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0.1 PREFACE

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something different and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If I remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space CP2 are completely unique in the sense that they allow
twistor space with Kähler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (CP2) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an effective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the CP2

projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kähler-Dirac assigned with
Kähler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
“world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with CP2 factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became difficult to say where physics ends and
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consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
“Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and different from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

• One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about effective value of Planck constant
heff = n × h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kähler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, effective p-adic topology, and non-determinism of Kähler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.
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From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

• With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW
Kähler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kähler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kähler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like



0.1. PREFACE vii

“wormhole throats” suggests that virtual particle do not differ from on mass shell particles
only in that the four- and three- momenta of wormhole throats fail to be parallel. The two
throats of the wormhole contact defining virtual particle would contact carry on mass shell
quantum numbers but for virtual particles the four-momenta need not be parallel and can
also have opposite signs of energy.

The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly
also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy
variant of twistor formalism with string world sheets having interpretation as 2-braids. In
TGD framework fermionic variant of twistor Grassmann formalism leads to a stringy variant
of twistor diagrammatics in which basic fermions can be said to be on mass-shell but carry
non-physical helicities in the internal lines. This suggests the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Karkkila, October, 30, Finland

Matti Pitkänen
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Chapter 1

Introduction

1.1 Basic Ideas Of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged 37 years
ago - would emerge now it would be seen as an attempt trying to solve the difficulties of these
approaches to unification.

The basic physical picture behind TGD corresponds to a fusion of two rather disparate
approaches: namely TGD as a Poincare invariant theory of gravitation and TGD as a generalization
of the old-fashioned string model.

1.1.1 Basic Vision Very Briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of
basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K1].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional imbedding space H = M4×
CP2, where M4 is 4-dimensional (4-D) Minkowski space and CP2 is 4-D complex projective
space (see Appendix).

2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to
geometrize various fields. Space-time metric characterizing gravitational fields corresponds to
the induced metric obtained by projecting the metric tensor of H to the space-time surface.
Electroweak gauge potentials are identified as projections of the components of CP2 spinor
connection to the space-time surface, and color gauge potentials as projections ofCP2 Killing
vector fields representing color symmetries. Also spinor structure can be induced: induced
spinor gamma matrices are projections of gamma matrices of H and induced spinor fields
just H spinor fields restricted to space-time surface. Spinor connection is also projected.
The interpretation is that distances are measured in imbedding space metric and parallel
translation using spinor connection of imbedding space.

The induction procedure applies to octonionic structure and the conjecture is that for pre-
ferred extremals the induced octonionic structure is quaternionic: again one just projects the
octonion units. I have proposed that one can lift space-time surfaces in H to the Cartesian
product of the twistor spaces of M4 and CP2, which are the only 4-manifolds allowing twistor
space with Kähler structure. Now the twistor structure would be induced in some sense, and
should co-incide with that associated with the induced metric. Clearly, the 2-spheres defining

1
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the fibers of twistor spaces of M4 and CP2 must allow identification: this 2-sphere defines the
S2 fiber of the twistor space of space-time surface. This poses constraint on the imbedding of
the twistor space of space-time surfaces as sub-manifold in the Cartesian product of twistor
spaces.

3. Geometrization of quantum numbers is achieved. The isometry group of the geometry of
CP2 codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of CP2 geometry so that
standard model gauge group results. There are also important deviations from standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in CP2 scale. In contrast to GUTs, quark and
lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M4 and CP2 are unique choices for many other reasons. For instance, they are the unique 4-
D space-times allowing twistor space with Kähler structure. M4 light-cone boundary allows
a huge extension of 2-D conformal symmetries. Imbedding space H has a number theoretic
interpretation as 8-D space allowing octonionic tangent space structure. M4 and CP2 al-
low quaternionic structures. Therefore standard model symmetries have number theoretic
meaning.

4. Induced gauge potentials are expressible in terms of imbedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions in
the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particle in space-time can be identified as a topological inhomogenuity in background space-
time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distance of about 104 Planck lengths (CP2 size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore
a microscopic theory from which standard model and general relativity follow as a topolog-
ical simplification however forcing to increase dramatically the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These effects
are indeed observed but only in living matter. A possible resolution of problem is implied by
the condition that the modes of the induced spinor fields have well-defined electromagnetic
charge. This forces their localization to 2-D string world sheets in the generic case having
vanishing weak gauge fields so that parity breaking effects emerge just as they do in standard
model. Also string model like picture emerges from TGD and one ends up with a rather
concrete view about generalized Feynman diagrammatics. A possible objection is that the
Kähler-Dirac gamma matrices do not define an integrable distribution of 2-planes defining
string world sheet.



1.1. Basic Ideas Of Topological Geometrodynamics (TGD) 3

An even strong condition would be that the induced classical gauge fields at string world sheet
vanish: this condition is allowed by the topological description of particles. The CP2 pro-
jection of string world sheet would be 1-dimensional. Also the number theoretical condition
that octonionic and ordinary spinor structures are equivalent guaranteeing that fermionic
dynamics is associative leads to the vanishing of induced gauge fields.

The natural action would be given by string world sheet area, which is present only in the
space-time regions with Minkowskian signature. Gravitational constant would be present
as a fundamental constant in string action and the ratio ~/G/R2 would be determined by
quantum criticality condition. The hierarchy of Planck constants heff/h = n assigned to
dark matter in TGD framework would allow to circumvent the objection that only objects of
length of order Planck length are possible since string tension given by T = 1/~effG apart
from numerical factor could be arbitrary small. This would make possible gravitational
bound states as partonic 2-surfaces as structures connected by strings and solve the basic
problem of super string theories. This option allows the natural interpretation of M4 type
vacuum extremals with CP2 projection, which is Lagrange manifold as good approximations
for space-time sheets at macroscopic length scales. String area does not contribute to the
Kähler function at all.

Whether also induced spinor fields associated with Kähler-Dirac action and de-localized in-
side entire space-time surface should be allowed remains an open question: super-conformal
symmetry strongly suggests their presence. A possible interpretation for the corresponding
spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants.

It is perhaps useful to make clear what TGD is not and also what new TGD can give to
physics.

1. TGD is not just General Relativity made concrete by using imbeddings: the 4-surface prop-
erty is absolutely essential for unifying standard model physics with gravitation and to cir-
cumvent the incurable conceptual problems of General Relativity. The many-sheeted space-
time of TGD gives rise only at macroscopic limit to GRT space-time as a slightly curved
Minkowski space. TGD is not a Kaluza-Klein theory although color gauge potentials are
analogous to gauge potentials in these theories.

TGD space-time is 4-D and its dimension is due to completely unique conformal properties of
light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary
conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry
fundamental fermions at 1-D boundaries of string world sheets. TGD is not obtained by
performing Poincare gauging of space-time to introduce gravitation and plagued by profound
conceptual problems.

2. TGD is not a particular string model although string world sheets emerge in TGD very
naturally as loci for spinor modes: their 2-dimensionality makes among other things possible
quantum deformation of quantization known to be physically realized in condensed matter,
and conjectured in TGD framework to be crucial for understanding the notion of finite
measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this
obviously means analogy with branes of super-string models.

TGD is not one more item in the collection of string models of quantum gravitation relying
on Planck length mystics. Dark matter becomes an essential element of quantum gravitation
and quantum coherence in astrophysical scales is predicted just from the assumption that
strings connecting partonic 2-surfaces serve are responsible for gravitational bound states.

TGD is not a particular string model although AdS/CFT duality of super-string models
generalizes due to the huge extension of conformal symmetries and by the identification
of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a
natural conformal structure.

3. TGD is not a gauge theory. In TGD framework the counterparts of also ordinary gauge
symmetries are assigned to super-symplectic algebra (and its Yangian [A30] [B29, B23, B24]),
which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a
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fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is not one
more quantum field theory like structure based on path integral formalism: path integral
is replaced with functional integral over 3-surfaces, and the notion of classical space-time
becomes exact part of the theory. Quantum theory becomes formally a purely classical
theory of WCW spinor fields: only state function reduction is something genuinely quantal.

4. TGD view about spinor fields is not the standard one. Spinor fields appear at three levels.
Spinor modes of the imbedding space are analogs of spinor modes charactering incoming
and outgoing states in quantum field theories. Induced second quantized spinor fields at
space-time level are analogs of stringy spinor fields. Their modes are localized by the well-
definedness of electro-magnetic charge and by number theoretic arguments at string world
sheets. Kähler-Dirac action is fixed by supersymmetry implying that ordinary gamma ma-
trices are replaced by what I call Kähler-Dirac gamma matrices - this something new. WCW
spinor fields, which are classical in the sense that they are not second quantized, serve as
analogs of fields of string field theory and imply a geometrization of quantum theory.

5. TGD is in some sense an extremely conservative geometrization of entire quantum physics:
no additional structures such as gauge fields as independent dynamical degrees of freedom
are introduced: Kähler geometry and associated spinor structure are enough. “Topological”
in TGD should not be understood as an attempt to reduce physics to torsion (see for instance
[B21]) or something similar. Rather, TGD space-time is topologically non-trivial in all scales
and even the visible structures of everyday world represent non-trivial topology of space-time
in TGD Universe.

6. Twistor space - or rather, a generalization of twistor approach replacing masslessness in 4-D
sense with masslessness in 8-D sense and thus allowing description of also massive particles
- emerges as a technical tool, and its Kähler structure is possible only for H = M4 × CP2.
What is genuinely new is the infinite-dimensional character of the Kähler geometry making
it highly unique, and its generalization to p-adic number fields to describe correlates of
cognition. Also the hierarchies of Planck constants heff = n × h reducing to the quantum
criticality of TGD Universe and p-adic length scales and Zero Energy Ontology represent
something genuinely new.

The great challenge is to construct a mathematical theory around these physically very
attractive ideas and I have devoted the last thirty seven years for the realization of this dream
and this has resulted in eight online books about TGD and nine online books about TGD inspired
theory of consciousness and of quantum biology.

1.1.2 Two Vision About TGD And Their Fusion

As already mentioned, TGD can be interpreted both as a modification of general relativity and
generalization of string models.

TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
is regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski
space and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A52,
A63, A42, A58].

The identification of the space-time as a sub-manifold [A53, A77] of M4 × CP2 leads to
an exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in struc-
ture than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of
CP2 explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors
correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
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concept results. The projections of the CP2 spinor connection, Killing vector fields of CP2 and of
H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries.
Also number theoretical vision selects H = M4 × CP2 uniquely. M4 and CP2 are also unique
spaces allowing twistor space with Kähler structure.

TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds
the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Quite recently, it has turned out that fermionic strings inside space-time surfaces define an
exact part of quantum TGD and that this is essential for understanding gravitation in long length
scales. Also the analog of AdS/CFT duality emerges in that the Kähler metric can be defined
either in terms of Kähler function identifiable as Kähler action assignable to Euclidian space-time
regions or Kähler action + string action assignable to Minkowskian regions.

The recent view about construction of scattering amplitudes is very “stringy”. By strong
form of holography string world sheets and partonic 2-surfaces provide the data needed to con-
struct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical
correspondence necessary to understand the classical correlates of quantum measurement. There
is a huge generalization of the duality symmetry of hadronic string models. Scattering amplitudes
can be regarded as sequences of computational operations for the Yangian of super-symplectic al-
gebra. Product and co-product define the basic vertices and realized geometrically as partonic
2-surfaces and algebraically as multiplication for the elements of Yangian identified as super-
symplectic Noether charges assignable to strings. Any computational sequences connecting given
collections of algebraic objects at the opposite boundaries of causal diamond (CD) produce identical
scattering amplitudes.

Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a “topological condensate” containing matter as
particle like 3-surfaces “glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
“topological condensate” there could be “vapor phase” that is a “gas” of particle like 3-surfaces
and string like objects (counterpart of the “baby universes” of GRT) and the non-conservation of
energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possibly existence vapour phase.

What one obtains is what I have christened as many-sheeted space-time (see Fig. http:

//tgdtheory.fi/appfigures/manysheeted.jpg or Fig. ?? in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory system does not
possess this kind of field identity. The notion of magnetic body is one of the key players in TGD
inspired theory of consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The
basic notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP2 and of the
intersection of future and past directed light-cones and having scale coming as an integer multiple
of CP2 size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to
products of positive and negative energy parts assignable to the opposite boundaries of CD defining
the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology
is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the
opposite light-like boundaries of CD. Since the extremals of Kähler action connect these, one can
say that by holography the basic dynamical objects are the space-time surface connecting these
3-surfaces. This changes totally the vision about notions like self-organization: self-organization
by quantum jumps does not take for a 3-D system but for the entire 4-D field pattern associated
with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-
like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-
time surface is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at
which the signature of the induced metric changes from Minkowskian to Euclidian and interpreted
as lines of generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar
interpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of Kähler action. In finite
length scale resolution these effects can be neglected below UV cutoff and above IR cutoff. One
can also speak about strong form of holography.

1.1.3 Basic Objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four imbedding space
coordinates only- essentially CP2 coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-
sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particle topologically condenses to several space-time sheets simultaneously and experiences the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory
the number of primary field variables is countered in hundreds if not thousands, now it is just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-
time due to the imbeddability to 8-D imbedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation allows
to understand the relationship to GRT space-time and how Equivalence Principle (EP) follows
from Poincare invariance of TGD. The interpretation of GRT space-time is as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective metric
determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of
space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for
the GRT limit in long length scales at least. One can consider also other kinds of limits such as the
analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case
deformations of CP2 metric define a natural starting point and CP2 indeed defines a gravitational
instanton with very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials
of standard model correspond classically to superpositions of induced gauge potentials over space-
time sheets.
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Topological field quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 P-Adic Variants Of Space-Time Surfaces

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. One might say that TGD space-time is adelic. Also the hierarchy of Planck constants forces
a generalization of the notion of space-time but this generalization can be understood in terms of
the failure of strict determinism for Kähler action defining the fundamental variational principle
behind the dynamics of space-time surfaces.

A very concise manner to express how TGD differs from Special and General Relativities
could be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and
Equivalence Principle remain true. What is new is the notion of sub-manifold geometry: this allows
to realize Poincare Invariance and geometrize gravitation simultaneously. This notion also allows
a geometrization of known fundamental interactions and is an essential element of all applications
of TGD ranging from Planck length to cosmological scales. Sub-manifold geometry is also crucial
in the applications of TGD to biology and consciousness theory.

