
phisms between functors, which must satisfy certain coherence laws representable in terms
of commuting diagrams expressing conditions such as commutativity and associativity.

The isomorphism between objects represents equation between elements of set replaces iden-
tity. What about isomorphisms themselves? Should also these be defined only up to an
isomorphism of isomorphism? And what about functors? Should one continue this replace-
ment ad infinitum to obtain a hierarchy of what might be called n-categories, for which the
process stops after n: th level. This rather fuzzy buisiness is what mathematicians like John
Baez are actually doing.

Why categorification?

There are good motivations for the categofication. Consider the fact that natural numbers.
Mathematically oriented person would think number “3” in terms of an abstract set theoretic
axiomatization of natural numbers. One could also identify numbers as a series of digits.
In the real life the representations of three-ness are more concrete involving many kinds
of associations. For a child “3” could correspond to three fingers. For a mystic it could
correspond to holy trinity. For a Christian “faith, hope, love”. All these representations are
isomorphic representation of threeness but as real life objects three sheeps and three cows
are not identical.

We have however performed what might be called decategorification: that is forgitten that the
isomorphic objects are not equal. Decatecorification was of course a stroke of mathematical
genius with enormous practical implications: our information society represents all kinds of
things in terms of numbers and simulates successfully the real world using only bit sequences.
The dark side is that treating people as mere numbers can lead to a rather cold society.

Equally brilliant stroke of mathematical genius is the realization that isomorphic objects are
not equal. Decategorization means a loss of information. Categorification brings back this
information by bringing in consistency conditions known as coherence laws and finding these
laws is the hard part of categorization meaning discovery of new mathematics. For instance,

http://tinyurl.com/ych6a8oa
http://tinyurl.com/ych6a8oa
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for braid groups commutativity modulo isomorphisms defines a highly non-trivial coherence
law leading to an extremely powerful notion of quantum group having among other things
applications in topological quantum computation.

The so called associahedrons (see http://tinyurl.com/ng2fqro) [A36] emerging in n-category
theory could replace space-time and space as fundamental objects. Associahedrons are poly-
gons used to represent geometrically associativity or its weaker form modulo isomorphism for
the products of n objects bracketed in all possible manners. The polygon defines a hierarchy
containing sub-polygons as its edges containing.... Associativity states the isomorphy of these
polygons. Associahedrons and related geometric representations of category theoretical ar-
row complexes in terms or simplexes allow a beautiful geometric realization of the coherence
laws. One could perhaps say that categories as discrete structures are not enough: only by
introducing the continuum allowing geometric representations of the coherence laws things
become simple.

No-one would have proposed categorification unless it were demanded by practical needs
of mathematics. In many mathematical applications it is obvious that isomorphism does
not mean identity. For instance, in homotopy theory all paths deformable to each other in
continuous manner are homotopy equivalent but not identical. Isomorphism is now homo-
topy. These paths can be connected and form a groupoid. The outcome of the groupoid
operation is determined up to homotopy. The deformations of closed path starting from a
given point modulo homotopies form homotopy group and one can interpret the elements
of homotopy group as copies of the point which are isomorphic. The replacement of the
space with its universal covering makes this distinction explicit. One can form homotopies
of homotopies and continue this process ad infinitum and obtain in this manner homotopy
groups as characterizes of the topology of the space.

Cateforification as a manner to describe finite measurement resolution?

In quantum physics gauge equivalence represents a standard example about equivalence mod-
ulo isomorphisms which are now gauge transformations. There is a practical strategy to treat
the situation: perform a gauge choice by picking up one representative amongst infinitely
many isomorphic objects. At the level of natural numbers a very convenient gauge fixing
would correspond the representation of natural number as a sequence of decimal digits rather
than image of three cows.

In TGD framework a excellent motivation for categorification is the need to find an elegant
mathematical realization for the notion of finite measurement resolution. Finite measure-
ment resolutions (or cognitive resolutions) at various levels of information transfer hierarchy
imply accumulation of uncertainties. Consider as a concrete example uncertainty in the de-
termination of basic parameters of a mathematical model. This uncertainty is reflected to
final outcome as via a long sequence of mathematical maps and additional uncertainties are
produced by the approximations at each step of this process.

How could onbe describe the finite measurement resolution elegantly in TGD Universe? Cat-
egorification suggests a natural method. The points equivalent with measurement resolution
are isomorphic with each other. A natural guess inspired by gauge theories is that one should
perform a gauge choice as an analog of decategorification. This allows also to avoid contin-
uum of objects connected by arrows not n spirit with the discreteness of category theoretical
approach.

(a) At space-time level gauge choice means discretization of partonic 2-surfaces replac-
ing them with a discrete set points serving as representatives of equivalence classes of
points equivalent under finite measurement resolution. An especially interesting choice
of points is as rational points or algebraic numbers and emerges naturally in p-adicization
process. One can also introduce what I have called symplectic triangulation of partonic
2-surfaces with the nodes of the triangulation representing the discretization and carry-
ing quantum numbers of various kinds.

http://tinyurl.com/ng2fqro
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(b) At the level of “world classical worlds” ( WCW ) this means the replacement of the
sub-group if the symplectic group of δM4 × CP2 -call it G - permuting the points of
the symplectic triangulation with its discrete subgroup obtained as a factor group G/H,
where H is the normal subgroup of G leaving the points of the symplectic triangulation
fixed. One can also consider subgroups of the permutation group for the points of the
triangulation. One can also consider flows with these properties to get braided variant
of G/H. It would seem that one cannot regard the points of triangulation as isomorphic
in the category theoretical sense. This because, one can have quantum superpositions of
states located at these points and the factor group acts as the analog of isometry group.
One can also have many-particle states with quantum numbers at several points. The
possibility to assign quantum numbers to a given point becomes the physical counterpart
for the axiom of choice.

The finite measurement resolution leads to a replacement of the infinite-dimensional
world of classical worlds with a discrete structure. Therefore operation like integration
over entire “world of classical worlds” is replaced with a discrete sum.

(c) What suggests itself strongly is a hierarchy of n-categories as a proper description for the
finite measurement resolution. The increase of measurement resolution means increase
for the number of braid points. One has also braids of braids of braids structure implied
by the possibility to map infinite primes, integers, and rationals to rational functions
of several variables and the conjecture possibility to represent the hierarchy of Galois
groups involved as symplectic flows. If so the hierarchy of n-categories would correspond
to the hierarchy of infinite primes having also interpretation in terms of repeated second
quantization of an arithmetic SUSY such that many particle states of previous level
become single particle states of the next level.

The finite measurement resolution has also a representation in terms of inclusions of hyper-
finite factors of type II1 defined by the Clifford algebra generated by the gamma matrices of
WCW [K87]

(a) The included algebra represents finite measurement resolution in the sense that its action
generates states which are cannot be distinguished from each other within measurement
resolution used. The natural conjecture is that this indistuinguishability corresponds
to a gauge invariance for some gauge group and that TGD Universe is analogous to
Turing machine in that almost any gauge group can be represented in terms of finite
measurement resolution.

(b) Second natural conjecture inspired by the fact that symplectic groups have enormous
representabive power is that these gauge symmetries allow representation as subgroups
of the symplectic group of δM4 × CP2. A nice article about universality of symplec-
tic groups is the article “The symplectification of science” (see http://tinyurl.com/

y8us9sgw) by Mark. J. Gotay [A23].

(c) An interesting question is whether there exists a finite-dimensional space, whose symplecto-
morphisms would allow a representation of any gauge group (or of all possible Galois
groups as factor groups) and whether δM4×CP2 could be a space of this kind with the
smallest possible dimension.

17.7.2 Inclusions Of HFFs And Planar Tangles

Finite index inclusions of HFFs are characterized by non-branched planar algebras for which
only an even number of lines can emanate from a given disk. This makes possible a consistent
coloring of the k-tangle by black and white by painting the regions separated by a curve
using opposite colors. For more general algebras, also for possibly existing branched tangle
algebras, the minimum number of colors is four by four-color theorem. For the description
of zero energy states the 2-color assumption is not needed so that the necessity to have
general branched planar algebras is internally consistent. The idea about the inclusion of
positive energy state space into the space of negative energy states might be consistent with

http://tinyurl.com/y8us9sgw
http://tinyurl.com/y8us9sgw
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branched planar algebras and the requirement of four colors since this inclusion involves also
conjugation and is thus not direct.

In [A17] if was proposed that planar operads are associated with conformal field theories at
sphere possessing defect lines separating regions with different color. In TGD framework and
for branched planar algebras these defect lines would correspond to light-like 3-surfaces. For
fermions one has single wormhole throat associated with topologically condensed CP2 type
extremal and the signature of the induced metric changes at the throat. Bosons correspond
to pairs of wormhole throats associated with wormhole contacts connecting two space-time
sheets modellable as a piece of CP2 type extremal. Each boson thus corresponds to 2 lines
within CP2 radius so that in purely bosonic case the planar algebra can correspond to that
associated with an inclusion of HFFs.

17.7.3 2-Plectic Structures And TGD

Chris Rogers and Alex Hoffnung have demonstrated [A83] that the notion of symplectic
structure generalizes to n-plectic structure and in n = 2 case leads to a categorification of Lie
algebra to 2-Lie-algebra. In this case the generalization replaces the closed symplectic 2-form
with a closed 3-form ω and assigns to a subset of one-forms defining generalized Hamiltonians
vector fields leaving the 3-form invariant.

There are two equivalent definitions of the Poisson bracket in the sense that these Poisson
brackets differ only by a gradient, which does not affect the vector field assignable to the
Hamiltonian one-form. The first bracket is simply the Lie-derivate of Hamiltonian one form
G with respect to vector field assigned to F . Second bracket is contraction of Hamiltonian
one-forms with the three-form ω. For the first variant Jacobi identities hold true but Pois-
son bracket is antisymmetric only modulo gradient. For the second variant Jacobi identities
hold true only modulo gradient but Poisson bracket is antisymmetric. This modulo prop-
erty is in accordance with category theoretic thinking in which commutativity, associativity,
antisymmetry, ... hold true only up to isomorphism.

For 3-dimensional manifolds n=2-plectic structure has the very nice property that all one-
forms give rise to Hamiltonian vector field. In this case any 3-form is automatically closed
so that a large variety of 2-plectic structures exists. In TGD framework the natural choice
for the 3-form ω is as Chern-Simons 3-form defined by the projection of the Kähler gauge
potential to the light-like 3-surface. Despite the fact the induced metric is degenerate, one can
deduce the Hamiltonian vector field associated with the one-form using the general defining
conditions

ivF ω = dF (17.7.1)

since the vanishing of the metric determinant appearing in the formal definition cancels out
in the expression of the Hamiltonian vector field.

The explicit formula is obtained by writing ω as

ω = Kεαβγ × εµνδAµJνδ
√
g = εαβγ × C − S ,

C − S = KEαβγAαJβγ .
(17.7.2)

Here Eαβγ = εαβγ holds true numerically and metric determinant, which vanishes for light-
like 3-surfaces, has disappeared.

The Hamiltonian vector field is the curl of F divided by the Chern-Simons action density
C − S:
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vαF = 1
2 ×

εαβγ(∂βFγ−∂γFβ)
√
g

C−S√g = 1
2 ×

Eαβγ(∂βFγ−∂γFβ)
C−S . (17.7.3)

The Hamiltonian vector field multiplied by the dual of 3-form multiplied by the metric
determinant has a vanishing divergence and is analogous to a vector field generating volume
preserving flow. and the value of Chern Simons 3-form defines the analog of the metric
determinant for light-like 3-surfaces. The generalized Poisson bracket for Hamiltonian 1-
forms defined in terms of the action of Hamiltonian vector field on Hamiltonian as Jβ1 DβF2α−
Jβ2 DβH2α is Hamiltonian 1-form. Here Ji denotes the Hamiltonian vector field associated
with Fi. The bracked unique apart from gradient. The corresponding vector field is the
commutator of the Hamiltonian vector fields.

The objection is that gauge invariance is broken since the expression for the vector field
assigned to the Hamiltonian one-form depends on gauge. In TGD framework there is no
need to worry since Kähler gauge potential has unique natural expression and the U(1)
gauge transformations of Kähler gauge potential induced by symplectic transformations of
CP2 are not genuine gauge transformations but dynamical symmetries since the induced
metric changes and space-time surface is deformed. Another important point is that Kähler
gauge potential for a given CD has M4 part which is “pure gauge” constant Lorentz invariant
vector and proportional to the inverse of gravitational constant G. Its ratio to CP2 radius
squared is determined from electron mass by p-adic mass calculations and mathematically
by quantum criticality fixing also the value of Kähler coupling strength.

17.7.4 TGD Variant For The Category Ncob

John Baez has suggested that quantum field theories could be formulated as functors from
the category of n-cobordisms to the category of Hilbert spaces [A71, A38]. In TGD frame-
work light-like 3-surfaces containing the number theoretical braids define the analogs of 3-
cobordisms and surface property brings in new structure. The motion of topological con-
densed 3-surfaces along 4-D space-time sheets brings in non-trivial topology analogous to
braiding and not present in category nCob.

Intuitively it seems possible to speak about one-dimensional orbits of wormhole throats and
-contacts (fermions and bosons) in background space-time (homological dimension). In this
case linking or knotting are not possible since knotting is co-dimension 2 phenomenon and
only objects whose homological dimensions sum up to D− 1 can get linked in dimension D.
String like objects could topologically condense along wormhole contact which is string like
object. The orbits of closed string like objects are homologically co-dimension 2 objects and
could get knotted if one does not allow space-time sheets describing un-knotting. The simplest
examples are ordinary knots which are not allowed to evolve by forming self intersections.
The orbits of point like wormhole contact and closed string like wormhole contact can get
linked: a point particle moving through a closed string is basic dynamical example. There is
no good reason preventing unknotting and unlinking in absolute sense.

17.7.5 Number Theoretical Universality And Category Theory

Category theory might be also a useful tool to formulate rigorously the idea of number
theoretical universality and ideas about cognition. What comes into mind first are functors
real to p-adic physics and vice versa. They would be obtained by composition of functors
from real to rational physics and back to p-adic physics or vice versa. The functors from
real to p-adic physics would provide cognitive representations and the reverse functors would
correspond to the realization of intentional action. The functor mapping real 3-surface to
p-adic 3-surfaces would be simple: interpret the equations of 3-surface in terms of rational
functions with coefficients in some algebraic extension of rationals as equations in arbitrary
number field. Whether this description applies or is needed for 4-D space-time surface is not
clear.
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At the Hilbert space level the realization of these functors would be quantum jump in which
quantum state localized to p-adic sector tunnels to real sector or vice versa. In zero energy
ontology this process is allowed by conservation laws even in the case that one cannot as-
sign classical conserved quantities to p-adic states (their definition as integrals of conserved
currents does not make sense since definite integral is not a well-defined concept in p-adic
physics). The interpretation would be in terms of generalized M-matrix applying to cognition
and intentionality. This M-matrix would have values in the field of rationals or some algebraic
extension of rationals. Again a generalization of Connes tensor product is suggestive.

17.7.6 Category Theory And Fermionic Parts Of Zero Energy States
As Logical Deductions

Category theory has natural applications to quantum and classical logic and theory of com-
putation [A38]. In TGD framework these applications are very closely related to quantum
TGD itself since it is possible to identify the positive and negative energy pieces of fermionic
part of the zero energy state as a pair of Boolean statements connected by a logical deduc-
tion, or rather- quantum superposition of them. An alternative interpretation is as rules
for the behavior of the Universe coded by the quantum state of Universe itself. A further
interpretation is as structures analogous to quantum computation programs with internal
lines of Feynman diagram would represent communication and vertices computational steps
and replication of classical information coded by number theoretical braids.

17.7.7 Category Theory And Hierarchy Of Planck Constants

Category theory might help to characterize more precisely the proposed geometric realization
of the hierarchy of Planck constants explaining dark matter as phases with non-standard
value of Planck constant. The situation is topologically very similar to that encountered
for generalized Feynman diagrams. Singular coverings and factor spaces of M4 and CP2

are glued together along 2-D manifolds playing the role of object and space-time sheets at
different vertices could be interpreted as arrows going through this object.



Chapter 18

Could categories, tensor
networks, and Yangians provide
the tools for handling the
complexity of TGD?

18.1 Introduction

The dynamics of TGD is extremely simple locally: space-times are surfaces of 8-D imbedding
space so that only four field-like dynamical variables are present and preferred extremals
satisfy strong form of holography (SH) meaning that almost 2-D data determine them. TGD
Universe looks however also extremely complex. There is a hierarchy of space-times sheets,
hierarchy of p-adic length scales, hierarchy of dark matters labelled by the values of Planck
constant heff/h = n, hierarchy of extensions of rationals defining hierarchy of adeles in adelic
physics view about TGD, hierarchy of infinite primes (and rationals), and also the hierarchy
of conscious entities (quantum measurement theory in zero energy ontology can be seen as
theory of consciousness [L39]).

During years it has become gradually clear that category theory could be the mathematical
language of quantum TGD [K11, K10, K6]. Only category theory gives hopes about unifying
various hierarchies making TGD Universe to look so horribly complex. Hierarchy formed by
categories, categories of categories, .... could be the mathematics needed to keep book about
this complexity and provide also otherwise unexpected constraints.

The arguments developed in the sequel suggest the following overall view.

(a) Positive and negative energy parts of zero energy states can be regarded as tensor
networks [L23] identifiable as categories. The new element is that one does not have only
particles (objects) replaced with partonic 2-surfaces but also strings connecting them
(morphisms). Morphisms and functors provide a completely new element not present
in the standard model. For instance, S-matrix would be a functor between categories.
Various hierarchies of of TGD would in turn translate to hierarchies of categories.

(b) The recent view about generalized Feynman diagrams [L22, L24, L38] is inspired by
two general ideas. First, the twistor lift of TGD replaces space-time surfaces with
their twistor-spaces getting their twistor structure as induced twistor structure from the
product of twistor spaces of M4 and CP2. Secondly, topological scattering diagrams
are analogous to computations and can be reduced to minimal diagrams, which are
tree diagrams with braiding. This picture fits very nicely with the picture provided by
fusion categories. At fermionic level the basic interaction is 2+2 scattering of fermions
occurring at the vertices identifiable as partonic 2-surface and re-distributes the fermion
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lines between partonic 2-surfaces. This interaction is highly analogous to what happens
in braiding interaction defining basic gate in topological quantum computation [K85]
but vertices expressed in terms of twistors depend on momenta of fermions.

(c) Braiding transformations for fermionic lines identified as boundaries of string world
sheets can take place inside the light-like orbits of partonic 2-surfaces defining bound-
aries of space-time regions with Minkowskian and Euclidian signature of induced metric
respectively. Braiding transformation is essentially a permutation for two braid strands
mapping tensor product A⊗B to B⊗A. R-matrix satisfying Yang-Baxter equation [B61]
characterizes this operation algebraically.

(d) Reconnections of fermionic strings connecting partonic 2-surfaces are possible and sug-
gest interpretation in terms of 2-braiding generalizing ordinary braiding. I have2-
braiding in [K35]: string world sheets get knotted in 4-D space-time forming 2-knots
and strings form 1-knots in 3-D space. I do not actually know whether my intuitive
believe that 2-braiding reduces to reconnections is correct. Reconnection induces an
exchange of braid strands defined by boundaries of the string world sheet and therefore
exchange of fermion lines defining boundaries string world sheets. This requires a gener-
alization of quantum algebras to include also algebraic representation for reconnection:
this representation could reduce to a representation in terms of an analog of R-matrix.

Yangians [B30] seem to be especially natural quantum algebras from TGD point of view
[K76, L38]. Quantum algebras are bi-algebras having co-product ∆, which in well-defined
sense is the inverse of the product. This makes the algebra multi-local: this feature is very
attractive as far as understanding of bound states is considered. ∆-iterates of single particle
system would give many-particle systems with non-trivial interactions reducing to kinematics.

One should assign Yangian to various Super-Kac-Moody algebras (SKMAs) involved and
even with super-symplectic algebra (SSA) [K15, K88, K110], which however reduces effec-
tively to SKMA for finite-dimensional Lie group if the proposed gauge conditions meaning
vanishing of Noether charges for some sub-algebra H of SSA isomorphic to it and for its
commutator [SSA,H] with the entire SSA. Strong form of holography (SH) implying al-
most 2-dimensionality motivates these gauge conditions. Each SKMA would define a direct
summand with its own parameter defining coupling constant for the interaction in question.
There is also extended SKMA associated with the light-like orbits of partonic 2-surfaces and
it seems natural to identify appropriate sub-algebras of these two algebras as duals in Yangian
sense.

There is also partonic super-Kac-Moody algebra (PSKMA) associated with partonic 2-
surfaces extending ordinary SKMA. On old conjecture is that SSA and PSKMA are physi-
cally dual in the same sense as the conformal algebra and its dual in twistor Grassmannian
approach and that this generalizes equivalence principle (EP) to all conserved charges.

The plan of the article is following.

(a) The basic notions and ideas about tensor networks as categories and about Yangians as
multi-local symmetries and fundamental description of interactions are described.

(b) The questions related to the Yangianization in TGD framework are considered. Yan-
gianization of four-momentum and mass squared operator are discussed as examples.

(c) The next section is devoted to category theory as tool of TGD: braided categories and
fusion categories are briefly described and the notion of category with reconnection is
considered.

(d) The last section tries to represent the “great vision” in more detail.

18.2 Basic vision

The existing vision about TGD is summarized first and followed by a proposal about ten-
sor networks as categories and Yangians as a multi-local generalization of symmetries with
partonic surfaces replacing point like particles.
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18.2.1 Very concise summary about basic notions and ideas of TGD

Let us briefly summarize the basic notions and ideas of TGD.

(a) Space-times are regarded as 4-surfaces in H = M4 × CP2, which is fixed uniquely
by the condition that the factors of H = M4 × S allow twistor space with Kähler
structure [A63]. The twistor spaces of dynamically allowed space-time surfaces are
assumed to be representable as 6-D surfaces in twistor space T (H) = T (M4)× T (CP2)
getting their twistor structure by induction from that of T (H). T (M4) is identified as its
purely geometric variant T (M4) = M4×CP1. At the level of momentum space the usual
identification is more appropriate. It is also assumed that these space-time surfaces are
obtained as extremals of 6-D Kähler action [K76, L24, L38]. At space-time level this
gives rise to dimensionally reduced Kähler action equal to the sum of volume term and
4-D Kähler action. Either the entire action or volume term would correspond to vacuum
energy parameterized by cosmological constant in standard cosmology. Planck length
corresponds to the radius of twistor sphere of M4.

(b) Strong form of holography (SH) implied by strong form of general coordinate invariance
(SGCI) stating that light-like 3-surfaces defined by parton orbits and 3-D space-like
ends of space-time surface at boundaries of CD separately code 3-D holography. SH
states that 2-D data at string world sheets plus condition fixing the points of space-time
surface with H-coordinates in extension of rationals fix the real space-time surface.

i. SH strongly suggests that the preferred extremals of the dimensionally reduced
action satisfy gauge conditions (vanishing Noether charges) for a subalgebra H of
super-symplectic algebras (SSA) isomorphic to it and its commutator [H,SSA] with
SSA: this effectively reduces SSA to a finite-dimensional Kac-Moody algebra.

ii. Similar dimensional reduction would take place in fermionic degrees of freedom,
where super-conformal symmetry fixes 4-D Dirac action, when bosonic action is
known [K88, K110]. This involves the new notion of modified gamma matrices
determined in terms of canonical momentum currents associated with the action.
Quantum classical correspondence (QCC) states that classical Cartan charges for
SSA are equal to the eigenvalues of corresponding fermionic charges. This gives a
correlation between space-time dynamics and quantum numbers of positive (nega-
tive) parts of zero energy states.

iii. SH implies that fermions are effectively localized at string world sheets: in other
words, the induced spinor fields Ψint in space-time interior are determined their val-
ues Ψstring at string world sheets. There are two options: Ψint is either continuation
of Ψstring or Ψstring serves as the source of Ψint [L29].

(c) At space-time level the dynamics is extremely simple locally since by general coordinate
invariance (GCI) only 4 field-like variables are dynamical, and one has also SH by SGCI.
Topologically the situation is rather complex: one has many-sheeted space-time having
hierarchical structure. The GRT limit of TGD [K79] is obtained in long length scales
by mapping the many-sheeted structure to a slightly curved piece of M4 by demanding
that the deformation of M4 metric is sum of the deformation of he induced metrics
of space-time surface from M4 metric. Similar description implies to gauge potentials
in terms of induced gauge potentials. The many-sheetedness is visible as anomalies of
GRT and plays central role in quantum biology [K94].

(d) Zero energy ontology (ZEO) means that one consider space-time surfaces inside causal
diamonds (CDs defined as intersections of future and past directed light-cones with
points replaced with CP2) forming a scale hierarchy. Zero energy states are tensor
products of positive and negative energy parts at opposite boundaries of CD. Zero
energy property means that the total conserved quantum numbers are opposite at the
opposite boundaries of CD so that one has consistency with ordinary positive energy
ontology. Zero energy states are analogous to physical events in the usual ontology but
is much more flexible since given zero energy energy states is in principle creatable from
vacuum.
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(e) The “world of classical worlds” (WCW) [K34, K15, K110] generalizes the superspace of
Wheeler. WCW decomposes to sub-WCWs assignable to CDs forming a scale hierarchy.
Note that 3-surface in ZEO corresponds to a pair of disjoint collections 3-surfaces at
opposite boundaries of CD- initial and final state in standard ontology. Super-symplectic
symmetries (SCA) act as isometries of WCW. Zero energy states correspond to WCW
spinor fields and the gamma matrices of WCW are expressible as linear combinations of
fermionic oscillator operators for induced spinor fields. Besides SCA there is partonic
super-Kac-Moody algebra (PSCA) acting on light-like orbits of partonic 2-surfaces and
these algebras are suggested to be dual physically (generalized EP).

(f) One ends up with an extension of real physics to adelic physics [L34]. p-Adic physics for
various primes are introduced as physical correlates of cognition and imagination: the
original motivation come from p-adic mass calculations [K46]. p-Adic non-determinism
(pseudo constants) [K45, K73] strongly suggests that one can always assign to 2-D
holographic data a p-adic variant of space-time surface as a preferred extremal. In
real case this need not be the case so that the space-time surface realized as preferred
extremal is imaginable but not necessarily realizable.

p-Adic physics and real physics are fused to adelic physics: space-time surface isa book-
like structure with pages labelled by real number field and p-adic number fields in
an extension induced by some extension of rationals. Planck constants heff = n × h
corresponds to the dimension of the extension dividing the order of its Galois group and
favored p-adic primes correspond to ramified primes for favored extensions. Evolution
corresponds to increasing complexity of extension of rationals and favored extensions
are the survivors in fight for number theoretic survival.

(g) Twistor lift of TGD leads to a proposal for the construction of scattering amplitudes
assuming Yangian symmetry assignable to Kac-Moody algebras for imbedding space
isometries, with electroweak gauge group, and for finite-D Lie dynamically generated
Lie group selected by conditions on SSA algebra. 2+2 fermion vertex analogous to
braiding interaction serves as the basic vertex in the formulation of [L38].

18.2.2 Tensor networks as categories

The challenge has been the identification of relevant categories and physical realization of
them. One can imagine endless number of identifications but the identification of absolutely
convincing candidate has been difficult. Quite recently an astonishingly simple proposal
emerged.

(a) The notion of tensor network [B43] has emerged in condensed matter physics to describe
strongly entangled systems and complexity associated with them. Holography is in an
essential role in this framework. In TGD framework tensor network is realized physically
at the level of the topology and geometry of many-sheeted space-time [L23]. Nodes
would correspond to objects and links between them to morphisms. This structure
would be realized as partonic 2-surfaces - objects - connected by fermionic strings -
morphisms - assignable to magnetic flux tubes. Morphisms would be realized as Hilbert
space isometries defined by entanglement. Physical state would be category or set of
them!

Functors are morphisms of categories mapping objects to objects and morphisms to
morphisms and respecting the composition of morphisms so that the structure of the
category is preserved. For instance, in zero energy ontology (ZEO) S-matrix for given
space-time surface could be a unitary functor assigning to an initial category final cate-
gory: they would be represented as quantum states at the opposite boundaries of causal
diamond (CD). Also quantum states could be categories of categories of in accordance
with various hierarchies.

(b) Skeptic could argue as follows. The passive part of zero energy states for which active
part evolves by unitary time evolutions following by state function reductions induc-
ing time localization in moduli space of CDs, could be category. But isn’t the active
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path more naturally a quantum superposition of categories? Should one replace time
evolution as a functor with its quantum counterpart, which generates a quantum su-
perposition of categories? If so, then state function reduction to opposite boundary of
CD would mean localization in the set of categories! This is quite an abstraction from
simple localization in 3-space in wave mechanics.

(c) Categories form categories with functors between categories acting as morphisms. In
principle one obtains an infinite hierarchy of categories identifiable as quantum states.
This would fit nicely with various hierarchies associated with TGD, most of which are
induced by the hierarchy of extensions of rationals.

(d) The language of categories fits like glove also to TGD inspired theory of consciousness.
The fermionic strings and associated magnetic flux tubes would serve as correlates of
attention. The associated morphism would define the direction of attention and also de-
fine sensory maps as morphisms. Conscious intelligence relies crucially on analogies and
functors realize mathematically the notion of analogy. Categorification means basically
classification and this is what cognition does all the time.

18.2.3 Yangian as a generalization of symmetries to multilocal sym-
metries

Mere networks of arrows are not enough. One needs also symmetry algebra associated with
them giving flesh around the bones.

(a) Various quantum algebras, in particular Yangians are naturally related to physically
interesting categories. The article of Jimbo [B61], one of the pioneers of quantum
algebras, gives a nice summary of Yang-Baxter equation central in the construction of
quantum algebras. R-matrix performs is an endomorphism permuting two tensor factors
in quantal matter.

(b) One of the nice features of Yangian is that it gives hopes for a proper description of
bound states problematic in quantum field theories (one can argue that QCD cannot
really describe hadrons and already QED has problems with Bethe-Salpeter equation for
hydrogen atom). The idea would be simple. Yangian would provide many-particle gen-
eralization of single particle symmetry algebra and give formulas for conserved charges
of many-particle states containing also interaction terms. Interactions would reduce to
kinematics. This - as I think - is a new idea.

The iteration of the co-product ∆ would map single particle symmetry operator by
homomorphism to operator acting in N-parton state space and one would obtain a
hierarchy of algebra generators labelled by N and Yangian inariance would dictate the
interaction terms completely (as it indeed does in N = 4 SUSY in twistor Grassmannian
approach [B31]).

(c) There is however a delicacy involved. There is a mysterious looking doubling of the
symmetry generators. One has besides ordinary local generators TA0 generators TA1 : in
twistor Grassmann approach the latter correspond to dual conformal symmetries. For
TA0 the co-product is trivial: ∆(JA0 ) = JA0 ⊗ 1 + 1 ⊗ JA0 , just like in non-interacting
theory. This is true for all iterates of ∆.

For JA1 one has ∆(JA1 ) = JA1 ⊗1+1⊗JA1 +fABCJ
B
0 ⊗JC0 . One has two representations and

the duality suggests that the eigenvalues JA0 and JA1 are same (note that in Witten’s
approach [B30] JA1 = 0 holds true so that it does not apply as such to TGD). The
differences TA0 −TA1 would give a precise meaning for “interaction charges” if the duality
holds true, and more generally, to the perturbation theory formed by a pair of free
and interacting theory. This picture raises hopes about first principle description of
bound states: interactions described in wave mechanics in terms of phenomenological
interaction Hamiltonians and interaction potentials would be reduced to kinematics.

For instance, for four-momentum ∆(P k1 ) would contain besides free particle term P k0 ⊗
1 + 1⊗ P k0 also the interaction term involving generators of - say - conformal group.
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(d) What about the physical interpretation of the doubling? The most natural interpre-
tation would be in terms of SSA and the extended super-conformal algebra assignable
to the light-like orbits of partonic 2-surfaces. An attractive interpretation is in terms
of a generalization of Equivalence Principle (EP) stating that inertial and gravitational
charges are identical for the physical states.

(e) The tensor summands of Kac-Moody algebra would have different coupling constants ki
perhaps assignable to the 4 fundamental interactions and to the dynamical gauge group
emerging from the SCA would give further coupling constant. This would give 5 tensor
factors strongly suggested by p-adic mass calculations - p-adic masses depend only on
the number of tensor factors [K46].

18.3 Some mathematical background about Yangians

In the following necessary mathematical background about Yangians are summarized.

18.3.1 Yang-Baxter equation (YBE)

Yang-Baxter equation (YBE) has been used for more than four decades in integrable mod-
els of statistical mechanics of condensed matter physics and of 2-D quantum field theories
(QFTs) [A79]. It appears also in topological quantum field theories (TQFTs) used to classify
braids and knots [B30] (see http://tinyurl.com/mcvvcqp) and in conformal field theories
and models for anyons. Yangian symmetry appears also in twistor Grassmann approach to
scattering amplitudes [B31, B39] and thus involves YBE. At the same time new invariants
for links were discovered and new braid-type relation was found. YBEs emerged also in 2-D
conformal field theories.

Yang-Baxter equation (YBE) has a long history described in the excellent introduction to
YBE by Jimbo [B61] (see http://tinyurl.com/l4z6zyr, where one can also find a list
of references). YBE was first discovered by McGuire (1964) and 3 years later by Yang in
quantum mechanical many-body problem involving delta function potential

∑
i<j δ(xi−xj).

Using Bethe’s Ansatz for building wave functions they found that the scattering matrix
factorized that it could be constructed using as building brick 2-particle scattering matrix -
R-matrix. YBE emerged for R-matrix as a consistency condition for factorization. Baxter
discovered 1972 solution of the eight vertex model in terms of YBE. Zamolodchikov pointed
ot that the algebraic mechanism behind factorization of 2-D QFTs is same as in condensed
matter models.

1978-1979 Faddeev, Sklyanin, and Takhtajan proposed quantum inverse scattering method as
a unification of classical and quantum integrable models. Eventually the work with YBE led
to the discovery of the notion of quantum group by Drinfeld. Quantum group can be regarded
as a deformation Uq(g) of the universal enveloping algebra U(g) of Lie algebra. Drinfeld also
introduced the universal R-matrix, which does not depend on the representation of algebra
used.

R-matrix satisfying YBE is now the common aspect of all quantum algebras. I am not a
specialist in YBE and can only list the basic points of Jimbo’s article. Interested reader can
look for details and references in the article of Jimbo.

In 2-D quantum field theories R-matrix R(u) depends on one parameter u identifiable as
hyperbolic angle characterizing the velocity of the particle. R(u) characterizes the interaction
experienced by two particles having delta function potential passing each other (see the
figure of http://tinyurl.com/kyw6xu6). In 2-D quantum field theories and in models for
basic gate in topological quantum computation (for early TGD vision see [K85] were also
R-matrix is discussed in more detail) the R-matrix is unitary. One can interpret R-matrix
as endomorphism mapping V1 ⊗ V2 to V2 ⊗ V1 representing permutation of the particles.

http://tinyurl.com/mcvvcqp
http://tinyurl.com/l4z6zyr
http://tinyurl.com/kyw6xu6
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YBE

R-matrix satisfies Yang-Baxter equation (YBE)

R23(u)R13(u+ v)R12(v) = R12(v)R13(u+ v)R23(u) (18.3.1)

having interpretation as associativity condition for quantum algebras.

At the limit u, v → ∞ one obtains R-matrix characterizing braiding operation of braid
strands. Replacement of permutation of the strands with braid operations replaces permu-
tation group for n strands with its covering group. YBE states that the braided variants of
identical permutations (23)(13)(12) and (12)(13)(23) are identical.

The equations represent n6 equations for n4 unknowns and are highly over-determined so that
solving YBE is a difficult challenge. Equations have symmetries, which are obvious on basis of
the topological interpretation. Scaling and automorphism induced by linear transformations
of V act as symmetries, and the exchange of tensor factors in V ⊗ V and transposition are
symmetries as also shift of all indices by a constant amount (using modulo N arithmetics).

One can pose to the R-matrix some boundary condition. For V ⊗V the condition states that
R(0) is proportional to permutation matrix P for the factors.

General results about YBE

The following lists general results about YBE.

(a) Belavin and Drinfeld proved that the solutions of YBE can be continued meromorphic
functions to complex plane and define with poles forming an Abelian group. R-matrices
can be classified to rational, trigonometric, and elliptic R-matrices existing only for
sl(n). Rational and trigonometric solutions have pole at origin and elliptic solutions
have a lattice of poles. In [B61] (see http://tinyurl.com/l4z6zyr) simplest examples
about R-matrices for V1 = V2 = C2 are discussed, one of each type.

(b) In [B61] it is described how the notions of R-matrix can be generalized to apply to
a collection of vector spaces, which need not be identical. The interpretation is as
commutation relations of abstract algebra with co-product ∆ - say quantum algebra or
Yangian algebra. YBE guarantees the associativity of the algebra.

(c) One can define quasi-classical R-matrices as R-matrices depending on Planck constant
like parameter ~ (which need have anything to do with Planck constant) such that small
values of u one has R = constant× (I +~r(u) +O(~2)). r(u) is called classical r-matrix
and satisfies CYBE conditions

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0

obtained by linearizing YBE. r(u) defines a deformation of Lie-algebra respecting Jacobi-
identities. There are also non-quasi-classical solutions. The universal solution for r-
matrix is formulated in terms of Lie-algebra so that the representation spaces Vi can be
any representation spaces of the Lie-algebra.

(d) Drinfeld constructed quantum algebras Uq(g) as quantized universal enveloping algebras
Uq(g) of Lie algebra g. One starts from a classical r-matrix r and Lie algebra g. The
idea is to perform a “quantization” of the Lie-algebra as a deformation of the universal
enveloping algebra Uq(g) of U(g) by r. Drinfeld introduces a universal R-matrix inde-
pendent of the representation used. This construction will not be discussed here since it
does not seem to be so interesting as Yangian: in this case co-product ∆ does not seem
to have a natural interpretation as a description of interaction. The quantum groups
are characterized by parameter q ∈ C.

For a generic value the representation theory of q-groups does not differ from the or-
dinary one. For roots of unity situation changes due to degeneracy caused by the fact
qN = 1 for some N .

http://tinyurl.com/l4z6zyr
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(e) The article of Jimbo discusses also fusion procedure initiated by Kulish, Restetikhin, and
Sklyanin allowing to construct new R-matrices from existing one. Fusion generalizes the
method used to construct group representation as powers of fundamental representation.
Fusion procedure constructs R-matrix inW⊗V 2, where one hasW = W1⊗W2 ⊂ V ⊗V 1.
Picking W is analogous to picking a subspace of tensor product representation V ⊗ V 1.

18.3.2 Yangian

Yangian algebra Y (g(u)) is associative Hopf algebra (see http://tinyurl.com/qfl8dwu)
that is bi-algebra consisting of associative algebra characterized by product µ: A ⊗ A → A
with unit element 1 satisfying µ(1, a) = a and co-associative co-algebra consisting of co-
product ∆A ∈ A ⊗ A and co-unit ε : A → C satisfying ε ◦ ∆(a) = a. Product and co-
product are “time reversals” of each other. Besides this one has antipode S as algebra
anti-homomorphism S(ab) = S(b)S(a). YBE has interpretation as an associativity condition
for co-algebra (∆⊗ 1) ◦∆ = (1⊗∆) ◦∆. Also ε satisfies associativity condition (ε⊗ 1) ◦∆ =
(1⊗ ε) ◦∆.

There are many alternative formulations for Yangian and twisted Yangian listed in the slides
of Vidas Regelskis at http://tinyurl.com/ms9q8u4. Drinfeld has given two formulations
and there is FRT formulation of Faddeev, Restetikhin and Takhtajan.

Drinfeld’s formulation [B61] (see http://tinyurl.com/qfl8dwu) involves the notions of Lie
bi-algebra and Manin triple, which corresponds to the triplet formed by half-loop algebras
with positive and negative conformal weights, and full loop algebra. There is isomorphism
mapping the generating elements of positive weight and negative weight loop algebra to the
elements of loop algebra with conformal weights 0 and 1. The integer label n for positive half
loop algebra corresponds in the formulation based on Manin triple to conformal weight. The
alternative interpretation for n+ 1 would be as the number of factors in the tensor power of
algebra and would in TGD framework correspond to the number of partonic 2-surfaces. In
this interpretation the isomorphism becomes confusing.

In any case, one has two interpretations for n+ 1 ≥ 1: either as parton number or as occu-
pation number for harmonic oscillator having interpretation as bosonic occupation number
in quantum field theories. The relationship between Fock space description and classical de-
scription for n-particle states has remained somewhat mysterious and one can wonder whether
these two interpretation improve the understanding of classical correspondence (QCC).

Witten’s formulation of Yangian

The following summarizes my understanding about Witten’s formulation of Yangian inN = 4
SUSYs [B30], which does not mention explicitly the connection with half loop algebras and
loop algebra and considers only the generators of Yangian and the relations between them.
This formulation gives the explicit form of ∆ and looks natural, when n corresponds to parton
number. Also Witten’s formulation for Super Yangian will be discussed.

It must be however emphasized that Witten’s approach is not general enough for the purposes
of TGD. Witten uses the identification ∆(JA1 ) = fABCJ

B
0 ×JC0 instead of the general expression

∆(JA1 ) = JA1 ⊗ 1 + 1 × JA1 + fABCJ
B
0 × JC0 needed in TGD strongly suggested by the dual

roles of the super-symplectic conformal algebra and super-conformal algebra associated with
the light-like partonic orbits realizing generalized EP. There is also a nice analogy with the
conformal symmetry and its dual twistor Grassmann approach.

The elements of Yangian algebra are labelled by non-negative integers so that there is a close
analogy with the algebra spanned by the generators of Virasoro algebra with non-negative
conformal weight. The Yangian symmetry algebra is defined by the following relations for
the generators labeled by integers n = 0 and n = 1. The first half of these relations discussed
in very clear manner in [B30] follows uniquely from the fact that adjoint representation of
the Lie algebra is in question

http://tinyurl.com/qfl8dwu
http://tinyurl.com/ms9q8u4
http://tinyurl.com/qfl8dwu
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[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (18.3.2)

Besides this Serre relations are satisfied. These have more complex form and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(18.3.3)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor
gAB or gAB . {A,B,C} denotes the symmetrized product of three generators.

The right hand sides have often as a coefficient ~2 instead of 1/24. ~ need not have any-
thing to do with Planck constant. The Serre relations give constraints on the commutation

relations of J (1)A. For J (1)A=JA the first Serre relation reduces to Jacobi identity and sec-
ond to antisymmetry of Lie bracket. The right hand sided involved completely symmetrized
trilinears {JD, JE , JF } making sense in the universal covering of the Lie algebra defined by
JA.

Repeated commutators allow to generate the entire algebra whose elements are labeled by
non-negative integer n. The generators obtain in this manner are n-local operators arising
in (n − 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases
the first Serre relation implies the second one so the relations are redundant. Why Witten
includes it is for the purposed of demonstrating the conditions for the existence of Yangians
associated with discrete one-dimensional lattices (Yangians exists also for continuum one-
dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representa-
tion for the Yangian algebra. One assumes that each lattice point allows a representation R
of JA so that one has JA =

∑
i J

A
i acting on the infinite tensor power of the representation

considered. The expressions for the generators J1A in Witten’s approach are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (18.3.4)

This formula gives the generators in the case of conformal algebra. This representation exists
if the adjoint representation of G appears only one in the decomposition of R ⊗ R. This is
the case for SU(N) if R is the fundamental representation or is the representation of by kth

rank completely antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are
needed guarantee that the number of lattice points reduces effectively to a finite number.
Note that the Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-
product ∆ is given by
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∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(18.3.5)

∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-
triviality comes from the addition of the dual generator to the trivial co-product. In the case
that the single spin representation of J (1)A is trivial, the co-product gives just the expression
of the dual generator using the ordinary generators as a non-local generator. This is assumed
in the recent case and also for the generators of the conformal Yangian.

Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics
especially interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that
PSU(2, 2|4) (P refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM
and this super group is a real form of PSU(4|4). The main point of interest is whether
this algebra allows Yangian representation and Witten demonstrated that this is indeed the
case [B30].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated
with the fermionic part dictates the commutation relations between bosonic and fermionic
generators. The anti-commutator of fermionic generators can contain besides identity also
bosonic generators if the symmetrized tensor product in question contains adjoint represen-
tation. This is the case if fermions are in the fundamental representation and its conjugate.
For SU(3) the symmetrize tensor product of adjoint representations contains adjoint (the
completely symmetric structure constants dabc) and this might have some relevance for the
super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters in-
volved) can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m ma-
trices corresponding to the dimensions of bosonic and fermionic representations. b and c
are fermionic matrices are n ×m and m × n matrices, whose anti-commutator is the direct
sum of n × n and n × n matrices. For n = m bosonic generators transform like Lie algebra
generators of SU(n)×SU(n) whereas fermionic generators transform like n⊗n⊕n⊗n under
SU(n)× SU(n). Supertrace is defined as Str(x) = Tr(a)− Tr(b). The vanishing of Str de-
fines SU(n|m). For n 6= m the super trace condition removes identity matrix and PU(n|m)
and SU(n|m) are same. That this does not happen for n = m is an important delicacy since
this case corresponds to N = 4 SYM. If any two matrices differing by an additive scalar are
identified (projective scaling as now physical effect) one obtains PSU(n|n) and this is what
one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product
R ⊗ R holds true for the physically interesting representations of PSU(2, 2|4) so that the
generalization of the bilinear formula can be used to define the generators of J (1)A of super
Yangian of PU(2, 2|4). The defining formula for the generators of the Super Yangian reads
as
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J
(1)
C = gCC′J

(1)C′ = gCC′f
C′

AB

∑
i<j

JAi J
B
j

= gCC′f
C′

ABg
AA′gBB

′∑
i<j

J iA′J
j
B′ .

(18.3.6)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between
PSU(4|4) and PSU(2, 2|4). In this formula both generators and super generators appear.

18.4 Yangianization in TGD framework

Yangianization of quantum TGD is quite challenging. Super-conformal algebras are much
larger than in say N = 4 SUSY and even in superstring models and reconnection and 2-
braiding are new topological elements.

18.4.1 Geometrization of super algebras in TGD framework

Super-conformal algebras allow a geometrization in TGD framework and this should be of
considerable help in the Yangianization.

(a) The basic generators of various Super-algebras follow from modified Dirac action as
Noether charges and their super counterparts obtained by replacing fermion field Ψ
(its conjugate Ψ) by a mode um (un) of the induced spinor field [K88, K110]. The
anti-commutators of these Noetherian super charges labelled by n define WCW gamma
matrices. The replacement of both Ψ and Ψ with modes um and un gives a collection of
conserved c-number currents and charges labelled by (n,m). These c-number charges
define the anti-commutation relations for the induced spinor fields so that quantization
reduces to dynamics thanks to the notion of modified gamma matrices forced by super-
conformal symmetry.

(b) The natural generalization of Sugawara formula to the level of Yangian of SKMA starts
from the Dirac operator for WCW defined like ordinary Dirac operator in terms of the
contractions of WCW gamma matrices with the isometry generators (SCA) replacing
the Super Virasoro generators Gr and WCW d’Alembert operator defined as its square
replacing Virasoro generators Ln. Anti-commutators of WCW gamma matrices defined
by super charges for super-symplectic generators define WCW Kähler metric [K88] for
which action for preferred extremal would define Kähler function for WCW metric [K34].

(c) Quarks and leptons give rise to a doubling of WCW metric if associated with same
space-time sheet that is with the same sector of WCW. The duplication of the super
algebra generators - in particular WCW gamma matrices - does not seem to make
sense. Do quarks and leptons therefore correspond to different sectors of WCW and
live at different space-time surfaces? But what could distinguish between 3-surfaces
associated with quarks and leptons?

Could quarks be associated with homologically non-trivial partonic 2-surfaces with CP2

homology charges 2,-1,-1 proportional to color hypercharges 2/3,−1/3,−1/3 and lep-
tons with partonic 2-surfaces with vanishing homology charges coming as multiples of 3?
Vanishing of color hypercharge for color-confined states would topologize to a vanishing
of total homology charge. Could spin/isospin half property of fundamental fermions
topologize to 2-sheeted structure of the space-time surface representing elementary par-
ticle consisting of elementary fermions?

SSA acting as isometries of WCW is not the only super-conformal algebra involved.
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(a) Partonic 2-surfaces are ends of light-like 3-surfaces- partonic orbits - and give rise to a
generalization of SKMA of isometries of H so that they act as local isometries preserving
the light-likeness property of the orbits. At the ends of the partonic 2-surface SKMA
is associated with complex coordinate of partonic 2-surface. What is the role of this
algebra, which is also extended SKMA (already christened PSCA) but with light-like
coordinate parameterizing the SKMA generators?

Is it an additional symmetry combining with string world sheet symmetries to a sym-
metry involving complex coordinate and complex or hypercomplex coordinate? Or is
it dual to the string world sheet symmetry? How do these symmetries relate to SSA?
Does SGCI implying SH leave only SKMAs associated with isometries, holonomies of
CP2 (electroweak interactions) and dynamical SKMA remaining as remnant of SCA.

(b) I have earlier proposed that Equivalence Principle (EP) as identity of inertial and grav-
itational charges could reduce to the duality between these SSA assignable to strings
and the partonic super-conformal algebra. This picture conforms with the expected
form of the generators associated with these algebras. The dual generating elements
TA0 resp. TA1 associated with generic Yangian could naturally correspond to isomorphic
sub-algebras of super-conformal algebra associated with orbits of partonic 2-surfaces
resp. super-symplectic algebra assignable to string world sheets.

18.4.2 Questions

There are many open questions to be answered.

Q1: What Yangianization could mean in TGD framework? The answer is not obvious and
one can consider two options.

(a) Assuming that SH leads to an effective reduction of super-symplectic algebra to finite-
D Kac-Moody algebra, assign to partonic 2-surfaces direct sum of Kac-Moody type
algebras L(g) = g(z, z−1) assigned with complex coordinate z of partonic 2-surface. One
could perform Yangianization for this algebra meaning that these symmetries become
multi-local with locus identified as partonic 2-surface.

In Drinfeld’s approach this would mean Yangianization of L(g) rather than g and would
involve double loop algebra L(L(g)) and its positive and negative energy parts. In
Minkowskian space-time regions the generators would be functions of complex coordi-
nate z and hypercomplex coordinate u associated with string world sheet: in Euclidian
space-time regions one would have 2 complex coordinates z and w. This would con-
form with holography. I do not know whether mathematicians have considered this
generalization and whether it is possible. In the following this is assumed.

(b) Physical states at partonic 2-surfaces consist of pointlike fermions and one can ask
whether this actually means that one can consider just the Lie algebra g so that in
Drinfeld’s approach one would have just string world sheets and Y (g). Already this op-
tion requires the algebraization of reconnection mechanism as a new element. Whether
this simpler approach make sense for fermions and by QQC for quantum TGD, is not
clear.

Q2: Can one really follow the practice of Grassmannian twistor approach and say that TA1
and TA0 are dual?

One has [TA0 , T
B
1 ] = fABC TC1 . Witten’s definition TA1 = fABCT

B⊗TC ≡ TA1 = fABCT
BTC with

TA1 identified as total charges for lattice, identifies TA1 as 2-particle generators of Yangian.
One the other hand, in TGD TA0 would correspond to partonic super-conformal algebra and
TA1 to bi-local super-symplectic algebra and the general definition to be used regards also TA1
as single particle generators in Yangian sense and defines the generators at 2-particle level
as ∆(TA0 ) = TA0 ⊗ 1 + 1⊗ TA0 and ∆(TA1 ) = TA1 ⊗ 1 + 1⊗ TA1 + fABCT

B
0 ⊗ TC0 .

For the Witten’s definition one cannot demand that TA0 and TA1 have same eigenvalues for
the physical states. For the more general definition of ∆ to be followed in the sequel it seems
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to be possible require that TA0 and TA1 obey the same commutation relations for appropriate
sub-algebras at least, and that it is possible to diagonalize Cartan algebras simultaneously
and even require same total Cartan charges. This issue is not however well-understood.

Q3: What algebras are Yangianized in TGD framework?

The Yangians of SKMAs associated with isometries of M4 × CP2 and with the holonomy
group SU(2) × U(1) of CP2 appear as symmetries. M4 should give SKMA in transversal
degrees of freedom for fermionic string. CP2 isometries would give SKMA associated with
SU(3). SU(2) × U(1) would be assignable to electroweak symmetries. This gives 4 tensor
factors.

Five of them are required by p-adic mass calculations [K46], whose outcome depends only
on the number of tensor factors in Virasoro algebra. The estimates for the number of tensor
factors has been a chronic head ache: in particular, do M4 SKMA correspond to single tensor
factor or two tensor factors assignable to 2 transversal degrees of freedom.

Supersymplectic algebra (SSA) is assumed to define maximal possible isometry group of
WCW guaranteeing the existence of Kähler metric with a well-defined Riemann connection.
The Yangian of SSA could be the ultimate symmetry group, which could realize the dream
about the reduction of all interactions to mere kinematics. If SSA effectively reduces to a
finite-D SKMA for fermionic strings, one would have 5 tensor factors.

Q4: What does SSA mean?

(a) SSA is associated with light-cone boundary δM4
± with one light-like direction. The

generators (to be distinguished from generating elements) are products of Hamiltonians
of symplectic transformations of CP2 assignable to representations of color SU(3) and
Hamiltonians for the symplectic transformations of light-cone boundary, which reduce
to Hamiltonians for symplectic transformations of sphere S2 depending parametrically
on the light-like radial coordinate r. This algebra is generalized to analog of Kac-Moody
algebra defined by finite-dimensional Lie algebra.

(b) The radial dependence of Hamiltonians of form rh. The naive guess that conformal
weights are integers for the bosonic generators of SSA is not correct. One must allow
complex conformal weights of form h = 1/2 + iy: 1/2 comes from the scaling invariant
inner product for functions at δM4

± defined by integration measure dr/r [K15, K110].

(c) An attractive guess [L16] is that there is an infinite number of generating elements with
radial conformal weights given by zeros of zeta. Conformal confinement must holds
true meaning that the total conformal weights are real and thus half-odd integers. The
operators creating physical states form a sub-algebra assignable by SH and QCC to
fermionic string world sheets connecting partonic 2-surfaces.

(d) SH inspires the assumption that preferred extremal property requires that sub-algebra
H of SSA isomorphic to itself (conformal weights are integer multiples of SSA) and
its commutator SH with SH annihilate physical states and classical Noether charges
vanish. This could reduce the symmetry algebra to SKMA for a finite-dimensional Lie
group. SSA could be replaced also with the sub-algebra creating physical states having
half-odd integer valued radial conformal weights.

Similar conditions could make sense for the generalization of super-conformal KM alge-
bra associated with light-like partonic orbits.

Q5: What is the precise meaning of SH in the fermionic sector?

Are string world sheets with their ends behaving like pointlike particles enough or are also par-
tonic 2-surface needed. For the latter option a generalization of conformal field theory (CFT)
would be needed assigning complex coordinate with partonic 2-surfaces and hyper-complex
or complex coordinates with string world sheets. Elementary particle vacuum functionals
depend on conformal moduli of partonic 2-surface [K12], which supports the latter option.
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There could be however duality between partonic 2-surfaces and string world sheets so that
either of them could be enough [L38]. There is also uncertainty about the relationship
between induced spinor fields at string world sheets and space-time interior. Are 4-D induced
spinor fields obtained by process analogous to analytic continuation in 2-complex dimensional
space-time or do 2-D induced spinor fields serve as sources for 4-D induced spinor fields?

Quantum algebras are characterized by parameters such as complex parameter q charac-
terizing R-matrices for quantum groups. Adelic physics [L34] demands number theoretical
universality and in particular demands that the parameters - say q - of quantum algebraic
structures involved are products q = em/nxU , where U is root of unity (note that ep exists
as ordinary p-adic number for Qp) and x is real number in the extension. This guarantees
that the induced extensions of p-adic numbers are finite-dimensional (the hypothesis is that
the correlates of cognition are finite-D extensions of p-adic number fields) [K110].

In the recent view about twistorial scattering amplitudes [L38] the fundamental fermionic
vertices are 2 → 2 vertices. There is no fermionic contact interaction in the sense of QFT
but the fermions coming to the topological vertex defined by partonic 2-surface at which
3 partonic orbits meet (analogy for the 3-vertex for Feynman diagram) are re-distributed
between partonic two surfaces. Also in integrable 2-D QFTs in M2 the vertices are 2 → 2
vertices characterized by R-matrix. The twistorial vertex is however not topological.

18.4.3 Yangianization of four-momentum

The QFT picture about bound states is unsatisfactory. The basic question to be answered
is whether one should approach the problem in terms of Lorentz invariant mass squared
natural in conformal field theories or in terms of Poincare algebra. It is quite possible that
the fundamental formulation allowing to understand binding energies is in terms of SCA and
PSCA.

Twistor lift of TGD [L38] however suggests that Poincare and even finite-D conformal trans-
formations associated with M2 could play important role. These longitudinal degrees of
freedom are non-dynamical in string dynamics. Maybe there is kind of sharing of labor be-
tween these degrees of freedom. In the following we consider two purely pedagogical examples
about Yangianization of four-momentum in M4 and in 8-D context regarding four-momentum
as quaternionic 8-momentum in M8.

Yangianization of four-momentum in conformal algebra of M4

Consider as an example what the Yangianization for four-momentum P k could mean. This
is a pedagogical example.

(a) The first thing to notice is that the commutation relations between P k0 and P k1 are
inherited from those between P k0 and force P k1 and P k0 to commute. This holds true quite
generally for Cartan algebra so that if the correspondence between TA0 and TA1 respects
Cartan algebra property then Cartan algebras of TA0 and TA1 can be simultaneously
diagonalized for the physical states. The Serre relations of Eq. 18.3.3 are identically
satisfied for Cartan algebra and its image. This is consistent with the assumption that
Cartan algebra is mapped to Cartan algebra but does not prove it.

(b) The formula fABCT
A
0 ⊗TC0 for the interaction term appearing in the expresion of ∆ should

be non-trivial also when TA corresponds to four-momentum. Already the Poincare
algebra gives this kind of term built from Lorentz generators and translation generators.

The extension of Poincare algebra extended to contain dilatation operator D can be
considered as also M4 conformal algebra with generators of special conformal trans-
formations MA included (see http://tinyurl.com/nxlmfug). One has doubling of all
algebra generators. The interpretation as gravitational and inertial momenta is one
possibility, and EP suggests that the two momenta have same values. In twistor Grass-
mannian approach the conformal algebras are regarded as dual and suggests the same.
Hence one would have P k0 = P k1 at the level of eigenvalues.

http://tinyurl.com/nxlmfug
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(c) For conformal group the proposed co-product for P ki would read as

∆(P k0 ) = P k0 ⊗ 1 + 1⊗ P k0 ,

∆(P k1 ) = P k1 ⊗ 1 + 1⊗ P k1 +KfkAl(L
A
0 ⊗ P l0 − P k0 ⊗ LA0 ) +KfkAl(M

A
0 ⊗ P l0 − P l0 ⊗MA

0 )

+ K(D0 × P k0 − P k0 ×D0) .

(18.4.1)

This condition could be combined with the condition for mass squared operator. For
K = 0 one would have additivity of mass squared requiring that P1 and P2 are parallel
and light-like. For K 6= 0 it might be possible to have a simultaneous solution to the
both conditions with massive total momentum.

The ∆-iterates of P k0 contain no interaction terms. For P1 one has interaction term. This
holds true for all symmetry generators. Assume P0 = P1: does this mean that the interacting
theory associated with P1 is dual to free theory? The difference ∆P k0 − ∆(P k1 ) defines the
analog interaction Hamilton, which would therefore be not due to a somewhat arbitrary
decomposition of four-momentum to free and interaction parts. It should be possible to
possible to measure this difference and its counterpart for other quantum numbers. One
can only make questions about the interpretation for this duality applying to all quantum
numbers.

(a) In Drinfeld’s construction the negative and positive energy parts of loop algebra would
be related by the duality. In ZEO it might be possible to relate them to positive and
negative energy parts of zero energy states at the opposite boundaries of CD.

(b) If n is interpreted as number of partonic surfaces and the generators are interpreted as
in Witten’s construction then the duality could be seen as a geometric duality in plane
mapping edges and vertices (partonic 2-surfaces ordered in sequence and string between
them) to each other. In super-conformal algebra of twistor Grassmannian approach the
generators TA0 and TA1 are associated with vertices and edges of the polygon defining
the scattering diagram and this suggests that TA0 corresponds to partonic 2-surfaces and
TA1 to the strings world sheets.

(c) Could the duality be a generalization of for Equivalence Principle identifying inertial
and gravitational quantum numbers? This interpretation is encouraged by the presence
of SSA action on space-like 3-surfaces at the ends of CDs and extended super-conformal
algebra associated with the light-like orbits of partons: SGCI would suggest that these
algebras or at least their appropriate sub-algebra are dual. This interpretation conforms
also with the above geometric interpretation and twistor Grassmannian interpretation.

Consider for simplicity the situation in which only scaling generator D is present in the
extension.

(a) Suppose that one has eigenstate of total momentum ∆(P k0 ) resp. ∆(P k1 ) with eigenvalue
ptot0 resp. ptot1 and that

ptot0 = ptot1 (18.4.2)

holds true.

(b) Since D0 and P k0 do not commute, the action of D0 must be realized as differential
operator D0 = ipk0d/dp

k
0 so that one has following eigenvalue equations

∆(P k0 )Ψ = (pk0,1 + pk0,2)Ψ = ptot0 Ψ ,

∆(P k1 )Ψ = (pk1,1 + pk1,2)Ψ +K(ipk0,1 ⊗ pr0,2
d

dpr0,2
− ipr0,1

d

dpr0,1
⊗ pk0,2)Ψ = ptot1 Ψ .(18.4.3)
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Ψ must be a superposition of states |p0,1, p0,2〉. One has non-trivial interaction. Anal-
ogous interaction terms mixing states with different momenta emerge from the terms
involving Lorentz generators and special conformal generators.

Four-momenta as quaternionic 8-momenta in octonionic 8-space

In octonionic approach to twistorial scattering amplitudes particles can be regarded as mass-
less in 8-D sense [L38]. The light-like octonionic momenta are actually quaternionic and one
would obtain massive states in 4-D sense. Different 4-D masses would correspond to discrete
set of quaternionic momenta for 8-D massless particle. Could the above conditions generalize
to this case?

(a) Suppose that the symmetries reduce to Poincare symmetry and to a number theoretic
color symmetry acting as automorphisms of octonions. In this case the four-momentum
for a given M4 ⊂ M8 decomposes to a sum of to a direct sum of M2 invariant under
SU(3) and E2 invariant under SU(2)× U(1) ⊂ SU(3) ⊂ G2. ∆P1 would be non-trivial
for the transversal momentum and of form

∆(PL,k0 )Ψ = (pL,k0,1 + pL,k0,2 )Ψ = ptot0 Ψ ,

∆(PT,k0 )Ψ = (PT,k0 ⊗ 1 + 1⊗ PT,k0 )Ψ ,

∆(PL,k1 )Ψ = (pL,k1,1 + pL,k1,2 )Ψ = PL,tot1 Ψ ,

∆(PT,k1 )Ψ = (PT,k1 ⊗ 1 + 1⊗ PT,k1 +KfkAl(ip
l
0,1 ⊗ tA0,2 − i(ipl0,2 ⊗ tA0,2)Ψ .(18.4.4)

Here PL0 resp. PT0 represents longitudinal resp. transversal momentum and T b0 denotes
SU(2) ⊂ SU(3) generator representable as differential operator acting on complexified

momentum and pT0 = pT,x0 + ipT,y0 and its conjugate.

(b) In transversal degrees of freedom the assumption about momentum eigenstates would
be probably too strong. String model suggests Gaussian in transversal oscillator de-
grees of freedom. Hadronic physics suggests an eigenstate of transversal momentum
squared. TGD based number theoretic considerations suggest that the transversal state
is characterized by color quantum numbers.

Hence the conditions

pL,tot0 = pL,tot1 , (pT,tot0 )2 = (pT,tot1 )2 (18.4.5)

are natural. It would be nice if the momenta p01 and p02 could be chosen to be on mass
shell and satisfy stringy formula for mass squared where transverse momentum squared
would correspond to stringy contribution.

One can also add to ∆(P ) the terms coming from conformal group of M4 or its subgroup.
Since octonionic momentum is light-like M2 momentum for a suitable choice of M2, one must
consider the possibility that the conformal group is that of M2 ⊂ M4. Twistorialization
supports this view [L38]. The action of conformal generations would be on longitudinal
momentum only.

One can wonder how gauge interactions and gravitational interaction do fit to this picture.
Is the extension to super-conformal algebra and supersymplectic algebra the only manner to
obtain gauge interactions and gravitation into the picture?

18.4.4 Yangianization for mass squared operator

It would be nice to have universal mass formulas as a generalization of mass squared formula
for string models in terms of the conformal scaling generator L0 = zd/dz. This operator
should have besides single particle contributions also many particle contributions in bound
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states analogous to interaction Hamiltonian and interaction potential. Yangian as an algebra
containing multi-local generators is a natural candidate in this respect.

One can consider Yangianization of Super Virasoro algebra (SVA). The Yangianization
of various Super Kac-Moody algebras (SKMA) seems however more elegant if it induces
the Yangianization of SVA. Consider first direct Yangianization of SVA. The commuta-
tion relations for SVA will be used in the sequel. They can be found in Wikipedia (see
http://tinyurl.com/klsgquz) so that I do not bother to write them here. It must be
emphasized that there might be delicate mathematical constraints on algebras which allow
Yangianization as the article of Witten [B30] shows. The considerations here rely on physical
intuition with unavoidable grain of wishful thinking.

What about the Yangian variant of mass squared operator m2in terms of the conformal
scaling generator L0 = zd/dz? Consider first the definition of various Super algebras in
TGD framework.

(a) In standard approach the basic condition at single particle level L0Ψ = hvacΨ giving
the eigenvalues of m2. Massless in generalize sense requires hvac = 0. One would have
m2
op = Lvib0 +hvacId, where “vib” refers to vibrational degrees of freedom of Kac-Moody

algebra (KMA). Sugawara construction [A61] allows to express the left-hand side of this
formula in terms of Kac-Moody generators - one has sum over squares T anT

−n
a . One can

say that mass squared is Casimir operator vibrational degrees of freedom for KMA

(b) In absence of interactions - and always for L0,0 - mass squared formula gives m2
1 +m2

2 =

Lvib,10 + Lvib,20 for vanishing vacuum weights. It is important to notice that this does
not imply the additivity of mass squared since one does not have (p1 + p2)2 = m2

1 +m2
2,

which can hold true only for massless and parallel four-momenta. I have considered
the possible additivity of mass mass squared for mesons [K47] but it of course fails for
systems like hydrogen atom.

One can look what Yangianization of Super Virasoro algebra could mean.

(a) One would have doubling of the generators of SKMA and SVA: one possible explanation
is in terms of generalized EP. The difference ∆(TA0 ) −∆(TA1 ) would define the analog
of interaction Hamiltonian of the duality holds true.

One has L0 = G2
0/2. Quite generally, one has {Gr, G−r} = 2L0 apart from the central

extension term. Generalization Yangian to Super Algebra suggests that one has

∆(L0,0) = L0,0 ⊗ 1 + 1⊗ L0,0 ,

∆(L1,0) = L1,0 ⊗ 1 + 1⊗ L1,0 +K
∑
n

G0,r ⊗G0,−r

(18.4.6)

Both operators give the value of hvac expected to vanish when acting on physical states
and the eigenvalues of the interaction mass squared K

∑
nG2⊗G−r/2 would represent

the difference m2
0,1 +m2

0,2−m2
2,1−m2

2,2. By Lorentz invariance the interaction energy is
expected to be proportional to the inner product P1 ·P2 and the interpretation in terms
of gravitational interaction energy is attractive. The size scale of K would be determined
by l2P /R

2 ' 2−12, where lP is Planck length and R is CP2 radius gravitational constant
[L24, L38].

(b) The action of k
∑
nG0,n⊗G0,−n/2 on state |p1, p2〉 is analogous to the action of a tensor

product of Dirac operators on tensor product of spinors. Since Dirac operator changes
chirality, this suggests that the states are superpositions of eigenstates of chirality of
form

Ψ = G0,0Ψ1 ⊗Ψ2 + ε×Ψ1 ⊗G0,0Ψ2 , ε = ±1 .

L0,0Ψi = 0 and ∆(L0,0)Ψ = 0 holds true. ∆(G0,0) and ∆(G1,0) are given by

http://tinyurl.com/klsgquz
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∆(G0,0) = G0,0 ⊗ 1− ε× 1⊗G0,0 ,

∆(G1, 0) = G1,0 ⊗ 1− ε× 1⊗G1,0 − 3K
2

∑
r r(L0,r ⊗G0,−r − (G0,−r ⊗ L0,r) ,

(18.4.7)

and should annihilate Ψ. This is true if L1,r and L0,r annihilate the states.

(c) Perhaps the correct approach reduces to the Yangianization of SKMAs (including the
dynamically generated SKM two which SSA effectively reduces by gauge conditions)
provided that it induces Yangianization of SVA. Momentum components would be as-
sociated with KM generators for M4 excitations of strings such that only transversal
excitations are dynamical.

For fermionic and bosonic generators of SKMA one would have

∆(F a0 ) = F a0 ⊗ 1 + 1× F a0 ,

(F a1 ) = F a1 ⊗ 1 + 1× F a1 +KfAba (TA0 ⊗ F b0 − F b0 ⊗ TA0 ) ,

∆(TA0 ) = TA0 ⊗ 1 + 1⊗ TA0 ,

∆(TA1 ) = TA1 ⊗ 1 + 1⊗ TA1 + fABC(TB0 ⊗ TC0 .

(18.4.8)

Yangianization of SKMA would introduce interaction terms.

18.5 Category theory as a basic tool of TGD

I have already earlier developed ideas about the role of category theory in TGD [K11, K10,
K6]. The hierarchy formed by categories, categories of categories, .... could allow to keep book
about the complexity due to various hierarchies. WCW geometry with its huge symmetries
combined with adelic physics; quantum states identified in ZEO as WCW spinor fields having
topological interpretation as braided fusion categories with reconnection; the local symme-
try algebras of quantum TGD extended to Yangians realizing elegantly the construction
of interacting many-particle states in terms of iterated ∆ operation assigning fundamental
interactions to tensor summands of SKMAs: these could be the pillars of the basic vision.

18.5.1 Fusion categories

While refreshing my rather primitive physicist’s understanding of categories, I found an excel-
lent representation of fusion categories and braided categories [B14] introduced in topological
condensed matter physics. The idea about product and co-product as fundamental vertices
is not new in TGD [K6, K76, L38] but the physicist’s view described in the article provided
new insights.

Consider first fusion categories.

(a) In TGD framework scattering diagrams generalize Feynman diagrams in the sense that
in 3-vertices the 2-D ends for orbits of 3 partonic 2-surfaces are glued together like the
ends of lines in 3-vertex of Feynman diagram. One can say that particles fuse or decay.
3-vertex would be fundamental vertex since higher vertices are unstable against splitting
to 3-vertices. Braiding and reconnection would bring in additional topological vertices.
Note that reconnection represents basic vertex in closed string theory and appears also
in open string theory.

Also fusions and splittings of 3-surfaces analogous to stringy trouser vertex appear as
topological vertices but they do not represent particle decays but give rise to two paths
along, which particles travel simultaneously: they appear in the TGD based description
of double slit experiment. This is a profound departure from string models.
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The key idea is that scattering diagrams are analogous to algebraic computations: the
simplest computation corresponds to tree diagram apart from possible braiding and
reconnections to be discussed below giving rise to purely topological dynamics. One has
a generalization of the duality of the hadronic string model: one does not sum over all
diagrams but takes only one of them, most naturally the simplest one. This is highly
reminiscent to what happens for twistor Grassmann amplitudes.

One can eliminate all loops by moves and modify the tree diagram by moving lines along
lines [?] Scattering diagrams would reduce to tree diagrams having in given vertex either
product µ or its time reversal ∆ plus propagator factors connecting them. The scattering
amplitudes associated with tree diagrams related by these moves were earlier assumed
to be identical. With better understanding of fusion categories I realized that the
amplitudes corresponding to equivalent computations need not be numerically identical
but only unitarily related and in this sense physically equivalent in ZEO.

(b) Fusion categories indeed realize algebraically in very simple form the idea that all scat-
tering diagrams reduce to tree diagrams with 3-vertices as basic vertices. Fusion cate-
gories [B14] (the illustrations http://tinyurl.com/l2jsrzc are very helpful) involve
typically tensor product a ⊗ b of irreducible representations a and b of an algebraic
structure decomposed to irreducible representations c. This product is counterpart for
the 3-parton vertex generalizing Feynmanian 3-vertex.

The article gives a graphical representation for various notions involved and these help
enormously to concretize the notions. Fusion coefficients in a ⊗ b = N c

abc must satisfy
consistency conditions coming from commutativity and associativity forcing the matri-
ces (Na)bc = N c

ab to commute. One can diagonalize Na simultaneously and their largest
eigenvalues da are so called quantum dimensions. Fusion category contains also iden-
tity object and its presence leads to the identification of gauge invariants defining also
topological invariants.

The fusion product a ⊗ b has decomposition V cαab |c, α〉 for each c. Co-product is an
analog of the decay of particle to two particles and product and co-product are inverses
of each other in a well-defined sense expressed as an algebraic identities. This gives rise
to completeness relations from the condition stating that states associated with various
c form a complete basis for states for a⊗ b and orthogonality relations for the states of
associated with various c coefficients. Square roots of quantum dimensions da appear
as normalization factors in the equations.

Diagrammatically the completeness relation means that scattering ab→ c→ cd is triv-
ial. This cannot be the case and the completeness relation must be more general. One
would expect unitary S-matrix instead of identity matrix. The orthogonality relation
says that loop diagram for c→ ab→ c gives identity so that one can eliminate loops.

Further conditions come from the fact that the decay of particle to 3 particles can occur
in two manners, which must give the same outcome apart from a unitary transforma-
tion denoted by matrix F (see Eq. (106) of http://tinyurl.com/l2jsrzc). Similar
consistency conditions for decay to 4 particles give so called pentagon equation as a
consistency condition (see Eq. (107) and Fig. 9 of http://tinyurl.com/l2jsrzc).
These equations are all that is needed to get an internally consistent category.

In TGD framework the fusion algebra would be based on Super Yangian with super Variant
of Lie-algebra commutator as product and Yangian co-product of form already discussed and
determining the basic interaction vertices in amplitudes. Perhaps the scattering amplitude
for a given space-time surface transforming two categories at boundaries of CD to each other
could be seen as a diagrammatic representation of category defined by zero energy state.

18.5.2 Braided categories

Braided categories [B14] (see http://tinyurl.com/l2jsrzc) are fusion categories with
braiding relevant in condensed matter physics and also in TGD.

http://tinyurl.com/l2jsrzc
http://tinyurl.com/l2jsrzc
http://tinyurl.com/l2jsrzc
http://tinyurl.com/l2jsrzc
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(a) Braiding operation means exchange of braid strands defining particle world-lines at 3-
D light-like orbits of partonic 2-surfaces (wormhole throats) defining the boundaries
between Minkowskian and Euclidian regions of space-time surface. Braid operation is
naturally realized in TGD for fermion lines at orbits of partonic 2-surfaces since braiding
occurs in codimension 2.

(b) For quantum algebras braiding operation is algebraically realized as R-matrix satisfying
YBE (see http://tinyurl.com/l4z6zyr). R-matrix is a representation for permu-
tation of two objects represented quantally. Group theoretically the braid group for
n-braid system is covering group of the ordinary permutation group.

In 2-D QFTs braiding operation defines the fundamental 2 → 2 scattering defining R-
matrix as a building brick of S-matrix. This scattering matrix is trivial in the sense that
the scattering involves only a phase lag but no exchange of quantum numbers: particles
just pass by each other in the 2-particle scattering. This kind of S-matrix characterizes
also topological quantum field theories used to deduce knot invariants as its quantum
trace [A50, A25, A57]. I have considered knots from TGD point of view in [K35] [L8].

(c) For braided fusion categories one obtains additional conditions known as hexagon con-
ditions since there are two manners to end up from 1→ 3 fusion diagram involving two
3-vertices and 2 braidings to an equivalent diagram using sliding of lines along lines and
braiding operation (see Fig. 10 of http://tinyurl.com/l2jsrzc).

18.5.3 Categories with reconnections

Fusion and braiding are not enough to satisfy the needs of TGD.

(a) In TGD one does not have just objects - point like particles, whose world lines de-
fine braid strands in time direction. One has also the morphisms represented by the
strings between the particles. Partonic 2-surfaces are connected by strings and these
strings have topological interaction: they can reconnect or just go through each other.
Reconnection is in key role in TGD inspired theory of consciousness and quantum biol-
ogy [K94].

Reconnection is an additional topological reaction besides braiding and one must assign
to it a generalization of R-matrix. Reconnection and going through each other are
just the basic operations used to unknot ordinary knots in the construction of knot
invariants in topological quantum field theories. Now topological time evolution would
be a generalization of this process connecting the knotted and linked structures at
boundaries of CD and allowing both knotting and un-knotting.

(b) Although 2-knots and braids are difficult to construct and visualize, it seems rather
obvious (to me at least) that the reconnections correspond in 4-D space-time surface
to basic operations giving rise to 2-knots [A46] - a generalization of ordinary knot that
is 1-knot. 2-knots could be seen as a cobordism between 1-knots and this suggests a
construction of 2-knot invariants as generalization of that for 1-knots [K35]. 2-knot
would be the process transforming 1-knot by re-connections and “going through” the
second 1-knot. The trace of the topological unitary S-matrix associated with it would
give a knot invariant. If this view is correct, a generalization of TQFT for ordinary braids
to include reconnection could give a TQFT for 2-braids with invariants as invariants of
knot-cobordism. It must be however emphasized that the identification of 2-braids as
knot-cobordisms is only an intuitive guess.

(c) From the point of view of braid strands at the ends of strings, reconnection means
exchange of braid strands. Composite particles consisting of strands would exchange
their building bricks - the analogy with a chemical reaction is obvious and various
reactions could be interpreted as knot cobordisms. Since exchange is involved also now,
one expects that the generalization of R-matrix to algebraically describe this process
should obey the analog of YBE stating that the two braided versions of permutation
abc→ cba are identical.

http://tinyurl.com/l4z6zyr
http://tinyurl.com/l2jsrzc
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If the strings are oriented, one could have YBEs separately for left and right ends
such that braid operation would correspond to the exchange of braid between braid
pairs. The topological interaction for strings AB and CD could correspond to a) trivial
operation “going through” (AB + CD → AB+CD) visible in in the topological inter-
section matrix characterizing the union of string world sheets, exchanges of either left
(AB+CD→ CB+AD) or right ends (AB+CD→ AD+CB), or exchange or right and left
ends (AB+CD→ CD+AB) representable as composition of braid operation for string
ends and exchange of right or left ends and giving rise to braiding operation for pairs
AB and CD.

The following braiding operations would be involved.

i. Internal braiding operation A⊗B → B ⊗A for string like object.

ii. Braiding operation (A ⊗ B) ⊗ (C ⊗ D) → (C ⊗ D) ⊗ (A ⊗ B) for two string like
objects.

iii. Reconnection as braiding operation: (A⊗B)⊗ (C ⊗D)→ (A⊗D)⊗ (C ⊗B) and
(A⊗B)⊗ (C ⊗D)→ (C ⊗B)⊗ (A⊗D).

I have not found by web search whether this generalization of YBE exists in mathematics
literature or whether it indeed reduces to ordinary braiding for the exchanged braids for
different options emerging in reconnection. One can ask whether the fusion procedure
for R-matrices as an analog for the formation of tensor products already briefly discussed
could allow to construct the R-matrix for the reconnection of 2 strings with braids as
boundaries.

(d) The intersections of braid strands are stable against small perturbations unless one
modifies the space-time surface itself (in TGD 2-braids are 2-surfaces inside 4-surfaces).
Also the intersections of world lines in M2 integrable theories are stable. Hence it would
be natural to assign analog of R-matrix also to the intersections.

(e) Light-like 3-D partonic orbits can contain several fermion lines identifiable as boundaries
of string world sheets so that reconnections could induce also more complex reactions
in which partonic 2-surfaces exchange fermions. Quite generally one would have braid
of braids able to braid and also exchange their constituent braids. This would give rise
to a hierarchy of braids within braids and presumably to a hierarchy of categories. This
might provide a first principle topological description of both hadronic, nuclear, and
(bio-)chemical reactions. For instance, the mysterious looking ability of bio-molecules
to find each other in dense molecular soup could rely on magnetic flux tubes (and
associated strings) connecting them [K94].

(f) Reconnection requires a generalization of various quantum algebras, in particular Yan-
gian, which seems to be especially relevant to TGD since it generalizes local symmetries
to multi-local symmetries with locus identifiable as partonic 2-surface in TGD. Since
braid strands are replaced with pairs of them, one might expect that the generalization
of R-matrix involves two parameters instead of one.

18.6 Trying to imagine the great vision about categori-
fication of TGD

The following tries to summarize the ideas described. This is mostly free play with the
ideas in order to see what objects and arrows might be relevant physically and whether
category theory might be of help in understanding poorly understood issues related to various
hierarchies of TGD.

18.6.1 Different kind of categories

Category theory could be much more than mere book keeping device in TGD. Morphisms
and functors could allow to see deep structural similarities between different levels of TGD
remaining otherwise hidden.
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Geometric and number theoretic categories

There are three geometric levels involved: space-time, CDs at imbedding space level, sectors
of WCW assignable with CDs their subsectors characterized by a point for moduli space of
CDs with second boundary fixed.

There are also number theoretic categories.

(a) Adelic physics would define a hierarchy of categories defined by extensions of rationals
and identifiable as an evolutionary hierarchy in TGD inspired theory of consciousness.
Inclusion of extensions parameterized by Galois group and ramified primes defining pre-
ferred p-adic primes would define a functor. The parameters of quantum algebras should
be number theoretically universal and belong to the extension of rationals defining the
adele in question. Powers or roots of e, roots of unity, and algebraic numbers would
appear as building bricks. The larger the p-adic prime p the higher the dimension of
extension containing e and possibly also some of its roots, the better the accuracy of
the cognitive representation.

(b) These inclusions should relate closely to the inclusions of hyperfinite factors of type II1

assignable to finite measurement resolution [K87]. The measurement resolution at space-
time level would characterize the cognitive representation defined in terms of points with
imbedding space coordinates in the extension of rationals defining the adele. The larger
the extension, the larger the cognitive representation and the higher the accuracy of the
representation.

Should the points of cognitive representation be assigned

i. only with partonic 2-surfaces (each point of representation is accompanied by fermion)

ii. or also with the interior of space-time surface (it is not natural to assign fermion
to the point unless the point belongs to string world sheet, even in this case this is
questionable)?

Many-fermion states define naturally a tensor product of quantum Boolean algebras
at the opposite boundaries of CD in ZEO and the interpretation of time evolution as
morphism of quantum Boolean algebras is natural. If cognition is always Boolean then
the first option is more plausible.

(c) The hierarchy of Planck constants heff/h = n with n ≤ ord(G) naturally the number
of sheets and dividing the order ord(G) of the Galois group G of the extension would
relate closely to the hierarchy of extensions. n would be dimension of the covering of
space-time surface defined by the action of Galois group to space-time sheet. Ramified
primes for extensions are in special position for given extension. The conjecture is that
p-adic primes near powers of two or more generally of small primes ramified primes for
extensions, which are winners in number theoretic fight for survival [L34].

(d) The hierarchy of infinite primes [K72] might characterize many-sheeted space-time and
leads to a generalization of number concept with infinitely complex number theoretic
anatomy provided by infinite rationals, which correspond to real and p-adic units. The
inclusion of lower level primes to the higher level primes would define morphism now.
One can assign hierarchy of infinite primes with primes of any extension of rationals.

Consciousness and categories

Categories are especially natural from the point of view of cognition. Classification is the
basic cognitive function and category is nothing but classification by defining objects as equiv-
alence classes. Morphisms and functors serve as correlates for analogies and would provide
the tool of understanding the power of analogies in conscious intelligence. Also attention
could involve morphism and its direction would correlate with the direction of attention.
Perhaps isomorphism corresponds to the state of consciousness in which the distinction be-
tween observer and observed is reported by meditators to cease. Cognitive representations
would be provided by adelic physics at both space-time level, imbedding space level, and
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WCW level (the preferred coordinates for WCW would be in extension of rationals defining
the adele).

One would have a hierarchy of increasingly complex cognitive representations with inclusions
as arrows and their sub-WCWs labelled by moduli of CDs and arrow of geometric time
telling which boundary is affected in the sequence of state function reductions defining self
as generalized Zeno effect [L39].

18.6.2 Geometric categories

Geometric categories appear at WCW level, imbedding space level, and space-time level.

WCW level

The hierarchies formed by the categories defined by the hierarchies of adeles, space-time
sheets and hierarchy of CDs would be mapped also to the level of WCW. The preferred
coordinates of WCW points would be in extension of rationals defining the adele and one
would form inclusion hierarchy. The extension at the level of WCW would induce that at the
level of imbedding space and space-time surface. Sub-CDs would correspond to sub-WCWs
and the moduli space for given CD would correspond to moduli space for corresponding
sub-WCWs. The different arrows of imbedding space time would correspond to sub-WCW
and its time reflection. By the breaking of CP,T, and P the space-time surfaces within time
reversed sub-WCWs would not be mere CP, T and P mirror images of each other [L37, L31].

Imbedding space level

ZEO emerges naturally at imbedding space level and CDs are key notion at this level. Con-
sider next the categories that might be natural in ZEO [K91].

(a) Hierarchy of CDs could allow interpretation as hierarchy of categories. Overlapping CDs
would define an analog of covering of manifold by open sets: one might speak of atlas
with CDs defining conscious maps. Chart maps would be morphisms between different
CDs assignable to common pieces of space-time surfaces. These morphisms would be
also realized at the level of conscious experience. The sub-CD associated with CD would
correspond to mental image defined by sub-self as image of the morphism.

(b) Quantum state of single space-time sheet at boundary of CD would define a geometric
and topological representation for categories. States at partonic 2-surfaces would be
the objects connected by fermionic strings and the associated flux tubes would serve as
space-time correlates of attention in TGD inspired theory of consciousness. The arrows
represented by fermionic strings would correspond to some morphisms, at least thre
Hilbert space isometries defined by entanglement with coefficients in an extension of
rationals. Unitary entanglement gives rise to a density matrix proportional to unitary
matrix and maximal entanglement in both real and p-adic sense. Much more general
entanglement gives rise to maximal entanglement in p-adic sense for some primes.

(c) Zero energy states the states at passive boundary would be naturally identifiable as
categories. At active boundary quantum superpositions of categories could be in ques-
tion. Maybe one should talk about quantum categories defined by the superposition of
space-time sheets with category assigned with an equivalence class of space-time sheets
satisfying the conditions for preferred extremal.

(d) One can imagine a hierarchy of zero energy states corresponding to the hierarchy of
space-time sheets. One can build zero energy states also by adding zero energy states
associated with smaller sub-CDs near the boundaries of CD to get an infinite hierarchy of
zero energy states. The interpretation as a hierarchy of reflective levels of consciousness
would be natural.
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(e) Zero energy states would correspond to generalized Feynman diagrams interpreted as
unitary functors between initial and final state categories. Scattering diagram would be
seen as algebraic computation in a fusion category defined by Yangian. All diagrams
would be reducible to braided tree diagrams with braidings and reconnections. The
time evolution between boundaries could be seen as a topological evolution a of tensor
net [L23].

Category theory would provide cognitive representations as morphisms. Morphisms would
become the key element of physics completely discarded in the existing billiard ball view
about Universe: Universe would be like Universal computer mimicking itself at all hierarchy
levels. This extends dramatically the standard view about cognition where brain is seen as
an isolated seat of cognition.

Space-time level

Many-sheeted space-time is the most obvious application for categorification.

(a) Smaller space-time sheets condensed at large space-time surface regarded as categories
become objects at the level of larger space-time sheet. Functors between the cate-
gories defined by smaller space-time sheets define morphisms between them. Also now
fermion lines and flux tubes connecting the condensed space-time sheets to each other
via wormhole contacts with flux going along another space-time sheet could define func-
tors. Closed loops involving larger space-time sheets and smaller space-time sheets are
needed if monopole flux in question. The loop could visitat smaller space-time sheets.

(b) Interactions would reduce to product and co-product. Interaction term in ∆ for gener-
alized Yangian would characterize fundamental interactions with dynamically generated
SKMAs assignable to SSA as additional interactions. The coupling parameters with ∆
assigned to a direct sum of SKMAs would define coupling constants of fundamental in-
teractions. Iteration of the co-product ∆ would give rise to a hierarchy of many-particle
states. The fact that morphism is in question would map the structure of single particle
states to that of many-particle states.

SH would involve a functor mapping the category of string world sheets (and partonic 2-
surfaces) to that of space-time surfaces having same points with coordinates in extension of
rationals. In p-adic sectors this morphism presumably exists for all p-adic primes thanks to
p-adic pseudo-constants. In real sector this need not be the case: all imaginations are not
realizable.

The morphisms would be mediated by either continuation of strings world sheets (and par-
tonic 2-surfaces) to space-time interiors (morphism would be analogous to a continuation
of holomorphic functions of two complex coordinates from 2-D data at surfaces, where the
functions are real). Possible quaternion analyticity [K76] encourages to consider even con-
tinuation of 1-D data to 4-D surfaces and twistor lift gives some support for this idea.

In the fermionic sector one must continue induced spinor fields at string world sheets to
those at space-time surfaces. The 2-D induced spinor fields could also serve as sources for
4-D spinor fields.



Chapter 19

Are higher structures needed in
the categorification of TGD?

19.1 Introduction

I encountered a very interesting work by Urs Schreiber related to so called higher structures
and realized that these structures are part of the mathematical language for formulating
quantum TGD in terms of Yangians and quantum algebras in a more general manner.

19.1.1 Higher structures and categorification of physics

What theoretical physicist Urs Screiber calls “higher structures” are closely related to the
categorification program of physics. Baez, David Corfield and Urs Schreiber founded a
group blog n-Category Cafe about higher category theory and its applications. John Baez
is a mathematical physicists well-known from is pre-blog “This Week’s Finds” (see http:

//tinyurl.com/yddcabfl) explaining notions of mathematical physics.

Higher structures or n-structures involve “higher” variants of various mathematical structures
such as groups, algebras, homotopy theory, and also category theory (see http://tinyurl.

com/ydz9mbtp. One can assign a higher structure to practically anything. Typically one
loosens some conditions on the structure such as commutativity or associativity: a good
example is the product for octonionic units which is associative only apart from sign factors
[K74]. Braid groups and fusion algebras [L32], which seem to play crucial role in TGD can
be seen as higher structures.

The key idea is simple: replace “=” with homotopy understood in much more general sense
than in topology and identified as the procedure proving A = B! Physicist would call this
operationalism. I would like a more concrete interpretation: “=” is replaced with “=” in
a given measurement resolution. Even homotopies can be defined only modulo homotopies
of homotopies - that is within measurement resolution - and one obtains a hierarchy of
homotopies and at the highest level coherence conditions state that one has “=” almost in
the good old sense. This kind of hierarchical structures are characteristic for TGD: hierarchy
of space-time sheet, hierarchy of p-adic length scales, hierarchy of Planck constants and dark
matters, hierarchy of inclusions of hyperfinite factors, hierarchy of extensions of rationals
defining adels in adelic TGD, hierarchy of infinite primes, self hierarchy, etc...

19.1.2 Evolution of Schreiber’s ideas

One of Schreiber’s articles in Physics Forum articles has title “Why higher category theory in
physics?” (see http://tinyurl.com/ydcylrun) telling his personal history concerning the
notion of higher category theory. Supersymmetric quantum mechanics and string theory/M-
theory are strongly involved with his story.
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Wheeler’s superspace and its deformations as starting point

Schreiber started with super variant of Wheeler’s super-space. Intriguingly, also the “world of
classical worlds” (WCW) of TGD [K34, K15, K110] emerged as a counterpart of superspace
of Wheeler in which the generalization of super-symmetries is geometrized in terms of spinor
structure of WCW expressible in terms of fermionic oscillator operators so that there is
something common at least.

Screiber consider deformation theory of this structure. Deformations appear also in the
construction of various quantum structures such as quantum groups and Yangians. Both
quantum groups characterized by quantum phase, which is root of unity, and Yangians ideal
for reduction of many-particle states and their interactions to kinematics seem to be the most
important from the TGD point of view [L32].

These deformations are often called “quantizations” but this nomenclature is to my opinion
misleading. In TGD framework the basic starting point is “Do not quantize” meaning the
reduction of the entire quantum theory to classical physics at the level of WCW: modes of a
formally classical WCW spinor fields correspond to the states of the Universe.

This does not however prevent the appearance of the deformations of basic structures also
in TGD framework and they might be the needed mathematical tool to describe the notions
of finite measurement resolution and cognitive resolution appearing in the adelic version of
TGD. I proposed more than decade ago that inclusions of hyperfinite factors of II1 (HFFs)
[K87, K26] might provide a natural description of finite measurement resolution: the action
of included factor would generate states equivalent under the measurement resolution used.

The description of non-point-like objects in terms of higher structures

Schreiber ends up with the notion of higher gauge field by considering the space of closed
loops in 4-D target space [B73]. At the level of target space the loop space connection (1-
form in loop space) corresponds to 2-form at the level of target space. At space-time level
1- form A defines gauge potentials in ordinary gauge theory and non-abelian 2-form B as its
generalization with corresponding higher gauge field identified as 3-form F = dB.

The idea is that the values of 2-form B are defined for a string world sheet connecting two
string configuration just like the values of 1-form are defined for a world-line connecting two
positions of a point-like particle. The new element is that the ordinary curvature form does
not anymore satisfy the usual Bianchi identities stating that magnetic monopole currents are
vanishing (see http://tinyurl.com/ya3ur2ad).

It however turns out that one has B = DA = F (D denotes covariant derivative) so that B
is flat by the usual Bianchi-identities implying dB = 0 so that higher gauge field vanishes.
B also turns out to be Abelian. In the Abelian case the value of 2-form would be magnetic
flux depending only on the boundary of string world sheet. By dB = 0 gauge fields in loop
space would vanish and only topology of field configurations would make itself manifest as for
locally trivial gauge potentials in topological quantum field theories (TQFT): a generalization
of Aharonov-Bohm effect would be in question. Schreiber calls this “fake flatness condition”.
This could be seen as an unsatisfactory outcome since dynamics would reduce to topological
dynamics.

The assumption that loop space gauge fields reduce to those in target space could be argued
to be non-realistic in TGD framework . For instance, high mass excitations of theories of
extended structures like strings would be lost. In the case of loop spaces there is also problem
with general coordinate invariance (GCI): one would like to have 2-D GCI assignable to string
world sheets. In TGD the realization that one must have 4-D GCI for 3-D fundamental
objects was a breakthrough, which occurred around 1990 about 12 years after the discovery
of the basic idea of TGD and led to the discovery of WCW Kähler geometry and to “Do not
quantize”.

http://tinyurl.com/ya3ur2ad
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Understanding “fake flatness” condition

Schreiber tells how he encountered the article of John Baez titled “Higher Yang-Mills The-
ory” [B55] (see http://tinyurl.com/yagkqsut) based on the notion of 2-category and was
surprised to find that also now the “fake flatness condition” emerged.

Schreiber concludes that the “fake flatness condition” results from “a kind of choice of co-
ordinate composition”: non-Abelian higher gauge field would reduce to Abelian gauge field
over a background of ordinary non-Abelian gauge fields. Schreiber describes several string
theory related examples involving branes and introduces connection with modern mathemat-
ics. Since branes in the stringy sense are not relevant to TGD and I do not know much about
them, I will not discuss these here.

However, dimensional hierarchies formed by fermions located to points at partonic 2-surfaces,
their world lines at 3-D light-like orbits of partons, strings and string world sheets as their
orbits, and space-time surfaces as 4-D orbits of 3-surfaces definitely define a TGD analog for
the brane hierarchy of string models. It is not yet completely clear whether strong form of
holography (SH) implies that string world sheets and strings provide dual descriptions of 4-D
physics or whether one could regard all levels of this hierarchy independent to some degree
at least [L29].

Since the motion of measurement resolution is fundamental in TGD [K87, K26], it is inter-
esting to see whether n-structures could emerge naturally also in TGD framework. There is
also second aspect involved: various hierarchies appearing in TGD have basically the struc-
ture of abstraction hierarchy of statements about statements and higher structures seem to
define just this kind of hierarchies. Of course, human mind - at least my mind - is in grave
difficulties already with few lowest levels but here category theory and its computerization
might come into a rescue.

19.1.3 What higher structures are?

Schreiber describes in very elegant and comprehensible manner the notion of higher struc-
tures (see http://tinyurl.com/ydfspcld). This description is a real gem for a physicists
frustrated to the impenetrable formula jungle of the usual mathematical prose. Just the basic
ideas and the reader can start to think using his/her own brains. The basic ideas ideas are
very simple and general. Even if one were not enthusiastic about the notion of higher gauge
field, the notion of higher structure is extremely attractive concerning the mathematical
realization of the notion of finite measurement resolution.

(a) The idea is to reconsider the meaning of “=”. Usually it is understood as equivalence:
A = B if A and B belong to same equivalence class defined by equivalence relation.
The idea is to replace “=” with its operational definition, with the proof of equivalence.
This could be seen as operationalism of physics applied to mathematics. Schreiber calls
this proof homotopy identified as a generalization of a map ft: S → X depending on
parameter t ∈ [0, 1] transforming two objects of a topological space X to each other
in continuous manner: f0(S) is the initial object and f1(S) is the final object. Now
homotopy would be much more general.

(b) One can also improve the precision of “=” meaning that equivalence classes decompose
to smaller ones and equivalent homotopies decompose to subclasses of equivalent homo-
topies related by homotopies. One might say that “=” is deconstructed to more precise
“=”. Physicist would see this as a partial opening of a black box by improving the
measurement resolution. This gives rise to n-variants of various algebraic structures.

(c) This hierarchy would have a finite number of levels. At highest level the accuracy would
be maximal and “=” would have almost its usual meaning. This idea is formulated
in terms of coherence conditions. Braiding involving R-matrix represents one example:
permutations are replaced by braidings and permutation group is lifted to braid group
but associativity still holds true for Yang-Baxter equation (YBE). Second example is
2-group for which associativity holds true only modulo homotopy so that (x ◦ y) ◦ z is

http://tinyurl.com/yagkqsut
http://tinyurl.com/ydfspcld
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related to x ◦ (y ◦ z) by homotopy ax,y,z depending on x, y, z and called an associator.
For 2-group the composite homotopy ((w◦x)◦y)◦z → w◦(x◦(y ◦z)) is however unique
albeit non-trivial.

This gives rise to the so called pentagon identity encountered also in the theory of
quantum groups and Yangians. The outcome is that all homotopies associated with re-
bracketings of an algebraic expression are identical. One can define in similar manner
n-group and formally even infinity-group.

19.1.4 Possible applications of higher structures to TGD

Before listing some of the applications of higher structures imaginable in TGD framework,
let us summarize the basic principles.

(a) Physics as WCW geometry [K62, K34, K15, K110] having super-symplectic algebra
(SSA) and partonic super-conformal algebra (PSCA) as fundamental symmetries in-
volving a generalization of ordinary conformal invariance to that for light-like 3-surfaces
defined by the boundary of CD and by the light-like orbits of partonic 2-surfaces at
which the signature of the induced metric changes from Minkowskian to Euclidian.

(b) Physics as generalized number theory [K71] [L34] leading to the notion of adelic physics
with a hierarchy of adeles defined by the extensions of rationals.

(c) In adelic physics finite resolutions for sensory and cognitive representations (see the
glossary of Appendix) could would characterize “=”. Hierarchies of resolutions mean-
ing hierarchies of n-structures rather than single n-structure would give inclusion hier-
archies for HFFs, SSA, and PSCA, and extensions of rationals characterized by Galois
groups with order identifiable as heff/h = n and ramified primes of extension defining
candidates for preferred p-adic primes.

Finite measurement resolution defined by SSA and its isomorphic sub-algebra acting as
pure gauge algebra would reduce SSA to finite-dimensional SKMA. WCW could become
effectively a coset space of Kac-Moody group or of even Lie group associated with it.
Same would take place for PSCA. This would give rise to n-structures. Quantum groups
and Yangians would indeed represent examples of n-structures.

In TGD the “conformal weight” of Yangian however corresponds to the number of par-
tonic surfaces - parton number - whereas for quantum groups and Kac-Moody algebras
it is analogous to harmonic oscillator quantum number n, which however has also inter-
pretation as boson number. Maybe this co-incidence involves something much deeper
and relates to quantum classical correspondence (QCC) remaining rather mysterious in
quantum field theories (QFTs).

(d) An even more radical reduction of degrees of freedom can be imagined. Cognitive
representations could replace space-time surfaces with discrete structures and points of
WCW could have cognitive representations as disretized WCW coordinates.

(e) Categorification requires morphisms and homomorphisms mapping group to sub-group
having normal sub-group defining the resolution as kernel would define “resolution mor-
phisms”. This normal sub-group principle would apply quite generally. One expects that
the representations of the groups involved are those for quantum groups with quantum
phase q equal to a root of unity.

Some examples helps to make this more concrete.

Scattering amplitudes as computations

The deterministic time devolution connecting two field patterns could define analog of ho-
motopy in generalized sense. In TGD framework space-time surface (preferred extremals)
having 3-D space-like surfaces at the opposite boundaries of causal diamond (CD) could
therefore define analog of homotopy.
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(a) Preferred extremal defines a topological scattering diagram in which 3-vertices of Feyn-
man diagram are replaced with partonic 2-surfaces at which the ends of light-like orbits
of partonic 2-surfaces meet and fermions moving along lines defined by string world
sheets scatter classically, and are redistributed between partonic orbits [K76, L24, L38].
Also braidings and reconnections of strings are possible. It is important to notice that
one does not sum over these topological diagrams. They are more like possible classical
backgrounds.

The conjecture is that scattering diagrams are analogous to algebraic computations so
that one can find the shortest computation represented by a tree diagram. Homotopy in
the roughest sense could mean identification of topological scattering diagrams connect-
ing two states at boundaries of CD and differing by addition of topological loops. The
functional integral in WCW is proposed to trivialize in the sense that loop corrections
vanish as a manifestation of quantum criticality of Kähler coupling strength and one
obtains an exponent of Kähler function which however cancels in scattering amplitudes
if only single maximum of Kähler function contributes.

(b) In the optimal situation one could eliminate all loops of these diagrams and also move
line ends along the lines of diagrams to get tree diagrams as representations of scattering
diagrams. Similar conditions hold for fusion algebras. This might however hold true
only in the minimal resolution. In an improved measurement resolution the diagrams
could become more complex. For instance, one might obtain genuine topological loops.

(c) The diagrams and state spaces with different measurement resolutions could be related
by Hilbert space isometries but would not be unitarily equivalent: Hilbert space isome-
tries are also defined by entanglement in tensor nets [L23]. This would give an n-levelled
hierarchy of higher structures (rather than single n-structure!) and at the highest level
with best resolution one would have coherence rules. Generalized fusion algebras would
partially realize this vision. In improved measurement resolution the diagrams would
not be identical anymore and equivalence class would decompose to smaller equivalence
classes. This brings in mind renormalization group equations with cutoff.

(d) Intuitively the improvement of the accuracy corresponds to addition of sub-CDs of CDs
and smaller space-time sheets glued to the existing space-time sheets.

Zero energy ontology (ZEO)

In ZEO [K91] “=” could mean the equivalence of two zero energy states indistinguishable in
given measurement resolution. Could one say that the 3-surfaces at the ends of space-time
surface are equivalent in the sense that they are connected by preferred extremal and have
thus same total Noether charges, or that entangled many-fermion states at the boundaries of
CD correspond to quantal logical equivalences (fermionic oscillator algebra defines a quantum
Boolean algebra)?

In the case of zero energy states “=” could tolerate a modification of zero energy state by zero
energy state in smaller scale analogous to a quantum fluctuation in quantum field theories
(QFTs). One could add to a zero energy state for given CD zero energy states associated
with smaller CDs within it.

In TGD inspired theory of consciousness [L39] sub-CDs are correlates for the perceptive fields
of conscious entities and the states associated with sub-CDs would correspond to sub-selves of
self defining its mental images. Also this could give rise to hierarchies of n-structures with n
characterizing the number of CDs with varying sizes. An interesting proposal is the distance
between the tips of CD is integer multiple of CP2 for number theoretic reasons. Primes and
primes near powers of 2 are suggested by p-adic length scale hypothesis [K39, K42, K43] [L34].

“World of classical worlds” (WCW)

At the level of “world of classical worlds” (WCW) “=” could have both classical meaning
and meaning in terms of quantum state defining the measurement resolution. At the level



730 Chapter 19. Are higher structures needed in the categorification of TGD?

of WCW geometry n-levelled hierarchies formed by the isomorphic sub-algebras of SSA and
PSCA are excellent candidates for n-structures. The sub-SCA or sub-PSCA would define the
measurement resolution. The smaller the sub-SSA or sub-PSCA, the better the resolution.

This could correspond to a hierarchy of inclusions of HFFs [K87, K26] to which one can assign
ADE SKMA by McKay correspondence or its generalization allowing also other Lie groups
suggested by the hierarchy of extensions of rationals with Galois groups that are groups of
Lie type. The conjecture generalizing McKay correspondence is that the Galois group Gal is
representable as a subgroup of G in the case that it is of Lie type.

An attractive idea is that WCW is effectively reduced to a finite-dimensional coset space
of the Kac-Moody group defined by the gauge conditions. Number theoretic universality
requires that these parameters belong to the extension of rationals considered so that the
Kac-Moody group G is discretized and also homotopies are discretized. SH raises the hope
that it is enough to consider string world sheets with parameters (WCW coordinates) in the
extension of rationals.

One can define quite concretely the action of elements of homotopy groups of Kac-Moody Lie
groups G on space-time surfaces as induced action changing the parameters characterizing
the space-time surface. n + 1-dimensional homotopy would be 1-dimensional homotopy of
n-dimensional homotopy. Also the spheres defining homotopies could be discretized so that
the coordinates of its points would belong to the extension of rationals.

These kind of homotopy sequences could define analogs of Berry phases (see http://tinyurl.
com/yd4agwnt) in Kac-Moody group. Could gauge theory for Kac-Moody group give an
approximate description of the dynamical degrees of freedom besides the standard model
degrees of freedom? This need not be a good idea. It is better to base the considerations of
the physical picture provided by TGD. I have however discussed the TGD analog of the fake
flatness condition in the Appendix.

Adelic physics

Also number theoretical meaning is possible for “=”. It is good to start with an objection
against adelic physics. The original belief was that adelic physics forces preferred coordinates.
Indeed, the property of belonging to an extension of rationals does not conform with general
coordinate invariance (GCI). Coordinate choice however matters cognitively as any mathe-
matical physicist knows! One can therefore introduce preferred coordinates at the imbedding
space level as cognitively optimal coordinates: they are dictated to a high degree by the
isometries of H. One can use a sub-set of these coordinates also for space-time surfaces,
string world sheets, and partonic 2-surfaces.

(a) Space-time surfaces can be regarded as multi-sheeted Galois coverings of a representative
sheet [L34]. Minimal resolution means that quantum state is Galois singlet. Improving
resolution means requiring that singlet property holds true only for normal sub-group
H of Galois group Gal and states belong to the representations of Gal/H. Maximal
resolution would mean that states are representations of the entire Gal. The hierarchy of
normal sub-groups ofGal would define a resolution hierarchy and perhaps an analog of n-
structure. heff/h = n hypothesis suggests hierarchies of Galois groups with dimensions
ni dividing ni+1. The number of extensions in the hierarchy would characterize n-
structure.

(b) The increase of the complexity for the extension of rationals would bring new points
in the cognitive representations defined by the points of the space-time surface with
imbedding space coordinates in the extension of rationals used (see the glossary in
Appendix). Also the size of the Gal would increase and higher-D representations would
become possible. The value of heff/h = n identifiable as dimension of Gal would
increase. The cognitive representation would become more precise and the topology of
the space-time surface would become more complex.

(c) In adelic TGD “=” could have meaning at the level of cognitive representations. One
could go really radical and ask whether discrete cognitive representations replacing

http://tinyurl.com/yd4agwnt
http://tinyurl.com/yd4agwnt
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space-time surfaces with the set of points with H-coordinates in an extension of rationals
(see the glossary in Appendix) defining the adele should provide the fundamental data
and that all group representations involved should be realized as representations of Gal.
This might apply in cognitive sector.

This would also replace space-time surfaces as points of WCW with their cognitive
representations defining their WCW coordinates! All finite groups can appear as Galois
groups for some number field. Whether this is case when one restricts the consideration
to the extensions of rationals, is not known. Most finite groups are groups of Lie type and
thus representable as rational points of some Lie group. Note that rational point can
also mean rational point in extension of rationals as ratio of corresponding algebraic
integers identifiable as roots of monic polynomials Pn(x) = xn + .... having rational
coefficients.

(d) By SH space-time surface would in information theoretic sense effectively reduce to
string world sheets and even discrete set of points with H-coordinates in extension
of rationals. These points could even belong to the partonic 2-surface at the ends of
strings at ends of CD carrying fermions and the partonic 2-surfaces defining topological
vertices. If only this data is available, the WCW coordinates of space-time surface would
reduce to these points of H = M4×CP2 and to the direction angles of strings emerging
from these points and connecting them to the corresponding points at other partonic
2-surfaces besides Gal identifiable as sub-group of Lie group G of some Kac-Moody
group! Not all pairs Gal −G are possible.

(e) Could these data be enough to describe mathematically what one knows about space-
time surface as point of WCW and the physics? One could indeed deduce heff/h = n
as the order of Gal and preferred p-adic primes as ramified primes of extension. The
Galois representations acting on the covering defining space-time surface or string world
sheets should be identifiable as representations of physical states. There is even number
theoretical vision about coupling constant evolution relying on zeros of Riemann zeta
[L16],

(f) This sounds fine but one must notice that there is also the global information about the
conformal moduli of partonic 2-surfaces and the elementary particle vacuum functionals
defined in this moduli space [K12] explain family replication phenomenon. There is also
information about moduli of CDs. Also the excitations of SKMA representations with
higher conformal weights are present and play a crucial role in p-adic thermodynamics
predicting particle masses [K39]. It is far from clear whether the approach involving
only cognitive representation is able to describe them.

To help the reader I have included a vocabulary at the end of the article and include here a
list of the abbreviations used in the text.

General abbreviations: Quantum field theory (QFT); Topological quantum field theory
(TQFT); Hyper-finite factor of type II1 (HFF); General coordinate invariance (GCI); Equiv-
alence Principle (EP).

TGD related abbreviations: Topological Geometrodynamics (TGD); General Relativity The-
ory (GRT); Zero energy ontology (ZEO); Strong form of holography (SH); Strong form of
general coordinate invariance (SGCI); Quantum classical correspondence (QCC); Negentropy
Maximization Principle (NMP); Negentropic entanglement (NE); Causal diamond (CD);
Super-symplectic algebra (SSA); Partonic superconformal algebra (PSCA); Super Virasoro
algebra (SVA); Kac-Moody algebra (KMA); Super-Kac-Moody algebra (SKMA);

19.2 TGD very briefly

TGD is a fusion of two approaches to physics. Physics as infinite-dimensional geometry based
on the notion of “(” []WCW) [K62] and physics as generalized number theory [K71]. Here
some aspects of the vision about physics as WCW geometry are discussed very briefly.
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19.2.1 World of classical worlds (WCW)

TGD is a fusion of two approaches to physics. Physics as infinite-dimensional geometry based
on the notion of “(” []WCW) [K62] and physics as generalized number theory [K71]. Here
some aspects of the vision about physics as WCW geometry are discussed very briefly.

Construction of WCW geometry briefly

In the following the vision about physics in terms of classical physics of spinor fields of WCW
is briefly summarized.

(a) The idea is to geometrize not only the classical physics in terms of geometry of space-
time surfaces but also quantum physics in terms of WCW [K110]. Quantum states
of the Universe would be modes of classical spinor fields in WCW and there would
be no quantization. One must construct Kähler metric and Kähler form of WCW: in
complex coordinates they differ by a multiplicative imaginary unit. Kähler geometry
makes possible to geometrize hermitian conjugation fundamental for quantum theory.

(b) One manner to build WCW metric this is via the construction of gamma matrices
of WCW in terms of second quantized oscillator operators for fermions described by
induced spinor fields at space-time surfaces. By strong form of holography this would
reduce to the construction of second quantized induced spinor fields at string world
sheets. The anti-commutators of of WCW gamma matrices expressible in terms of
oscillator operators would define WCW metric with maximal isometry group (SCA)
[K88, K110].

(c) Second manner to achieve the geometrization is to construct Kähler metric and Kähler
form directly [K34, K15, K110]. The idea is to induce WCW geometry from the Kähler
form J of the imbedding space H = M4 × CP2. The mere existence of the Riemann
connection forces a maximal group of isometries. In fact, already in the case of loop
space the Kähler geometry is essentially unique.

The original construction used only the Kähler form of CP2. The twistor lift of TGD
[L38] forces to endow also M4 with the Minkowskian analog of Kähler form involving
complex and hypercomplex part and the sum of the two Kähler forms can be used to
define what might be called flux Hamiltonians. They would define the isometries of
WCW as symplectic transformations. What was surprising and also somewhat frus-
trating was that what I called almost 2-dimensionality of 3-surfaces emerges from the
condition of general coordinate invariance and absence of dimensional parameters apart
from the size scale of CP2.

In the recent formulation this corresponds to SH: 2-D string world sheets and 2-D
partonic 2-surfaces would contain data allowing to construct space-time surfaces as
preferred extremals. In adelic physics also the specification of points of space-time
surface belonging to extension of rationals defining the adele would be needed. There
are several options to consider but the general idea is clear.

SH is analogous to a construction of analytic function of 2-complex from its real values
at 2-D surface and the analogy at the level of twistor lift is holomorphy as generalization
of holomorphy of solutions gauge fields in the twistor approach of Penrose. Also quater-
nionic analyticity [K76] is suggestive and might mean even stronger form of holography
in which 1-D data allow to construct space-time surfaces as preferred extremals and
quantum states.

I have proposed formulas for the Kähler form of WCW in terms of flux Hamiltonians
but the construction as anti-commutators of gamma matrices is the more convincing
definition. Fermions and second quantize induced spinor fields could be an absolutely
essential part of WCW geometry.

(d) WCW allows as infinitesimal isometries huge super-symplectic algebra (SSA) [K34, K15]
acting on space-like 3-surfaces at the ends of space-time surfaces inside causal diamond
(CD) and also generalization of Kac-Moody and conformal symmetries acting on the
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3-D light-like orbits of partonic 2-surfaces (partonic super-conformal algebra (PSCA)).
These symmetry algebras have a fractal structure containing a hierarchy of sub-algebras
isomorphic to the full algebra. Even ordinary conformal algebra with non-negative con-
formal weights has similar fractal structure as also Yangian. In fact, quantum algebras
are formulated in terms of these half algebras.

The proposal is that sub-algebra of SSA (with non-negative conformal weights) and
isomorphic to entire SSA and its commutator with the full algebra annihilate the physical
states. What remains seems to be finite-D Kac-Moody algebra as an effective “coset”
algebra obtained. Note that the resulting normal sub-group is actually quantum group.

There is direct analogy with the decomposition of a group Gal to a product of sub-group
and normal sub-group H. If the normal sub-group H acts trivially on the representation
the representation of Gal reduces to that of the group Gal/H. Now one works at Lie
algebra level: Gal is replaced with SSA and H with its sub-algebra with conformal
weights multiples of those for SSA.

Super-symplectic conformal weights, zeros of Riemann zeta, and quantum phases?

In [L16] I have considered the possibility that the generators of super-symplectic algebra
could correspond to zeros h = 1/2 + iy of zeta. The hypothesis has several variants.

(a) The simplest variant is that the non-trivial zeros of zeta are labelling the generators
of SSA associated with Hamiltonians proportional to the functions f(rM ) of the light-
like radial coordinate of light-cone boundary as f(rM ) = (rM/0)h ≡ exp(hu), u =
log(rM/r0), h = −1/2+iy. For infinitely large size of CD the plane waves are orthogonal
but for finite-sized CD orthogonality is lost. Orthogonality requires periodic boundary
conditions and these are simultanwously possible only for a finite number of zeros of
zeta.

(b) One could modify the hypothesis by allowing superpositions of zeros of zeta but with
a subtraction of half integer to make the real part of ih equal to 1/2 so that one
obtains an analog of plane-wave when using u = log(rM/r0) as a radial coordinate.
Equivalently, one can take drM/rM out as integration measure and assume h = iy
plus the condition that the Riemannian plane waves are orthogonal and satisfy periodic
boundary conditions for the allowed zeros z = 1/2 + iy.

(c) Periodic boundary conditions can be satisfied for given zero of zeta if the condition
rmax/rmin = pn holds true and the additional conjecture that given non-trivial zeros of
zeta correspond to prime p(y) and piy is a root of unity. Given basis of f(rM ) would
correspond to n-ary p-adic length scales and also the size scales of CDs would correspond
to powers of p-adic primes. This conjecture is rather attractive physically and I have
not been able to prove it wrong.

One can associate to given zero z = 1/2 + iy single and only single prime p(y) by
demanding that piy = exp(i2πq), q = m/n rational, implying log(p)y = 2πq. If there
were two primes p1 and p2 of this kind, one one ends up with contradiction pm1 = pn2 for
some integers m and n.

One could however associate several zeros yi(p) to the same prime p as discussed in [L16].
If N =

∏
i ni is the smallest common denominator of qi allowed conformal weights

would be superpositions ih = iN
∑
niyi(p) and conformal weights would form higher

dimensional lattice rather than 1-D lattice as usually. If only single prime p(y) can be
associated to given y, then the original hypothesis identifying h = 1/2+ iy as conformal
weight would be natural.

(d) The understanding of the p-adic length scale hypothesis is far from complete and one
can ask whether preferred p-adic primes near powers of 2 and possibly also other small
primes could be primes for which there are several roots yi(p).
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19.2.2 Strong form of holography (SH)

There are several reasons why string world sheets and partonic 2-surfaces should code for
physics. One reason for SH comes from M8 −H correspondence [K111]. Second motivation
comes from the condition that spinor modes at string world sheets are eigenstates of em
charge [K88]. The third reason could come the requirement that the notion of commutative
quantum sub-manifold [A29] is equivalent with its number theoretic variant.

SH and M8 −H correspondence

The strongest form of M8−H correspondence [K74, K111, L38] assumes that the 4-surfaces
X4 ⊂ M8 have fixed M2 ⊂ M4 ⊂ M8 as part of tangent space. A weaker form states
that these 2-D subspaces M2 define an integrable distribution and therefore 2-D surface in
M4. This condition guarantees that the quaternionic (associative) tangent space of X4 is
parameterized by a point of CP2 so that the map of X4 to a 4-surface in M4×CP2 is possible.
One can consider also co-associative space-time surfaces having associative normal spaces.
m Note that M8 −H [K74, K111] correspondence respects commutativity and quaternionic
property by definition since it maps space-time surfaces having quaternionic tangent space
having fixed M2 as sub-set of tangent space.

What could be the relationship between SH and M8−H correspondence? Number theoretic
vision suggests rather obvious conjectures.

(a) Could the tangent spaces of string world sheets in H be commutative in the sense
of complexified octonions and therefore be hyper-complex in Minkowskian regions. By
M8−H duality the commutative sub-manifolds would correspond to those of octonionic
M8 and finding of these could be the first challenge. The co-commutative manifolds
in quaternionic X4 would have commutative normal spaces. Could they correspond to
partonic 2-surfaces?

(b) There is however a delicacy involved. Could world sheets and partonic 2-surfaces cor-
respond to hyper-complex and co-hyper-complex sub-manifolds of space-time surface
X4 identifiable as quaternionic surface in octonionic M8 mappable to similar surfaces
in H. Or could their M4 (CP2) projections define hypercomplex (co-hypercomplex)
2-manifolds?

(c) Could co-commutativity condition for a foliation by partonic 2-surfaces select preferred
string world sheets as normal spaces integrable to 2-surfaces identifiable as string world
sheets? Note that induced gauge field on 2-surface is always Abelian so that QFT and
number theory based views about commutativity co-incide.

Preferred choices for these 2-surfaces would serve as natural representatives for the
equivalence classes of string world sheets and partonic 2-surfaces with fermions at the
boundaries of string world sheets serving as markers for the representatives? The end
points of the string orbits would belong to extension of rationals or even correspond
to singular points at which the different sheets co-incide and have rational coordinates:
this possibility was considered in [L41].

Real curves correspond to the lowest level of the dimensional hierarchy of continuous surfaces.
Could string world lines along light-like partonic orbits correspond to real sub-manifolds of
octonionic M8 mapped to M4 × CP2 by M8 − H correspondence and carrying fermion
number?

What about the set of points with coordinates in the extension of rationals? Do all these
points carry fermion number? If so they must correspond to the edges of the boundaries of
string world sheets at partonic 2-surfaces at the boundaries of CD or edges at the partonic
2-surfaces defining generalized vertices to which sub-CDs could be assigned.
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Well-definedness of em charge forces 2-D fundamental objects

The proposal has been that the representative string world sheets should have vanishing
induced W fields so that induced spinors could have well-defined em and Z0 charges and
partonic 2-surfaces would correspond to the ends of 3-D boundaries between Euclidian and
Minkowskian space-time regions [K88, K110].

As a matter of fact, the projections of electroweak gauge fields to 2-D surfaces are always
Abelian and by using a suitable SU(2)L × U(1) rotation one can always find a gauge in
which the induced W fields and even Z0 field vanish. The highly non-trivial conclusion is
that string world sheets as fundamental dynamical objects coding 4-D physics by SH would
guarantee well-definedness of em charge as fermionic quantum number. Also the projections
of all classical color gauge fields, whose components are proportional to HAJ , where HA is
color Hamiltonian and J is Kähler form of CP2, are Abelian and in suitable gauge correspond
to hypercharge and isospin.

One can imagine a foliation of space-time surfaces by string world sheets and partonic 2-
surfaces. Could there be a U(1) gauge invariance allowing to chose partonic 2-surfaces and
string world sheets arbitrarily? If so, the assignment of the partonic 2-surfaces to the light-
like boundaries between Minkowskian and Euclidian space-time regions would be only one -
albeit very convenient - choice. I have proposed that this choice is equivalent with the choice
of complex coordinates of WCW. The change of complex coordinates would introduce a U(1)
transformation of Kähler function of WCW adding to it a real part of holomorphic function
and of Kähler gauge potential leaving the Kähler form and Kähler metric of WCW invariant.

String world sheets as sub-manifolds of quantum spaces for which commuting
sub-set of coordinates are diagonalized?

The third notion of commutativity relates to the notion of non-commutative geometry. Un-
fortunately, I do not know much about non-commutative geometry.

(a) Should one follow Connes [A29] and replace string world sheets with non-commutative
geometries with quantum dimension identifiable as fractal dimension. I must admit
that I have felt aversion towards non-commutative geometries. For linear structures
such as spinors the quantum Clifford algebra looks natural as a “coset space” obtained
by taking the orbits of included factor as elements of quantum Clifford algebra. The
application of this idea to string world sheets does not look attractive to me.

(b) The basic reason for my aversion is that non-commutative quantum coordinates lead to
problems with general coordinate invariance (GCI). There is however a possible loop-
hole here. One can approach the situation from two angles: number theoretically and
from the point view of non-commutative space. Commutativity could mean two things:
number theoretic commutativity and commutativity of quantum coordinates for H seen
as observables. Could these two meanings be equivalent as quantum classical correspon-
dence (QCC) encourages to think?

Could the discreteness for cognitive representations correspond to a discretization of
the eigenvalue spectrum of the coordinates as quantum operators? The choice of the
coefficient number field for Hilbert space as extension of rationals would automatically
imply this and resolve the problems related to continuous spectra.

Quantum variant of string world sheet could correspond to a quantization using a sub-set
of imbedding space coordinates as quantum commutative coordinates as coordinates for
string world sheet. H-coordinates for string world sheet would correspond to eigenvalues
of commuting quantum coordinates.

The above three views about SH suggests that Abelianity at the fundamental level is un-
avoidable because basic observable objects are 2-dimensional. This would correspond A =
J = −B = 0 for non-Abelian gauge fields reducing to Abelian ones in Schreiber’s approach.
Also Schreiber finds that with suitable choice of coordinates this holds true always. In TGD
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this choice would correspond to gauge choice in which all induced gauge fields are Abelian
(see Appendix).

Ordinary twistorialization maps points of M4 to bi-spinors allowing quantum variants. Could
twistorialization of M4 and CP2 allow something analogous?

19.3 The notion of finite measurement resolution

Finite measurement resolution [K87, K26] is central in TGD. It has several interpretations
and the challenge is to unify the mutually consistent views.

19.3.1 Inclusions of HFFs, finite measurement resolution and quan-
tum dimensions

Concerning measurement resolution the first proposal was that the inclusions of HFFs chac-
terize it.

(a) The key idea is simple. Yangians and/or quantum algebras associated with the dynami-
cal SKMAs defined by pairs of SSA and its isomorphic sub-algebra acting as pure gauge
transformations are characterized by quantum phases [L32] characterizing also inclu-
sions of HFFs [K87, K26]. Quantum parameter would characterize the measurement
resolution.

The Lie group characterizing SKMA would be replaced by its quantum counterpart.
Quantum groups involve quantum parameter q ∈ C involved also with n-structures.
This parameter - in particular its phase- should belong to the extension of rationals
considered. Notions like braiding making sense for 2-D structures are crucial. Remark-
ably, the representation theory for quantum groups with q different from a root of unity
does not differ from that for ordinary groups. For the roots of unity the situation is
different.

(b) The levels in the hierarchy of inclusions for HFFs [K87] are labelled by integer n ∈ [3,∞)
or equivalenly by quantum phases q = exp(iπ/n) and quantum dimension is given by
dq = 4cos2(π/n). n = 3 gives d = 2 that is ideal SH with minimal measurement
resolution. For instance, in extension of rationals only phases, which are powers of
exp(iπ/3) are represented p-adically so that angle measurement is very imprecise. The
hierarchy would correspond to an increasing measurement resolution and at the level
n→∞ one would have dq → 4. Could the interpretation be that one sees space-time as
4-dimensional? This strongly suggests that the hierarchy of Lie groups characterizing
SKMAs are characterized by the same quantum phase as inclusions of HFFs.

How does quantal dimension show itself at space-time level?

(a) Could SH reduce the 4-surfaces to effectively fractal objects with quantum dimension
dq? Could one speak of quantum variant of SH perhaps describe finite measurement
resolution. In adelic picture this limit could correspond to an extension of rational
consists of algebraic numbers extended by all rational powers of e. How much does this
limit deviate from real numbers?

(b) McKay correspondence (see http://tinyurl.com/z48d92t) states that the hierarchy
of finite sub-groups of SU(2) corresponds to the hierarchy ADE Kac-Moody algebras
in the following sense. The so called McKay graph codes for the information about
the multiplicities of the tensor products of given representation of finite group (spin
1/2 doublet) - obviously one can assign McKay graph to any Galois group. McKay
correspondence says that the McKay graph for the so called canonical representation of
finite sub-group of SU(2) co-incides with the Dynkin diagram for ADE type Kac-Moody
algebra.

http://tinyurl.com/z48d92t
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(c) A physically attractive idea is that these algebras correspond to a hierarchy of reduced
SSAs and PSCAs defined by the gauge conditions of SSA and PSCA. The breaking
of maximal effective gauge symmetry characterizing measurement resolution to isomor-
phic sub-algebra would bring in additional degrees of freedom increasing the quantum
dimension of string world sheets from the minimal value dq = 2.

My naive physical intuition suggests that McKay correspondence generalizes to a much
wider class of Galois groups identifiable as finite groups of Lie type identifiable as sub-
groups of Lie groups (for the periodic table of finite groups see (see http://tinyurl.

com/y75r68hp)). In general, the irreducible representation (irrep) of group is reducible
representation of subgroup. The rule could be that the representations of the quantum
Lie groups allowed as ground states of SKMA representations are irreducible also as
representations of Galois group in case that it is Lie-type subgroup.

What about the concrete geometric interpretation of dq? Two interpretations, which do not
exclude each other, suggest themselves.

(a) A very naive idea is that string world sheets effectively fill the space-time surface as the
measurement accuracy increases. The idea about fractal string world sheets does not
however conform with the fact that preferred extremals must be rather smooth.

String world sheets could be however locally smooth if they define an analog of dis-
cretization for the space-time surface. At the limit dq → 4 string world sheets would
fill space-time surface. Analogously, strings (string orbits) would fill the space-like
3-surfaces at the boundaries of CD (the light-like 3-surfaces connecting the partonic
2-surfaces at boundaries of CD). The number of fermions at partonic 2-surfaces would
increase and lead to an increased measurement resolution at the level of physics. For
anyonic systems [K55] one indeed would have have large number of fermions at 2-D
surfaces.

(b) An alternative idea is that quantum dimension is temperature like parameter coding for
the ignorance about the details of space-time surface and string world sheet due to finite
cognitive resolution. Cognitive representation consists of a discrete set of points of H
in an extension of rationals defining the adele and quantum dimension would represent
this ignorance. A precise mathematical representation of ignorance can be extremely
successful trick as ordinary thermodynamics and also p-adic thermodynamics for particle
masses [K39] demonstrate!

19.3.2 Three options for the identification of quantum dimension

The quantum dimension would increase as the measurement accuracy increases but what
quantum dimension of string world sheets could mean at space-time level? Identification of
quantum dimension as fractal dimension could be the answer but how could one concretely
define this notion? Could one find an elegant formulation for the fractality at space-time
level.

Option I

One could argue that quantum dimension is temperature like parameter coding for the igno-
rance about the details of space-time surface and string world sheet due to finite cognitive
resolution. Cognitive representation consists of a discrete set of points of H in an extension
of rationals defining the adele and quantum dimension would represent this ignorance. One
would give up the attempts to represent quantum superposition of space-time surfaces with
single classical surface. This option would use only the discrete cognitive representations (see
the glossary in Appendix).

(a) This would mean a radical simplification and could make sense for cognitive representa-
tions. String world sheet would be replaced by this discrete cognitive representation and
one should be able to deduce its quantum dimension. Gal acts on this representation.

http://tinyurl.com/y75r68hp
http://tinyurl.com/y75r68hp
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(b) Could one imagine q-variants of the representations of Gal defining also representations
of the Lie group defining KMA? If one can imbed Gal to Lie-group as discrete sub-group
then the q-representation of the Lie-group would define a q-representation of discrete
group and one might be able to talk about q-Galois groups.

(c) On the other hand, the condition that these representations restricted to representa-
tions of Galois group remain irreducible poses similar condition. Are these two criteria
equivalent? Could this allow to identify the value of root of unity associated with given
Galois group and corresponding Lie group defining SKMA in case that it contains rep-
resentations that remain irreps of Galois group? If so, the notion of quantum group
would follow from adelic physics in a natural manner.

This would allow to assign quantum dimension to the discretized string world sheet
without clumsy fractal constructions at space-time level involving a lot of redundant
information. The really nice thing would be that one would use only the information
defining the cognitive representations and the fact that one does not know about the
rest. Just as in thermodynamics, things would become extremely simple!

(d) One might argue that giving just discrete points at partonic 2-surfaces gives very little
information. If one however assumes that also the functions characterizing space-time
surfaces as points of sub-WCW involved are constructed from rational polynomials with
roots in the extension of rationals used, the situation improves dramatically.

Option II

A very naive idea is that string world sheets effectively fill the space-time surface as the
measurement accuracy increases. Smooth strings would fill the space-like 3-surfaces at the
boundaries of CD and light-like 3-surface connecting the partonic 2-surfaces at boundaries of
CD. The number of fermions at partonic 2-surfaces would increase and lead to an increased
measurement resolution. For anyonic systems one indeed would have have large number of
fermions at 2-D surfaces.

This option would be based on fractal dimension of some kind. Most naturally the fractal
dimension would be that of space-time surface discretized using string world sheets and
possibly also partonic 2-surface instead of points. It is however difficult to imagine a practical
realization for fractal dimension in this sense.

(a) Assume reference string world sheets in the minimal resolution defined by an extension
of rationals with total area S0. Study the total area S associated with string world
sheets as function of the extension of rationals.

(b) As the size of the extension grows, new points of extension emerge at partonic 2-surfaces
and therefore also new string world sheets and the total area of string worlds sheets
increases. Twistor lift suggests that one can take the area S1 defined by Planck length
squared and the area S2 of CP2 geodesic sphere as units. Suppose that one has S/S0 =
(S1/S2)d, where d depends on the extension and equals to d = 0 for rationals, holds
true. Could d + 2 define the fractal dimension equal to dq for Jones inclusions in the
range [2, 4)? If the proposed notion of quantum Galois group makes sense this could be
the case.

One must admit that the hopes of proving this picture works in practice are rather meager.
Too much redundant information is involved.

Option III

One can also imagine an approach quantum dimension identifying quantum dimension as
fractal dimension for space-time surface. If SH makes sense, one can consider the possibility
that this dimension determined by the geometry of space-time surface as Riemann manifold
has fractal dimension equal to the fractal dimension of string world sheets as sub-manifold.
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(a) The spectral dimension of classical geometry is discussed in http://tinyurl.com/

yadcmjd6). One considers heat equation describing essentially random walk in a given
metric and constructs so called heat kernel as a solution of the heat equation. The
Laplacian depends on metric only - now the induced metric. The trace of heat kernel
characterizes the probability to return to the original position. The derivative of the
logarithm of the heat trace with respect to the logarithm of fictive time coordinate gives
time dependent spectral dimension, which for short times approaches to topological di-
mension and for flat space equals to it always. For long times the dimension is smaller
than the topological dimension due to curvature effects and SH raises the hope that
this dimension corresponds to the fractal dimension of string world sheets identified as
quantum dimension.

(b) This approach can be criticized for the introduction of fictive time coordinate. Further-
more, Laplacian would be replaced with d’Alembertian in Minkowskian regions so that
one cannot speak about diffusion anymore. Could one replace the heat equation with
4-D spinor d’Alembertian or modified Dirac operator so that also the induced gauge
fields would appear in the equation? Artificial time coordinate would be replaced with
some time coordinate for M4 - light-cone proper time is the most natural choice. The
probability would be defined as modulus squared for the fermionic propagator integrated
over space-time surface.

The problem is that this approach is rather formal and might be of little practical value.

19.3.3 n-structures and adelic physics

TGD involves several concepts, which could relate to n-structures. The notion of finite
measurement resolution realized in terms of HFFs is the oldest notion [K87, K26]. Adelic
physics suggests that the measurement resolution could be realized in terms of a hierarchy of
extensions of rationals [L34]. The parameters characterizing space-time surfaces and by SH
the string world sheets would belong to the extension. Also the points of space-time surface
in the extension would be data coding for the preferred extremals. The reconnection points
and intersection points would belong to the extension [L32]. n-structures relate closely to
the notion of non-commutative space and strings world sheets could be such. Also the role
of classical number fields - in particular M8 − H correspondence suggest the same. The
challenge is to develop a coherent view about all these structures.

(a) There should be also a connection with the adelic view. In this picture string world
sheets and points of space-time surface with coordinates in the extension of ratio-
nals defining the adele code for the data for preferred extremals and quantum states.
What these points are - could they correspond to points of partonic 2-surfaces carrying
fermions or could the correspond also to the points in the interior of space-time sur-
face is not clear. The larger the extension of rationals, the larger the number of these
points, and the better the resolution and the larger the deviation of SH from ideal. The
hierarchy of Galois groups of extension of rationals should relate closely to the inclusion
hierarchies.

(b) Galois extension with given Galois group Gal allows hierarchy of intermediate extensions
defining inclusion sequence for Galois groups. Besides inclusion homomorphisms there
exists homomorphisms from Galois group Gal with order heff/h = n to its sub-groups
H ⊂ Gal with order heff/h = m < n dividing n. If it exists the sub-group mapped to
identity element is normal sub-group H for which right and left cosets gH and Hg are
identical. These homomorphisms to sub-groups identify the sheets of Galois covering
of the space-time surface transformed to each other by H and thus define different
number theoretical resolutions: measurement resolution would have precise geometric
meaning. This would mean looking states with heff/h = n in poorer resolution defined
by heff/h = m < n.

These arrows would define “resolution morphisms” in category theoretic description.
Also the analogy with the homotopies of n-structures is obvious. There would be a finite

http://tinyurl.com/yadcmjd6
http://tinyurl.com/yadcmjd6
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number of normal sub-groups with order dividing n for given higher structure. Quantum
phase equal to root of unity (q = exp(i2π/k)) could appear in these representations and
distinguish them from ordinary group representations.

19.3.4 Could normal sub-groups of symplectic group and of Galois
groups correspond to each other?

Measurement resolution realized in terms of various inclusion is the key principle of quantum
TGD. There is an analogy between the hierarchies of Galois groups, of fractal sub-algebras
of SSA, and of inclusions of HFFs. The inclusion hierarchies of isomorphic sub-algebras of
SSA and of Galois groups for sequences of extensions of extensions should define hierarchies
for measurement resolution. Also the inclusion hierarchies of HFFs are proposed to define
hierarcies of measurement resolutions. How closely are these hierarchies related and could
the notion of measurement resolution allow to gain new insights about these hierarchies and
even about the mathematics needed to realize them?

(a) As noticed, SSA and its isomorphic sub-algebras are in a relation analogous to the
between normal sub-group H of group Gal (analog of isomorphic sub-algebra) and
the group G/H. One can assign to given Galois extension a hierarchy of intermediate
extensions such that one proceeds from given number field (say rationals) to its extension
step by step. The Galois groups H for given extension is normal sub-group of the Galois
group of its extension. Hence Gal/H is a group. The physical interpretation is following.
Finite measurement resolution defined by the condition that H acts trivially on the
representations of Gal implies that they are representations of Gal/H. Thus Gal/H
is completely analogous to the Kac-Moody type algebra conjecture to result from the
analogous pair for SSA.

(b) How does this relate to McKay correspondence stating that inclusions of HFFs corre-
spond to finite discrete sub-groups of SU(2) acting as isometries of regular n-polygons
and Platonic solids correspond to Dynkin diagrams of ADE type SKMAs determined
by ADE Lie group G. Could one identify the discrete groups as Galois groups repre-
sented geometrically as sub-groups of SU(2) and perhaps also those of corresponding
Lie group? Could the representations of Galois group correspond to a sub-set of rep-
resentations of G defining ground states of Kac-Moody representations. This might be
possible. The sub-groups of SU(2) can however correspond only to a very small fraction
of Galois groups.

Can one imagine a generalization of ADE correspondence? What would be required that
the representations of Galois groups relate in some natural manner to the representations as
Kac-Moody groups.

Some basic facts about Galois groups and finite groups

Some basic facts about Galois groups mus be listed before continuing. Any finite group can
appear as a Galois group for an extension of some number field. It is known whether this is
true for rationals (see http://tinyurl.com/hus4zso).

Simple groups appear as building bricks of finite groups and are rather well understood.
One can even speak about periodic table for simple finite groups (see http://tinyurl.com/

y75r68hp). Finite groups can be regarded as a sub-group of permutation group Sn for some
n. They can be classified to cyclic, alternating , and Lie type groups. Note that alternating
group An is the subgroup of permutation group Sn that consists of even permutations. There
are also 26 sporadic groups and Tits group.

Most simple finite groups are groups of Lie type that is rational sub-groups of Lie groups.
Rational means ordinary rational numbers or their extension. The groups of Lie type (see
http://tinyurl.com/k4hrqr6) can be characterized by the analogs of Dynkin diagrams
characterizing Lie algebras. For finite groups of Lie type the McKay correspondence could
generalize.

http://tinyurl.com/hus4zso
http://tinyurl.com/y75r68hp
http://tinyurl.com/y75r68hp
http://tinyurl.com/k4hrqr6
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Representations of Lie groups defining Kac-Moody ground states as irreps of
Galois group?

The goal is to generalize the McKay correspondence. Consider extension of rationals with
Galois group Gal. The ground staes of KMA representations are irreps of the Lie group G
defining KMA. Could the allow ground states for given Gal be irreps of also Gal?

This constraint would determine which group representations are possible as ground states
of SKMA representations for a given Gal. The better the resolution the larger the dimen-
sions of the allowed representations would be for given G. This would apply both to the
representations of the SKMA associated with dynamical symmetries and maybe also those
associated with the standard model symmetries. The idea would be quantum classical cor-
respondence (QCC) space-time sheets as coverings would realize the ground states of SKMA
representations assignable to the various SKMAs.

This option could also generalize the McKay correspondence since one can assign to finite
groups of Lie type an analog of Dynkin diagram (see http://tinyurl.com/k4hrqr6). For
Galois groups, which are discrete finite groups of SU(2) the hypothesis would state that the
Kac-Moody algebra has same Dynkin diagram as the finite group in question.

To get some perspective one can ask what kind of algebraic extensions one can assign to
ADE groups appearing in the McKay correspondence? One can get some idea about this
by studying the geometry of Platonic solids (see http://tinyurl.com/p4rwc76). Also the
geometry of Dynkin diagrams telling about the geometry of root system gives some idea
about the extension involved.

(a) Platonic solids have p vertices and q faces. One has {p, q} ∈ {{3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}}.
Tetrahedron is self-dual (see http://tinyurl.com/qdl4sss object whereas cube and
octahedron and also dodecahedron and icosahedron are duals of each other. From the
table of http://tinyurl.com/p4rwc76 one finds that the cosines and sines for the
angles between the vectors for the vertices of tetrahedron, cube, and octahedron are
rational numbers. For icosahedron and dodecahedron the coordinates of vertices and
the angle between these vectors involve Golden Mean φ = (1 +

√
5)/2 so that algebraic

extension must involve
√

5 at least.

The dihedral angle θ between the faces of Platonic solid {p, q} is given by sin(θ/2) =
cos(π/q)/sin(π/p). For tetrahedron, cube and octahedron sin(θ) and cos(θ) involve

√
3.

For icosahedron dihedral angle is tan(θ/2) = φ. For instance, the geometry of tetrahe-
dron involves both

√
2 and

√
3. For dodecahedron more complex algebraic numbers are

involved.

(b) The rotation matrices for for the triangles of tetrahedron and icosahedron involve
cos(2π/3) and sin(2π/3) associated with the quantum phase q = exp(i2π/3) associated
with it. The rotation matrices performing rotation for a pentagonal face of dodeca-
hedron involves cos(2π/5) and sin(2π/5) and thus q = exp(i2π/5) characterizing the
extension. Both q = exp(i2π/3) and q = exp(i2π/5) are thus involved with icosahedral
and dodecahedral rotation matrices. The rotation matrices for cube and for octahedron
have rational matrix elements.

(c) The Dynkin diagrams characterize both the finite discrete groups of SU(2) and those
of ADE groups. The Dynkin diagrams of Lie groups reflecting the structure of corre-
sponding Weyl groups involve only the angles π/2, 2π/3, π− π/6, 2π− π/6 between the
roots. They would naturally relate to quadratic extensions.

For ADE Lie groups the diagram tells that the roots associated with the adjoint rep-
resentation are either orthogonal or have mutual angle of 2π/3 and have same length
so that length ratios are equal to 1. One has sin(2π/3) =

√
3/2. This suggests that√

3 belongs to the algebraic extension associated with ADE group always. For the non-
simply laced Lie groups of type B, C, F, G the ratios of some root lengths can be

√
2

or
√

3.

For ADE groups assignable to n-polygons (n > 5) Galois group must involve the cyclic

http://tinyurl.com/k4hrqr6
http://tinyurl.com/p4rwc76
http://tinyurl.com/qdl4sss
http://tinyurl.com/p4rwc76
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extension defined by exp(i2π/n). The simplest option is that the extension corresponds to
the roots of the polynomial xn = 1.

19.3.5 A possible connection with number theoretic Langlands cor-
respondence

I have discussed number theoretic version of Langlands correspondence in [K36, K117] trying
to understand it using physical intuition provided by TGD (the only possible approach in my
case). Concerning my unashamed intrusion to the territory of real mathematicians I have
only one excuse: the number theoretic vision forces me to do this.

Number theoretic Langlands correspondence relates finite-dimensional representations of Ga-
lois groups and so called automorphic representations of reductive algebraic groups defined
also for adeles, which are analogous to representations of Poincare group by fields. This is
kind of relationship can exist follows from the fact that Galois group has natural action in
algebraic reductive group defined by the extension in question.

The “Resiprocity conjecture” of Langlands states that so called Artin L-functions assignable
to finite-dimensional representations of Galois group Gal are equal to L-functions arising
from so called automorphic cuspidal representations of the algebraic reductive group G. One
would have correspondence between finite number of representations of Galois group and
finite number of cuspidal representations of G.

This is not far from what I am naively conjecturing on physical grounds: finite-D representa-
tions of Galois group are reductions of certain representations of G or of its subgroup defining
the analog of spin for the automorphic forms in G (analogous to classical fields in Minkowski
space). These representations could be seen as induced representations familiar for particle
physicists dealing with Poincare invariance. McKay correspondence encourages the conjec-
ture that the allowed spin representations are irreducible also with respect to Gal. For a
childishly naive physicist knowing nothing about the complexities of the real mathematics
this looks like an attractive starting point hypothesis.