1.1.5 The Threads In The Development Of Quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

The theoretical framework involves several threads.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name “TGD as
a generalized number theory”. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful
revision of the basic views about what the final form and physical content of quantum TGD
might be. Together with the vision about the fusion of p-adic and real physics to a larger
coherent structure these sub-threads fused to the “physics as generalized number theory”
thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
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of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
primes as sub-threads of a thread which might be called “physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to four.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as
physics of cognitive representations. The eight online books [K59, K45, K37, K77, K50, K76,
K75, K49] about TGD and nine online books about TGD inspired theory of consciousness and of
quantum biology [K54, K8, K40, K7, K23, K27, K29, K48, K72] are warmly recommended to the
interested reader.

Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was “Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH (“world of classical worlds”, WCW)
consisting of all possible 3-surfaces in H. “All possible” means that surfaces with arbitrary
many disjoint components and with arbitrary internal topology and also singular surfaces
topologically intermediate between two different manifold topologies are included. Particle
reactions are identified as topology changes [A69, A79, A87]. For instance, the decay of a
3-surface to two 3-surfaces corresponds to the decay A→ B+C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle
sector to two-particle sector. All coupling constants should result as predictions of the theory
since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong
form of General Coordinate Invariance has led to a rather detailed and in many respects un-
expected visions. This picture forces to give up the idea about smooth space-time surfaces
and replace space-time surface with a generalization of Feynman diagram in which vertices
represent the failure of manifold property. I have also introduced the word “world of classical
worlds” (WCW) instead of rather formal “configuration space”. I hope that “WCW” does
not induce despair in the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric
related differential operators, say Dirac operator, appearing in the field equations of the
theory 1

4. WCW Dirac operator appearing in Super-Virasoro conditions, imbedding space Dirac oper-
ator whose modes define the ground states of Super-Virasoro representations, Kähler-Dirac
operator at space-time surfaces, and the algebraic variant of M4 Dirac operator appearing in

1There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kähler metric
definable either in terms of Kähler function identified as Kähler action for Euclidian space-time regions or as anti-
commutators for WCW gamma matrices identified as conformal Noether super-charges associated with the second
quantized modified Dirac action consisting of string world sheet term and possibly also Kähler Dirac action in
Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT duality.
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propagators. The most ambitious dream is that zero energy states correspond to a complete
solution basis for the Dirac operator of WCW so that this classical free field theory would
dictate M-matrices defined between positive and negative energy parts of zero energy states
which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy
states. Given M-matrix in turn would decompose to a product of a hermitian square root of
density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative en-
ergy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in well-defined sense a square root of thermodynamics. The or-
thogonality and hermiticity of the M-matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quan-
tum TGD would reduce to group theory in well-defined sense.

In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained
by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also
the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and
would correspond to a hierarchy of CDs with the temporal distances between tips coming as
integer multiples of the CP2 time.

The M-matrices associated with CDs are obtained by a discrete scaling from the minimal
CD and characterized by integer n are naturally proportional to a representation matrix of
scaling: S(n) = Sn, where S is unitary S-matrix associated with the minimal CD [K66]. This
conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized
to integer power of S and represented as scaling with respect to the logarithm of the proper
time distance between the tips of CD.

U-matrix elements between M-matrices for various CDs are proportional to the inner products
Tr[S−n1 ◦HiHj ◦Sn2λ], where λ represents unitarily the discrete Lorentz boost relating the
moduli of the active boundary of CD and Hi form an orthonormal basis of Hermitian square
roots of density matrices. ◦ tells that S acts at the active boundary of CD only. It turns out
possible to construct a general representation for the U-matrix reducing its construction to
that of S-matrix. S-matrix has interpretation as exponential of the Virasoro generator L−1

of the Virasoro algebra associated with super-symplectic algebra.

5. By quantum classical correspondence the construction of WCW spinor structure reduces to
the second quantization of the induced spinor fields at space-time surface. The basic action
is so called modified Dirac action (or Kähler-Dirac action) in which gamma matrices are
replaced with the modified (Kähler-Dirac) gamma matrices defined as contractions of the
canonical momentum currents with the imbedding space gamma matrices. In this manner
one achieves super-conformal symmetry and conservation of fermionic currents among other
things and consistent Dirac equation. The Kähler-Dirac gamma matrices define as anti-
commutators effective metric, which might provide geometrization for some basic observables
of condensed matter physics. One might also talk about bosonic emergence in accordance
with the prediction that the gauge bosons and graviton are expressible in terms of bound
states of fermion and anti-fermion.

6. An important result relates to the notion of induced spinor connection. If one requires
that spinor modes have well-defined em charge, one must assume that the modes in the
generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic
2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed
neutrino generating super-symmetries forms an exception. The vanishing of also Z0 field is
possible for Kähler-Dirac action and should hold true at least above weak length scales. This
implies that string model in 4-D space-time becomes part of TGD. Without these conditions
classical weak fields can vanish above weak scale only for the GRT limit of TGD for which
gauge potentials are sums over those for space-time sheets.

The localization simplifies enormously the mathematics and one can solve exactly the Kähler-
Dirac equation for the modes of the induced spinor field just like in super string models.
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At the light-like 3-surfaces at which the signature of the induced metric changes from Eu-
clidian to Minkowskian so that

√
g4 vanishes one can pose the condition that the algebraic

analog of massless Dirac equation is satisfied by the nodes so that Kähler-Dirac action gives
massless Dirac propagator localizable at the boundaries of the string world sheets.

The evolution of these basic ideas has been rather slow but has gradually led to a rather
beautiful vision. One of the key problems has been the definition of Kähler function. Kähler
function is Kähler action for a preferred extremal assignable to a given 3-surface but what this
preferred extremal is? The obvious first guess was as absolute minimum of Kähler action but
could not be proven to be right or wrong. One big step in the progress was boosted by the idea
that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in
finite measurement resolution, which could be inherent property of the theory itself and imply
discretization at partonic 2-surfaces with discrete points carrying fermion number.

It took long time to realize that there is no discretization in 4-D sense - this would lead to
difficulties with basic symmetries. Rather, the discretization occurs for the parameters character-
izing co-dimension 2 objects representing the information about space-time surface so that they
belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic
2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself
approximates itself, one might say! This is of course nothing but strong form of holography.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the

√
g4 factorc coming from metric would be imaginary

so that one would obtain sum of real term identifiable as Kähler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of
Coulomb contribution to Kähler action is required and is true for all known extremals if one
makes a general ansatz about the form of classical conserved currents. The so called weak
form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D
terms to Chern-Simons terms. In this manner almost topological QFT results. But only
“almost” since the Lagrange multiplier term forcing electric-magnetic duality implies that
Chern-Simons action for preferred extremals depends on metric.

TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional config-
uration space (“world of classical worlds”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name “TGD as a gen-
eralized number theory”. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already, the
formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified
as sub-spaces of complexified classical number fields with Minkowskian signature of the metric
defined by the complexified inner product, and the notion of infinite prime.

1. p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers
might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical
identification mapping reals to p-adics and vice versa. The breakthrough came with the successful
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p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group.
Although the details of the calculations have varied from year to year, it was clear that p-adic
physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics,
but all elementary particle mass scales, to number theory if one assumes that primes near prime
powers of two are in a physically favored position. Why this is the case, became one of the key
puzzles and led to a number of arguments with a common gist: evolution is present already at
the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the
fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired “Universe as Computer” vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.

In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades
central problem in the frontier of mathematics and a lot of profound work has been done
along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly
the notion of algebraic continuation from the world of rationals belonging to the intersection
of real world and various p-adic worlds.

Despite various uncertainties, the number of the applications of the poorly defined p-adic
physics has grown steadily and the applications turned out to be relatively stable so that it was
clear that the solution to these problems must exist. It became only gradually clear that the
solution of the problems might require going down to a deeper level than that represented by reals
and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept
and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time,
imbedding space, and WCW.

The notion of p-adic manifold [K79] identified as p-adic space-time surface solving p-adic
analogs of field equations and having real space-time sheet as chart map provided a possible
solution of the basic challenge of relating real and p-adic classical physics. One can also speak of
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real space-time surfaces having p-adic space-time surfaces as chart maps (cognitive maps, “thought
bubbles” ). Discretization required having interpretation in terms of finite measurement resolution
is unavoidable in this approach and this leads to problems with symmetries: canonical identification
does not commute with symmetries.

It is now clear that much more elegant approach based on abstraction exists [K85]. The map
of real preferred extremals to p-adic ones is not induced from a local correspondence between points
but is global. Discretization occurs only for the parameters characterizing string world sheets and
partonic 2-surfaces so that they belong to some algebraic extension of rationals. Restriction to
these 2-surfaces is possible by strong form of holography. Adelization providing number theoretical
universality reduces to algebraic continuation for the amplitudes from this intersection of reality
and various p-adicities - analogous to a back of a book - to various number fields. There are no
problems with symmetries but canonical identification is needed: various group invariant of the
amplitude are mapped by canonical identification to various p-adic number fields. This is nothing
but a generalization of the mapping of the p-adic mass squared to its real counterpart in p-adic
mass calculations.

This leads to surprisingly detailed predictions and far reaching conjectures. For instance,
the number theoretic generalization of entropy concept allows negentropic entanglement central
for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or
Fig. ?? in the appendix of this book). One can also understand how preferred p-adic primes could
emerge as so called ramified primes of algebraic extension of rationals in question and characterizing
string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for
extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces
(imaginations) allowing also real continuation (realization of imagination) would be especially
large. These ramifications would be winners in the fight for number theoretical survival. Also a
generalization of p-adic length scale hypothesis emerges from NMP [K30].

The characteristic non-determinism of the p-adic differential equations suggests strongly that
p-adic regions correspond to “mind stuff”, the regions of space-time where cognitive representations
reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is
probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the
cognitive representations to derive information about the real physics. This view encouraged by
TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear
interpretation for the predictions of p-adic physics.

2. The role of classical number fields

The vision about the physical role of the classical number fields relies on certain speculative
questions inspired by the idea that space-time dynamics could be reduced to associativity or co-
associativity condition. Associativity means here associativity of tangent spaces of space-time
region and co-associativity associativity of normal spaces of space-time region.

1. Could space-time surfaces X4 be regarded as associative or co-associative (“quaternionic”
is equivalent with “associative” ) surfaces of H endowed with octonionic structure in the
sense that tangent space of space-time surface would be associative (co-associative with
normal space associative) sub-space of octonions at each point of X4 [K53]. This is certainly
possible and an interesting conjecture is that the preferred extremals of Kähler action include
associative and co-associative space-time regions.

2. Could the notion of compactification generalize to that of number theoretic compactifica-
tion in the sense that one can map associative (co-associative) surfaces of M8 regarded as
octonionic linear space to surfaces in M4 × CP2 [K53] ? This conjecture - M8 −H duality
- would give for M4 × CP2 deep number theoretic meaning. CP2 would parametrize asso-
ciative planes of octonion space containing fixed complex plane M2 ⊂ M8 and CP2 point
would thus characterize the tangent space of X4 ⊂M8. The point of M4 would be obtained
by projecting the point of X4 ⊂ M8 to a point of M4 identified as tangent space of X4.
This would guarantee that the dimension of space-time surface in H would be four. The
conjecture is that the preferred extremals of Kähler action include these surfaces.

3. M8−H duality can be generalized to a duality H → H if the images of the associative surface
in M8 is associative surface in H. One can start from associative surface of H and assume

http://tgdtheory.fi/appfigures/cat.jpg
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that it contains the preferred M2 tangent plane in 8-D tangent space of H or integrable
distribution M2(x) of them, and its points to H by mapping M4 projection of H point to
itself and associative tangent space to CP2 point. This point need not be the original one! If
the resulting surface is also associative, one can iterate the process indefinitely. WCW would
be a category with one object.

4. G2 defines the automorphism group of octonions, and one might hope that the maps of
octonions to octonions such that the action of Jacobian in the tangent space of associative
or co-associative surface reduces to that of G2 could produce new associative/co-associative
surfaces. The action of G2 would be analogous to that of gauge group.

5. One can also ask whether the notions of commutativity and co-commutativity could have
physical meaning. The well-definedness of em charge as quantum number for the modes of
the induced spinor field requires their localization to 2-D surfaces (right-handed neutrino is
an exception) - string world sheets and partonic 2-surfaces. This can be possible only for
Kähler action and could have commutativity and co-commutativity as a number theoretic
counterpart. The basic vision would be that the dynamics of Kähler action realizes number
theoretical geometrical notions like associativity and commutativity and their co-notions.

The notion of number theoretic compactification stating that space-time surfaces can be
regarded as surfaces of either M8 or M4 × CP2. As surfaces of M8 identifiable as space of hyper-
octonions they are hyper-quaternionic or co-hyper-quaternionic- and thus maximally associative
or co-associative. This means that their tangent space is either hyper-quaternionic plane of M8

or an orthogonal complement of such a plane. These surface can be mapped in natural manner to
surfaces in M4×CP2 [K53] provided one can assign to each point of tangent space a hyper-complex
plane M2(x) ⊂M4 ⊂M8. One can also speak about M8 −H duality.

This vision has very strong predictive power. It predicts that the preferred extremals of
Kähler action correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that
one can assign to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⊂
M4. As a consequence, the M4 projection of space-time surface at each point contains M2(x) and
its orthogonal complement. These distributions are integrable implying that space-time surface
allows dual slicings defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of
this kind of slicing was earlier deduced from the study of extremals of Kähler action and christened
as Hamilton-Jacobi structure. The physical interpretation of M2(x) is as the space of non-physical
polarizations and the plane of local 4-momentum.

Number theoretical compactification has inspired large number of conjectures. This includes
dual formulations of TGD as Minkowskian and Euclidian string model type theories, the precise
identification of preferred extremals of Kähler action as extremals for which second variation van-
ishes (at least for deformations representing dynamical symmetries) and thus providing space-time
correlate for quantum criticality, the notion of number theoretic braid implied by the basic dynam-
ics of Kähler action and crucial for precise construction of quantum TGD as almost-topological
QFT, the construction of WCW metric and spinor structure in terms of second quantized induced
spinor fields with modified Dirac action defined by Kähler action realizing the notion of finite
measurement resolution and a connection with inclusions of hyper-finite factors of type II1 about
which Clifford algebra of WCW represents an example.