In TGD framework Galois group could provide a geometric representation of “spin” (maybe
even spin 1/2 property) as transformations permuting the sheets of the space-time surface
identifiable as Galois covering. This geometrization of number theory in terms of cognitive
representations analogous to the use of algebraic groups in Galois correspondence might
provide a totally new geometric insights to Langlands correpondence. One could also think
that Galois group represented in this manner could combine with the dynamical Kac-Moody
group emerging from SSA to form its Langlands dual.

Skeptic physicist taking mathematics as high school arithmetics might argue that algebraic
counterparts of reductive Lie groups are rather academic entities. In adelic physics the
situation however changes completely. Evolution corresponds to a hierarchy of extensions of
rationals reflected directly in the physics of dark matter in TGD sense: that is as phases of
ordinary matter with heff/h = n identifiable as divisor of the order of Galois group for an
extension of rationals. Algebraic groups and their representations get physical meaning and
also the huge generalization of their representation to adelic representations makes sense if
TGD view about consciousness and cognition is accepted.

In attempts to understand what Langlands conjecture says one should understand first the
rough meaning of many concepts. Consider first the Artin L-functions appearing at the
number theoretic side. Consider first the Artin L-functions appearing at the number theoretic
side.

(a) L-functions (see http://tinyurl.com/y8dc4zv9) are meromorphic functions on com-
plex plane that can be assigned to number fields and are analogs of Riemann zeta func-
tion factorizing into products of contributions labelled by primes of the number field.
The definition of L-function involves Direchlet characters: character is very general in-
variant of group representation defined as trace of the representation matrix invariant
under conjugation of argument.

http://tinyurl.com/y8dc4zv9
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(b) In particular, there are Artin L-functions (see http://tinyurl.com/y7thhodk) assignable
to the representations of non-Abelian Galois groups. One considers finite extension L/K
of fields with Galois group G. The factors of Artin L-function are labelled by primes
p of K. There are two cases: p is un-ramified or ramified depending on whether the
number of primes of L to which p decomposes is maximal or not. The number of ram-
ified primes is finite and in TGD framework they are excellent candidates for physical
preferred p-adic primes for given extension of rationals.

These factors labelled by p analogous to the factors of Riemann zeta are identified as
characteristic polynomials for a representation matrix associated with any element in a
preferred conjugacy class of G. This preferred conjugacy class is known as Frobenius
element Frob(p) for a given prime ideal p , whose action on given algebraic integer in
OL is represented as its p:th power. For un-ramified p the characteristic polynomial is
explicitly given as determinant det[I − tρ(Frob(p))]−1, where one has t = N(p)−s and
N(p) is the field norm of p in the extension L (see http://tinyurl.com/o4saw2l).

In the ramified case one must restrict the representation space to a sub-space invariant
under inertia subgroup, which by definition leaves invariant integers of OL/p that is the
lowest part of integers in expansion of powers of p.

At the other side of the conjecture appear representations of algebraic counterparts of re-
ductive Lie groups and their L-functions and the two number theoretic and automorphic
L-functions would be identical.

(a) Automorphic form F generalizes the notion of plane wave invariant under discrete sub-
group of the group of translations and satisfying Laplace equation defining Casimir
operator for translation group. Automorphic representations can be seen as analogs for
the modes of classical fields with given mass having spin characterized by a representa-
tion of subgroup of Lie group G (SO(3) in case of Poincare group).

Automorphic functions as field modes are eigen modes of some Casimir operators assignable
to G. Algebraic groups would in TGD framework relate to adeles defined by the hier-
archy of extensions of rationals (also roots of e can be considered in extensions). Galois
groups have natural action in algebraic groups.

(b) Automorphic form (see http://tinyurl.com/create.php) is a complex vector valued
function F from topological group to some vector space V . F is an eigen function of
certain Casimir operators of G. In the simplest situation these function are invariant
under a discrete subgroup Γ ⊂ G identifiable as the analog of the subgroup defining
spin in the case of induced representations.

In general situation the automorphic form F transforms by a factor j of automorphy
under Γ. The factor can also act in a finite-dimensional representation of group Γ, which
would suggest that it reduces to a subgroup of Γ obtained by dividing with a normal
subgroup. j satisfies 1-cocycle condition j(g1, g2g3) = j(g1g2, g3) in group cohomology
guaranteeing associativity (see http://tinyurl.com/on7ffy9). Cuspidality relates to
the conditions on the growth of F at infinity.

(c) Elliptic functions in complex plane characterized by two complex periods are meromor-
phic functions of this kind. A less trivial situation corresponds to non-compact group
G = SL(2, R) and Γ ⊂ SL(2, Q).

There are more groups involved: Langlands group LF and Langlands dual group LG. A more
technical formulation says that the automorphic representations of a reductive Lie group G
correspond to homomorphisms from so called Langlands group LF (see http://tinyurl.

com/ycnhkvm2) at the number theoretic side to L-group LG or Langlands dual of algebraic
G at group theory side (see http://tinyurl.com/ycnk9ga5). It is important to notice that
LG is a complex Lie group. Note also that homomorphism is a representation of Langlands
group LF in L-group LG. In TGD this would be analogous to a homomorphism of Galois
group defining it as subgroup of the group G defining Kac-Moody algebra.

(a) Langlands group LF of number field is a speculative notion conjectured to be a extension
of the Weil group of extension, which in turn is a modification of the absolute Galois

http://tinyurl.com/y7thhodk
http://tinyurl.com/o4saw2l
http://tinyurl.com/create.php
http://tinyurl.com/on7ffy9
http://tinyurl.com/ycnhkvm2
http://tinyurl.com/ycnhkvm2
http://tinyurl.com/ycnk9ga5
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group. Unfortunately, I was not able to really understand the Wikipedia definition of
Weil group (http://tinyurl.com/hk74sw7). If E/F is finite extension as it is now, the
Weil group would be WE/F = WF /W

c
E , W c

E refers to the commutator subgroup WE

defining a normal subgroup, and the factor group is expected to be finite. This is not
Galois group but should be closely related to it.

Only finite-D representations of Langlands group are allowed, which suggests that the
representations are always trivial for some normal subgroup of LF For Archimedean
local fields LF is Weil group, non-Archimedean local fields LF is the product of Weil
group of L and of SU(2). The first guess is that SU(2) relates to quaternions. For global
fields the existence of LF is still conjectural.

(b) I also failed to understand the formal Wikipedia definition of the L-group LG appearing
at the group theory side. For a reductive Lie group one can construct its root datum
(X∗,∆, X∗,∆

c), where X∗ is the lattice of characters of a maximal torus, X∗ its dual,
∆ the roots, and ∆c the co-roots. Dual root datum is obtained by switching X∗ and
X∗ and ∆ and ∆c. The root datum for G and LG are related by this switch.

For a reductive G the Dynkin diagram of LG is obtained from that of G by exchanging
the components of type Bn with components of type Cn. For simple groups one has
Bn ↔ Cn. Note that for ADE groups the root data are same for G and its dual and it is
the Kac-Moody counterparts of ADE groups, which appear in McKay correspondence.
Could this mean that only these are allowed physically?

(c) Consider now a reductive group over some field with a separable closure K (say k for
rationals and K for algebraic numbers). Over K G as root datum with an action of
Galois group of K/k. The full group LG is the semi-direct product LG0 o Gal(K/k)
of connected component as Galois group and Galois group. Gal(K/k) is infinite (ab-
solute group for rationals). This looks hopelessly complicated but it turns it that one
can use the Galois group of a finite extension over which G is split. This is what gives
the action of Galois group of extension (l/k) in LG having now finitely many compo-
nents. The Galois group permutes the components. The action is easy to understand
as automorphism on Gal elements of G.

Could TGD picture provide additional insights to Langlands duality or vice versa?

(a) In TGD framework the action of Gal on algebraic group G is analogous to the action of
Gal on cognitive representation at space-time level permuting the sheets of the Galois
covering, whose number in the general case is the order of Gal identifiable as heff/h = n.
The connected component LG0 would correspond to one sheet of the covering.

(b) What I do not understand is whether LG = G condition is actually forced by physical
contraints for the dynamical Kac-Moody algebra and whether it relates to the notion
of measurement resolution and inclusions of HFFs.

(c) The electric-magnetic duality in gauge theories suggests that gauge group action of
G on electric charges corresponds in the dual phase to the action of LG on magnetic
charges. In self-dual situation one would have G =L G. Intriguingly, CP2 geometry
is self-dual (Kähler form is self-dual so that electric and magnetic fluxes are identical)
but induced K̈ahler form is self-dual only at the orbits of partonic 2-surfaces if weak
form of electric-magnetic duality holds true. Does this condition leads to LG = G for
dynamical gauge groups? Or is it possible to distinguish between the two dynamical
descriptions so that Langlands duality would correspond to electric-magnetic duality.
Could this duality correspond to the proposed duality of two variants of SH: namely, the
electric description provided by string world sheets and magnetic description provided
by partonic 2-surfaces carrying monopole fluxes?

19.3.6 A formulation of adelic TGD in terms of cognitive represen-
tations?

The vision about p-adic physics as cognitive representations of real physics [L34] encourages
to consider an amazingly simple formulation of TGD diametrically opposite to but perhaps

http://tinyurl.com/hk74sw7
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consistent with the vision based on the notion of WCW and WCW spinor fields. Finiteness
of cognitive and measurement resolutions would not be enemies of the theoretician but could
make possible to deduce highly non-trivial predictions from the theory by getting rid of all
irrelevant information and using only the most significant bits. Number theoretic physics
need not of course cover the entire quantum physics and could be analogous to topological
quantum field theories: even this might provide huge amounts of precise information about
the quantum physics of TGD Universe.

Could the discrete variant of WCW geometry make sense?

The first thing that one can imagine is number theoretic discretization of WCW by assuming
that WCW coordinates belong to an extension of rationals. Integration would reduce to a
summation but the problem is that there are too many points in the extension so that sums
do not make sense in real sense. In the case of space-time surfaces the problems are solved
by the fact that space-time surfaces have dimension lower than the imbedding space and the
number of points with coordinates in the extension is in typical case finite: exceptions are
surfaces such as canonically imbedded M4 or CP2. This option does not work at the level of
WCW.

Cognitive representations however carry information about the points with coordinates in
the extension of rationals defining the adele and possibly about the directions of strings
emanating from these points. The effective WCW is kind of coset space with most of degrees
of freedom not visible in the cognitive representation. Cognitive representations would specify
the points in the extension of rationals for space-time surface, string world sheets, or even
for their intersection with partonic surfaces at the ends of CD carrying fermion number plus
those at the ends of sub-CDs forming a hierarchy.

Could one use the points of cognitive representation as coordinates for this effective WCW so
that everything including WCW integration would reduce to well-defined summations? This
would solve the problem of too many points in sub-WCW associated with the extension.
Could one formulate everything that one can know at given level of cognitive hierarchy
defined by extensions?

This idea was already suggested by the interpretation of p-adic mass calculations.

(a) p-Adic mass calculations would correspond to cognitive representation of real physics
[K12, K39]. For large p-adic primes p-adic thermodynamics converges extremely rapidly
as powers p−n/2 and the results from two lowest orders are practically exact.

(b) What is however required is a justification for the map of p-adic mass squared values
to real numbers by canonical identification. Quite generally this map makes sense for
group invariants - say Lorentz invariants defined by inner products of momenta. As
a matter of fact, the construction of quantum algebras and Yangians demands p-adic
topology for the antipode to exist mathematically so that this approach could be forced
by mathematical consistency [B12].

Could scattering amplitudes be constructed in terms of cognitive representa-
tions?

The crazy looking idea that cognitive representations defined by common points of real and
p-adic variants of space-time surfaces or even partonic 2-surfaces is at least worth of showing
to be wrong. If the idea works, cognitive representations could code what can be known
about classical and even quantum dynamics and reduce physics to number theory. Also
WCW would be discretized with points of discretized space-time surface defining WCW
coordinates. Functional integral over WCW would reduce to a converging sum over cognitive
representations.

It is interesting to look what this could mean if scattering amplitudes correspond in some
sense to algebraic computations in bi-algebra besides product also co-product as its time
reversal and interpreted as 3-vertex physically.
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(a) For the simplest option fermions would reside at the intersection points of partonic
2-surfaces and string world sheets. One possibility considered earlier is that at these
points the Galois coverings are singular meaning that all sheets co-incide. This might be
too strong condition and might be replacable by a weaker condition that Galois group at
these points reduces to its sub-group and normal subgroup leaves amplitudes invariant.
A reduction of measurement resolution would be in question.

(b) If the basic computational operation involves a fusion of representations of Galois group,
fusion algebra could describe the situation [L32]. The Galois groups assignable to the
incoming lines of 3-vertex must correspond to Galois groups, which define groups of 3-
levelled hierarchy of extension of rationals allowing inclusion homomorphism. Therefore
the values of Planck constant would be of from heff/h ∈ {n1, n1n2, n1n2n3}. The tensor
product decomposition would tell the outcome of tensor product. One can consider also
2-vertices corresponding to a phase transition n1 ↔ n1n2 changing the value of heff/h.

McKay graphs (see http://tinyurl.com/z48d92t) for Galois groups describe the de-
composition of the tensor products of representations of Galois groups. In general the
tensor products for corresponding KMAs restricted to Galois group are not irreducible.
What could this mean? Are they allowed to occur? Are there general results allowing
to conclude how do the analogs of McKay graphs for the tensor products of the irreps of
the group defining Kac-Moody group relate to the McKay graphs for its finite discrete
sub-groups?

Possible problems relate to the description of momenta and higher excitations of SKMAs.
In topological QFTs one loses information about metric properties such as mass but what
happens in number theoretic QFT? Could the Galois approach expanded to include also
discrete variants of quaternions and octonions assigna ble to extensions of rationals allow
also the number theoretic description of also momenta?

(a) Octonions and quaternions have G(2) and SO(3) as automorphisms groups (analogs
of Galois groups). The octonionic automorphisms respecting chosen imaginary consist
of SU(3) rotations. These groups would be replaced with their dicrete variants with
matrix elements in an extension of rationals.

The automorphism group Gal for the extension of rationals and automorphism group
Aut ∈ {G2, SU(3), SO(3)} for octonions/for octonions with fixed unit/for quaternions
form a semi-direct product Gal o Aut with multiplication rule (g1, ga) ◦ (g2, gb) =
(g1g2, g2g1(gb)), where g1(gb) represents the element of Aut obtained by performing Gal
automorphism g1 for gb. For rational elements gb one has (g1, ga)◦(g2, gb) = (g1g2, gagb)
so that Gal AutQ commute. An interesting possibility is that the automorphisms
of Aut ∈ {SU(3), SO(3)} can be interpreted in terms of standard model symmetries
whereas Gal would relate to the dynamical symmetries.

In M8 picture one has naturally wave functions in the space of quaternionic light-like
8-momenta and it is natural to decompose quaternionic momenta to longitudinal M2

piece and transversal E2 piece. The physical interpretation of this condition has been
discussed thoroughly in [L38]. One has thus more than mere analog of TQFT.

(b) If fermions propagate along the lines of the TGD analogs twistor graphs, one must have
an analog of propagator. Twistor approach [L38] implies that the propagator is replaced
with the inverse of the fermion propagator for quaternionic 8-momentum as a residue
with sigma matrices representing the quaternionic units. This is non-vanishing only if
the fermion chirality is “wrong”. This has co-homological interpretation: for external
lines the inverse of the propagator would annihilate the state (co-closedness) unlike for
internal lines.

(c) Triality holds true for the octonionic vector representation assignable to momenta and
octonionic spinors and their conjugates. All these should be quaternionic, in other words
belong to some complexified quaternionic M4 ⊂M8. The components of these spinors
should belong to an extension of rational used with imaginary unit commuting with
octonionic imaginary units.

http://tinyurl.com/z48d92t
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(d) The condition that the amplitudes belong to an extension of rationals could be extremely
powerful when combined with category theoretic view implying the Hilbert space isome-
tries allowing to relate amplitudes at different levels of the hierarchy. This conditions
should be true also for the twistors in terms which momenta can be expressed. Also
the space SU(3)/U(1)×U(1) of CP2 twistors would be replaced with a sub-space with
points in an extension of rationals.

19.4 Could McKay correspondence generalize in TGD
framework?

McKay correspondence is rather mysterious looking correspondence appearing in several
fields. This correspondence is extremely interesting from point of view of adelic TGD [L35]
[L34].

(a) McKay graphs code for the fusion algebra of irreducible representations (irreps) of finite
groups (see http://tinyurl.com/z48d92t). For finite subgroups of G ⊂ SU(2) McKay
graphs are extended Dynkin diagrams for affine (Kac-Moody) algebras of ADE type
coding the structure of the root diagram for these algebras. The correspondence looks
mysterious since Dynkin diagrams have quite different geometric interpretation.

(b) McKay graphs for finite subgroups of G ⊂ SU(2) characterize also the fusion rules of
minimal conformal field theories (CFTs) having Kac-Moody algebra (KMA) of SU(2)
as symmetries (see http://tinyurl.com/y7doftpe). Fusion rules characterize the de-
composition of the tensor products of primary fields in CFT. For minimal CFTs the
primary fields belonging to the irreps of SU(2) are in 1-1 correspondence with irreps of
G, and the fusion rules for primary fields are same as for the irreps of G. The irreps of
SU(2) are also irreps of G.

Could the ADE type affine algebra appear as dynamical symmetry algebra too? Could
the primary fields for ADE defining extended ADE Cartan algebra be constructed as G-
invariants formed from the irreps of G and be exponentiated using the standard free field
construction using the roots of the ADE KMA a give ADE KMA acting as dynamical
symmetries?

(c) McKay graphs forG ⊂ SU(2) characterize also the double point singularities of algebraic
surfaces of real dimension 4 in C3 (or CP 3 , one variant of twistor space!) with real
dimension 6 (see http://tinyurl.com/ydz93hle). The subgroup G ⊂ SU(2) has a
natural action in C2 and it appears in the canonical representation of the singularity as
orbifold C2/G. This partially explains the appearance of the McKay graph of G. The
resolved singularities are characterized by a set of projective lines CP1 with intersection
matrix in CP2 characterized by McKay graph of G. Why the number of spheres is the
number of irreps for G is not obvious to me.

The double point singularities of C2 ⊂ C3 allow thus ADE classification. The number
of added points corresponds to the dimension of Cartan algebra for ADE type affine
algebra, whose Dynkin diagram codes for the finite subgroup G ⊂ SU(2) leaving the
algebraic surface looking locally like C2 invariant and acting as isotropy group of the
singularity.

These results are highly inspiring concerning adelic TGD.

(a) The appearance of Dynkin diagrams in the classification of minimal CFTs inspires the
conjecture that in adelic physics Galois groups Gal or semi-direct products G / Gal of
Gal with a discrete subgroup G of automorphism group SO(3) (having SU(2) as double
covering!) classifies TGD generalizations of minimal CFTs. Also discrete subgroups of
octonionic automorphism group can be considered. The fusion algebra of irreps of Gal
would define also the fusion algebra for KMA for the counterparts of minimal fields.
This would provide deep insights to the general structure of adelic physics.

http://tinyurl.com/z48d92t
http://tinyurl.com/y7doftpe
http://tinyurl.com/ydz93hle
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(b) One cannot avoid the question whether the extended ADE diagram could code for a
dynamical symmetry of a minimal CFT or its modification? If the Gal singlets formed
from the primary fields of minimal model define primary fields in Cartan algebra of
ADE type KMA, then standard free field construction would give the charged KMA
generators. In TGD framework this conjecture generalizes.

(c) A further conjecture is that the singularities of space-time surface imbedded as 4-surface
in its 6-D twistor bundle with twistor sphere as fiber could be classified by McKay graph
ofGal. The singular intersection of the Euclidian and Minkowskian regions of space-time
surface is especially interesting: the twistor spheres at the common points defining light-
like partonic orbits need not be same but have intersections with intersection matrix
given by McKay graph for Gal. The basic information about adelic CFT would be
coded by the general character of singularities for the twistor bundle.

(d) In TGD also singularities in which the group Gal is reduced to its subgroup Gal/H,
where H is normal group are possible and would correspond to phase transition reducing
the value of Planck constant. What happens in these phase transitions to single particle
states would be dictated by the decomposition of representations of Gal to those of
Gal/H and transition matrix elements could be evaluated.

One can find from web excellent articles about the topics to be discussed in this article.

(a) The article ”Cartan matrices, finite groups of quaternions, and Kleinian singularities”
of John McKay [A68] (see http://tinyurl.com/ydygjgge) summarizes McKay corre-
spondence.

(b) Miles Reid has written an article ” The Du Val singularities An, Dn, E6, E7, E8” [A73]
(see http://tinyurl.com/ydz93hle). Also the article ” Chapters on algebraic sur-
faces” [A74](see http://tinyurl.com/yaty9rzy) of Reid should be helpful. There is
also an article ”Resolution of Singularities in Algebraic Varieties” [A49] (see http:

//tinyurl.com/yb7cuwkf) of Emma Whitten about resolution of singularities.

(c) Andrea Cappelli and Jean-Benard Zuber have written an article ”A-D-E Classification
of Conformal Field Theories” [B28] about ADE classification of minimal CFT models
(see http://tinyurl.com/y7doftpe).

(d) McKay correspondence appears also in M-theory, and the thesis ”On Algebraic Sin-
gularities, Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspec-
tive” [B51] (see http://tinyurl.com/ycmyjukn) of Yang-Hui He might be helful for
the reader. In this work the possible generalization of McKay correspondence so that it
would apply form finite subgroups of SU(n) is discussed. SU(3) acting as subgroup of
automorphism group G2 of octonions is especially interesting in this respect. The idea
is rather obvious: the fusion diagram for the theory in question would be the McKay
graph for the finite group in question.

19.4.1 McKay graphs in mathematics and physics

McKay graphs for subgroups of SU(2) reducing to Dynkin diagrams for affine Lie algebras
of ADE type appear in several manners in mathematics and physics.

McKay graphs

McKay graphs [A68] (see http://tinyurl.com/ydygjgge) code for the fusion algebra of
irrpes of finite groups G (for Wikipedia article see http://tinyurl.com/z48d92t). One
considers the tensor products of irreps with the canonical representation (doublet represen-
tation for the finite sub-groups of SU(2)), call it V . The irreps Vi correspond to nodes and
their number is equal to the number of irreps G.

Two nodes i and j are no connected if the decomposition of V ⊗Vi to irreps does not contain
Vj . There is arrow pointing from i → j in this case. The number nij > 0 or number of
arrows tells how many times j is contained in V ⊗ Vj . For nij = nji there is no arrow.

http://tinyurl.com/ydygjgge
http://tinyurl.com/ydz93hle
http://tinyurl.com/yaty9rzy
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/yb7cuwkf
http://tinyurl.com/y7doftpe
http://tinyurl.com/ycmyjukn
http://tinyurl.com/ydygjgge
http://tinyurl.com/z48d92t
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One can characterize the fusion rules by matrix A = dδij − nij , where d is the dimension of
the canonical representation. The eigenvalues of this matrix turn out to be given by d−ξV (g),
where ξV (g) is the character of the canonical representation, which depends on the conjugacy
class of g only. The number of eigenvalues is therefore equal to the number n(class,G) of
conjugacy classes. The components of eigenvectors in turn are given by the values χi(g) of
characters of irreps.

MacKay graphs and Dynkin diagrams

The nodes of the Dynkin diagram (see http://tinyurl.com/hpm5y9s) are positive simple
root vectors identified as vectors formed by the eigenvalues of the Cartan sub-algebra gener-
ators under adjoint action on Lie algebra. In the case of affine Lie algebra the Cartan algebra
contains besides the Cartan algebra of the Lie group also scaling generator L0 = td/dt and
the number of nodes increases by one.

The number of positive simple roots equals to the dimension of the root space. The number
nij codes now for the angle between positive simple roots. The number of edges connect-
ing root vectors is n = 0, 1, 2, 3 depending on whether the angle between root vectors is
π/2, 2π/3, 3π/4, or 5π/6. The ratios of lengths of connected roots can have values

√
n,

n ∈ {1, 2, 3}, and the number n of edges corresponds to this ratio. The arrow is directed
to the shorter root if present. For simply laced Lie groups (ADE groups) the roots have
unit length so that only single undirected edge can connect the roots. Weyl group acts as
symmetries of the root diagram as reflections in hyperplanes orthogonal to the roots.

The Dynkin diagrams of affine algebras are obtained by adding to the Cartan algebra a
generator which corresponds to the scaling generator L0 = td/dt of affine algebra assumed
to act via adjoint action to the Lie algebra. Depending on the position of the added node
one obtains also twisted versions of the KMA.

For the finite subgroups of SU(2) the McKay graphs reduce to Dynkin diagrams of affine
Lie algebras of ADE type [A68] (see http://tinyurl.com/ydygjgge) so that one has either
nij = 0 or nij = 1 for i 6= j. There are no self-loops (nii 6= 0). The result looks mysterious
since the two diagrams describe quite different things. One can also raise the question whether
ADE type affine algebra might somehow emerge in minimal CFT involving SU(2) KMA for
which ADE classification emerges.

In TGD framework the interpretation of finite groups G ⊂ SU(2) in terms of quaternions
is an attractive possibility since rotation group SO(3) acts as automorphisms of quaternions
and has SU(2) as its covering group.

ADE diagrams and subfactors

ADE classification emerges also naturally for the inclusions of hyper-finite factors of type
II1 [K87, K26]. Subfactors with index smaller than four have so called principal graphs
characterizing the sequence of inclusions equal to one of the A, D or E Coxeter-Dynkin
diagrams: see the article “In and around the origin of quantum groups” of Vaughan Jones
[A91] (see http://tinyurl.com/ycbbbvpq). As a matter of fact, only the D2n and E6

and E8 do occur. It is also possible to construct M : N = 4 sub-factor such that the
principle graph is that for any subgroup G ⊂ SU(2). This suggests that the subfactors
M : N = 4cos2(π/n) < 4 correspond to quantum groups. The basic objects can be seen as
quantum spinors so that again the appearance of subgroups of SU(2) looks natural. One can
still wonder whether ADE KMAs might be involved.

ADE classification for minimal CFTs

.

CFTs on torus [B28] are characterized by modular invariant partition functions, which can
be expressed in terms of characters of the scaling generator L0 of Virasoro algebra (VA) given
by

http://tinyurl.com/hpm5y9s
http://tinyurl.com/ydygjgge
http://tinyurl.com/ycbbbvpq


750 Chapter 19. Are higher structures needed in the categorification of TGD?

Z(τ) = Tr(X) , X = exp{i2π
[
τ(L0 − c/24)− τ(L0 − c/24)

]
} . (19.4.1)

Modular invariance requires that Z(τ) is invariant under modular transformations leaving
the conformal equivalence class of torus invariant. Modular group equals to SL(2, Z) has as
generators the transformations T : τ → τ + 1 and S : τ → −1/τ . The partition function can
be expressed as

Z(τ) =
∑
Njjχj(q)χj(q) , q = exp(i2πτ) , q = exp(−i2πτ) . (19.4.2)

Here χj corresponds to the trace of L0 − c/24 for a representation of KMA inducing the
VA representation. Modular invariance of the partition function requires SNS† = N and
TNT † = N .

The ADE classification for minimal conformal models summarized in [B28] (see http://

tinyurl.com/y7doftpe) involves SU(2) affine algebra with central extension parameter k.
The central extension parameter for the VA is c < 1. The fusion algebra for primary fields
in representations of SU(2) KMA characterizes the CFT to a high degree.

The fusion rules characterized the decomposition of the tensor product of representation Di

with representation Dj as i ⊗ j = Nk
ijDk. Due to the properties of the tensor product the

matrices Ni = Nk
ij form and associative and commutative algebra and one can diagonalize

these matrices simultaneously. This algebra is known as Verlinde algebra and its elements
can be expressed in terms of unitary modular matrix Sij representing the transformation of
characters in the modular transformation τ → −1/τ .

The generator of the Verlinde algebra is fusion algebra for the 2-D representation of SU(2)
generating the fusion algebra (this corresponds to the fact that tensor powers of this repre-
sentations give rise to all representations of SU(2)). It turns out that for minimal models
with a finite number of primary fields (KMA representations) the fusion algebra of KMA
reduces to that for a finite subgroup of SU(2) and thus corresponds to ADE KMA. The nat-
ural interpretation is that the condition that the number of primary fields is finite is realized
if the primary fields correspond also to the irreps of finite subgroup of SU(2).

Could the ADE type KMA actually correspond to a genuine dynamical symmetry of mini-
mal CFT? For this conjecture makes sense, the roots of ADE type KMA should be in 1-1
correspondence with the irreps of G ⊂ SU(2) assignable to primary fields. How could this
be possible? In the free field construction of ADE type KMA generators one constructs
charged KMA generators from free fields in Cartan algebra by exponentiating the quantities
α · φ, where α is the root and φ is a primary field corresponding to the element of Cartan
algebra of KMA. Could SU(2) invariants formed from the primary fields defined by each G-
(equivalently SU(2)-) multiplet give rise to SU(2) neutral multiplet of primary fields of ADE
type Cartan algebra and could their exponentiation give rise to ADE type KMA acting as
dynamical symmetries of a minimal CFT?

The resolution of singularities of algebraic surfaces and extended Dynkin dia-
grams of ADE type

The classification of singularities of algebraic surfaces leads also to extended Dynkin diagrams
of ADE type.

Classification of singularities

In algebraic geometry the classification of singularities of algebraic varieties [A49] is a cen-
tral task. The singularities of curves in plane represent simplest singularities (see http:

//tinyurl.com/y8ub2c4s). The resolution of singularities of complex curves in C3 is less
trivial task.

http://tinyurl.com/y7doftpe
http://tinyurl.com/y7doftpe
http://tinyurl.com/y8ub2c4s
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The resolution of singularity (http://tinyurl.com/y8veht3p) is a central concept and
means elimination of singularity by modifying it locally. There is extremely general theorem
by Hiroka stating that the resolution of singularities of algebraic varieties is always possible
for fields with characteristic zero (reals and p-adic number fields included) using a sequence
of birational transformations. For finite groups the situation is unclear for dimensions d > 3.

The articles of Reid [A73] and Whitten [A49] describe the resolution for algebraic surfaces
(2-D surfaces with real dimension equal to four). The article of Reid describes how the
resolutions of double-point singularities of m = dc = 2-D surfaces in n = dc = 3-D C3 or
CP3 (dc refers to complex dimension) are classified by ADE type extended Dynkin diagrams.
Subgroups G ⊂ SU(2) appear naturally because the surface has dimension dc = 2. This is
the simplest non-trivial situation since for Riemann surface with (m,n) = (1, 2) the group
would be discrete subgroup of U(1).

Singularity and Jacobians

What does one mean with singularity and its resolution? Reid [A73] (see http://tinyurl.

com/ydz93hle) discusses several examples. The first example is the singularity of the surface
P (x1, x2, x3) = x2

1 − x2x3 = 0.

(a) One can look the situation from the point of view of imbedding of the 2-surface to
C3: one considers map from tangent space of the surface to the imbedding space C3.
The Jacobian of the imbedding map (x2, x3) → (x1, x2, x3) = ±√x2x3, x2, x3) be-

comes ill-defined at origin since the partial derivatives ∂x1/∂x2 = (
√
x3/x2)/2 and

∂x1/∂x3 = (
√
x2/x3)/2 have all possible limiting values at singularity. The resolution

of singularity must as a coordinate transformation singular at the origin should make
the Jacobian well-defined. Obviously this must mean addition of points corresponding
to the directions of various lines of the surface through origin.

(b) A more elegant dual approach replaces parametric representation with representation
in terms of conditions requiring function to be constant on the surface. Now the Jaco-
bian of a map from C3 to the 1-D normal space of the singularity having polynomial
P (x1, x2, x3) as coordinate is considered. Singularity corresponds to the situation when
the rank of the Jacobian defined by partial derivatives is less than maximal so that one
has ∂P/∂xi = 0. The resolution of singularity means that the rank becomes maximal.
Quite generally, for co-dimension m algebraic surface the vanishing of polynomials Pi,
i = 1, ...,m defines the surface. At the singularity the reduction of the rank for the
matrix ∂Pi/∂xn from its maximal value takes place.

Blowing up of singularity

Codimension one algebraic surface is defined by the condition P (x1, x2, ..., xn) = 0, where
P (x1, ..., xn) is polynomial. For higher codimensions one needs more polynomials and the
situation is not so neat anymore since so called complete intersection property need not hold
anymore. Reid [A73] gives an easy-to- understand introduction to the blowing up of double-
point singularities. Also the article “Resolution of Singularities in Algebraic Varieties” of
Emma Whitten [A49] (see http://tinyurl.com/yb7cuwkf) is very helpful.

(a) Coordinates are chosen such that the singularity is at the origin (x, y, z) = (0, 0, 0) of
complex coordinates. The polynomial has vanishing linear terms at singularity and the
first non-vanishing term is second power of some coordinate, say x1, so that one has x1 =
±
√
P1(x1, x2, x3, where x1 in P1 appears in powers higher than 2. At the singularity

the two roots co-incide. One can of course have also more complex singularities such as
triple-points.

(b) The simplest example P (x1, x2, x3) = x2
1 − x2x3 = 0 has been already mentioned. This

singularity has the structure of double cone since one as x1 = ±√x2x3. At (0, 0, 0) the
vertices of the two cones meet.

(c) One can look this particular situation from the perspective of projective geometry.
Homogenous polynomials define a surface invariant under scalings of coordinates so
that modulo scalings the surface can be regarded also as complex curve in CP2. The

http://tinyurl.com/y8veht3p
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conical surface can be indeed seen as a union of lines (x1 = k2x3, x2 = kx3), where k is
complex number. The ratio x1 : x2 : x3 for the coordinates at given line is determined
by x1 : x2 = k and x2 : x3 = k so that the surface can be parameterized by k and the
coordinate along given line.

In this perspective the singularity decomposes to the directions of the lines going through
it and the situation becomes non-singular. The replacement of the original view with
this gives a geometric view idea about the resolution of singularity: the 2-surface is
replaced by a bundle lines of surfaces going through the singularity and singularity is
replaced with a union of directions for these lines.

Quite generally, in the resolution of singularity, origin is replaced by a set of points (x1, x2, x3)
with a well-defined ratio (x1 : x2 : x3). This interpretation applies also to more general
singularities. One can say that origin is replaced with a projective sub-manifold of 2-D
projective space CP2 (very familiar to me)! This procedure is known as blowing up. Strictly
speaking, one only replaces origin with the directions of lines in C3.

Remark: In TGD the wormhole contacts connecting space-time sheets of many-sheeted
space-time could be seen as outcomes of blowing up procedure.

Blowing up replaces the singular point with projective space CP1 for which points with same
value of (x1 : x2 : x3) are identified. Blowing up can be also seen as a process analogous to
seeing the singularity such as self-intersection of curve as an illusion: the curve is actually a
projection of a curve in higher dimensional space to which it is lifted so that the intersection
disappears [A49] (see http://tinyurl.com/yb7cuwkf). Physicist can of course protest by
saying that in space-time physics is is not allowed to introduce additional dimensions in this
manner!

There is an analytic description for what happens at the singular point in blowing up process
[A49] (see http://tinyurl.com/yb7cuwkf).

(a) In blowing up one lifts the surface in higher-dimensional space C3 × CP2 (C3 can be
replaced by any affine space). The blowing up of the singularity would be the set of
lines q of the surface S going through the singularity that is the set B = {(q, q)|q ∈ S}.
This set can be seen as a subset of C3 × CP2 and one can represent it explicitly by
using projective coordinates (y1, y2, y3) for CP2. Consider points of C3 and CP2 with
coordinates z = (x1, x2, x3) and y = (y1, y2, y3). The coordinate vectors must be parallel
x is to be at line y. This requires that all 2× 2 sub-determinants of the matrix

[
x1 x2 x3

y1 y2 y3

]
(19.4.3)

vanish: that is xiyj − xjyi = 0 for all pairs i < j. This description generalizes to the
higher-dimensional case. The added CP1s defined what is called exceptional divisor in
the blown up surface. Recall that divisors (see http://tinyurl.com/yc7x3ohx) are by
definition formal combinations of points of algebraic surface with integer coefficients.
The principal divisors defined by functions are sums over their zeros and poles with
integer weight equal to the order of zero (negative for pole).

The above example considers a surface x2
1 − x2x3 = 0 which allows interpretation as a

projective surface. The method however works also for more general case since the idea
about replacing point with directions is applied only at origin.

(b) One can consider a more practical resolution of singularity by performing a bi-rational
coordinate transformation becoming singular at the singular point. This can improve
the singularity by blowing it up or make it worse by inducing blowing down. The idea
is to perform a sequence of this kind of coordinate changes inducing blowing ups so that
final outcome is free of singularities.

Since one considers polynomial equations both blowing up and its reversal must map
polynomials to polynomials. Hence a bi-rational transformation b acting as a surjection

http://tinyurl.com/yb7cuwkf
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from the modified surface to the original one must be in question (for bi-rational ge-
ometry see http://tinyurl.com/yadoo3ot). At the singularity b is many-to-one y so
that at this point inverse image is multivalued and gives rise to the blowing up.

The equation P (x1, x2, x3) = 0 combined with the equations xiyj −xjyi = 0 by putting
y3 = 1 (the coordinates are projective) leads to a parametric representation of S using
y1 and y2 as coordinates instead of x1 and x2. Origin is replaced with CP1. This repre-
sentation is actually much more general. Whitten [A49] gives a systematic description
of resolution of singularities using this representation. For instance, cusp singularity
P (x1, x2) = x2

1 − x3
2 = 0 is discussed as a special case.

(c) Topologically the blow up process corresponds to the gluing of CP2 to the algebraic
surface A : A→ A#CP2 and clearly makes it more complex. One can say that gluing
occurs along sphere CP1 and since the process involves several steps several spheres are
involved with the resolution of singularities.

ADE classification for resolutions of double point singularities of algebraic surfaces

ADE classification emerges for co-dimension one double point singularities of complex sur-
faces in C3 known as Du Val singularities. The surface itself can be seen locally as C2.
These surfaces are 4-D in real sense can have self-intersections with real dimension 2. In
the singular point the dimension of the intersection is reduced and the dimension of tangent
space is reduced (the rank of Jacobian is not maximal). The vertices of cone and cusp are
good examples of singularities.

The subgroup G ⊂ SU(2) has a natural action in C2 and it appears in the canonical repre-
sentation of the singularity as orbifold C2/G. This helps to understand the appearance of
the McKay graph of G. The resolved singularities are characterized by a set of projective
lines CP1 with intersection matrix in CP2 characterized by McKay graph of G. Why the
number of projective lines equals to the number of irrepss of G appearing as nodes in McKay
graph looks to me rather mysterious. Reid’s article [A73] gives the characterization of groups
G and canonical forms of the polynomials defining the singular surfaces.

The reason why Du Val singularities are so interesting from TGD point of view is that
complex surfaces in Du Val theory have real dimension 4 and are surfaces in space of real
dimension 6. The intersections of the branches of the 4-surfaces have real dimension D = 2
in the generic case. In TGD space-time surfaces as preferred extremals have real dimension 4
and assumed possess complex structure or its Minkowskian generalization that I have called
Hamilton-Jacobi structure [K79].

19.4.2 Do McKay graphs of Galois groups give overall view about
classical and quantum dynamics of quantum TGD?

McKay graphs for Galois groups are interesting from TGD view point for several reasons.
Galois groups are conjectured to be the number theoretical symmetries for the hierarchy of
extensions of rationals defining hierarchy of adelic physics [L35] [L34] and the notion of CFT
is expected to generalize in TGD framework so that ADE classification for minimal CFTs
might generalize to a classification of minimal number theoretic CFTS by Galois groups.

Vision

The arguments leading to the vision are roughly following.

(a) Adelic physics postulates a hierarchy of quantum physics with adeles at given level asso-
ciated with extension of rationals characterized partially by Galois group and ramified
primes of extension. The dimension of the extensions dividing the order of Galois group
is excellent candidate for defining the value of Planck constant heff/h = n and ramified
primes could correspond to preferred p-adic primes. The discrete sets of points of space-
time surface for which imbedding space coordinates are in the extension define what I
have interpreted as cognitive representations and can be said to be in the intersection

http://tinyurl.com/yadoo3ot
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of all number fields involved forming kind of book like structure with pages intersecting
at the points with coordinates in extension.

Galois groups would define a hierarchy of theories and the natural first guess is that
Galois groups take the role of subgroups of SU(2) in CFTs with SU(2) KMA as sym-
metry. Could the MacKay graphs defining the fusion algebra of Galois group define
the fusion algebra of corresponding minimal number theoretic QFTs in analogy with
minimal conformal models? This would fix the primary fields of theories assignable to
given level of adele hierarchy to be minimal representations of Gal perhaps having also
interpretation as representations of KMAs or their generalization to TGD framework.

(b) The analogies between TGD and the theory of Du Val singularities is intriguing. Com-
plex surfaces in Du Val theory have real dimension 4 and are surfaces in space of real
dimension 6. The intersections of the branches of the 4-surfaces have real dimension
D = 2 in the generic case. In TGD space-time surfaces have real dimension 4 and possess
complex structure or its Minkowskian generalization that I have called Hamilton-Jacobi
structure.

The twistor bundle of space-time surface has 2-sphere CP1 as a fiber and space-time
surface as base [L24, L38]. Space-time surfaces can be realized as sections in their own
6-D twistor bundle obtained by inducing twistor structure from the product T (M4) ×
T (CP2) of twistor bundles of M4 and CP2. Section is fixed only modulo gauge choice,
which could correspond to the choice of the Kähler form defining twistor structure
from quaternionic units represented as points of S2. Even if this choice is made, U(1)
gauge transformations remain and could correspond to gauge transformations of WCW
changing its Kähler gauge potential by gradient and adding to Kähler function a real
part of holomorphic function of WCW coordinates.

If the imbedding of 4-D space-time surface as section can become singular in given gauge,
it will have self-intersections with dimension 2 possibly assignable to partonic 2-surfaces
and maybe also string world sheets playing a key role in strong form of holography
(SH). Could SH mean that information about classical and quantum theory is coded by
singularities of the imbedding of space-time surface to twistor bundle. This would be
highly analogous to what happens in the case of complex functions and also in twistor
Grassmann theory whether the amplitudes are determined by the data at singularities.

(c) Where would the intersections take place? Space-time regions with Minkowskian and
Euclidian signature of metric have light-like orbits of partonic 2-surfaces as intersec-
tions. These surfaces are singular in the sense that the metric determinant vanishes and
tangent space of space-time surface becomes effectively 3-D: this would correspond to
the reduction of tangent space dimension of algebraic surface at singularity. It is attrac-
tive to think that the lifts of Minkowskian and Euclidian space-time sheets have twistor
spheres, which only intersect and have intersection matrix represented by McKay graph
of Gal.

What about string world sheets? Does it make sense to regard them as intersections of 4-
D surfaces? This does not look plausible idea but there are also other characterizations
of string world sheets. One can also ask about the interpretation of the boundaries
of string world sheets, in particular the points at the partonic 2-surfaces. How could
they relate to singularities? The points of cognitive representation at partonic 2-surfaces
carrying fermion number should belong to cognitive representation with imbedding space
coordinates belonging to an extension of rationals.

(d) In Du Val theory the resolution of singularity means that one adds additional points
to a double singularity: the added points form projective sphere CP1. The blowing up
process is like lifting self-intersecting curve to a non-singular curve by imbedding it into
3-D space so that the original curve is its projection. Could singularity disappear as one
looks at 6-D objects instead of 4-D object? Could the blowing up correspond in TGD to
a transition to a new gauge in which the self intersection disappears or is shifted on new
place? The intersections of 4-surfaces in 6-space analogous to roots of polynomial are
topologically stable suggesting that they can be only shifted by a new choice of gauge.

Self-intersection be a genuine singularity if the spheres CP1 defining the fibers of the
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twistor bundles of branches of the space-time surface do not co-incide in the 2-D inter-
section. In the generic case they would only intersect in the intersection. Could the
McKay diagram of Galois group characterize the intersection matrix?

(e) The big vision could be following. Galois groups characterize the singularities at given
level of the adelic hierarchy and code for the multiplets of primary fields and for the
analogs of their fusion rules for TGD counterparts of minimal CFTs. Note that sin-
gularities themselves identified as partonic 2-surfaces and possibly also light partonic
orbits and possibly even string world sheets are not restricted in any manner.

This idea need not be so far-fetched as it might look at first.

(a) One considers twistor lift and self-intersections indeed occur also in twistor theory.
When the M4 projections of two spheres of twistor space CP3 (to which the geometric
twistor space T (M4) = M4 × S2 has a projection) have light-like separation, they
intersect. In twistor diagrams the intersection corresponds to an emission of massless
particle.

(b) The physical expectation is that this kind of intersections could occur also for the twistor
bundle associated with the space-time surface. Most naturally, they could occur along
the light-like boundary of causal diamond (CD) for points with light-like separation.
They could also occur along the partonic orbits which are light-like 3-surfaces defining
the boundaries between Minkowskian and Euclidian space-time regions. The twistor
spheres at the ends of light-like curve could intersect.

Why the number of intersecting twistor spheres should reduce to the number n(irred,Gal)
of irreducible representations (irreps) of Gal, which equals to n(Gal) in Abelian case but is
otherwise smaller? This question could be seen as a serious objection.

(a) Does it make sense to think that although there are n(Gal) in the local fiber of twistor
bundle, the part of Galois fiber associated with the twistor fiber CP1 has only n(irrep,Gal)
CP1:s and even that the spheres could correspond to irreps of Gal. I cannot invent any
obvious objection against this. What would happen that Could this mean realization
of quantum classical correspondence at space-time level.

(b) There are n(irrep,G) irreps and
∑
i n

2
i = n(G). n2

i points at corresponding sheet la-
belled by irrep. The number of twistor spheres collapsing to single one would be ni for ni-
D irrep so that instead of states of representations the twistor spheres would correspond
to irrep. One would have analogy with the fractionization of quantum numbers. The
points assignable to ni-D representations would become effectively 1/ni-fractionized. At
the level of base space this would not happen.

Phase transitions reducing heff/h

In TGD framework one can imagine also other kinds of singularities. The reduction of Gal
to its subgroup Gal/H, where H is normal subgroup defining Galois group for the Gal as
extension of Gal/H is one such singularity meaning that the H orbits of space-time sheets
become trivial.

(a) The action of Gal could reduce locally to a normal subgroup H so that Gal would be
replaced with Gal/H. In TGD framework this would correspond to a phase transition
reducing the value of Planck constant heff/h = n(Gal) labelling dark matter phases
to heff/h = n(Gal/H) = n(Gal)/n(H). The reduction to Gal/H would occur auto-
matically for the points of cognitive representation belonging to a lower dimensional
extension having Gal/H as Galois group. The singularity would occur for the cogni-
tive points of both space-time surface and twistor sphere and would be analogous to
n(H)-point singularity.
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(b) A singularity of the discrete bundle defined by Galois group would be in question and
is assumed to induce similar singularity of n(Gal) -sheeted space-time surface and its
twistor lift. Although the singularity would occur for the ends of strings it would
induce reduction of the extension of rationals to Gal/H, which should also mean that
string world sheets have representation with WCW coordinates in smaller extension of
rationals.

(c) This would be visible as a reduction in the spectrum of primary fields of number theoretic
variant of minimal model. I have considered the possibility that the points at partonic
2-surfaces carrying fermions located at the ends of string world sheets could correspond
to singularities of this kind. Could string world sheets could correspond to this kind of
bundle singularities? This singularity would not have anything to do with the above
described self-interactions of the twistor spheres associated with the Minkowskian and
Euclidian regions meeting at light-like orbits of partonic 2-surfaces.

(d) This provides a systematic procedure for constructing amplitudes for the phase tran-
sitions reducing heff/h = n(Gal) to heff/h = n(Gal/H). The representations of Gal
would be simply decomposed to the representations of Gal(G/H) in the vertex describ-
ing the phase transition. In the simplest 2-particle vertex the representation of Gal
remains irreducible as representation of Gal/H. Transition amplitudes are given by
overlap integrals of representation functions of group algebra representations of Gal
restricted to Gal/H with those of Gal/H.

The description of transitions in which particles with different Galois groups arrive in
same diagram would look like follows. The Galois groups must form an increasing
sequence ... ⊂ Gali = Gali+1/Hi+1 ⊂ .... The representations of the largest Galois
group would be decomposed to the representations of smallest Galois group so that
the scattering amplitudes could be constructed using the fusion algebra of the smallest
Galois group. The decomposition to should be associative and commutative and could
be carried in many manners giving the same outcome at the final step.

Also quaternionic and octonionic automorphisms might be important

What about the role of subgroups of SU(2)? What roles they could have? Could also they
classify singularities in TGD framework?

(a) SU(2) is indeed realize as multiplication of quaternions. M8−H correspondence suggests
that space-time surfaces in M8 can be regarded as associative or co-associative (nor-
mal space-is associative. Associative translates to quaternionic. Associativity makes
sense also at the level of H although it is not necessary. This would mean that the
tangent space of space-time surface has quaternionic structure and the multiplication
by quaternions is makes sense.

(b) The Galois group of quaternions is SO(3) and has discrete subgroups having discrete
subgroups of SU(2) as covering groups. Quaternions have action on the spinors from
which twistors are formed as pairs of spinors. Could quaternionic automorphisms be
lifted to a an SU(2) action on these spinors by quaternion multiplication? Could one
imagine that the representations formed as tensor powers of these representations give
finite irreps of discrete subgroups of SU(2) defining ground states of SU(2) KMA a
representations and define the primary fields of minimal models in this manner?

(c) Galois groups for extensions of rationals have automorphic action on SO(3) and its al-
gebraic subgroups replacing matrix elements with their automorphs: for subgroups rep-
resented by rational matrices the action is trivial. One would have analogs of represen-
tations of Lorentz group SL(2, C) induced from spin representations of finite subgroups
G ⊂ SU(2) by Lorentz transformations realizing the representation in Lobatchevski
space. Lorentz group would be replaced by Gal and the Lobatchevski spaces as orbit
with the representation of Gal in its group algebra. An interesting question is whether
the hierarchy of discrete subgroups of SU(2) in McKay correspondence relates to quater-
nionicity.
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G2 acts as octonionic automorphisms and SU(3) appears as its subgroup leaving on octonionic
imaginary unit invariant. Could these semi-direct products of Gal with these automorphism
groups have some role in adelic physics?

About TGD variant of ADE classification for minimal models

I already considered the ADE classification of minimal models. The first question is whether
the finite subgroups G ⊂ SU(2) are replaced in TGD context with Galois groups or with
their semi-direct products G/Gal. Second question concerns the interpretation of the Dynkin
diagram of affine ADE type Lie algebra. Does it correspond to a real dynamical symmetries.

(a) Could the MacKay correspondence and ADE classification generalize? Could fusion
algebras of minimal models for KMA associated with general compact Lie group G be
classified by the fusion algebras of the finite subgroups of G. This generalization seems
to be discussed in [B51] (see http://tinyurl.com/ycmyjukn).

(b) Could the fusion algebra of Galois groupGal give rise to a generalization of the minimal
model associated with a KMA of Lie group G ⊃ Gal. The fusion algebra of Gal would
be identical with that for the primary fields of KMA for G. Galois groups could be also
grouped to classes consisting of Galois groups appearing as a subgroup of a given Lie
group G.

(c) In TGD one has a fractal hierarchy of isomorphic supersymplectic algebras (SSAs) (the
conformal weights of sub-algebra are integer multiples of those of algebra) with gauge
conditions stating that given sub-algebra of SSA and its commutator with the entire
algebra annihilates the physical states. The remnant of the full SSA symmetry algebra
would be naturally KMA.

The pair formed by full SSA and sub-SSA would correspond to pair formed by group G
and normal subgroup H and the dynamical KMA would correspond to the factor group
G/H. This conjecture generalizes: one can replaceG with Galois group and SU(2) KMA
with a KMA continuing Gal as subgroup. One the other hand, one has also hierarchies
of extensions of rationals such that i + 1:th extension of rationals is extension of i:th
extension. Gi is a normal subgroup of Gi+1 so that the group Gali+1,i = Gali+1/Gali
acts as the relative Galois group for i+ 1:th extension as extensions of i:th extension.

This suggest the conjecture that the Galois groups Gali for extension hierarchies corre-
spond to the inclusion hierarchies SSAi ⊃ SSAi+1 of fractal sub-algebras of SSA such
that the gauge conditions for SSAi define a hierarchy KMAi of dynamical KMAs act-
ing as dynamical symmetries of the theory. The fusion algebra of KMAi theory would
be characterized by Galois group Gali.

(d) I have considered the possibility that the McKay graphs for finite subgroups G ⊂ SU(2)
indeed code for root diagrams of ADE type KMAs acting as dynamical symmetries to
be distinguished from SU(2) KMA symmetry and from fundamental KMA symmetries
assignable to the isometries and holonomies of M4 × CP2.

One can of course ask whether also the fundamental symmetries could have a repre-
sentation in terms of Gal or its semi-direct product G / Gal with a finite sub-group
automorphism group SO(3) of quaternions lifting to finite subgroup G ⊂ SU(2) acting
on spinors. This is not necessary since Gal can form semidirect products with the al-
gebraic subgroups of Lie groups of fundamental symmetries (Langlands program relies
on this). In the generic case the algebraic subgroups spanned by given extension of
rationals are infinite. When the finite subgroup G ⊂ SU(2) is closed under Gal auto-
morphism, the situation changes, and these extensions are expected to be in a special
role physically.

The number theoretic generalization of the idea that affine ADE group acts as symme-
tries would be roughly like following. The nodes of the McKay graph of G / Gal label
its irreps, which should be in 1-1 correspondence with the Cartan algebra of the KMA.
The KMA counterparts of the local bilinear Gal invariants associated with Gal irreps
would give currents of dynamical KMA having unit conformal weight. The convolution

http://tinyurl.com/ycmyjukn
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of primary fields with respect to conformal weight would be completely analogous to
that occurring in the expression of energy momentum tensor as local bilinears of KMA
currents.

If the free field construction using the local invariants as Cartan algebra defined by the
irreps of G / Gal works, it gives rise to charged primary fields for the dynamical KMA
labelled by roots of the corresponding Lie algebra. For trivial Gal one would have ADE
group acting as dynamical symmetries of minimal model associated with G ⊂ SU(2).

(e) Number theoretic Langlands conjecture [L30] [K117] generalizes this to the semidirect
product G0 / Gal algebraic subgroup G0 of the original KMA Lie group (p-adicization
allows also powers of roots of e in extension). One can imagine a hierarchy of KMA
type algebras KMAn obtained by repeating the procedure for the G1 / Gal, where G1

is discrete subgroup of the new KMA Lie group.

(f) In CFTs are also other manners to extend VA or SVA (Super-Virasoro algebra) to a
larger algebra by discovering new dynamical symmetries. The hope is that symmetries
would allow to solve the CFT in question. The general constraint is that the confor-
mal weights of symmetry generators are integer or half-integer valued. For the energy
momentum tensor defining VA the conformal weight is h = 2 whereas the conformal
weights of primary fields for minimal models are rational numbers.

The simplest extension is SVA involving super generators with h = 3/2. Extension of
(S)VA by (S)KMA so that (S)VA acts by semidirect product on (S)KMA means adding
(S)KMA generators with with h = 1 (and 1/2). The generators of Wn-algebras (see
http://tinyurl.com/y93f6eoo) have either integer or half integer conformal weights
and the algebraic operations are defined as ordered products (an associative operation).
These extensions are different from the proposed number theoretic extension for which
the restriction to a discrete subgroup of KMA Lie group is essential.

19.5 Appendix

I have left the TGD counterpart of fake flatness condition in Appendix. Also a little TGD
glossary is included.

19.5.1 What could be the counterpart of the fake flatness in TGD
framework?

Schreiber considers the n-variant of gauge field concept with gauge potential A and gauge
field F = DA replaced with a hierarchy of gauge potential like entities Ak), k = 1, .., n with
DAn) = 0 and ends up in n = 2 case to what he calls fake flatness condition DA1) = A2).
This raises a chain of questions.

Could higher gauge fields of Schreiber and Baez [B73, B55] provide a proper description of the
situation in finite measurement resolution? Could induction procedure make sense for them?
Should one define the projections of the classical fields by replacing ordinary H-coordinates
with their quantum counterparts? Could these reduce to c-numbers for number-theoretically
commutative 2-surfaces with commutative tangent space? What about second fundamental
form orthogonal to the string world sheet? Must its trace vanish so that one would have
minimal 2-surface?

The proposal of Schreiber is a generalization of a massless gauge theory. My gut feeling is that
the non-commutative counterpart of space-time surface is not promising in TGD framework.
My feelings are however mixed.

(a) The effective reduction of SSA and PSCA to quantal variants of Kac-Moody algebras
gives rise to a theory much more complex than gauge theory. On the other hand, the
reduction to Galois groups by finiteness of measurement resolution would paradoxically
reduce TGD to extremely simple theory.

http://tinyurl.com/y93f6eoo
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(b) Analog of Yang Mills theory is not enough since it describes massless particles. Mass-
less states in 4-D sense are only a very small portion of the spectrum of states in TGD.
Stringy mass squared spectrum characterizes these theories rather than massless spec-
trum. On the other hand, in TGD particles are massless in 8-D sense and this is crucial
for the success of generalized twistor approach.

(c) To define a generalization of gauge theory in WCW one needs homology and cohomology
for differential forms and their duals. For infinite-dimensional WCW the notion of dual
is difficult to define. The effective reduction of SSA and PSCA to SKMAs could however
effectively replace WCW with a coset space of the Lie-group associated with SKMA and
finite dimension would allow tod define dual.

(d) The idea about non-Abelian counterparts of Kähler gauge potential A and J in WCW
does not look promising and the TGD counterpart of the fake flatness condition does
not however encourage this.

Just for curiosity one could however ask whether one could generalize the Kähler structure of
WCW to n-Kähler structure to describe finite measurement resolution at the level of WCW
and whether also now something analogous to the fake flatness condition emerges. The “fake
flatness” condition has interesting analogy in TGD framework starting from totally different
geometric vision.

(a) SSA acts as dynamical symmetries on fermions at string world sheets. Gauge condition
would make the situation effectively finite-dimensional and allow to define if the effec-
tively finite-D variant of WCW n-structures using ordinary homotopies and homology
and cohomology. Also n-gauge fields could be defined in this effectively finite-D WCW
and they would allow a description in terms of string world sheets. The interpretation
could be in terms of generalization of Bohm-Aharonov phase from space-time level to
Berry phase in abstract configuration space defined now in reduced WCW.

(b) The Kähler form of H = M4 × CP2 (involving also the analog of Kähler form for M4)
can be induced to space-time level. When limited to the string world sheet is both
the curvature form of Kähler potential and the analog of flat 2-connection defining the
1-connection in the approaches of Schreiber’s and Baez so that one would have B = J
and dB = 0.

(c) 2-form J as it is interpreted in Screiber’s approach is hwoever not enough to construct
WCW geometry. The generalization of the geometry of M4 × CP2 (involving also the
analog of Kähler form for M4) to involve higher forms and its induction to the space-
time level and level of WCW looks rather awkward idea and does not bring in anything
new.

19.5.2 A little glossary

Topological Geometrodynamics (TGD): TGD can be regarded as a unified theory
of fundamental interactions. In General Relativity space-time time is abstract pseudo-
Riemannian manifold and the dynamical metric of the space-time describes gravitational
interactions. In TGD space-time is a 4-dimensional surface of certain 8-dimensional space,
which is non-dynamical and fixed by either physical or purely mathematical requirements.
Hence space-time has shape besides metric properties. This identification solves the concep-
tual difficulties related to the definition of the energy-momentum in General Relativity. Even
more, sub-manifold geometry, being considerably richer in structure than the abstract man-
ifold geometry behind General Relativity, leads to a geometrization of known fundamental
interactions and elementary particle quantum numbers.

Many-sheeted space-time, topological quantization, quantum classical correspon-
dence (QCC): TGD forces the notion of many-sheeted space-time (see http://tinyurl.

com/mf99gpv) with space-time sheets identified as geometric correlates of various physical
objects (elementary particles, atoms, molecules, cells, ..., galaxies, ...). Quantum-classical

http://tinyurl.com/mf99gpv
http://tinyurl.com/mf99gpv
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correspondence (QCC) states that all quantum notions have topological correlates at the
level of many-sheeted space-time.

Topological quantization: Topological field quantization is one of the basic distinctions
between TGD and Maxwell’s electrodynamics and GRT and means that various fields de-
compose to topological field quanta: radiation fields to “topological light rays”; magnetic
fields to flux tube structures; and electric fields to electric flux quanta (electrets). Topologi-
cal field quantization means that one can assign to every material system a field (magnetic)
body, usually much larger than the material system itself, and providing a representation for
various quantum aspects of the system.

Strong form of holography (SH): SH states that space-time surfaces as preferred ex-
tremals can be constructed from the data given at 2-D string world sheets and by a discrete
set of points defining the cognitive representation of the space-time surface as points com-
mon to real and various p-adic variants of the space-time surface (intersection of realities and
various p-adicities). Points of the cognitive representation have imbedding space coordinates
in the extension of rationals defining the adele in question. Effective 2-dimensionality is a
direct analogy for the continuation of 2-D data to analytic function of two complex variables.

Zero energy ontology (ZEO): In ZEO quantum states are replaced by pairs of positive and
negative energy states having opposite total quantum numbers. The pair corresponds to the
pair of initial and final state for a physical event in classical sense. The members of the pair
are at opposite boundaries of causal diamond (CD) (see http://tinyurl.com/mh9pbay),
which is intersection of future and past directed light-cones with each point replaced with
CP2. Given CD can be regarded as a correlate for the perceptive field of conscious entity.

p-Adic physics, adelic physics, hierarchy of Planck constants, p-adic length scale
hypothesis: p-Adic physics is a generalization of real number based physics to p-adic number
fields and interpreted as a correlate for cognitive representations and imagination. Adelic
physics fuses real physics with various p-adic physics (p = 2, 3, 5, ...) to adelic physics. Adele is
structure formed by reals and extensions of various p-adic number fields induced by extensions
of rationals forming an evolutionary hierarchy. Hierarchy of Planck constants corresponds
to the hierarchy of orders of Galois groups for these extensions. Preferred p-adic primes
satisfying p-adic length scale hypothesis p ' 2k, are so called ramified primes for certain
extension of rationals appearing as winners in algebraic evolution.

Cognitive representation: Cognitive representation corresponds to the intersection of the
sensory and cognitive worlds - realities and p-adicities - defined by real and p-adic space-time
surfaces. The points of the cognitive representation have H-coordinates which belong to an
extension of rationals defining the adele. The choice of H-coordinates is in principle free
but symmetries of H define preferred coordinates especially suitable for cognitive represen-
tations. The Galois group of the extension of rationals has natural action in the cognitive
representation, and one can decompose it into orbits, whose points correspond the sheets of
space-time surface as Galois covering. The number n of sheets equals to the dimension of
the Galois group in the general case and is identified as the value heff/h = n of effective
Planck constant characterizing levels in the dark matter hierarchy. One can also consider
replacing space-time surfaces as points of WCW with their cognitive representations defined
by the cognitive representation of the space-time surface and defining the natural coordinates
of WCW point.

Quantum entanglement, negentropic entanglement (NE), Negentropy maximiza-
tion principle (NMP): Quantum entanglement does not allow any concretization in terms
of everyday concepts. Schrödinger cat is the classical popularization of the notion (see
http://tinyurl.com/lpjcjm9): the quantum state, which is a superposition of the liv-
ing cat + the open bottle of poison and the dead cat + the closed bottle of poison represents
quantum entangled state. Schrödinger cat has clearly no self identity in this state.

In adelic physics one can assign to the same entanglement both real entropy and various p-
adic negentropies identified as measures of conscious information. p-Adic negentropy - unlike
real - can be positive, and one can speak of negentropic entanglement (NE). Negentropy
Maximization Principle (NMP) states that it tends to increase. In the adelic formulation
NMP holding true only in statistical sense is a consequence rather than separate postulate.

http://tinyurl.com/mh9pbay
http://tinyurl.com/lpjcjm9
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Self, subself, self hierarchy: In ZEO self is generalized Zeno effect. At the passive bound-
ary nothing happens to the members of state pairs and the boundary remains unaffected. At
active boundary members of state pairs change and boundary itself moves farther away from
the passive boundary reduction by reduction inducing localization of the active boundary in
the moduli space of CDs after unitary evolution inducing delocalization in it. Self dies as the
first reduction takes place at opposite boundary. A self hierarchy extending from elementary
particle level to the level of the entire Universe is predicted. Selves can have sub-selves which
they experience as mental images. Sub-selves of two separate selves can quantum entangle
and this gives rise to fusion of the mental images and the fused mental image is shared by
both selves.

Sensory representations: The separation of data processing and its representation is
highly desirable. In computers processing of the data is performed inside CPU and repre-
sentation is realized outside it (monitor screen, printer,...). In standard neuroscience it is
however believed that both data processing and representations are realized inside brain.
TGD leads the separation of data processing and representations: the “manual” of the ma-
terial body provided by field (or magnetic) body serves as the counterpart of the computer
screen at which the sensory and other representations of the data processed in brain are real-
ized. Various attributes of the objects of the perceptive field processed by brain are quantum
entangled with simple “something exists” mental images at the MB. The topological rays
of EEG serve are the electromagnetic bridges serving as the topological correlates for this
entanglement.



Chapter 20

Is Non-associative Physics and
Language Possible only in
Many-Sheeted Space-time?

20.1 Introduction

In Thinking Allowed Original (see https://www.facebook.com/groups/thinkallowed/)
there was very interesting link added by Ulla about the possibility of non-associative quantum
mechanics (see http://phys.org/news/2015-12-physicists-unusual-quantum-mechanics.
html#jCp).

Also I have been forced to consider this possibility.

(a) The 8-D imbedding space of TGD has octonionic tangent space structure and octonions
are non-associative. Octonionic quantum theory however has serious mathematical dif-
ficulties since the operators of Hilbert space are by definition associative. The represen-
tation of say octonionic multiplication table by matrices is possible but is not faithful
since it misses the associativity. More concretely, so called associators associated with
triplets of representation matrices vanish. One should somehow transcend the standard
quantum theory if one wants non-associative physics.

(b) Associativity seems to be fundamental in quantum theory as we understand it recently.
Associativity is a fundamental and highly non-trivial constraint on the correlation func-
tions of conformal field theories. It could be however broken in weak sense: as a mat-
ter of fact, Drinfeld’s associator emerges in conformal field theory context. In TGD
framework classical physics is an exact part of quantum theory so that quantum clas-
sical correspondence suggests that associativity could play a highly non-trivial role in
classical TGD. The conjecture is that associativity requirement fixes the dynamics of
space-time sheets - preferred extremals of Kähler action - more or less uniquely. One
can endow the tangent space of 8-D imbedding H = M4×CP2 space at given point with
octonionic structure: the 8 tangent vectors of the tangent space basis obey octonionic
multiplication table.

Space-time realized as n-D surface in 8-D H must be either associative or co-associative:
this depending on whether the tangent space basis or normal space basis is associative.
The maximal dimension of space-time surface is predicted to be the observed dimension
D = 4 and tangent space or normal space allows a quaternionic basis.

(c) There are also other conjectures [K76] about what the preferred extremals of Kähler
action defining space-time surfaces are.

i. A very general conjecture states that strong form of holography allows to determine
space-time surfaces from the knowledge of partonic 2-surfaces and 2-D string world
sheets.
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ii. Second conjecture involves quaternion analyticity and generalization of complex
structure to quaternionic structure involving generalization of Cauchy-Riemann
conditions.

iii. M8−M4×CP2 duality stating that space-time surfaces can be regarded as surfaces
in either M8 or M4 × CP2 is a further conjecture.

iv. Twistorial considerations select M4 ×CP2 as a completely unique choice since M4

and CP2 are the only spaces allowing twistor space with Kähler structure. The
conjecture is that preferred extremals can be identified as base spaces of 6-D sub-
manifolds of the product CP3 × SU(3)/U(1) × U(1) of twistor spaces associated
with M4 and CP2 having the property that it makes sense to speak about induced
twistor structure.

The “super(optimistic)” conjecture is that all these conjectures are equivalent.

The motivation for what follows emerged from the observation that language is an essentially
non-associative structure as the necessity to parse linguistic expressions essential also for
computation using the hierarchy of brackets makes obvious. Hilbert space operators are
however associative so that non-associative quantum physics does not seem plausible without
an extension of what one means with physics. Associativity of the classical physics at the
level of single space-time sheet in the sense that tangent or normal spaces of space-time
sheets are associative as sub-spaces of the octonionic tangent space of 8-D imbedding space
M4 × CP2 is one of the key conjectures of TGD.

But what about many-sheeted space-time? The sheets of the many-sheeted space-time form
hierarchies labelled by p-adic primes and values of Planck constants heff = n×h. Could these
hierarchies provide space-time correlates for the parsing hierarchies of language and music,
which in TGD framework can be seen as kind of dual for the spoken language? For instance,
could the braided flux tubes inside larger braided flux tubes inside... realize the parsing
hierarchies of language, in particular topological quantum computer programs? And could
the great differences between organisms at very different levels of evolution but having very
similar genomes be understood in terms of widely different numbers of levels in the parsing
hierarchy of braided flux tubes- that is in terms of magnetic bodies as indeed proposed. If
the intronic portions of DNA connected by magnetic flux tubes to the lipids of lipid layers
of nuclear and cellular membranes make them topological quantum computers, the parsing
hierarchy could be realized at the level of braided magnetic bodies of DNA.

Fortunately the mathematics needed to describe the breaking of associativity at fundamental
level seems to exist. The hierarchy of braid group algebras forming an operad combined
with the notions of quasi-bialgebra and quasi-Hopf algebra discovered by Drinfeld are highly
suggestive concerning the realization of weak breaking of associativity. With good luck
this breaking of associativity is all that is needed. With not so good luck this breaking of
associativity takes place already at the level of single space-time sheets and something else
is needed in many-sheeted space-time.

20.2 Is Non-associative Physics Possible In Many-sheeted
Space-time?

The key question in the sequel is whether non-associative physics could emerge in TGD via
many-sheeted space-time as an outcome of many-sheetedness and therefore distinguishing
TGD from GRT and various QFTs.

20.2.1 What Does Non-associativity Mean?

To answer this question one must first understand what non-associativity could mean.

(a) In non-associative situation brackets matter. A(BC) is different from (AB)C. Here AB
need not be restricted to a product or sum: it can be anything depending on A and B.



764
Chapter 20. Is Non-associative Physics and Language Possible only in Many-Sheeted

Space-time?

From schooldays or at least from the first year calculus course one recalls the algorithm:
when calculating the expression involving brackets one first finds the innermost brackets
and calculates what is inside them, then proceed to the next innermost brackets, etc...
In computer programs the realization of the command sequences involving brackets is
called parsing and compilers perform it. Parsing involves decomposition of program to
modules calling modules calling.... Quite generally, the analysis of linguistic expressions
involves parsing. Bells start to ring as one realizes that parsings form a hierarchy as
also do the space-time sheets!

(b) More concretely, there is hierarchy of brackets and there is also a hierarchy of space-time
sheets labelled by p-adic primes and perhaps also by Planck constants heff = n× h. B
and C inside brackets form (BC), something analogous to a bound state or chemical
compound. In TGD this something could correspond to a “glueing” space-time sheets B
and C at the same larger space-time sheet. More concretely, (BC) could correspond to
braided pair of flux tubes B and C inside larger flux tube, whose presence is expressed as
brackets (..). As one forms A(BC) one puts flux tube A and flux tube (BC) containing
braided flux tubes B and C inside larger flux tube. For (AB)C flux one puts tube
(AB) containing braided flux tubes A and B and tube C inside larger flux tube. The
outcomes are obviously different.

(c) Non-associativity in this sense would be a key signature of many-sheeted space-time.
It could show itself in say molecular chemistry, where putting on same sheet could
mean formation of chemical compound AB from A and B. Another highly interesting
possibility is hierarchy of braids formed from flux tubes: braids can form braids, which
in turn can form braids,... Flux tubes inside flux tubes inside... Maybe this more refined
breaking of associativity could underly the possible non-associativity of biochemistry:
biomolecules looking exactly the same would differ in subtle manner.

(d) What about quantum theory level? Non-associativity at the level of quantum theory
could correspond to the breaking of associativity for the correlation functions of n fields
if the fields are not associated with the same space-time sheet but to space-time sheets
labelled by different p-adic primes. At QFT limit of TGD giving standard model and
GRT the sheets are lumped together to single piece of Minkowski space and all physical
effects making possible non-associativity in the proposed sense are lost. Language would
be thus possible only in TGD Universe!

20.2.2 Language And Many-sheeted Physics?

Non-associativity is an essentially linguistic phenomenon and relates therefore to cognition.
p-Adic physics labelled by p-adic primes fusing with real physics to form adelic physics are
identified as the physics of cognition in TGD framework.

(a) Could many-sheeted space-time of TGD provides the geometric realization of language
like structures? Could sentences and more complex structures have many-sheeted space-
time structures as geometrical correlates? p-Adic physics as physics of cognition would
suggest that p-adic primes label the sheets in the parsing hierarchy. Could bio-chemistry
with the hierarchy of magnetic flux tubes added, realize the parsing hierarchies?

(b) DNA is a language and might provide a key example about parsing hierarchy. The
mystery is that human DNA and DNAs of most simplest creatures do not differ much.
Our cousins have almost identical DNA with us. Why do we differ so much? Could
the number of parsing levels be the reason- p-adic primes labelling space-time sheets?
Could our DNA language be much more structured than that of our cousins. At the level
of concrete language the linguistic expressions of our cousin are indeed simple signals
rather than extremely complex sentences of old-fashioned German professor forming a
single lecture each. Could these parsing hierarchies realize themselves as braiding hier-
archies of magnetic flux tubes physically and - more abstractly - as analos of parsing
hierarchies for social structures. Indeed, I have proposed that the presence of collective
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levels of consciousness having the hierarchy of magnetic bodies as a space-time corre-
lates distinguishes us from our cousins so that this explanation is consistent with more
quantitative one relying on language.

(c) I have also proposed that intronic portion of DNA is crucial for understanding why we
differ so much from our cousins [K20, K80]. How does this view relate to the above
proposal? In the simplest model for DNA as topological quantum computer introns
would be connected by flux tubes to the lipids of nuclear and cell membranes. This
would make possible topological quantum computations with the braiding of flux tubes
defining the topological quantum computer program.

Ordinary computer programs rely on computer language. Same should be true about
quantum computer programs realized as braidings. Now the hierarchical structure of
parsings would correspond to that of braidings: one would have braids, braids of braids,
etc... This kind of structure is also directly visible as the multiply coiled structure of
DNA. The braids beginning from the intronic portion of DNA would form braided flux
tubes inside larger braided flux tubes inside.... defining the parsing of the topological
quantum computer program. The higher the number of parsing levels, the higher the
position in the evolutionary hierarchy. Each braiding would define one particular fun-
damental program module and taking this kind of braided flux tubes and braiding them
would give a program calling these programs as sub-programs.

(d) The phonemes of language have no meaning to us (at our level of self hierarchy) but the
words formed by phonemes and involving at basic level the braiding of “phoneme flux
tubes” would have. Sentences and their substructures would in turn involve braiding
of “word flux tubes”. Spoken language would correspond to temporal sequences of
braidings of flux tubes at various hierarchy levels.

(e) The difference between us and our cousins (or other organisms) would not be at the
level of visible DNA but at the level of magnetic body. Magnetic bodies would serve
as correlates also for social structures and associated collective levels of consciousness.
The degree of braiding would define the level in the evolutionary hierarchy. This is of
course the basic vision of TGD inspired quantum biology and quantum bio-chemistry
in which the double formed by organism and environment is completed to a triple by
adding the magnetic body.

20.2.3 What About The Hierarchy Of Planck Constants?

p-Adic hierarchy is not the only hierarchy in TGD Universe: there is also the hierarchy
of Planck constants heff = n × h giving rise to a hierarchy of intelligences. What is the
relationship between these hierarchies?

(a) I have proposed that speech and music are fundamental aspects of conscious intelligence
and that DNA realizes what I call bio-harmonies in quite concrete sense [L13] [K59]:
DNA codons would correspond to 3-chords. DNA would both talk and sing. Both
language and music are highly structured. Could the relation of heff hierarchy to
language be same as the relation of music to speech?

(b) Are both musical and linguistic parsing hierarchies present? Are they somehow dual?
What does parsing mean for music? How musical heard sounds could give rise to the
analog of braided strands? Depending on the situation we hear music both as separate
notes and as chords as separate notes fuse in our mind to a larger unit like phonemes
fuse to a word. Could chords played by single instrument correspond to braidings of flux
tubes at the same level? Could the duality between linguistic and musical intelligence
(analogous to that between function and its Fourier transform) be very concrete and
detailed and reflect itself also as the possibility to interpret DNA codons both as three
letter words and as 3-chords [L13]?
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20.3 Braiding Hierarchy Mathematically

More precise formulation of the braided flux tube hierarchy leads naturally to the notions of
braid group and operad that I have considered earlier. They have a close relationship with
quantum groups - more precisely, bialgebras and Hopf algebras and their generalizations
quasi-bialgebras and quasi-Hopf algebras, which in turn allow to characterize what might be
called minimal breaking of associativity in terms of Drinfeld associator. These notions are
already familiar from conformal field theories and string theories them so that there are good
hopes that no completely new mathematics is not needed.

It must be made clear that I am not a mathematician and the following is just a modest
attempt to understand what the problem is. I try to identify the algebraic structure pos-
sibly allowing to realize the big vision and gather some results about these structures from
Wikipedia: I confess that I do not understand the formulas at the deeper level and my goal
is to find their physical interpretation in TGD framework.

20.3.1 How To Represent The Hierarchy Of Braids?

Before going to web to see how modern mathematics could help in the problem, try first to
formulate the situation more concretely. One must consider a more detailed representation
for braids and for their hierarchy.

Consider first rough physical geometric view about braids of braids represented in terms of
flux tubes.

(a) Braid strands have two ends: one can label them as “lower” and “upper”. Flux tubes
can be labelled by p-adic prime p and heff = n × h. Magnetic flux tubes can carry
monopole flux and this could be crucial for the breaking of associativity - at least it
is so in the proposed model (see http://tinyurl.com/y7oom5kh). The possibility of
apparent magnetic monopoles in TGD framework indeed involves many-sheetedness in
an essential manner: monopole flux flows from space-time sheet to another one through
wormhole contact. This can be taken as one possible hint about the concrete physics
involved.

(b) One can get more precise picture by using formulas. One has labelling of flux tubes by
primes p and Planck constants heff : to be short call this label a, b, c, ... Since the values
of p and heff are graded one could also speak of grading. The states for given value
of a assignable to braid strands are labelled by the quantum states A,B, ... associated
with them and analogous to algebra elements. One must however consider all possible
situations so that has operators Aa, Ba, ... analogous to algebra elements of a graded
algebra about which Clifford algebras and super-algebras are familiar examples.

(c) Consider now the physical interpretation for the breaking of associativity. For ordinary
associative algebra one considers A(BC) = (AB)C. This condition as such make sense if
A(BC) and (AB)C are inside same flux tube and perhaps also that the strands A,B,C
are not braids. In the general case one must must add the labels a, b, c, d and a, b1, c1, d1

and one obtains ((AdBd)c)Cb)a and (Ab1(Bd1
Cd1

))c1)a. Obviously, these two states
need not identical unless one has a = b = c = d = b1 = c1 = d1, which is also possible
and means that all strands are at the same flux tube labelled by a. The challenge is to
combine various almost copies of algebraic structure defined by braidings and labelled
by a, b, .. to larger algebraic structure and formulate the breaking of associativity for
this structure.

20.3.2 Braid Groups As Coverings Of Permutation Groups

Consider next the definition of braid group.

(a) The notion of braiding can be algebraized using the notion of braid group Bn of n
strands, which is covering of the permutation group Sn. For ordinary permutations

http://tinyurl.com/y7oom5kh
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generating permutations are exchanges of Pi two neighboring elements in the ordered
set (a1, ..., an): (ai, ai+1) → (ai+1, ai). Obviously one has P 2

i so that permutation is
analogous to reflection. For braid group permutation is replaced to twisting of neigh-
boring braid strand. It looks like permutation if one looks at the ends of strands only.
If one looks entire strands, there is no reason to have P 2

i = 1 except possibly for the
representation of braid group. For arbitrarily large n that one has Pni 6= 1. 2-D braid
group Bn can be represented as a homotopies of 2-D plane with n punctures identifiable
as ends of braid strands defined by their non-intersecting orbits.

(b) At the level of quantum description one must allow quantum superpositions of different
braidings and must describe the quantum state of braid as wave function in braid
group: one has element of group algebra of braid group. To each element of braid group
one can assign unitary matrix representing the braiding and this unitary matrix would
define a “topological time evolution” defined by braiding transforming the initial state
at the lower end of braid to the state at upper end of braid. Hence it seems that braid
group algebra is the proper mathematical notion. One has quantum superposition of
topological time evolutions: something rather abstract.

20.3.3 Braid Having Braids As Strands

Many-sheeted space-time makes possible fractal hierarchy of braids. Braid group in above
sense would act on flux tubes at the same space-time sheets or space-time of QFT and GRT.
Braids can have as strands braids so that there is hierarchy of braiding levels. The hierarchy
of coilings of DNA provides a simple example (very simple having not much to do with the
hierarchy of braidings for flux tubes).

(a) Suppose that one has only two levels in the hierarchy. One has n braid strands/flux tubes
altogether and there are k larger flux tubes containing ni, i = 1, .., k flux tubes so that
one has

∑k
i=1 ni = n. One can imagine a coloring of the braid strands inside given flux

tube characterizing it. Only braid strands inside same flux tube - with the same color -
can be braided. The full braid group Bn braiding freely all n braid strands is restricted
to a subgbroup Bn1

× ....×Bn2
. This group can be regarded as subgroup of Bn so that

permutations of Bni have a well-defined outcome, which seems however to be trivial
classically. In quantum situation the exchange of the factors Bni however corresponds
to braiding and for non-trivial quantum deformations its action is non-trivial. One has
braided commutativity instead of commutativity.

(b) Besides this there are braidings for the k braids of braids and this gives braid group
Bk acting at upper level of hierarchy. Clearly the higher level braids bi, i = 1, ..., k and
lower level braids bij , j = 1, ..., ni form a two-levelled entity. The braid groups Bk and
Bni form an algebraic entity such that Bk acts by permuting the entities. Same holds
true for the braid group algebras. This structure generalizes to an entire hierarchy of
braid groups and their group algebras.

The hierarchy of braid group algebras seems to closely relate to a very general notion known as
operad (see http://tinyurl.com/yavyhcsk). The key motivation of the operad theory is to
model the computational trees resulting from parsing. The action of permutations/braidings
on the basic objects is central notion and one indeed has hierarchy of symmetric groups/braid
groups such that the symmetric/braid group at n + 1:th level permutes/braids the objects
at n:th level. Now the objects would be braids whose strands are braided. The braids can
be strands of higher level braids and these strands can be braided. The action of braidings
extends to that on braid group algebras defining candidates for wave functions.

http://tinyurl.com/yavyhcsk
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20.4 General Formulation For The Breaking Of Associa-
tivity In The Case Of Operads

The formulas characterizing weak form of associativity by Drinfeld and others look rather
mysterious without understanding of their origins. This understanding emerges from very
simple but general basic arguments. Instead of studying given algebra one transcends to a
higher abstraction level and studies - not the results of algebraic expressions - but the very
process how the algebraic expression is evaluated and what kind of rules one can pose on it.
The rules can be abstracted to what is called algebraic coherence.

The evaluation process - parsing - starts from inner most brackets and proceeds outwards so
that eventually all brackets have disappeared and one has the value for the expression. This
process can be regarded as a tree which starts from n inputs which are algebra elements, in
the recent case they could be braid group algebra elements.

For instance, (AB)C corresponds to an tree in which A,B,C are the branches. As one comes
downwards, A and B fuse in the upper node and AB and C in the lower node. One manner
to see this is as particle reaction proceeding backwards in time. For A(BC) B and C fuse
to BC in the upper node and A and BC at the lower node. Associativity says that the two
trees give the same result. “Braided associativity” would say that these trees give results
differing by an isomorphism just as braided commutativity says that AB and BA give results
differing by isomorphism.

One can formulate this more concretely by denoting algebra decomposition A⊗B ∈ V ⊗V →
AB ∈ V by θ. In associativity condition one has 3 inputs so that 3-linear map V ⊗V ⊗V → V
is in question. (AB)C corresponds to θ ◦ (θ, 1) applied to (A⊗ B ⊗ C). Indeed, (θ, 1) gives
(AB,C) ∈ V ⊗V . Second step θ◦ applied to this gives (AB)C. In the same manner, A(BC)
corresponds to (θ ◦ (1, θ) and associativity condition can be expressed as

θ ◦ (θ, 1) = θ ◦ (1, θ) .

An important delicacy should be mentioned. Although operations can be non-associative, the
composition of operations is assumed to be associative. One can imagine obtaining ((ab)c)d
either by θ ◦ (θ, 1) ◦ (θ, 1, 1)) or by (θ ◦ (θ, 1)) ◦ (θ, 1, 1)). The condition that these expressions
are identical is completely analogous to the associativity for the composition of functions
f ◦ (g ◦ h) = (f ◦ g) ◦ h and this axiom looks obvious becomes one is used to define f ◦ g
using this formula (starting from rightmost brackets). One could however imagine starting
the evaluation of the composition of operators also from leftmost brackets. This makes sense
if the composition can be done without the substitution of the value of argument.

20.4.1 How Associativity Could Be Broken?

How to obtain the breaking of associativity? The first thing is to get some idea about what
(weak) breaking of associativity could mean.

Breaking of associativity at the level of algebras

Basic examples about breaking of associativity might help in the attempts to understand how
many-sheetedness could induce the breaking of associativity. The intuitive feeling is that the
effect is not large and disappears at QFT limit of TGD.

In the case of algebras one has bilinear map V ⊗V → V . Now this map is from V ⊗V → V ⊗V
so that the two situations need not have much common. Despite this one can look the
situation in the case of algebras.

Lie-algebras and Jordan algebras represent key examples about non-associative algebras.
Associative algebras, Lie-algebras, and Jordan algebras can be unified by weakning the asso-
ciativity condition A(BC) = (AB)C to a condition obtained by cyclically symmetrizing this
condition to get the condition
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A(BC) +B(CA) + C(AB) = (AB)C + (BC)A+ (CA)B

plus the condition

(A2B)A = A2(BA)

defining together with commutativity condition AB = BA Jordan algebra (http://tinyurl.
com/y8n9ol9p). Note that Jordan algebra with multiplication A · B is realized in terms of
associative algebra product as A·B = (AB+BA)/2. A good guess is that the non-associative
Malcev algebra formed by imaginary octonions with product xy−yx satisfies these conditions.

Could the analog of the condition A(BC) + B(CA) + C(AB) = (AB)C + (BC)A+ (CA)B
make sense also for the braiding group algebra assignable to quantum states of braids? The
condition would say that cyclic symmetrization by superposing different braiding topologies
gives a quantum state, which is in well-defined sense associative. Cyclic symmetry looks
attractive because it plays also a key role in twistor Grassmannian approach.

Bi-algebras and Hopf algebras

One must start from bi-algebra (B,∇, η,∆, ε). One has product ∇ and co-product ∆ anal-
ogous to replication of algebra element: particle physicists has tendency to see it as “time
reversal” of product analogous to particle decay as reversal of particle fusion. The key idea is
that co-multiplication is algebra homomorphism for multiplication and multiplication algebra
homomorphism for co-multiplication. This leads to four commutative diagrams essentially
expressing this property (see http://tinyurl.com/y897z3es).

Instead of giving the general definitions it is easier to consider concrete example of bi-algebra
defined by group algebra. Bi-algebra has product ∇ : H ⊗H → H and co-product ∆ : H →
H ⊗H, which intuitively corresponds to inverse or time reversal of product. In the case of
group algebra this holds true in very precise sense since one has ∆(g) = g ⊗ g: ∆ is clearly
analogous to replication. Besides this one has map ε : H → K assigning to the algebra
element a scalar and inverse map taking the unit 1 of the field to unit element of H, called
also 1 in the following. For group algebra one has ε(g) = 1. Bi-algebras are associative and
co-associative. Commutativity is however only braided commutativity.

Hopf algebra (H,∇, η,∆, ε, S) is special case of bi-algebra and often loosely called quantum
group. The additional building brick is algebra anti-homomorphism S : H → H known as
antipode. S is analogous to mapping element of h to its inverse (it need not exist always).
For group algebra one indeed has S(g) = g−1. Besides the four commuting diagrams for
bi-algebra one has commutative diagrams ∇(S, 1)∆ = ηε and ∇(1, S)∆ = ηε, where ε is
co-unit. The right hand side gives a scalar depending on h multiplied by unit element of H.
For group algebra this gives unit at both sides. In the general case the situation ∆(h) = h⊗h
is true for group like element only and one has more complex formula ∆(h) =

∑
i ai ⊗ bi.

One also defines primitive elements as elements satisfying ∆(h) = h⊗ 1 + 1⊗ h. Also Hopf
algebras are associative and co-associative.

Quasi-bialgebras and quasi-Hopf algebras

Quasi-bi-algebras giving as special case quasi-Hopf algebras were discovered by Russian
mathematician Drinfeld (for technical definition, which does not say much to non-specialist
see http://tinyurl.com/y7b6lpop and http://tinyurl.com/y89cs5oy). They are non-
associative or associative modulo isomoprhism.

Consider first quasi-bi-algebra (B,∆, ε,Φ, l, r). ∆ and ε are as for bi-algebra. Besides this one
has invertible elements Φ (Drinfeld associator) and r, l called right and lef unit constraints.
The conditions satisfied are following

http://tinyurl.com/y8n9ol9p
http://tinyurl.com/y8n9ol9p
http://tinyurl.com/y897z3es
http://tinyurl.com/y7b6lpop
http://tinyurl.com/y89cs5oy
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•
(1⊗∆) ◦∆(a) = Φ[((∆⊗ 1) ◦∆(a)]Φ−1 .

For Φ = 1⊗ 1⊗ 1 one obtains associativity.

•
[(1⊗ 1×∆)(Φ)][(∆⊗ 1⊗ 1)(Φ)] = (1⊗ Φ)[1⊗∆⊗ 1)(Φ)(Φ⊗ 1) .

•
(ε⊗ 1)(∆(a)) = l−1al , (1⊗ ε)(∆(a)) = r−1ar .

•
1⊗ ε⊗ 1)(Φ) = 1⊗ 1 .

These mysterious looking conditions express the fact that Drinfeld associator is a bialgebra
co-cycle.

Quasi-bialgebra is braided if it has universal R-matrix which is invertible element in B ⊗ B
such that the following conditions hold true.

(∆op)(a) = R∆(a)R−1 . (20.4.1)

Note that for group algebra with ∆g = g ⊗ g one has ∆op = ∆ so that R must commute
with ∆. Whether this forces R to be trivial is unclear to me. Certainly there are also other
homomorphisms. A good candidate for a non-symmetric co-product is ∆g = g × h(g) where
h is a homomorpism of the braid group. This requires the replacement S(g) → S(h−1g) in
order to obtain unitarity for ∇(1, S)∆ loop removing the braiding.

(1⊗∆)(R) = Φ−1
231R13Φ213R12Φ−1

213 . (20.4.2)

(∆⊗ 1)(R) = Φ−1
321R13Φ−1

213R23Φ123 . (20.4.3)

This and second condition imply for trivial R that also Φ is trivial.

For Φ = 1 ⊗ 1 ⊗ 1 the conditions reduces to those for ordinary braiding. The universal R-matrix
satisfies the non-associative version of Yang-Baxter equation

R12Φ321R13(Φ132)−1R23Φ123 = Φ321R23(Φ231)−1R13Φ213R12 . (20.4.4)

Quasi-Hopf algebra is a special case of quasi-bialgebra. Also now one has product ∇, co-
product ∆, antipode S not present in bialgebra, and maps ε and η. Besides this one has two special
elements α and β of H such that the conditions ∇(S, α) · ∆ = α and ∇(1, βS) · ∆ = α. To my
understanding these conditions generalize the conditions ∇(S, 1)∆ = ηε and ∇(1, S)∆ = ηε.

Associativity holds but only modulo a morphism in the same way as commutativity becomes
braided commutativity in the case of quantum groups. The braided commutativity is characterized
by R-matrix. The morphism defining “braided associativity” is characterized by the product Φ =∑
iXi⊗Yi⊗Zi acting on triple tensor product V ⊗V ⊗V and satisfying certain algebraic conditions.

Φ has “inverse” Φ−1 =
∑
i Pi⊗Qi⊗Ri The conditions (1, βS, α)Φ = 1 and (S, α, βS)Φ = 1. Here

the action of S is that of algebra anti-homomorphism rather than algebra multiplication.
Drinfeld associator, which is a non-abelian bi-algebra 3-cocycle satisfying conditions analo-

gous to the condition for weakened associativity holding true for Lie and Jordan algebras. These
quasi-Hopf algebras are known in conformal field theory context and appear in Knizhnik-Zamolodchikov
equations so that a lot of mathematical knowhow exists. According to Wikipedia, quasi-Hopf alge-
bras are associated with finite-D irreps of quantum affine algebras in terms of F-matrices used to
factorize R-matrix. The representations give rise to solutions of Quantum Yang-Baxter equation.
The generalization of conformal invariance in TGD framework strongly suggests the relevance of
Quasi-Hopf algebras in the realization of non-associativity in TGD framework.
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Drinfeld double

Drinfeld double provides a concrete example about breaking of associativity. It can be formulated
for finite groups as well as discrete groups. Drinfeld’s approach is essentially algebraic: one works
at the level of group algebra. In TGD framework the approach is geometric: algebraic constructs
should emerge naturally from geometry. Braiding operations should induce algebras.

The basic notions involved are following.

1. One begins from a trivial tensor product of Hopf algebras and modified. In trivial case
algebra product is tensor product of products, co-product is tensor product of co-products,
antipode is tensor product of antipodes, map ε is product of the maps from the factors of
the tensor product and delta maps unit element of field K to a product of unit elements.
Drinfeld double represents a non-trivial tensor product of Hopf algebras.

2. One application of Drinfeld double construction is tensor product of group algebra and its
dual. One can also interpret it as tensor product of braids as non-closed paths and closed
braids (knots) as closed paths: in TGD framework this interpretation is suggestive and will
be discussed later.

3. Drinfeld double allows breaking of associativity. It can be broken by introducing 3-cocycle
(see http://tinyurl.com/y9vcsmyg) of group cohomology (see http://tinyurl.com/y755gd36).
In the recent case group cohomology relies on homomorphism of group braid G to abelian
group U(1). n-cocycle is a map Gn → U(1) satisfying the condition that its derivation
vanishes dnf = 0. dn ◦ dn−1 = 0 holds true identically.

The explicit definition of n-cocycle is in additive notion for U(1) product (usually multiplica-
tive notation is used is) given by to illustrate that dn acts like exterior derivative.

(dnf)(g1, g2, gn, gn+1) = g1f(g1, ...gn)− f(g1g2, g2, ..., gn+1) + f(g1, g2g3, ..., gn+1)

−...+ (−1)nf(g1, g2...gngn+1) + (−1)n+1f(g1, g2...gn) .

(20.4.5)

This formula is easy to translate to multiplicative notion. The fact that group cohomology
is universal concept strongly suggests that 3 co-cycle can be introduced quite generally to
break associativity in the sense that different associations differ only by isomorphism.

The construction of quantum double of Hopf algebras is discussed in detail at http://

tinyurl.com/ybbvjaw5. Here however non-associative option is not discussed. In http://tinyurl.

com/ya8n98o5 one finds explicit formula for Drinfeld double for the Drinfeld double formed by
group algebra and its dual. Just to give some idea what is involved the following gives the formula
for the product:

(h, y) ◦ (g, x) =
ω(h, g, x)ω(hgx((hg)−1, h, g)

ω(h, gx(g)−1, h, g)
(hg, x) . (20.4.6)

Without background it does not tell much. What is essential however that the starting
point is algebraic. The product is non-vanishing only between (g, x) and (h, gxg−1). For gauge
group like structure one would have x instead of g−1xg−1. ω is 3-cocycle: it it is non-trivial one
as associativity modulo isomorphism.

I do not have any detailed understanding of quasi-Hopf algebras but to me they seem to
provide a very promising approach in attempts to understand the character of non-associativity
associated with the braiding hierarchy. The algebraic construction of Drinfeld double does not
seem interesting from TGD point of view but the idea that group cocycle is behind the breaking
of associativity is attractive. Also the generalization of construction of Drinfeld double to code
what happens in braiding geometrically is attractive. One of the many difficult challenges is to
understand the role of the varying parameters p, heff , q at the level of braid group algebras and
their projective representations characterized by quantum phase q.

http://tinyurl.com/y9vcsmyg
http://tinyurl.com/y755gd36
http://tinyurl.com/ybbvjaw5
http://tinyurl.com/ybbvjaw5
http://tinyurl.com/ya8n98o5
http://tinyurl.com/ya8n98o5
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20.4.2 Construction Of Quantum Braid Algebra In TGD Framework

It seems that there is no hope that naive application of existing formulas makes sense. The variety
of different variants of quantum algebras is huge and one should have huge mathematical knowledge
and understanding in order to find the correct option if it exists at all. Therefore I bravely take the
approach of physicists. I try to identify the physical picture and then look whether I can identify
the algebraic structure satisfying the axioms of Hopf algebra. In the following I first list various
inputs which help to identify constraints on the algebraic structure, which should be simple if it is
to be fundamental.

Trying to map out the situation

Usually physicists have enough trouble when dealing with single algebraic structure: say group
and its representations. Unfortunately, this does not seem to be possible now. It seems that one
must deal with entire collection of algebraic structures defined by braid groups Bn with varying
value of n forming a hierarchy in which braid groups act on lower level braid groups.

1. What is clear that the algebraic operation (A⊗B)→ AB is somehow related to the braiding of
flux tubes or fermionic strings connecting partonic 2-surfaces. One can also consider strings
connecting the ends of light-like 3-surfaces so that one has both space-like and time-like
braiding. One has flux tubes inside flux tubes.

The challenge is to identify the natural algebra. It seems best to work with the braiding
operations themselves - analogs of linguistic expressions - than the states to which they act.
Braiding operations form discrete group, braid group. One must deal with the quantum
superpositions of braidings so that one has wave functions in braid group identifiable as
elements of discrete group algebra of braid group Bn. One can multiply group algebra
elements and include the group algebra of Bm to that of Bn m a factor of n so that the
desired product structure is obtained. The group algebras associated with various braid
numbers can be organized to operad.

The operad formed by the braid group algebras has the desired hierarchical structure, and
braid group algebra is one of the basic structures and quantum groups can be assigned with
its projective representations.

2. For a given flux tube (and perhaps also for the fermionic string(s) assigned with it) one has
degrees of freedom due different values of the quantum deformation parameter q for which
roots of unity define preferred values in TGD framework. In TGD framework also hierarchy
heff/h = n of Planck constants brings in additional complexity. Also the p-adic prime p
is expected to characterize the situation: preferred p-adic primes can be interpreted as so
called ramified primes in the adelic vision about quantum TGD [K111] unifying real and
various p-adic physics to a coherent whole. This brings in new elements. It is still unclear
how closely n and q = exp(i2π/m) are related and whether one might have m = n. Also the
relationship of p to n is not well-understood. For instance, could p divide n.

3. Geometrically the association of braid strands means that they belong to the same flux
tube. Moving the brackets in expression to transform say (A(BC)) to ((AB)C) means that
strands are transferred from flux tube another one. Hence the breaking of associativity should
take place at all hierarchy levels except the lowest one for which flux tube contains single
irreducible braid strand - fermion line.

The general mechanism for a weak breaking of associativity is describable in terms of Drin-
feld’s associator for quasi-bialgebras and known in some cases explicitly - in particular, shown
by Drinfeld to exists when the number field used is rational numbers - is the first guess for the
mechanism of the breaking of associativity. Drinfeld’s associator is determined completely
by group cohomology, which encourages to think that it can be used as such as as a multipler
in the definition of product in suitable tensor product algebra. How the Drinfeld’s associator
depends on the p,n, and q is the basic question.

4. Besides the geometric action of braidings it is important to understand how the braidings act
on the fundamental fermions. An attractive idea is that the representation is as holonomies
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defined by the induced weak gauge potentials as non-integrable phase factors at the bound-
aries of string world sheets defining fermion lines. The vanishing of electroweak gauge fields
at them implies that the non-Abelian part of holonomy is pure gauge as in topological gauge
field theories for which the classical solutions have vanishing gauge field. The em part of the
induce spinor curvature is however non-vanishing unless one poses the vanishing of electro-
magnetic field at the boundaries of string world sheets as boundary condition. This seems
un-necessary. The outcome would be non-trivial holonomy and restriction to a particular
representation of quantum group with quantum phase q coming as root of unity means con-
ditions on the boundaries of string world sheets. Quantum phase would make itself visible
also classically as properties of string world sheets which together with partonic 2-surfaces
determined space-time surface by strong form of holography. An interesting question relates
to the possibility of non-commutative statistics: it should come from the weak part of in-
duced connection which is pure gauge and seems possible as it is possible also in topological
QFTs based on Chern-Simons action.

Hints about the details of the braid structure

Concerning the details of the braid structure one has also strong hints.

1. There two are two basic types of braids: I have called them time-like and space-like braids.
Time-like (or rather light-like) braids are associated with the 3-D light-like orbits of partonic
2-surfaces at which the signature of the induced metric changes signature from Minkowskian
to Euclidian. Braid strands correspond to fermionic lines identifiable as parts of boundaries
of string world sheets. Space-like braids are associated with the space-like 3-surfaces at the
ends of causal diamond (CD). Also they consist of fermionic lines. These braids could be
called fundamental.

If these braids are associated with magnetic flux tubes carrying monopole flux, the flux
tubes are closed. Typically they connect wormhole throats at first space-time sheet, go to
the second space-time sheet and return. Hence two-sheeted objects are in question. The
braids in question can closed to knots and could correspond to closed loops assigned with
the Drinfeld quantum double. The tensor product of the groupoid algebra associated with
time-like braids and group algebra associated with space-like braids is highly suggestive as
the analog of Drinfeld double.

Also magnetic flux tubes and light-like orbits of partonic 2-surfaces can become braided and
one obtains the hierarchies of braids.

2. Since strong world sheets and partonic 2-surfaces have co-dimension 2 as sub-manifolds of
space-time surface they can also get braided and knotted and give rise to 2-braids and 2-
knots. This is something totally new. The unknotting of ordinary knots would take place
via reconnections and the reconnections could correspond to the basic vertices for 2-knots
analogous to the crossing of the plane projections of ordinary knot. Reconnections actually
correspond to string vertices. A fascinating mathematical challenge is to generalize existing
theories so that they apply to 2-braids and 2-knots.

3. Dance metaphor emerged in the model for DNA-lipid membrane system as topological quan-
tum computer [K20, K80]. Dancers whose feet are connected to wall by threads define time-
like braiding and also space-like braiding through the resulting entanglement of threads. The
assumption was that DNA codons or nucleotides are connected by space-like flux tubes to
the lipids of lipid layer of cell membrane or nuclear membrane.

If they carry monopolo flux they make closed loops at the structure formed by two space-time
sheets. The lipid layer of cell membrane is 2-dimensional and can be in liquid crystal state.
The 2-D liquid flow of lipids induces braiding of both space-like braids if the DNA end is
fixed and of time-like braids. This leads to the dance metaphor: the liquid flow is stored at
space-time level to the topology of space-time as a space-like braiding of flux tubes induced
by it. Space-like braiding would be like written text. Time-like braiding would be like spoken
language.
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4. If the space-like braids are closed, they form knots and the flow caused at the second end
of braid by liquid flow must be compensated at the parallel flux tube by its reversal since
braid strands cannot be cut. The isotopy equivalence class of knot remains unchanged since
knots get gg−1 piece which can be deformed away. Second interpretation is that the braid X
transforms to gXg−1. This kind of transformation appears also in Drinfeld construction. This
suggests that the purely algebraic tensor product of braid algebra and its dual corresponds
in TGD framework semi-direct tensor product of the groupoid of time-like braids and space-
like braids associated with closed knots. The semi-direct tensor product would define the
fundamental topological interaction between braids.

5. One can also consider sequence of n tensor factors each consisting of time-like and space-like
braids. This require a generalization of the product of two tensor factors to 2n tensor factors.
Dance metaphor suggests that a kind of chain reaction occurs.

What the structure of the algebra could be?

With this background one can try to guess what the structure of the algebra in question is. Cer-
tainly the algebra is semi-direct product of above defined braid group algebras. The multiplication
rule would have purely geometric interpretation.

1. The multiplication rule inspired by dance metaphor for 2 tensor factors would be

(a1, a2) ◦ (b1, b2) = (a1a2b1a
−1
2 , a2b2) . (20.4.7)

Here a1, b1 correspond label elements of time-like braid groupoid and a2, b2 the elements
of braid group associated with the space-like braid. This would replace the trivial product
rule (a1, a2)(b1g) = (a1b1, a2b2) for the trivial tensor product. The structure is same as for
Poincare group as semi-direct product of Lorentz group and translation group: (Λ1, T1)(Λ2, T2) =
(Λ1Λ2, T1 + Λ1(T2)).

It is easy to check that this product is associative. One can however add exactly the same
3-cocycle factor

(h, y) ◦ (g, x) =
ω(h, g, x)ω(hgx((hg)−1, h, g)

ω(h, gx(g)−1, h, g)
(hg, x) . (20.4.8)

Here (h, y) corresponds to (a1, a2) and (g, x) to (b1, b2). This should give breaking of non-
associativity and third group cohomology of braid group Bn would characterize the non-
equivalent associators.

2. The product rule generalizes to n factors. This generalization could be relevant for the
understanding of braid hierarchy.

(a1, a2, ...an) ◦ (b1, b2, ...bn) ≡ (c1, ..., cn) ,

(20.4.9)

where one has

cn = anbn , cn−1 = an−1Adan(bn−1) , cn−2 = an−2Adan−1an(bn−2) ,
cn−3 = an−3Adan−2an−1an(bn−3) , .... c1 = a1Ada2.....an(b1) .
Adx(y) = xyx−1 .

(20.4.10)
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In this case a good guess for the breaking of associativity is that the associator is defined in
terms of n-cocyle in group cohomology.

What is remarkable that this formula guarantees without any further assumptions the con-
dition

∇1⊗2(∆1(a),∆2(b)) = ∇1(∆1(a))∇2(∆2(b)) =
∑
(a)

a1a2

∑
(b)

b1b2 ,

∆1(a) =
∑
(a)

a1 ⊗ a2 , ∆2(b) =
∑
(b)

b1 ⊗ b2

(20.4.11)

as a little calculation shows. For group algebra one has ∆(a) = g ⊗ g. ∇1⊗2 refers to the
product defined above.

3. The formula for ∆1⊗2 is also needed. The simplest guess is that it corresponds to replication
for both factors. This would mean ∆op = ∆: non-symmetric form guaranteeing non-trivial
braiding is however desirable. A candidate satisfying this condition in n = 2 case is asym-
metric replication:

∆1⊗2(bab−1, b)⊗ (a, b)

∆op
1⊗2(a, b)⊗ (bab−1, b) .

(20.4.12)

4. In n = 2 case the formula for antipode would read as

S(a1, a2) = (a−1
2 a−1

1 a2, a
−1
2 )

(20.4.13)

instead of S(a1, a2) = (a−1
1 , a−1

2 ). Again the semi-direct structure would be involved. One
can check that the formula

∇1⊗2(1, S)∆1⊗2 = 1⊗ 1 (20.4.14)

holds true.

20.4.3 Should One Quantize Complex Numbers?

The TGD inspired proposal for the concrete realization of quantum groups might help in attempts
to understand the situation. The approach relies on what might be regarded as quantization of
complex numbers appearing as matrix elements of ordinary matrices.

1. Quantum matrices are obtained by replacing complex number valued of matrix elements of
ordinary matrices with operators. They are are products of hermitian non-negative matrix
P analogous to modulus of complex number and unitary matrix S analogous to its phase.
One can also consider the condition [P, S] = iS inspired by the idea that radial momentum
and phase angle define analog of phase space.
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2. The notions of eigenvalue and eigenstate are generalized. Hermitian operator or equivalently
the spectrum of its eigenvalues replaces real number. The condition that eigenvalue problem
generalizes, demands that the symmetric functions formed from the elements of quantum
matrix commute and can be diagonalized simultaneously. The commutativity of symmetric
functions holds also for unitary matrices. These conditions is highly non-trivial, and consis-
tent with quantum group conditions if quantum phases are roots of unity. In this framework
also Planck constant is replaced by a hermitian operator having heff = n×h as its spectrum.
Also q = exp(in2π/m) generalizes to a unitary operator with these eigenvalues.

3. This leads to a possible concrete representation of quantum group in TGD framework allowing
to realize the hierarchy of inclusions of hyperfinite factors obtained by repeatedly replacing
the operators appearing as matrix elements with quantum matrices.

4. This procedure can be repeated. One might speak of a fractal quantization. At the first
step one obtains what might be called 1-hermitian operators with eigenvalues replaced with
hermitian operators. For 1-unitary matrices eigenvalues, which are phases are replaced with
unitary operators. At the next step one considers what might be called 2-hermitian and
2-unitary operators. An abstraction hierarchy in which instance (localization to a point as
member of class) is replaced with wave function in the class. This hierarchy is analogous
to that formed by infinite primes and by the sheets of the many-sheeted space-time. Also
braids of braids of ... form this kind of abstraction hierarchy as also the parsing hierarchy
for linguistic expressions.

I have proposed that generalized Feynman diagrams or rather - TGD analogs of twistor
diagrams - should have interpretation as sequences of arithmetic operators with each vertex repre-
senting product or co-product and having interpretation as time reversal of the product operation.

1. The arithmetic operations could be induced by the algebraic operations for Yangian algebra
[A27] [B39, B30, B31] assignable to the super-symplectic algebra. I have also proposed
that there TGD allows a very powerful symmetry generalizing the duality symmetry of old-
fashioned string models relating s- and t-channel exchanges. This symmetry would state
that one can freely move the ends of the propagator lines around the diagrams and that one
can remove loops by transforming the loop to tadpole and snipping it away. This symmetry
would allow to consider only tree diagrams as shortest representations for computations:
this would reduce enormously the calculational complexity. The TGD view about coupling
constant evolution allows still to have discrete coupling constant evolution induced by the
spectrum of critical values of Kähler coupling strength: an attractive conjecture is that the
critical values can be expressed in terms of zeros of Riemann zeta [L16].

2. One can represent the tree representing a sequence of computations in algebra as an analog of
twistor diagram and the proposed symmetry implies associativity since moving the line ends
induces motion of brackets. If co-algebra operations are allowed also loops become possible
and can be eliminated by this symmetry provided the loop acts as identity transformation.
This would suggest strong form of associativity at the level of single sheet and weaker form
at the level of many-sheeted space-time. One could however still hope that loops can be
cancelled so that one would still have only tree diagrams in the simplest description. One
would have however sum over amplitudes with different association structures.

3. Co-product could be associated with the basic vertices of TGD, which correspond to a fusion
of light-like parton orbits along their ends having no counterpart in super-string models
(tensor product vertex) or the decay of light-like parton orbit analogous to a splitting of
closed string (direct sum vertex). For the direct sum vertex one has direct sum (unlike string
models): one can say that the particle propagates along two path in the sense of superposition
as photons in double slit experiment. For the tensor product vertex D(g) = ∆(g) = g × g
is the first guess. D(g) = (1, S)∆(g) = g ⊗ Sg or D(g) = Sg ⊗ g or their sum suitably
normalized is natural second guess. Unitarity allows only the latter option since ∇∆ does
not conserve probability for probability amplitudes unlike ∇(1, S)∆ although it does so for
probability distributions. For the direct sum vertex ∆(g) = 1⊗ g⊕ g⊗1 suitably normalized
is the natural first guess.
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4. Co-product ∆ might allow interpretation as annihilation vertex in particle physics context.
Co-product might also allow interpretation in terms of replication - at least at the level of
topological dynamics of braiding. The possible application of co-product to the replication
occurring biology assumed to be induce by replication of magnetic flux tubes in TGD based
vision is highly suggestive idea. Is the identification of co-product as replication consistent
with its identification as particle annihilation?

Second question relates to the antipode S, which is anti-homomorphism and brings in mind
time reversal. Could one interpret also S as an operation, which should be included to the
braid group algebra in the same way as the inclusion of complex conjugation to the algebra
of complex numbers produces quaternions? Could one interpret the identity ∇(1⊗S)∆(g) =
ηε(g) = 1 by saying that the annihilation to g⊗S(g) followed by fusion produces braid wave
function concentrated on trivial braiding and destroying the information associated with
braiding completely. The fusion would produce non-braided particle rather than destroying
particles altogether.

5. The condition that loop involving product and annihilation does not affect braid group wave
function would require that it takes g to g. For the standard realization of co-product ∆
of group algebra g → g ⊗ g → g2 so that this is not the case. The condition defining
∆ is not easy to modify since one loses homomorphism property of ∆. The repetitions of
loops would give sequence of powers g2n. For wave function

∑
D(g)g this would give the

sequence
∑
D(g)g →

∑
D(g)g2 → ....→

∑
D(g)g2n: since given group element has typically

several roots one expects that eventually the wave function becomes concentrated to unity
with coefficient

∑
D(g)! For wave functions one has

∑
D(g) = 0 if they are orthogonal to

D(g) = constant as is natural to require. Almost all wave functions would approach to zero
so that unitary would be lost. For probability distributions the evolution would make sense
since the normalization condition would be respected.

Also the irreversible behaviour looks strange from particle physics perspective unless D(g)
is concentrated on identity so that braiding is trivial. Topological dissipation might take
care that this is the case. For elementary particles partonic 2-surfaces carry in the first
approximation only single fermion so that braid group would be trivial. Braiding effects
become interesting only for strand number larger than 2. The situations in which partonic
surface carries large number of fermion lines would be more interesting. Anyonic systems
to which TGD based model assigns large heff and parton surfaces of nanoscopic size could
represent a condensed matter example of this situation.

6. Does the behavior of ∆ force to regard generalized Feynman diagrams representing computa-
tions with different numbers of self-energy loops non-equivalent and to sum over self-energy
loops in the construction of scattering amplitudes? The time evolution implied by topological
self energy loops is not unitary which suggest that one must perform the sum. There are
hopes that the sum converges since the contributions approaches to

∑
D(g) = 0. This does

not however look elegant and is in conflict with the general vision.

Particle physics intuition tells that in pair annihilation second line has opposite time direction.
Should one therefore identify annihilation g → g ⊗ S(g). Antiparticles would differ from
particles by conjugation in braid group. The self energy loop would give trivial braiding with
coefficient

∑
D(g)D(g−1) =

∑
D(g)D(g)∗ = 1 so that unitarity would be respected and

higher self energy loops would be trivial. The conservation of fermion number at fundamental
level could also prevent the decays g → g ⊗ g.

One could also take biological replication as a guide line.

1. In biological scales replication by g → g ⊗ g vertex might not be prevented by fermion
number conservation but probability conservation favors g → g ⊗ Sg. Braid replication
might be perhaps said to provide replicas of information: whether this conforms with no-
cloning theorem remains to be seen. Braid replication followed by fusion means topological
dissipation by a loss of braiding and loss of information. Could the fusion of reproduction
cells corresponds to product and that replication to co-product possibly involving the action
of S one the second line. Fusion followed by replication would lead to a loss of braiding: for
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g → g ⊗ g perhaps making sense in probabilistic description gradually and for g → g ⊗ Sg
instantaneously: a reset for memory? Could these mechanisms serve as basic mechanisms of
evolution?

2. There might be also a connection with the p-adic length scale hypothesis. The naive expec-
tation is that g → g2 in fusion followed by ∆ means the increase of the length of braid by
factor 2 - kind of ageing? Could the appearance of powers of two for the length of braid
relate to the p-adic length scale hypothesis stating that primes p near powers of 2 are of
special importance?

To summarize, the proposed framework gives hopes about description of braids of braids
of .... Abstraction would mean transition from classical to quantum: from localized state to a
de-localized one: from configuration space to the space of complex valued wave functions in con-
figuration space. Now the configuration space would involve different braidings and corresponding
evolutions, and various values of p, heff and q. If this general framework is to be useful it should
be able to tell how the braiding matrices depend on p and heff : note that p and heff would be
fixed only at the highest abstraction level - the largest flux tubes. This indeterminacy could be
interpreted in terms of finite measurement resolution and inclusions of HFFs should help to de-
scribe the situation. Indeterminacy could also be interpreted in terms of abstraction in a manner
similar to the interpretation of negentropically entangled state as a rule for which the state pairs
in the superposition represent instances of the rule.
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Chapter 21

Does the QFT Limit of TGD Have
Space-Time Super-Symmetry?

21.1 Introduction

Contrary to the original expectations, TGD seems to allow the analog of the space-time super-
symmetry. This became clear with the increased understanding of both Kähler action and Kähler-
Dirac action [K88, K14]. It is however far from clear whether SUSY type QFT can define the QFT
limit of TGD and whether this kind of formulation is the optimal one.

21.1.1 Is The Analog Of Space-Time SUSY Possible In TGD?

The basic question is whether the huge algebras with super-conformal structure acting as symme-
tries of quantum TGD give rise to a SUSY algebra at space-time level (meaning super-Poincare
symmetry). A more technical question is whether the QFT limit of TGD could be formulated as
a generalization of SUSY QFT or whether one must generalize this approach just as it seems nec-
essary to generalize the notion of twistor by replacing masslessness in 4-D sense with masslessness
in 8-D sense.

1. From the beginning it was clear that super-conformal symmetry is realized in TGD but
differs in many respects from the more standard realizations such as N = 1 SUSY realized
in MSSM [B11] involving Majorana spinors in an essential manner.

Note that the belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry
can be used as an objection against TGD. Besides Majorana spinors Weyl spinors meaning
complex theta parameters are also possible. Theta parameters can also carry fermion number
meaning only the supercharges carry fermion number and are non-hermitian. The general
classification of super-symmetric theories indeed demonstrates that for D = 8 Weyl spinors
and complex and non-hermitian super-charges are possible. The original motivation for
Majorana spinors might come from MSSM assuming that right handed neutrino does not
exist. This belief might have also led to string theories in D=10 and D=11 as the only
possible candidates for TOE after it turned out that chiral anomalies cancel.

2. In TGD framework the covariantly constant right-handed neutrino generates the super-
symmetry at the level of CP2 geometry. The original idea was that the construction of
super-partners would be more or less equivalent with the addition of covariantly constant
right-handed neutrino and antineutrinos to the state. It was however not clear whether
space-time supersymmetry is realized at all since one could argue that that by covariant
constancy these states are just gauge degrees of freedom or that SUSY is only realized for
the spinor harmonics of imbedding space with 8-D notion of masslessness. Much later it
became clear that covariantly constant right handed neutrino indeed represents gauge degree
of freedom at space-time level.

781
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3. A more general general SUSY algebra is generated by the modes of the Kähler-Dirac operator
at partonic 2-surface being also Clifford algebra. This algebra can be associated with the
ends of the boundaries of string world sheets and each string defines its own sub-algebra of
oscillator operators.

(a) At first it would seem that the value of N can be very large - even infinite as the fact
that fermionic oscillator operators are labelled by conformal weight. It is however the
number of massless states in M4 sense, which determines the value of N for SUSY in
M4: for the full theory the analog of SUSY in H N = ∞ could make sense. Indeed,
super-symplectic generators bring in the analog of wave function of fermion at partonic
2-surfaces and constant wave functions and therefore massless states are expected to
be favored by Uncertainty Principle. The dimension of SUSY algebra is expected to
just the number of spinor components of the imbedding space spinor possessing physical
imbedding space helicity.

A more general situation is that the conformal gauge algebra is its sub-algebra iso-
morphic to the entire algebra having conformal weights coming as n-ples of those for
the full algebra. The conformal gauge symmetry would be broken so that only the
super-symplectic generators for which the conformal weight is proportional to fixed in-
teger n ∈ {1, 2, ...} annihilate the physical states. This increases the value of N and a
possible interpretation is in terms of improved measurement resolution. N would also
correspond to the value of Planck constant heff/n = N and N would label phases of
dark matter and also a hierarchy of criticalities. As N increases, super-conformal gauge
degrees of freedom are transformed to physical ones. This kind of situation might be
possible for quantum deformations of the oscillator operator algebra characterized by
quantum phase as q = exp(i2π/N) and possible by the 2-dimensionality of string world
sheets.

An alternative manner to see the situation is as a fractionization of conformal weights
due to the emergence of N -fold coverings of space-time surfaces analogous to coverings of
complex plane defined by analytic function z1/N . Only the states with integer conformal
weights would be annihilated by the original conformal algebra and quantum group
would describe the situation.

The SUSY in standard sense is expected to be broken. First, the notion of masslessness
is generalized: fermions associated with the boundaries of string world sheets have light-
like 8-momentum and therefore can be massive in 4-D sense: this allows to generalize
twistor description to massive case [K76]. The ordinary 4-D SUSY is expected to emerge
only as an approximate description in massless sector (as it also appears in dimensional
reduction). Secondly, standard SUSY characterizes the QFT description obtained by
replacing many-sheeted space-time time with a slightly curved region of Minkowski
space.

(b) SUSY algebra is replaced with Clifford algebra at the level of partonic 2-surfaces and
the generators can be identified as fermionic oscillator operatiors at the end points
of fermionic lines, which are light-like geodesics. Light-like four-momenta in anti-
commutation relations are replaced with 8-D light-like momenta demanding a gener-
alization of twistor approach. The octonionic realization of twistors is a very attractive
possibility in this framework and quaternionicity condition guaranteeing associativity
leads to twistors which are almost equivalent with ordinary 4-D twistors.

The space-time super-symmetry means addition of fermion to the state assign to a
partonic surface and since the number of spinor modes is larger states with large spin
and fermion numbers are obtained. This picture does not fit to the standard view
about super-symmetry. In particular, the identification of theta parameters as Majorana
spinors and super-charges as Hermitian operators is not possible. The non-hermitian
character of super conformal generator G 6= G† made impossible the naive generalization
of stringy rules to TGD framework since they involve G as the analog of fermionic
propagator. This problem disappears in the twistor Yangian approach [K76].

(c) The notion of super-field does not seem natural in the full TGD framework but would be
replaced with a Yangian of the super-symplectic algebra and related conformal algebras
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with generators identified as Noether charges assignable to strings connecting partonic
2-surfaces. Multi-locality coded by Yangian in the scale of partonic surfaces is a new
element. There is also the hierarchy of Planck constants interpreted in terms of dark
matter and Zero Energy Ontology.

21.1.2 What Happens When Many-Sheeted Space-Time Is Approxi-
mated With Minkowski Space?

The question is what happens when one replaces many-sheeted space-time with a region of Minkowski
space and identifies gauge potentials as sum of the induced gauge potentials?

1. It is plausible that gauge theory like description is a good approximation. But what hap-
pens to the SUSY? Can one replace 8-D light-likeness with 4-D light-likeness and describe
massivation in terms of Higgs mechanism and analogous - not very successful - mechanisms
for 4-D SUSY? It is quite possible that this is not possible: 4-D QFT approximation taken
partonic 2-surfaces to points might miss too much of physics and too much elegance.

2. Should one try to find a generalization of ordinary 4-D SUSY allowing the description of
massive particles in terms of 8-D light-likeness? This would allow also to understand baryons
and lepton number conservation as 8-D chiral symmetry, to avoid Majorana spinors, and
would force a new view about QCD color. Maybe the attempt to describe things by QFT
or even ordinary string model is like an attempt to describe quantum physics using classical
mechanics. To my opinion generalization of twistor approach from 4-D to 8-D context based
on the notion of super-symplectic Yangian is a more promising approach than sticking to
effective field theory thinking [K76].

The first guess - much before the understanding of the Kähler-Dirac equation and the role
of right-handed neutrino - was that it might be possible to formulate even quantum TGD proper
in terms of super-field defined in the world of classical worlds (WCW). Super-fields could provide
in this framework an elegant book-keeping apparatus for the elements of local Clifford algebra of
WCW extended to fields in the M4×CP2, whose points label the positions of the tips of the causal
diamonds CDs). At this moment I feel skeptic about this approach.

21.1.3 What SUSY QFT Limit Could Mean?

What the actual construction of SUSY QFT limit means depends on how strong approximations
one wants to make.

1. The minimal approach to SUSY QFT limit is based on an approximation assuming only
the super-multiplets generated from fundamental fermions by right-handed neutrino or both
right-handed neutrino and its antineutrino.

2. Elementary are particles are composed of fundamental fermions so that the super-multiplets
are more complex for them. One of the key predictions of TGD is that elementary particles
can be regarded as bound states of fermions and anti-fermions located at the throats of two
wormhole contacts. As a special case this implies bosonic emergence meaning that it QFT
limit can be defined in terms of Dirac action.

21.1.4 Scattering Amplitudes As Sequences Of Algebraic Operations

The attempts to generalize twistor Grassmannian approach in TGD framework led to a revival
an old idea about scattering amplitudes as representations of sequences of algebraic operations
connecting two sets of algebraic objects. Any two sequences connecting same sets would give rise
to same scattering amplitudes. One might say that instead of mathematics representing physics
physics represents mathematics.

1. In Yangian approach fundamental vertices correspond to product and co-product for the gen-
erators of Yangian of super-symplectic algebra with charges identified in terms of Noether
charges assignable to strings connecting partonic 2-surfaces [K76]. Scattering amplitudes
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are obtained by the analog of Wick contraction procedure in which fermion lines connecting
different vertices would be obtained. This also allows creation of fermion pairs from vac-
uum with members at opposite throats of wormhole contact defining the fundamental boson
propagators. This picture about bosonic emergence is similar to the earlier one.

2. Yangian approach has huge symmetries since the duality symmetry of string models gener-
alizes in the sense that one can freely move the ends of the lines and snip off loops in this
manner. The fact that all diagram representing computation connecting same initial and
final states are equivalent implies huge number of constraints and it is clear that ordinary
Feynman diagrammatics cannot satisfy these constraints. Twistor diagrammatics could how-
ever do so since it has turned out that twistor diagrams indeed have symmetries analogous
to this kind of symmetry. It seems however that one must generalized 4-D twistors to 8-D
ones so that the twistor Yangian approach looks like the most promising approach at this
moment: if of course applies to full theory rather than only in massless sector of the theory.

The plan of the chapter reflects partially my own needs. I had to learn space-time super-
symmetry at the level of the basic formalism and the best manner to do it was to write it out. As
the vision about fermions in TGD crystallized it became also clear that SUSY QFT in Feynman
graph formulation does not catch the simplicity of what I identify as fundamental formulation of
TGD. Therefore I dropped a lot of material in the original chapter.

1. The chapter begins with a brief summary of the basic concepts of SUSYs without doubt
revealing my rather fragmentary knowledge about these theories. The original belief was that
super-field formalism could be generalized to TGD framework. At this moment I however
believe that Yangian approach is more realistic one for reasons already mentioned. Therefore
I have dropped the section about the formalism proposed earlier. I have also dropped material
about various attempts to understand the role right-handed neutrinos. The chapter in its
recent form is about whether SUSY limit could emerge from TGD. Just general conditions
are formulated since I do not have the expertise to formulate the theory in detail.

2. The Clifford algebra of fermionic oscillator operators assignable to the ends of strings con-
necting partonic 2-surfaces replaces SUSY algebra, and anti-commutation relations realize
the analog of super Poincare symmetry. Since the number of conformal weights is infinite,
one would naively expect N = ∞ SUSY. States are however created by super-symplectic
generators bringing in the analog of wave function of fermion at partonic 2-surface rather
fermionic oscillator operators. Also conformal gauge invariance conditions are satisfied, and
this is expected to change the situation. For ideal measurement resolution only the fermionic
oscillator operators with vanishing conformal weight are expected to remain effective. The
description of finite measurement resolution in terms of quantum variant of fermionic anti-
commutation relations is expected to increase the number of conformal weights so that N
increases for dark matter. Right-handed neutrino and its antineutrino would define the least
broken sub-algebra of SUSY.

3. Twistors have become a part of the calculational arsenal of SUSY gauge theories, and TGD
leads to a proposal how to avoid the problems caused by massive particles by using the notion
of masslessness in 8-D sense and the notion of induced octo-twistor [K76]. The equivalence
of octonionic spinor structure with the ordinary one leads also to the localization of spinors
to string world sheets and fermions at light-like geodesics at their boundaries at partonic 2-
surfaces. Already the fundamental formulation keeps just the knowledge that particle moves
along light-like geodesic of M4 × CP2 and strings connect partonic 2-surfaces. Could QFT
limit could be formulated as SUSY in M4 × S1 allowing to describe massive particles as
massless particles in M4×S1? Or could simplified string model type description in M4×S1

make sense?

4. With the improved understanding of Kähler-Dirac equation one can develop arguments that
N = 2 or N = 4 SUSY generated by right-handed neutrino emerges naturally in TGD
framework and corresponds to the addition of a collinear right-handed neutrino and and
antineutrino to the state representing massless particle.
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The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://tgdtheory.fi/cmaphtml.
html [L11]. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L12].

21.2 SUSY Briefly

The Tasi 2008 lectures by Yuri Shirman [B74] provide a modern introduction to 4-dimensional
N = 1 super-symmetry and super-symmetry breaking. In TGD framework the super-symmetry is
8-dimensional super-symmetry induced to 4-D space-time surface and one N = 2N can be large
so that this introduction is quite not enough for the recent purposes. This section provides only a
brief summary of the basic concepts related to SUSY algebras and SUSY QFTs and the breaking
of super-symmetry is mentioned only by passign. I have also listed the crucial basic facts about
N > 1 super-symmetry [B2, B10] with emphasis in demonstrating that for 8-D super-gravity with
one time-dimension super-charges are non-Hermitian and that Majorana spinors are absent as
required by quantum TGD.

21.2.1 Weyl Fermions

Gamma matrices in chiral basis.

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
σ0 0
0 −σ0

)
,

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

σ0 = σ0 , σi = −σi .

(21.2.1)

Note that Pauli sigma matrices can be interpreted as matrix representation for hyper-quaternion
units.

Dirac spinors can be expressed in terms of Weyl spinors as

Ψ =

(
ηα

χ∗α̇

)
. (21.2.2)

Note that does not denote complex conjugation and that complex conjugation transforms non-
dotted and dotted indices to each other. η and χ are both left handed Weyl spinors and transform
according to complex conjugate representations of Lorentz group and one can interpret χ as rep-
resenting that charge conjugate of right handed Dirac fermion.

Spinor indices can be lowered and raised using antisymmetric tensors εαβ and εα̇β̇ and one
has

ηαηα = 0 , χ∗α̇χ
∗
α̇ = 0 per,

ηχ = χη = εαβηαχβ , η∗χ∗ = χ∗η∗ = εαβη∗α chi
∗
β .

(21.2.3)

Left-handed and right handed spinors can be combined to Lorentz vectors as

η∗α̇σ
µα̇αηα = −η∗ασµαα̇η

∗α̇ . (21.2.4)

The SUSY algebra at QFT limit differs from the SUSY algebra defining the fundamental
anti-commutators of the fermionic oscillator operators for the induced spinor fields since the Kähler-
Dirac gamma matrices defined by the Kähler action are replaced with ordinary gamma matrices.
This is quite a dramatic difference and raises two questions.

The Dirac action

http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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L = iΨ∂µγ
µΨ−mΨΨ (21.2.5)

for a massive particle reads in Weyl representation as

L = iη∗∂µσ
µη + iχ∗∂µσ

µχ−mχη −mχ∗η∗ . (21.2.6)

21.2.2 SUSY Algebras

In the following 4-D SUSY algebras are discussed first following the representation of [B74]. After
that basic results about higher-dimensional SUSY algebras are listed with emphasis on 8-D case.

D = 4 SUSY algebras

Poincare SUSY algebra contains as super-generators transforming as Weyl spinors transforming
in complex conjugate representations of Lorentz group. The basic anti-commutation relations of
Poincare SUSY algebra in Weyl fermion basis can be expressed as

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ ,

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 ,

[Qα, Pµ] = [Qα̇, Pµ] = 0 . (21.2.7)

By taking a trace over spinor indices one obtains expression for energy as P 0 =
∑
iQiQi +QiQi.

Since super-generators must annihilated super-symmetric ground states, the energy must vanish
for them.

This algebra corresponds to simplest N = 1 SUSY in which only left-handed fermion ap-
pears. For N = 1 SUSY the super-charges are are hermitian whereas in TGD framework super-
charges carry fermion number. This implies that super-charges come in pairs of super charge so that
N = 2N must hold true and its hermitian conjugate and only the second half of super-charges can
annihilate vacuum state. Weyl spinors must also come as pairs of right- and left-handed spinors.

The construction generalizes in a straightforward manner to allow arbitrary number of
fermionic generators. The most general anti-commutation relations in this case are

{Qiα, Qjβ̇} = 2δji σ
µ

αβ̇
Pµ ,

{Qiα, Qjβ} = εαβZij ,

{Qα̇, Qβ̇} = εα̇β̇Z∗ij . (21.2.8)

The complex constants are called central charges because they commute with all generators of the
super-Poincare group.

Higher-dimensional SUSY algebras

The character of supersymmetry is sensitive to the dimension D of space-time and to the signature
of the space-time metric higher dimensions [B2]. The available spinor representations depend on k;
the maximal compact subgroup of the little group of the Lorentz that preserves the momentum of a
massless particle is Spin(d−1)×Spin(D−d−1), where d is the number of spatial dimensions D−d
is the number time dimensions and k is defined as k = 2d−D. Due to the mod 8 Bott periodicity
of the homotopy groups of the Lorentz group, really we only need to consider k = 2d−D modulo
8. In TGD framework one has D = 8, d = 7 and k = 6.

For any value of k there is a Dirac representation, which is always of real dimension N =
[21+[(2d−k)/2] where [x] is the greatest integer less than or equal to x. For TGD this of course gives
25 = 32 corresponding to complex 8-component quark and lepton like spinors. For −2 ≤ k ≤ 2 not
realized in TGD there is a real Majorana spinor representation, whose dimension is N/2. When k
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is even (TGD) there is a Weyl spinor representation, whose real dimension is N/2. For k mod 8 = 0
(say in super-string models) there is a Majorana-Weyl spinor, whose real dimension is N/4. For
3 ≤ k ≤ 5 so called symplectic Majorana spinor with dimension D/2 and for k = 4 symplectic
Weyl-Majorana spinors with dimension D/4 is possible. The matrix ΓD+1 defined as the product
of all gamma matrices has eigenvalues ±(−1)−k/2. The eigenvalue of ΓD+1 is the chirality of the
spinor. CPT theorem implies that the for D mod 4 = 0 the numbers of left and right handed
super-charges are same. For D mod 4 = 2 the numbers of left and right handed chiralities can
be different and corresponding SUSYs are classified by N = (NL,NR), where NL and NR are the
numbers of left and right handed super charges. Note that in TGD the chiralities are ±1 and
correspond to quark and leptons like spinors.

TGD does not allow super-symmetry with Majorana particles. It is indeed possible to have
non-hermitian super-charges [B10] in dimension D = 8. In D = 8 SUGRA with one time dimension
super-charges ar non-hermitian and Majorana particles are absent. Also in D = 4 SUGRA predicts
super-charges are non-hermitian super-charges but Majorana particles are present.

1. D = 8 super-gravity corresponds to N = 2 and allows complex super-charges Qiα ∈ 8 and

their hermitian conjugates Q
i

α ∈ 8. The group of R symmetries is U(2). Bosonic fields
consists the metric gmn, seven real scalars, six vectors, three 2-form fields and one 3-form
field. Fermionic fields consist of two Weyl (left) gravitini ψαi, six Weyl (right) spinors plus
their hermitian conjugates of opposite chirality. There are no Majorana fermions.

2. D = 4,N = 8 SUGRA is second example allowing complex non-hermitian super-charges.

The supercharges Qiα ∈ 2 and their hermitian conjugates Q
i

α̇ ∈ 2. R-symmetry group is
U(8). Bosonic fields are metric gmn, 70 real scalars and 28 vectors. Fermionic fields are 8
Majorana gravitini Ψa,i

m and 56 Majorana spinors.

For N = 2N and at least D = 8 with one time dimension the super charges can be assumed
to come in hermitian conjugate pairs and the non-vanishing anti-commutators can be expressed as

{Q†iα, Q
j

β̇
} = 2δji σ

µ

αβ̇
Pµ ,

{Q†iα, Qjβ} = εαβZij ,

{Q†α̇, Qβ̇} = εα̇ dotβZ∗ij . (21.2.9)

In this case Zij is anti-hermitian matrix. 8-D chiral invariance (separate conservation of lepton
and quark numbers) suggests strongly that that the condition Zij = 0 must hold holds true. A
given pair of super-charges is analogous to creation and annihilation operators for a given fermionic
chirality. In TGD framework opposite chiralities correspond to quark and lepton like spinors.

Representations of SUSY algebras in dimension D = 4

The physical components of super-fields correspond to states in the irreducible representations
of SUSY algebras. The representations can be constructed by using the basic anti-commutation
relations for Qiα and Qjα̇, i, j ∈ {1, ...,N}, α, α̇ ∈ {1, 2}. The representations can be classified
to massive and massless ones. Also the presence of central charges affects the situation. A given
irreducible representation is characterized by its ground state and R-parity assignments distinguish
between representations with the same spin content, say fermion and its scalar super-partner and
Higss with its fermionic super-partner.

1. In the massive case one obtains in the rest system just fermionic creation operators and 2N

annihilation operators. The number of states created from a vacuum state with spin s0 is 2N
and maximum spin is s0 +N/2. For instance, for N = 1 and s0 = 0 one obtains for 4 states
with spins J ≤ 1/2. Renormalizability requires massive matter to have s ≤ 1/2 so that only
N = 1 is possible in this case. For particles massless at fundamental level and getting their
masses by symmetry breaking this kind of restriction does not apply.
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2. In the massless case only one half of fermionic oscillator operators have vanishing anti-
commutators corresponding to the fact that for massless state only the second helicity is
physical. This implies that the number of states is only 2N and the helicities vary from λ0

to λ0 +N/2. For N = 1 the representation is 2-dimensional.

3. In the presence of central charges Zij = −Zji the representations are in general massive
(Zij has dimensions of mass), U(N) acts as symmetries of Z, and since Z2 is symmetric its
diagonalizability implies that Z matrix can be cast by a unitary transformation into a direct
sum of 2-D antisymmetric real matrices multiplied by constants Zi. Therefore the super-
algebra can be cast in diagonal form with anti-commutators proportional to M ± Zm with
M − Zm ≥ 0 by unitarity. This implies the celebrated Bogomol’nyi bound M ≥ max{Zn}.
For this value of varying mass parameter it is possible to have reduction of the dimension
of the representation by one half. If the eigenvalues Zn are identical the number of states is
reduced to that for a massless representation. This multiplet is known as short BPS multiplet.
Although BPS multiplets are massive (mass is expressible in terms of Higgs expectation value)
they form multiplets shorter than the usual massive SUSY multiplets.

21.2.3 Super-Space

The heuristic view about super-space [B9] is as a manifold with D local bosonic coordinates xµ and

ND/2 complex anti-commuting spinor coordinates θαi and their complex conjugates θ
i

α̇ = (θαi )∗.
For N = 1, which is relevant to minimally super-symmetric standard model (MSSM), the spinors
θ can also chosen to be real that is Majorana spinors, so that one has 4 bosonic and four real
coordinates. In TGD framework one must however use Weyl spinors.

The anti-commutation relations for the super-coordinates are

{θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0 . (21.2.10)

The integrals over super-space in 4-D N = 1 case are defined by the following formal rules which
actually state that super-integration is formally analogous to derivation.

∫
dθ =

∫
dθ =

∫
dθθ =

∫
dθθ = 0 ,∫

dθαdθβ = δαβ ,

∫
dθα̇dθβ̇ = δβ̇α̇ ,∫

d2θθ2 =

∫
d2θθ

2
,

∫
d4θθ2θ

2
= 1 . (21.2.11)

Here the shorthand notations

d2θ ≡ −1

4
εαβdθ

αdθβ ,

d2θ ≡ −1

4
εα̇β̇dθα̇d thetaβ̇ ,

d4θ ≡ d2θd2θ . (21.2.12)

are used.

The generalization of the formulas to D > 4 and N > 1 cases is trivial. In infinite-
dimensional case relevant for the super-symmetrization of the WCW geometry in terms of local
Clifford algebra of WCW to be proposed later the infinite number of complex theta parameters
poses technical problems unless one defines super-space functions properly.
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Chiral super-fields

Super-multiplets can be expressed as single super-field define in super-space. Super-field can be
expanded as a Taylor series with respect to the theta parameters. In 4-dimensional N = 1 case
one has

Φ(xµ, θ, θ) = φ(xµ) + θη(xµ) + θη†(xµ) + θ sigma
α
θVα(xµ) + θ2F (xµ) + θ2F (xµ)...+ θ2θ

2
D(xµ) .(21.2.13)

The action of super-symmetries on super-fields can be expressed in terms of super-covariant deriva-
tives defined as

Dα =
∂

∂θα
− iσµαα̇θ

dotα ∂

∂µ
, Dα̇ = − ∂

∂θ
α̇

+ iθασµα dotα

∂

∂µ
. (21.2.14)

This allows very concise realization of super-symmetries.

General super-field defines a reducible representation of super-symmetry. One can construct
irreducible representations of super-fields a pair of chiral and antichiral super-fields by posing the
condition

Dα̇Φ = 0 , DαΦ† = 0 . (21.2.15)

The hermitian conjugate of chiral super-field is anti-chiral.

Chiral super-fields can be expressed in the form

Φ = Φ(θ, yµ) , yµ = xµ + iθσµθ , yµ† = xµ − iθσµθ . (21.2.16)

These formulas generalize in a rather straightforward manner to D > 4 and N > 1 case.

It is easy to check that any analytic function of a chiral super-field, call it W (Φ), is a
chiral super-field. In super-symmetries its θ2 component transforms by a total derivative so that
the action defined by the super-space integral of W (φ) is invariant under super-symmetries. This
allows to construct super-symmetric actions using W (Φ) and W (Φ†). The so called super-potential
is defined using the sum of W (Φ) +W (Φ†).

Analytic functions of does not give rise to kinetic terms in the action. The observation

θ2θ
2

component of a real function of chiral super-fields transforms also as total derivative under
super-symmetries allows to circumvent this problem by introducing the notion of Kähler potential
K(Φ,Φ†) as a real function of chiral super-field and its conjugate. In he simplest case one has

K =
∑
i

Φ†iΦi . (21.2.17)

LK =
∫
Kd4θ gives rise to simples super-symmetric action for left-handed fermion and its scalar

super-partner.

Kähler potential allows an interpretation as a Kähler function defining the Kähler metric
for the manifold defined by the scalars φi. This Kähler metric depends in the general case on φi
and appears in the kinetic term of the super-symmetric action. Super-potential in turn can be
interpreted as a counterpart of real part of a complex function which can be added to the Kähler
function without affect the Kähler metric. This geometric interpretation suggests that in TGD
framework every complex coordinate φi of WCW defines a chiral super-field whose bosonic part.
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Wess-Zumino model as simple example

Wess-Zumino model without interaction term serves as a simple illustration of above formal consid-
erations. The action density of Wess-Zumino Witten model can be deduced by integration Kähler
potential K = Φ†Φ for chiral super fields over theta parameters. The result is

L = ∂uφ
∗∂µφ+ iη∗∂µη + F ∗F . (21.2.18)

The action of super-symmetry

δΦ = εαDαΦ , δΦ† = εα̇Dα̇Φ , εα̇ = ε∗α (21.2.19)

gives the transformation formulas

δφ = εαηα , δη = −iη∗α̇σµαα̇∂µφ+ εαF , δF = −iεα̇σµα̇α partialµηα (21.2.20)

plus their hermitian conjugates. The corresponding Noether current is indeed hermitian since
the transformation parameters εα and εα̇ = ε∗α appear in it and cannot be divided away. This
conserved current has as such no meaning and the statement that ground state is annihilated by
the corresponding super-charge means that vacuum field configuration rather than Fock vacuum
remains invariant under supersymmetries. Rather, the breaking of super-symmetry by adding a
super-potential implies that F develops vacuum expectation and the vacuum solution (φ = 0, η =
0, F = constant) of field equations is not anymore invariant super super-symmetries.

The non-hermitian parts of the super current corresponding to different fermion numbers
are separately conserved and corresponding super-charges are non-Hermitian and together with
other charges define a super-algebra which to my best understanding is not equivalent with the
super-algebra defined by allowing the presence of anti-commuting parameters ε. The situation is
similar in TGD where one class of non-hermitian super-currents correspond to the modes of the
induced spinor fields contracted with Ψ and their conjugates. The octonionic solution ansatz for
the induced spinor field allows to express the solutions in terms of two complex scalar functions so
that the super-currents in question would be analogous to those of N = 2 SUSY and one might see
the super-symmetry of quantum TGD extended super-symmetry obtained from the fundamental
N = 2 super-symmetry.