The two most important number theoretic conjectures relate to the preferred extremals of
Kähler action. The general idea is that classical dynamics for the preferred extremals of Kähler
action should reduce to number theory: space-time surfaces should be either associative or co-
associative in some sense.

Associativity (co-associativity) would be that tangent (normal) spaces of space-time surfaces
associative (co-associative) in some sense and thus quaternionic (co-quaternionic). This can be
formulated in two manners.

1. One can introduce octonionic tangent space basis by assigning to the “free” gamma matri-
ces octonion basis or in terms of octonionic representation of the imbedding space gamma
matrices possible in dimension D = 8.

2. Associativity (quaternionicity) would state that the projections of octonionic basic vectors or
induced gamma matrices basis to the space-time surface generates associative (quaternionic)
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sub-algebra at each space-time point. Co-associativity is defined in analogous manner and
can be expressed in terms of the components of second fundamental form.

3. For gamma matrix option induced rather than Kähler-Dirac gamma matrices must be in
question since Kähler-Dirac gamma matrices can span lower than 4-dimensional space and
are not parallel to the space-time surfaces as imbedding space vectors.

3. Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy
defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for
the speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly repre-
sentable as surfaces geometrically, it was clear how TGD might be formulated as a generalized
number theory with infinite primes forming the bridge between classical and quantum such that
real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from alge-
braic physics as various completions of the algebraic extensions of rational (hyper-)quaternions and
(hyper-)octonions. Complete algebraic, topological and dimensional democracy would characterize
the theory.

The infinite primes at the first level of hierarchy, which represent analogs of bound states,
can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of
rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields.
The products of infinite primes in turn define more general algebraic extensions of rationals. The
interesting question concerns the physical interpretation of the higher levels in the hierarchy of
infinite primes and integers mappable to polynomials of n > 1 variables.

1.1.6 Hierarchy Of Planck Constants And Dark Matter Hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phases

D. Da Rocha and Laurent Nottale [E1] have proposed that Schrödinger equation with Planck
constant ~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c =

1). v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4.
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of v0 seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hy-
drodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some
levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets
in question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hgr. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hgr would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K46].

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
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carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative “pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Certain experimental findings suggest the identification heff = n× = hgr. The large value
of hgr can be seen as a manner to reduce the string tension of fermionic strings so that gravitational
(in fact all!) bound states can be described in terms of strings connecting the partonic 2-surfaces
defining particles (analogous to AdS/CFT description). The values heff/h = n can be interpreted
in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal
generators act as gauge symmetries only for a sub-algebras with conformal weights coming as
multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kähler-
Dirac action is present, part of the interior degrees of freedom associated with the Kähler-Dirac
part of conformal algebra become physical. A possible is that tfermionic oscillator operators
generate super-symmetries and sparticles correspond almost by definition to dark matter with
heff/h = n > 1. One implication would be that at least part if not all gravitons would be dark and
be observed only through their decays to ordinary high frequency graviton (E = hfhigh = heffflow)
of bunch of n low energy gravitons.

Hierarchy of Planck constants from the anomalies of neuroscience and biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10−10 times
lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck
constant that the energy of photons is above the thermal energy. The proposed interpretation was
as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter
with non-standard value of Planck constant. If only particles with the same value of Planck
constant can appear in the same vertex of Feynman diagram, the phases with different value of
Planck constant are dark relative to each other. The phase transitions changing Planck constant
can however make possible interactions between phases with different Planck constant but these
interactions do not manifest themselves in particle physics. Also the interactions mediated by
classical fields should be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis heff = hgr - at least for microscopic particles - implies that cyclotron
energies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
heff reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K41, K42, K69] ) support the view that dark
matter might be a key player in living matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple ~ = n~0 of the ordinary Planck constant ~0 is assigned with a multiple singular covering
of the imbedding space [K17]. One ends up to an identification of dark matter as phases with
non-standard value of Planck constant having geometric interpretation in terms of these coverings
providing generalized imbedding space with a book like structure with pages labelled by Planck
constants or integers characterizing Planck constant. The phase transitions changing the value of



16 Chapter 1. Introduction

Planck constant would correspond to leakage between different sectors of the extended imbedding
space. The question is whether these coverings must be postulated separately or whether they are
only a convenient auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective.
Many-sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The
huge vacuum degeneracy of Kähler action implies that the relationship between gradients of the
imbedding space coordinates and canonical momentum currents is many-to-one: this was the very
fact forcing to give up all the standard quantization recipes and leading to the idea about physics
as geometry of the “world of classical worlds”. If one allows space-time surfaces for which all sheets
corresponding to the same values of the canonical momentum currents are present, one obtains
effectively many-sheeted covering of the imbedding space and the contributions from sheets to the
Kähler action are identical. If all sheets are treated effectively as one and the same sheet, the value
of Planck constant is an integer multiple of the ordinary one. A natural boundary condition would
be that at the ends of space-time at future and past boundaries of causal diamond containing the
space-time surface, various branches co-incide. This would raise the ends of space-time surface in
special physical role.

A more precise formulation is in terms of presence of large number of space-time sheets
connecting given space-like 3-surfaces at the opposite boundaries of causal diamond. Quantum
criticality presence of vanishing second variations of Kähler action and identified in terms of confor-
mal invariance broken down to to sub-algebras of super-conformal algebras with conformal weights
divisible by integer n is highly suggestive notion and would imply that n sheets of the effective
covering are actually conformal equivalence classes of space-time sheets with same Kähler action
and same values of conserved classical charges (see Fig. http://tgdtheory.fi/appfigures/

planckhierarchy.jpg or Fig. ?? the appendix of this book). n would naturally correspond the
value of heff and its factors negentropic entanglement with unit density matrix would be between
the n sheets of two coverings of this kind. p-Adic prime would be largest prime power factor of n.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)ew
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kähler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z0

field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like heff .

1.1.7 Twistors And TGD

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K55]. The
reason is that M4 and CP2 are completely exceptional in the sense that they are the only 4-D
manifolds allowing twistor space with Kähler structure [A64]. The twistor space of M4 × CP2 is
Cartesian product of those of M4 and CP2. The obvious idea is that space-time surfaces allowing
twistor structure if they are orientable are representable as surfaces in H such that the properly
induced twistor structure co-incides with the twistor structure defined by the induced metric. This
condition would define the dynamics, and the conjecture is that this dynamics is equivalent with
the identification of space-time surfaces as preferred extremals of Kähler action. The dynamics of
space-time surfaces would be lifted to the dynamics of twistor spaces, which are sphere bundles
over space-time surfaces. What is remarkable that the powerful machinery of complex analysis
becomes available.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg


1.2. Bird’s Eye Of View About The Topics Of The Book 17

The condition that the basic formulas for the twistors in M8 serving as tangent space of
imbedding space generalize. This is the case if one introduces octonionic sigma matrices allow-
ing twistor representation of 8-momentum serving as dual for four-momentum and color quantum
numbers. The conditions that octonionic spinors are equivalent with ordinary requires that the
induced gamma matrices generate quaternionic sub-algebra at given point of string world sheet.
This is however not enough: the charge matrices defined by sigma matrices can also break asso-
ciativity and induced gauge fields must vanish: the CP2 projection of string world sheet would be
one-dimensional at most. This condition is symplectically invariant. Note however that for the
interior dynamics of induced spinor fields octonionic representations of Clifford algebra cannot be
equivalent with the ordinary one.

One can assign 4-momentum both to the spinor harmonics of the imbedding space rep-
resenting ground states of superconformal representations and to light-like boundaries of string
world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identifical by
quantum classical correspondence: this is nothing but a concretization of Equivalence Principle.
Also a connection with string model emerges.

Twistor approach developed rapidly during years. Witten’s twistor string theory general-
izes: the most natural counterpart of Witten’s twistor strings is partonic 2-surface. The notion
of positive Grassmannian has emerged and TGD provides a possible generalization and number
theoretic interpretation of this notion. TGD generalizes the observation that scattering amplitudes
in twistor Grassmann approach correspond to representations for permutations. Since 2-vertex is
the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering amplitudes
are representations for braidings. Braid interpretation gives further support for the conjecture that
non-planar diagrams can be reduced to ordinary ones by a procedure analogous to the construction
of braid (knot) invariants by gradual un-braiding (un-knotting).

1.2 Bird’s Eye Of View About The Topics Of The Book

The topics of this book are the purely geometric aspects of the vision about physics as an infinite-
dimensional Kähler geometry of the “world of classical worlds”, with classical world identified
either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The
non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions of
space-like surfaces with time like separations must be allowed. Zero energy ontology allows to
formulate this picture elegantly in terms of causal diamonds defined as intersections of future and
past directed light-cones. Also a a geometric realization of coupling constant evolution and finite
measurement resolution emerges.

There are two separate tasks involved.

1. Provide WCW of 3-surfaces with Kähler geometry which is consistent with 4-dimensional
general coordinate invariance so that the metric is Diff4 degenerate. General coordinate
invariance implies that the definition of metric must assign to a given light-like 3-surface X3

a 4-surface as a kind of Bohr orbit X4(X3).

2. Provide the WCW with a spinor structure. The great idea is to identify WCW gamma
matrices in terms of super algebra generators expressible using second quantized fermionic
oscillator operators for induced free spinor fields at the space-time surface assignable to a
given 3-surface. The isometry generators and contractions of Killing vectors with gamma
matrices would thus form a generalization of Super Kac-Moody algebra.

The condition of mathematical existence poses surprisingly strong conditions on WCW
metric and spinor structure.

1. From the experience with loop spaces one can expect that there is no hope about existence of
well-defined Riemann connection unless this space is union of infinite-dimensional symmetric
spaces with constant curvature metric and simple considerations requires that vacuum Ein-
stein equations are satisfied by each component in the union. The coordinates labeling these
symmetric spaces are zero modes having interpretation as genuinely classical variables which
do not quantum fluctuate since they do not contribute to the line element of the WCW.
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2. The construction of the Kähler structure involves also the identification of complex structure.
Direct construction of Kähler function as action associated with a preferred Bohr orbit like ex-
tremal for some physically motivated action action leads to a unique result. Second approach
is group theoretical and is based on a direct guess of isometries of the infinite-dimensional
symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isome-
tries is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group
with the group of symplectic transformations of δM4

+ ×CP2, where δM4
+ is the boundary of

4-dimensional future light-cone. A crucial role is played by the generalized conformal invari-
ance assignable to light-like 3-surfaces and to the boundaries of causal diamond. Contrary
to the original belief, the coset construction does not provide a realization of Equivalence
Principle at quantum level. The proper realization of EP at quantum level seems to be based
on the identification of classical Noether charges in Cartan algebra with the eigenvalues of
their quantum counterparts assignable to Kähler-Dirac action. At classical level EP follows
at GRT limit obtained by lumping many-sheeted space-time to M4 with effective metric
satisfying Einstein’s equations as a reflection of the underlying Poincare invariance.

3. Fermionic statistics and quantization of spinor fields can be realized in terms of WCW spinors
structure. Quantum criticality and the idea about space-time surfaces as analogs of Bohr
orbits have served as basic guiding lines of Quantum TGD. These notions can be formulated
more precisely in terms of the modified Dirac equation for induced spinor fields allowing also
realization of super-conformal symmetries and quantum gravitational holography. A rather
detailed view about how WCW Kähler function emerges as Dirac determinant allowing a
tentative identification of the preferred extremals of Kähler action as surface for which second
variation of Kähler action vanishes for some deformations of the surface. The catastrophe
theoretic analog for quantum critical space-time surfaces are the points of space spanned by
behavior and control variables at which the determinant defined by the second derivatives of
potential function with respect to behavior variables vanishes. Number theoretic vision leads
to rather detailed view about preferred extremals of Kähler action. In particular, preferred
extremals should be what I have dubbed as hyper-quaternionic surfaces. It it still an open
question whether this characterization is equivalent with quantum criticality or not.

1.3 Sources

The eight online books about TGD [K59, K45, K77, K50, K37, K76, K75, K49] and nine online
books about TGD inspired theory of consciousness and quantum biology [K54, K8, K40, K7, K23,
K27, K29, K48, K72] are warmly recommended for the reader willing to get overall view about
what is involved.

My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In
particular, a TGD glossary at http://tinyurl.com/yd6jf3o7).

I have published articles about TGD and its applications to consciousness and living mat-
ter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in
Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and
Exploration (http://tinyurl.com/yba4f672), and DNA Decipher Journal (http://tinyurl.
com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles pub-
lished at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing
a communication channel, whose importance one cannot overestimate.

1.4 The contents of the book

In the following abstracts of various chapters of the book are given in order to provide overall view.

1.4.1 Identification of the Configuration Space Kähler Function

There are two basic approaches to quantum TGD. The first approach, which is discussed in
this chapter, is a generalization of Einstein’s geometrization program of physics to an infinite-
dimensional context. Second approach is based on the identification of physics as a generalized

http://tinyurl.com/ybv8dt4n
http://tinyurl.com/yd6jf3o7
http://tinyurl.com/ycyrxj4o
http://tinyurl.com/ycvktjhn
http://tinyurl.com/yba4f672
http://tinyurl.com/y9z52khg
http://tinyurl.com/y9z52khg
http://tinyurl.com/ybv8dt4n
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number theory. The first approach relies on the vision of quantum physics as infinite-dimensional
Kähler geometry for the “world of classical worlds” (WCW) identified as the space of 3-surfaces
in in certain 8-dimensional space.

There are three separate manners to meet the challenge of constructing WCW Kähler ge-
ometry and spinor structure. The first approach relies on direct guess of Kähler function. Second
approach relies on the construction of Kähler form and metric utilizing the huge symmetries of
the geometry needed to guarantee the mathematical existence of Riemann connection. The third
approach relies on the construction of spinor structure based on the hypothesis that complexified
WCW gamma matrices are representable as linear combinations of fermionic oscillator operator
for second quantized free spinor fields at space-time surface and on the geometrization of super-
conformal symmetries in terms of WCW spinor structure.

In this chapter the proposal for Kähler function based on the requirement of 4-dimensional
General Coordinate Invariance implying that its definition must assign to a given 3-surface a unique
space-time surface. Quantum classical correspondence requires that this surface is a preferred
extremal of some some general coordinate invariant action, and so called Kähler action is a unique
candidate in this respect. The preferred extremal has in positive energy ontology interpretation
as an analog of Bohr orbit so that classical physics becomes and exact part of WCW geometry
and therefore also quantum physics. In zero energy ontology (ZEO) it is not clear whether this
interpretation can be preserved except for maxima of Kähler function.