Vector super-fields and supersymmetric variant of YM action

Chiral super-fields allow only the super-symmetrization of Dirac action. The super-symmetrization
of YM action requires the notion of a hermitian vector super field V = V †, whose components
correspond to vector bosons, their super-counterparts and additional degrees of freedom which
cannot be dynamical. These degrees of freedom correspond gauge degrees of freedom.

In the Abelian case the gauge symmetries are realized as V → V +Λ+Λ†, where Λ is a chiral
super-field. These symmetries induce gauge transformations of the vector potential. Their action
on chiral super-fields is Φ → exp(−qΛ)Φ, Φ† → Φ†exp(−Λ†). In non-Abelian case the realization
is as exp(V ) → exp(−Λ†)exp(V )exp(Λ) so that the modified Kähler potential K(Φ†, exp(qV )Φ)
remains invariant.

One can assign to V a gauge invariant chiral spinor super-field as

Wα = −1

4
D

2
(eVDαe

−V ) ,

D
2

= εα̇β̇D ˙alphaDβ̇ (21.2.21)

defining the analog of gauge field. D
2

eliminates all terms the exponent of θ is higher than that of
θ since these would spoil the chiral super-field property (the anti-commutativity of super-covariant
derivatives Dα̇ makes this obvious). Dα in turn eliminates from the resulting scalar part so that one
indeed has chiral spinor super-field. In higher dimensions and for larger value of N the definition
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of Wα must be modified in order to achieve this: what is needed is the product of all derivatives
D ˙iα.

The analytic functions of chiral spinor super-fields are chiral super-fields and θ2 component
of WαWα transforms as a total derivatives. The super-symmetric Lagrangian of U(1) theory can
be written as

L =
1

4g2

(∫
d2θWαWα +

∫
d2θW †α̇W

†
α̇

)
. (21.2.22)

Note that in standard form of YM action 1/2g2 appears.

R-symmetry

R-symmetry is an important concomitant of super-symmetry. In N = 1 case R-symmetry performs
a phase rotation θ → eiαθ for the super-space coordinate θ and an opposite phase rotation for
the differential dθ. For N > 1 R-symmetries are U(N) rotations. R-symmetry is an additional
symmetry of the Lagrangian terms due to Kähler potential since both d4θ (and its generalization)
as well as Kähler potential are real. Also super-symmetric YM action is R-invariant. R-symmetry
is a symmetry of if super-potential W only if it has super-charge QR = 2 (QR = 2N ) in order to
compensate the super-charge of d2N θ.

21.2.4 Non-Renormalization Theorems

Super-symmetry gives powerful constraints on the super-symmetric Lagrangians and leads to non-
renormalization theorems.

The following general results about renormalization of supersymmetric gauge theories hold
true (see [B74], where a heuristic justification of the non-renormalization theorems and explicit
formulas are discussed).

1. Super-potential is not affected by the renormalization.

2. Kähler potential is subject to wave function renormalization in all orders. The renormaliza-
tion depends on the parameters with dimensions of mass. In particular, quadratic divergences
to masses cancel.

3. Gauge coupling suffers renormalization only by a constant which corresponds to one-loop
renormalization. Any renormalization beyond one loop is due to wave function renormaliza-
tion of the Kähler potential and it is possible to calculate the beta function exactly.

It is interesting to try to see these result from TGD perspective.

1. In TGD framework super-potential interpreted as defining the modification of WCW Kähler
function, which does not affect Kähler metric and would reflect measurement interaction.
The non-renormalization of W would mean that the measurement interaction is not subject
to renormalization. The interpretation is in terms of quantum criticality which does not
allow renormalization of the coefficients appearing in the measurement interaction term since
otherwise Kähler metric of WCW would be affected.

2. The wave function renormalization of Kähler potential would correspond in TGD framework
scaling of the WCW Kähler metric. Quantum criticality requires that Kähler function re-
mains invariant. Also since no parameters with dimensions of mass are available, there is
temptation to conclude that wave function renormalization is trivial.

3. Only the gauge coupling would be suffer renormalization. If one however believes in the
generalization of bosonic emergence it is Kähler function which defines the SUSY QFT limit
of TGD so that gauge couplings follow as predictions and their renormalization is a secondary
-albeit real- effect having interpretation in terms of the dependence of the gauge coupling on
the p-adic length scale. The conclusion would be that at the fundamental level the quantum
TGD is RG invariant.
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21.3 Does TGD Allow The Counterpart Of Space-Time Super-
symmetry?

The question whether TGD allows space-time super-symmetry or something akin to it has been
a longstanding problem. A considerable progress in the respect became possible with the better
understanding of the Kähler-Dirac equation.

21.3.1 Kähler-Dirac Equation

Before continuing one must briefly summarize the recent view about Kähler-Dirac equation.

1. The localization of the induced spinor fields to 2-D string world sheets is crucial. It is
demanded both by the well-definedness of em charge and by number theoretical constraints.
Induced W boson fields must vanish, and the Frobenius integrability conditions guaranteeing
that the K-D operator involves no covariant derivatives in directions normal to the string
world sheet must be satisfied.

2. The Kähler-Dirac equation (or Kähler Dirac equation) reads as

DKΨ = 0 . (21.3.1)

in the interior of space-time surface. The boundary variation of K-D equation gives the term

ΓnΨ = 0 (21.3.2)

at the light-like orbits of partonic 2-surfaces. Clearly, Kähler-Dirac gamma matrix Γn in
normal direction must be light-like or vanish.

3. To the boundaries of string world sheets at the orbits of partonic 2-surfaces one assigns 1-D
Dirac action in induced metric line with length as bosonic counterpart. By field equations
both actions vanish, and one obtains light-like geodesic carrying light-like 8-momentum.
Algebraic variant of massless 8-D Dirac equation is satisfied for the 8-momentum parallel to
8-velocity.

The boundaries of the string world sheets are thus pieces of light-like M8 geodesics and
different fermion lines should have more or less parallel M4 momenta for the partonic 2-
surface to preserve its size. This suggests strongly a connection with quantum field theory
and an 8-D generalization of twistor Grassmannian approach encourages also by the very
special twistorial properties of M4 and CP2.

One can wonder how this relates to braiding which is one of the key ingredients of TGD.
Is the braiding possible unless it is induced by particle exchanges so that the 8-momentum
changes its direction and partonic 2-surface replicates. In principle it should be possible to
construct the orbits of partonic 2-surfaces in such a manner that braiding occurs. Situation
is the reverse of the usual in which one has fixed 3-manifold in which one constructs braid.

4. One can construct preferred extremals by starting from string world sheets satisfying the
vanishing of normal components of canonical momentum currents as analogs of boundary
conditions. One can also fix 3-D space-like surfaces and partonic orbits and pose the vanishing
of super-symplectic charges for a sub-algebra with conformal weights coming as multiples of
fixed integer n as conditions selecting preferred extremals.

5. The quantum numbers characterizing zero energy states couple directly to space-time ge-
ometry via the measurement interaction terms in Kähler action expressing the equality of
classical conserved charges in Cartan algebra with their quantal counterparts for space-time
surfaces in quantum superposition. This makes sense if classical charges parametrize zero
modes. The localization in zero modes in state function reduction would be the WCW coun-
terpart of state function collapse. Thermodynamics would naturally couple to the space-time
geometry via the thermodynamical or quantum averages of the quantum numbers.
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21.3.2 Development Of Ideas About Space-Time SUSY

Let us first summarize the recent overall view about space-time super-symmetry for TGD discussed
in detail in chapter “ WCW spinor structure” and also in [K88].

1. Right-handed covariantly constant neutrino spinor νR defines a super-symmetry in CP2 de-
grees of freedom in the sense that CP2 Dirac equation is satisfied by covariant constancy and
there is no need for the usual ansatz Ψ = DΨ0 giving D2Ψ = 0. This super-symmetry allows
to construct solutions of Dirac equation in CP2 [A53, A62, A43, A58].

2. In M4 × CP2 this means the existence of massless modes Ψ = /pΨ0, where Ψ0 is the tensor
product of M4 and CP2 spinors. For these solutions M4 chiralities are not mixed unlike for
all other modes which are massive and carry color quantum numbers depending on the CP2

chirality and charge. As matter fact, massless right-handed neutrino covariantly constant in
CP2 spinor mode is the only color singlet. The mechanism leading to non-colored states for
fermions is based on super-conformal representations for which the color is neutralized [K39,
K46]. The negative conformal weight of the vacuum also cancels the enormous contribution
to mass squared coming from mass in CP2 degrees of freedom.

3. All spinor modes define conserved fermion super-currents and also the super-symplectic alge-
bra has a fermion representation as Noether currents at string world sheets. WCW metric can
be constructed as anti-commutators of super-symplectic Noether currents and one obtains a
generalization of AdS/CFT duality to TGD framework from the possibility to express Kähler
also in terms of Kähler function (and thus Kähler action). The fact that that super-Poincare
anti-commutator vanishes for oscillator operators associated with covariantly constant right-
handed neutrino and anti-neutrino implies that it corresponds to a pure gauge degree of
freedom.

4. The natural conjecture is that the TGD analog space-time SUSY is generated by the Clifford
algebra of the second quantized fermionic oscillator operators at string world sheets. This
algebra in turn generalizes to Yangian. The oscillator operators indeed allow the 8-D analog
of super-Poincare anti-commutation relations at the ends of 1-D light-like geodesics defined
by the boundaries of string world sheets belonging to the orbits of partonic 2-surfaces and
carrying 8-D light-like momentum.

For incoming on mass shell particles one can identify the M4 part of 8-momentum as gravi-
tational for momentum equal to the inertial four-momentum assignable to imbedding space
spinor harmonic for incoming on mass shell state. The square of E4 momentum giving mass
squared corresponds to the eigenvalue of CP2 d’Alembertian.

8-D light-like momentum forces an 8-D generalization of the twistor approach and M4 and
CP2 are indeed unique in that they allow twistor space with Kähler structure [A63]. The
conjecture is that integration over virtual momenta restricts virtual momenta to 8-D light-like
momenta but the polarizations of virtual fermions are non-physical.

5. The 8-D generalization of SUSY describes also massive states and one has N =∞. Ordinary
4-D SUSY is obtained by restricting the states to the massless sector of the theory. The value
of N is finite in this case and corresponds to the value of massless modes for fundamental
fermions. Quark and lepton type spinor components with physical helicity for fermions and
anti-fermions define the basis of the SUSY algebra as Clifford algebra of oscillator operators
with anti-commutators analogous to those associated with super Poincare algebra. Therefore
the generators of SUSY correspond to the 4+4 components of imbedding space spinor modes
(quarks and leptons) with vanishing conformal weight so that analogs of N = 4 SUSY are
obtained in quark and lepton sectors.

The SUSY is broken due to the electro-weak and color interactions between the fundamental
fermions. For right-handed neutrinos these interactions are not present but the mixing with
left handed neutrino due to the mixing of M4 and CP2 gamma matrices in Kähler-Dirac
gamma matrices at string world sheets implies SUSY breaking also now: also R-parity is
broken.
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Basically a small mixing with the states with CP2 mass is responsible for the generation of
mass and breaking of SUSY. p-Adic thermodynamics describes this mixing. SUSY is broken
at QFT limit also due the replacement of the many-sheeted space-time with single slightly
curved region of M4.

6. The SUSY in question is not the conventional N = 1 SUSY. Space-time (in the sense of
Minkowski space M4) N = 1 SUSY in the conventional sense of the word is impossible in
TGD framework since it would require require Majorana spinors. In 8-D space-time with
Minkowski signature of metric Majorana spinors are definitely ruled out by the standard
argument leading to super string model. Majorana spinors would also break the separate
conservation of lepton and baryon numbers in TGD framework. What is remarkable is that
in 8-D space-time one obtains naturally SUSY with Dirac spinors.

21.3.3 Summary About TGD Counterpart Of Space-Time SUSY

This picture allows to define more precisely what one means with the approximate super-symmetries
in TGD framework.

1. One can in principle construct many-fermion states containing both fermions and anti-
fermions at fermion lines located at given light-like parton orbit. The four-momenta of
states related by super-symmetry need not be same. Super-symmetry breaking is present
and has as the space-time correlate the deviation of the Kähler-Dirac gamma matrices from
the ordinary M4 gamma matrices. In particular, the fact that Γ̂α possesses CP2 part in gen-
eral means that different M4 chiralities are mixed: a space-time correlate for the massivation
of the elementary particles.

2. For right-handed neutrino super-symmetry breaking is expected to be smallest but also in the
case of the right-handed neutrino mode mixing of M4 chiralities takes place and breaks the
TGD counterpart of super-symmetry. Maybe the correct manner to interpret the situation is
to speak about 8-D massless states for which the counterpart of SUSY would not be broken
but mass splittings are possible.

3. The fact that all helicities in the state are physical for a given light-like 3-surface has impor-
tant implications. For instance, the addition of a right-handed antineutrino to right-handed
(left-handed) electron state gives scalar (spin 1) state. Also states with fermion number two
are obtained from fermions. For instance, for eR one obtains the states {eR, eRνRνR, eRνR, eRνR}
with lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 0, 1). For eL one obtains the states
{eL, eLνRνR, eLνR, eLνR} with lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 1, 0). In the
case of gauge boson and Higgs type particles -allowed by TGD but not required by p-adic
mass calculations- gauge boson has 15 super partners with fermion numbers [2, 1, 0,−1,−2].

The cautious conclusion is that the recent view about quantum TGD allows the analog of
super-symmetry, which is necessary broken and for which the multiplets are much more general
than for the ordinary super-symmetry. Right-handed neutrinos might however define something
resembling ordinary super-symmetry to a high extent. The question is how strong prediction one
can deduce using quantum TGD and proposed super-symmetry.

1. For a minimal breaking of super-symmetry only the p-adic length scale characterizing the
super-partner differs from that for partner but the mass of the state is same. This would
allow only a discrete set of masses for various super-partners coming as half octaves of the
mass of the particle in question. A highly predictive model results.

2. The quantum field theoretic description could be based on QFT limit of TGD, which I have
formulated in terms of bosonic emergence. The idea was that his formulation allows to cal-
culate the propagators of the super-partners in terms of fermionic loops. Similar description
of exchanged boson as fermionic loop emerges also in the proposed identification of scat-
tering amplitudes as representations of algebraic computations in Yangian using product
and co-product as fundamental vertices assignable to partonic 2-surfaces at which 3-surfaces
replicate.
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3. This TGD variant of space-time super-symmetry resembles ordinary super-symmetry in the
sense that selection rules due to the right-handed neutrino number conservation and analo-
gous to the conservation of R-parity hold true (the mixing of right-handed neutrino with the
left-handed one breaks R-parity). The states inside super-multiplets have identical electro-
weak and color quantum numbers but their p-adic mass scales can be different. It should
be possible to estimate reaction reaction rates using rules very similar to those of super-
symmetric gauge theories.

4. It might be even possible to find some simple generalization of standard super-symmetric
gauge theory to get rough estimates for the reaction rates. There are however problems. The
fact that spins J = 0, 1, 2, 3/2, 2 are possible for super-partners of gauge bosons forces to ask
whether these additional states define an analog of non-stringy strong gravitation. Note that
graviton in TGD framework corresponds to a pair of wormhole throats connected by flux
tube (counterpart of string) and for gravitons one obtains 28-fold degeneracy.

21.3.4 SUSY Algebra Of Fermionic Oscillator Operators And WCW
Local Clifford Algebra Elements As Super-fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majorana
spinors appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric standard
model (MSSM). Majorana-Weyl spinors appear in M-theory and super string models. An undesir-
able consequence is chiral anomaly in the case that the numbers of left and right handed spinors
are not same. For D = 11 and D = 10 these anomalies cancel, which led to the breakthrough
of string models and later to M-theory. The probable reason for considering these dimensions is
that standard model does not predict right-handed neutrino (although neutrino mass suggests that
right handed neutrino exists) so that the numbers of left and right handed Weyl-spinors are not
the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino
spinor acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-
defined sense disappears from the spectrum as a zero mode so that the number of right and left
handed chiralities in M4 × CP2 would not be same. For light-like 3-surfaces covariantly constant
right-handed neutrino does not however solve the counterpart of Dirac equation for a non-vanishing
four-momentum and color quantum numbers of the physical state. Therefore it does not disappear
from the spectrum anymore and one expects the same number of right and left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Ma-
jorana spinors and also the the Minkowski signature of M4 × CP2 makes them impossible. The
conclusion that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors
are indeed possible and if the number of right and left handed Weyl spinors is same super-symmetry
is possible. In 8-D context right and left-handed fermions correspond to quarks and leptons and
since color in TGD framework corresponds to CP2 partial waves rather than spin like quantum
number, also the numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that the
anti-commutations of fermionic oscillator operators associated with the modes of the induced spinor
fields define a structure analogous to SUSY algebra in 8-D sense. Massless modes of spinors in 1-1
corresponds with imbedding space spinors with physical helicity are in 1-1 correspondence with the
generators of SUSY at space-time level giving N = 4 + 4. Right handed neutrino modes define a
sub-algebra for which the SUSY is only slightly broken by the absence of weak interactions and one
could also consider a theory containing a large number of N = 2 super-multiplets corresponding
to the addition of right-handed neutrinos and antineutrinos at the wormhole throat.

Masslessness condition is essential if super-symmetric quantum field theories and at the
fundamental level it can be generalized to masslessness in 8-D sense in terms of Kähler-Dirac
gamma matrices using octonionic representation and assuming that they span local quaternionic
sub-algebra at each point of the space-time sheet. SUSY algebra has standard interpretation with
respect to spin and isospin indices only at the partonic 2-surfaces so that the basic algebra should
be formulated at these surfaces: in fact, out that the formulation is needed only at the ends of
fermion lines. Effective 2-dimensionality would require that partonic 2-surfaces can be taken to
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be ends of any light-like 3-surface Y 3
l in the slicing of the region surrounding a given wormhole

throat.

Super-algebra associated with the Kähler-Dirac action

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor
fields are naturally formulated in terms of the Kähler-Dirac gamma matrices. The canonical anti-
commutation relations for the fermionic oscillator operators at light-like 3-surfaces or at their ends
can be formulated as anti-commutation relations for SUSY algebra. The algebra creating physical
states is super-symplectic algebra whose generators are expressed as Noether charges assignable to
strings connecting partonic 2-surfaces.

Lepton and quark like spinors are now the counterparts of right and left handed Weyl
spinors. Spinors with dotted and un-dotted indices correspond to conjugate representations of
SO(3, 1) × SU(4)L × SU(2)R. The anti-commutation relations make sense for sigma matrices
identified as 6-dimensional matrices 16, γ7, γ1, ...γ6.

Consider first induced spinor fields at the boundaries of string world sheets at the orbits of
wormhole throats. Dirac action for induced spinor fields and its bosonic counterpart defined by
line-length are required by the condition that one obtains fermionic propagators massless in 8-D
sense.

1. The localization of induced spinor fields to string world sheets and the addition of 1-D Dirac
action at the boundaries of string world sheets at the orbits of partonic 2-surfaces reduces
the quantization to that at the end of the fermion line at partonic 2-surface located at the
boundary of CD. Therefore the situation reduces to that for point particle.

2. The boundary is by the extremization of line length a geodesic line of imbedding space, which
can be characterized by conserved four-momentum and conserved angular momentum like
charge - call it hypercharge Y . The square of 8-velocity vanishes: v2

4 − (vφ)2 = 0 and one
can choose v2

4 = 1. 8-momentum is proportional to 8-velocity expressible as (vk, vφ).

3. Dirac equation gives Γt∂tΨ = (γkv
k+γφ)vφ)∂tΨ = 0. The non-trivial solution corresponds to

∂tΨ = iωΨ and the light-likeness condition. The value of parameter ω defines the mass scale
and quantum classical correspondences suggests that ω2 gives the mass squared identifiable
as the eigenvalue of CP2 Laplacian for spinor modes.

4. Anti-commutation relations must be fixed at either end of fermion line for the oscillator
operators associated with the modes of induced spinor field at string world sheet labelled by
integer value conformal weight and spin and weak isospin for the H-spinor involved. These
anti-commutation relations must be consistent with standard canonical quantization allowing
in turn to assign Noether charges to super-symplectic algebra defined as integrals over string
world sheet. The identification of WCW gamma matrices as these charges allows to calculate
WCW metric as their anti-commutators.

5. The oscillator operators for the modes with different values of conformal weight vanish.
Standard anti-commutation relations in massive case are completely fixed and correspond to
just Kronecker delta for conformal weights, spin, and isospin.

Space-time supersymmetry and the need to generalize 4-D twistors to 8-D ones suggest the
anti-commutation relations obeyed by 8-D analogs of massless Weyl spinors and thus proportional
to pk8σk, where pk8 is the 8-momentum associated with the end of the fermion line and σk are the
8-D analogs of 2× 2 sigma matrices.

1. This requires the introduction of octonionic spinor structure with gamma matrices repre-
sented in terms of octonionic units and introducing octonionic gamma matrices. The natural
condition is that the octonionic gamma matrices are equivalent with the ordinary one. This
is true if fermions are localied at time-like or light-like geodesic lines of imbedding space since
they represent- not only quaternionic, but even hypercomplex sub-manifolds of imbedding
space. This allows ordinary matrix representations for the gamma matrices at fermion lines.
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2. One can avoid the problems with the non-associativity also at string world sheets possible
caused by the Kähler Dirac gamma matrices if the two Kähler Dirac gamma matrices span
commutative subspace of complexified octonions. The sigma matrices appearing in induced
gauge potentials could be second source of non-associativity. By assuming that the solutions
are holomorphic spinors (just as in string models) and that in the gauge chosen only holo-
morphic or anti-holomorphic components of gauge boson fields are non-vanishing, one avoids
these problems.

3. It must be admitted that the constraints on string world sheets are strong: vanishing W
induced gauge fields, Frobenius integrability conditions, and the condition that K-D gamma
matrices span a commutative sub-space of complexified octonions, and I have not really
proven that they can be satisfied.

The super-generators of space-time SUSY are proportional to fermionic oscillator operators
obeying the canonical anti-commutation relations. It is not quite clear to me whether the pro-
portionality constant can be taken to be equal to one although intuition suggests this strongly.
The anti-commutations can contain only the light-like 8-velocity at the right hand side carrying
information about the direction of the fermion line.

One can wonder in how strong sense the strong form of holography is realized.

1. Is the only information about the presence of strings at the level of scattering amplitudes
the information coded by the anti-commutation relations at their end points? This would
be the case if the fermion super-conformal charges vanish or create zero norm states for
non-vanishing conformal weights. It could however happen that also the super-conformal
generators associated with a sub-algebra of conformal algebra with weights coming as integer
multiples of the entire algebra do this. At least this should be the case for the super-symplectic
algebra.

2. Certainly one must assume that the 8-velocities associated with the ends of the fermionic
string are independent so that strings would imply bi-locality of the dynamics.

Summing up the anti-commutation relations

In leptonic sector one would have the anti-commutation relations

{a†mα̇, a
n
β} = 2δnmDα̇β ,

D = (pµ +
∑
a

Qaµ)σµ . (21.3.3)

In quark sector σµ is replaced with σµ obtained by changing the signs of space-like sigma matrices
in leptonic sector. pµ and Qaµ are the projections of momentum and color charges in Cartan algebra
to the space-time surface and their values correspond to those assignable to the fermion line and
related by quantum classical correspondence to those associated with incoming spinor harmonic.

The anti-commutation relations define a generalization of the ordinary equal-time anti-
commutation relations for fermionic oscillator operators to a manifestly covariant form. Extended
SUSY algebra suggest that the anti-commutators could contain additional central charge term
proportional to δαβ but the 8-D chiral invariance excludes this term.

In the octonionic representation of the sigma matrices matrix indices cannot be present at the
right handed side without additional conditions. Octonionic units however allow a representation as
matrices defined by the structure constants failing only when products of more than two octonions
are considered. For the quaternionic sub-algebra this does not occur. Both spinor modes and and
gamma matrices must belong to the local hyper-quaternionic sub-algebra and do trivially so for
fermion lines and string. Octonionic representation reduces SO(7, 1) so G2 as a tangent space
group. Similar reduction for 7-dimensional compact space takes place also M-theory.

In standard SUSY local super-fields having values in the Grassmann algebra generated by
theta parameters appear. In TGD framework this would mean allowance of many-fermion states at
single space-time point and this is perhaps too heavy an idealization since partonic 2-surfaces are



798 Chapter 21. Does the QFT Limit of TGD Have Space-Time Super-Symmetry?

the fundamental objects. Multi-stringy generators in the extension of super-symplectic algebra to
Yangian is a more natural concept in TGD framework since one expects that partonic 2-surfaces
involve several strings connecting them to other partonic 2-surfaces. Super-symplectic charges
would be Noether charges assignable to these strings and quantum states would be created by these
charges from vacuum. Scattering amplitudes would be defined in terms of Yangian algebra [K76].
Only at QFT limit one can hope that super-field formalism works.

21.4 Understanding Of The Role Of Right-Handed Neu-
trino In Supersymmetry

The development of the TGD view about space-time SUSY has been like a sequence of questions
loves -doesn’t love- loves.... From the beginning it was clear that right-handed neutrino could gen-
erate super-conformal symmetry of some kind, and the natural question was whether it generates
also space-time SUSY. Later it became clear that all fermion oscillator operators can be interpreted
as super generators for the analog of space-time SUSY. After that the challenge was to understand
whether all spin-isospin states of fermions correspond super generators.

N = 1 SUSY was excluded by separate conservation of B and L but N = 2 variant of
this symmetry could be considered and could be generated by massless right-handed neutrino and
antineutrino mode.

The new element in the picture was the physical realization of the SUSY by adding fermions
- in special case right-handed neutrino - to the state associated with the orbit of partonic 2-
surface. An important realization was the necessity to localized spinors to string world sheet and
the assignment of fernionic oscillator operator with boundaries of string world sheets at them.
Variational principles implies that the fermions have light-like 8-momenta and that the fermion
lines are light-like geodesics in 8-D sense. This leads to a precise view about the quantization
of induced spinor fields. Fermionic oscillator operator algebra would generate Clifford algebra
replacing the SUSY algebra and one would obtain the analog of super Poincare algebra from
anti-commutation relations.

21.4.1 Basic Vision

As already explained, the precise meaning of SUSY in TGD framework has been a long-standing
head ache. In TGD framework SUSY is inherited from super-conformal symmetry at the level
of WCW [K15, K14]. The SUSY differs from N = 1 SUSY of the MSSM and from the SUSY
predicted by its generalization and by string models. Allowing only right-handed neutrinos as
SUSY generators, one obtains the analog of the N = 4 SUSY in bosonic sector but there are
profound differences in the physical interpretation. The most general view is that all fermion
modes with vanishing conformal weights define super charges.

1. One could understand SUSY in very general sense as an algebra of fermionic oscillator oper-
ators acting on vacuum states at partonic 2-surfaces. Oscillator operators are assignable to
braids ends and generate fermionic many particle states. SUSY in this sense is badly bro-
ken and the algebra corresponds to rather large N . The restriction to covariantly constant
right-handed neutrinos (in CP2 degrees of freedom) gives rise to the counterpart of ordinary
SUSY, which is more physically interesting at this moment.

2. Right handed neutrino and antineutrino are not Majorana fermions. This is necessary for
separate conservation of lepton and baryon numbers. For fermions one obtains the analog
N = 2 SUSY.

3. Bosonic emergence means the construction of bosons as bound states of fermions and anti-
fermions at opposite throats of wormhole contact. Later it became clear that all elementary
particles emerge as bound states of fundamental fermions located at the wormhole throats
of a pair of wormhole contacts. Two wormhole contacts are required by the assumption
wormhole contacts carry monopole magnetic flux stabilizing them.

This reduces TGD SUSY to that for fundamental fermions. This difference is fundamental
and means deviation from theN = 4 SUSY, where SUSY acts on gauge boson states. Bosonic
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representations are obtained as tensor products of representations assigned to the opposite
throats of wormhole contacts. One can also have several fermion lines at given throat but
these states are expected to be exotic.

Further tensor products with representations associated with the wormhole ends of magnetic
flux tubes are needed to construct physical particles. This represents a crucial difference with
respect to standard approach, where one introduces at the fundamental level both fermions
and bosons or gauge bosons as in N = 4 SUSY. Fermionic N = 2 representations are
analogous to “short” N = 4 representations for which one half of super-generators annihilates
the states.

4. If stringy super-conformal symmetries act as gauge transformations, the analog of N = 4
SUSY is obtained in both quark and lepton sector. This extends to N = 8 SUSY if parton
orbits can carry both quarks and leptons. Lepto-quark is the simplest state of this kind.

5. The introduction of both fermions and gauge bosons as fundamental particles leads in quan-
tum gravity theories and string models to d = 10 condition for the target space, spontaneous
compactification, and eventually to the landscape catastrophe.

For a supersymmetric gauge theory (SYM) in d-dimensional Minkowski space the condition
that the number of transversal polarization for gauge bosons given by d − 2 equals to the
number of fermionic states made of Majorana fermions gives d− 2 = 2k, since the number of
fermionic spinor components is always power of 2.

This allows only d = 3, 4, 6, 10, 16, ... Also the dimensions d + 1 are actually possible since
the number of spinor components for d and d + 1 is same for d even. This is the standard
argument leading to super-string models and M-theory. It it lost - or better to say, one gets
rid of it - if the basic fields include only fermion fields and bosonic states are constructed as
the tensor products of fermionic states. This is indeed the case in TGD, where spontaneous
compactification plays no role and bosons are emergent.

6. Spontaneous compactification leads in string model picture from N = 1 SUSY in say d =
10 to N > 1 SUSY in d = 4 since the fermionic multiplet reduces to a direct sum of
fermionic multiplets in d = 4. In TGD imbedding space is not dynamical but fixed by
internal consistency requirements, and also by the condition that the theory is consistent
with the standard model symmetries. The identification of space-time as 4-surface makes
the induced spinor field dynamical and the notion of many-sheeted space-time allows to
circumvent the objections related to the fact that only 4 field like degrees of freedom are
present.

21.4.2 What Is The Role Of The Right-Handed Neutrino?

Whether right-handed neutrinos generate a supersymmetry in TGD has been a long standing open
question. N = 1 SUSY is certainly excluded by fermion number conservation but already N = 2
defining a “complexification” of N = 1 SUSY is possible and could generate right-handed neutrino
and its antiparticle. Right-handed neutrinos should however possess a non-vanishing light-like
momentum since the fully covariantly constant right-handed neutrino generates zero norm states.

The general view about the preferred extremals of Kähler action and application of the
conservation of em charge to the Kähler-Dirac equation have led to a rather detailed view about
classical and TGD and allowed to build a bridge between general vision about super-conformal
symmetries in TGD Universe and field equations. This vision is discussed in detail in [K88].

1. Many-sheeted space-time means that single space-time sheet need not be a good approxi-
mation for astrophysical systems. The GRT limit of TGD can be interpreted as obtained
by lumping many-sheeted space-time time to Minkowski space with effective metric defined
as sum M4 metric and sum of deviations from M4 metric for various space-time sheets
involved [K79]. This effective metric should correspond to that of General Relativity and
Einstein’s equations would reflect the underlying Poincare invariance. Gravitational and
cosmological constants follow as predictions and EP is satisfied.
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2. The general structure of super-conformal representations can be understood: super-symplectic
algebra is responsible for the non-perturbative aspects of QCD and determines also the
ground states of elementary particles determining their quantum numbers. The hierarchy
of breakings of conformal symmetry as gauge gauge symmetry would explain dark matter.
The sub-algebra for which super-conformal symmetry remains gauge symmetry would be
isomorphic to the original algebra and generated by generators for which conformal weight
is multiple of integer n = heff/h. This would would be true for super-symplectic algebra at
least and possible for all other conformal algebras involved.

3. Super-Kac-Moody algebras associated with isometries and holonomies dictate standard model
quantum numbers and lead to a massivation by p-adic thermodynamics: the crucial condition
that the number of tensor factors in Super-Virasoro represention is 5 is satisfied.

4. One can understand how the Super-Kac-Moody currents assignable to stringy world sheets
emerging naturally from the conservation of em charge defined as their string world sheet
Hodge duals gauge potentials for standard model gauge group and also their analogs for
gravitons. Also the conjecture Yangian algebra generated by Super-Kac-Moody charges
emerges naturally.

5. One also finds that right handed neutrino is in a very special role because of its lacking
couplings in electroweak sector and its role as a generator of the least broken SUSY. The
most feasible option is that all modes of the induced spinor field are restricted to 2-D string
world sheets. If covariantly constant right-handed neutrino could be de-localized completely
it cannot generate ordinary kind of gauge super-symmetry. It is not yet completely clear
whether the modes of the induced spinor field are localized at string world sheets also inside
the Euclidian wormhole contacts defining the lines of the generalized Feynman diagrams.

Intermediate gauge boson decay widths require that sparticles are either heavy enough or
dark in the sense of having non-standard value of Planck constant. Darkness would provide an
elegant explanation for their non-observability. It should be emphasized that TGD predicts
that all fermions act as generators of badly broken super-symmetries at partonic 2-surfaces
but these super-symmetries could correspond to much higher mass scale as that associated
with the de-localized right-handed neutrino. The following piece of text summarizes the
argument.

6. Ordinary SUSY means that apart from kinematical spin factors sparticles and particles be-
have identically with respect to standard model interactions. These spin factors would allow
to distinguish between particles and sparticles. This requires strong correlations between
fermion and right-handed neutrino: in fact, they should be at rest with respect to each
other. Right-handed neutrinos have vanishing color and electro-weak quantum numbers.
How it is possible to have sparticles as bound states with ordinary particle and right-handed
neutrino?

The localization of induced spinor fields to string world sheets suggests a solution to the
problem.

(a) The localization forces the fermions to move in parallel although they have no interac-
tions. The 8-momenta and 8-velocities of fermion are light-like and they move along
light-like 8-geodesics. Since the size of the partonic 2-surface should not change much.
If all fundamental fermions involved are massive one can assume that they are at rest
and in this manner geometrically stable state.

(b) If one has massive fermion and massless right-handed neutrino, they should be at rest
with respect to each other. What looks paradoxical that one cannot reduce the velocity
to exactly zero in any coordinate system since covariantly constant right-handed neu-
trino represents a pure gauge degree of freedom. It is of course possible to assume that
the relative velocity is some sufficiently low velocity. One can also argue that sparticles
are unstable and that this is basically due to a geometric instability implied by the
non-parallel 3-momenta of fundamental fermions.
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(c) If one assumes that the 4-momentum squared corresponds to that associated with the
imbedding space spinor harmonics, one can to estimate the mass of the sparticle once
the energy of the right-handed neutrino is fixed. This argument applies also to n-fermion
states at associated with the wormhole contact pairs.

(d) p-Adic mass calculations however give to mass squared also other contributions that
that coming from the spinor harmonic, in particular negative ground state contribution
and that the mass squared of the fundamental fermion vanishes for lowest states which
would therefore have vanishing CP2 velocity. Why the light-like four-momentum of the
resulting state should not characterize the fermion line? In this picture p-adic thermal
excitations would make the state unstable. One could in fact turn this argument to an
explanation for why the stable physical particles must parallel 4-momenta.

(e) What is still not well-understood is the tachyonic contribution to four-momentum. One
possibility is that wormhole contact gives imaginary contribution to four-momentum.
Second possibility is that the generating super-symplectic conformal weights are the
negatives for the zeros of zeta. For non-trivial zeros the real part of the conformal
would be -1/2.

So called massless extremals (MEs) define massless represent classical field pattern moving
with light velocity and preserving its shape. This suggests that particle represented as a magnetic
flux tube structure carrying monopole flux with two wormhole contacts and sliced between two
MEs could serve as a starting point in attempts to understand the role of right handed neutrinos
and how N = 2 or N = 4 type SYM emerges at the level of space-time geometry.

21.4.3 The Impact From LHC And Evolution Of TGD Itself

The missing energy predicted standard SUSY seems to be absent at LHC. The easy explanation
would be that the mass scale of SUSY is unexpectedly high, of order 1-10 TeV. This would however
destroy the original motivations for SUSY. The arguments developed in the following manner.

1. One must distinguish between imbedding space spinor harmonics and the modes of the in-
duced spinor field. Right-handed neutrino with vanishing color quantum numbers and thus
covariantly constant in CP2 is massless. All other modes of the induced spinor field are
massive and in according to the p-adic mass calculations negative conformal weight of the
ground state and the presence of Kac-Moody and super-symplectic generators make possible
massless states having thermal excitations giving to the state a thermal mass. Right-handed
neutrino can mix with left-handed neutrino ad can get mass. One can assign to any fermion
a super-multiplet with 4 members.

One cannot assign full super-4-plet also to non-colored right handed neutrino itself: the
multiplet would contain only 3 states. The most natural possibility is that the ground state
is now a color excitation of right-handed neutrino and massless non-colored right-handed
neutrinos give rise to the 4-plet. The colored spinor mode at imbedding space level is however
a mixture or left- and right handed neutrinos.

2. In TGD framework the natural first guess is that right-handed neutrinos carrying four-
momentum can give rise to missing energy. The assumption that fermions correspond to color
partial waves in H implies that color excitations of the right handed neutrino that would
appear in asymptotic states are necessarily colored. It could happen that these excitations
are color neutralized by super-conformal generators. If this is not the case, these neutrinos
would be like quarks and color confinement would explain why they cannot be observed as
asymptotic states in macroscopic scales.

Second possibility is that SUSY itself is generated by color partial waves of right-handed
neutrino, octet most naturally. This option is however not consistent with the above model
for one-fermion states and their super-partners.
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21.4.4 Supersymmetry In Crisis

Supersymmetry is very beautiful generalization of the ordinary symmetry concept by generaliz-
ing Lie-algebra by allowing grading such that ordinary Lie algebra generators are accompanied by
super-generators transforming in some representation of the Lie algebra for which Lie-algebra com-
mutators are replaced with anti-commutators. In the case of Poincare group the super-generators
would transform like spinors. Clifford algebras are actually super-algebras. Gamma matrices anti-
commute to metric tensor and transform like vectors under the vielbein group (SO(n) in Euclidian
signature). In supersymmetric gauge theories one introduced super translations anti-commuting
to ordinary translations.

Supersymmetry algebras defined in this manner are characterized by the number of super-
generators and in the simplest situation their number is one: one speaks about N = 1 SUSY and
minimal super-symmetric extension of standard model (MSSM) in this case. These models are
most studied because they are the simplest ones. They have however the strange property that
the spinors generating SUSY are Majorana spinors- real in well-defined sense unlike Dirac spinors.
This implies that fermion number is conserved only modulo two: this has not been observed
experimentally. A second problem is that the proposed mechanisms for the breaking of SUSY do
not look feasible.

LHC results suggest MSSM does not become visible at LHC energies. This does not exclude
more complex scenarios hiding simplest N = 1 to higher energies but the number of real believers
is decreasing. Something is definitely wrong and one must be ready to consider more complex
options or totally new view abot SUSY.

What is the analog of SUSY in TGD framework? I must admit that I am still fighting to
gain understanding of SUSY in TGD framework [K95]. That I can still imagine several scenarios
shows that I have not yet completely understood the problem but I am working hardly to avoid
falling to the sin of sloppying myself.

At the basic level one has super-conformal invariance generated in the fermion sector by the
super-conformal charges assignable to the strings emanating from partonic 2-surfaces and connect-
ing them to each other. For elementary particles one has 2 wormhole contacts and 4 wormhole
throats. If the number of strings is just one, one has symplectic super-conformal symmetry, which
is already huge. Several strings must be allowed and this leads to the Yangian variant of super-
conformal symmetry, which is multi-local (multi-stringy).

One can also say that fermionic oscillator operators generate infinite-D super-algebra. One
can restrict the consideration to lowest conformal weights if spinorial super-conformal invariance
acts as gauge symmetry so that one obtains a finite-D algebra with generators labelled by electro-
weak quantum numbers of quarks and leptons. This super-symmetry is badly broken but contains
the algebra generated by right-handed neutrino and its conjugate as sub-algebra.

The basic question is whether covariantly constant right handed neutrino generators N = ∈
SUSY or whether the SUSY is generated as approximate symmetry by adding massless right-
handed neutrino to the state thus changing its four-momentum. The problem with the first option
is that it the standard norm of the state is naturally proportional to four-momentum and vanishes
at the limit of vanishing four-momentum: is it possible to circumvent this problem somehow? In
the following I summarize the situation as it seems just now.

1. In TGD framework N = 1 SUSY is excluded since B and L and conserved separately and
imbedding space spinors are not Majorana spinors. The possible analog of space-time SUSY
should be a remnant of a much larger super-conformal symmetry in which the Clifford algebra
generated by fermionic oscillator operators giving also rise to the Clifford algebra generated
by the gamma matrices of the “world of classical worlds” (WCW) and assignable with string
world sheets. This algebra is indeed part of infinite-D super-conformal algebra behind quan-
tum TGD. One can construct explicitly the conserved super conformal charges accompanying
ordinary charges and one obtains something analogous to N =∞ super algebra. This SUSY
is however badly broken by electroweak interactions.

2. The localization of induced spinors to string world sheets emerges from the condition that
electromagnetic charge is well-defined for the modes of induced spinor fields. There is however
an exception: covariantly constant right handed neutrino spinor νR: it can be de-localized
along entire space-time surface. Right-handed neutrino has no couplings to electroweak
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fields. It couples however to left handed neutrino by induced gamma matrices except when
it is covariantly constant. Note that standard model does not predict νR but its existence is
necessary if neutrinos develop Dirac mass. νR is indeed something which must be considered
carefully in any generalization of standard model.

Could covariantly constant right handed neutrinos generate SUSY?

Could covariantly constant right-handed spinors generate exact N = 2 SUSY? There are two
spin directions for them meaning the analog N = 2 Poincare SUSY. Could these spin directions
correspond to right-handed neutrino and antineutrino. This SUSY would not look like Poincare
SUSY for which anti-commutator of super generators would be proportional to four-momentum.
The problem is that four-momentum vanishes for covariantly constant spinors! Does this mean
that the sparticles generated by covariantly constant νR are zero norm states and represent super
gauge degrees of freedom? This might well be the case although I have considered also alternative
scenarios.

What about non-covariantly constant right-handed neutrinos?

Both imbedding space spinor harmonics and the Kähler-Dirac equation have also right-handed
neutrino spinor modes not constant in M4 and localized to the partonic orbits. If these are
responsible for SUSY then SUSY is broken.

1. Consider first the situation at space-time level. Both induced gamma matrices and their
generalizations to Kähler-Dirac gamma matrices defined as contractions of imbedding space
gamma matrices with the canonical momentum currents for Kähler action are superpositions
of M4 and CP2 parts. This gives rise to the mixing of right-handed and left-handed neutrinos.
Note that non-covariantly constant right-handed neutrinos must be localized at string world
sheets.

This in turn leads neutrino massivation and SUSY breaking. Given particle would be accom-
panied by sparticles containing varying number of right-handed neutrinos and antineutrinos
localized at partonic 2-surfaces.

2. One an consider also the SUSY breaking at imbedding space level. The ground states of the
representations of extended conformal algebras are constructed in terms of spinor harmonics
of the imbedding space and form the addition of right-handed neutrino with non-vanishing
four-momentum would make sense. But the non-vanishing four-momentum means that the
members of the super-multiplet cannot have same masses. This is one manner to state what
SUSY breaking is.

What one can say about the masses of sparticles?

The simplest form of massivation would be that all members of the super-multiplet obey the same
mass formula but that the p-adic length scales associated with them are different. This could
allow very heavy sparticles. What fixes the p-adic mass scales of sparticles? If this scale is CP2

mass scale SUSY would be experimentally unreachable. The estimate below does not support this
option.

One can consider the possibility that SUSY breaking makes sparticles unstable against phase
transition to their dark variants with heff = n× h. Sparticles could have same mass but be non-
observable as dark matter not appearing in same vertices as ordinary matter! Geometrically the
addition of right-handed neutrino to the state would induce many-sheeted covering in this case
with right handed neutrino perhaps associated with different space-time sheet of the covering.

This idea need not be so outlandish at it looks first.

1. The generation of many-sheeted covering has interpretation in terms of breaking of conformal
invariance. The sub-algebra for which conformal weights are n-tuples of integers becomes the
algebra of conformal transformations and the remaining conformal generators do note repre-
sent gauge degrees of freedom anymore. They could however represent conserved conformal
charges still.



804 Chapter 21. Does the QFT Limit of TGD Have Space-Time Super-Symmetry?

2. This generalization of conformal symmetry breaking gives rise to infinite number of fractal
hierarchies formed by sub-algebras of conformal algebra and is also something new and a
fruit of an attempt to avoid sloppy thinking. The breaking of conformal symmetry is indeed
expected in massivation related to the SUSY breaking.

The following poor man’s estimate supports the idea about dark sfermions and the view
that sfermions cannot be very heavy.

1. Neutrino mixing rate should correspond to the mass scale of neutrinos known to be in eV
range for ordinary value of Planck constant. For heff/h = n it is reduced by factor 1/n,
when mass kept constant. Hence sfermions could be stabilized by making them dark.

2. A very rough order of magnitude estimate for sfermion mass scale is obtained from Uncer-
tainty Principle: particle mass should be higher than its decay rate. Therefore an estimate
for the decay rate of sfermion could give a lower bound for its mass scale.

3. Assume the transformation νR → νL makes sfermion unstable against the decay to fermion
and ordinary neutrino. If so, the decay rate would be dictated by the mixing rate and
therefore to neutrino mass scale for the ordinary value of Planck constant. Particles and
sparticles would have the same p-adic mass scale. Large heff could however make sfermion
dark, stable, and non-observable.

A rough model for the neutrino mixing in TGD framework

The mixing of neutrinos would be the basic mechanism in the decays of sfermions. The following
argument tries to capture what is essential in this process.

1. Conformal invariance requires that the string ends at which fermions are localized at worm-
hole throats are light-like curves. In fact, light-likeness gives rise to Virasosoro conditions.

2. Mixing is described by a vertex residing at partonic surface at which two partonic orbits join.
Localization of fermions to string boundaries reduces the problem to a problem completely
analogous to the coupling of point particle coupled to external gauge field. What is new
that orbit of the particle has edge at partonic 2-surface. Edge breaks conformal invariance
since one cannot say that curve is light-like at the edge. At edge neutrino transforms from
right-handed to left handed one.

3. In complete analogy with ΨγtAtΨ vertex for the point-like particle with spin in exter-
nal field, the amplitude describing nuR − νL transition involves matrix elements of form
νRΓt(CP2)ZtνL at the vertex of the CP2 part of the Kähler-Dirac gamma matrix and clas-
sical Z0 field.

How Γt is identified? The Kähler-Dirac gamma matrices associated with the interior need
not be well-defined at the light-like surface and light-like curve. One basis of weak form
of electric magnetic duality the Kähler-Dirac gamma matrix corresponds to the canonical
momentum density associated with the Chern-Simons term for Kähler action. This gamma
matrix contains only the CP2 part.

The following provides as more detailed view.

1. Let us denote by ΓtCP2
(in/out) the CP2 part of the Kähler-Dirac gamma matrix at string

at at partonic 2-surface and by Z0
t the value of Z0 gauge potential along boundary of string

world sheet. The direction of string line in imbedding space changes at the partonic 2-surface.
The question is what happens to the Kähler-Dirac action at the vertex.

2. For incoming and outgoing lines the equation

D(in/out)Ψ(in/out) = pk(in, out)γkΨ(in/out) ,

where the Kähler-Dirac operator is D(in/out) = Γt(in/out)Dt, is assumed. νR corresponds
to ”in” and νR to ”out”. It implies that lines corresponds to massless M4 Dirac propagator
and one obtains something resembling ordinary perturbation theory.
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It also implies that the residue integration over fermionic internal momenta gives as a residue
massless fermion lines with non-physical helicities as one can expect in twistor approach. For
physical particles the four-momenta are massless but in complex sense and the imaginary
part comes classical from four-momenta assignable to the lines of generalized Feynman dia-
gram possessing Euclidian signature of induced metric so that the square root of the metric
determinant differs by imaginary unit from that in Minkowskian regions.

3. In the vertex D(in/out) could act in Ψ(out/in) and the natural idea is that νR − νL
mixing is due to this so that it would be described the classical weak current couplings
νRΓtCP2

(out)Z0
t (in)νL and νRΓtCP2

(out)Z0
t (in)νL.

To get some idea about orders of magnitude assume that the CP2 projection of string
boundary is geodesic circle thus describable as Φ = ωt, where Φ is angle coordinate for the circle
and t is Minkowski time coordinate. The contribution of CP2 to the induced metric gtt is ∆gtt =
−R2ω2.

1. In the first approximation string end is a light-like curve in Minkowski space meaning that
CP2 contribution to the induced metric vanishes. Neutrino mixing vanishes at this limit.

2. For a non-vanishing value of ωR the mixing and the order of magnitude for mixing rate and
neutrino mass is expected to be R ∼ ω and m ∼ ω/h. p-Adic length scale hypothesis and
the experimental value of neutrino mass allows to estimate m to correspond to p-adic mass
to be of order eV so that the corresponding p-adic prime p could be p ' 2167. Note that
k = 127 defines largest of the four Gaussian Mersennes MG,k = (1 + i)k − 1 appearing in the
length scale range 10 nm -2.5 µm. Hence the decay rate for ordinary Planck constant would
be of order R ∼ 1014/s but large value of Planck constant could reduced it dramatically. In
living matter reductions by a factor 10−12 can be considered.

To sum up, the space-time SUSY in TGD sense would differ crucially from SUSY in the
standard sense. There would no Majorana spinors and sparticles could correspond to dark phase
of matter with non-standard value of Planck constant. The signatures of the standard SUSY do
not apply to TGD. Of course, a lot of professional work would be needed to derive the signatures
of TGD SUSY.

21.4.5 Right-Handed Neutrino As Inert Neutrino?

There is a very interesting posting by Jester in Resonaances with title “How many neutrinos in the
sky?” (see http://tinyurl.com/y8scxzqr) [C1]. Jester tells about the recent 9 years WMAP
data [C3] and compares it with earlier 7 years data. In the earlier data the effective number of
neutrino types was Neff = 4.34 ± 0.87 and in the recent data it is Neff = 3.26 ± 0.35. WMAP
alone would give Neff = 3.89 ± 0.67 also in the recent data but also other data are used to pose
constraints on Neff .

To be precise, Neff could include instead of fourth neutrino species also some other weakly
interacting particle. The only criterion for contributing to Neff is that the particle is in thermal
equilibrium with other massless particles and thus contributes to the density of matter considerably
during the radiation dominated epoch.

Jester also refers to the constraints on Neff from nucleosynthesis (see http://tinyurl.

com/y8fkfn5y) , which show that Neff ∼ 4 us slightly favored although the entire range [3, 5] is
consistent with data.

It seems that the effective number of neutrinos could be 4 instead of 3 although latest
WMAP data combined with some other measurements favor 3. Later a corrected version e http:

//tinyurl.com/y9er8szf) of the eprint appeared [C3] telling that the original estimate of Neff
contained a mistake and the correct estimate is Neff = 3.84± 0.40.

An interesting question is what Neff = 4 could mean in TGD framework?

1. One poses to the modes of the Kähler-Dirac equation the following condition: electric charge
is conserved in the sense that the time evolution by Kähler-Dirac equation does not mix a
mode with a well-defined em charge with those with different em charge. The implication is
that all modes except pure right handed neutrino are restricted at string world sheets. The

http://tinyurl.com/y8scxzqr
http://tinyurl.com/y8fkfn5y
http://tinyurl.com/y8fkfn5y
http://tinyurl.com/y9er8szf
http://tinyurl.com/y9er8szf
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first guess is that string world sheets are minimal surfaces of space-time surface (rather than
those of imbedding space). One can also consider minimal surfaces of imbedding space but
with effective metric defined by the anti-commutators of the Kähler-Dirac gamma matrices.
This would give a direct physical meaning for this somewhat mysterious effective metric.

For the neutrino modes localized at string world sheets mixing of left and right handed modes
takes place and they become massive. If only 3 lowest genera for partonic 2-surfaces are light,
one has 3 neutrinos of this kind. The same applies to all other fermion species. The argument
for why this could be the case relies on simple observation [K12]: the genera g=0, 1, 2 have
the property that they allow for all values of conformal moduli Z2 as a conformal symmetry
(hyper-ellipticity). For g > 2 this is not the case. The guess is that this additional conformal
symmetry is the reason for lightness of the three lowest genera.

2. Only purely right-handed neutrino is completely de-localized in 4-volume so that one cannot
assign to it genus of the partonic 2-surfaces as a topological quantum number and it effectively
gives rise to a fourth neutrino very much analogous to what is called sterile neutrino. De-
localized right-handed neutrinos couple only to gravitation and in case of massless extremals
this forces them to have four-momentum parallel to that of ME: only massless modes are
possible. Very probably this holds true for all preferred extremals to which one can assign
massless longitudinal momentum direction which can vary with spatial position.

3. The coupling of νR is to gravitation alone and all electroweak and color couplings are absent.
According to standard wisdom de-localized right-handed neutrinos cannot be in thermal
equilibrium with other particles. This according to standard wisdom. But what about
TGD?

One should be very careful here: de-localized right-handed neutrinos is proposed to give rise
to SUSY (not N = 1 requiring Majorana fermions) and their dynamics is that of passive
spectator who follows the leader. The simplest guess is that the dynamics of right handed
neutrinos at the level of amplitudes is completely trivial and thus trivially supersymmetric.
There are however correlations between four-momenta.

(a) The four-momentum of νR is parallel to the light-like momentum direction assignable
to the massless extremal (or more general preferred extremal). This direct coupling to
the geometry is a special feature of the Kähler-Dirac operator and thus of sub-manifold
gravity.

(b) On the other hand, the sum of massless four-momenta of two parallel pieces of preferred
extremals is the - in general massive - four-momentum of the elementary particle defined
by the wormhole contact structure connecting the space-time sheets (which are glued
along their boundaries together since this is seems to be the only manner to get rid of
boundary conditions requiring vacuum extremal property near the boundary). Could
this direct coupling of the four-momentum direction of right-handed neutrino to geom-
etry and four-momentum directions of other fermions be enough for the right handed
neutrinos to be counted as a fourth neutrino species in thermal equilibrium? This might
be the case!

One cannot of course exclude the coupling of 2-D neutrino at string world sheets to 4-D purely
right handed neutrinos analogous to the coupling inducing a mixing of sterile neutrino with
ordinary neutrinos. Also this could help to achieve the thermal equilibrium with 2-D neutrino
species.

21.4.6 Experimental Evidence For Sterile Neutrino?

Many physicists are somewhat disappointed to the results from LHC: the expected discovery of
Higgs has been seen as the main achievement of LHC hitherto. Much more was expected. To my
opinion there is no reason for disappointment. The exclusion of the standard SUSY at expected
energy scale is very far reaching negative result. Also the fact that Higgs mass is too small to
be stable without fine tuning is of great theoretical importance. The negative results concerning
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heavy dark matter candidates are precious guidelines for theoreticians. The non-QCD like behav-
ior in heavy ion collisions and proton-ion collisions is bypassed my mentioning something about
AdS/CFT correspondence and non-perturbative QCD effects. I tend to see these effects as direct
evidence for M89 hadron physics [K42].

In any case, something interesting has emerged quite recently. Resonaances tells that the
recent analysis (see http://tinyurl.com/ycf4vbkq) [C2] of X-ray spectrum of galactic clusters
claims the presence of monochromatic 3.5 keV photon line. The proposed interpretation is as
a decay product of sterile 7 keV neutrino transforming first to a left-handed neutrino and then
decaying to photon and neutrino via a loop involving W boson and electron. This is of course only
one of the many interpretations. Even the existence of line is highly questionable.

One of the poorly understood aspects of TGD is right-handed neutrino, which is obviously
the TGD counterpart of the inert neutrino.

1. The old idea is that covariantly constant right handed neutrino could generate N = 2 super-
symmetry in TGD Universe. In fact, all modes of induced spinor field would generate su-
perconformal symmetries but electroweak interactions would break these symmetries for the
modes carrying non-vanishing electroweak quantum numbers: they vanish for νR. This
picture is now well-established at the level of WCW geometry [K110]: super-conformal gen-
erators are labelled angular momentum and color representations plus two conformal weights:
the conformal weight assignable to the light-like radial coordinate of light-cone boundary and
the conformal weight assignable to string coordinate. It seems that these conformal weights
are independent. The third integer labelling the states would label genuinely Yangian gener-
ators: it would tell the poly-locality of the generator with locus defined by partonic 2-surface:
generators acting on single partonic 2-surface, 2 partonic 2-surfaces, ...

2. It would seem that even the SUSY generated by νR must be badly broken unless one is able
to invent dramatically different interpretation of SUSY. The scale of SUSY breaking and thus
the value of the mass of right-handed neutrino remains open also in TGD. In lack of better
one could of course argue that the mass scale must be CP2 mass scale because right-handed
neutrino mixes considerably with the left-handed neutrino (and thus becomes massive) only
in this scale. But why this argument does not apply also to left handed neutrino which must
also mix with the right-handed one!

3. One can of course criticize the proposed notion of SUSY: wonder whether fermion + extremely
weakly interacting νR at same wormhole throat (or interior of 3-surface) can behave as single
coherent entity as far spin is considered [K95] ?

4. The condition that the modes of induced spinor field have a well-defined electromagnetic
charge eigenvalue [K88] requires that they are localized at 2-D string world sheets or par-
tonic 2-surfaces: without this condition classical W boson fields would mix the em charged
and neutral modes with each other. Right-handed neutrino is an exception since it has no
electroweak couplings. Unless right-handed neutrino is covariantly constant, the Kähler-Dirac
gamma matrices can however mix the right-handed neutrino with the left handed one and
this can induce transformation to charged mode. This does not happen if each Kähler-Dirac
gamma matrix can be written as a linear combination of either M4 or CP2 gamma matrices
and Kähler-Dirac equation is satisfied separately by M4 and CP2 parts of the Kähler-Dirac
equation.

5. Is the localization of the modes other than covariantly constant neutrino to string world
sheets a consequence of dynamics or should one assume this as a separate condition? If
one wants similar localization in space-time regions of Euclidian signature - for which CP2

type vacuum extremal is a good representative - one must assume it as a separate con-
dition. In number theoretic formulation string world sheets/partonic 2-surfaces would be
commutative/co-commutative sub-manifolds of space-time surfaces which in turn would be
associative or co-associative sub-manifolds of imbedding space possessing (hyper-)octonionic
tangent space structure. For this option also right-handed neutrino would be localized to
string world sheets. Right-handed neutrino would be covariantly constant only in 2-D sense.

http://tinyurl.com/ycf4vbkq
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One can consider the possibility that νR is de-localized to the entire 4-D space-time sheet.
This would certainly modify the interpretation of SUSY since the number of degrees of
freedom would be reduced for νR.

6. Non-covariantly constant right-handed neutrinos could mix with left-handed neutrinos but
not with charged leptons if the localization to string world sheets is assumed for modes
carrying non-vanishing electroweak quantum numbers. This would make possible the decay
of right-handed to neutrino plus photon, and one cannot exclude the possibility that νR has
mass 7 keV.

Could this imply that particles and their spartners differ by this mass only? Could it be
possible that practically unbroken SUSY could be there and we would not have observed
it? Could one imagine that sfermions have annihilated leaving only states consisting of
fundamental fermions? But shouldn’t the total rate for the annihilation of photons to hadrons
be two times the observed one? This option does not sound plausible.

What if one assumes that given sparticle is charactrized by the same p-adic prime as cor-
responding particle but is dark in the sense that it corresponds to non-standard value of
Planck constant. In this case sfermions would not appear in the same vertex with fermions
and one could escape the most obvious contradictions with experimental facts. This leads
to the notion of shadron: shadrons would be [K95] obtained by replacing quarks with dark
squarks with nearly identical masses. I have asked whether so called X and Y bosons having
no natural place in standard model of hadron could be this kind of creatures.

The interpretation of 3.5 keV photons as decay products of right-handed neutrinos is of
course totally ad hoc. Another TGD inspired interpretation would be as photons resulting from
the decays of excited nuclei to their ground state.

1. Nuclear string model [L3] predicts that nuclei are string like objects formed from nucleons
connected by color magnetic flux tubes having quark and antiquark at their ends. These
flux tubes are long and define the “magnetic body” of nucleus. Quark and antiquark have
opposite em charges for ordinary nuclei. When they have different charges one obtains exotic
state: this predicts entire spectrum of exotic nuclei for which statistic is different from what
proton and neutron numbers deduced from em charge and atomic weight would suggest.
Exotic nuclei and large values of Planck constant could make also possible cold fusion [K19].

2. What the mass difference between these states is, is not of course obvious. There is how-
ever an experimental finding [C4] (see Analysis of Gamma Radiation from a Radon Source:
Indications of a Solar Influence at http://tinyurl.com/d9ymwm3) that nuclear decay rates
oscillate with a period of year and the rates correlate with the distance from Sun. A possible
explanation is that the gamma rays from Sun in few keV range excite the exotic nuclear
states with different decay rate so that the average decay rate oscillates [L3]. Note that
nuclear excitation energies in keV range would also make possible interaction of nuclei with
atoms and molecules.

3. This allows to consider the possibility that the decays of exotic nuclei in galactic clusters
generates 3.5 keV photons. The obvious question is why the spectrum would be concentrated
at 3.5 keV in this case (second question is whether the energy is really concentrated at 3.5
keV: a lot of theory is involved with the analysis of the experiments). Do the energies of
excited states depend on the color bond only so that they would be essentially same for
all nuclei? Or does single excitation dominate in the spectrum? Or is this due to the fact
that the thermal radiation leaking from the core of stars excites predominantly single state?
Could E = 3.5 keV correspond to the maximum intensity for thermal radiation in stellar
core? If so, the temperature of the exciting radiation would be about T ' E/3 ' 1.2 × 107

K. This in the temperature around which formation of Helium by nuclear fusion has begun:
the temperature at solar core is around 1.57× 107 K.

21.4.7 Delicacies of the induced spinor structure and SUSY mystery

The discussion of induced spinor structure leads to a modification of an earlier idea (one of the
many) about how SUSY could be realized in TGD in such a manner that experiments at LHC

http://tinyurl.com/d9ymwm3
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energies could not discover it and one should perform experiments at the other end of energy
spectrum at energies which correspond to the thermal energy about .025 eV at room temperature.
I have the feeling that this observation could be of crucial importance for understanding of SUSY.

Induced spinor structure

The notion of induced spinor field deserves a more detailed discussion. Consider first induced
spinor structures.

1. Induced spinor field are spinors of M4 ×CP2 for which modes are characterized by chirality
(quark or lepton like) and em charge and weak isospin.

2. Induced spinor spinor structure involves the projection of gamma matrices defining induced
gamma matrices. This gives rise to superconformal symmetry if the action contains only
volume term.

When Kähler action is present, superconformal symmetry requires that the modified gamma
matrices are contractions of canonical momentum currents with imbedding space gamma
matrices. Modified gammas appear in the modified Dirac equation and action, whose solution
at string world sheets trivializes by super-conformal invariance to same procedure as in the
case of string models.

3. Induced spinor fields correspond to two chiralities carrying quark number and lepton number.
Quark chirality does not carry color as spin-like quantum number but it corresponds to a
color partial wave in CP2 degrees of freedom: color is analogous to angular momentum. This
reduces to spinor harmonics of CP2 describing the ground states of the representations of
super-symplectic algebra.

The harmonics do not satisfy correct correlation between color and electroweak quantum
numbers although the triality t=0 for leptonic waves and t=1 for quark waves. There are
two manners to solve the problem.

(a) Super-symplectic generators applied to the ground state to get vanishing ground states
weight instead of the tachyonic one carry color and would give for the physical states
correct correlation: leptons/quarks correspond to the same triality zero(one partial wave
irrespective of charge state. This option is assumed in p-adic mass calculations [K39].

(b) Since in TGD elementary particles correspond to pairs of wormhole contacts with weak
isospin vanishing for the entire pair, one must have pair of left and right-handed neu-
trinos at the second wormhole throat. It is possible that the anomalous color quantum
numbers for the entire state vanish and one obtains the experimental correlation between
color and weak quantum numbers. This option is less plausible since the cancellation
of anomalous color is not local as assume in p-adic mass calculations.

The understanding of the details of the fermionic and actually also geometric dynamics has
taken a long time. Super-conformal symmetry assigning to the geometric action of an object with
given dimension an analog of Dirac action allows however to fix the dynamics uniquely and there
is indeed dimensional hierarchy resembling brane hierarchy.

1. The basic observation was following. The condition that the spinor modes have well-defined
em charge implies that they are localized to 2-D string world sheets with vanishing W boson
gauge fields which would mix different charge states. At string boundaries classical induced
W boson gauge potentials guarantee this. Super-conformal symmetry requires that this 2-
surface gives rise to 2-D action which is area term plus topological term defined by the flux
of Kähler form.

2. The most plausible assumption is that induced spinor fields have also interior component but
that the contribution from these 2-surfaces gives additional delta function like contribution:
this would be analogous to the situation for branes. Fermionic action would be accompanied
by an area term by supersymmetry fixing modified Dirac action completely once the bosonic
actions for geometric object is known. This is nothing but super-conformal symmetry.
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One would actually have the analog of brane-hierarchy consisting of surfaces with dimension
D= 4,3,2,1 carrying induced spinor fields which can be regarded as independent dynamical
variables and characterized by geometric action which is D-dimensional analog of the action
for Kähler charged point particle. This fermionic hierarchy would accompany the hierarchy
of geometric objects with these dimensions and the modified Dirac action would be uniquely
determined by the corresponding geometric action principle (Kähler charged point like parti-
cle, string world sheet with area term plus Kähler flux, light-like 3-surface with Chern-Simons
term, 4-D space-time surface with Kähler action).

3. This hierarchy of dynamics is consistent with SH only if the dynamics for higher dimensional
objects is induced from that for lower dimensional objects - string world sheets or maybe even
their boundaries orbits of point like fermions. Number theoretic vision [K111] suggests that
this induction relies algebraic continuation for preferred extremals. Note that quaternion
analyticity [L22] means that quaternion analytic function is determined by its values at 1-D
curves.

4. Quantum-classical correspondences (QCI) requires that the classical Noether charges are
equal to the eigenvalues of the fermionic charges for surfaces of dimension D = 0, 1, 2, 3 at
the ends of the CDs. These charges would not be separately conserved. Charges could flow
between objects of dimension D+ 1 and D - from interior to boundary and vice versa. Four-
momenta and also other charges would be complex as in twistor approach: could complex
values relate somehow to the finite life-time of the state?

If quantum theory is square root of thermodynamics as zero energy ontology suggests, the
idea that particle state would carry information also about its life-time or the time scale of CD
to which is associated could make sense. For complex values of αK there would be also flow
of canonical and super-canonical momentum currents between Euclidian and Minkowskian
regions crucial for understand gravitational interaction as momentum exchange at imbedding
space level.

5. What could be the physical interpretation of the bosonic and fermionic charges associated
with objects of given dimension? Condensed matter physicists assign routinely physical states
to objects of various dimensions: is this assignment much more than a practical approxima-
tion or could condensed matter physics already be probing many-sheeted physics?

SUSY and TGD

From this one ends up to the possibility of identifying the counterpart of SUSY in TGD framework
[K95, K24].

1. In TGD the generalization of much larger super-conformal symmetry emerges from the super-
symplectic symmetries of WCW. The mathematically questionable notion of super-space is
not needed: only the realization of super-algebra in terms of WCW gamma matrices defining
super-symplectic generators is necessary to construct quantum states. As a matter of fact,
also in QFT approach one could use only the Clifford algebra structure for super-multiplets.
No Majorana condition on fermions is needed as for N = 1 space-time SUSY and one avoids
problems with fermion number non-conservation.

2. In TGD the construction of sparticles means quite concretely adding fermions to the state.
In QFT it corresponds to transformation of states of integer and half-odd integer spin to each
other. This difference comes from the fact that in TGD particles are replaced with point like
particles.

3. The analog of N = 2 space-time SUSY could be generated by covariantly constant right
handed neutrino and antineutrino. Quite generally the mixing of fermionic chiralities implied
by the mixing of M4 and CP2 gamma matrices implies SUSY breaking at the level of particle
masses (particles are massless in 8-D sense). This breaking is purely geometrical unlike the
analog of Higgs mechanism proposed in standard SUSY.

There are several options to consider.
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1. The analog of brane hierarchy is realized also in TGD. Geometric action has parts assignable
to 4-surface, 3-D light like regions between Minkowskian and Euclidian regions, 2-D string
world sheets, and their 1-D boundaries. They are fixed uniquely. Also their fermionic coun-
terparts - analogs of Dirac action - are fixed by super-conformal symmetry. Elementary
particles reduce so composites consisting of point-like fermions at boundaries of wormhole
throats of a pair of wormhole contacts.

This forces to consider 3 kinds of SUSYs! The SUSYs associated with string world sheets and
space-time interiors would certainly be broken since there is a mixing between M4 chiralities
in the modified Dirac action. The mass scale of the broken SUSY would correspond to the
length scale of these geometric objects and one might argue that the decoupling between
the degrees of freedom considered occurs at high energies and explains why no evidence for
SUSY has been observed at LHC. Also the fact that the addition of massive fermions at
these dimensions can be interpreted differently. 3-D light-like 3-surfaces could be however an
exception.

2. For 3-D light-like surfaces the modified Dirac action associated with the Chern-Simons term
does not mix M4 chiralities (signature of massivation) at all since modified gamma matrices
have only CP2 part in this case. All fermions can have well-defined chirality. Even more: the
modified gamma matrices have no M4 part in this case so that these modes carry no four-
momentum - only electroweak quantum numbers and spin. Obviously, the excitation of these
fermionic modes would be an ideal manner to create spartners of ordinary particles consting
of fermion at the fermion lines. SUSY would be present if the spin of these excitations couples
- to various interactions and would be exact.

What would be these excitations? Chern-Simons action and its fermionic counterpart are
non-vanishing only if the CP2 projection is 3-D so that one can use CP2 coordinates. This
strongly suggests that the modified Dirac equation demands that the spinor modes are co-
variantly constant and correspond to covariantly constant right-handed neutrino providing
only spin.

If the spin of the right-handed neutrino adds to the spin of the particle and the net spin
couples to dynamics, N = 2 SUSY is in question. One would have just action with unbroken
SUSY at QFT limit? But why also right-handed neutrino spin would couple to dynamics
if only CP2 gamma matrices appear in Chern-Simons-Dirac action? It would seem that it
is independent degree of freedom having no electroweak and color nor even gravitational
couplings by its covariant constancy. I have ended up with just the same SUSY-or-no-SUSY
that I have had earlier.

3. Can the geometric action for light-like 3-surfaces contain Chern-Simons term?

(a) Since the volume term vanishes identically in this case, one could indeed argue that also
the counterpart of Kähler action is excluded. Moreover, for so called massless extremals
of Kähler action reduces to Chern-Simons terms in Minkowskian regions and this could
happen quite generally: TGD with only Kähler action would be almost topological QFT
as I have proposed. Volume term however changes the situation via the cosmological
constant. Kähler-Dirac action in the interior does not reduce to its Chern-Simons analog
at light-like 3-surface.

(b) The problem is that the Chern-Simons term at the two sides of the light-like 3-surface
differs by factor

√
−1 coming from the ratio of

√
g4 factors which themselves approach

to zero: oOne would have the analog of dipole layer. This strongly suggests that one
should not include Chern-Simons term at all.

Suppose however that Chern-Simons terms are present at the two sides and αK is real so
that nothing goes through the horizon forming the analog of dipole layer. Both bosonic
and fermionic degrees of freedom for Euclidian and Minkowskian regions would decouple
completely but currents would flow to the analog of dipole layer. This is not physically
attractive.

The canonical momentum current and its super counterpart would give fermionic source
term ΓnΨint,± in the modified Dirac equation defined by Chern-Simons term at given
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side ±: ± refers to Minkowskian/Euclidian part of the interior. The source term is
proportional to ΓnΨint,± and Γn is in principle mixture of M4 and CP2 gamma matrices
and therefore induces mixing of M4 chiralities and therefore also 3-D SUSY breaking.
It must be however emphasized that Γn is singular and one must be consider the limit
carefully also in the case that one has only continuity conditions. The limit is not
completely understood.

(c) If αK is complex there is coupling between the two regions and the simplest assumption
has been that there is no Chern-Simons term as action and one has just continuity
conditions for canonical momentum current and hits super counterpart.

The cautious conclusion is that 3-D Chern-Simons term and its fermionic counterpart are
absent.

4. What about the addition of fermions at string world sheets and interior of space-time surface
(D = 2 and D = 4). For instance, in the case of hadrons D = 2 excitations could correspond
to addition of quark in the interior of hadronic string implying additional states besides the
states obtained assuming only quarks at string ends. Let us consider the interior (D = 4).
For instance, inn the case of hadrons D = 2 excitations could correspond to addition of
quark in the interior of hadronic string implying additional states besides the states obtained
assuming only quarks at string ends. The smallness of cosmological constant implies that
the contribution to the four-momentum from interior should be rather small so that an
interpretation in terms of broken SUSY might make sense. There would be mass m ∼ .03
eV per volume with size defined by the Compton scale ~/m. Note however that cosmological
constant has spectrum coming as inverse powers of prime so that also higher mass scales are
possible.

This interpretation might allow to understand the failure to find SUSY at LHC. Sparticles
could be obtained by adding interior right-handed neutrinos and antineutrinos to the particle
state. They could be also associated with the magnetic body of the particle. Since they do
not have color and weak interactions, SUSY is not badly broken. If the mass difference
between particle and sparticle is of order m = .03 eV characterizing dark energy density
ρvac, particle and sparticle could not be distinguished in higher energy physics at LHC since
it probes much shorter scales and sees only the particle. I have already earlier proposed a
variant of this mechanism but without SUSY breaking.

To discover SUSY one should do very low energy physics in the energy range m ∼ .03 eV
having same order of magnitude as thermal energy kT = 2.6×10−2 eV at room temperature
25 ◦C. One should be able to demonstrate experimentally the existence of sparticle with
mass differing by about m ∼ .03 eV from the mass of the particle (one cannot exclude
higher mass scales since Λ is expected to have spectrum). An interesting question is whether
the sfermions associated with standard fermions could give rise to Bose-Einstein condensates
whose existence in the length scale of large neutron is strongly suggested by TGD view about
living matter.

21.4.8 Conclusions

The conclusion that the standard SUSY (N = 1 SUSY with Majorana spinors) is absent in TGD
Universe and also in the real one looks rather feasible in light of various arguments discussed in
this chapter and also conforms with the LHC data. A more general SUSY with baryon and lepton
conservation and Dirac spinors is however possible in TGD framework.

During the attempts to understand SUSY several ideas have emerged and the original dis-
cussions are retained as such in this chapter. It is interesting to see that their fate is if standard
SUSY has no TGD counterpart.

1. One of the craziest ideas was that spartners indeed exists and even with the same p-adic mass
scale but might be realized as dark matter. Same mass scale is indeed a natural prediction
if right-handed neutrino and particle have same mass scale. Therefore even the mesons of
ordinary hadron physics would be accompanied by smesons - pairs of squark and anti-squark.
In fact, this is what the most recent form of the theory predicts: unfortunately there is no
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manner to experimentally distinguish between fermion and pseudo-sfermion if νR is zero
momentum state lacking even gravitational interactions.

2. There are indications that charmonium as exotic states christened as X and Y mesons and
the question was that they could correspond to mesons built either from colored excitations
of charged quark and antiquark or from squark and anti-squark. The recent view leaves only
the option based on colored excitations alive. The states in question would be analogous
to pairs of color excitations of leptons introduced to explain various anomalies in leptonic
sector [K78]. The question was whether lepto-hadrons could correspond to bound states of
colored sleptons and have same p-adic mass scale as leptons have [K78]. The original form
of lepto-hadron hypothesis remains intact.

3. Evidence that pion and also other hadrons have what could be called infrared Regge trajec-
tories has been reported, and one could ask whether these trajectories could include spion
identified as a bound state of squarks. Also this identification is excluded and the proposed
identification in terms of stringy states assignable to long color magnetic flux tubes accompa-
nying hadron remains under consideration. IR Regge trajectories would serve as a signature
for the non-perturbative aspects of hadron physics.

4. The latest idea along these lines is that spartners are obtained by adding right-handed neu-
trinos to the interior of space-time surface assignable to the particle. SUSY would not be
detectable at high energies, which would explain the negative findings at LHC. Spartners
could be discovered at low energy physics perhaps assignable to the magnetic bodies of par-
ticles: the mass scale could be as low .03 eV determined by cosmological constant in the
scale of cosmology. Note however that cosmological constant has spectrum coming as inverse
powers of prime.

21.5 SUSY Algebra At QFT Limit

The first expectation is that QFT limit TGD corresponds to a situation in which given space-time
surface is representable as a graph for some map M4 → CP2. This assumption is essential for the
understanding of how the QFT limit of TGD emerges when many-sheeted space-time is replaced
with a piece of Minkowski space in macroscopic scales and how gauge potentials of standard model
relate to the induced gauge potentials. Already at elementary particle scales this assumption fails
if they are regarded as pairs of wormhole contacts at distance characterized by Compton length:
two sheetedness is involved in an essential manner.

This assumption is not actually needed in zero energy ontology if M4 is assumed to label the
positions of either tip of CD rather than points of the space-time sheet. The position of the other
tip of CD relative to the first one could be interpreted in terms of Robertson-Walker coordinates
for quantum cosmology [K67].

An intuitively plausible idea is that particle space-time sheets with Euclidian signature of
the induced metric are replaced with world-lines. Fermions can be said to propagate along the
boundaries of string world sheets so that this approximation would force all fermion lines of the
parton orbit to form single line. Intuitively this might correspond to the replacement of multi-
stringy Yangian [K76] with a super-field.

Strings bring in bi-locality at fundamental level and the hierarchy of Planck constants implies
this non-locality in arbitrarily long length scales. The formation of gravitational bound states would
involve gigantic values of Planck constant heff = n × h and macroscopic quantum coherence in
astrophysical scales [K22, K106, K66]. This requires a generalization of quantum theory itself and
of course challenges the idea that SUSY limit of TGD could make sense except in special situations.

What is essential for QFT limit is that only perturbations around single maximum of Kähler
function are considered. If several maxima are important, one must include a weighting defined
by the values of the exponent of Kähler function. The huge symmetries of WCW geometry are
expected to make the functional integral over perturbations calculable.
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21.5.1 Minimum Information About Space-Time Sheet And Particle
Quantum Numbers Needed To Formulate SUSY Algebra

The basic problem is how to feed just the essential information about quantum states and space-
time surfaces to the definition of the QFT limit.

1. The information about quantum numbers of particles must be fed also to the QFT approxi-
mation. It is natural to start from the classical description of point like fermions in H in terms
of light-like geodesics of H at the light-like parton orbits carrying light-like 8-momentum:
action principle indeed leads to this picture. Momentum and color charges serve as natu-
ral quantum numbers besides electroweak quantum numbers. The conserved color charges
associated with CP2 geodesics need not correspond to the usual color charges since they
correspond to center of mass rotational motion in CP2 degrees of freedom. Ordinary color
charges correspond to the spinorial partial wavs assignable to CP2 type extremals.

The propagators of fundamental fermions massless in 8-D sense are the basic building bricks
of the scattering amplitudes in the fundamental formulation of TGD. Elementary particles
emerge as bound states of fundamental fermions, and one might of hope that the scatter-
ing amplitudes might allow also at the QFT limit a formulation involving only fundamen-
tal fermions. The basic vertices would correspond to product and co-product for super-
symplectic Yangian and these 3-vertices should correspond to gauge theory vertices. The
basic building brick of gauge boson would be wormhole contact with throats carrying fermion
and antifermion. It might be that the QFT limit requires the introduction of boson fields.
Both fermions and bosons consist of at least two wormhole contacts.

2. Should one interpret QFT limit as a QFT in X4 representable as a graph for a map M4 →
CP2, or in M4, or perhaps in M4 ×CP2? In zero energy ontology the proper interpretation
is in terms of QFT in M4 defining the coordinates of the M4 projection of space-time point.
Minimal Kaluza-Klein type extension to M4 × S1 might be required in order to take into
account the geodesic motion of fundamental fermions in CP2 degrees of freedom.

3. What information about space-time surface is needed?

(a) One can in principle feed all information about space-time sheet without losing Poincare
invariance since momentum operators do not act on space-time coordinates. The de-
scription becomes however in-practical even if one restricts the consideration to the
maxima of Kähler function.

(b) Partonic two-surfacesX2 are identified as intersections of 3-D light-like wormhole throats
with the boundary of CD characterizes basic building bricks of elementary particles and
elementary particle itself corresponds to space-like 3-surface at the boundary of CD.
The minimal approach would use only cm degrees of freedom for the 3-surface char-
acterizing the particle. A better accuracy would be obtained by using cm coordinates
for the partonic 2-surfaces. Even better approximation would be obtained by using the
positions fermions associated with given partonic 2-surface.

(c) The ends of fermion lines defined by the boundaries of string world sheets represent
necessary information but correspond to single point of M4 in QFT approximation. The
conformal moduli of the partonic 2-surface are very relevant and the elementary particle
vacuum functional in the moduli space [K12] depending on the genus of the partonic
2-surface codes for a relevant information. This information could be compressed to
genus its genus characterizing fermion generations plus a rule stating that the particles
in the same 3-vertex have same genus and that bosons are superpositions over different
genera. Only the three lowest genera have been observed and this can be understood
in terms of hyper-ellipticity [K12].

(d) Some information about zero modes characterized by the induced Kähler form invariant
under quantum fluctuations assignable to Hamiltonians of δM4

± × CP2 at boundaries
of CD is certainly needed: here the identification of Kähler potential as the Kähler
function of WCW is highly attractive hypothesis.
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21.5.2 The Physical Picture Behind The Realization Of SUSY Algebra
At Point Like Limit

The challenge is to deduce SUSY algebra in the approximation that particle like 3-surfaces are
replaced by points. The basic physical constraint on the realization of the SUSY algebra come
from the condition that one must be able to describe also massive particles as members of SUSY
multiplets. This should make possible also 8-D counterpart of twistorialization in terms of oc-
tonionic gamma matrices reducing to quaternionic ones using representation of octonion units in
terms of the structure constants of the octonionic algebra. The general structure of Kähler-Dirac
action suggests how to proceed. pkγk should be replaced with a simplified version of its 8-D variant
in M4 × CP2 and the CP2 part of this operator should describe the massivation.

1. Fermion lines correspond to light-like geodesics of imbedding space. For particles which are
massless in M4, the geodesic circle defining CP2 projection must contract to a point.

2. The generalization of the Dirac operator appearing in commutation relations reads as

pkγk → D = pkγk +Qγk
dsk

ds
,

skl
dsk

dt

dsl

dt
= 1 . (21.5.1)

Mass shell condition fixes the value of Q

Q = ±m . (21.5.2)

For geodesic circle the angle coordinate to be angle parameterizing the geodesic circle is the
natural variable and the gamma matrices can be taken to be just single constant gamma
matrix along the geodesic circle.

3. Imbedding space spinors have anomalous color charge equal to -1 unit for lepton and 1/3
units for quarks. Mass shell condition is satisfied if Q is proportional to anomalous hyper-
charge and mass of the particle in turn determined by p-adic thermodynamics. Quantum
classical correspondence suggests that the square of CP2 part of 8-momentum equals to the
eigenvalue of CP2 spinor Laplacian given the mass square of the spinor mode for an incoming
particle.

4. Particle mass m should relate closely to the frequencies characterizing general extremals.
Quite generally, one can write in cylindrical coordinates the general expressions of CP2 angle
variables Ψ and Φ as (Ψ,Φ) = (ω1t+k1z+n1φ..., ω2t+k2z+n2φ...). Here... denotes Fourier
expansion [L2], [L2]: this corresponds to Cartan algebra of Poincare group with energy, one
momentum component and angular momentum defining the quantum numbers. One can
say that the frequencies define a warping of M4 for (Ψ,Φ) = (ω1t, ω2t). The frequencies
characterizing the warping of the canonically imbedded M4 should closely relate to the mass
of the particle. This raises the question whether the replacement of S1 with S1 × S1 is
appropriate.

5. Twistor description is also required. Generalization of ordinary twistors to octotwistor with
quaternionicity condition as constraint allows to describe massive particles using almost-
twistors. For massive particle the unit octonion corresponding to momentum in rest frame,
the octonion defined by the polarization vector εkγk, and the tangent vector γkds

k/ds (ana-
log of polarization vector in CP2) generate quaternionic sub-algebra. For massless particle
momentum and polarization generate quaternionic sub-algebra as M4 tangent space.
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The SUSY algebra at QFT limit differs from the SUSY algebra defining the fundamental
anti-commutators of the fermionic oscillator operators for the induced spinor fields since the Kähler-
Dirac gamma matrices defined by the Kähler action are replaced with ordinary gamma matrices.
The canonical commutation relations are however those between Ψ and its canonical momentum
density ΨΓtK−D with the same right-hand side as usually (for quantum variant quantum phase
appears in the anti-commutation relations). Hence the general form of anti-commutation relations
are not changed in the transition and SUSY character is preserved if present in the fundamental
formulation.

21.5.3 Explicit Form Of The SUSY Algebra At QFT Limit

The explicit form of the SUSY algebra follows from the proposed picture.

1. Spinor modes at X2 correspond to the generators of the algebra. Effective 2-D property
implies that spinor modes at partonic 2-surface can be assumed to have well-defined weak
isospin and spin and be proportional to constant spinors.

2. The anti-commutators of oscillator operators define SUSY algebra. In leptonic sector one
has

{a†mα̇, a
n
β} = δnmDα̇β ,

D = (pkσk +Qaσa) . (21.5.3)

Qa denote color charges. The notions are same as in the case of WCW Clifford algebra. In
quark sector one has opposite chirality and σ is replaced with σ̂. Both the ordinary and
octonionic representations of sigma matrices are possible.

21.5.4 How The Representations Of SUSY In TGD Differ From The
Standard Representations?

The minimal super-sub-algebra generated by right-handed neutrino and antineutrino are the most
interesting at low energies, and it is interesting to compare the naturally emerging representations
of SUSY to the standard representations appearing in super-symmetric YM theories.

The basic new element is that it is possible to have short representations of SUSY algebra for
massive states since particles are massless in 8-D sense. The mechanism causing the massivation
remains open and p-adic thermodynamics can be responsible for it. Higgs mechanism could however
induce small corrections to the masses.

The SUSY representations of SYM theories are constructed from J = 0 ground state (chiral
multiplet for N = 1 hyper-multiplet for N = 2: more logical naming convention would be just
scalar multiplet) and J = 1/2 ground state for vector multiplet in both cases. N = 2 multiplet
decomposes to vector and chiral multiplets of N = 1 SUSY. Hyper-multiplet decomposes into
two chiral multiplets which are hermitian conjugates of each other. The group of R-symmetries is
SU(2)R × U(1)R. In TGD framework the situation is different for two reasons.

1. The counterparts of ordinary fermions are constructed from J = 1/2 ground state with
standard electro-weak quantum numbers associated with wormhole throat rather than J = 0
ground state.

2. The counterparts of ordinary bosons are constructed from J = 0 and J = 1 ground states as-
signed to wormhole contacts with the electroweak quantum numbers of Higgs and electroweak
gauge bosons. If one poses no restrictions on bound states, the value of N is effectively dou-
bled from that for representation associated with single wormhole throat.

These differences are allowed by general SUSY symmetry which allow the ground state
to have arbitrary quantum numbers. Standard SYM theories however correspond to different
representations so that the formalism used does not apply as such.
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Consider first the states associated with single wormhole throat. The addition of right-
handed neutrinos and their antineutrinos to a state with the constraint that pkγk annihilates the
state at partonic 2-surface X2 would mean that the helicities of the two super-symmetry generators
are opposite. In this respect the situation is same as in the case of ordinary SUSY.

1. If one starts from J = 0 ground state, which could correspond to a bosonic state generated
by WCW Hamiltonian and carrying SO(2) × SU(3)c quantum numbers one obtains the
counterparts of chiral/hyper- multiplets. These states have however vanishing electro-weak
quantum numbers and do not couple to ordinary quarks neither.

2. If one starts J = 1/2 ground state one obtains the analog of the vector multiplet as in
SYM but but belonging to a fundamental representation of rotation group and weak isospin
group rather than to adjoint representation. For N = 1 one obtains the analog of vector
chiral multiplet but containing spins J = 1/2 and J = 1. For N = 2 on obtains two chiral
multiplets with (J, F,R) = (1, 2, 1) and (J, F,R) = (1/2, 1, 0) and (J, F,R) = (0, 0,−1) and
(−1/2, 1, 0) = (0, 0, 0).

3. It is possible to have standard SUSY multiplet if one assumes that the added neutrino has
always fermionic number opposite that the fermion in question. In this case on obtains N = 1
scalar multiplet. This option could be defended by stability arguments and by the fact that
it does not put right-handed neutrino itself to a special role.

For the states associated with wormhole contact zero energy ontology allows to consider two
non-equivalent options. The following argument supports the view that gauge bosons are obtained
as wormhole throats only if the throats correspond to different signs of energy.

1. For the first option the both throats correspond to positive energies so that spin 1 bosons
are obtained only if the fermion and anti-fermion associated with throats have opposite M4

chirality in the case that they are massless (this is important!). This looks somewhat strange
but reflects the fact that J = 1 states constructed from fermion and anti-fermion with same
chirality and parallel 4-momenta have longitudinal polarization. If the ground state has
longitudinal polarization the spin of the state is due to right-handed neutrinos alone: in this
case however spin 1 states would have fermion number 2 and -2.

2. If the throats correspond to positive and negative energies the momenta are related by time
reflection and physical polarizations for the negative energy anti-fermion corespond to non-
physical polarizations of positive energy anti-fermion. In this case physical polarizations are
obtained.

If one assumes that the signs of the energy are opposite for the wormhole throats, the
following picture emerges.

1. If fermion and anti-fermion correspond to N = 2-dimensional representation of super-
symmetry, one expects 2N = 4 gauge boson states obtained as a tensor product of two
hyper-multiplets if bound states with all possible quantum number combinations are possi-
ble. Taking seriously the idea that only the bound states of fermion and anti-fermion are
possible, one is led to consider the idea that the wormhole throats carry representations of
N = 1 super-symmetry generated by M4 Weyl spinors with opposite chiralities at the two
wormhole throats (right-handed neutrino and its antineutrino). This would give rise to a
vector representation and eliminate a large number of exotic quantum number combinations
such as the states with fermion number equal to two and also spin two states. This idea
makes sense a also for a general value of N . Bosonic representation could be also seen as the
analog of short representation for N = 2N super-algebra reducing to a long representation
N = N . Short representations occur quite generally for the massive representations of SUSY
and super-conformal algebras when 2r generators annihilate the states [B67].

Note that in TGD framework the fermionic states of vector and hyper multiplets related by
U(2)R R-symmetry differ by a νRνR pair whose members are located at the opposite throats
of the wormhole contact.
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2. If no restrictions on the quantum numbers of the boson like representation are posed, zero en-
ergy ontology allows to consider also an alternative interpretation. N = 4 (or more generally,
N = 2N -) super-algebra could be interpreted as a direct sum of positive and negative energy
super-algebras assigned to the opposite wormhole throats. Boson like multiplets could be
interpreted as a long representation of the full algebra and fermionic representations as short
representations with states annihilated either by the positive or negative energy part of the
super-algebra. The central charges Zij must vanish in order to have a trivial representations
with pk = 0. This is expected since the representations are massless in the generalized sense.

3. Standard N = 2 multiplets are obtained if one assume that right-handed neutrino has always
opposite fermion number than the fermion at the throat. The arguments in favor of this
option have been already given.



Chapter 22

Coupling Constant Evolution in
Quantum TGD

22.1 Introduction

In quantum TGD two kinds of discrete coupling constant evolutions emerge. p-Adic coupling
constant evolution is with respect to the discrete hierarchy of p-adic length scales and p-adic length
scale hypothesis suggests that only the length scales coming as half octaves of a fundamental length
scale are relevant here. Second coupling constant evolution corresponds to hierarchy of Planck
constants requiring a generalization of the notion of imbedding space. One can assign this evolution
with angle resolution in number theoretic approach. It is now clear that the two evolutions can be
understood as different aspects of number theoretic evolution defined by a hierarchy of algebraic
extensions of rationals.

This picture is inspired by quantum criticality of TGD Universe realized concretely as a
hierarchy of supersymplectic symmetry breakings with sub-algebra of the entire super-symplectic
algebra with conformal weights coming as n-multiples of those of the entire algebras acting as
conformal gauge symmetries. Number theoretic coupling constant evolution is discrete: various
coupling constant parameters depend on algebraic extension but are RG invariant for a given exten-
sion. Phase transitions between extensions give rise to number theoretic RG evolution. It should
be possible to express number theoretic coupling constant evolution in terms of the parameters of
extension: such as ramified prime defining p-adic primes (and p-adic length scales) and the degree
of the polynomial defining the extension and defining angle resolution.

The continuous coupling constant evolution of quantum field theories follows at GRT limit
when many-sheeted space-time is approximated by GRT space-time by replacing sheets with single
slightly curved region of Minkowski space with gravitational and gauge fields identified as sums of
those for the sheets.

The notion of zero energy ontology allows to justify p-adic length scale hypothesis and
formulate the discrete coupling constant evolution at fundamental level. WCW would consists
of sectors associated with causal diamonds (CDs) identified as intersections of future and past
directed light-cones. If the sizes of CDs come in powers of 2n, p-adic length scale hypothesis
emerges, and coupling constant evolution is discrete provided RG invariance holds true inside CDs
for space-time evolution of coupling constants defined in some sense to be defined It is however
clear that all integer scalings of CDs are allowed and p-adic length scale hypothesis is prediction
rather than input. In this chapter arguments supporting this conclusion are given by starting from
a detailed vision about the basic properties of preferred extremals of Kähler action.

22.1.1 New Ingredients Helping To Understand Coupling Constant Evo-
lution

How to calculate or at least “understand” the correlation functions and coupling constant evolution
has remained a basic unresolved challenge. Basically the in-ability to calculate is of course due to
the lack of understanding.

819
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ZEO, the construction of M -matrix as time like entanglement coefficients defining Connes
tensor product characterizing finite measurement resolution in terms of inclusion of hyper-finite
factors of type II1, the realization that symplectic invariance of N-point functions providing a
detailed mechanism eliminating UV divergences, and the understanding of the relationship between
super-symplectic and super Kac-Moody symmetries. As already mentioned, continuous coupling
constant evolution is replaced by a discrete number theoretical coupling constant evolution.

These ideas were seen as the most important pieces of the puzzle. Their combination was
thought to make possible a rather concrete vision about coupling constant evolution in TGD
Universe and one can even speak about rudimentary form of generalized Feynman rules.

This was the picture behind previous updating. Several steps of progress have however
occurred since then.

1. A crucial step in progress has been the understanding of how GRT space-time emerges from
the many-sheeted space-time of TGD. At classical level Equivalence Principle (EP) follows
from the interpretation of GRT space-time as effective space-time obtained by replacing
many-sheeted space-time with Minkowski space with effective metric determined as a sum of
Minkowski metric and sum over the deviations of the induced metrics of space-time sheets
from Minkowski metric. Poincare invariance suggests strongly classical EP for the GRT limit
in long length scales at least. One can consider also other kinds of limits such as the analog
of GRT limit for Euclidian space-time regions assignable to elementary particles. In this
case deformations of CP2 metric define a natural starting point and CP2 indeed defines a
gravitational instanton with very large cosmological constant in Einstein-Maxwell theory.
Also gauge potentials of standard model correspond classically to superpositions of induced
gauge potentials over space-time sheets.

The coupling constant evolution in QFT sense is in this framework an approximate notion
emerging when TGD space-time is replaced with GRT space-time.

2. Second powerful (possibly too strong) idea is quantum classical correspondence in statistical
sense stating that the statistical properties of a preferred extremal in quantum superposition
of them are same as those of the zero energy state in question. This principle would be quan-
tum generalization of ergodic theorem stating that the time evolution of a single member of
ensemble represents the ensemble statistically. This principle would allow to deduce correla-
tion functions and S-matrix from the statistical properties of single preferred extremal alone
using classical intuition. Also coupling constant evolution would be coded by the statistical
properties of the representative preferred extremal.

This idea can be formulated more convincingly in terms of a generalization of the AdS/CFT
duality to TGD framework motivated by the generalization of conformal symmetry. In full
generality this principle would state that all predictions of the theory can be expressed
either in terms of classical fields in the interior of the space-time surface or in terms of
scattering amplitudes formulated in terms of fundamental fermions defining the building
bricks of elementary particles. The implication would that correlation functions can be also
identified as those for classical induce gauge and gravitational fields.

3. The third ingredient is ZEO leading to a rather concrete picture about the architecture of
scattering amplitudes. The basic notions are U-, M, and S-matrix. M-matrix is defined be-
tween positive and negative energy parts of zero energy states and essential for the definition
of zero energy states. M-matrix is a product of hermitian square root of density matrix and
of unitary S-matrix, whose powers corresponds to the standard S-matrix with positive integer
exponent taking the role of discretized time. U-matrix is realized betweeen zero energy states
and is the analog of unitary time evolution operator acting in the moduli space of CDs and
associated zero energy states.

U-matrix is expressible in M-matrices [K91] so that the basic matrix to be constructed is
S-matrix. S-matrix should be constructible by a generalization the twistorial approach pos-
sible only for M4 × CP2, whose Cartesian factors are the only 4-D manifolds for which
twistor spaces are Kähler manifolds [K76]. The huge symmetries and the close analogies
with ordinary Grassmann twistorial program raise hopes about quite concrete construction.
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4. Fourth powerful vision inspired by the notion of preferred extremal - I gave up the vision for
years as too crazy - is that scattering amplitudes correspond to sequences of computations
and that all computations connecting collections of algebraic objects produce same scattering
amplitudes [K76, K6]. All scattering amplitudes could be reduced to minimal tree diagrams
by moving the ends of the lines and snipping away the loops: this means a huge generaliza-
tion of the duality symmetry of hadronic string models. The 8-D generalization of twistor
approach to TGD allows to identify the arithmetics as that of super-symplectic Yangian and
basic vertices in the construction correspond to product and co-product in Yangian.

5. The fifth new ingredient is the dramatic increase in the number theoretical understanding
of the hierarchy of Planck constants heff = n × h. The hierarchy corresponds to hierarchy
of quantum criticalities at which the sub-algebra of super-symplectic algebra with natural
conformal structure changes. Sub-algebras are labelled by integer n: the conformal weights
of the sub-algebra come as multiples of n. One has infinite number of hierarchies ni+1 =∏
k<i+1mk which relate naturally to the hierarchies of inclusions of hyper-finite factors.

The sub-algebra acts as gauge symmetries whereas the other generators of the full algebra
fail to do so. Therefore the increase of n means that gauge degrees of freedom become
physical ones. One can assign coupling constant evolution also with these hierarchies and
the natural conjecture is that coupling constants for given value of n are renormalization
group invariances.

Especially interesting are the implications for the understanding of gravitational binding
assuming that strings connecting partonic 2-surfaces are responsible for the formation of
bound states. This leads together with the generalization of AdS/CFT corresponds and
localization of fermions to string world sheets to a prediction that Kähler action is expressible
as string area in the effective metric defined by the anti-commutators of Kähler-Dirac gamma
matrices. This predicts that the size scale of bound states scales as heff and it is possible to
obtain bound states of macroscopic size unlike for ordinary string area action for which their
sizes would be given by Planck length.

6. The original picture was that there are two separate evolutions: one associated with p-adic
length scale hierarchy and second associated with angle resolution. It is now clear that
these two evolutions can be unified to a number theoretic evolution in terms of increasing
complexity of an algebraic extension of rational numbers inducing also the extensions of p-adic
number fields. Space-time and quantum physics become adelic. The algebraic extensions are
associated with the parameters characterizing partonic 2-surfaces and string world sheets,
which by strong form of holography determine space-time surfaces as preferred extremals
of Kähler action. In this framework the crucial number theoretical universality necessary
for adelization is almost trivially realized by algebraic continuation from the intersection of
realities and p-adicities defined by the 2-surfaces with parameters in algebraic extensions of
rationals.

The existence of preferred p-adic primes can be understood in this picture: they correspond to
the so called ramified primes of the algebraic extension. One can also deduce a generalization
of p-adic length scale hypothesis in terms of Negentropy Maximization Principle (NMP)
[K41]. One might hope that all basic building bricks have been identified.

22.1.2 A Sketch For The Coupling Constant Evolution

The following summarizes the basic vision about coupling constant evolution. Needless to say that
it involved a lot of guesses and should be taken only as a sketch.

p-Adic evolution in phase resolution and the spectrum of values for Planck constants

The quantization of Planck constant has been the basic theme of TGD. The basic idea was that
different values of Planck constant could relate to the evolution in angular resolution in p-adic
context characterized by quantum phase q = exp(iπ/n) characterizing Jones inclusion is. The
higher the value of n, the better the angular resolution since the number of different complex
phases in extension of p-adic numbers increases with n.
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The breakthrough became with the realization that standard type Jones inclusions lead
to a detailed understanding of what is involved and predict very simple spectrum for Planck
constants associated with M4 and CP2 degrees of freedom. This picture allows to understand also
gravitational Planck constant and coupling constant evolution and leads also to the understanding
of ADE correspondences (index β ≤ 4 and β = 4) from the point of view of Jones inclusions.

The most recent view about coupling constant evolution

In classical TGD only Kähler coupling constant appears explicitly but does not affect the classical
dynamics. Other gauge couplings do not appear at all in classical dynamics since the the definition
of classical fields absorbs them as normalization constants. Hence the notion of continuous coupling
constant evolution at space-time level is not needed nor makes sense in quantum TGD proper and
emerges only at the QFT limit when space-time is replaced with general relativistic effective space-
time.

Discrete p-adic coupling constant evolution replacing in TGD the ordinary continuous cou-
pling constant evolution emerges only when space-time sheets are lumped together to define GRT
space-time. This evolution would have as parameters the p-adic length scale characterizing the
causal diamond (CD) associated with particle and the phase factors characterizing the algebraic
extension of p-adic numbers involved.

The p-adic prime and therefore also the length scale and coupling constants characterizing
the dynamics for given CD would vary wildly as function of integer characterizing CD size scale.
This could mean that the CDs whose size scales are related by multiplication of small integer are
close to each other. They would be near to each other in logarithmic sense and logarithms indeed
appear in running coupling constants. This “prediction” is of course subject to criticism.

Zero energy ontology, the construction of M -matrix as time like entanglement coefficients
defining Connes tensor product characterizing finite measurement resolution in terms of inclusion
of hyper-finite factors of type II1, the realization that symplectic invariance of N-point functions
provides a detailed mechanism eliminating UV divergences, and the understanding of the rela-
tionship between super-symplectic and super Kac-Moody symmetries: these are the pieces of the
puzzle whose combination might make possible a concrete vision about coupling constant evolution
in TGD Universe and one can even speak about rudimentary form of generalized Feynman rules.

The work during 2016-2017 with adelic TGD [L22, L24, L38] has led to a purely number
theoretic view about coupling constant evolution. Coupling constant evolution is discrete and
the phase transitions changing the values of coupling parameters correspond to changes for the
extension of rationals inducing the extensions of p-adic number fields defining together with reals
the adele. heff/h = n can be identified as the dimension of the extension dividind the order of its
Galois group.

The earlier proposal discussed also below is that gravitational coupling could be understood
in terms of Kähler coupling strength and p-adic length scale hypothesis. The twistor lift of TGD
however introduces Planck length as fundamental length scale assignable to the twistor sphere of
twistor bundle M4 × S2 of M4. The value of the ratio l2P /R

2(CP2) remains to be predicted and
could follow from quantum criticality.

p-Adic length scale evolution of gauge couplings

Understanding the dependence of gauge couplings constants on p-adic prime is one of the basic
challenges of quantum TGD. The problem has been poorly understood even at the conceptual level
to say nothing about concrete calculations. The generalization of the motion of S-matrix to that
of M-matrix changed however the situation [K13] . M-matrix is always defined with respect to
measurement resolution characterized in terms of an inclusion of von Neumann algebra. Coupling
constant evolution reduces to a discrete evolution involving only octaves of T (k) = 2kT0 of the
fundamental time scale T0 = R, where R CP2 scale. p-Adic length scale L(k) is related to T (k)
by L2(k) = T (k)T0. p-Adic length scale hypothesis p ' 2k, k integer, is automatic prediction of
the theory. There is also a close connection with the description of coupling constant evolution in
terms of radiative corrections.

If RG invariance at given space-time sheet holds true, the question arises whether it is
possible to understand p-adic coupling constant evolution at space-time level and why certain
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p-adic primes are favored.

1. Simple considerations lead to the idea that M4 scalings of the intersections of 3-surfaces
defined by the intersections of space-time surfaces with light-cone boundary induce transfor-
mations of space-time surface identifiable as RG transformations. If sufficiently small they
leave gauge charges invariant: this seems to be the case for known extremals which form scal-
ing invariant families. When the scaling corresponds to a ratio p2/p1, p2 > p1, bifurcation
would become possible replacing p1-adic effective topology with p2-adic one.

2. Stability considerations determine whether p2-adic topology is actually realized and could
explain why primes near powers of 2 are favored. The renormalization of coupling constant
would be dictated by the requirement that Qi/g

2
i remains invariant.

The chapter decomposes into sections. In the first part basic notions are introduced and a
general vision about coupling constant evolution is introduced. After that a general formulation of
coupling constant evolution at space-time level and related interpretational issues are considered.
In the second part quantitative predictions involving some far from rigorous arguments, which I
however dare to take half-seriously, are discussed. It must be emphasized that this chapter like
many others is more like a still continuing story about development of ideas - not a brief summary
about a solution of a precisely defined problem. What I take very seriously is the general vision
discussed above, addition of details to end up with formulas tends to lead to all kinds of fuzziness.
There are many ad hoc ideas and conflicting views. These books are just lab note books - nothing
more.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L12].

22.2 Summary Of Basic Ideas Of Quantum TGD

22.2.1 General Ideas Of Quantum TGD

TGD relies heavily on geometric ideas, which have gradually generalized during the years. Sym-
metries play a key role as one might expect on basis of general definition of geometry as a structure
characterized by a given symmetry.

Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to configuration space geome-
try and spinor structure. The geometrization of loop spaces inspires the idea that the mere
existence of Riemann connection fixes configuration space Kähler geometry uniquely. Ac-
cordingly, configuration space can be regarded as a union of infinite-dimensional symmetric
spaces labeled by zero modes labeling classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the configuration space geometry deriving from the light-likeness
of 3-surfaces and from the special conformal properties of the boundary of 4-D light-cone
would guarantee the maximal isometry group necessary for the symmetric space property.
Quantum criticality is the fundamental hypothesis allowing to fix the Kähler function and
thus dynamics of TGD uniquely. Quantum criticality leads to surprisingly strong predictions
about the evolution of coupling constants.

2. WCW spinors correspond to Fock states and anti-commutation relations for fermionic os-
cillator operators correspond to anti-commutation relations for the gamma matrices of the
configuration space. WCW gamma matrices contracted with Killing vector fields give rise to
a super-algebra which together with Hamiltonians of the configuration space forms what I
have used to called super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have
no electroweak couplings. In the case of hadrons super-symplectic quanta correspond to
what has been identified as non-perturbative sector of QCDthey define TGD correlate for

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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the degrees of freedom assignable to hadronic strings. They are responsible for the most of
the mass of hadron and resolve spin puzzle of proton.

Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to
light-like 3-surfaces and together these algebras extend the conformal symmetries of string
models to dynamical conformal symmetries instead of mere gauge symmetries. The con-
struction of the representations of these symmetries is one of the main challenges of quantum
TGD. The assumption that the commutator algebra of these super-symplectic and super
Kac-Moody algebras annihilates physical states gives rise to Super Virasoro conditions which
could be regarded as analogs of configuration space Dirac equation.

Modular invariance is one aspect of conformal symmetries and plays a key role in the under-
standing of elementary particle vacuum functionals and the description of family replication
phenomenon in terms of the topology of partonic 2-surfaces.

3. WCW spinors define a von Neumann algebra known as hyper-finite factor of type II1 (HFFs).
This realization has led also to a profound generalization of quantum TGD through a gener-
alization of the notion of imbedding space to characterize quantum criticality. The resulting
space has a book like structure with various almost-copies of imbedding space representing
the pages of the book meeting at quantum critical sub-manifolds.

p-Adic physics as physics of cognition

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of ele-
mentary particle masses using only super-conformal symmetries and p-adic thermodynamics. The
need to fuse real physics and various p-adic physics to single coherent whole led to a generalization
of the notion of number obtained by gluing together reals and p-adics together along common ra-
tionals and algebraics. The interpretation of p-adic space-time sheets is as correlates for cognition.
p-Adic and real space-time sheets intersect along common rationals and algebraics and the subset
of these points defines what I call number theoretic braid in terms of which both configuration
space geometry and S-matrix elements should be expressible. Thus one would obtain number
theoretical discretization which involves no ad hoc elements and is inherent to the physics of TGD.

Perhaps the most dramatic implication relates to the fact that points, which are p-adically
infinitesimally close to each other, are infinitely distant in the real sense (recall that real and p-adic
imbedding spaces are glued together along rational imbedding space points). This means that any
open set of p-adic space-time sheet is discrete and of infinite extension in the real sense. This
means that cognition is a cosmic phenomenon and involves always discretization from the point
of view of the real topology. The testable physical implication of effective p-adic topology of real
space-time sheets is p-adic fractality meaning characteristic long range correlations combined with
short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime or possibly
several of them. The classical non-determinism of Kähler action should correspond to p-adic non-
determinism for some prime(s) p in the sense that the effective topology of the real space-time
sheet is p-adic in some length scale range. p-Adic space-time sheets with same prime should have
many common rational points with the real space-time and be easily transformable to the real
space-time sheet in quantum jump representing intention-to-action transformation. The concrete
model for the transformation of intention to action leads to a series of highly non-trivial number
theoretical conjectures assuming that the extensions of p-adics involved are finite-dimensional and
can contain also transcendentals.

An ideal realization of the space-time sheet as a cognitive representation results if the CP2

coordinates as functions of M4
+ coordinates have the same functional form for reals and various

p-adic number fields and that these surfaces have discrete subset of rational numbers with upper
and lower length scale cutoffs as common. The hierarchical structure of cognition inspires the idea
that S-matrices form a hierarchy labeled by primes p and the dimensions of algebraic extensions.

The number-theoretic hierarchy of extensions of rationals appears also at the level of con-
figuration space spinor fields and allows to replace the notion of entanglement entropy based on
Shannon entropy with its number theoretic counterpart having also negative values in which case
one can speak about genuine information. In this case case entanglement is stable against Negen-
tropy Maximization Principle stating that entanglement entropy is minimized in the self measure-
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ment and can be regarded as bound state entanglement. Bound state entanglement makes possible
macro-temporal quantum coherence. One can say that rationals and their finite-dimensional ex-
tensions define islands of order in the chaos of continua and that life and intelligence correspond
to these islands.

TGD inspired theory of consciousness and number theoretic considerations inspired for years
ago the notion of infinite primes [K72]. It came as a surprise, that this notion might have direct
relevance for the understanding of mathematical cognition. The ideas is very simple. There is infi-
nite hierarchy of infinite rationals having real norm one but different but finite p-adic norms. Thus
single real number (complex number, (hyper-)quaternion, (hyper-)octonion) corresponds to an alge-
braically infinite-dimensional space of numbers equivalent in the sense of real topology. Space-time
and imbedding space points ((hyper-)quaternions, (hyper-)octonions) become infinitely structured
and single space-time point would represent the Platonia of mathematical ideas. This structure
would be completely invisible at the level of real physics but would be crucial for mathematical
cognition and explain why we are able to imagine also those mathematical structures which do not
exist physically. Space-time could be also regarded as an algebraic hologram. The connection with
Brahman=Atman idea is also obvious.

Hierarchy of Planck constants and dark matter hierarchy

The identification of dark matter as phases having large value of Planck constant [K66, K22, K17]
led to a vigorous evolution of ideas. Entire dark matter hierarchy with levels labelled by increasing
values of Planck constant is predicted, and in principle TGD predicts the values of Planck constant
if physics as a generalized number theory vision is accepted [K22].

The original vision was that the hierarchy of Planck constants demands a generalization
of quantum TGD. This would have required a generalization of the causal diamond CD × CP2,
where CD is defined as an intersection of the future and past directed light-cones of 4-D Minkowski
space M4. It however became clear that the hierarchy of Planck constants labels a hierarchy
of quantum criticalities characterized by sub-algebras of super-symplectic algebras possessing a
natural conformal structure. The sub-algebra for which the conformal weights come as n-ples of
those for the entire algebra is isomorphic to the full algebra and acts as a conformal gauge algebra
at given level of criticality.

In particular, the classical symplectic Noether charges for preferred extremals connecting
3-surfaces at the ends of CD vanish. and this defines preferred extremal property. There would be
n conformal gauge equivalence classes of preferred extremals which would correspond to n sheets
of a covering of the space-time surface serving as base space. There is very close similarity with
the Riemann surfaces. Therefore coverings would be generated dynamically and there is no need
for actual coverings of the imbedding space.

The gauge degeneracy corresponds to the non-determinism associated with the critical-
ity having interpretation in terms of non-determinism of Kähler action and with strong form of
holography. The extremely strong super-symplectic gauge conditions would guarantee that the
continuation of string world sheets and partonic 2-surface to preferred extremals is possible at
least for somes value of p-adic prime. A good guess is that this is the case for the so called ramified
primes associated with the algebraic extension in question at least. These ramified primes would
characterize physical system and the weak form of NMP would allow to understand how p-adic
length scale hypothesis follows [K111]. The continuation could be possible for all p-adic primes
due to the possibility of p-adic pseudo-constants having vanishing derivative.

The continuation could fail for most configurations of partonic 2-surfaces and string world
sheets in the real sector: the interpretation would be that some space-time surfaces can be imag-
ined but not realized [K48]. For certain extensions the number of realizable imaginations could be
exceptionally large. These extensions would be winners in the number theoretic fight for surviva-
landcorresponding ramified primes would be preferred p-adic primes.

A further strong prediction is that the phase transitions increasing heff and thus reducing
criticality (TGD Universe is like hill at the top of the hill at....) occur spontaneously [K106].
This conforms with NMP and suggests that evolution occurs spontaneously. The state function
reduction increasing heff means however the death of a sub-self so that selves are fighting to stay
at the criticality. The metabolic energy bringing inNE allows to satisfy the needs of NMP so that
the system survives and provides a garden in which subselves can are born and die and gradually
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generate negentropic entanglement. Living systems are thus negentropy gatherers and each death
and re-incarnation generates new negentropy.

All particles in the vertices of Feynman diagrams have the same value of Planck constant
so that the particles at different pages cannot have local interactions. Thus one can speak about
relative darkness in the sense that only the interactions mediated by the exchange of particles and
by classical fields are possible between different pages. Dark matter in this sense can be observed,
say through the classical gravitational and electromagnetic interactions. It is in principle possible
to photograph dark matter by the exchange of photons which leak to another page of book, reflect,
and leak back. This leakage corresponds to heff changing phase transition occurring at quantum
criticality and living matter is expected carry out these phase transitions routinely in bio-control.
This picture leads to no obvious contradictions with what is really known about dark matter and
to my opinion the basic difficulty in understanding of dark matter (and living matter) is the blind
belief in standard quantum theory. These observations motivate the tentative identification of
the macroscopic quantum phases in terms of dark matter and also of dark energy with gigantic
“gravitational” Planck constant.

What is especially remarkable is that the construction gives also the 4-D space-time sheets
associated with the light-like orbits of the partonic 2-surfaces: it remains to be shown whether
they correspond to preferred extremals of Kähler action. It is clear that the hierarchy of Planck
constants has become an essential part of the construction of quantum TGD and of mathematical
realization of the notion of quantum criticality rather than a possible generalization of TGD.

Identification of symplectic and Kac-Moody symmetries

The basic symmetries are isometries of “world of classical worlds” ( WCW ) proposed to be realized
as symplectic transformations of the boundaries of causal diamonds (CD) locally identifiable as
δM4
± × CP2. These symplectic symmetries contains as algebra symplectic isometries which are

expected to be of special importance. These transformations are expected to have continuation to
deformations of the entire preferred extremal. They cannot be symmetries of Kähler action.

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness
of 3-surfaces plays a crucial role in the identification of quantum fluctuating configuration space
degrees of freedom contributing to the metric. These symmetries would act as gauge symmetries
and related to quantum criticality due to the non-determinism of Kähler action in turn giving rise
to the hierarchy of Planck constants explaining dark matter. The recent vision looks like follows.

1. The recent interpretation is that these gauge symmetries are due to the non-determinism of
Kähler action and transform to each other preferred extremals with same space-like surfaces
as their ends at the boundaries of causal diamond. These space-time surfaces have same
Kähler action and possess same conserved quantities.

2. The sub-algebra of conformal symmetries acts as gauge transformations of these infinite set
of degenerate preferred extremals and there is finite number n of gauge equivalence classes.
n corresponds to the effective (or real depending on interpretation) value of Planck constant
heff = n× h. The further conjecture is that the sub-algebra of conformal algebra for which
conformal weights are integers divisible by n act as genuine gauge symmetries. If Kähler
action reduces to a sum of 3-D Chern-Simons terms for preferred extremals, it is enough
to consider the action on light-like 3-surfaces. For gauge part of algebra the algebra acts
trivially at space-like 3-surfaces.

3. A good guess is that the Kac-Moody type algebra corresponds to the sub-algebra of sym-
plectic isometries of δM4

± × CP2 acting on light-like 3-surfaces and having continuation to
the interior.

A stronger assumption is that isometries are in question. For CP2 nothing would change
but light-cone boundary δM4

± = S2×R+ has conformal transformations of S2 as isometries.
The conformal scaling is compensated by S2-local scaling of the light like radial coordinate
of R+.

4. This super-conformal algebra realized in terms of spinor modes and second quantized induced
spinor fields would define the Super Kac-Moody algebra. The generators of this Kac-Moody
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type algebra have continuation from the light-like boundaries to deformations of preferred
extremals and at least the generators of sub-algebra act trivially at space-like 3-surfaces.

Zero energy ontology

Zero energy ontology motivated originally by TGD inspired cosmology means that physical states
have vanishing conserved net quantum numbers and are decomposable to positive and negative
energy parts separated by a temporal distance characterizing the system as a space-time sheet
of finite size in time direction. The particle physics interpretation is as initial and final states
of a particle reaction. Obviously a profound modification of existing views about realization of
symmetries is in question.

S-matrix and density matrix are unified to the notion of M-matrix defining time-like entan-
glement and expressible as a product of square root of density matrix and of unitary S-matrix.
Thermodynamics becomes therefore a part of quantum theory. One must distinguish M-matrices
identifiable as products of orthonormal hermitian square roots of density matrices and universal
S-matrix from U-matrix defined between zero energy states and analogous to S-matrix and char-
acterizing the unitary process associated with quantum jump. The detailed description of U- and
M-matrices is considered in [K91].

Quantum TGD as almost topological QFT

Light-likeness of the basic fundamental objects suggests that TGD is almost topological QFT so
that the formulation in terms of category theoretical notions is expected to work. The original
proposal that Chern-Simons action for light-like 3-surfaces defined by the regions at which the
signature of the induced metric changes its sign however failed and one must use Kähler action and
corresponding Kähler-Dirac action with measurement term to define the fundamental theory. At
the limit when the momenta of particles vanish, the theory reduces to topological QFT defined by
Kähler action and corresponding modified Dirac action. The imaginary exponent of the instanton
term associated with the induced Kähler form defines the counterpart of Chern-Simons action as
a phase of the vacuum functional and contributes also to Kähler-Dirac equation.

M-matrices form in a natural manner a functor from the category of cobordisms to the
category of pairs of Hilbert spaces and this gives additional strong constraints on the theory.
Super-conformal symmetries implied by the light-likeness pose very strong constraints on both
state construction and on M-matrix and U-matrix. The notions of n-category and n-groupoid
which represents a generalization of the notion of group could be very relevant to this view about
M-matrix.

Quantum measurement theory with finite measurement resolution

The notion of measurement resolution represented in terms of inclusions N ⊂ M of HFFs is an
essential element of the picture. Measurement resolution corresponds to the action of the included
sub-algebra creating zero energy states in time scales shorter than the cutoff scale. This means
that complex rays of state space are effectively replaced with N rays. The condition that the
action of N commutes with the M-matrix is a powerful symmetry and implies that the time-like
entanglement characterized by M-matrix is consistent with Connes tensor product. This does not
fix the M-matrix as was the original belief but only realizes mathematically the notion of finite
measurement resolution. Together with super-conformal symmetries this constraint should fix
possible M-matrices to a very high degree if one assumes the existence of universal M-matrix from
which M-matrices with finite measurement resolution are obtained.

The notion of number theoretical braid realizes the notion of finite measurement resolution
at space-time level and gives a direct connection to topological QFTs describing braids. The con-
nection with quantum groups is highly suggestive since already the inclusions of HFFs involve these
groups. Effective non-commutative geometry for the quantum critical sub-manifolds M2 ⊂ M4

and S2 ⊂ CP2 might provide an alternative notion for the reduction of stringy anti-commutation
relations for induced spinor fields to anti-commutations at the points of braids.
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22.2.2 The Construction Of U, M-, And S-Matrices

The general architecture of matrices is now rather well-understood and described in chapter [K91].
A brief summary is also given in the introduction. The key matrix is U-matrix acting in the space of
zero states but leaving the states at the second boundary of CD invariant. M-matrix acts between
positive and negative energy parts of given zero energy state being the product of a hermitian
square root of density matrix and of a unitary S-matrix. The hermitian matrices involved would
naturally form a representation of super-symplectic algebra or its sub-algebra and their “moduli
squared” define a density matrix characterizing the second part of zero energy state. An open
question is whether this density matrix relates to thermodynamics only formally or whether there
is a deeper connection.

The recipe reduces the decisive step to a construction of S-matrix for a given CD and of a
unitary time evolution operator in the moduli space of CDs providing unitary representation for
a discrete subgroup of Lorentz group. The S-matrix for a given CD is n:th power of fundamental
S-matrix Sn for CD whose size is n times the minimal size of CD characterized by the CP2 time
scale.

The construction of S-matrix involves several ideas that have emerged during last years and
involve symmetries in an essential manner.

Emergence of particles as bound state of fundamental fermions, extended space-time
supersymmetry, and generalized twistors

During year 2009 several new ideas emerged and give hopes about a concrete construction of
M-matrix.

1. The notion of bosonic emergence [K54] follows from the fact that gauge bosons are identifiable
as pairs of fermion and anti-fermion at opposite light-like throats of wormhole contact. As a
consequence, bosonic propagators and vertices are generated radiatively from a fundamental
action for fermions and their super partners. At QFT limit without super-symmetry this
means that Dirac action coupled to gauge bosons is the fundamental action and the coun-
terpart of YM action is generated radiatively. All coupling constants follow as predictions as
they indeed must do on basis of the general structure of quantum TGD.

2. Whether the counterparts of space-time supersymmetries are possible in TGD Universe has
remained a long-standing open question and my cautious belief has been that the super
partners do not exist. The resolution of the problem came with the increased understanading
of the dynamics of the Kähler-Dirac action [K23, K24]. In particular, the localization of the
electroweakly charged modes at 2-D surfaces - string world sheets and possibly also partonic
2-surfaces- meant an enormous simplification since the solutions of the Kähler-Dirac equation
are conformal spinor modes.

The oscillator operators associated with the modes of the induced spinor field satisfy the anti-
commutation relations defining the generalization of space-time super-symmetry algebra and
these oscillator operators serve as the building blocks of various super-conformal algebras.
The number of super-symmetry generators is very large, perhaps even infinite. This forces a
generalization of the standard super field concept. The action for chiral super-fields emerges
as a generalization of the Dirac action to include all possible super-partners. The huge
super-symmetry gives excellent hopes about cancelation of UV divergences. The counterpart
of super-symmetric YM action emerges radiatively. This formalism works at the QFT limit.
The generalization of the formalism to quantum TGD proper is yet to be carried out.

3. Twistor program has become one of the most promising approaches to gauge theories. This
inspired the question whether TGD could allow twistorialization [K86]. Massive states -both
real and virtual- are the basic problem of twistor approach. In TGD framework the obvious
idea is that massive on mass shell states can be interpreted as massless states in 8-D sense.
Massive off-mass shell states in turn could be regarded as pairs of positive and negative on
mass shell states. This means opening of the black box of virtual state attempted already
in the model for bosonic propagators inspired by the bosonic emergence , and one can even
hope that individual loop integrals are finite and that Wick rotation is not needed. The
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third observation is that 8-dimensional gamma matrices allow a representation in terms of
octonions (matrices are not in question anymore). If the Kähler-Dirac gamma “matrices”
associated with space-time surface define a quaternionic sub-algebra of the complexified oc-
tonion algebra, they allow a matrix representation defined by octonionic structure constants.
This holds true for are hyper-quaternionic space-time surfaces so that a connection with
number theoretic vision emerges. This would more or less reduce the notion of twistor to its
4-dimensional counterpart.

Generalization of Feynman diagrams

An essential difference between TGD and string models is the replacement of stringy diagrams with
generalized Feynman diagrams obtained by gluing 3-D light-like surfaces (instead of lines) together
at their ends represented as partonic 2-surfaces. This makes the construction of vertices very simple.
The notion of number theoretic braid in turn implies discretization having also interpretation in
terms of non-commutativity due to finite measurement resolution replacing anti-commutativity
along stringy curves with anti-commutativity at points of braids. Braids can replicate at vertices
which suggests an interpretation in terms of topological quantum computation combined with non-
faithful copying and communication of information. The analogs of stringy diagrams have quite
different interpretation in TGD for instance, photons traveling via two different paths in double
slit experiment are represented in terms of stringy branching of the photonic 2-surface.

Scattering amplitudes as computations in Yangian arithmetics?

One of the old TGD inspired really crazy ideas about scattering amplitudes is that Universe is
doing some sort of arithmetics so that scattering amplitude are representations for computational
sequences of minimum length and that all diagrams connecting the same states at the bound-
aries of CD produce the same scattering amplitude. This would mean enormous calculational
simplification.

The idea is so crazy that I have even given up its original form, which led to an attempt
to assimilate the basic ideas about bi-algebras, quantum groups [K6], Yangians [K76], and related
exotic things. The work with twistor Grassmannian approach inspired a reconsideration of the
original idea seriously with the idea that super-symplectic Yangian could define the arithmetics.

The identification of universal 3-vertex as a product or co-product in Yangian looks highly
promising approach to the construction of the scattering amplitude. The Nother charges of the
super-symplectic Yangian are associated with strings and are either linear or bilinear in the fermion
field. The fermion fields associated with the partonic 2-surface defining the vertex are contracted
with fermion fields associated with other partonic 2-surfaces using the same rule as in Wick ex-
pansion in quantum field theories. The contraction gives fermion propagator for each leg pair
associated with two vertices. Vertex factor is proportional to the contraction of spinor modes with
the operators defining the Noether charge or super charge and essentially Kähler-Dirac gamma
matrix and the representation of the action of the symplectic generator on fermion realizable in
terms of sigma matrices.

This resembles strongly the corresponding expression in gauge theories but with gauge alge-
bra replaced with symplectic algebra. The possibility of contractions of creation and annihilation
operator for fermion lines associated with opposite wormhole throats at the same partonic 2-surface
(for Noether charge bilinear in fermion field) gives bosonic exchanges as lines in which the fermion
lines turns in time direction: otherwise only regroupings of fermions would take place.

Could correlation functions, S-matrix, and coupling constant evolution be coded the
statistical properties of preferred extremals?

How to calculate the correlation functions and coupling constant evolution has remained a basic
unresolved challenge. Generalized Feynman diagrams provide a powerful vision which however
does not help in practical calculations. Some big idea has been lacking.

Quantum classical correspondence states that all aspects of quantum states should have
correlates in the geometry of preferred extremals. In particular, various elementary particle propa-
gators should have a representation as properties of preferred extremals. This would allow to realize
the old dream about being able to say something interesting about coupling constant evolution
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although it is not yet possible to calculate the M-matrices and U-matrix. The general structure
of U-matrix is however understood [K91]. Hitherto everything that has been said about coupling
constant evolution has been rather speculative arguments except for the general vision that it re-
duces to a discrete evolution defined by p-adic length scales. General first principle definitions are
however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quan-
tum state should code for its properties. By quantum classical correspondence these correlation
functions should have counterparts in the geometry of preferred extremals. Even more: these
classical counterparts for a given preferred extremal ought to be identical with the quantum corre-
lation functions for the superposition of preferred extremals. This correspondence could be called
quantum ergodicity by its analogy with ordinary ergodicity stating that the member of ensemble
becomes representative of ensemble.

This principle would be a quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This symmetry
principle analogous to holography might allow to fix S-matrix uniquely even in the case that the
hermitian square root of the density matrix appearing in the M-matrix would lead to a breaking
of quantum ergodicity as also 4-D spin glass degeneracy suggests.

This principle would allow to deduce correlation functions from the statistical properties of
single preferred extremal alone using just classical intuition. Also coupling constant evolution would
be coded by the statistical properties of preferred extremals. Quantum ergodicity would mean an
enormous simplification since one could avoid the horrible conceptual complexities involved with
the functional integrals over WCW .

This might of course be too optimistic guess. If a sub-algebra of symplectic algebra acts as
gauge symmmetries of the preferred extremals in the sense that corresponding Noether charges van-
ish, it can quite well be that correlations functions correspond to averages for extremals belonging
to single conformal equivalence class.

1. The marvellous implication of quantum ergodicity would be that one could calculate every-
thing solely classically using the classical intuition - the only intuition that we have. Quantum
ergodicity would also solve the paradox raised by the quantum classical correspondence for
momentum eigenstates. Any preferred extremal in their superposition defining momentum
eigenstate should code for the momentum characterizing the superposition itself. This is
indeed possible if every extremal in the superposition codes the momentum to the properties
of classical correlation functions which are identical for all of them.

2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical proper-
ties of the preferred extremals. It should be possible to generalize the ergodic theorem stating
that the properties of statistical ensemble are represented by single space-time evolution in
the ensemble of time evolutions. Quantum superposition of classical worlds would effectively
reduce to single classical world as far as classical correlation functions are considered. The
notion of finite measurement resolution suggests that one must state this more precisely by
adding that classical correlation functions are calculated in a given UV and IR resolutions
meaning UV cutoff defined by the smallest CD and IR cutoff defined by the largest CD
present.

3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that
this quantum ergodic theorem must be broken. In the case of the ordinary spin classes
one has not only statistical average for a fixed Hamiltonian but a statistical average over
Hamiltonians. There is a probability distribution over the coupling parameters appearing in
the Hamiltonian. Maybe the quantum counterpart of this is needed to predict the physically
measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with
different classical correlation functions? This kind of average is indeed taken in density
matrix formalism. Or could it be that the square root of thermodynamics defined by ZEO
actually gives automatically rise to this average? The eigenvalues of the “hermitian square
root” of the density matrix would code for components of the state characterized by different
classical correlation functions. One could assign these contributions to different “phases”.
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4. Quantum classical correspondence in statistical sense would be very much like holography
(now individual classical state represents the entire quantum state). Quantum ergodicity
would pose a rather strong constraint on quantum states. This symmetry principle could
actually fix the spectrum of zero energy states to a high degree and fix therefore the M-
matrices given by the product of hermitian square root of density matrix and unitary S-
matrix and unitary U-matrix constructible as inner products of M-matrices associated with
CDs with various size scales [K91].

5. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the pos-
tulate that the space-time geometry provides a symbolic representation for the quantum
states and also for the contents of consciousness assignable to quantum jumps between quan-
tum states. Quantum ergodicity would realize this strongly self-referential looking condition.
The positive and negative energy parts of zero energy state would be analogous to the initial
and final states of quantum jump and the classical correlation functions would code for the
contents of consciousness like written formulas code for the thoughts of mathematician and
provide a sensory feedback.

How classical correlation functions should be defined?

1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the defi-
nition. These are achieved for the space-time regions with Minkowskian signature and 4-D
M4 projection if linear Minkowski coordinates are used. This is equivalent with the contrac-
tion of the indices of tensor fields with the space-time projections of M4 Killing vector fields
representing translations. Accepting ths generalization, there is no need to restrict oneself
to 4-D M4 projection and one can also consider also Euclidian regions identifiable as lines of
generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2 Killing
vector fields can be projected to space-time surface and give a representation for classical
gluon fields. These in turn can be contracted with M4 Killing vectors giving rise to gluon
fields as analogs of graviton fields but with second polarization index replaced with color
index.

2. The standard definition for the correlation functions associated with classical time evolution is
the appropriate starting point. The correlation function GXY (τ) for two dynamical variables
X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t + τ)dt/T over an interval of

length T , and one can also consider the limit T →∞. In the recent case one would replace τ
with the difference m1 −m2 = m of M4 coordinates of two points at the preferred extremal
and integrate over the points of the extremal to get the average. The finite time interval T is
replaced with the volume of causal diamond in a given length scale. Zero energy state with
given quantum numbers for positive and negative energy parts of the state defines the initial
and final states between which the fields appearing in the correlation functions are defined.

3. What correlation functions should be considered? Certainly one could calculate correlation
functions for the induced spinor connection given electro-weak propagators and correlation
functions for CP2 Killing vector fields giving correlation functions for gluon fields using
the description in terms of Killing vector fields. If one can uniquely separate from the
Fourier transform uniquely a term of form Z/(p2 −m2) by its momentum dependence, the
coefficient Z can be identified as coupling constant squared for the corresponding gauge
potential component and one can in principle deduce coupling constant evolution purely
classically. One can imagine of calculating spinorial propagators for string world sheets in the
same manner. Note that also the dependence on color quantum numbers would be present so
that in principle all that is needed could be calculated for a single preferred extremal without
the need to construct QFT limit and to introduce color quantum numbers of fermions as spin
like quantum numbers (color quantum numbers corresponds to CP2 partial wave for the tip
of the CD assigned with the particle).

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion
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of quantum ergodicity could however be one of the really deep ideas about coupling constant evolu-
tion comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly
QE) would also state something extremely non-trivial also about the construction of correlation
functions and S-matrix. Because this principle is so new, the rest of the chapter does not yet
contain any applications of QE. This should not lead the reader to under-estimate the potential
power of QE.

22.2.3 Are Both Symplectic And Conformal Field Theories Needed In
TGD Framework?

Before one can say anything quantitative about coupling constant evolution, one must have a
formulation for its TGD counterpart and thus also a more detailed formulation for how to calculate
M -matrix elements. There is also the question about infinities. By very general arguments infinities
of quantum field theories are predicted to cancel in TGD Universe - basically by the non-locality of
Kähler function as a functional of 3-surface and by the general properties of the vacuum functional
identified as the exponent of Kähler function. The precise mechanism leading to the cancellation
of infinities of local quantum field theories has remained unspecified. Only the realization that
the symplectic invariance of quantum TGD provides a mechanism regulating the short distance
behavior of N-point functions changed the situation in this respect. This also leads to one possible
concrete view about the generalized Feynman diagrams giving M -matrix elements and at least a
resemblance with ordinary Feynman diagrammatics.

It must be of course admitted that there are several apparentely competing visions. Twisto-
rial vision [K76] and the vision about scattering amplitudes as representations for sequences of
algebraic operations in super-symplectic Yangian [A27] [B39, B30, B31] seem to be consistent
views. Symplectic approach seems to be suitable to understand the integration over WCW zero
mode degrees of freedom not included in the other approaches.

Symplectic invariance

Symplectic symmetries of δM4
+×CP2 (light-cone boundary briefly) act as isometries of the “world

of classical worlds”. One can see these symmetries as analogs of Kac-Moody type symmetries
with symplectic transformations of S2 × CP2, where S2 is rM = constant sphere of light-cone
boundary, made local with respect to the light-like radial coordinate rM taking the role of complex
coordinate. Thus finite-dimensional Lie group G is replaced with infinite-dimensional group of
symplectic transformations. This inspires the question whether a symplectic analog of conformal
field theory at δM4

+ ×CP2 could be relevant for the construction of n-point functions in quantum
TGD and what general properties these n-point functions would have. This section appears already
in the previous chapter about symmetries of quantum TGD [K14] but because the results of the
section provide the first concrete construction recipe of M -matrix in zero energy ontology, it is
included also in this chapter.

Symplectic QFT at sphere

Actually the notion of symplectic QFT emerged as I tried to understand the properties of cosmic
microwave background which comes from the sphere of last scattering which corresponds roughly
to the age of 5×105 years [K53]. In this situation vacuum extremals of Kähler action around almost
unique critical Robertson-Walker cosmology imbeddable in M4×S2, where there is homologically
trivial geodesic sphere of CP2. Vacuum extremal property is satisfied for any space-time surface
which is surface in M4×Y 2, Y 2 a Lagrangian sub-manifold of CP2 with vanishing induced Kähler
form. Symplectic transformations of CP2 and general coordinate transformations of M4 are dy-
namical symmetries of the vacuum extremals so that the idea of symplectic QFT emerges natural.
Therefore I shall consider first symplectic QFT at the sphere S2 of last scattering with temperature
fluctution ∆T/T proportional to the fluctuation of the metric component gaa in Robertson-Walker
coordinates.

1. In quantum TGD the symplectic transformation of the light-cone boundary would induce
action in the “world of classical worlds” (light-like 3-surfaces). In the recent situation it is
convenient to regard perturbations of CP2 coordinates as fields at the sphere of last scattering
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(call it S2) so that symplectic transformations of CP2 would act in the field space whereas
those of S2 would act in the coordinate space just like conformal transformations. The
deformation of the metric would be a symplectic field in S2. The symplectic dimension
would be induced by the tensor properties of R-W metric in R-W coordinates: every S2

coordinate index would correspond to one unit of symplectic dimension. The symplectic
invariance in CP2 degrees of freedom is guaranteed if the integration measure over the vacuum
deformations is symplectic invariant. This symmetry does not play any role in the sequel.

2. For a symplectic scalar field n ≥ 3-point functions with a vanishing anomalous dimension
would be functions of the symplectic invariants defined by the areas of geodesic polygons
defined by subsets of the arguments as points of S2. Since n-polygon can be constructed from
3-polygons these invariants can be expressed as sums of the areas of 3-polygons expressible in
terms of symplectic form. n-point functions would be constant if arguments are along geodesic
circle since the areas of all sub-polygons would vanish in this case. The decomposition of n-
polygon to 3-polygons brings in mind the decomposition of the n-point function of conformal
field theory to products of 2-point functions by using the fusion algebra of conformal fields
(very symbolically ΦkΦl = cmklΦm). This intuition seems to be correct.

3. Fusion rules stating the associativity of the products of fields at different points should
generalize. In the recent case it is natural to assume a non-local form of fusion rules given
in the case of symplectic scalars by the equation

Φk(s1)Φl(s2) =

∫
cmklf(A(s1, s2, s3))Φm(s)dµs . (22.2.1)

Here the coefficients cmkl are constants and A(s1, s2, s3) is the area of the geodesic triangle of
S2 defined by the sympletic measure and integration is over S2 with symplectically invariant
measure dµs defined by symplectic form of S2. Fusion rules pose powerful conditions on
n-point functions and one can hope that the coefficients are fixed completely.

4. The application of fusion rules gives at the last step an expectation value of 1-point function
of the product of the fields involves unit operator term

∫
cklf(A(s1, s2, s))Iddµs so that one

has

〈Φk(s1)Φl(s2)〉 =

∫
cklf(A(s1, s2, s))dµs . (22.2.2)

Hence 2-point function is average of a 3-point function over the third argument. The absence
of non-trivial symplectic invariants for 1-point function means that n = 1- an are constant,
most naturally vanishing, unless some kind of spontaneous symmetry breaking occurs. Since
the function f(A(s1, s2, s3)) is arbitrary, 2-point correlation function can have both signs.
2-point correlation function is invariant under rotations and reflections.

Symplectic QFT with spontaneous breaking of rotational and reflection symmetries

CMB data suggest breaking of rotational and reflection symmetries of S2. A possible mechanism
of spontaneous symmetry breaking is based on the observation that in TGD framework the hier-
archy of Planck constants assigns to each sector of the generalized imbedding space a preferred
quantization axes. The selection of the quantization axis is coded also to the geometry of “world of
classical worlds”, and to the quantum fluctuations of the metric in particular. Clearly, symplectic
QFT with spontaneous symmetry breaking would provide the sought-for really deep reason for the
quantization of Planck constant in the proposed manner.
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1. The coding of angular momentum quantization axis to the generalized imbedding space
geometry allows to select South and North poles as preferred points of S2. To the three
arguments s1, s2, s3 of the 3-point function one can assign two squares with the added point
being either North or South pole. The difference

∆A(s1, s2, s3) ≡ A(s1, s2, s3, N)−A(s1, s2, s3, S) (22.2.3)

of the corresponding areas defines a simple symplectic invariant breaking the reflection sym-
metry with respect to the equatorial plane. Note that ∆A vanishes if arguments lie along
a geodesic line or if any two arguments co-incide. Quite generally, symplectic QFT differs
from conformal QFT in that correlation functions do not possess singularities.

2. The reduction to 2-point correlation function gives a consistency conditions on the 3-point
functions

〈(Φk(s1)Φl(s2))Φm(s3)〉 = crkl

∫
f(∆A(s1, s2, s))〈Φr(s)Φm(s3)〉dµs

= (22.2.4)

crklcrm

∫
f(∆A(s1, s2, s))f(∆A(s, s3, t))dµsdµt . (22.2.5)

Associativity requires that this expression equals to 〈Φk(s1)(Φl(s2)Φm(s3))〉 and this gives ad-
ditional conditions. Associativity conditions apply to f(∆A) and could fix it highly uniquely.

3. 2-point correlation function would be given by

〈Φk(s1)Φl(s2)〉 = ckl

∫
f(∆A(s1, s2, s))dµs (22.2.6)

4. There is a clear difference between n > 3 and n = 3 cases: for n > 3 also non-convex polygons
are possible: this means that the interior angle associated with some vertices of the polygon
is larger than π. n = 4 theory is certainly well-defined, but one can argue that so are also
n > 4 theories and skeptic would argue that this leads to an inflation of theories. TGD
however allows only finite number of preferred points and fusion rules could eliminate the
hierarchy of theories.

5. To sum up, the general predictions are following. Quite generally, for f(0) = 0 n-point cor-
relation functions vanish if any two arguments co-incide which conforms with the spectrum
of temperature fluctuations. It also implies that symplectic QFT is free of the usual singu-
larities. For symmetry breaking scenario 3-point functions and thus also 2-point functions
vanish also if s1 and s2 are at equator. All these are testable predictions using ensemble of
CMB spectra.

Generalization to quantum TGD

(Number theoretic) braids are identifiable as boundaries of string world sheets at which the modes
of induced spinor fields are localized in the generic case in Minkowskian space-time regions. Fun-
damental fermions can be assigned to these lines. Braids are the basic objects of quantum TGD,
one can hope that the n-point functions assignable to them could code the properties of ground
states and that one could separate from n-point functions the parts which correspond to the sym-
plectic degrees of freedom acting as symmetries of vacuum extremals and isometries of the “world
of classical worlds”.
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1. This approach indeed seems to generalize also to quantum TGD proper and the n-point
functions associated with partonic 2-surfaces can be decomposed in such a manner that one
obtains coefficients which are symplectic invariants associated with both S2 and CP2 Kähler
form.

2. Fusion rules imply that the gauge fluxes of respective Kähler forms over geodesic triangles
associated with the S2 and CP2 projections of the arguments of 3-point function serve basic
building blocks of the correlation functions. The North and South poles of S2 and three
poles of CP2 can be used to construct symmetry breaking n-point functions as symplectic
invariants. Non-trivial 1-point functions vanish also now.

3. The important implication is that n-point functions vanish when some of the arguments
co-incide. This might play a crucial role in taming of the singularities: the basic general
prediction of TGD is that standard infinities of local field theories should be absent and this
mechanism might realize this expectation.

Next some more technical but elementary first guesses about what might be involved.

1. It is natural to introduce the moduli space for n-tuples of points of the symplectic manifold
as the space of symplectic equivalence classes of n-tuples. In the case of sphere S2 convex
n-polygon allows n + 1 3-sub-polygons and the areas of these provide symplectically invari-
ant coordinates for the moduli space of symplectic equivalence classes of n-polygons (2n-D
space of polygons is reduced to n + 1-D space). For non-convex polygons the number of
3-sub-polygons is reduced so that they seem to correspond to lower-dimensional sub-space.
In the case of CP2 n-polygon allows besides the areas of 3-polygons also 4-volumes of 5-
polygons as fundamental symplectic invariants. The number of independent 5-polygons for
n-polygon can be obtained by using induction: once the numbers N(k, n) of independent
k ≤ n-simplices are known for n-simplex, the numbers of k ≤ n + 1-simplices for n + 1-
polygon are obtained by adding one vertex so that by little visual gymnastics the numbers
N(k, n+1) are given by N(k, n+1) = N(k−1, n)+N(k, n). In the case of CP2 the allowance
of 3 analogs {N,S, T} of North and South poles of S2 means that besides the areas of poly-
gons (s1, s2, s3), (s1, s2, s3, X), (s1, s2, s3, X, Y ), and (s1, s2, s3, N, S, T ) also the 4-volumes
of 5-polygons (s1, s2, s3, X, Y ), and of 6-polygon (s1, s2, s3, N, S, T ), X,Y ∈ {N,S, T} can
appear as additional arguments in the definition of 3-point function.