The basic challenge is the explicit identification of WCW Kähler function K. Two assump-
tions lead to the identification of K as a sum of Chern-Simons type terms associated with the ends
of causal diamond and with the light-like wormhole throats at which the signature of the induced
metric changes. The first assumption is the weak form of electric magnetic duality. Second as-
sumption is that the Kähler current for preferred extremals satisfies the condition jK ∧ djK = 0
implying that the flow parameter of the flow lines of jK defines a global space-time coordinate.
This would mean that the vision about reduction to almost topological QFT would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality.
Electric-magnetic duality helps considerably here. The realization that the hierarchy of Planck
constant realized in terms of coverings of the imbedding space follows from basic quantum TGD
leads to a further understanding. The extreme non-linearity of canonical momentum densities as
functions of time derivatives of the imbedding space coordinates implies that the correspondence
between these two variables is not 1-1 so that it is natural to introduce coverings of CD × CP2.
This leads also to a precise geometric characterization of the criticality of the preferred extremals.
Sub-algebra of conformal symmetries consisting of generators for which conformal weight is integer
multiple of given integer n is conjectured to act as critical deformations, that there are n conformal
equivalence classes of extremals and that n defines the effective value of Planck constant heff =
n× h.

1.4.2 About Identification of the Preferred extremals of Kähler Action

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD.
There are pressing motivations for understanding what the attribute “preferred” really means.
Symmetries give a clue to the problem. The conformal invariance of string models naturally
generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody
type algebra) characterized by two complex coordinates and therefore explaining naturally the
effective 2-dimensionality [K63]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two
space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A
natural looking condition is that the symplectic Noether charges associated with a sub-algebra
of symplectic algebra with conformal weights n-multiples of the weights of the entire algebra
vanish for preferred extremals. These conditions would be classical counterparts the the condition
that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of
super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of
hierarchy of Planck constants heff = n × h identified as a hierarchy of dark matter. n could be
interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets
connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean
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or imply. The weak form of electric-magnetic duality combined with the assumption that the
contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals
implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at
the light-like orbits of wormhole throats at which the signature of the induced metric changes
its signature from Minkowskian to Euclidian. In regions with 4-D CP2 projection (wormhole
contacts) also a 3-D contribution not assignable to the boundary of the region might be possible.
These conditions pose strong physically feasible conditions on extremals and might be true for
preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space
of given point of space-time surface is associative and thus quaternionic. Also the formulation in
terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So
called M8−H duality is a variant of this vision and would mean that one can map associative/co-
associative space-time surfaces from M8 to H and also iterate this mapping from H to H to
generate entire category of preferred extremals. The signature of M4 is a general technical prob-
lem. For instance, the holomorphy in 2 complex variables could correspond to what I have called
Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in
Minkowskian signature.

In this chapter various views about preferred extremal property are discussed.

1.4.3 Construction of WCW Kähler Geometry from Symmetry Princi-
ples

There are three separate approaches to the challenge of constructing WCW Kähler geometry and
spinor structure. The first one relies on a direct guess of the Kähler function. Second approach
relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach relies
on the construction of spinor structure assuming that complexified WCW gamma matrices are
representable as linear combinations of fermionic oscillator operator for the second quantized free
spinor fields at space-time surface and on the geometrization of super-conformal symmetries in
terms of spinor structure.

In this chapter the construction of Kähler form and metric based on symmetries is discussed.
The basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with
lines thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy
ontology the strong form of General Coordinate Invariance (GCI) strongly suggests effective 2-
dimensionality and the basic objects are taken to be pairs partonic 2-surfaces X2 at opposite
light-like boundaries of causal diamonds (CDs). This has however turned out to be too strong
formulation for effective 2-dimensionality string world sheets carrying induced spinor fields are also
present.

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric
spaces G/H labeled by zero modes having an interpretation as classical, non-quantum fluctuating
variables. A crucial role is played by the metric 2-dimensionality of the light-cone boundary δM4

+

and of light-like 3-surfaces implying a generalization of conformal invariance. The group G acting as
isometries of WCW is tentatively identified as the symplectic group of δM4

+×CP2. H corresponds
to sub-group acting as diffeomorphisms at preferred 3-surface, which can be taken to correspond
to maximum of Kähler function.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the
opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kähler
action. The interpretation would be in terms of holography. One can also consider the inclusion
of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so
that it would become connected.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux
Hamiltonians using Haltonians of light-cone boundary is proposed and also the elements of Kähler
form can be constructed in terms of these. Explicit expressions for WCW flux Hamiltonians as
functionals of complex coordinates of the Cartesian product of the infinite-dimensional symmetric
spaces having as points the partonic 2-surfaces defining the ends of the the light 3-surface (line of
generalized Feynman diagram) are proposed.
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This construction suffers from some rather obvious defects. Effective 2-dimensionality is
realized in too strong sense, only covariantly constant right-handed neutrino is involved, and WCW
Hamiltonians do not directly reflect the dynamics of Kähler action. The construction however
generalizes in very straightforward manner to a construction free of these problems. This however
requires the understanding of the dynamics of preferred extremals and Kähler-Dirac action.

1.4.4 WCW Spinor Structure

Quantum TGD should be reducible to the classical spinor geometry of the configuration space
(“world of classical worlds” (WCW)). The possibility to express the components of WCW Kähler
metric as anti-commutators of WCW gamma matrices becomes a practical tool if one assumes
that WCW gamma matrices correspond to Noether super charges for super-symplectic algebra of
WCW. The possibility to express the Kähler metric also in terms of Kähler function identified as
Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT duality.

Physical states should correspond to the modes of the WCW spinor fields and the identifi-
cation of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW
spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion
number. Concerning the construction of the WCW spinor structure there are some important
clues.

1. Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can
be understood geometrically in terms of the WCW spinor structure in the sense that the anti-
commutation relations for WCW gamma matrices require anti-commutation relations for the os-
cillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely re-
lated to the WCW spinor structure. Ramond model has as its basic field the anti-commuting
field Γk(x), whose Fourier components are analogous to the gamma matrices of the WCW
and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that
the complexified gamma matrices of the WCW are analogous to spin 3/2 fields and therefore
expressible in terms of the fermionic oscillator operators so that their anti-commutativity
naturally derives from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the “orbital” degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition of
the WCW spinor structure somehow. The properties of the modified massless Dirac operator
associated with the induced spinor structure are indeed very physical. The modified massless
Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton
numbers. The differences between quarks and leptons result from the different couplings to
the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and/or its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
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the success of 10-dimensional super string models for which the physical degrees of freedom
effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB , where JAB denotes the matrix elements of the Kähler form of the WCW.
The presence of the Hermitian conjugation is necessary because WCW gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in
the complex coordinates. The realization of this delicacy is necessary in order to understand
how the square of the WCW Dirac operator comes out correctly.

2. Kähler-Dirac equation for induced spinor fields

Super-symmetry between fermionic and and WCW degrees of freedom dictates that Kähler-
Dirac action is the unique choice for the Dirac action

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking effects since induce W fields and possibly also Z0 field above weak scale, vahish at
these surfaces.

The condition that also spinor dynamics is associative suggests strongly that the localization
to 2-D surface occurs always (for right-handed neutrino the above conditions does not apply
this). The induced gauge potentials are the possible source of trouble but the holomorphy of
spinor modes completely analogous to that encountered in string models saves the situation.
Whether holomorphy could be replaced with its quaternionic counterpart in Euclidian regions
is not clear (this if W fields vanish at the entire space-time surface so that 4-D modes are
possible). Neither it is clear whether the localization to 2-D surfaces occurs also in Euclidian
regions with 4-D CP2 projection.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac
equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the Kähler-Dirac operator generate badly broken super-symmetries.

3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets.
Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing CP2 part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the CP2 part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry. This super-symmetry seems however to differ from the ordinary
one in that νR is expected to behave like a passive spectator in the scattering. Also for
the left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or CP2 like inside the world sheet.

awcwspin
Quantum TGD should be reducible to the classical spinor geometry of the configuration

space (“world of classical worlds” (WCW)). The possibility to express the components of WCW
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Kähler metric as anti-commutators of WCW gamma matrices becomes a practical tool if one
assumes that WCW gamma matrices correspond to Noether super charges for super-symplectic
algebra of WCW. The possibility to express the Kähler metric also in terms of Kähler function
identified as Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT
duality.

Physical states should correspond to the modes of the WCW spinor fields and the identifi-
cation of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW
spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion
number. Concerning the construction of the WCW spinor structure there are some important
clues.

1. Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can
be understood geometrically in terms of the WCW spinor structure in the sense that the anti-
commutation relations for WCW gamma matrices require anti-commutation relations for the os-
cillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely re-
lated to the WCW spinor structure. Ramond model has as its basic field the anti-commuting
field Γk(x), whose Fourier components are analogous to the gamma matrices of the WCW
and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests that
the complexified gamma matrices of the WCW are analogous to spin 3/2 fields and therefore
expressible in terms of the fermionic oscillator operators so that their anti-commutativity
naturally derives from the anti-commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the “orbital” degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition of
the WCW spinor structure somehow. The properties of the modified massless Dirac operator
associated with the induced spinor structure are indeed very physical. The modified massless
Dirac equation for the induced spinors predicts a separate conservation of baryon and lepton
numbers. The differences between quarks and leptons result from the different couplings to
the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and/or its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
the success of 10-dimensional super string models for which the physical degrees of freedom
effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB , where JAB denotes the matrix elements of the Kähler form of the WCW.
The presence of the Hermitian conjugation is necessary because WCW gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in
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the complex coordinates. The realization of this delicacy is necessary in order to understand
how the square of the WCW Dirac operator comes out correctly.

2. Kähler-Dirac equation for induced spinor fields

Super-symmetry between fermionic and and WCW degrees of freedom dictates that Kähler-
Dirac action is the unique choice for the Dirac action

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking effects since induce W fields and possibly also Z0 field above weak scale, vahish at
these surfaces.

The condition that also spinor dynamics is associative suggests strongly that the localization
to 2-D surface occurs always (for right-handed neutrino the above conditions does not apply
this). The induced gauge potentials are the possible source of trouble but the holomorphy of
spinor modes completely analogous to that encountered in string models saves the situation.
Whether holomorphy could be replaced with its quaternionic counterpart in Euclidian regions
is not clear (this if W fields vanish at the entire space-time surface so that 4-D modes are
possible). Neither it is clear whether the localization to 2-D surfaces occurs also in Euclidian
regions with 4-D CP2 projection.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac
equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the Kähler-Dirac operator generate badly broken super-symmetries.

3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets.
Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing CP2 part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the CP2 part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry. This super-symmetry seems however to differ from the ordinary
one in that νR is expected to behave like a passive spectator in the scattering. Also for
the left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or CP2 like inside the world sheet.

1.4.5 Recent View about Kähler Geometry and Spin Structure of WCW

The construction of Kähler geometry of WCW (“world of classical worlds”) is fundamental to
TGD program. I ended up with the idea about physics as WCW geometry around 1985 and made
a breakthrough around 1990, when I realized that Kähler function for WCW could correspond
to Kähler action for its preferred extremals defining the analogs of Bohr orbits so that classical
theory with Bohr rules would become an exact part of quantum theory and path integral would be
replaced with genuine integral over WCW. The motivating construction was that for loop spaces
leading to a unique Kähler geometry. The geometry for the space of 3-D objects is even more
complex than that for loops and the vision still is that the geometry of WCW is unique from the
mere existence of Riemann connection.
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This chapter represents the updated version of the construction providing a solution to the
problems of the previous construction. The basic formulas remain as such but the expressions for
WCW super-Hamiltonians defining WCW Hamiltonians (and matrix elements of WCW metric)
as their anticommutator are replaced with those following from the dynamics of the Kähler-Dirac
action.

1.4.6 The Classical Part of the Twistor Story

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough
is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of
twistor structure to that for 8-D imbedding space H = M4 ×CP2 is necessary. M4 (and S4 as its
Euclidian counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces
allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1) × U(1) and F3 defines
twistor space for the imbedding space H and one can ask whether this generalized twistor structure
could allow to understand both quantum TGD and classical TGD defined by the extremals of
Kähler action. In the following I summarize the background and develop a proposal for how to
construct extremals of Kähler action in terms of the generalized twistor structure. One ends up
with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so
that the twistor spaces give an alternative representation for generalized Feynman diagrams.

There is also a very closely analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds and the modification recipe for Calabi-Yau manifolds by removal of singularities can
be applied to remove self-intersections of twistor spaces and mirror symmetry emerges naturally.
The overall important implication is that the methods of algebraic geometry used in super-string
theories should apply in TGD framework.

The physical interpretation is totally different in TGD. The landscape is replaced with
twistor spaces of space-time surfaces having interpretation as generalized Feynman diagrams and
twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor strings.

The classical view about twistorialization of TGD makes possible a more detailed formula-
tion of the previous ideas about the relationship between TGD and Witten’s theory and twistor
Grassmann approach. Furthermore, one ends up to a formulation of the scattering amplitudes in
terms of Yangian of the super-symplectic algebra relying on the idea that scattering amplitudes are
sequences consisting of algebraic operations (product and co-product) having interpretation as ver-
tices in the Yangian extension of super-symplectic algebra. These sequences connect given initial
and final states and having minimal length. One can say that Universe performs calculations.

1.4.7 Unified Number Theoretical Vision

An updated view about M8−H duality is discussed. M8−H duality allows to deduce M4×CP2 via
number theoretical compactification. One important correction is that octonionic spinor structure
makes sense only for M8 whereas for M4×CP2 complefixied quaternions characterized the spinor
structure.

Octonions, quaternions associative and co-associative space-time surfaces, octonionic spinors
and twistors and twistor spaces are highly relevant for quantum TGD. In the following some general
observations distilled during years are summarized.

There is a beautiful pattern present suggesting that H = M4 × CP2 is completely unique
on number theoretical grounds. Consider only the following facts. M4 and CP2 are the unique
4-D spaces allowing twistor space with Kähler structure. Octonionic projective space OP2 appears
as octonionic twistor space (there are no higher-dimensional octonionic projective spaces). Oc-
totwistors generalise the twistorial construction from M4 to M8 and octonionic gamma matrices
make sense also for H with quaternionicity condition reducing OP2 to to 12-D G2/U(1) × U(1)
having same dimension as the the twistor space CP3 × SU(3)/U(1) × U(1) of H assignable to
complexified quaternionic representation of gamma matrices.

A further fascinating structure related to octo-twistors is the non-associated analog of Lie
group defined by automorphisms by octonionic imaginary units: this group is topologically six-
sphere. Also the analogy of quaternionicity of preferred extremals in TGD with the Majorana
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condition central in super string models is very thought provoking. All this suggests that associa-
tivity indeed could define basic dynamical principle of TGD.

Number theoretical vision about quantum TGD involves both p-adic number fields and
classical number fields and the challenge is to unify these approaches. The challenge is non-trivial
since the p-adic variants of quaternions and octonions are not number fields without additional
conditions. The key idea is that TGD reduces to the representations of Galois group of algebraic
numbers realized in the spaces of octonionic and quaternionic adeles generalizing the ordinary
adeles as Cartesian products of all number fields: this picture relates closely to Langlands program.
Associativity would force sub-algebras of the octonionic adeles defining 4-D surfaces in the space
of octonionic adeles so that 4-D space-time would emerge naturally. M8 − H correspondence in
turn would map the space-time surface in M8 to M4 × CP2.

A long-standing question has been the origin of preferred p-adic primes characterizing ele-
mentary particles. I have proposed several explanations and the most convincing hitherto is related
to the algebraic extensions of rationals and p-adic numbers selecting naturally preferred primes as
those which are ramified for the extension in question.

1.4.8 Knots and TGD

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is to find
a quantum physical construction of Khovanov homology analous to the topological QFT defined
by Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation value of
Wilson loop in non-Abelian gauge theory.

Witten’s approach to Khovanov homology relies on fivebranes as is natural if one tries to
define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the
difference in approaches it is very useful to try to find the counterparts of this approach in quantum
TGD since this would allow to gain new insights to quantum TGD itself as almost topological QFT
identified as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns
out to be extremely useful from TGD point of view.

1. Key question concerns the identification of string world sheets. A possible identification of
string world sheets and therefore also of the braids whose ends carry quantum numbers of
many particle states at partonic 2-surfaces emerges if one identifies the string word sheets as
singular surfaces in the same manner as is done in Witten’s approach.

In TGD framework the localization of the modes of the induced spinor fields at 2-D surfaces
carrying vanishing induced W boson fields guaranteeing that the em charge of spinor modes is
well-defined for a generic preferred extremal is natural. Besides string world sheets partonic
2-surfaces are good candidates for this kind of surfaces. It is not clear whether one can have
continuous slicing of this kind by string world sheets and partonic 2-surfaces orthogonal to
them or whether only discrete set of these surfaces is possible.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges.
P would correspond to instanton number and F to the fermion number assignable to right
handed neutrinos. The breaking of M4 chiral invariance makes possible to realize Q physi-
cally. The finding that the generalizations of Wilson loops can be identified in terms of the
gerbe fluxes

∫
HAJ supports the conjecture that TGD as almost topological QFT corresponds

essentially to a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generalized
Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired
by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are
needed if bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduce and the possibility that it could be
applied to generalized Feynman diagrams is discussed. The algebraic structures kei, quandle,
rack, and biquandle and their algebraic modifications as such are not enough. The lines
of Feynman graphs are replaced by braids and in vertices braid strands redistribute. This
poses several challenges: the crossing associated with braiding and crossing occurring in non-
planar Feynman diagrams should be integrated to a more general notion; braids are replaced
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with sub-manifold braids; braids of braids ....of braids are possible; the redistribution of
braid strands in vertices should be algebraized. In the following I try to abstract the basic
operations which should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of
Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak
form of electric-magnetic duality. The latter opion turns out to be more plausible. This
identification - if correct - would solve quantum TGD explicitly at string world sheet level
which corresponds to finite measurement resolution.

3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This
requires the identification of vertices, propagators, and prescription for integrating over al
3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are
well-defined.

4. The notion of generalized Feynman diagram leads to a beautiful duality between the descrip-
tions of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity duality
and AdS/CFT duality but requiring no additional assumptions. The model of quark gluon
plasma as s strongly interacting phase is proposed. Color magnetic flux tubes are responsible
for the long range correlations making the plasma phase more like a very large hadron rather
than a gas of partons. One also ends up with a simple estimate for the viscosity/entropy
ratio using black-hole analogy.



Chapter 2

Identification of WCW Kähler
Function

2.1 Introduction

The topics of this chapter are the purely geometric aspects of the vision about physics as an
infinite-dimensional Kähler geometry of the “world of classical worlds”, with “ classical world”
identified either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through
it. The non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions
of space-like surfaces with time like separations must be allowed. Zero energy ontology allows to
formulate this picture elegantly in terms of causal diamonds defined as intersections of future and
past directed light-cones. Also a a geometric realization of coupling constant evolution and finite
measurement resolution emerges.

There are two separate but closely related tasks involved.

1. Provide WCW with Kähler geometry which is consistent with 4-dimensional general coordi-
nate invariance so that the metric is Diff4 degenerate. General coordinate invariance implies
that the definition of metric must assign to a given light-like 3-surface X3 a 4-surface as a
kind of Bohr orbit X4(X3).

2. Provide WCW with a spinor structure. The great idea is to identify WCW gamma matrices
in terms of super algebra generators expressible using second quantized fermionic oscillator
operators for induced free spinor fields at the space-time surface assignable to a given 3-
surface. The isometry generators and contractions of Killing vectors with gamma matrices
would thus form a generalization of Super Kac-Moody algebra.

In this chapter a summary about basic ideas related to the construction of the Kähler geom-
etry of infinite-dimensional configuration of 3-surfaces (more or less-equivalently, the corresponding
4-surfaces defining generalized Bohr orbits) or “world of classical worlds” (WCW).

2.1.1 The Quantum States Of Universe As Modes Of Classical Spinor
Field In The “World Of Classical Worlds”

The vision behind the construction of WCW geometry is that physics reduces to the geometry of
classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ × CP2 or M4 × CP2,
where M4 and M4

+ denote Minkowski space and its light cone respectively. This WCW might be
called the “world of classical worlds”.

Hermitian conjugation is the basic operation in quantum theory and its geometrization
requires that WCW possesses Kähler geometry. One of the basic features of the Kähler geometry
is that it is solely determined by the so called. which defines both the J and the components of
the g in complex coordinates via the general formulas [A52]

28
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J = i∂k∂l̄Kdz
k ∧ dz̄l .

ds2 = 2∂k∂l̄Kdz
kdz̄l . (2.1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the WCW

JmrJ
rn = −g n

m . (2.1.2)

As a consequence Kähler form defines also symplectic structure in WCW.

2.1.2 WCW Kähler Metric From Kähler Function

The task of finding Kähler geometry for the WCW reduces to that of finding Kähler function
and identifying the complexification. The main constraints on the Kähler function result from the
requirement of Diff4 symmetry and degeneracy. requires that the definition of the Kähler function
assigns to a given 3-surface X3, which in Zero Energy Ontology is union of 3-surfaces at the
opposite boundaries of causal diamond CD, a unique space-time surface X4(X3), the generalized
Bohr orbit defining the classical physics associated with X3. The natural guess is that Kähler
function is defined by what might be called Kähler action, which is essentially Maxwell action with
Maxwell field expressible in terms of CP2 coordinates.

Absolute minimization was the first guess for how to fix X4(X3) uniquely. It has however
become clear that this option might well imply that Kähler is negative and infinite for the entire
Universe so that the vacuum functional would be identically vanishing. This condition can make
sense only inside wormhole contacts with Euclidian metric and positive definite Kähler action.

Quantum criticality of TGD Universe suggests the appropriate principle to be the criticality,
that is vanishing of the second variation of Kähler action. This principle now follows from the
conservation of Noether currents the Kähler-Dirac action. This formulation is still rather abstract
and if spinors are localized to string world sheets, it it is not satisfactory. A further step in progress
was the realization that preferred extremals could carry vanishing super-conformal Noether charges
for sub-algebras whose generators have conformal weight vanishing modulo n with nidentified in
terms of effective Planck constant heff/h = n.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy
and general coordinate invariance would be achieved by restricting the consideration to 3-surfaces
Y 3 at the boundary of M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and
diffeo-related to Y 3 as K(X3) = K(Y 3). The classical non-determinism of the Kähler action
however introduces complications. As a matter fact, the hierarchy of Planck constants has nice
interpretation in terms of non-determinism: the space-time sheets connecting the 3-surface at the
ends of CD form n conformal equivalence classes. This would correspond to the non-determinism
of quantum criticality accompanied by generalized conformal invariance

2.1.3 WCW Kähler Metric From Symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan [A45] [A45] has demonstrated that the Kähler geometry of loop
spaces is unique from the existence of Riemann connection and fixed completely by the Kac Moody
symmetries of the space. In 3-dimensional context one has even better reasons to expect uniqueness.
The guess is that WCW is a union of symmetric spaces labelled by zero modes not appearing in
the line element as differentials. The generalized conformal invariance of metrically 2-dimensional
light like 3-surfaces acting as causal determinants is the corner stone of the construction. The
construction works only for 4-dimensional space-time and imbedding space which is a product of
four-dimensional Minkowski space or its future light cone with CP2.

The detailed formulas for the matrix elements of the Kähler metric however remain educated
guesses so that this approach is not entirely satisfactory.
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2.1.4 WCW Kähler Metric As Anticommutators Of Super-Symplectic
Super Noether Charges

The third approach identifies the Kähler metric of WCW as anti-commutators of WCW gamma
matrices. This is not yet enough to get concrete expressions but the identification of WCW
gamma matrices as Noether super-charges for super-symplectic algebra assignable to the boundary
of WCW changes the situation. One also obtains a direct connection with elementary particle
physics.

The super charges are linear in the mode of induced spinor field and second quantized spinor
field itself, and involve the infinitesimal action of symplectic generator on the spinor field. One
can fix fermionic anti-commutation relations by second quantization of the induced spinor fields
(as a matter fact, here one can still consider two options). Hence one obtains explicit expressions
for the matrix elements of WCW metric.

If the induced spinor fields are localized at string world sheets - as the well-definedness of em
charge and number theoretic arguments suggest - one obtains an expression for the matrix elements
of the metric in terms of 1-D integrals over strings connecting partonic 2-surfaces. If spinors are
localized to string world sheets also in the interior of CP2, the integral is over a closed circle and
could have a representation analogous to a residue integral so that algebraic continuation to p-adic
number fields might become straightforward.

The matrix elements of WCW metric are labelled by the conformal weights of spinor modes,
those of symplectic vector fields for light-like CD boundaries and by labels for the irreducible
representations of SO(3) acting on light-cone boundary δM4

± = R+ × S2 and of SU(3) acting in
CP2. The dependence on spinor modes and their conformal weights could not be guessed in the
approach based on symmetries only. The presence of two rather than only one conformal weights
distinguishes the metric from that for loop spaces [A45] and reflects the effective 2-dimensionality.
The metric codes a rather scarce information about 3-surfaces. This is in accordance with the
notion of finite measurement resolution. By increasing the number of partonic 2-surfaces and string
world sheets the amount of information coded - measurement resolution - increases. Fermionic
quantum state gives information about 3-geometry. The alternative expression for WCW metric
in terms of Kähler function means analog of AdS/CFT duality: Kähler metric can be expressed
either in terms of Kähler action associated with the Euclidian wormhole contacts defining Kähler
function or in terms of the fermionic oscillator operators at string world sheets connecting partonic
2-surfaces.

2.1.5 What Principle Selects The Preferred Extremals?

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order to make
possible possible realization of general coordinate invariance. The first guess was that absolute
minimization of Kähler action might be the principle selecting preferred extremals. One can
criticize the assumption that extremals correspond to the absolute minima of Kähler action for
entire spacetime surface, as too strong since Kähler action from Minkowskian regions is proportional
to imaginary unit and corresponds to ordinary QFT action defining a phase factor of vacuum
functional. Furthermore, the notion of absolute minimization does not make sense in p-adic context
unless one manages to reduce it to purely algebraic conditions. Absolute minimization could
however make sense for Euclidian space-time regions defining the lines of generalized Feynman
diagras, where Kähler action has definite sign. Kähler function is indeed the Kähler action for
these regions.

What is needed is the association of a unique space-time surface to a given 3-surface defined
as union of 3-surfaces at opposite boundaries of CD. One can imagine many manners to achieve
this. “Unique” is too much to demand: for the proposal unique space-time surface is replaced
with finite number of conformal gauge equivalence classes of space-time surfaces. In any case, it
is better to talk just about preferred extremals of Kähler action and accept as the fact that there
are several proposals for what this notion could mean.

1. For instance, one can consider the identification of space-time surface as associative (co-
associative) sub-manifold meaning that tangent space of space-time surface can be regarded
as associative (co-associative) sub-manifold of complexified octonions defining tangent space
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of imbedding space. One manner to define “associative sub-manifold” is by introducing
octonionic representation of imbedding space gamma matrices identified as tangent space
vectors. It must be also assumed that the tangent space contains a preferred commutative
(co-commutative) sub-space at each point and defining an integrable distribution having
identification as string world sheet (also slicing of space-time sheet by string world sheets can
be considered). Associativity and commutativity would define the basic dynamical principle.
A closely related approach is based on so called Hamilton-Jacobi structure [K6] defining also
this kind of slicing and the approaches could be equivalent.

2. In zero energy ontology (ZEO) 3-surfaces become pairs of space-like 3-surfaces at the bound-
aries of causal diamond (CD). Even the light-like partonic orbits could be included to give
the analog of Wilson loop. In absence of non-determinism of Kähler action this forces to
ask whether the attribute “preferred” is un-necessary. There are however excellent rea-
sons to expect that there is an infinite gauge degeneracy assignable to quantum criticality
and represented in terms of Kac-Moody type transformations of partonic orbits respecting
their light-likeness and giving rise to the degeneracy behind hierarchy of Planck constants
heff = n × h. n would give the number of conformal equivalence classes of space-time sur-
faces with same ends. In given measurement resolution one might however hope that the
“preferred” could be dropped away.

The already mentioned vanishing of Noether charges for sub-algebras of conformal algebras
with conformal weights coming as multiples of n at the ends of space-time surface would be
a concrete realization of this picture.