2. What one really means with symplectic tensor is not clear since the naive first guess for the n-
point function of tensor fields is not manifestly general coordinate invariant. For instance, in
the model of CMB, the components of the metric deformation involving S2 indices would be
symplectic tensors. Tensorial n-point functions could be reduced to those for scalars obtained
as inner products of tensors with Killing vector fields of SO(3) at S2. Again a preferred
choice of quantization axis would be introduced and special points would correspond to the
singularities of the Killing vector fields.

The decomposition of Hamiltonians of the “world of classical worlds” expressible in terms of
Hamiltonians of S2×CP2 to irreps of SO(3) and SU(3) could define the notion of symplectic
tensor as the analog of spherical harmonic at the level of WCW . Spin and gluon color would
have natural interpretation as symplectic spin and color. The infinitesimal action of various
Hamiltonians on n-point functions defined by Hamiltonians and their super counterparts
is well-defined and group theoretical arguments allow to deduce general form of n-point
functions in terms of symplectic invariants.

3. The need to unify p-adic and real physics by requiring them to be completions of rational
physics, and the notion of finite measurement resolution suggest that discretization of also
fusion algebra is necessary. The set of points appearing as arguments of n-point functions
could be finite in a given resolution so that the p-adically troublesome integrals in the formulas
for the fusion rules would be replaced with sums. Perhaps rational/algebraic variants of
S2 × CP2 = SO(3)/SO(2) × SU(3)/U(2) obtained by replacing these groups with their
rational/algebraic variants are involved. Tedrahedra, octahedra, and dodecahedra suggest
themselves as simplest candidates for these discretized spaces. Also the symplectic moduli
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space would be discretized to contain only n-tuples for which the symplectic invariants are
numbers in the allowed algebraic extension of rationals. This would provide an abstract
looking but actually very concrete operational approach to the discretization involving only
areas of n-tuples as internal coordinates of symplectic equivalence classes of n-tuples. The
best that one could achieve would be a formulation involving nothing below measurement
resolution.

4. This picture based on elementary geometry might make sense also in the case of conformal
symmetries. The angles associated with the vertices of the S2 projection of n-polygon could
define conformal invariants appearing in n-point functions and the algebraization of the
corresponding phases would be an operational manner to introduce the space-time correlates
for the roots of unity introduced at quantum level. In CP2 degrees of freedom the projections
of n-tuples to the homologically trivial geodesic sphere S2 associated with the particular
sector of CH would allow to define similar conformal invariants. This framework gives
dimensionless areas (unit sphere is considered). p-Adic length scale hypothesis and hierarchy
of Planck constants would bring in the fundamental units of length and time in terms of CP2

length.

The recent view about M -matrix described in [K13] is something almost unique determined
by Connes tensor product providing a formal realization for the statement that complex rays
of state space are replaced with N rays where N defines the hyper-finite sub-factor of type II1

defining the measurement resolution. M -matrix defines time-like entanglement coefficients between
positive and negative energy parts of the zero energy state and need not be unitary. It is identified
as square root of density matrix with real expressible as product of of real and positive square root
and unitary S-matrix. This S-matrix is what is measured in laboratory. There is also a general
vision about how vertices are realized: they correspond to light-like partonic 3-surfaces obtained
by gluing incoming and outgoing partonic 3-surfaces along their ends together just like lines of
Feynman diagrams. Note that in string models string world sheets are non-singular as 2-manifolds
whereas 1-dimensional vertices are singular as 1-manifolds. These ingredients we should be able
to fuse together. So we try once again!

1. Iteration starting from vertices and propagators is the basic approach in the construction of n-
point function in standard QFT. This approach does not work in quantum TGD. Symplectic
and conformal field theories suggest that recursion replaces iteration in the construction. One
starts from an n-point function and reduces it step by step to a vacuum expectation value
of a 2-point function using fusion rules. Associativity becomes the fundamental dynamical
principle in this process. Associativity in the sense of classical number fields has already
shown its power and led to a hyper-octoninic formulation of quantum TGD promising a
unification of various visions about quantum TGD [K74].

2. Let us start from the representation of a zero energy state in terms of a causal diamond
defined by future and past directed light-cones. Zero energy state corresponds to a quantum
superposition of light-like partonic 3-surfaces each of them representing possible particle
reaction. These 3-surfaces are very much like generalized Feynman diagrams with lines
replaced by light-like 3-surfaces coming from the upper and lower light-cone boundaries and
glued together along their ends at smooth 2-dimensional surfaces defining the generalized
vertices.

3. It must be emphasized that the generalization of ordinary Feynman diagrammatics arises and
conformal and symplectic QFTs appear only in the calculation of single generalized Feynman
diagram. Therefore one could still worry about loop corrections. The fact that no integration
over loop momenta is involved and there is always finite cutoff due to discretization together
with recursive instead of iterative approach gives however good hopes that everything works.
Note that this picture is in conflict with one of the earlier approaches based on positive
energy ontology in which the hope was that only single generalized Feynman diagram could
define the U-matrix thought to correspond directly to physical S-matrix at that time.

4. One can actually simplify things by identifying generalized Feynman diagrams as maxima
of Kähler function with functional integration carried over perturbations around it. Thus
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one would have conformal field theory in both fermionic and WCW degrees of freedom. The
light-like time coordinate along light-like 3-surface is analogous to the complex coordinate
of conformal field theories restricted to some curve. If it is possible continue the light-
like time coordinate to a hyper-complex coordinate in the interior of 4-D space-time sheet,
the correspondence with conformal field theories becomes rather concrete. Same applies to
the light-like radial coordinates associated with the light-cone boundaries. At light-cone
boundaries one can apply fusion rules of a symplectic QFT to the remaining coordinates.
Conformal fusion rules are applied only to point pairs which are at different ends of the
partonic surface and there are no conformal singularities since arguments of n-point functions
do not co-incide. By applying the conformal and symplectic fusion rules one can eventually
reduce the n-point function defined by the various fermionic and bosonic operators appearing
at the ends of the generalized Feynman diagram to something calculable.

5. Finite measurement resolution defining the Connes tensor product is realized by the dis-
cretization applied to the choice of the arguments of n-point functions so that discretion is
not only a space-time correlate of finite resolution but actually defines it. No explicit realiza-
tion of the measurement resolution algebra N seems to be needed. Everything should boil
down to the fusion rules and integration measure over different 3-surfaces defined by exponent
of Kähler function and by imaginary exponent of Chern-Simons action. The continuation of
WCW Clifford algebra for 3-surfaces with cm degrees of freedom fixed to a hyper-octonionic
variant of gamma matrix field of super-string models defined in M8 (hyper-octonionic space)
and M8 ↔ M4 × CP2 duality leads to a unique choice of the points, which can contribute
to n-point functions as intersection of M4 subspace of M8 with the counterparts of partonic
2-surfaces at the boundaries of light-cones of M8. Therefore there are hopes that the result-
ing theory is highly unique. Symplectic fusion algebra reduces to a finite algebra for each
space-time surface if this picture is correct.

6. Consider next some of the details of how the light-like 3-surface codes for the fusion rules
associated with it. The intermediate partonic 2- surfaces must be involved since otherwise
the construction would carry no information about the properties of the light-like 3-surface,
and one would not obtain perturbation series in terms of the relevant coupling constants.
The natural assumption is that partonic 2-surfaces belong to future/past directed light-cone
boundary depending on whether they are on lower/upper half of the causal diamond. Hyper-
octonionic conformal field approach fixes the nint points at intermediate partonic two-sphere
for a given light-like 3-surface representing generalized Feynman diagram, and this means
that the contribution is just N -point function with N = nout + nint + nin calculable by the
basic fusion rules. Coupling constant strengths would emerge through the fusion coefficients,
and at least in the case of gauge interactions they must be proportional to Kähler coupling
strength since n-point functions are obtained by averaging over small deformations with
vacuum functional given by the exponent of Kähler function. The first guess is that one can
identify the spheres S2 ⊂ δM4

± associated with initial, final and, and intermediate states so
that symplectic n-points functions could be calculated using single sphere.

These findings raise the hope that quantum TGD is indeed a solvable theory. The coupling
constant evolution is based on the same mechanism as in QFT and symplectic invariance replaces
ad hoc UV cutoff with a genuine dynamical regulation mechanism. Causal diamond itself defines
the physical IR cutoff. p-Adic and real coupling constant evolutions reflect the underlying evolution
in powers of two for the temporal distance between the tips of the light-cones of the causal diamond
and the association of macroscopic time scale as secondary p-adic time scale to elementary particles
(.1 seconds for electron) serves as a first test for the picture. Even if one is not willing to swallow
any bit of TGD, the classification of the symplectic QFTs remains a fascinating mathematical
challenge in itself. A further challenge is the fusion of conformal QFT and symplectic QFT in
the construction of n-point functions. One might hope that conformal and symplectic fusion rules
could be treated independently.

More detailed view about the construction of M-matrix elements

After three decades there are excellent hopes of building an explicit recipe for constructing M -
matrix elements but the devil is in the details.
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1. Elimination of infinities and coupling constant evolution

The elimination of infinities could follow from the symplectic QFT part of the theory. The
symplectic contribution to n-point functions vanishes when two arguments co-incide. The UV
cancellation mechanism has nothing to do with the finite measurement resolution which corre-
sponds to the size of the causal diamonds inside which the space-time sheets representing radiative
corrections are. There is also IR cutoff due to the presence of largest causal diamond.

On can decompose the radiative corrections two two types. First kind of corrections ap-
pear both at the level of positive/and negative energy parts of zero energy states. Second kind of
corrections appear at the level of interactions between them. This decomposition is standard in
quantum field theories and corresponds to the renormalization constants of fields resp. renormal-
ization of coupling constants. The corrections due to the increase of measurement resolution in
time comes as very specific corrections to positive and negative energy states involving gluing of
smaller causal diamonds to the upper and lower boundaries of causal diamonds along any radial
light-like ray. The radiative corresponds to the interactions correspond to the addition of smaller
causal diamonds in the interior of the larger causal diamond. Scales for the corrections come as
scalings in powers of 2 rather than as continuous scaling of measurement resolution.

UV finiteness is suggested also by the generalized Feynman rules providing a phenomeno-
logical view about what TGD predicts. According to these rules fundamental fermions propagate
like massless particles. In twistor Grassmann approach residue integration is expected to reduce
internal fermion lines to on mass shell propagation with non-physical helicity. The fundamental
4-fermion interaction is assignable to wormhole contact and corresponds to stringy exchange of
four-momentum with propagator being defined by the inverse of super-conformal scaling generator
1/L0. Wormhole contacts carrying fermion and antifermion at their throats behave like fundamen-
tal bosons. Stringy propagators at wormhole contacts make TGD rules a hybrid of Feynmann and
stringy rules. Stringy propagators are necessary in order to avoid logarithmic divergences. Higher
mass excitations crucial for finiteness belong to the representations of super-conformal algebra and
can be regarded as bound states of massless fermions. Massivation of external particles allows
to avoid infrared divergences. Not only physical bosons but also physical fermions emerge from
fundamental massless fermions.

2. Conformal symmetries

The basic questions are the following ones. How hyper-octonionic/-quaternionic/-complex
super-conformal symmetry relates to the super-symplectic conformal symmetry at the imbedding
space level and the super Kac-Moody symmetry associated with the light-like 3-surfaces? How do
the dual HO = M8 and H = M4 × CP2 descriptions (number theoretic compactifcation) relate?

Concerning the understanding of these issues, the earlier construction of physical states
poses strong constraints [K14].

1. The state construction utilizes both super-symplectic and super Kac-Moody algebras. super-
symplectic algebra has negative conformal weights and creates tachyonic ground states from
which Super Kac-Moody algebra generates states with non-negative conformal weight deter-
mining the mass squared value of the state. The commutator of these two algebras annihilates
the physical states. This requires that both super conformal algebras must allow continuation
to hyper-octonionic algebras, which are independent.

2. The light-like radial coordinate at δM4
± can be continued to a hyper-complex coordinate in

M2
± defined the preferred commutative plane of non-physical polarizations, and also to a

hyper-quaternionic coordinate in M4
±. Hence it would seem that super-symplectic algebra

can be continued to an algebra in M2
± or perhaps in the entire M4

±. This would allow
to continue also the operators G, L and other super-symplectic operators to operators in
hyper-quaternionic M4

± needed in stringy perturbation theory.

3. Also the super KM algebra associated with the light-like 3-surfaces should be continueable to
hyper-quaternionic M4

±. Here HO−H duality comes in rescue. It requires that the preferred
hyper-complex plane M2 is contained in the tangent plane of the space-time sheet at each
point, in particular at light-like 3-surfaces. We already know that this allows to assign a
unique space-time surface to a given collection of light-like 3-surfaces as hyper-quaternionic
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4-surface of HO hypothesized to correspond to (an obviously preferred) extremal of Kähler
action. An equally important implication is that the light-like coordinate of X3 can be
continued to hyper-complex coordinate M2 coordinate and thus also to hyperquaternionic
M4 coordinate.

4. The four-momentum appears in super generators Gn and Ln. It seems that the formal Fourier
transform of four-momentum components to gradient operators to M4

± is needed and defines
these operators as particular elements of the WCW Clifford algebra elements extended to
fields in imbedding space.

3. What about stringy perturbation theory?

The analog of stringy perturbation theory does not seems only a highly attractive but
also an unavoidable outcome since a generalization of massless fermionic propagator is needed.
The inverse for the sum of super Kac-Moody and super-symplectic super-Virasoro generators G
(L) extended to an operator acting on the difference of the M4 coordinates of the end points
of the propagator line connecting two partonic 2-surfaces should appear as fermionic (bosonic)
propagator in stringy perturbation theory. Virasoro conditions imply that only G0 and L0 appear
as propagators. Momentum eigenstates are not strictly speaking possible since since discretization
is present due to the finite measurement resolution. One can however represent these states using
Fourier transform as a superposition of momentum eigenstates so that standard formalism can be
applied.

Symplectic QFT gives an additional multiplicative contribution to n-point functions and
there would be also braiding S-matrices involved with the propagator lines in the case that partonic
2-surface carriers more than 1 point. This leaves still modular degrees of freedom of the partonic
2-surfaces describable in terms of elementary particle vacuum functionals and the proper treatment
of these degrees of freedom remains a challenge.

4. What about non-hermiticity of the WCW super-generators carrying fermion number?

TGD represents also a rather special challenge, which actually represents the fundamental
difference between quantum TGD and super string models. The assignment of fermion number to
WCW gamma matrices and thus also to the super-generator G is unavoidable. Also M4 and H
gamma matrices carry fermion number. This has been a long-standing interpretational problem
in quantum TGD and I have been even ready to give up the interpretation of four-momentum
operator appearing in Gn and Ln as actual four-momenta. The manner to get rid of this problem
would be the assumption of Majorana property but this would force to give up the interpretation
of different imbedding space chiralities in terms of conserved lepton and quark numbers and would
also lead to super-string theory with critical dimension 10 or 11. A further problem is how to
obtain amplitudes which respect fermion number conservation using string perturbation theory if
1/G = G†/L0 carries fermion number.

The recent picture does not leave many choices so that I was forced to face the truth and
see how everything falls down to this single nasty detail! It became as a total surprise that gamma
matrices carrying fermion number do not cause any difficulties in zero energy ontology and make
sense even in the ordinary Feynman diagrammatics.

1. Non-hermiticity of G means that the center of mass terms CH gamma matrices must be

distinguished from their Hermitian conjugates. In particular, one has γ0 6= γ
dagger
0 . One can

interpret the fermion number carrying M4 gamma matrices of the complexified quaternion
space.

2. One might think that M4 ×CP2 gamma matrices carrying fermion number is a catastrophe
but this is not the case in massless theory. Massless momentum eigen states can be created
by the operator pkγ†k from a vacuum annihilated by gamma matrices and satisfying massless
Dirac equation. The conserved fermion number defined by the integral of Ψγ0Ψ over 3-space
gives just its standard value. A further experimentation shows that Feynman diagrams
with non-hermitian gamma matrices give just the standard results since ordinary fermionic
propagator and boson-emission vertices at the ends of the line containing WCW gamma
matrix and its conjugate give compensating fermion numbers [K76].
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3. If the theory would contain massive fermions or a coupling to a scalar Higgs, a catastrophe
would result. Hence ordinary Higgs mechanism is not possible in this framework. Of course,
also the quantization of fermions is totally different. In TGD fermion mass is not a scalar in
H. Part of it is given by CP2 Dirac operator, part by p-adic thermodynamics for L0, and
part by Higgs field which behaves like vector field in CP2 degrees of freedom, so that the
catastrophe is avoided.

4. In zero energy ontology zero energy states are characterized by M -matrix elements con-
structed by applying the combination of stringy and symplectic Feynman rules and fermionic
propagator is replaced with its super-conformal generalization reducing to an ordinary fermionic
propagator for massless states. The norm of a single fermion state is given by a propagator
connecting positive energy state and its conjugate with the propagator G0/L0 and the stan-
dard value of the norm is obtained by using Dirac equation and the fact that Dirac operator
appears also in G0.

5. The hermiticity of super-generators G would require Majorana property and one would end
up with superstring theory with critical dimension D = 10 or D = 11 for the imbedding
space. Hence the new interpretation of gamma matrices, proposed already years ago, has
very profound consequences and convincingly demonstrates that TGD approach is indeed
internally consistent.

In this framework coupling constant evolution would correspond evolution as a function of
the scale of CD. It might have interpretation also in terms of addition of intermediate zero energy
states corresponding to the generalized Feynman diagrams obtained by the insertion of causal
diamonds with a new shorter time scale T = Tprev/2 to the previous Feynman diagram as the size
of CD is increased. p-Adic length scale hypothesis follows naturally. A very close correspondence
with ordinary Feynman diagrammatics arises and and ordinary vision about coupling constant
evolutions arises. The absence of infinities follows from the symplectic invariance which is genuinely
new element. p-Adic and real coupling constant evolutions can be seen as completions of coupling
constant evolutions for physics based on rationals and their algebraic extensions.

22.3 General Vision About Real And P-Adic Coupling Con-
stant Evolution

Many new pieces of understanding have emerge since the last updating of the views about coupling
constant evolution. It is now understood how GRT space-time and QFT gauge theory limit emerge
from many-sheeted space-time in long length scales. Quantum classical correspondence (QCC)
suggests that classical correlation functions correspond to those for elementary particles. What is
new that the generalization of AdS/CFT correspondence strongly suggested by the extension of
super-conformal symmetries and the possibility to express WCW Kähler metric in two manners
provides support for QCC. It is now understood how the hierarchy of Planck constants relates to
a hierarchy of symmetry breakings for super-symplectic algebra and to a hierarchy of quantum
criticalities. The vision about scattering amplitudes as representations of sequences of arithmetic
operations in the Yangian of super-sympelectic algebra [A27] [B39, B30, B31] gives hopes about the
computation of scattering amplitudes and already now gives vision about their general structure
and what is the counterpart for the coupling constant evolution at the fundamental level.

The older approach was rather phenomenological and based mostly on p-adic considerations
and the future challenge is to combine the new ingredients with p-adic picture. Perhaps the most
important questions about p-adic coupling constant evolution relate to the basic hypothesis about
preferred role of primes p ' 2k, k an integer. Why integer values of k are favored, why prime
values are even more preferred, and why Mersenne primes Mn = 2n − 1 and Gaussian Mersennes
seem to be at the top of the hierarchy?

Second bundle of questions relates to the color coupling constant evolution. Do Mersenne
primes really define a hierarchy of fixed points of color coupling constant evolution for a hierarchy
of asymptotically non-free QCD type theories both in quark and lepton sector of the theory?
How the transitions Mn → Mn(next) occur? What are the space-time correlates for the coupling
constant evolution and for for these transitions and how space-time description relates to the usual
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description in terms of parton loops? How the condition that p-adic coupling constant evolution
reflects the real coupling constant evolution can be satisfied and how strong conditions it poses on
the coupling constant evolution?

22.3.1 A General View About Coupling Constant Evolution

The following general vision about coupling constant evolution summarizes the recent understand-
ing. The details of the picture are of course bound to fluctuate.

Einstein’s equations, Equivalence Principle, and GRT and QFT limits of TGD

Coupling constant evolution makes sense in quantum field theory defined in fixed background
space-time, say Minkowski space-time. In TGD framework imbedding space replaces this fixed
space-time and in ZEO the hierarchy of causal diamonds replaces imbedding space. It is not at all
clear whether at the level of basic TGD coupling constant evolution makes sense at all whereas it
should make sense at QFT limit of TGD. This requires understanding of QFT and GRT limits of
TGD including also Equivalence Principle.

At quantum level Equivalence Principle (EP) can be reduced to quantum classical corre-
spondence: the conserved four-momentum associated with Kähler action equals to the eigenvalue
of conserved quantal four-momentum assignable to Kähler-Dirac equation [K88]. This quantal
four-momentum in turn can be associated with string world sheets which emerge naturally from
Kähler-Doirac equation.

Einstein’s equation give a purely local meaning for EP. How Einstein’s equations and Gen-
eral Relativity in long length scales emerges from TGD has been a long-standing interpretational
problem of TGD, whose resolution came from the realization that GRT is only an effective theory
obtained by endowing M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets (see Fig. http://

tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ?? in the appendix of this book).
.

2. This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would correspond
to that of General Relativity. This resolves long standing issues relating to the interpreta-
tion of TGD. Similar description applies to induced electroweak gauge potentials and color
gauge potentials: the sum of these gauge potentials over space-time sheets should define the
classical gauge fields of QFT limit of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
effective metric. The conjecture vanishing of divergence of Khler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in zero
energy ontology (ZEO), in which various conserved charges are length dependent and defined
separately for each causal diamond (CD).

What coupling constant evolution could mean in TGD framework? Kähler action and
Kähler-Dirac action do not contain any fundamental couplings affecting to the dynamics. Kähler
coupling strength does not affect classical dynamics and is analogous to critical temperature, and
therefore invariant under renormalization group if defined in TGD framework. This suggests that
the analog of renormalization group equations at space-time level does not look feasible. Continuous
coupling constant evolution might be useful notion only at the QFT limit.

The natural length scale hierarchy associated with coupling constant evolution would be
the hierarchy of length scales assignable to CDs. The minimal sizes of CDs assumed to be equal

http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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to secondary p-adic length scales in the case of elementary particles. More generally, number
theoretical arguments suggest that the scales of CDs come as integer multiples of CP2 radius.
What is new that coupling constant evolution would be discretized, being labelled by integers.
Primes and primes near powers of 2 could correspond to physically favored minimal size scales for
CDs: kind of survivors in fight for survival. Discrete coupling constant evolution as evolution of
various M-matrix elements as function of the size-scale of CD would look like a reasonable TGD
counterpart of coupling constant evolution. For single CD one might say that system is quantum
critical, and coupling constants do not evolve.

Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of
quantum physics [K13] completely belongs to the category of not at all obvious first principles.
The basic observation is that the Clifford algebra spanned by the gamma matrices of the “world
of classical worlds” represents a von Neumann algebra [A67] known as hyperfinite factor of type
II1 (HFF) [K13, K87, K22]. HFF [A44, A55] is an algebraic fractal having infinite hierarchy
of included subalgebras isomorphic to the algebra itself [A1]. The structure of HFF is closely
related to several notions of modern theoretical physics such as integrable statistical physical
systems [A88], anyons [D4] , quantum groups and conformal field theories [A91], and knots and
topological quantum field theories [A86, A50].

Zero energy ontology is second key element. In zero energy ontology these inclusions allow
an interpretation in terms of a finite measurement resolution: in the standard positive energy
ontology this interpretation is not possible. Inclusion hierarchy defines in a natural manner the
notion of coupling constant evolution and p-adic length scale hypothesis follows as a prediction.
In this framework the extremely heavy machinery of renormalized quantum field theory involving
the elimination of infinities is replaced by a precisely defined mathematical framework. More
concretely, the included algebra creates states which are equivalent in the measurement resolution
used. Zero energy states are associated with causal diamond formed by a pair of future and past
directed light-cones having positive and negative energy parts of state at their boundaries. Zero
energy state can be modified in a time scale shorter than the time scale of the zero energy state
itself.

On can imagine two kinds of measurement resolutions. The element of the included algebra
can leave the quantum numbers of the positive and negative energy parts of the state invariant,
which means that the action of subalgebra leaves M -matrix invariant. The action of the included
algebra can also modify the quantum numbers of the positive and negative energy parts of the state
such that the zero energy property is respected. In this case the Hermitian operators subalgebra
must commute with M -matrix.

The temporal distance between the tips of light-cones corresponds to the secondary p-adic
time scale Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness

of light-like 3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc,

where R is CP2 size. The action of the included algebra corresponds to an addition of zero
energy parts to either positive or negative energy part of the state and is like addition of quantum
fluctuation below the time scale of the measurement resolution. The natural hierarchy of time
scales is obtained as Tn = 2−nT since these insertions must belong to either upper or lower half of
the causal diamond. This implies that preferred p-adic primes are near powers of 2. For electron
the time scale in question is.1 seconds defining the fundamental biorhythm of 10 Hz.

M -matrix representing a generalization of S-matrix and expressible as a product of a positive
square root of the density matrix and unitary S-matrix would define the dynamics of quantum
theory [K13]. The notion of thermodynamical state would cease to be a theoretical fiction and
in a well-defined sense quantum theory could be regarded as a square root of thermodynamics.
The original hope was that Connes tensor product realizing mathematical the finite measurement
resolution could fix M -matrix to high degree turned out be too optimistic.

How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

In zero energy ontology zero energy states have as imbedding space correlates causal diamonds for
which the distance between the tips of the intersecting future and past directed light-cones comes
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as integer multiples of a fundamental time scale: Tn = n × T0. p-Adic length scale hypothesis
allows to consider a stronger hypothesis Tn = 2nT0 and its generalization a slightly more general
hypothesis Tn = pnT0, p prime. It however seems that these scales are dynamically favored but
that also other scales are possible.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0

induce p-adic coupling constant evolution and explain why p-adic length scales correspond to
Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a problem. p-Adic

length scales come as powers of
√

2 rather than 2 and the strongly favored values of k are primes
and thus odd so that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their
orbit. For CP2 type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would now correspond to
light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section X2 ⊂ X3

would define the 2-D path γ2 of the Brownian particle. The M4 distance r between the end
points of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0

(the full light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0

for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would have
T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√
pLp, which corresponds to secondary p-adic length scale. For instance, in

the case of electron with p = M127 one would have secondary Compton length Electron’s
secondary Compton time Te(127) =

√
5T2(127) = .1 seconds defines a fundamental biological

rhythm. A deep connection between elementary particle physics and biology becomes highly
suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3.

Could symplectic variant of QFT allow to understand coupling constant evolution in
zero modes?

Symplectic variant of conformal field theories might be a further key element in the concrete con-
struction of n-point functions and M-matrix in zero energy ontology. Although I have known
super-symplectic (super-symplectic) symmetries to be fundamental symmetries of quantum TGD
for almost two decades, I failed for some reason to realize the existence of symplectic QFT, and
discovered it while trying to understand quite different problem - the fluctuations of cosmic mi-
crowave background! The symplectic contribution to the n-point function satisfies fusion rules
and involves only variables which are symplectic invariants constructed using geodesic polygons
assignable to the sub-polygons of n-polygon defined by the arguments of n-point function. Fusion
rules lead to a concrete recursive formula for n-point functions and M-matrix in contrast to the
iterative construction of n-point functions used in perturbative QFT.

Symplectic QFT might allow to calculate the coupling constant evolution in zero modes
which do not contribute to the line element of sub- WCW expect as contribute a conformal factor
depending on zero modes invariant under symplectic transformations.

22.3.2 Number Theoretical Vision About Coupling Constant Evolution

The recent progress in the understanding of TGD has led to a rather abstract number theoretical
vision about coupling constant evolution.
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Coupling constant evolution as increase in computational precision in Yangian arith-
metics

One should relate the picture of the usual perturbation theory to the picture in which one identifies
scattering amplitudes as sequences of arithmetical manipulations in super-symplectic Yangian [A27]
[B39, B30, B31]. How does one obtain a perturbation theory in powers of coupling constant, what
does running coupling constant mean, etc...? I have already discussed how the superposition of
diagrams could be understood in the new picture [K76].

1. The QFT picture with running coupling constant is expected at QFT limit, when many-
sheeted space-time is replaced with a slightly curved region of M4 and gravitational field
and gauge potentials are identified as sums of the deviations of induced metric from M4

metric and classical induced gauge potentials associated with the sheets of the many-sheeted
space-time. The running coupling constant would be due to the dependence of the size scale
of CD, and p-adic coupling constant evolution would be behind the continuous one. A good
first guess is that secondary p-adic length scales proportional to p define preferred size scales
for CD among integer multiples of CP2 scale. For electron the scale corresponds to time scale
of .1 second defining a fundamental bio-rhythm.

2. The notion of running coupling constant is very physical concept and should have a descrip-
tion also at the fundamental level and be due to a finite computational resolution, which
indeed has very concrete description in terms of Noether charges of super-symplectic Yan-
gian creating the states at the ends of space-time surface at the boundaries of CD. The
space-time surface and the diagram associated with a given pair of 3-surfaces and stringy
Noether charges associated with them can be characterized by a complexity measured in
terms of the number of vertices (3-surface at which three 3-surfaces meet).

For instance, 3-particle scattering can be possible only by using the simplest 3-vertex defined
by product or co-product for pairs of 3-surfaces. In the generic case one has more complex
diagram and what looks first 3-particle vertex has complex substructure rather than being
simple product or co-product.

3. Complexity seems to have two separate aspects: the complexities of the positive and negative
parts of zero energy state as many-fermion states and the complexity of associated 3-surfaces.
The generalization of AdS/CFT however suggests that once the string world sheets and
partonic 2-surfaces appearing in the diagram have been fixed, the space-time surface itself is
fixed. The principle also suggests that the fixing partonic 2-surface and the strings connecting
them at the boundaries of CD fixes the 3-surface apart from the action of sub-algebra of
Yangian acting as gauge algebra (vanishing classical Noether charges). If one can determine
the minimal sequence of allowed algebraic operation of Yangian connecting initial and final
fermion states, one knows the minimum number of vertices and therefore the topological
structure of the connecting minimal space-time surface.

4. In QFT spirit one could describe the finite measurement resolution by introducing effective
3-point vertex, which is need not be product/co-produce anymore. 3-point scattering am-
plitudes in general involve microscopic algebraic structure involving several vertices. One
can however give up the nice algebraic interpretation and just talk about effective 3-vertex
for practical purposes. Just as the QFT vertex described by running coupling constant de-
composes to sum of diagrams, product/co-product in TGD could be replaced with effective
product/co-product expressible as a longer computation. This would imply coupling constant
evolution.

Fermion lines could however remain as such since they are massless in 8-D sense and mass
renormalization does not make sense.

Similar practical simplification could be done the initial and final states to get rid of su-
perposition of the Yangian generators with different numbers of strings (“cloud of virtual
particles”). This would correspond to wave function renormalization.

The number of vertices and wormhole contact orbits serves as a measure for the complexity
of the diagram.
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1. Since fermion lines are associated with wormhole throats assignable with wormhole contacts
identifiable as deformations CP2 type vacuum extremals, one expects that the exponent
of the Kähler function defining vacuum functional is in the first approximation the total
CP2 volume of wormhole contacts giving a measure for the importance of the contribution
in functional integral. If it converges very rapidly only Gaussian approximation around
maximum is needed.

2. Convergence depends on how large the fraction of volume of CP2 is associated with a given
wormhole contact. The volume is proportional to the length of the wormhole contact orbit.
One expects exponential convergence with the number of fermion lines and their lengths
for long lines. For short distances the exponential damping is small so that diagrams with
microscopic structure of diagrams are needed and are possible. This looks like adding small
scale details to the algebraic manipulations.

3. One must be of course be very cautious in making conclusions. For instance, the presence of
1/αK ∝ heff in the exponent of Kähler function would suggest that for large values of heff
only the 3-surfaces with smallest possible number of wormhole contact orbits contribute. On
the other hand, the generalization of AdS/CFT duality suggests that Kähler action reducible
to area of string world sheet in the effective metric defined by canonical momentum currents
of Kähler action behaves as α2

K ∝ 1/h2
eff . How 1/h2

eff proportionality might be understood
is discussed in [K106] in terms electric-magnetic duality.

Renormalization group flow would have two meanings.

1. RG flow can correspond to the increase of resolution in the sense that the number of fermionic
strings per partonic 2-surfaces increases This would mean increase of the resolution and
replace computational sequences with more complex ones involving more vertices. Both
length scale resolution and angular resolution can increase and these resolutions should relate
to the algebraic resolution.

2. Another meaning is as flow defined by the hierarchy of quantum criticalities and having
interpretation in terms of hierarchy of heff . This process transforms gauge degrees of freedom
to physical degrees of freedom and there is temptation to interpret this as discrete evolution
such that each heff defines a plateau in the evolution somewhat like in fractional quantum
Hall effect for which I have indeed proposed an explanation in terms of hierarchy of Planck
constants.

Coupling constant evolution and ramified primes in algebraic extensions of rationals

The recent adelic vision about TGD allows totally new insights about p-adic coupling constant
evolution. In particular, the origin of preferred p-adic primes can be understood and the realization
of number theoretical universality by algebraic continuations becomes almost trivial.

1. The recent general picture about coupling constant evolution relies on the hierarchy of alge-
braic extensions of rational in which the parameters characterizing string world sheets and
partonic 2-surfaces. They define the intersection of reality and various p-adicities, and strong
holography is assumed to allow a continuation of these 2-surfaces to preferred extremals of
Kähler action [K111].

2. By strong form of holography also scattering amplitudes are determined by the data in the
intersection so that coupling constant evolution should reduce to the evolution of complexity
for the hierarchy of algebraic extensions of rationals. The basic parameters characterizing
the extensions are the ramified primes - the primes containing higher powers in the product
expansion using the primes of the extension (to be precise, one should talk about prime
ideals).

3. The product of ramified primes is a basic parameter characterizing extension. Preferred
p-adic primes would naturally correspond to the ramified primes. p-Adic continuations iden-
tifiable as imaginations would be due to the existence of p-adic pseudo-constants. The con-
tinuation could fail for most configurations of partonic 2-surfaces and string world sheets in
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the real sector: the interpretation would be that some space-time surfaces can be imagined
but not realized [K48]. For certain extensions the number of realizable imaginations could
be exceptionally large. These extensions would be winners in the number theoretic fight for
survivalandcorresponding ramified primes would be preferred p-adic primes.

NMP [K41] in turn could allow to understand why the p-adic primes near but below powers
of primes are favored: p ' pk1 . The original form of the p-adic length scale hypothesis
corresponds to p1 = 2.

This justifies the basic picture implied by p-adic mass calculations and allows to generalize
canonical identification as a map taking real values of various group invariants (inner products
of four-momenta, etc..) to their p-adic counterparts as one algebraically continues scattering
amplitudes from the intersection to various number fields.

4. The reasonable expectation is that coupling constant evolution reduces to the evolution of
complexity for the algebraic extensions of rationals and is thus discretized and that the
preferred primes serve as parameters defining p-adic length scales appearing in the p-adic
length scale evolution as varying parameters.

5. Infinite primes at the lowest level representing bound states label can be mapped to polyno-
mials, and parametrize irreducible extensions of rationals so that coupling constant evolution
corresponds to evolution at the level of infinite primes too. An interesting question concerns
the meaning of higher level infinite primes mappable to polynomials of several variables.

To sum up, the number theoretical vision has become rather concrete.

22.3.3 Could Correlation Functions, S-Matrix, And Coupling Constant
Evolution Be Coded The Statistical Properties Of Preferred Ex-
tremals?

How to calculate the correlation functions and coupling constant evolution has remained a basic
unresolved challenge. Generalized Feynman diagrams provide a powerful vision which however
does not help in practical calculations. Some big idea has been lacking.

Quantum classical correspondence states that all aspects of quantum states should have
correlates in the geometry of preferred extremals. In particular, various elementary particle propa-
gators should have a representation as properties of preferred extremals. This would allow to realize
the old dream about being able to say something interesting about coupling constant evolution
although it is not yet possible to calculate the M-matrices and U-matrix. The general structure
of U-matrix is however understood [K91]. Hitherto everything that has been said about coupling
constant evolution has been rather speculative arguments except for the general vision that it re-
duces to a discrete evolution defined by p-adic length scales. General first principle definitions are
however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quan-
tum state should code for its properties. By quantum classical correspondence these correlation
functions should have counterparts in the geometry of preferred extremals. Even more: these
classical counterparts for a given preferred extremal ought to be identical with the quantum corre-
lation functions for the superposition of preferred extremals. This correspondence could be called
quantum ergodicity by its analogy with ordinary ergodicity stating that the member of ensemble
becomes representative of ensemble.

This principle would be a quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This symmetry
principle analogous to holography might allow to fix S-matrix uniquely even in the case that the
hermitian square root of the density matrix appearing in the M-matrix would lead to a breaking
of quantum ergodicity as also 4-D spin glass degeneracy suggests.

This principle would allow to deduce correlation functions from the statistical properties of
single preferred extremal alone using just classical intuition. Also coupling constant evolution would
be coded by the statistical properties of preferred extremals. Quantum ergodicity would mean an
enormous simplification since one could avoid the horrible conceptual complexities involved with
the functional integrals over WCW .
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This might of course be too optimistic guess. If a sub-algebra of symplectic algebra acts as
gauge symmmetries of the preferred extremals in the sense that corresponding Noether charges van-
ish, it can quite well be that correlations functions correspond to averages for extremals belonging
to single conformal equivalence class.

1. The marvellous implication of quantum ergodicity would be that one could calculate every-
thing solely classically using the classical intuition - the only intuition that we have. Quantum
ergodicity would also solve the paradox raised by the quantum classical correspondence for
momentum eigenstates. Any preferred extremal in their superposition defining momentum
eigenstate should code for the momentum characterizing the superposition itself. This is
indeed possible if every extremal in the superposition codes the momentum to the properties
of classical correlation functions which are identical for all of them.

2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical proper-
ties of the preferred extremals. It should be possible to generalize the ergodic theorem stating
that the properties of statistical ensemble are represented by single space-time evolution in
the ensemble of time evolutions. Quantum superposition of classical worlds would effectively
reduce to single classical world as far as classical correlation functions are considered. The
notion of finite measurement resolution suggests that one must state this more precisely by
adding that classical correlation functions are calculated in a given UV and IR resolutions
meaning UV cutoff defined by the smallest CD and IR cutoff defined by the largest CD
present.

3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that
this quantum ergodic theorem must be broken. In the case of the ordinary spin classes
one has not only statistical average for a fixed Hamiltonian but a statistical average over
Hamiltonians. There is a probability distribution over the coupling parameters appearing in
the Hamiltonian. Maybe the quantum counterpart of this is needed to predict the physically
measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with
different classical correlation functions? This kind of average is indeed taken in density
matrix formalism. Or could it be that the square root of thermodynamics defined by ZEO
actually gives automatically rise to this average? The eigenvalues of the “hermitian square
root” of the density matrix would code for components of the state characterized by different
classical correlation functions. One could assign these contributions to different “phases”.

4. Quantum classical correspondence in statistical sense would be very much like holography
(now individual classical state represents the entire quantum state). Quantum ergodicity
would pose a rather strong constraint on quantum states. This symmetry principle could
actually fix the spectrum of zero energy states to a high degree and fix therefore the M-
matrices given by the product of hermitian square root of density matrix and unitary S-
matrix and unitary U-matrix constructible as inner products of M-matrices associated with
CDs with various size scales [K91].

5. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the pos-
tulate that the space-time geometry provides a symbolic representation for the quantum
states and also for the contents of consciousness assignable to quantum jumps between quan-
tum states. Quantum ergodicity would realize this strongly self-referential looking condition.
The positive and negative energy parts of zero energy state would be analogous to the initial
and final states of quantum jump and the classical correlation functions would code for the
contents of consciousness like written formulas code for the thoughts of mathematician and
provide a sensory feedback.

How classical correlation functions should be defined?

1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the defi-
nition. These are achieved for the space-time regions with Minkowskian signature and 4-D
M4 projection if linear Minkowski coordinates are used. This is equivalent with the contrac-
tion of the indices of tensor fields with the space-time projections of M4 Killing vector fields
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representing translations. Accepting ths generalization, there is no need to restrict oneself
to 4-D M4 projection and one can also consider also Euclidian regions identifiable as lines of
generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2 Killing
vector fields can be projected to space-time surface and give a representation for classical
gluon fields. These in turn can be contracted with M4 Killing vectors giving rise to gluon
fields as analogs of graviton fields but with second polarization index replaced with color
index.

2. The standard definition for the correlation functions associated with classical time evolution is
the appropriate starting point. The correlation function GXY (τ) for two dynamical variables
X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t + τ)dt/T over an interval of

length T , and one can also consider the limit T →∞. In the recent case one would replace τ
with the difference m1 −m2 = m of M4 coordinates of two points at the preferred extremal
and integrate over the points of the extremal to get the average. The finite time interval T is
replaced with the volume of causal diamond in a given length scale. Zero energy state with
given quantum numbers for positive and negative energy parts of the state defines the initial
and final states between which the fields appearing in the correlation functions are defined.

3. What correlation functions should be considered? Certainly one could calculate correlation
functions for the induced spinor connection given electro-weak propagators and correlation
functions for CP2 Killing vector fields giving correlation functions for gluon fields using
the description in terms of Killing vector fields. If one can uniquely separate from the
Fourier transform uniquely a term of form Z/(p2 −m2) by its momentum dependence, the
coefficient Z can be identified as coupling constant squared for the corresponding gauge
potential component and one can in principle deduce coupling constant evolution purely
classically. One can imagine of calculating spinorial propagators for string world sheets in the
same manner. Note that also the dependence on color quantum numbers would be present so
that in principle all that is needed could be calculated for a single preferred extremal without
the need to construct QFT limit and to introduce color quantum numbers of fermions as spin
like quantum numbers (color quantum numbers corresponds to CP2 partial wave for the tip
of the CD assigned with the particle).

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion
of quantum ergodicity could however be one of the really deep ideas about coupling constant evolu-
tion comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly
QE) would also state something extremely non-trivial also about the construction of correlation
functions and S-matrix. Because this principle is so new, the rest of the chapter does not yet
contain any applications of QE. This should not lead the reader to under-estimate the potential
power of QE.

22.4 P-Adic Coupling Constant Evolution

p-Adic coupling constant evolution is one of the genuinely new elements of quantum TGD. In the
following some aspects of the evolution will be discussed. The discussion is a little bit obsolete as
far as the role of canonical identification is considered. The most recent view about p-adic coupling
constant evolution is discussed at the end of the section.

22.4.1 General Considerations

One of the basic challenges of quantum TGD is to understand whether the notion of p-adic coupling
constant evolution is something related to the basic TGD or whether it emerges at GRT and QFT
limits only.

1. Since neither classical field equations for Kähler action nor Kähler-Dirac action depend on
coupling constants except as overall multiplicative normalization factor, one expects that at
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the level of TGD space-time the notion of coupling constant evolution is not well-defined or
at least fails to be a fundamental notion. Coupling constant evolution would characterize
GRT and QFT limits of TGD and since causal diamond (CD) is the basic unit, the scale of
CD would serve as a fundamental scale.

What would give rise to the ordinary continuous coupling constant evolution at long length
scales, would be the replacement of many-sheeted space-time with GRT space-time containing
gauge potentials which are sums of induced gauge potentials associated with various space-
time sheets. The increase in the size of CD would induce the scaling of the size of the
space-time sheet. Hence the geometric correlate for coupling constant evolution would be
the scaling of CD size. The original belief was that it would be scaling of the size of the
space-time sheet.

2. The original view was that there are two separate coupling constant evolutions: one asso-
ciated with p-adic length scale hierarchy and second associated with angle resolution and
characterized by the hierarchy of Planck constants. In the recent view these evolutions are
unified to a number theoretic evolution in terms of increasing complexity of an algebraic
extension of rational numbers inducing also the extensions of p-adic number fields. Space-
time and quantum physics become adelic. The algebraic extensions are associated with the
parameters characterizing partonic 2-surfaces and string world sheets, which by strong form
of holography determine space-time surfaces as preferred extremals of Kähler action. The
crucial number theoretical universality necessary for the adelization is almost trivially real-
ized by algebraic continuation from the intersection of realities and p-adicities defined by the
2-surfaces with parameters in algebraic extensions of rationals.

Preferred p-adic primes emerge naturally in the number theoretic vision as so called ramified
primes of the algebraic extension. One can also deduce a generalization of p-adic length scale
hypothesis in terms of Negentropy Maximization Principle (NMP) [K41]. Hence

3. At the fundamental level this evolution is discrete by p-adic length scale hypothesis justified
by zero energy ontology, where CD sizes are assumed to come as integer multiples of CP2

mass: the discretization is for number theoretical reasons and gives hopes of number theoret-
ical universality. The most general option is that the CD sizes come as integer multiples of
CP2 size. Discreteness means that continuous mass scale is replaced by mass scales coming
square root prime multiples of CP2 mass. Obviously continuous evolution is an excellent
approximation in elementary particle p-adic mass scales. p-Adic length scale hypothesis al-
lows only half octaves of CP2 mass. Kähler coupling strength αK or gravitational coupling
constant is assumed to remain invariant under p-adic coupling constant evolution. The ba-
sic problem is to understand the value of αK and here p-adic mass calculations give strong
constraints.

4. The realization that well-definedness of em charge requires the localization of the modes
of the induced spinor field to string world sheets or partonic 2-surfaces was an important
step in the process of understanding super-symplectic and other symmetries, and has led to
the recent realization that strong form of holography is realized for string world sheets and
partonic 2-surfaces by continuing them to preferred extremals of Kähler action.

Coupling constant evolution should allow a reduction to string model type description. The
ordinary AdS/CFT correspondence between n− 1-D conformal field theory in AdSn × S5 is
modified. Super-symplectic generalization of conformal field theory is associated with string
world sheets and partonic 2-surfaces and 10-D bulk containing strings is replaced with space-
time surface contained in M4 × CP2. This holography looks very much like old-fashioned
holography.

This framework has powerful physical implications. Gravitationally bound states correspond
to partonic 2-surfaces connected by fermionic strings. The ordinary string theory picture with
string tension defined by Planck length would not allow gravitationally bound states above
Planck length scale. The string tension is however dynamical since effective stringy action
can be assigned to the effective metric defined by Kähler-Dirac gamma matrices appearing
in the K-D equation. The value of string tension must characterize the value of Kähler
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action by strong form of holography, and it decreases in long length scales by its 1/h2
eff -

proportionality. How 1/h2
eff proportionality might be understood is discussed in [K106] in

terms electric-magnetic duality.

Quantum gravitational coherence is present in astrophysical scales and assignable to the large
values of heff = hgr, where ~gr = GMm/v0, v0/c < 1, with v0 having dimensions of velocity,
is gravitational Planck constant characterizing magnetic flux tubes mediating gravitational
interaction between masses M and m [K66]. v0 is of the order of magnitude for a typical
rotational velocity in the system. Hadronic string tension can be also understand as this
kind of string tension.

Gravitational quantum coherence is predicted in astrophysical scales, and dark matter is
macroscopically quantum coherent. In this framework superstring models give quantum
gravitation in Planck length scale but the proposed QFT based vision about long length scale
limit must be seen as a figment of bad imagination leading to the landscape catastrophe and
total loss of predictive power.

5. If weak form of electric magnetic duality and j ·A = 0 condition for Kähler current and gauge
potential in the interior of space-time sheets are satisfied, Kähler action reduces to Chern-
Simons terms at light-like partonic orbits and space-like 3-surfaces at the ends of space-time
surface. Induced metric would apparently disappear from the action in accordance with the
idea about TGD as almost topological QFT.

22.4.2 How P-Adic And Real Coupling Scattering Amplitudes Are Re-
lated To Each Other?

p-Adic and real scattering amplitudes would be obtained from the amplitudes having values in the
intersection of reality and p-adicities corresponding to a particular algebraic extension of rationals
inducing those of p-adic number fields.

1. The algebraic intersection of reality and various p-adicities would be defined by string world
sheets and partonic 2-surfaces. The amplitudes in the intersection are algebraically uni-
versal amplitudes having the same values as numbers of algebraic extension in any number
field. Unitary is satisfied and symmetries respected in their discrete versions. This requires
that various quantum numbers such as momenta belong to the algebraic extension of ratio-
nals. One might say that scattering amplitudes in algebraic extension are kind of genes for
scattering amplitudes in various number fields and define adelic S-matrix as the analog of
finite-dimensional adelic matrices appearing in Langlands program.

2. This kind of direct identification of real and p-adic amplitudes cannot be continuous if one
allows all possible values of the parameters - say various Lorentz invariants appearing in the
amplitude. The possibility of p-adic pseudo-constants allows the identification via common
algebraics if one poses a cutoff and performs the algebraic identification only for the discrete
set of parameters in the extension defined by the cutoff. The values of amplitudes for arbitrary
reals and p-adics are obtained by algebraic continuation of these amplitudes to real and p-adic
sectors. Unitarity and symmetries should fix the continuation highly uniquely.

Both UV and IR cutoffs are necessary: otherwise arbitrarily large/small algebraic numbers in
p-adic topology (proportional to negative/positive power of p) could correspond to arbitrarily
small/large algebraic numbers in real topology.

3. This is not the only possible definition of the scattering amplitudes in the intersection. The
definition of intersection of real and p-adic variants of WCWs does not introduce discretiza-
tion at space-time level but at the level of parameter space characterizing the space of string
world sheets and partonic 2-surfaces. Also in the case of scattering amplitudes a more ab-
stract manner to define the intersection would use (say) Lorentz invariant rational functions
of four-momenta and of other parameters with coefficients belonging to the algebraic exten-
sion of rationals. The algebraic continuation would be reduced to that for the parameters
whereas the arguments of these function could be taken to belong the appropriate number
field. This is certainly the more elegant option.
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Is there any need for canonical identification or some of its variants with IR and UV cutoffs
mapping real momenta/Lorentz invariants formed from them to p-adic ones and vice versa?

1. Canonical identification does not seem to be absolutely necessary. The correlates of matter
and mind are independent below the resolution outside the set of the parameter values
belonging to the algebraic intersection with cutoffs: dynamics for cognition would not reduce
to that for matter.

p-Adic mass calculations [K100] however suggest that canonical identification maps p-adic
mass squared to its real counterpart. This map would assign to real mass scale its p-adic
counterpart and would be essential for the physical interpretation of p-adic mass calculations.
p-Adic/real mass squared can be generalized to Lorentz invariants defined by 4-momenta.
The modification of the canonical identification would co-incide with the direct identification
as algebraic numbers inside the range of parameters defining the intersection and map the
powers of p above a upper cutoff to their inverses to achieve continuity.

2. The minimal assumption would be that some variant of canonical identification with cutoffs
applies only to Lorentz invariants (for the variants of canonical identification see [K71].

(a) This kind of variant would map the coefficients of powers of pM to itself but invert the
powers. It could also map rationals m/n to I(m)/I(n). This kind of map would allow
to assign to real scattering amplitudes p-adic scattering amplitudes with the same real
values of Lorentz invariants defined by canonical identification.

(b) A stronger correspondence would be obtained by mapping also the resulting p-adic
scattering amplitudes to real ones by some variant of the canonical identification. The
deviations between the two amplitudes should not be large if p-adic physics allows precise
cognitive representations. p-Adic description mapped to real context might mean huge
simplification as it indeed does in the case of p-adic mass calculations.

3. There is no need to apply canonical identification at space-time level. It has indeed become
clear that canonical identification is ugly at space-time level although I was for some time
enthusiastic about it [K104]. Strong form of holography however allows to realize the corre-
spondence between real and p-adic space-time surfaces as a non-local correspondence since
string world sheets and partonic 2-surfaces serve as “genes of space-time” and the correspon-
dence between p-adicities and realities identified as space-time surfaces becomes non-local.

A further objection against the continuation from the algebraic intersection is based on the
fact that non-algebraic transcendentals like π appear in the real scattering amplitudes. Could the
counterpart of 2π in algebraic extension be defined as N ×sin(2π/N), where sin(2π/N) define the
smallest angle in the abelian algebraic extension containing roots of unity? In the real sector the
limit could be taken to give 2/pi. One can wonder whether the positivity of the real numbers as
Cartesian factor of ideles (invertible adeles) could somehow relate to the positive Grassmannians
encountered in the twistor approach.

How to achieve consistency with the unitarity of topological mixing matrices and of
CKM matrix?

It is easy to invent an objection against the proposed relationship between p-adic and real coupling
constants. Topological mixing matrices U , D and CKM matrix V = U†D define an important part
of the electro-weak coupling constant structure and appear also in coupling constants. The problem
is that canonical identification does not respect unitarity and does not commute with the matrix
multiplication in the general case unlike gluing along common rationals. Even if matrices U and D
which contain only ratios of integers smaller than p are constructed, the construction of V might
be problematic since the products of two rationals can give a rational q = r/s for which r or s or
both are larger than p.

One might hope that the objection could be circumvented if the ratios of the integers of
the algebraic extension defining the matrix elements of CKM matrix are such that the integer
components of algebraic integers are smaller than p in U and D and even the products of integers
in U†D satisfy this condition so that modulo p arithmetics is avoided.
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In the standard parameterization all matrix elements of the unitarity matrix can be expressed
in terms of real and imaginary parts of complex phases (p mod 4 = 3 guarantees that

√
−1 is

not an ordinary p-adic number involving infinite expansion in powers of p). These phases are
expressible as products of Pythagorean phases and phases in some algebraic extension of rationals.

1. Pythagorean phases defined as complex rationals [r2 − s2 + i2rs]/(r2 + s2) are an obvious
source of potential trouble. However, if the products of complex integers appearing in the
numerators and denominators of the phases have real and imaginary parts smaller than p it
seems to be possible to avoid difficulties in the definition of V = U†D.

2. Pythagorean phases are not periodic phases. Algebraic extensions allow to introduce periodic
phases of type exp(iπm/n) expressible in terms of p-adic numbers in a finite-dimensional
algebraic extension involving various roots of rationals. Also in this case the product U†D
poses conditions on the size of integers appearing in the numerators and denominators of the
rationals involved.

If the expectation that topological mixing matrices and CKM matrix characterize the dy-
namics at the level p ' 2k, k = 107, is correct, number theoretical constraints are not expected to
bring much new to what is already predicted. Situation changes if these matrices appear already
at the level k. For k = 89 hadron physics the restrictions would be even stronger and might force
much simpler U , D and CKM matrices.

k-adicity constraint would have even stronger implications for S-matrix and could give very
powerful constraints to the S-matrix of color interactions. Quite generally, the constraints would
imply a p-adic hierarchy of increasingly complex S-matrices: kind of a physical realization for
number theoretic emergence. The work with CKM matrix has shown how powerful the number
theoretical constraints are, and there are no reasons to doubt that this could not be the case also
more generally since in the lowest order the construction would be carried out in finite (Galois)
fields G(p, k).

22.4.3 How Could P-Adic Coupling Constant Evolution And P-Adic
Length Scale Hypothesis Emerge From Quantum TGD Proper?

What p-adic coupling constant evolution really means has remained for a long time more or less
open. The progress made in the understanding of the S-matrix of theory has however changed the
situation dramatically.

M-matrix and coupling constant evolution

A breakthrough in the understanding of p-adic coupling constant evolution came through the un-
derstanding of S-matrix, or actually M-matrix defining entanglement coefficients between positive
and negative energy parts of zero energy states in ZEO [K13] . M-matrix has interpretation as a
“complex square root” of density matrix and thus provides a unification of thermodynamics and
quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude multiplying positive
and real square root of density matrix analogous to modulus of Schrödinger amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neu-
mann algebras allows to demonstrate that the irreducible components of M-matrix are unique and
possesses huge symmetries in the sense that the hermitian elements of included factor N ⊂ M
defining the measurement resolution act as symmetries of M-matrix, which suggests a connection
with integrable quantum field theories.

As discussed in [K62] and in the earlier chapter about number theoretical vision, it is also
possible to understand coupling constant evolution as a discretized evolution associated with time
scales Tn, which come as integer multiples of a fundamental time scale: Tn = n×T0. p-Adic length
scale hypothesis allows to consider a stronger hypothesis Tn = 2nT0 and a slightly more general
hypothesis Tn = pnT0, p prime. It seems that these scales are dynamically favored but that also
other scales are possible.

Number theoretic universality requires that renormalized coupling constants are rational
or at most algebraic numbers and this is achieved by this discretization since the logarithms of
discretized mass scale appearing in the expressions of renormalized coupling constants reduce to the
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form log(2n) = nlog(2) and with a proper choice of the coefficient of logarithm log(2) dependence
disappears so that rational number results. Recall that also the weaker condition Tp = pT0, p
prime, would assign secondary p-adic time scales to the size scale hierarchy of CDs: p ' 2n would
result as an outcome of some kind of “natural selection” for this option. The highly satisfactory
feature would be that p-adic time scales would reflect directly the geometry of imbedding space
and WCW.

The origin of the preferred p-adic length scales

This question was posed already for two decades ago has but remained without a convincing
answer. Quite recently however the number theoretical vision allowed to understand both the
origin of preferred p-adic number fields and the emergence of p-adic length scale hypothesis in a
generalized form. Preferred primes are near but below powers prime which can be also larger that
p = 2.

The preferred primes could correspond to so called ramified rational primes, which split in
to products of the primes of the extension. If some prime appears as higher than first power, one
has ramification. The number of ramified primes is finite.

In strong form of holography p-adic continuations of 2-surfaces to preferred extremals iden-
tifiable as imaginations would be easy due to the existence of p-adic pseudo-constants. The con-
tinuation could fail for most configurations of partonic 2-surfaces and string world sheets in the
real sector: the interpretation would be that some space-time surfaces can be imagined but not
realized [K48]. For certain extensions the number of realizable imaginations could be exceptionally
large. These extensions would be winners in the number theoretic fight for survivalandcorrespond-
ing ramified primes would be preferred p-adic primes.

Weak form of NMP allows to understand the emergence of preferred p-adic length scales.
NMP favors ramified primes, for which the integer n is power of single prime p. If n is a prime
slightly below nmax = pn defining the dimension of the sub-space corresponding to maximal
negentropy gain, weak form of NMP favors its selection since the p-adic topology is farthest from
the discrete topology assignable to formal p-adic topology characterized by p = 1 [K111].

22.5 Quantitative Guesses For The Values Of Coupling Con-
stants

This focus of attention in this section is in quantitative for the p-adic evolution of couplings
constants obtained by combining information coming from p-adic mass calculations with number
theoretic constraints and general formula for gravitational constant inspired by a simple physical
picture.

Only educated (if even this) guesses are in question since real understanding of coupling
constant evolution has begun to emerge only rather recently (2014) as the relationship between
TGD and GRT and QFT was finally clarified.

The quite recent powerful results following from strong form of holography, adelic vision
about space-time allowing to realize number theoretical universality, and from the vision that
scattering amplitudes can be seen as representations for computational sequences in in Yangian
[A27] [B39, B30, B31] of super-symplectic algebra have not been taken account at all.

The most recent idea is that exponent of Kähler action is number theoretically universal
for preferred extremals and that also coupling constants are number theoretically universal [K111].
These conditions are extremely powerful and force to modify the earlier ad hoc ideas about number
theoretic anatomy of Kähler coupling strength. Therefore this section is not a summary of final
results but summary of various approaches to a difficult problem.

The view about coupling constant evolution has changed radically during 2016-2017 [L16,
L22, L24, L38] as the number theoretic vision about TGD as adelic physics and the vision about
twistor lift of TGD have co-evolved. Number theoretic vision has extremely powerful consequences
and has led to amazingly simple proposals for the scattering amplitudes and coupling constant
evolution. The following arguments trying to guess values of coupling constants are in the light of
the new vision simply wrong so that this section can be regarded more or less as a curiosity.
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22.5.1 A Revised View About Coupling Constant Evolution

The development of the ideas related to number theoretic aspects has been rather tortuous and
based on guess work since basic theory has been lacking.

1. The original hypothesis was that Kähler coupling strength is invariant under p-adic coupling
constant evolution. Later I gave up this hypothesis and replaced it with the invariance
of gravitational coupling since otherwise the prediction would have been that gravitational
coupling strength is proportional to p-adic length scale squared. Second first guess was that
Kähler coupling strength equals to the value of fine structure constant at electron length
scale corresponding to Mersenne prime M127. Later I replaced fine structure constant with
electro-weak U(1) coupling strength at this length scale. The recent discussion returns back
to the roots in both aspects.

2. The recent discussion relies on the progress made in the understanding of quantum TGD at
partonic level [K88]. What comes out is an explicit formula for Kähler couplings strength
in terms of Dirac determinant involving only a finite number of eigenvalues of the Kähler-
Dirac operator. This formula dictates the number theoretical anatomy of g2

K and also of other
coupling constants: the most general option is that αK is a root of rational. The requirement
that the rationals involved are simple combined with simple experimental inputs leads to very
powerful predictions for the coupling parameters.

3. A further simplification is due to the discreteness of p-adic coupling constant evolution al-
lowing to consider only length scales coming as powers of

√
2. This kind of discretization is

necessary also number theoretically since logarithms can be replaced with 2-adic logarithms
for powers of 2 giving integers. This raises the question whether p ' 2k should be replaced
with 2k in all formulas as the recent view about quantum TGD suggests.

4. The prediction is that Kähler coupling strength αK is invariant under p-adic coupling con-
stant evolution and from the constraint coming from electron and top quark masses very
near to fine structure constant so that the identification as fine structure constant is nat-
ural. Gravitational constant is predicted to be proportional to p-adic length scale squared
and corresponds to the largest Mersenne prime (M127), which does not correspond to a
completely super-astronomical p-adic length scale. For the parameter R2/G p-adicization
program allows to consider two options: either this constant is of form eq or 2q: in both cases
q is rational number. R2/G = exp(q) allows only M127 gravitons if number theory is taken
completely seriously. R2/G = 2q allows all p-adic length scales for gravitons and thus both
strong and weak variants of ordinary gravitation.

5. A relationship between electromagnetic and color coupling constant evolutions based on
the formula 1/αem + 1/αs = 1/αK is suggested by the induced gauge field concept, and
would mean that the otherwise hard-to-calculate evolution of color coupling strength is fixed
completely. The predicted value of αs at intermediate boson length scale is correct.

It seems fair to conclude that the attempts to understand the implications of p-adicization
for coupling constant evolution have begun to bear fruits.

General formula for the Kähler coupling strength

The identification of exponent of Kähler function as Dirac determinant leads to a formula relating
Kähler action for the preferred extremal to the Dirac determinant. The eigenvalues are proportional
to 1/αK since the matrices Γ̂α have this proportionality. This gives the formula

exp(
SK,R(X4(X3))

2g2
K

) =
∏
i

λi =

∏
i λ0,i

(gK)2N
. (22.5.1)

Here λ0,i by definition corresponds to g2
K = 4παK = 1. SK,R =

∫
J∗J is the reduced Kähler

action.
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For SK,R = 0, which might correspond to so called massless extremals [K7] one obtains the
formula

g2
K = (

∏
i

λ0,i)
1/N . (22.5.2)

Thus for SK,R = 0 extremals one has an explicit formula for g2
K having interpretation as the

geometric mean of the eigenvalues λ0,i. Several values of αK are in principle possible.
p-Adicization suggests that λ0,i are rational or at most algebraic numbers. This would mean

that g2
K is N : th root of this kind of number. SK,R in turn would be

SK,R = 2g2
K log(

∏
i λ0,i

g2N
K

) . (22.5.3)

so that the reduced Kähler action SK,R would be expressible as a product N : th root of rational,
and logarithm of rational. This result would provide a general answer to the question about number
theoretical anatomy of Kähler coupling strength and SK .

For CP2 type vacuum extremal one would have SK,R = π2

2 in apparent conflict with the
above result. The conflict is of course only apparent since topological condensation of CP2 type
vacuum extremal generates a hole in CP2 having light-like wormhole throat as boundary so that
the value of the action is modified.

Identifications of Kähler coupling strength and gravitational coupling strength

To construct an expression for gravitational constant one can use the following ingredients.

1. The exponent exp(SK(CP2)) defining vacuum functional and thus the value of Kähler func-
tion in terms of the Kähler action SK(CP2) of CP2 type extremal representing elementary
particle expressible as

SK(CP2) =
SK,R(CP2)

8παK
=

π

8αK
. (22.5.4)

Since CP2 type extremals suffer topological condensation, one expects that the action is
modified:

SK(CP2) → a× SK(CP2) . (22.5.5)

a < 1 conforms with the idea that a piece of CP2 type extremal defining a wormhole contact
is in question. One must however keep mind open in this respect.

2. The p-adic length scale Lp assignable to the space-time sheet along which gravitational
interactions are mediated. Since Mersenne primes seem to characterized elementary bosons
and since the Mersenne prime M127 = 2127−1 defining electron length scale is the largest non-
super-astronomical length scale it is natural to guess that M127 characterizes these space-time
sheets.

1. The formula for the gravitational constant

A long standing basic conjecture has been that gravitational constant satisfies the following
formula

~G ≡ r~0G = L2
p × exp(−2aSK(CP2)) ,

Lp =
√
pR . (22.5.6)
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Here R is CP2 radius defined by the length 2πR of the geodesic circle. What was noticed before
is that this relationship allows even constant value of G if a has appropriate dependence on p.

This formula seems to be correct but the argument leading to it was based on two erratic
assumptions compensating each other.

1. I assumed that modulus squared for vacuum functional is in question: hence the factor 2a
in the exponent. The interpretation of zero energy state as a generalized Feynman diagram
requires the use of vacuum functional so that the replacement 2a→ a is necessary.

2. Second wrong assumption was that graviton corresponds to CP2 type vacuum extremal-
that is wormhole contact in the recent picture. This does allow graviton to have spin 2.
Rather, two wormhole contacts represented by CP2 vacuum extremals and connected by
fluxes associated with various charges at their throats are needed so that graviton is string
like object. This saves the factor 2a in the exponent.

The highly non-trivial implication to be discussed later is that ordinary coupling constant
strengths should be proportional to exp(−aSK(CP2)).

The basic constraint to the coupling constant evolution comes for the invariance of g2
K in

p-adic coupling constant evolution:

g2
K =

a(p, r)π2

log(pK)
,

K =
R2

~G(p)
=

1

r

R2

~0G(p)
≡ K0(p)

r
. (22.5.7)

2. How to guarantee that g2
K is RG invariant and N : th root of rational?

Suppose that g2
K is N : th root of rational number and invariant under p-adic coupling

constant evolution.

1. The most general manner to guarantee the expressibility of g2
K as N : th root of rational is

guaranteed for both options by the condition

a(p, r) =
g2
K

π2
log(

pK0

r
) . (22.5.8)

That a would depend logarithmically on p and r = ~/~0 looks rather natural. Even the
invariance of G under p-adic coupling constant evolution can be considered.

2. The condition

r

p
< K0(p) . (22.5.9)

must hold true to guarantee the condition a > 0. Since the value of gravitational Planck con-
stant is very large, also the value of corresponding p-adic prime must very large to guarantee
this condition. The condition a < 1 is guaranteed by the condition

r

p
> exp(− π

2

g2
K

)×K0(p) . (22.5.10)

The condition implies that for very large values of p the value of Planck constant must be
larger than ~0.
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3. The two conditions are summarized by the formula

K0(p)× exp(− π
2

g2
K

) <
r

p
< K0(p) (22.5.11)

characterizing the allowed interval for r/p. If G does not depend on p, the minimum value

for r/p is constant. The factor exp(− π2

g2
K

) equals to 1.8× 10−47 for αK = αem so that r > 1

is required for p ≥ 4.2 × 10−40. M127 ∼ 1038 is near the upper bound for p allowing r = 1.
The constraint on r would be roughly r ≥ 2k−131 and p ' 2131 is the first p-adic prime for
which ~ > 1 is necessarily. The corresponding p-adic length scale is.1 Angstroms.

This conclusion need not apply to elementary particles such as neutrinos but only to the
space-time sheets mediating gravitational interaction so that in the minimal scenario it would
be gravitons which must become dark above this scale. This would bring a new aspect to
vision about the role of gravitation in quantum biology and consciousness.

The upper bound for r behaves roughly as r < 2.3× 107p. This condition becomes relevant
for gravitational Planck constant GM1M2/v0 having gigantic values. For Earth-Sun system
and for v0 = 2−11 the condition gives the rough estimate p > 6 × 1063. The corresponding
p-adic length scale would be of around L(215) ∼ 40 meters.

4. p-Adic mass calculations predict the mass of electron as m2
e = (5 + Ye)2

−127/R2 where
Ye ∈ [0, 1) parameterizes the not completely known second order contribution. Top quark
mass favors a small value of Ye (the original experimental estimates for mt were above the
range allowed by TGD but the recent estimates are consistent with small value Ye [K47] ).
The range [0, 1) for Ye restricts K0 = R2/~0G to the range [2.3683, 2.5262]× 107.

5. The best value for the inverse of the fine structure constant is 1/αem = 137.035999070(98)
and would correspond to 1/g2

K = 10.9050 and to the range (0.9757, 0.9763) for a for ~ = ~0

and p = M127. Hence one can seriously consider the possibility that αK = αem(M127 holds
true. As a matter fact, this was the original hypothesis but was replaced later with the
hypothesis that αK corresponds to electro-weak U(1) coupling strength in this length scale.
The fact that M127 defines the largest Mersenne prime, which does not correspond to super-
astrophysical length scale might relate to this co-incidence.

To sum up, this view about coupling constant evolution differs strongly from previous much
more speculative scenarios. It implies that g2

K is root of rational number, possibly even rational,
and can be assumed to be equal to e2. Also R2/~G could be rational. The new element is that G
need not be proportional to p and can be even invariant under coupling constant evolution since
the parameter a can depend on both p and r. An unexpected constraint relating p and r for
space-time sheets mediating gravitation emerges.

Algebraic universality and the value of Kähler coupling strength

With the development of the vision about number theoretically universal view about functional
integration in WCW [K111], a concrete vision about the exponent of Kähler action in Euclidian
and Minkowskian space-time regions. The basic requirement is that exponent of Kähler action
belongs to an algebraic extension of rationals and therefore to that of p-adic numbers and does
not depend on the ordinary p-adic numbers at all - this at least for sufficiently large primes p.
Functional integral would reduce in Euclidian regions to a sum over maxima since the troublesome
Gaussian determinants that could spoil number theoretic universality are cancelled by the metric
determinant for WCW.

The adelically exceptional properties of Neper number e, Kähler metric of WCW, and strong
form of holography posing extremely strong constraints on preferred extremals, could make this
possible. In Minkowskian regions the exponent of imaginary Kähler action would be root of unity.
In Euclidian space-time regions expressible as power of some root of e which is is unique in sense
that ep is ordinary p-adic number so that e is p-adically an algebraic number - p:th root of ep.
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These conditions give conditions on Kähler coupling strength αK = g2
K/4π (~ = 1)) identi-

fiable as an analog of critical temperature. Quantum criticality of TGD would thus make possible
number theoretical universality (or vice versa).

1. In Euclidian regions the natural starting point is CP2 vacuum extremal for which the maxi-
mum value of Kähler action is

SK =
π2

2g2
K

=
π

8αK
.

The condition reads SK = q if one allows roots of e in the extension. If one requires minimal
extension of involving only e and its powers one would have SK = n. One obtains

1

αK
=

8q

π
,

where the rational q = m/n can also reduce to integer. One cannot exclude the possibiity
that q depends on the algebraic extension of rationals defining the adele in question [K111].

For CP2 type extremals the value of p-adic prime should be larger than pmin = 53. One can
consider a situation in which large number of CP2 type vacuum extremals contribute and
in this case the condition would be more stringent. The condition that the action for CP2

extremal is smaller than 2 gives

1

αK
≤ 16

π
' 5.09 .

It seems there is lower bound for the p-adic prime assignable to a given space-time surface
inside CD suggesting that p-adic prime is larger than 53×N , where N is particle number.

This bound has not practical significance. In condensed matter particle number is propor-
tional to (L/a)3 - the volume divided by atomic volume. On basis p-adic mass calcula-
tions [K39] p-Adic prime can be estimated to be of order (L/R)2. Here a is atomic size
of about 10 Angstroms and R CP2 “radius”. Using R ' 104LPlanck this gives as upper
bound for the size L of condensed matter blob a completely super-astronomical distance
L ≤ a3/R2 ∼ 1025 ly to be compared with the distance of about 1010 ly travelled by light
during the lifetime of the Universe. For a blackhole of radius rS = 2GM with p ∼ (2GM/R)2

and consisting of particles with mass above M ' ~/R one would obtain the rough estimate
M > (27/2)× 10−12mPlanck ∼ 13.5× 103 TeV trivially satisfied.