3. The construction of quantum TGD in terms of the Kähler- Dirac action associated with
Kähler action led to a possible answer to the question about the principle selecting preferred
extremals. The Noether currents associated with Kähler-Dirac action are conserved if second
variations of Kähler action vanish. This is nothing but space-time correlate for quantum
criticality and it is amusing that I failed to realize this for so long time. A further very
important result is that in generic case the modes of induced spinor field are localized at 2-D
surfaces from the condition that em charge is well-defined quantum number (W fields must
vanish and also Z0 field above weak scale in order to avoid large parity breaking effects).
The criticality conditions are however rather complicated and it seems that the vanishing of
the symplectic Noether charges is the practical manner to formulate what “preferred” does
mean.

In this chapter I will first consider the basic properties of the WCW, briefly discuss the
various approaches to the geometrization of the WCW, and introduce the alternative strategies
for the construction of Kähler metric based on a direct guess of Kähler function, on the group
theoretical approach assuming that WCW can be regarded as a union of symmetric spaces, and on
the identification of Kähler metric as anti-commutators of gamma matrices identified as Noether
super charges for the symplectic algebra. After these preliminaries a definition of the Kähler
function is proposed and various physical and mathematical motivations behind the proposed
definition are discussed. The key feature of the Kähler action is classical non-determinism, and
various implications of the classical non-determinism are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L14].

2.2 WCW

The view about configuration space (“world of classical worlds”, WCW ) has developed consider-
ably during the last two decades. Here only the recent view is summarized in order to not load
reader with unessential details.

2.2.1 Basic Notions

The notions of imbedding space, 3-surface (and 4-surface), and WCW or “world of classical
worlds” ( WCW ), are central to quantum TGD. The original idea was that 3-surfaces are

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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space-like 3-surfaces of H = M4 × CP2 or H = M4
+ × CP2 (see Figs. http://tgdtheory.

fi/appfigures/Hoo.jpg, http://tgdtheory.fi/appfigures/cp2.jpg, http://tgdtheory.fi/
appfigures/Hoo.futurepast, http://tgdtheory.fi/appfigures/penrose.jpg, which are also
in the appendix of this book), and WCW consists of all possible 3-surfaces in H. The basic idea
was that the definition of Kähler metric of WCW assigns to each X3 a unique space-time surface
X4(X3) allowing in this manner to realize GCI. During years these notions have however evolved
considerably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision
[K52, K53, K51].

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book. As matter
fact, this gluing idea generalizes to the level of WCW .

2. With the discovery of zero energy ontology [K62, K12] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+∩M4
− of future and past directed light-cones

of M4×CP2 define correlates for the quantum states. The position of the “lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K3]
follows as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp.
δM4
−×CP2 of CD can be regarded as the carrier of positive resp. negative energy part of the

state. All net quantum numbers of states vanish so that everything is creatable from vacuum.
Space-time surfaces assignable to zero energy states would would reside inside CD × CP2s
and have their 3-D ends at the light-like boundaries of CD×CP2. Fractal structure is present
in the sense that CDs can contains CDs within CDs, and measurement resolution dictates
the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K17] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and possibly also factor spaces of CD and CP2 to
form a book like structure. There are good physical and mathematical arguments suggesting
that only the singular coverings should be allowed [K51]. The particles at different pages of
this book behave like dark matter relative to each other. This generalization also brings in
the geometric correlate for the selection of quantization axes in the sense that the geometry
of the sectors of the generalized imbedding space with non-standard value of Planck constant
involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking,
each CD and CP2 is replaced with a union of CDs and CP2s corresponding to different choices
of quantization axes so that no breaking of Poincare and color symmetries occurs at the level
of entire WCW .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont
view is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiv-
alence implied by GCI. There was a problem related to the realization of GCI since it was
not at all obvious why the preferred extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related
X3 should satisfy X4(Y 3) = X4(X3).

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identi-
fication resolves the above mentioned problem) and understanding the conformal symmetries
of the theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore

http://tgdtheory.fi/appfigures/Hoo.jpg
http://tgdtheory.fi/appfigures/Hoo.jpg
http://tgdtheory.fi/appfigures/cp2.jpg
http://tgdtheory.fi/appfigures/Hoo.futurepast
http://tgdtheory.fi/appfigures/Hoo.futurepast
http://tgdtheory.fi/appfigures/penrose.jpg
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it seems that one must choose between light-like and space-like 3-surfaces or assume general-
ized GCI requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the
ends of CDs can be identified as the fundamental geometric objects. General GCI requires
that the basic objects correspond to the partonic 2-surfaces identified as intersections of these
3-surfaces plus common 4-D tangent space distribution.

At the level of WCW metric this suggests that the components of the Kähler form and metric
can be expressed in terms of data assignable to 2-D partonic surfaces. Since the information
about normal space of the 2-surface is needed one has only effective 2-dimensionality. Weak
form of self-duality [K13] however implies that the normal data (flux Hamiltonians associ-
ated with Kähler electric field) reduces to magnetic flux Hamiltonians. This is essential for
conformal symmetries and also simplifies the construction enormously.

It however turned out that this picture is too simplistic. It turned out that the solutions of the
Kähler-Dirac equation are localized at 2-D string world sheets, and this led to a generalization
of the formulation of WCW geometry: given point of partonic 2-surface is effectively replaced
with a string emanating from it and connecting it to another partonic 2-surface. Hence the
formulation becomes 3-dimensional but thanks to super-conformal symmetries acting like
gauge symmetries one obtains effective 2-dimensionality albeit in weaker sense [K84].

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing to
generalize the notion of imbedding space and also to the fact that for non-standard values
of Planck constant there is symmetry breaking due to preferred plane M2 preferred homo-
logically trivial geodesic sphere of CP2 having interpretation as geometric correlate for the
selection of quantization axis. For given sector of CH this means union over choices of this
kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces cor-
respond to preferred extremals X4(X3) of Kähler action and are thus analogous to Bohr orbits.
Kähler function K(X3) defining the Kähler geometry of the world of classical worlds would corre-
spond to the Kähler action for the preferred extremal. The precise identification of the preferred
extremals actually has however remained open.

The study of the Kähler-Dirac equation led to the realization that classical field equations
for Kähler action can be seen as consistency conditions for the Kähler-Dirac action and led to
the identification of preferred extremals in terms of criticality. This identification which follows
naturally also from quantum criticality.

1. The condition that electromagnetic charge is well-defined for the modes of Kähler-Dirac
operator implies that in the generic case the modes are restricted to 2-D surfaces (string
world sheets or possibly also partonic 2-surfaces) with vanishing W fields [K62]. Above weak
scale at least one can also assume that Z0 field vanishes. Also for space-time surfaces with
2-D CP2 projection (cosmic strongs would be examples) the localization is expected to be
possible. This localization is possible only for Kähler action and the set of these 2-surfaces is
discrete except for the latter case. The stringy form of conformal invariance allows to solve
Kähler-Dirac equation just like in string models and the solutions are labelled by integer
valued conformal weights.

2. The next step of progress was the realization that the requirement that the conservation
of the Noether currents associated with the Kähler-Dirac equation requires that the second
variation of the Kähler action vanishes. In strongest form this condition would be satisfied
for all variations and in weak sense only for those defining dynamical symmetries. The
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interpretation is as a space-time correlate for quantum criticality and the vacuum degeneracy
of Kähler action makes the criticality plausible.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal
equivalence classes of the deformations can be finite and n would naturally relate to the
hierarchy of Planck constants heff = n× h (see Fig. ?? in the appendix of this book).

Weak form of electric-magnetic duality gives a precise formulation for how Kähler coupling
strength is visible in the properties of preferred extremals. A generalization of the ideas of
the catastrophe theory to infinite-dimensional context results. These conditions make sense
also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the under-
standing of the preferred extremals and the conjectures were consistent with what is known about
the known extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂ M4 having interpretation as the plane of non-physical polarizations. This in the
case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic
surface is in question, similar assigned should be possible in normal space. This means a close
connection with super string models. Geometrically this would mean that the deformations
of 3-surface in the plane of non-physical polarizations would not contribute to the line element
of WCW . This is as it must be since complexification does not make sense in M2 degrees of
freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes

that the boundary value problem is well-defined and could fix X4(X3) at least partially as
a preferred extremal of Kähler action. This picture is rather convincing since the choice
M2(x) ⊂M4 plays also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions
of these planes are integrable and define what I have called Hamilton-Jacobi coordinates
which can be assigned to the known extremals of Kähler with Minkowskian signature. This
decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic
duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to
X3
l follows under certain conditions on the induced metric of X4(X3

l ). This decomposition
exists for known extremals and has played key role in the recent developments. Physically it
means that 4-surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography
at space-time level. A physically attractive realization of the slicings of space-time surface
by 3-surfaces and string world sheets is discussed in [K25] by starting from the observation
that TGD could define a natural realization of braids, braid cobordisms, and 2-knots.

4. The weakest form of number theoretic compactification [K53] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfacesX3 ⊂ X4(X3) ⊂M4×CP2, whereX4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal
of Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4,
where M4 corresponds to hyper-quaternions. The conjecture would be that the value of the
Kähler action in M8 is same as in M4 × CP2: in fact that 2-surface would have identical
induced metric and Kähler form so that this conjecture would follow trivial. M8−H duality
would in this sense be Kähler isometry.

If one takes M−H duality seriously, one must conclude that one can choose any partonic
2-surface in the slicing of X4 as a representative. This means gauge invariance reflect in the
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definition of Kähler function as U(1) gauge transformation K → K + f + f having no effect on
Kähler metric and Kähler form.

Although the details of this vision might change it can be defended by its ability to fuse
together all great visions about quantum TGD. In the sequel the considerations are restricted to
3-surfaces in M4

± ×CP2. The basic outcome is that Kähler metric is expressible using the data at
partonic 2-surfaces X2 ⊂ δM4

+×CP2. The generalization to the actual physical situation requires
the replacement of X2 ⊂ δM4

+ × CP2 with unions of partonic 2-surfaces located at light-like
boundaries of CDs and sub-CDs.

The notions of space-time sheet and many-sheeted space-time are basic pieces of TGD
inspired phenomenology (see Fig. ?? in the appendix of this book). Originally the space-time
sheet was understood to have a boundary as “sheet” strongly suggests. It has however become
clear that genuine boundaries are not allowed. Rather, space-time sheet is typically double (at
least) covering of M4. The light-like 3-surfaces separating space-time regions with Euclidian and
Minkowskian signature are however very much like boundaries and define what I call generalized
Feynman diagrams. A fascinating possibility is that every material object is accompanied by an
Euclidian region representing the interior of the object and serving as TGD analog for blackhole
like object. Space-time sheets suffer topological condensation (gluing by wormhole contacts or
topological sum in more mathematical jargon) at larger space-time sheets. Space-time sheets form
a length scale hierarchy. Quantitative formulation is in terms of p-adic length scale hypothesis and
hierarchy of Planck constants proposed to explain dark matter as phases of ordinary matter.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (“world of
classical worlds” ( WCW )). Should one regard CH as the space of 3-surfaces of M4 × CP2 or
M4

+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the basis question is “M4
+ or M4?” and that this question

had been settled in favor of M4
+ by the fact that M4

+ has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to δM4

+×CP2 were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M4 instead of
M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of WCW or “world
of classical worlds” ( WCW ). The spaces CD × CP2 regarded as subsets of H defined the
sectors of WCW .

3. This framework allows to realize the huge symmetries of δM4
± ×CP2 as isometries of WCW

. The gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of
the imbedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surface X3

l , which can be boundaries of X4 and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW ( WCW ) is a union of WCW s associated
with the spaces CD × CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. It must be however emphasized
that Kähler function depends on partonic 2-surfaces at both ends of space-time surface so that
WCW is topologically Cartesian product of corresponding symmetric spaces. WCW metric must
therefore have parts corresponding to the partonic 2-surfaces (free part) and also an interaction
term depending on the partonic 2-surface at the opposite ends of the light-like 3-surface. The
conclusion is that geometrization reduces to that for single like of generalized Feynman diagram
containing partonic 2-surfaces at its ends. Since the complications due to p-adic sectors and
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hierarchy of Planck constants are not relevant for the basic construction, it reduces to a high
degree to a study of a simple special case corresponding to a line of generalized Feynman diagram.
One can also deduce the free part of the metric by restricting the consideration to partonic 2-
surfaces at single end of generalized Feynman diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
εαβJαβ at X2 define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and δM4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of δM4

± × CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub- WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2×CP2 is in question: this was one of the first ideas about WCW which I gave
up as too naive!

2.2.2 Constraints On WCW Geometry

The constraints on the WCW result both from the infinite dimension of WCW and from physically
motivated symmetry requirements. There are three basic physical requirements on the WCW
geometry: namely four-dimensional GCI in strong form, Kähler property and the decomposition of
WCW into a union ∪iG/Hi of symmetric spacesG/Hi, each coset space allowingG-invariant metric
such that G is subgroup of some “universal group” having natural action on 3-surfaces. Together
with the infinite dimensionality of WCW these requirements pose extremely strong constraints on
WCW geometry. In the following we shall consider these requirements in more detail.

Diff4 invariance and Diff4 degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimina-
tion of the time like and longitudinal vibrational degrees of freedom of string. Also in the present
case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity
and Diff4 invariance provides an obvious manner to do the job.

In the standard path l integral formulation the realization of Diff4 invariance is an easy task
at the formal level. The problem is however that path integral over four-surfaces is plagued by
divergences and doesn’t make sense. In the present case WCW consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one
should somehow define the action of Diff4 in the space of 3-surfaces. Whatever the action of Diff4

is it must leave the WCW metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of WCW so that 3-surface and its Diff4 image have zero distance. The conclusion is
that WCW metric should be both Diff4 invariant and Diff4 degenerate.

The problem is how to define the action of Diff4 in C(H). Obviously the only manner
to achieve Diff4 invariance is to require that the very definition of the WCW metric somehow
associates a unique space time surface to a given 3-surface for Diff4 to act on. The obvious
physical interpretation of this space time surface is as “classical space time” so that “Classical
Physics” would be contained in WCW geometry. In fact, this space-time surface is analogous to
Bohr orbit so that semiclassical quantization rules become an exact part of the quantum theory.
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It is this requirement, which has turned out to be decisive concerning the understanding of the
WCW geometry.

Decomposition of WCW into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan
suggests that WCW should possess decomposition into a union of coset spaces CH = ∪iG/Hi

such that the metric inside each coset space G/Hi is left invariant under the infinite dimensional
isometry group G. The metric equivalence of surfaces inside each coset space G/Hi does not mean
that 3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum functional is
exponent of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond
to maxima of Kähler function for a given orbit, are in a preferred position physically. For instance,
one can imagine of calculating functional integral around this maximum perturbatively. Symmet-
ric space property actually allows also much more powerful non-perturbative approach based on
harmonic analysis [K62]. The sum of over i means actually integration over the zero modes of
the metric (zero modes correspond to coordinates not appearing as coordinate differentials in the
metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions.
Denoting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries
and that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem
of identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of
X4(X3) with the light cone boundary. This in turn implies that 3-surfaces in the space δH =
δM4

+ × CP2 should be all what is needed to construct WCW geometry. The group G can be
identified as some subgroup of diffeomorphisms of δH and Hi contains that subgroup of G, which
acts as diffeomorphisms of the 3-surface X3. Since G preserves topology, WCW must decompose
into union ∪iG/Hi, where i labels 3-topologies and various zero modes of the metric. For instance,
the elements of the Lie-algebra of G invariant under WCW complexification correspond to zero
modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks
perhaps odd at first. In fact, it turns out that the classical non-determinism of Kähler action does
not allow the complete reduction to the light cone boundary: physically this is a highly desirable
implication but means a considerable mathematical challenge.

Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification
and that thereexists a covariantly constant two-form Jkl, which can be regarded as a representation
of the imaginary unit in the tangent space of the WCW :

J r
k Jrl = −Gkl . (2.2.1)

There are several physical and mathematical reasons suggesting that WCW metric should possess
Kähler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is
basic mathematical operation of quantum theory.

2. Kähler property turns out to be a necessary prerequisite for defining divergence free WCW
integration. We will leave the demonstration of this fact later although the argument as such
is completely general.



38 Chapter 2. Identification of WCW Kähler Function

3. Kähler property very probably implies an infinite-dimensional isometry loop groupsMap(S1, G)
[A45] shows that loop group allows only

Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defin-
ing formula for the connection is given by the expression

2(∇XY,Z) = X(Y,Z) + Y (Z,X)− Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )− ([Y,Z], X) (2.2.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely pro-
vided the tangent space of Map is complete with respect to Riemann metric. In the finite-
dimensional case completeness means that the inverse of the covariant metric tensor exists
so that one can solve the components of connection from the conditions stating the covariant
constancy of the metric. In the case of the loop spaces with Kähler metric this is however
not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector
fields defined by the Lie-algebra of local G then the first three terms drop away since the
scalar products of left invariant vector fields are constants. The expression for the covariant
derivative is given by

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 (2.2.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry
group of WCW to be Map(X3,M4 × SU(3))! Any symmetry group, whose Lie algebra is
complete with respect to the WCW metric ( in the sense that any tangent space vector is
expressible as superposition of isometry generators modulo a zero norm tangent vector) is an
acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of
the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional
Diff degeneracy. So we expect that the metric ought to possess some infinite-dimensional
isometry group and that the above formula generalizes also to the 3-dimensional case and to
the case of local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance
would imply the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be under-
estimated. For example, one natural looking manner to construct physical theory would be
based on the idea that configuration space geometry is dynamical and this approach is fol-
lowed in the attempts to construct string theories [B18]. Various physical considerations (in
particular the need to obtain oscillator operator algebra) seem to imply that WCW geometry
is necessarily Kähler. The above result however states that WCW Kähler geometry cannot
be dynamical quantity and is dictated solely by the requirement of internal consistency. This
result is extremely nice since it has been already found that the definition of the WCW met-
ric must somehow associate a unique classical space time and “classical physics” to a given
3-surface: uniqueness of the geometry implies the uniqueness of the “classical physics”.

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that
WCW is not only symmetric space but also (contact) Kähler manifold inheriting its (degen-
erate) Kähler structure from the imbedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the
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only possible candidates for H. The reason for the unique position of the four-dimensional
Minkowski space turns out to be that the boundary of the light cone of D-dimensional
Minkowski space is metrically a sphere SD−2 despite its topological dimension D − 1: for
D = 4 one obtains two-sphere allowing Kähler structure and infinite parameter group of
conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model
in terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not neces-
sarily Map!) correspond to the ordinary representations of the corresponding centrally
extended group [A59]. The representations of Kac Moody group indeed play central
role in string models [B37, B35] and WCW approach would explain their occurrence,
not as a result of some quantization procedure, but as a consequence of symmetry of
the underlying geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the WCW .

(c) The “fermionic” fields ( Ramond fields, Schwartz, Green ) should correspond to gamma
matrices of the WCW . Fermionic oscillator operators would correspond simply to con-
tractions of isometry generators jkA with complexified gamma matrices of WCW

Γ±A = jkAΓ±k

Γ±k = (Γk ± JklΓl)/
√

2 (2.2.4)

(Jkl is the Kähler form of WCW ) and would create various spin excitations of WCW
spinor field. Γ±k are the complexified gamma matrices, complexification made possible
by the Kähler structure of the WCW .

This suggests that some generalization of the so called Super Kac Moody algebra of string
models [B37, B35] should be regarded as a spectrum generating algebra for the solutions of field
equations in configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy
counter argument against the whole idea. Kähler structure necessitates complex structure in the
tangent space of WCW . In CP2 degrees of freedom no obvious problems of principle are expected:
WCW should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a
serious obstacle for complexification: somehow one should get rid of two degrees of freedom so
that only two Euclidian degrees of freedom remain. An analogous difficulty is encountered in
quantum field theories: only two of the four possible polarizations of gauge boson correspond to
physical degrees of freedom: mathematically the wrong polarizations correspond to zero norm
states and transverse states span a complex Hilbert space with Euclidian metric. Also in string
model analogous situation occurs: in case of D-dimensional Minkowski space only D−2 transversal
degrees of freedom are physical. The solution to the problem seems therefore obvious: WCW metric
must be degenerate so that each vibrational mode spans effectively a 2-dimensional Euclidian plane
allowing complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution
to this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each 3-
surface a unique classical space time: classical physics is described by the geometry of WCW
and d the geometry of WCW is determined uniquely by the requirement of mathematical
consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four and is due to the effective 3-dimensionality of light-cone boundary.
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3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry
group G. G is subgroup of the diffeomorphism group of δM4

+ × CP2. Essential role is
played by the fact that the boundary of the four-dimensional light cone, which, despite being
topologically 3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore
allows infinite-parameter groups of isometries as well as conformal and symplectic symmetries
and also Kähler structure unlike the higher-dimensional light cone boundaries. Therefore
WCW metric is Kähler only in the case of four-dimensional Minkowski space and allows
symplectic U(1) central extension without conflict with the no-go theorems about higher
dimensional central extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of δH =
δM4

+ × CP2. The corresponding Lie algebra can be regarded as a loop algebra associated
with the symplectic group of S2 × CP2, where S2 is rM = constant sphere of light cone
boundary. Thus the finite-dimensional group G defining loop group in case of string models
extends to an infinite-dimensional group in TGD context. This group has a monstrous size.
The radial Virasoro localized with respect to S2×CP2 defines naturally complexification for
both G and H. The general form of the Kähler metric deduced on basis of this symmetry
has same qualitative properties as that deduced from Kähler function identified as preferred
extremal of Kähler action. Also the zero modes, among them isometry invariants, can be
identified.

4. The construction of the WCW spinor structure is based on the identification of the WCW
gamma matrices as linear superpositions of the oscillator operators associated with the sec-
ond quantized induced spinor fields. The extension of the symplectic invariance to super
symplectic invariance fixes the anti-commutation relations of the induced spinor fields, and
WCW gamma matrices correspond directly to the super generators. Physics as number the-
ory vision suggests strongly that WCW geometry exists for 8-dimensional imbedding space
only and that the choice M4

+ × CP2 for the imbedding space is the only possible one.

2.3 Identification Of The Kähler Function

There are three approaches to the construction of the WCW geometry: a direct physics based
guess of the Kähler function, a group theoretic approach based on the hypothesis that CH can be
regarded as a union of symmetric spaces, and the approach based on the construction of WCW
spinor structure first by second quantization of induced spinor fields. Here the first approach is
discussed.

2.3.1 Definition Of Kähler Function

Consider first the basic definitions related to Kähler metric and Kähler function.

Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula

Jkl = igkl = i∂k∂lK . (2.3.1)

Kähler function is defined only modulo a real part of holomorphic function so that one has the
gauge symmetry

K → K + f + f . (2.3.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.
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Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its rela-
tionship to the gauge fields as they are defined in gauge theories. Kähler form J is related to the
corresponding Maxwell field F via the formula

J = xF , x =
gK
~

. (2.3.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units
by putting ~ = 1 but becomes very important when one considers a hierarchy of Planck constants
[K17].

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant,
αK = g2

K/4π~ together the large Planck constant means weaker interactions and convergence of
the functional integral defined by the exponent of Kähler function and one can argue that the
convergence of the functional integral is what forces the hierarchy of Planck constants. This
is in accordance with the vision that Mother Nature likes theoreticians and takes care that the
perturbation theory works by making a phase transition increasing the value of the Planck constant
in the situation when perturbation theory fails. This leads to a replacement of the M4 (or more
precisely, causal diamond CD) and CP2 factors of the imbedding space (CD × CP2) with its
r = ~/~0-fold singular covering (one can consider also singular factor spaces). If the components
of the space-time surfaces at the sheets of the covering are identical, one can interpret r-fold value
of Kähler action as a sum of r identical contributions from the sheets of the covering with ordinary
value of Planck constant and forget the presence of the covering. Physical states are however
different even in the case that one assumes that sheets carry identical quantum states and anyonic
phase could correspond to this kind of phase [K39].

Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term propor-
tional to

∫
X4 J ∧ J in well known manner. Chern Simons term is purely topological term and well

defined for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable
space-time surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore
Kähler action SK(X4) can be defined as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (2.3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is
defined in such a manner that the action density is negative for the Euclidian signature of the
induced metric and such that for a Minkowskian signature of the induced metric Kähler electric
field gives a negative contribution to the action density.

The notational convention

k1 ≡ 1

16παK
, (2.3.5)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [K53] the absolute value of the action in each region where action
density has a definite sign, the value of αK can depend on space-time sheet.

Kähler function

One can define the Kähler function in the following manner. Consider first the case H = M4
+×CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the
light-cone boundary δM4

+ × CP2. Define the value K(X3) of Kähler function K as the value
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of the Kähler action for some preferred extremal in the set of four-surfaces containing X3 as a
sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (2.3.6)

The most plausible identification of preferred extremals is in terms of quantum criticality in the
sense that the preferred extremals allow an infinite number of deformations for which the second
variation of Kähler action vanishes. Combined with the weak form of electric-magnetic duality
forcing appearance of Kähler coupling strength in the boundary conditions at partonic 2-surfaces
this condition might be enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently-
33 years after the birth of TGD - I have been forced to reconsider the question whether the precise
identification of Kähler function. Should Kähler function actually correspond to the Kähler action
for the space-time regions with Euclidian signature having interpretation as generalized Feynman
graphs? If so what would be the interpretation for the Minkowskian contribution?

1. If one accepts just the formal definition for the square root of the metric determinant,
Minkowskian regions would naturally give an imaginary contribution to the exponent defining
the vacuum functional. The presence of the phase factor would give a close connection with
the path integral approach of quantum field theories and the exponent of Kähler function
would make the functional integral well-defined.

2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons
terms from opposite sides of wormhole throats with degenerate four-metric with a constraint
term guaranteeing the duality.

The motivation for this reconsideration came from the applications of ideas of Floer ho-
mology to TGD framework [K64]: the Minkowskian contribution to Kähler action for preferred
extremals would define Morse function providing information about WCW homology. Both Kähler
and Morse would find place in TGD based world order.

One of the nasty questions about the interpretation of Kähler action relates to the square root
of the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion
is that the square root is imaginary in Minkowskian space-time regions so that Kähler action would
be complex. The Euclidian contribution would have a natural interpretation as positive definite
Kähler function but how should one interpret the imaginary Minkowskian contribution? Certainly
the path integral approach to quantum field theories supports its presence. For some mysterious
reason I was able to forget this nasty question and serious consideration of the obvious answer to
it. Only when I worked between possibile connections between TGD and Floer homology [K64]
I realized that the Minkowskian contribution is an excellent candidate for Morse function whose
critical points give information about WCW homology. This would fit nicely with the vision about
TGD as almost topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. Minkowskian contribution would give the quantal
interference effects and stationary phase approximation. The analog of Floer homology would
represent quantum superpositions of critical points identifiable as ground states defined by the
extrema of Kähler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of Kähler function. One would have maxima also
for the Kähler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should
one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in both
Minkowskian and Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K62] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This does
not however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
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general case solutions of Laplacian represent broken super-symmetries and should be in one-
one correspondences with the solutions of the Kähler-Dirac equation. The interpretation for
the counterparts of momentum and polarization would be in terms of classical representation
of color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement
is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian
and Minkowskian regions.

3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action
equals to Kähler function, which would be lost if Euclidian regions would not obey holography.
The argument obviously generalizes and applies to both Morse and Kähler function which
are definitely not proportional to each other.

CP breaking and ground state degeneracy

The Minkowskian contribution of Kähler action is imaginary due to the negativity of the met-
ric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms
at wormhole throats. Ground state degeneracy due to the possibility of having both signs for
Minkowskian contribution to the exponent of vacuum functional provides a general view about the
description of CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since

√
g can have two signs in Minkowskian regions. Therefore the

inner products between states associated with the two ground states define 2× 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full CP2 type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to
this mixing. K0 mesons would be CP even and odd states in the first approximation and
correspond to the sum and difference of the ground states. Small mixing would be present
having exponential sensitivity to the actions of CP2 type extremals representing wormhole
throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation
at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons corre-
spond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or
almost completely to a fixed arrow of time induced by environment? Is the dominant part of
the arrow same for both or is it opposite for long and short-lived neutral measons? Different
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K0 but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

2.3.2 The Values Of The Kähler Coupling Strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kähler function, the dynamics depends on the normalization of the Kähler function. Since the
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Theory of Everything should be unique it would be highly desirable to find arguments fixing the
normalization or equivalently the possible values of the Kähler coupling strength αK .