2. The physically motivated expectation from earlier arguments - not necessarily consistent
with the recent ones - is that the value αK is quite near to fine structure constant at electron
length scale: αK ' αem ' 137.035999074(44).

The latter condition gives n = 54 = 2× 33 and 1/αK ' 137.51. The deviation from the fine
structure constant is ∆α/α = 3× 10−3 – .3 per cent. For n = 53 one obtains 1/αK = 134.96
with error of 1.5 per cent. For n = 55 one obtains 1/αK = 150.06 with error of 2.2 per
cent. Is the relatively good prediction could be a mere accident or there is something deeper
involved?

What about Minkowskian regions? It is difficult to say anything definite. For cosmic string
like objects the action is non-vanishing but proportional to the area A of the string like object
and the conditions would give quantization of the area. The area of geodesic sphere of CP2 is
proportional to π. If the value of gK is same for Minkowskian and Euclidian regions, g2

K ∝ π2

implies SK ∝ A/R2π so that A/R2 ∝ π2 is required.
This approach leads to different algebraic structure of αK than the earlier arguments.

1. αK is rational multiple of π so that g2
K is proportional to π2. At the level of quantum TGD

the theory is completely integrable by the definition of WCW integration(!) [K111] and there
are no radiative corrections in WCW integration. Hence αK does not appear in vertices and
therefore does not produce any problems in p-adic sectors.
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2. This approach is consistent with the proposed formula relating gravitational constant and
p-adic length scale. G/L2

p for p = M127 would be rational power of e now and number
theoretically universally. A good guess is that G does not depend on p. As found this could
be achieved also if the volume of CP2 type extremal depends on p so that the formula holds
for all primes. αK could also depend on algebraic extension of rationals to guarantee the
independence of G on p. Note that preferred p-adic primes correspond to ramified primes
of the extension so that extensions are labelled by collections of ramified primes, and the
ramimified prime corresponding to gravitonic space-time sheets should appear in the formula
for G/L2

p.

3. Also the speculative scenario for coupling constant evolution could remain as such. Could the
p-adic coupling constant evolution for the gauge coupling strengths be due to the breaking of
number theoretical universality bringing in dependence on p? This would require mapping of
p-adic coupling strength to their real counterparts and the variant of canonical identification
used is not unique.

4. A more attractive possibility is that coupling constants are algebraically universal (no de-
pendence on number field). Even the value of αK , although number theoretically universal,
could depend on the algebraic extension of rationals defining the adele. In this case coupling
constant evolution would reflect the evolution assignable to the increasing complexity of al-
gebraic extension of rationals. The dependence of coupling constants on p-adic prime would
be induced by the fact that so called ramified primes are physically favored and characterize
the algebraic extension of rationals used.

5. One must also remember that the running coupling constants are associated with QFT limit
of TGD obtained by lumping the sheets of many-sheeted space-time to single region of
Minkowski space. Coupling constant evolution would emerge at this limit. Whether this
evolution reflects number theoretical evolution as function of algebraic extension of rationals,
is an interesting question.

Are the color and electromagnetic coupling constant evolutions related?

Classical theory should be also able to say something non-trivial about color coupling strength αs
too at the general level. The basic observations are following.

1. Both classical color YM action and electro-weak U(1) action reduce to Kähler action.

2. Classical color holonomy is Abelian which is consistent also with the fact that the only
signature of color that induced spinor fields carry is anomalous color hyper charge identifiable
as an electro-weak hyper charge.

Suppose that αK is a strict RG invariant. One can consider two options.

1. The original idea was that the sum of classical color action and electro-weak U(1) action
is RG invariant and thus equals to its asymptotic value obtained for αU(1) = αs = 2αK .
Asymptotically the couplings would approach to a fixed point defined by 2αK rather than
to zero as in asymptotically free gauge theories.

Thus one would have

1

αU(1)
+

1

αs
=

1

αK
. (22.5.12)

The relationship between U(1) and em coupling strengths is

αU(1) =
αem

cos2(θW )
' 1

104.1867
,

sin2(θW )|10 MeV ' 0.2397(13) ,

αem(M127) = 0.00729735253327 . (22.5.13)
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Here Weinberg angle corresponds to 10 MeV energy is reasonably near to the value at electron
mass scale. The value sin2(θW ) = 0.2397(13) corresponding to 10 MeV mass scale [E2]
is used. Note however that the previous argument implying αK = αem(M127) excludes
α = αU(1)(M127) option.

2. Second option is obtained by replacing U(1) with electromagnetic gauge U(1)em.

1

αem
+

1

αs
=

1

αK
. (22.5.14)

Possible justifications for this assumption are following. The notion of induced gauge field
makes it possible to characterize the dynamics of classical electro-weak gauge fields using
only the Kähler part of electro-weak action, and the induced Kähler form appears only in
the electromagnetic part of the induced classical gauge field. A further justification is that
em and color interactions correspond to unbroken gauge symmetries.

The following arguments are consistent with this conclusion.

1. In TGD framework coupling constant is discrete and comes as powers of
√

2 corresponding to
p-adic primes p ' 2k. Number theoretic considerations suggest that coupling constants g2

i are
algebraic or perhaps even rational numbers, and that the logarithm of mass scale appearing
as argument of the renormalized coupling constant is replaced with 2-based logarithm of
the p-adic length scale so that one would have g2

i = g2
i (k). g2

K is predicted to be N : th
root of rational but could also reduce to a rational. This would allow rational values for
other coupling strengths too. This is possible if sin(θW ) and cos(θW ) are rational numbers
which would mean that Weinberg angle corresponds to a Pythagorean triangle as proposed
already earlier. This would mean the formulas sin(θW ) = (r2− s2)/(r2 + s2) and cos(θW ) =
2rs(r2 + s2).

2. A very strong prediction is that the beta functions for color and U(1) degrees of freedom
are apart from sign identical and the increase of U(1) coupling compensates the decrease of
the color coupling. This allows to predict the hard-to-calculate evolution of QCD coupling
constant strength completely.

3. α(M127) = αK implies that M127 defines the confinement length scale in which the sign
of αs becomes negative. TGD predicts that also M127 copy of QCD should exist and that
M127 quarks should play a key role in nuclear physics [K70, L3], [L3]. Hence one can argue
that color coupling strength indeed diverges at M127 (the largest not completely super-
astrophysical Mersenne prime) so that one would have αK = α(M127). Therefore the precise
knowledge of α(M127) in principle fixes the value of parameter K = R2/G and thus also the
second order contribution to the mass of electron.

4. αs(M89) is predicted to be 1/αs(M89) = 1/αK−1/α(M89). sin2(θW ) = .23120, αem(M89) '
1/127, and αU(1) = αem/cos

2(θW ) give 1/αU(1)(M89) = 97.6374. α = αem option gives
1/αs(M89) ' 10, which is consistent with experimental facts. α = αU(1) option gives
αs(M89) = 0.1572, which is larger than QCD value. Hence α = αem option is favored.

To sum up, the proposed formula would dictate the evolution of αs from the evolution of the
electro-weak parameters without any need for perturbative computations. Although the formula
of proposed kind is encouraged by the strong constraints between classical gauge fields in TGD
framework, it should be deduced in a rigorous manner from the basic assumptions of TGD before
it can be taken seriously.

Can one deduce formulae for gauge couplings?

The improved physical picture behind gravitational constant allows also to consider a general
formula for gauge couplings.
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1. The natural guess for the general formula would be as

g2(p, r) = kg2
K × exp[−ag(p, r)× SK(CP2)] . (22.5.15)

here k is a numerical constant.

2. The condition

g2
K = e2(M127) fixes the value of k if it’s value does not depend on the character of gauge

interaction:

k = exp[agr(M127, r = 1)× SK(CP2)] . (22.5.16)

Hence the general formula reads as

g2(p, r) = g2
K × exp[(−ag(p, r) + agr(M127), r = 1))× SK(CP2)] .

(22.5.17)

The value of a(M127, r = 1) is near to its maximum value so that the exponential factor tends
to increase the value of g2 from e2. The formula can reproduce αs and various electro-weak
couplings although it is quite possibile that Weinberg angle corresponds to a group theoretic
factor not representable in terms of ag(p, r). The volume of the CP2 type vacuum extremal
would characterize gauge bosons. Analogous formula should apply also in the case of Higgs.

3. αem in very long length scales would correspond to

e2(p→∞, r = 1) = e2 × exp[(−1 + a(M127), r = 1))× SK(CP2)] = e2x ,

(22.5.18)

where x is in the range [0.6549, 0.6609].

Formula relating v0 to αK and R2/~G

The parameter v0 = 2−11 plays a key role in the formula for gravitational Planck constant and
can be also seen as a fundamental constant in TGD framework. As a matter, factor v0 has
interpretation as velocity parameter and is dimensionless when c = 1 is used.

If v0 is identified as the rotation velocity of distant stars in galactic plane, one can use the
Newtonian model for the motion of mass in the gravitational field of long straight string giving
v0 =

√
TG. String tension T can be expressed in terms of Kähler coupling strength as

T =
b

2αKR2
,

where R is the radius of geodesic circle. The factor b ≤ 1 would explain reduction of string tension
in topological condensation caused by the fact that not entire geodesic sphere contributes to the
action.

This gives

v0 =
b

2
√
αKK

,

αK(p) =
aπ

4log(pK)
,

K =
R2

~G
. (22.5.19)
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The condition that αK has the desired value for p = M127 = 2127 − 1 defining the p-adic length
scale of electron fixes the value of b for given value of a. The value of b should be smaller than 1
corresponding to the reduction of string tension in topological condensation.

The condition 22.5.19 for v0 = 2−m, say m = 11, allows to deduce the value of a/b as

a

b
=

4 ∗ log(pK)

π

22m−1

K
. (22.5.20)

For both K = eq with q = 17 and K = 2q option with q = 24 + 1/2 m = 10 is the smallest integer
giving b < 1. K = eq option gives b = .3302 (.0826) and K = 2q option gives b = .3362 (.0841) for
m = 10 (m = 11).

m = 10 corresponds to one third of the action of free cosmic string. m = 11 corresponds to
much smaller action smaller by a factor rather near 1/12. The interpretation would be that as m
increases the action of the topologically condensed cosmic string decreases. This would correspond
to a gradual transformation of the cosmic string to a magnetic flux tube.

To sum up, the resulting overall vision seems to be internally consistent and is consistent
with generalized Feynman graphics, predicts exactly the spectrum of αK , suggests the identification
of the inverse of p-adic temperature with k, allows to understand the differences between fermionic
and bosonic massivation. One might hope that the additional objections (to be found sooner or
later!) could allow to develop a more detailed picture.

22.5.2 Why Gravitation Is So Weak As Compared To Gauge Interac-
tions?

The weakness of gravitational interaction in contrast to other gauge interactions is definitely a
fundamental test for the proposed picture. The heuristic argument allowing to understand the
value of gravitational constant is based on the assumption that graviton exchange corresponds to
the exchange of CP2 type extremal for which vacuum functional implies huge reduction of the
gravitational constant from the value ∼ L2

p implied by dimensional considerations based on p-adic
length scale hypothesis to a value G = exp(−2SK)L2

p which for p = M127 gives gravitational
constant for αK = πa/log(M127 × K), where a is near unity and K = 2 × 3 × 5.... × 23 is a
choice motivated by number theoretical arguments. The value of K is fixed rather precisely from
electron mass scale and the proposed scenario for coupling constant evolution fixes both αK and
K completely in terms of electron mass (using p-adic mass calculations) and electro-magnetic
coupling at electron length scale LM127

by the formula αK = αem [K22]. The interpretation would
be that gravitational masses are measured using p-adic mass scale Mp = π/Lp as a natural unit.

Why gravitational interaction is weak?

The first problem is that CP2 type extremal cannot represent the lowest order contribution
to the interaction since otherwise the normalization of WCW vacuum functional would give
exp[−2SK(CP2)] factor cancelling the exponential in the propagator so that one would have
G = L2

p. The following observations allow to understand the solution of the problem.

1. As already found, the key feature of CP2 type vacuum extremals distinguishing them from
other 3-surfaces is their non-deterministic behavior allowing them to carry off mass shell
four-momenta. Other 3-surfaces can give rise only to scattering involving exchange of on
mass shell particles and for space-like momentum exchanges there is no contribution.

2. All possible light-like 3-surfaces must be allowed as propagator portions of surfaces X3
V but

in absence of non-determinism they can give rise to massless exchanges which are typically
non-allowed.

3. The contributions of CP2 type vacuum extremals are suppressed by exp[−2NSK(CP2)] fac-
tor in presence of N CP2 type extremals with maximal action. CP2 type extremals are
vacuum extremals and interact with surrounding world only via the topological condensation
generating 3-D CP2 projection near the throat of the wormhole contact. This motivates
the assumption that the sector of the WCW containing N CP2 type extremals has the
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approximate structure CH(N) = CH(0) × CPN , where CH(0) corresponds to the situa-
tion without CP2 type extremals and CP to the degrees of freedom associated with single
CP2 type extremal. With this assumption the functional integral gives a result of form
X× exp(−2NSK(CP2) for N CP2 type extremals. This factorization allows to forget all the
complexities of the world of classical worlds which on the first sight seem to destroy all hopes
about calculating something and the normalization factor is in lowest order equal to X(0)
whereas single CP2 type extremal gives exp[−2SK(CP2)] factor. This argument generalizes
also to the case when CP2 type extremals are allowed to have varying value of action (the
distance travelled by the virtual particle can vary).

Massless extremals (MEs) define a natural candidate for the lowest order contribution since
for them Kähler action vanishes. MEs describes a dispersion free on-mass shell propagation of
massless modes of both induced gauge fields and metric. Hence they can describe only on mass
shell massless exchanges of bosons and gravitons which typically vanishes for kinematical reasons
except for collinear scattering in the case of massless particles so that CP2 type extremals would
give the leading contribution to the S-matrix element.

There are however exceptional situations in which exchange of ordinary CP2 type extremals
makes kinematically possible the emission of MEs as brehmstrahlung in turn giving rise to exchange
of light-like momentum. Since MEs carry also classical gravitational fields, one can wonder whether
this kind of exchanges could make possible strong on mass shell gravitation made kinematically
possible by ordinary gauge boson exchanges inside interacting systems.

If one takes absolutely seriously the number theoretic argument based on R2/G = exp(q)
ansatz then M127 is selected uniquely as the space-time sheet of gravitons and the predicted
gravitational coupling strength is indeed weak.

What differentiates between gravitons and gauge bosons?

The simplest explanation for the difference between gauge bosons and gravitons is that for virtual
gauge bosons the volume of CP2 type extremals is reduced dramatically from its maximal value
so that exp(−2SK) brings in only a small reduction factor. The reason would be that for virtual
gauge bosons the length of a typical CP2 type extremal is far from the value giving rise to the
saturation of the Kähler action. For gravitational interactions in astrophysical length scales CP2

type extremals must indeed be very long.
Gravitational interaction should become strong sufficiently below the saturation length scale

with gravitational constant approaching its stringy value L2
p. According to the argument discussed

in [K22], this length scale corresponds to the Mersenne prime M127 characterizing gravitonic space-
time sheets so that gravitation should become strong below electron’s Compton length. This
suggests a connection with stringy description of graviton. M127 quarks connected by the corre-
sponding strings are indeed a basic element of TGD based model of nuclei [K70]. TGD suggests also
the existence of lepto-hadrons as bound state of color excited leptons in length scale M127 [K78].
Also gravitons corresponding to smaller Mersenne primes are possible but corresponding forces are
much weaker than ordinary gravitation. On the other hand, M127 is the largest Mersenne prime
which does not give rise to super-astronomical p-adic length scale so that stronger gravitational
forces are not be predicted in experimentally accessible length scales.

More generally, the saturation length scale should relate very closely to the p-adic length
scale Lp characterizing the particle. The amount of zitterbewegung determines the amount dSK/dl
of Kähler action per unit length along the orbit of virtual particle. Lp would naturally define the
length scale below which the particle moves in a good approximation along M4 geodesic. The
shorter this length scale is, the larger the value of dSK/dl is.

If the Kähler action of CP2 type extremal increases linearly with the distance (in a statistical
sense at least), an exponential Yukawa screening results at distances much shorter than saturation
length. Therefore CP2 extremals would provide a fundamental description of particle massivation
at space-time level. p-Adic thermodynamics would characterize what happens for a topologically
condensed CP2 type extremal carrying given quantum numbers at the resulting light-like CD.
Besides p-adic length scale also the quantized value Tp = 1/n of the p-adic temperature would
be decisive. For weak bosons Mersenne prime M89 would define the saturation length scale. For
photons the p-adic length scale defining the Yukawa screening should be rather long. An n-ary
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p-adic length scale LM89
(n) = p(n−1)/2LM89

would most naturally be in question so that the p-
adic temperature associated with photon would be Tp = 1/n, n > 1 [K39]. In the case of gluons
confinement length scale should be much shorter than the scale at which the Yukawa screening
becomes visible. If also gluons correspond to n > 1 this is certainly the case.

All gauge interactions would give rise to ultra-weak long ranged interactions, which are
extremely weak compared to the gravitational interaction: the ratio for the strengths of these
interactions would be of order αQ1Q2m

2
e/M1M2 and very small for particles whose masses are

above electron mass. Note however that MEs give rise to arbitrarily unscreened long ranged weak
and color interactions restricted to light-like momentum transfers and these interactions play a key
role in the TGD based model of living matter [K17, K18]. This prediction is in principle testable.

22.5.3 Super-Symplectic Gluons And Non-Perturbative Aspects Of Hadron
Physics

What happens mathematically in the transition to non-perturbative QCD has remained more or
less a mystery. The number theoretical considerations of [K85] inspired the idea that Planck con-
stant is dynamical and has a spectrum given as ~(n) = n~0, where n characterizes the quantum
phase q = exp(i2π/n) associated with Jones inclusion. The strange finding that the orbits of
planets seem to obey Bohr quantization rules with a gigantic value of Planck constant inspired the
hypothesis that the increase of Planck constant provides a unique mechanism allowing strongly
interacting system to stay in perturbative phase [K66, K22]. The resulting model allows to under-
stand dark matter as a macroscopic quantum phase in astrophysical length and time scales, and
strongly suggest a connection with dark matter and biology.

The phase transition increasing Planck constant could provide a model for the transition to
confining phase in QCD. When combined with the recent ideas about value spectrum of Kähler
coupling strength one ends up with a rather explicit model about non-perturbative aspects of
hadron physics already successfully applied in hadron mass calculations [K47].

According to the model of hadron masses [K47], in the case of light pseudo-scalar mesons
the contribution of quark masses to the mass squared of meson dominates whereas spin 1 mesons
contain a large contribution identified as color interaction conformal weight (color magnetic spin-
spin interaction conformal weight and color Coulombic conformal weight). This conformal weight
cannot however correspond to the ordinary color interactions alone and is negative for pseudo-
scalars and compensated by some unknown contribution in the case of pion in order to avoid
tachyonic mass. Quite generally this realizes the idea about light pseudo-scalar mesons as Goldstone
bosons. Analogous mass formulas hold for baryons but in this case the additional contribution
which dominates.

The unknown contribution can be assigned to the k = 107 hadronic space-time sheet and
must correspond to the non-perturbative aspects of QCD and the failure of the quantum field
theory approach at low energies. In TGD the failure of QFT picture corresponds to the presence
of WCW degrees of freedom (“world of classical worlds” ) in which super-symplectic algebra acts.
The failure of the approximation assuming single fixed background space-time is in question.

The purely bosonic generators carry color and spin quantum numbers: spin has however
the character of orbital angular momentum. The only electro-weak quantum numbers of super-
generators are those of right-handed neutrino. If the super-generators degrees carry the quark spin
at high energies, a solution of proton spin puzzle emerges.

The presence of these degrees of freedom means that there are two contributions to color in-
teraction energies corresponding to the ordinary gluon exchanges and exchanges of super-symplectic
gluons. It turns out the model assuming same topological mixing of super-symplectic bosons iden-
tical to that experienced by U type quarks leads to excellent understanding of hadron masses
assuming that hadron spin correlates with the super-symplectic particle content of the hadronic
space-time sheet.

According to the argument already discussed, at the hadronic k = 107 space electro-weak
interactions would be absent and classical U(1) action should vanish. This is guaranteed if αU(1)

diverges. This would give

αs = αK =
1

4
.
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This would give also a quantitative articulation for the statement that strong interactions are
charge independent.

This αs would correspond to the interaction via super-symplectic colored gluons and would
lead to the failure of perturbation theory. By the general criterion stating that the failure of
perturbation theory leads to a phase transition increasing the value of Planck constant one expects
that the value of ~ increases [K22]. The value leaving the value of αK invariant would be ~→ 26~
and would mean that p-adic length scale L107 is replaced with length scale 26L107 = 46 fm, the
size of large nucleus so that also the basic length scale nuclear physics would be implicitly coded
into the structure of hadrons.

22.5.4 Why Mersenne Primes Should Label A Fractal Hierarchy Of
Physics?

There are motivations for the working hypothesis stating that there is fractal hierarchy of copies of
standard model physics, and that Mersenne primes label both hadronic space-time sheets and gauge
bosons. The reason for this is not yet well understood and I have considered several speculative
explanations.

First picture

The first thing to come in mind is that Mersenne primes correspond to fixed points of the discrete
p-adic coupling constant evolution, most naturally to the maxima of the color coupling constant
strength. This would mean that gluons are emitted with higher probability than in other p-adic
length scales.

There is however an objection against this idea. If one accepts the new vision about non-
perturbative aspects of QCD, it would seem that super-symplectic bosons or the interaction be-
tween super-symplectic bosons and quarks for some reason favors Mersenne primes. However, if
color coupling strength corresponds to αK = αs = 1/4 scaled down by the increase of the Planck
constant, the evolution of super-symplectic color coupling strength does not seem to play any role.
What becomes large should be a geometric “form factor”, when the boson in the vertex corresponds
to Mersenne prime rather than “bare” coupling.

The resolution of the problem could be that boson emission vertices g(p1, p2, p3) are functions
of p-adic primes labeling the particles of the vertices so that actually three p-adic length scales
are involved instead of single length scale as in the ordinary coupling constant evolution. Hence
one can imagine that the interaction between particles corresponding to primes near powers of 2
and Mersenne primes is especially strong and analogous to a resonant interaction. The geometric
resonance due to the fact that the length scales involved are related by a fractal scaling by a power
of 2 would make the form factors F (p1 ' 2k1 , p2 ' 2k2 ,Mn) large. The selection of primes near
powers of two and Mersenne bosons would be analogous to evolutionary selection of a population
consisting of species able to interact strongly.

Since k = 113 quarks are possible for k = 107 hadron physics, it seems that quarks can
have flux tubes directed to Mn space-times with n < k. This suggests that neighboring Mersenne
primes compete for flux tubes of quarks. For instance, when the p-adic length scale characterizing
quark of M107 hadron physics begins to approach M89 quarks tend to feed their gauge flux to M89

space-time sheet and M89 hadron physics takes over and color coupling strength begins to increase.
This would be the space-time correlate for the loss of asymptotic freedom.

Second picture

Preferred values of Planck constants could play a key role in the selection of Mersenne primes.
Ruler-and-compass hypothesis predicts that Planck constants, which correspond to ratios of ruler
and compass integers proportional to a product of distinct Fermat primes (four of them are known)
and any power of two are favored. As a special case one obtains ruler and compass integers. As
a consequence, p-adic length scales have satellites obtained by multiplying them with ruler-and-
compass integers, and entire fractal hierarchy of power-of-two multiples of a given p-adic length
scale results.



866 Chapter 22. Coupling Constant Evolution in Quantum TGD

Mersenne length scales would be special since their satellites would form a subset of satellites
of shorter Mersenne length scales. The copies of standard model physics associated with Mersenne
primes would define a kind of resonating subset of physics since corresponding wavelengths and
frequencies would coincide. This would also explain why fermions labeled by primes near power of
two couple strongly with Mersenne primes.

22.5.5 The Formula For The Hadronic String Tension

It is far from clear whether the strong gravitational coupling constant has same relation to the
parameter M2

0 = 16m2
0 = 1/α′ = 2πT as it would have in string model.

1. One could estimate the strong gravitational constant from the fundamental formula for the
gravitational constant expressed in terms of exponent of Kähler action in the case that one
has αK = 1/4. The formula reads as

L2
p

Gp
= exp(2aSK(CP2)) = exp(π/4αK) = eπ . (22.5.21)

a is a parameter telling which fraction the action of wormhole contact is about the full action
for CP2 type vacuum extremal and a ∼ 1/2 holds true. The presence of a can take care that
the exponent is rational number. For a = 1 The number at the right hand side is Gelfond
constant and one obtains

Gp = exp(−π)× L2
p . (22.5.22)

2. One could relate the value of the strong gravitational constant to the parameter M2
0 (k) =

16m(k)2, p ' 2k also assuming that string model formula generalizes as such. The basic
formulas can be written in terms of gravitational constant G, string tension T , and M2

0 (k)
as

1

8πG(k)
=

1

α′
= 2πT (k) =

1

M2
0 (k)

=
1

16m(k)2
.

(22.5.23)

This allows to express G in terms of the hadronic length scale L(k) = 2π/m(k) as

G(k) =
1

162π2
L(k)2 ' 3.9× 10−4L(k)2 . (22.5.24)

The value of gravitational coupling would be by two orders of magnitude smaller than for
the first option.

22.5.6 Large Values Of Planck Constant And Electro-Weak And Strong
Coupling Constant Evolution

Kähler coupling constant is the only coupling parameter in TGD. The original great vision is that
Kähler coupling constant is analogous to critical temperature and thus uniquely determined. Later
I concluded that Kähler coupling strength could depend on the p-adic length scale. The reason
was that the prediction for the gravitational coupling strength was otherwise non-sensible. This
motivated the assumption that gravitational coupling is RG invariant in the p-adic sense.
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The expression of the basic parameter v0 = 2−11 appearing in the formula of ~gr = GMm/v0

in terms of basic parameters of TGD leads to the unexpected conclusion that αK in electron length
scale can be identified as electro-weak U(1) coupling strength αU(1). This identification is what
group theory suggests but I had given it up since the resulting evolution for gravitational coupling
was G ∝ L2

p and thus completely un-physical. However, if gravitational interactions are mediated
by space-time sheets characterized by Mersenne prime, the situation changes completely since M127

is the largest non-super-astrophysical p-adic length scale.
The second key observation is that all classical gauge fields and gravitational field are ex-

pressible using only CP2 coordinates and classical color action and U(1) action both reduce to
Kähler action. Furthermore, electroweak group U(2) can be regarded as a subgroup of color SU(3)
in a well-defined sense and color holonomy is abelian. Hence one expects a simple formula relating
various coupling constants. Let us take αK as a p-adic renormalization group invariant in strong
sense that it does not depend on the p-adic length scale at all.

The relationship for the couplings must involve αU(1), αs and αK . The formula 1/αU(1) +
1/αs = 1/αK states that the sum of U(1) and color actions equals to Kähler action and is consistent
with the decrease of the color coupling and the increase of the U(1) coupling with energy and implies
a common asymptotic value 2αK for both. The hypothesis is consistent with the known facts about
color and electroweak evolution and predicts correctly the confinement length scale as p-adic length
scale assignable to gluons. The hypothesis reduces the evolution of αs to the calculable evolution
of electro-weak couplings: the importance of this result is difficult to over-estimate.

22.6 Appendix: Identification Of The Electro-Weak Cou-
plings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the
coupling of the spinors to the U(1) gauge potential defined by the Kähler structure provides the
missing U(1) factor in the gauge group. Secondly, it is possible to couple different H-chiralities
independently to a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct
spectrum for the electromagnetic charge are considerable. In the following it will be demonstrated
that the couplings of the induced spinor connection are indeed those of the GWS model [B58] and in
particular that the right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors.
Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the
condition

ΓΨ = eΨ ,

e = ±1 , (22.6.1)

where Γ denotes the matrix Γ9 = γ5 × γ5, 1 × γ5 and γ5 × 1 respectively. Clearly, for a fixed
H-chirality CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be understood as a
consequence of generalized chiral invariance if this identification is accepted. For the spinors
with a definite H-chirality one can identify the vielbein group of CP2 as the electro-weak group:
SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (22.6.2)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of
a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations
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V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(22.6.3)

and

B = 2re3 , (22.6.4)

respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that
the charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (22.6.5)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (22.6.6)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (22.6.7)

where W± denotes the charged intermediate vector boson.
Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear

combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (22.6.8)

appearing in the neutral part of the spinor connection. We show first that the mere requirement
that photon couples vectorially implies the basic coupling structure of the GWS model leaving
only the value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (22.6.9)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(22.6.10)
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Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively,
the requirement that γ couples vectorially leads to the condition

c = −d . (22.6.11)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression

Anc = γQem + Z0(I3
L − sin2θWQem) . (22.6.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (22.6.13)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (22.6.14)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (22.6.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is
completely fixed once the YM action is fixed by requiring that action contains no cross term of
type γZ0. Pure symmetry non-broken electro-weak YM action leads to a definite value for the
Weinberg angle. One can however add a symmetry breaking term proportional to Kähler action
and this changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (22.6.16)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (22.6.17)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (22.6.18)

Evaluating the expressions above one obtains for γ and Z0 the expressions
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γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (22.6.19)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (22.6.20)



Chapter i

Appendix

Originally this appendix was meant to be a purely technical summary of basic facts but in its
recent form it tries to briefly summarize those basic visions about TGD which I dare to regarded
stabilized. I have added illustrations making it easier to build mental images about what is involved
and represented briefly the key arguments. This chapter is hoped to help the reader to get fast
grasp about the concepts of TGD.

The basic properties of imbedding space and related spaces are discussed and the relation-
ship of CP2 to standard model is summarized. The notions of induction of metric and spinor
connection, and of spinor structure are discussed. Many-sheeted space-time and related notions
such as topological field quantization and the relationship many-sheeted space-time to that of GRT
space-time are discussed as well as the recent view about induced spinor fields and the emergence
of fermionic strings. Various topics related to p-adic numbers are summarized with a brief defi-
nition of p-adic manifold and the idea about generalization of the number concept by gluing real
and p-adic number fields to a larger book like structure. Hierarchy of Planck constants can be
now understood in terms of the non-determinism of Kähler action and the recent vision about
connections to other key ideas is summarized.

A-1 Imbedding Space M 4 × CP2 And Related Notions

Space-times are regarded as 4-surfaces inH = M4×CP2 the Cartesian product of empty Minkowski
space - the space-time of special relativity - and compact 4-D space CP2 with size scale of order
104 Planck lengths. One can say that imbedding space is obtained by replacing each point m of
empty Minkowski space with 4-D tiny CP2. The space-time of general relativity is replaced by a
4-D surface in H which has very complex topology. The notion of many-sheeted space-time gives
an idea about what is involved.

Fig. 1. Imbedding space H = M4×CP2 as Cartesian product of Minkowski space M4 and
complex projective space CP2. http://tgdtheory.fi/appfigures/Hoo.jpg

Denote by M4
+ and M4

− the future and past directed lightcones of M4. Denote their in-
tersection, which is not unique, by CD. In zero energy ontology (ZEO) causal diamond (CD) is
defined as cartesian product CD × CP2. Often I use CD to refer just to CD × CP2 since CP2

factor is relevant from the point of view of ZEO.

Fig. 2. Future and past light-cones M4
+ and M4

−. Causal diamonds (CD) are defined as
their intersections. http://tgdtheory.fi/appfigures/futurepast.jpg

Fig. 3. Causal diamond (CD) is highly analogous to Penrose diagram but simpler. http:

//tgdtheory.fi/appfigures/penrose.jpg

A rather recent discovery was that CP2 is the only compact 4-manifold with Euclidian
signature of metric allowing twistor space with Kähler structure. M4 is in turn is the only 4-D
space with Minkowskian signature of metric allowing twistor space with Kähler structure so that
H = M4 × CP2 is twistorially unique.
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One can loosely say that quantum states in a given sector of “world of classical worlds”
(WCW) are superpositions of space-time surfaces inside CDs and that positive and negative energy
parts of zero energy states are localized and past and future boundaries of CDs. CDs form a
hierarchy. One can have CDs within CDs and CDs can also overlap. The size of CD is characterized
by the proper time distance between its two tips. One can perform both translations and also
Lorentz boosts of CD leaving either boundary invariant. Therefore one can assign to CDs a
moduli space and speak about wave function in this moduli space.

In number theoretic approach it is natural to restrict the allowed Lorentz boosts to some
discrete subgroup of Lorentz group and also the distances between the tips of CDs to multiples of
CP2 radius defined by the length of its geodesic. Therefore the moduli space of CDs discretizes.
The quantization of cosmic recession velocities for which there are indications, could relate to this
quantization.

A-2 Basic Facts About CP2

CP2 as a four-manifold is very special. The following arguments demonstrates that it codes for
the symmetries of standard models via its isometries and holonomies.

A-2.1 CP2 As A Manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the points
of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-2.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset space
SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart for CP2.
As j runs from 1 to 3 one obtains an atlas of three coordinate charts covering CP2, the charts
being holomorphically related to each other (e.g. CP2 is a complex manifold). The points z3 6= 0
form a subset of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic to
S2. Therefore CP2 is obtained by “adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3, i = 1, 2 the coordinates of Eguchi and
Freund [A53] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-2.2)

These are related to the “spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-2.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.

Considered as a real four-manifold CP2 is compact and simply connected, with Euler number
Euler number 3, Pontryagin number 3 and second b = 1.

Fig. 4. CP2 as manifold. http://tgdtheory.fi/appfigures/cp2.jpg

http://tgdtheory.fi/appfigures/cp2.jpg
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A-2.2 Metric And Kähler Structure Of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of the
orbits of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of CP2 is

obtained by projecting the metric of S5 orthogonally to the orbits of the isometries. Therefore the
distance between the points of CP2 is that between the representative orbits on S5.

The line element has the following form in the complex coordinates

ds2 = gab̄dξ
adξ̄b , (A-2.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-2.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-2.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 related to its
standard form in spherical coordinates by the coordinate transformation (r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting
the angle coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-2.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-2.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the defining
relation

skl = R2
∑
A

eAk e
A
l , (A-2.9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-2.10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-2.11)

The explicit representation of the line element is given by the expression
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ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-2.12)

The vierbein connection satisfying the defining relation

deA = −V AB ∧ eB , (A-2.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-2.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-2.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (A-2.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it satisfies
the condition

JkrJ
rl = −skl . (A-2.17)

The form J is integer valued and by its covariant constancy satisfies free Maxwell equations. Hence
it can be regarded as a curvature form of a U(1) gauge potential B carrying a magnetic charge of
unit 1/2g (g denotes the gauge coupling). Locally one has therefore

J = dB , (A-2.18)

where B is the so called Kähler potential, which is not defined globally since J describes homological
magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is proportional
to its homology equivalence class, which is integer valued. The explicit representations of J and
B are given by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(A-2.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex
coordinates only components of type (1, 1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler potential
and Kähler form have very simple expressions
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B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-2.20)

The relationship of the canonical coordinates to the “spherical” coordinates is given by the equa-
tions

P1 = − 1

1 + r2
,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-2.21)

A-2.3 Spinors In CP2

CP2 doesn’t allow spinor structure in the conventional sense [A43]. However, the coupling of
the spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure.
Because the delicacies associated with the spinor structure of CP2 play a fundamental role in TGD,
the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel
transport of the vierbein in a simply connected space M . The parallel propagation around a
closed curve with a base point x leads to a rotated vierbein at x: eA = RABe

B and one can
associate to each closed path an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base
point x and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the
element RAB(v) defines a closed path in SO(4). When the sphere S2 is contractible to a point e.g.,
homologically trivial, the path in SO(4) is also contractible to a point and therefore represents a
trivial element of the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homo-
topically nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4)
(leading from the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also
spinors and by the above construction associate a closed path of Spin(4) to the surface S2. Now,
however this path corresponds to a lift of the corresponding SO(4) path and cannot be closed.
Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1-
factor associated with the parallel transport of the spinor around the sphere S2 by coupling it
to a gauge potential in such a way that in the parallel transport the gauge potential introduces
a compensating −1-factor. For a U(1) gauge potential this factor is given by the exponential
exp(i2Φ), where Φ is the magnetic flux through the surface. This factor has the value −1 provided
the U(1) potential carries half odd multiple of Dirac charge 1/2g. In case of CP2 the required
gauge potential is half odd multiple of the Kähler potential B defined previously. In the case of
M4×CP2 one can in addition couple the spinor components with different chiralities independently
to an odd multiple of B/2.

A-2.4 Geodesic Sub-Manifolds Of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the imbed-
ding space. As a consequence the second fundamental form of the geodesic manifold vanishes, which
means that the tangent vectors hkα (understood as vectors of H) are covariantly constant quantities
with respect to the covariant derivative taking into account that the tangent vectors are vectors
both with respect to H and X4.
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In [A85] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric
space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple
systems of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g
characterized by the closedness property with respect to double commutation

[X, [Y, Z]] ∈ t for X,Y, Z ∈ t . (A-2.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres.
This is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding
to subgroups SO(3) (orthogonal 3×3 matrices) and the usual isospin group SU(2). By taking any
subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating
this system, one obtains a 2-dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as
holomorphic transformations in CP2. The vanishing of the second fundamental form is also easy
to verify. The first geodesic manifold is homologically trivial: in fact, the induced Kähler form
vanishes identically for S2

I . S2
II is homologically nontrivial and the flux of the Kähler form gives

its homology equivalence class.

A-3 CP2 Geometry And Standard Model Symmetries

A-3.1 Identification Of The Electro-Weak Couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the
coupling of the spinors to the U(1) gauge potential defined by the Kähler structure provides the
missing U(1) factor in the gauge group. Secondly, it is possible to couple different H-chiralities
independently to a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct
spectrum for the electromagnetic charge are considerable. In the following it will be demonstrated
that the couplings of the induced spinor connection are indeed those of the GWS model [B58] and in
particular that the right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors.
Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the
condition

ΓΨ = eΨ ,

e = ±1 , (A-3.1)

where Γ denotes the matrix Γ9 = γ5 × γ5, 1 × γ5 and γ5 × 1 respectively. Clearly, for a fixed
H-chirality CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be understood as a
consequence of generalized chiral invariance if this identification is accepted. For the spinors
with a definite H-chirality one can identify the vielbein group of CP2 as the electro-weak group:
SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-3.2)
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Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of
a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-3.3)

and

B = 2re3 , (A-3.4)

respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that
the charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-3.5)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-3.6)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (A-3.7)

where W± denotes the charged intermediate vector boson.
Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear

combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-3.8)

appearing in the neutral part of the spinor connection. We show first that the mere requirement
that photon couples vectorially implies the basic coupling structure of the GWS model leaving
only the value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-3.9)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains
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Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-3.10)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively,
the requirement that γ couples vectorially leads to the condition

c = −d . (A-3.11)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression

Anc = γQem + Z0(I3
L − sin2θWQem) . (A-3.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-3.13)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-3.14)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-3.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is
completely fixed once the YM action is fixed by requiring that action contains no cross term of
type γZ0. Pure symmetry non-broken electro-weak YM action leads to a definite value for the
Weinberg angle. One can however add a symmetry breaking term proportional to Kähler action
and this changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-3.16)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-3.17)

in terms of the fields γ and Z0 (photon and Z- boson)
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Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-3.18)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (A-3.19)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-3.20)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-3.21)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the coefficient
X of the γZ0 cross term (this coefficient must vanish) the expression

X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-3.22)

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-3.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is the
integer describing the coupling of the spinor field to the Kähler potential. The cross term vanishes
provided the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-3.24)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg
angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-3.25)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to the typical
value 9/24 of GUTs [B17] .
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A-3.2 Discrete Symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

1. Symmetries must be realized as purely geometric transformations.

2. Transformation properties of the field variables should be essentially the same as in the
conventional quantum field theories [B24] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-3.26)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed that W
and Z0 bosons break parity symmetry as they should since their charge matrices do not commute
with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the
physicist turns out to be correct. One can verify by a direct calculation that pure Dirac action is
invariant under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-3.27)

The operation bearing closest resemblance to the ordinary charge conjugation corresponds
geometrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-3.28)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-4 The Relationship Of TGD To QFT And String Models

TGD could be seen as a generalization of quantum field theory (string models) obtained by replac-
ing pointlike particles (strings) as fundamental objects with 3-surfaces.

Fig. 5. TGD replaces point-like particles with 3-surfaces. http://tgdtheory.fi/appfigures/
particletgd.jpg

The fact that light-like 3-surfaces are effectively metrically 2-dimensional and thus possess
generalization of 2-dimensional conformal symmetries with light-like radial coordinate defining the
analog of second complex coordinate suggests that this generalization could work and extend the
super-conformal symmetries to their 4-D analogs.

The boundary δM4
+ = S2 ×R+- of 4-D light-cone M4

+ is also metrically 2-dimensional and
allows extended conformal invariance. Also the group of isometries of light-cone boundary and
of light-like 3-surfaces is infinite-dimensional since the conformal scalings of S2 can be compen-
sated by S2-local scaling of the light-like radial coordinate of R+. These simple facts mean that
4-dimensional Minkowski space and 4-dimensional space-time surfaces are in completely unique
position as far as symmetries are considered.

String like objects obtained as deformations of cosmic strings X2×Y 2, where X2 is minimal
surface in M4 and Y 2 a holomorphic surface of CP2 are fundamental extremals of Kähler action
having string world sheet as M4 projections. Cosmic strings dominate the primordial cosmology
of TGD Universe and inflationary period corresponds to the transition to radiation dominated
cosmology for which space-time sheets with 4-D M4 projection dominate.

Also genuine string like objects emerge from TGD. The conditions that the em charge
of modes of induces spinor fields is well-defined requires in the generic case the localization of

http://tgdtheory.fi/appfigures/particletgd.jpg
http://tgdtheory.fi/appfigures/particletgd.jpg
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the modes at 2-D surfaces -string world sheets and possibly also partonic 2-surfaces. This in
Minkowskian space-time regions.

Fig. 6. Well-definedness of em charge forces the localization of induced spinor modes to 2-D
surfaces in generic situtation in Minkowskian regions of space-time surface. http://tgdtheory.

fi/appfigures/fermistring.jpg

TGD based view about elementary particles has two aspects.

1. The space-time correlates of elementary particles are identified as pairs of wormhole contacts
with Euclidian signature of metric and having 4-D CP2 projection. Their throats behave
effectively as Kähler magnetic monopoles so that wormhole throats must be connected by
Kähler magnetic flux tubes with monopole flux so that closed flux tubes are obtained.

2. Fermion number is carried by the modes of the induced spinor field. In Minkowskian space-
time regions the modes are localized at string world sheets connecting the wormhole contacts.

Fig. 7. TGD view about elementary particles. a) Particle corresponds 4-D generalization
of world line or b) with its light-like 3-D boundary (holography). c) Particle world lines have
Euclidian signature of the induced metric. d) They can be identified as wormhole contacts. e) The
throats of wormhole contacts carry effective Kähler magnetic charges so that wormhole contacts
must appear as pairs in order to obtain closed flux tubes. f) Wormhole contacts are accompnied
by fermionic strings connecting the throats at same sheet: the strings do not extend inside the
wormhole contacts. http://tgdtheory.fi/appfigures/elparticletgd.jpg

Particle interactions involve both stringy and QFT aspects.

1. The boundaries of string world sheets correspond to fundamental fermions. This gives rise to
massless propagator lines in generalized Feynman diagrammatics. One can speak of “long”
string connecting wormhole contacts and having hadronic string as physical counterpart.
Long strings should be distinguished from wormhole contacts which due to their super-
conformal invariance behave like “short” strings with length scale given by CP2 size, which
is 104 times longer than Planck scale characterizing strings in string models.

2. Wormhole contact defines basic stringy interaction vertex for fermion-fermion scattering.
The propagator is essentially the inverse of the superconformal scaling generator L0. Worm-
hole contacts containing fermion and antifermion at its opposite throats beheave like virtual
bosons so that one has BFF type vertices typically.

3. In topological sense one has 3-vertices serving as generalizations of 3-vertices of Feynman
diagrams. In these vertices 4-D “lines” of generalized Feynman diagrams meet along their
3-D ends. One obtains also the analogs of stringy diagrams but stringy vertices do not have
the usual interpretation in terms of particle decays but in terms of propagation of particle
along two different routes.

Fig. 8. a) TGD analogs of Feynman and string diagrammatics at the level of space-
time topology. b) The 4-D analogs of both string diagrams and QFT diagrams appear but the
interpretation of the analogs stringy diagrams is different. http://tgdtheory.fi/appfigures/

tgdgraphs.jpg

A-5 Induction Procedure And Many-Sheeted Space-Time

Since the classical gauge fields are closely related in TGD framework, it is not possible to have
space-time sheets carrying only single kind of gauge field. For instance, em fields are accompanied
by Z0 fields for extremals of Kähler action.

Classical em fields are always accompanied by Z0 field and some components of color gauge
field. For extremals having homologically non-trivial sphere as a CP2 projection em and Z0 fields
are the only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields
are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although
the net gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge

http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/tgdgraphs.jpg
http://tgdtheory.fi/appfigures/tgdgraphs.jpg
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field has U(1) holonomy for all space-time surfaces and quantum classical correspondence suggest a
weak form of color confinement meaning that physical states correspond to color neutral members
of color multiplets.

Induction procedure for gauge fields and spinor connection

Induction procedure for gauge potentials and spinor structure is a standard procedure of bundle
theory. If one has imbedding of some manifold to the base space of a bundle, the bundle structure
can be induced so that it has as a base space the imbedded manifold, whose points have as fiber
the fiber if imbedding space at their image points. In the recent case the imbedding of space-time
surface to imbedding space defines the induction procedure. The induced gauge potentials and
gauge fields are projections of the spinor connection of the imbedding space to the space-time
surface (see Fig. ??).

Induction procedure makes sense also for the spinor fields of imbedding space and one obtains
geometrization of both electroweak gauge potentials and of spinors. The new element is induction
of gamma matrices which gives their projections at space-time surface.

As a matter fact, the induced gamma matrices cannot appear in the counterpart of massless
Dirac equation. To achieve super-symmetry, Dirac action must be replaced with Kähler-Dirac
action for which gamma matrices are contractions of the canonical momentum currents of Kähler
action with imbedding space gamma matrices. Induced gamma matrices in Dirac action would
correspond to 4-volume as action.

Fig. 9. Induction of spinor connection and metric as projection to the space-time surface.
http://tgdtheory.fi/appfigures/induct.jpg

Induced gauge fields for space-times for which CP2 projection is a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP2

projection, only vacuum extremals and space-time surfaces for which CP2 projection is a geodesic
sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields
and homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can
be verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3

vanish imply the vanishing of W field. For space-time sheets for which CP2 projection is r = ∞
homologically non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by
SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates
constant values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields vanish
but induced W fields are non-vanishing. This holds also for surfaces obtained by color rotation.
Hence one can say that for non-vacuum extremals with 2-D CP2 projection color rotations and
weak symmetries commute.

A-5.1 Many-Sheeted Space-Time

TGD space-time is many-sheeted: in other words, there are in general several space-sheets which
have projection to the same M4 region. Second manner to say this is that CP2 coordinates are
many-valued functions of M4 coordinates. The original physical interpretation of many-sheeted
space-time time was not correct: it was assumed that single sheet corresponds to GRT space-time
and this obviously leads to difficulties since the induced gauge fields are expressible in terms of
only four imbedding space coordinates.

Fig. 10. Illustration of many-sheeted space-time of TGD. http://tgdtheory.fi/appfigures/
manysheeted.jpg

http://tgdtheory.fi/appfigures/induct.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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Superposition of effects instead of superposition of fields

The first objection against TGD is that superposition is not possible for induced gauge fields and
induced metric. The resolution of the problem is that it is effects which need to superpose, not
the fields.

Test particle topologically condenses simultaneously to all space-time sheets having a pro-
jection to same region of M4 (that is touches them). The superposition of effects of fields at various
space-time sheets replaces the superposition of fields.This is crucial for the understanding also how
GRT space-time relates to TGD space-time, which is also in the appendix of this book).

Wormhole contacts

Wormhole contacts are key element of many-sheeted space-time. One does not expect them to be
stable unless there is non-trivial Kähler magnetic flux flowing through then so that the throats
look like Kähler magnetic monopoles.

Fig. 11. Wormhole contact. http://tgdtheory.fi/appfigures/wormholecontact.jpg
Since the flow lines of Kähler magnetic field must be closed this requires the presence of

another wormhole contact so that one obtains closed monopole flux tube decomposing to two
Minkowskian pieces at the two space-time sheets involved and two wormhole contacts with Eu-
clidian signature of the induced metric. These objects are identified as space-time correlates of
elementary particles and are clearly analogous to string like objects.

The relationship between the many-sheeted space-time of TGD and of GRT space-time

The space-time of general relativity is single-sheeted and there is no need to regard it as surface
in H although the assumption about representability as vacuum extremal gives very powerful
constraints in cosmology and astrophysics and might make sense in simple situations.

The space-time of GRT can be regarded as a long length scale approximation obtained by
lumping together the sheets of the many-sheeted space-time to a region of M4 and providing it
with an effective metric obtained as sum of M4 metric and deviations of the induced metrics of
various space-time sheets from M4 metric. Also induced gauge potentials sum up in the similar
manner so that also the gauge fields of gauge theories would not be fundamental fields.

Fig. 12. The superposition of fields is replaced with the superposition of their effects in
many-sheeted space-time. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg

Space-time surfaces of TGD are considerably simpler objects that the space-times of general
relativity and relate to GRT space-time like elementary particles to systems of condensed matter
physics. Same can be said about fields since all fields are expressible in terms of imbedding
space coordinates and their gradients, and general coordinate invariance means that the number
of bosonic field degrees is reduced locally to 4. TGD space-time can be said to be a microscopic
description whereas GRT space-time a macroscopic description. In TGD complexity of space-time
topology replaces the complexity due to large number of fields in quantum field theory.

Topological field quantization and the notion of magnetic body

Topological field quantization also TGD from Maxwell’s theory. TGD predicts topological light rays
(“massless extremals (MEs)”) as space-time sheets carrying waves or arbitrary shape propagating
with maximal signal velocity in single direction only and analogous to laser beams and carrying
light-like gauge currents in the generi case. There are also magnetic flux quanta and electric flux
quanta. The deformations of cosmic strings with 2-D string orbit as M4 projection gives rise to
magnetic flux tubes carrying monopole flux made possible by CP2 topology allowing homological
Kähler magnetic monopoles.

Fig. 13. Topological quantization for magnetic fields replaces magnetic fields with bundles of
them defining flux tubes as topological field quanta. http://tgdtheory.fi/appfigures/field.

jpg

The imbeddability condition for say magnetic field means that the region containing constant
magnetic field splits into flux quanta, say tubes and sheets carrying constant magnetic field. Unless
one assumes a separate boundary term in Kähler action, boundaries in the usual sense are forbidden
except as ends of space-time surfaces at the boundaries of causal diamonds. One obtains typically

http://tgdtheory.fi/appfigures/wormholecontact.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
http://tgdtheory.fi/appfigures/field.jpg
http://tgdtheory.fi/appfigures/field.jpg
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pairs of sheets glued together along their boundaries giving rise to flux tubes with closed cross
section possibly carrying monopole flux.

These kind of flux tubes might make possible magnetic fields in cosmic scales already during
primordial period of cosmology since no currents are needed to generate these magnetic fields:
cosmic string would be indeed this kind of objects and would dominated during the primordial
period. Even superconductors and maybe even ferromagnets could involve this kind of monopole
flux tubes.

A-5.2 Imbedding Space Spinors And Induced Spinors

One can geometrize also fermionic degrees of freedom by inducing the spinor structure of M4×CP2.
CP2 does not allow spinor structure in the ordinary sense but one can couple the opposite

H-chiralities of H-spinors to an n = 1 (n = 3) integer multiple of Kähler gauge potential to obtain
a respectable modified spinor structure. The em charges of resulting spinors are fractional (integer
valued) and the interpretation as quarks (leptons) makes sense since the couplings to the induced
spinor connection having interpretation in terms electro-weak gauge potential are identical to those
assumed in standard model.

The notion of quark color differs from that of standard model.

1. Spinors do not couple to color gauge potential although the identification of color gauge
potential as projection of SU(3) Killing vector fields is possible. This coupling must emerge
only at the effective gauge theory limit of TGD.

2. Spinor harmonics of imbedding space correspond to triality t = 1 (t = 0) partial waves.
The detailed correspondence between color and electroweak quantum numbers is however
not correct as such and the interpretation of spinor harmonics of imbedding space is as
representations for ground states of super-conformal representations. The wormhole pairs
associated with physical quarks and leptons must carry also neutrino pair to neutralize weak
quantum numbers above the length scale of flux tube (weak scale or Compton length). The
total color quantum numbers or these states must be those of standard model. For instance,
the color quantum numbers of fundamental left-hand neutrino and lepton can compensate
each other for the physical lepton. For fundamental quark-lepton pair they could sum up to
those of physical quark.

The well-definedness of em charge is crucial condition.

1. Although the imbedding space spinor connection carries W gauge potentials one can say that
the imbedding space spinor modes have well-defined em charge. One expects that this is true
for induced spinor fields inside wormhole contacts with 4-D CP2 projection and Euclidian
signature of the induced metric.

2. The situation is not the same for the modes of induced spinor fields inside Minkowskian
region and one must require that the CP2 projection of the regions carrying induced spinor
field is such that the induced W fields and above weak scale also the induced Z0 fields vanish
in order to avoid large parity breaking effects. This condition forces the CP2 projection to
be 2-dimensional. For a generic Minkowskian space-time region this is achieved only if the
spinor modes are localized at 2-D surfaces of space-time surface - string world sheets and
possibly also partonic 2-surfaces.

3. Also the Kähler-Dirac gamma matrices appearing in the modified Dirac equation must vanish
in the directions normal to the 2-D surface in order that Kähler-Dirac equation can be
satisfied. This does not seem plausible for space-time regions with 4-D CP2 projection.

4. One can thus say that strings emerge from TGD in Minkowskian space-time regions. In
particular, elementary particles are accompanied by a pair of fermionic strings at the opposite
space-time sheets and connecting wormhole contacts. Quite generally, fundamental fermions
would propagate at the boundaries of string world sheets as massless particles and wormhole
contacts would define the stringy vertices of generalized Feynman diagrams. One obtains
geometrized diagrammatics, which brings looks like a combination of stringy and Feynman
diagrammatics.
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5. This is what happens in the the generic situation. Cosmic strings could serve as examples
about surfaces with 2-D CP2 projection and carrying only em fields and allowing delocaliza-
tion of spinor modes to the entire space-time surfaces.

A-5.3 Space-Time Surfaces With Vanishing Em, Z0, Or Kähler Fields

In the following the induced gauge fields are studied for general space-time surface without assum-
ing the extremal property. In fact, extremal property reduces the study to the study of vacuum
extremals and surfaces having geodesic sphere as a CP2 projection and in this sense the following
arguments are somewhat obsolete in their generality.

Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial
geodesic sphere and extremal property are not assumed. It must be emphasized that this case is
possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-5.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-5.2)

where ΘW denotes Weinberg angle.

1. The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-5.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral
space-time is 2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-5.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1
giving |u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,
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where sign(x) denotes the sign of x.

The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-5.5)

The components of the electromagnetic field generated by varying vacuum parameters are
proportional to the components of the Kähler field: in particular, the magnetic field is parallel
to the Kähler magnetic field. The generation of a long range Z0 vacuum field is a purely
TGD based feature not encountered in the standard gauge theories.

2. The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically. Also

the relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.

3. The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral space-
times. In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-5.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains
as a long range gauge field. Vacuum extremals for which long range Z0 field vanishes but
em field is non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler field is
of practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-5.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions characterized
by six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency type param-
eters, two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum numbers (n1

and n2) are integers. The parameters ωi and ni will be referred as electric and magnetic quantum
numbers. The existence of these quantum numbers is not a feature of these solutions alone but
represents a much more general phenomenon differentiating in a clear cut manner between TGD
and Maxwell’s electrodynamics.
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The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the
derivatives of CP2 coordinates on the common boundary of two neighboring regions with differ-
ent vacuum quantum numbers is topological field quantization, 3-space decomposes into disjoint
topological field quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-5.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one has
k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values of the
vacuum parameters ωi,ki and ni and m and C are bounded by the surfaces at which space-time
surface becomes ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the
vacuum parameters r0 and Θ0. At r = ∞ surfaces n2,ω2 and m can change since all values of
Ψ correspond to the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since all
values of Φ correspond to same point of CP2, too. If r = 0 or r = ∞ is not in the allowed range
space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not possible
to find a smooth global imbedding for, say a constant magnetic field. Although global imbedding
exists it decomposes into regions with different values of the vacuum parameters and the coordinate
u in general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner
to avoid edges of space-time is to allow field quantization so that 3-space (and field) decomposes
into disjoint quanta, which can be regarded as structurally stable units a 3-space (and of the gauge
field). This doesn’t exclude partial join along boundaries for neighboring field quanta provided
some additional conditions guaranteeing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-5.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically neutral
regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in general
generates magnetic field and therefore these integers will be referred to as magnetic (electric)
quantum numbers.

A-6 P-Adic Numbers And TGD

A-6.1 P-Adic Number Fields

p-Adic numbers (p is prime: 2, 3, 5, ...) can be regarded as a completion of the rational numbers
using a norm, which is different from the ordinary norm of real numbers [A40]. p-Adic numbers
are representable as power expansion of the prime number p of form

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-6.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-6.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the
p-adic number only. Arbitrarily high powers in the expansion are possible since the norm of the
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p-adic number is finite also for numbers, which are infinite with respect to the ordinary norm. A
convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (A-6.3)

where ε(x) = k+ .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x− y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-6.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint
sets using the criterion that x and y belong to same class if the distance between x and y satisfies
the condition

d(x, y) ≤ D . (A-6.5)

This division of the metric space into classes has following properties:

1. Distances between the members of two different classes X and Y do not depend on the choice
of points x and y inside classes. One can therefore speak about distance function between
classes.

2. Distances of points x and y inside single class are smaller than distances between different
classes.

3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin
glasses and is believed to have also applications in biology [B46]. The emergence of p-adic topology
as the topology of the effective space-time would make ultra-metricity property basic feature of
physics.

A-6.2 Canonical Correspondence Between P-Adic And Real Numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic
physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification
via common rationals and canonical identification and its variants have turned out to play a key
role in this respect.

Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative real num-
bers given by the “pinary” expansion of the real number for x ∈ R and y ∈ Rp this correspondence
reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-6.6)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also decimal expansion is not
unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of
pinary digits
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x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-6.7)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-6.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary
digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique
by choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice
since in the numerical work one always must use a pinary cutoff on the real axis.

The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers differs
from the ordinary topology. The difference is easily understood by interpreting the p-adic norm
as a norm in the set of the real numbers. The norm is constant in each interval [pk, pk+1) (see
Fig. A-6.2 ) and is equal to the usual real norm at the points x = pk: the usual linear norm
is replaced with a piecewise constant norm. This means that p-adic topology is coarser than the
usual real topology and the higher the value of p is, the coarser the resulting topology is above a
given length scale. This hierarchical ordering of the p-adic topologies will be a central feature as
far as the proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topol-
ogy is rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as
is clear already from the properties of the p-adic norm (the graph of the norm is indeed continuous
from right). This feature is one clear signature of the p-adic topology.

Fig. 14. The real norm induced by canonical identification from 2-adic norm. http:

//tgdtheory.fi/appfigures/norm.png

The linear structure of the p-adic numbers induces a corresponding structure in the set of
the non-negative real numbers and p-adic linearity in general differs from the ordinary concept
of linearity. For example, p-adic sum is equal to real sum only provided the summands have no
common pinary digits. Furthermore, the condition x+p y < max{x, y} holds in general for the p-
adic sum of the real numbers. p-Adic multiplication is equivalent with the ordinary multiplication
only provided that either of the members of the product is power of p. Moreover one has x×p y <
x × y in general. The p-Adic negative −1p associated with p-adic unit 1 is given by (−1)p =∑
k(p− 1)pk and defines p-adic negative for each real number x. An interesting possibility is that

p-adic linearity might replace the ordinary linearity in some strongly nonlinear systems so these
systems would look simple in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-6.9)

http://tgdtheory.fi/appfigures/norm.png
http://tgdtheory.fi/appfigures/norm.png
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where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-6.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space
suggests the definition

(xR)2 = (
∑
n

x2
n)R . (A-6.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might
have a generalization and physically the generalization might apply to the description of some
non-linear systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm
under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symmetries
even approximately. This led to a search of variants which would do better in this respect. The
modification of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-6.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange
of target and domain. This map reduces to a direct identification of rationals for 0 ≤ r < p and
0 ≤ s < p. It has turned out that it is this map which most naturally appears in the applications.
The map is obviously continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy same
for I and IQ but IQ is theoretically preferred since the real probabilities obtained from p-adic ones
by IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic number
fields along common rationals is in question. This induces a similar fusion of real and p-adic imbed-
ding spaces. Since finite p-adic numbers correspond always to non-negative reals n-dimensional
space Rn must be covered by 2n copies of the p-adic variant Rnp of Rn each of which projects to a
copy of Rn+ (four quadrants in the case of plane). The common points of p-adic and real imbedding
spaces are rational points and most p-adic points are at real infinity.

Real numbers and various algebraic extensions of p-adic number fields are thus glued together
along common rationals and also numbers in algebraic extension of rationals whose number belong
to the algebraic extension of p-adic numbers. This gives rise to a book like structure with rationals
and various algebraic extensions of rationals taking the role of the back of the book. Note that
Neper number is exceptional in the sense that it is algebraic number in p-adic number field Qp
satisfying ep mod p = 1.

Fig. 15. Various number fields combine to form a book like structure. http://tgdtheory.
fi/appfigures/book.jpg

http://tgdtheory.fi/appfigures/book.jpg
http://tgdtheory.fi/appfigures/book.jpg
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For a given p-adic space-time sheet most points are literally infinite as real points and the
projection to the real imbedding space consists of a discrete set of rational points: the interpretation
in terms of the unavoidable discreteness of the physical representations of cognition is natural.
Purely local p-adic physics implies real p-adic fractality and thus long range correlations for the
real space-time surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface
X4 are related by a direct identification whereas CP2 coordinates of X4 at these points are related
by I, IQ or some of its variants implying long range correlates for CP2 coordinates. Since only
a discrete set of points are related in this manner, both real and p-adic field equations can be
satisfied and there are no problems with symmetries. p-Adic effective topology is expected to be
a good approximation only within some length scale range which means infrared and UV cutoffs.
Also multi-p-fractality is possible.

A-6.3 The Notion Of P-Adic Manifold

The notion of p-adic manifold is needed in order to fuse real physics and various p-adic physics to
a larger structure which suggests that real and p-adic number fields should be glued together along
common rationals bringing in mind adeles. The notion is problematic because p-adic topology
is totally disconnected implying that p-adic balls are either disjoint or nested so that ordinary
definition of manifold using p-adic chart maps fails. A cure is suggested to be based on chart maps
from p-adics to reals rather than to p-adics (see the appendix of the book)

The chart maps are interpreted as cognitive maps, “thought bubbles”.
Fig. 16. The basic idea between p-adic manifold. http://tgdtheory.fi/appfigures/

padmanifold.jpg

There are some problems.

1. Canonical identification does not respect symmetries since it does not commute with second
pinary cutoff so that only a discrete set of rational points is mapped to their real counterparts
by chart map arithmetic operations which requires pinary cutoff below which chart map takes
rationals to rationals so that commutativity with arithmetics and symmetries is achieved in
finite resolution: above the cutoff canonical identification is used

2. Canonical identification is continuous but does not map smooth p-adic surfaces to smooth
real surfaces requiring second pinary cutoff so that only a discrete set of rational points is
mapped to their real counterparts by chart map requiring completion of the image to smooth
preferred extremal of Kähler action so that chart map is not unique in accordance with finite
measurement resolution

3. Canonical identification vreaks general coordinate invariance of chart map: (cognition-induced
symmetry breaking) minimized if p-adic manifold structure is induced from that for p-adic
imbedding space with chart maps to real imbedding space and assuming preferred coordinates
made possible by isometries of imbedding space: one however obtains several inequivalent
p-adic manifold structures depending on the choice of coordinates: these cognitive represen-
tations are not equivalent.

A-7 Hierarchy Of Planck Constants And Dark Matter Hi-
erarchy

Hierarchy of Planck constants was motivated by the “impossible” quantal effects of ELF em fields
on vertebrate cyclotron energies E = hf = ~× eB/m are above thermal energy is possible only if
~ has value much larger than its standard value. Also Nottale’s finding that planetary orbits migh
be understood as Bohr orbits for a gigantic gravitational Planck constant.

Hierachy of Planck constant would mean that the values of Planck constant come as integer
multiples of ordinary Planck constant: heff = n× h. The particles at magnetic flux tubes charac-
terized by heff would correspond to dark matter which would be invisible in the sense that only
particle with same value of heff appear in the same vertex of Feynman diagram.

http://tgdtheory.fi/appfigures/padmanifold.jpg
http://tgdtheory.fi/appfigures/padmanifold.jpg
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Hierarchy of Planck constants would be due to the non-determism of the Kähler action
predicting huge vacuum degeneracy allowing all space-time surfaces which are sub-manfolds of any
M4×Y 2, where Y 2 is Lagrangian sub-manifold of CP2. For agiven Y 2 one obtains new manifolds
Y 2 by applying symplectic transformations of CP2.

Non-determinism would mean that the 3-surface at the ends of causal diamond (CD) can
be connected by several space-time surfaces carrying same conserved Kähler charges and having
same values of Kähler action. Conformal symmetries defined by Kac-Moody algebra associated
with the imbedding space isometries could act as gauge transformations and respect the light-
likeness property of partonic orbits at which the signature of the induced metric changes from
Minkowskian to Euclidian (Minkowskianb space-time region transforms to wormhole contact say).
The number of conformal equivalence classes of these surfaces could be finite number n and define
discrete physical degree of freedom and one would have heff = n × h. This degeneracy would
mean “second quantization” for the sheets of n-furcation: not only one but several sheets can be
realized.

This relates also to quantum criticality postulated to be the basic characteristics of the
dynamics of quantum TGD. Quantum criticalities would correspond to an infinite fractal hierar-
chy of broken conformal symmetries defined by sub-algebras of conformal algebra with conformal
weights coming as integer multiples of n. This leads also to connections with quantum critical-
ity and hierarchy of broken conformal symmetries, p-adicity, and negentropic entanglement which
by consistency with standard quantum measurement theory would be described in terms of den-
sity matrix proportional n× n identity matrix and being due to unitary entanglement coefficients
(typical for quantum computing systems).

Formally the situation could be described by regarding space-time surfaces as surfaces in
singular n-fold singular coverings of imbedding space. A stronger assumption would be that they
are expressible as as products of n1 -fold covering of M4 and n2-fold covering of CP2 meaning
analogy with multi-sheeted Riemann surfaces and that M4 coordinates are n1-valued functions
and CP2 coordinates n2 -valued functions of space-time coordinates for n = n1 × n2. These
singular coverings of imbedding space form a book like structure with singularities of the coverings
localizable at the boundaries of causal diamonds defining the back of the book like structure.

Fig. 17. Hierarchy of Planck constants. http://tgdtheory.fi/appfigures/planckhierarchy.
jpg

A-8 Some Notions Relevant To TGD Inspired Conscious-
ness And Quantum Biology

Below some notions relevant to TGD inspired theory of consciousness and quantum biology.

A-8.1 The Notion Of Magnetic Body

Topological field quantization inspires the notion of field body about which magnetic body is espe-
cially important example and plays key role in TGD inspired quantum biology and consciousness
theory. This is a crucial departure fromt the Maxwellian view. Magnetic body brings in third level
to the description of living system as a system interacting strongly with environment. Magnetic
body would serve as an intentional agent using biological body as a motor instrument and sensory
receptor. EEG would communicated the information from biological body to magnetic body and
Libet’s findings from time delays of consciousness support this view.

The following pictures illustrate the notion of magnetic body and its dynamics relevant for
quantum biology in TGD Universe.

Fig. 18. Magnetic body associated with dipole field. http://tgdtheory.fi/appfigures/
fluxquant.jpg

Fig. 19. Illustration of the reconnection by magnetic flux loops. http://tgdtheory.fi/

appfigures/reconnect1.jpg

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
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Fig. 20. Illustration of the reconnection by flux tubes connecting pairs of molecules. http:
//tgdtheory.fi/appfigures/reconect2.jpg

Fig. 21. Flux tube dynamics. a) Reconnection making possible magnetic body to “rec-
ognize” the presence of another magnetic body, b) braiding, knotting and linking of flux tubes
making possible topological quantum computation, c) contraction of flux tube in phase transition
reducing the value of heff allowing two molecules to find each other in dense molecular soup.
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg

A-8.2 Number Theoretic Entropy And Negentropic Entanglement

TGD inspired theory of consciousness relies heavily p-Adic norm allows an to define the notion of
Shannon entropy for rational probabilities (and even those in algebraic extension of rationals) by
replacing the argument of logarithm of probability with its p-adic norm. The resulting entropy can
be negative and the interpretation is that number theoretic entanglement entropy defined by this
formula for the p-adic prime minimizing its value serves as a measure for conscious information.
This negentropy characterizes two-particle system and has nothing to do with the formal negative
negentropy assignable to thermodynamic entropy characterizing single particle. Negentropy Maxi-
mization Principle (NMP) implies that number theoretic negentropy increases during evolution by
quantum jumps. The condition that NMP is consistent with the standard quantum measurement
theory requires that negentropic entanglement has a density matrix proportional to unit matrix so
that in 2-particle case the entanglement matrix is unitary.

Fig. 22. Schrödinger cat is neither dead or alive. For negentropic entanglement this state
would be stable. http://tgdtheory.fi/appfigures/cat.jpg

A-8.3 Life As Something Residing In The Intersection Of Reality And
P-Adicities

In TGD inspired theory of consciousness p-adic space-time sheets correspond to space-time corre-
lates for thoughts and intentions. The intersections of real and p-adic preferred extremals consist
of points whose coordinates are rational or belong to some extension of rational numbers in pre-
ferred imbedding space coordinates. They would correspond to the intersection of reality and
various p-adicities representing the “mind stuff” of Descartes. There is temptation to assign life to
the intersection of realities and p-adicities. The discretization of the chart map assigning to real
space-time surface its p-adic counterpart would reflect finite cognitive resolution.

At the level of “world of classical worlds” ( WCW ) the intersection of reality and various
p-adicities would correspond to space-time surfaces (or possibly partonic 2-surfaces) representable
in terms of rational functions with polynomial coefficients with are rational or belong to algebraic
extension of rationals.

The quantum jump replacing real space-time sheet with p-adic one (vice versa) would cor-
respond to a buildup of cognitive representation (realization of intentional action).

Fig. 23. The quantum jump replacing real space-time surface with corresponding p-
adic manifold can be interpreted as formation of though, cognitive representation. Its reversal
would correspond to a transformation of intention to action. http://tgdtheory.fi/appfigures/
padictoreal.jpg

A-8.4 Sharing Of Mental Images

The 3-surfaces serving as correlates for sub-selves can topologically condense to disjoint large
space-time sheets representing selves. These 3-surfaces can also have flux tube connections and
this makes possible entanglement of sub-selves, which unentangled in the resolution defined by
the size of sub-selves. The interpretation for this negentropic entanglement would be in terms
of sharing of mental images. This would mean that contents of consciousness are not completely
private as assumed in neuroscience.

http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg
http://tgdtheory.fi/appfigures/cat.jpg
http://tgdtheory.fi/appfigures/padictoreal.jpg
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Fig. 24. Sharing of mental images by entanglement of subselves made possible by flux tube
connections between topologically condensed space-time sheets associated with mental images.
http://tgdtheory.fi/appfigures/sharing.jpg

A-8.5 Time Mirror Mechanism

Zero energy ontology (ZEO) is crucial part of both TGD and TGD inspired consciousness and leads
to the understanding of the relationship between geometric time and experience time and how the
arrow of psychological time emerges. One of the basic predictions is the possibiity of negative energy
signals propagating backwards in geometric time and having the property that entropy basically as-
sociated with subjective time grows in reversed direction of geometric time. Negative energy signals
inspire time mirror mechanism (see Fig. http://tgdtheory.fi/appfigures/timemirror.jpg or
Fig. 24 in the appendix of this book) providing mechanisms of both memory recall, realization
of intentational action initiating action already in geometric past, and remote metabolism. What
happens that negative energy signal travels to past and is reflected as positive energy signal and
returns to the sender. This process works also in the reverse time direction.

Fig. 25. Zero energy ontology allows time mirror mechanism as a mechanism of memory
recall. Essentially “seeing” in time direction is in question. http://tgdtheory.fi/appfigures/

timemirror.jpg
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