Quantization of αK follow from Dirac quantization in WCW?

The quantization of Kähler form of WCW could result in the following manner. It will be found
that Abelian extension of the isometry group results by coupling spinors of WCW to a multiple of
Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler
form is co-homologically nontrivial the value of αK is quantized.

Quantization from criticality of TGD Universe?

Mathematically αK is analogous to temperature and this suggests that αK is analogous to critical
temperature and therefore quantized. This analogy suggests also a physical motivation for the
unique value or value spectrum of αK . Below the critical temperature critical systems suffer
something analogous to spontaneous magnetization. At the critical point critical systems are
characterized by long range correlations and arbitrarily large volumes of magnetized and non-
magnetized phases are present. Spontaneous magnetization might correspond to the generation of
Kähler magnetic fields: the most probable 3-surfaces are Kähler magnetized for subcritical values
of αK . At the critical values of αK the most probable 3-surfaces contain regions dominated by
either Kähler electric and or Kähler magnetic fields: by the compactness of CP2 these regions have
in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes
(and with outer boundaries) are possible and they have suffered topological condensation on each
other. Therefore the critical value of αK allows the richest possible topological structure for the
most probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas
about renormalization group invariance. This hypothesis has highly nontrivial consequences even
at the level of ordinary condensed matter physics.

Unfortunately, the exact definition of renormalization group concept is not at all obvious.
There is however a much more general but more or less equivalent manner to formulate the condi-
tion fixing the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T )
appearing in the definition of the partition function of a statistical system and S-matrix elements
and other interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and there-

fore analogous to the thermal averages of various observables. αK is completely analogous to
temperature. The critical points of a statistical system correspond to critical temperatures Tc for
which the partition function is non-analytic function of T − Tc and according RGE hypothesis
critical systems correspond to fixed points of renormalization group evolution. Therefore, a math-
ematically more precise manner to fix the value of αK is to require that some integrals of type 〈O〉
(not necessary S-matrix elements) become non-analytic at 1/αK − 1/αcK .

Renormalization group invariance is closely related with criticality. The self duality of the
Kähler form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 1
super-symmetric field theories duality transformation relates the strong coupling limit for ordinary
particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is
self dual these limits must be identical so that action and coupling strength must be RG invariant
quantities. The geometric realization of the duality transformation is easy to guess in the standard
complex coordinates ξ1, ξ2 of CP2 (see Appendix of the book). In these coordinates the metric and
Kähler form are invariant under the permutation ξ1 ↔ ξ2 having Jacobian −1.

Consistency requires that the fundamental particles of the theory are equivalent with mag-
netic monopoles. The deformations of so called CP2 type vacuum extremals indeed serve as
building bricks of a elementary particles. The vacuum extremals are are isometric imbeddings of
CP2 and can be regarded as monopoles. Elementary particle corresponds to a pair of wormhole
contacts and monopole flux runs between the throats of of the two contacts at the two space-time
sheets and through the contacts between space-time sheets. The magnetic flux however flows in
internal degrees of freedom (possible by nontrivial homology of CP2) so that no long range 1/r2

magnetic field is created. The magnetic contribution to Kähler action is positive and this suggests
that ordinary magnetic monopoles are not stable, since they do not minimize Kähler action: a
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cautious conclusion in accordance with the experimental evidence is that TGD does not predict
magnetic monopoles. It must be emphasized that the prediction of monopoles of practically all
gauge theories and string theories and follows from the existence of a conserved electromagnetic
charge.

Does αK have spectrum?

The assumption about single critical value of αK is probably too strong.

1. The hierarchy of Planck constants which would result from non-determinism of Kähler action
implying n conformal equivalences of space-time surface connecting 3-surfaces at the bound-
aries of causal diamond CD would predict effective spectrum of αK as αK = g2

K/4π~eff ,
~eff/h = n. The analogs of critical temperatures would have accumulation point at zero
temperature.

2. p-Adic length scale hierarchy together with the immense vacuum degeneracy of the Kähler
action leads to ask whether different p-adic length scales correspond to different critical values
of αK , and that ordinary coupling constant evolution is replaced by a piecewise constant
evolution induced by that for αK .

2.3.3 What Conditions Characterize The Preferred Extremals?

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analogous to
Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

In positive energy ontology space-time surfaces should be analogous to Bohr orbits in order
to make possible possible realization of general coordinate invariance. The first guess was that
absolute minimization of Kähler action might be the principle selecting preferred extremals. One
can criticize the assumption that extremals correspond to the absolute minima of Kähler action
for entire space-time surface as too strong since the Kähler action from Minkowskian regions is
proportional to imaginary unit and corresponds to ordinary QFT action defining a phase factor
of vacuum functional. Absolute minimization could however make sense for Euclidian space-time
regions defining the lines of generalized Feynman diagras, where Kähler action has definite sign.
Kähler function is indeed the Kähler action for these regions. Furthermore, the notion of absolute
minimization does not make sense in p-adic context unless one manages to reduce it to purely
algebraic conditions.

Is preferred extremal property needed at all in ZEO?

It is good to start with a critical question. Could it be that the notion of preferred extremal
might be un-necessary in ZEO (ZEO)? The reason is that 3-surfaces are now pairs of 3-surfaces at
boundaries of causal diamonds and for deterministic dynamics the space-time surface connecting
them is unique.

Now the action principle is non-deterministic but the non-determinism would give rise to
additional discrete dynamical degrees of freedom naturally assignable to the hierarchy of Planck
constants heff = n× h, n the number of space-time surface with same fixed ends at boundaries of
CD and same Kähler action and same conserved quantities. One must be however cautious: this
leaves the possibility that there is a gauge symmetry present so that the n sheets correspond to
gauge equivalence classes of sheets. Conformal gauge invariance is associated with 2-D criticality
and is expected to be present also now. and this is the recent view.

One can of course ask whether one can assume that the pairs of 3-surfaces at the ends
of CD are totally un-correlated - this the starting point in ZEO. If this assumption is not made
then preferred extremal property would make sense also in ZEO and imply additional correlation
between the members of these pairs. This kind of correlations might be present and correspond to
the Bohr orbit property, space-time correlate for quantum states. This kind of correlates are also
expected as space-time counterpart for the correlations between initial and final state in quantum
dynamics. This indeed seems to be the correct conclusion.
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How to identify preferred extremals?

What is needed is the association of a unique space-time surface to a given 3-surface defined as
union of 3-surfaces at opposite boundaries of CD. One can imagine many manners to achieve this.
“Unique” is too much to demand: for the proposal unique space-time surface is replaced with finite
number of conformal gauge equivalence classes of space-time surfaces. In any case, it is better to
talk just about preferred extremals of Kähler action and accept as the fact that there are several
proposals for what this notion could mean.

1. For instance, one can consider the identification of space-time surface as associative (co-
associative) sub-manifold meaning that tangent space of space-time surface can be regarded
as associative (co-associative) sub-manifold of complexified octonions defining tangent space
of imbedding space. One manner to define “associative sub-manifold” is by introducing
octonionic representation of imbedding space gamma matrices identified as tangent space
vectors. It must be also assumed that the tangent space contains a preferred commutative
(co-commutative) sub-space at each point and defining an integrable distribution having
identification as string world sheet (also slicing of space-time sheet by string world sheets can
be considered). Associativity and commutativity would define the basic dynamical principle.
A closely related approach is based on so called Hamilton-Jacobi structure [K6] defining also
this kind of slicing and the approaches could be equivalent.

2. In ZEO 3-surfaces become pairs of space-like 3-surfaces at the boundaries of causal diamond
(CD). Even the light-like partonic orbits could be included to give the analog of Wilson loop.
In absence of non-determinism of Kähler action this forces to ask whether the attribute
“preferred” is un-necessary. There are however excellent reasons to expect that there is
an infinite gauge degeneracy assignable to quantum criticality and represented in terms of
Kac-Moody type transformations of partonic orbits respecting their light-likeness and giving
rise to the degeneracy behind hierarchy of Planck constants heff = n × h. n would give
the number of conformal equivalence classes of space-time surfaces with same ends. In given
measurement resolution one might however hope that the “preferred” could be dropped away.

The vanishing of Noether charges for sub-algebras of conformal algebras with conformal
weights coming as multiples of n at the ends of space-time surface would be a concrete
realization of this picture and looks the most feasible option at this moment since it is direct
classical correlated for broken super-conformal gauge invariance at quantum level.

3. The construction of quantum TGD in terms of the Kähler-Dirac action associated with Kähler
action suggested a possible answer to the question about the principle selecting preferred
extremals. The Noether currents associated with Kähler-Dirac action are conserved if second
variations of Kähler action vanish. This is nothing but space-time correlate for quantum
criticality and it is amusing that I failed to realize this for so long time. A further very
important result is that in generic case the modes of induced spinor field are localized at 2-D
surfaces from the condition that em charge is well-defined quantum number (W fields must
vanish and also Z0 field above weak scale in order to avoid large parity breaking effects).

The localization at string world sheets means that quantum criticality as definition of “pre-
ferred” works only if there selection of string world sheets, partonic 2-surfaces, and their
light-like orbits fixes the space-time surface completely. The generalization of AdS/CFT
correspondence (or strong form of holography) suggests that this is indeed the case. The
criticality conditions are however rather complicated and it seems that the vanishing of the
symplectic Noether charges is the practical manner to formulate what “preferred” does mean.

2.3.4 Why Non-Local Kähler Function?

Kähler function is non-local functional of 3-surface. Non-locality of the Kähler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: WCW
integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.
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In the case of finite-dimensional symmetric space with Kähler structure the representations
of the isometry group necessitate the modification of the integration measure defining the inner
product so that the integration measure becomes proportional to the exponent exp(K) of the Kähler
function [B25]. The generalization to infinite-dimensional case is obvious. Also the requirement
of Kac-Moody symmetry leads to the presence of this kind of vacuum functional as will be found
later. The exponent is in fact uniquely fixed by finiteness requirement. WCW integral is of the
following form

∫
S̄1exp(K)S1

√
gdX . (2.3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in
the following manner. The (1, 1)-part of the second variation of the Kähler function defines the
metric and therefore propagator as contravariant metric and the remaining (2, 0)− and (0, 2)-parts
of the second variation are treated perturbatively. The most natural choice for the 3-surface are
obviously the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined
determinants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kähler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1, 1). Therefore
these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action
one encounters the standard perturbative divergences. Since most local actions (Chern-Simons
term is perhaps an exception [B45] ) for induced geometric quantities are extremely nonlinear there
is no hope of obtaining a finite theory. For non-local action the situation is however completely
different. There are no local interaction vertices and therefore no products of delta functions in
perturbation theory.

A further nice feature of the perturbation theory is that the propagator for small deforma-
tions is nothing but the contravariant metric of WCW . Also the various vertices of the theory
are closely related to the metric of WCW since they are determined by the Kähler function so
that perturbation theory would have a beautiful geometric interpretation. Furthermore, since
four-dimensional Diff degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(ik2

∫
X4 J∧J). The term

is not well defined for non-orientable space-time surfaces and one must assume that k2 vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If k2 is integer multiple of 1/(8π) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(ik3

∫
δX3 J ∧ A) it is possible to guarantee that the exponent is integer valued for 4-surfaces

with boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce

divergences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to
define a divergence free field theory [B45]. The term doesn’t depend at all on the induced metric
and therefore contains no dimensional parameters (CP2 radius) and its expansion in terms of CP2

coordinate variables is of the form allowed by renormalizable field theory in the sense that only
quartic terms appear. This is seen by noticing that there always exist symplectic coordinates,
where the expression of the Kähler potential is of the form

A =
∑
k

PkdQ
k . (2.3.8)
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The expression for Chern-Simons term in these coordinates is given by

k2

∫
X3

∑
k,l

PldPk ∧ dQk ∧ dQl , (2.3.9)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of CP2, which are realized as U(1) gauge
transformation for the Kähler potential.

The expressibility of WCW Kähler metric as anti-commutators of super-symplectic Noether
super-charges localized at 2-D string world sheets inspires an even stronger conjecture about Kähler
action. The super-symmetry between Kähler-Dirac action and Kähler action suggests that Kähler
action is expressible as sum of string world sheet areas in the effective metric defined by the anti-
commutators of K-D gamma matrices. This would conform with the strong form of holography
in turn implies by strong form of General Coordinate Invariance, and could be seen as analog
of AdS/CFT correspondence, which as such is not enough in TGD possessing super-conformal
symmetries, which are gigantic as compared to those of super string models.

2.4 Some Properties Of Kähler Action

In this section some properties of Kähler action and Kähler function are discussed in light of
experienced gained during about 15 years after the introduction of the notion.

2.4.1 Vacuum Degeneracy And Some Of Its Implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although
it is not associated with the preferred extremals of Kähler action, there are good reasons to expect
that it has deep consequences concerning the structure of the theory.

Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [B44] ). The Kähler form of CP2 defines symplectic structure and any 4-surface
for which CP2 projection is so called Lagrangian manifold (at most two dimensional manifold with
vanishing induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler
form. More explicitly, in the local coordinates, where the vector potential A associated with the
Kähler form reads as A =

∑
k PkdQ

k. Lagrangian manifolds are expressible locally in the following
form

Pk = ∂kf(Qi) . (2.4.1)

where the function f is arbitrary. Notice that for the general YM action surfaces with one-
dimensional CP2 projection are vacuum extremals but for Kähler action one obtains additional
degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called CP2 type vacuum extremals are warped imbeddings X4 of CP2 to H such
that Minkowski coordinates are functions of a single CP2 coordinate, and the one-dimensional
projection of X4 is random light like curve. These extremals have a non-vanishing action but
vanishing Poincare charges. Their small deformations are identified as space-time counterparts of
fermions and their super partners. Wormhole throats identified as pieces of these extremals are
identified as bosons and their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string
models and this actually led to the eventualo realization that conformal invariance is a basic
symmetry of TGD and that WCW can be regarded as a union of symmetric spaces with isometry
groups having identification as symplectic and Kac-Moody type groups assignable to the partonic
2-surfaces.
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Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M4
+ and M4

+ local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and only
induced metric breaks these symmetries. Symplectic transformations of CP2 act on the Maxwell
field defined by the induced Kähler form in the same manner as ordinary U(1) gauge symme-
tries. They are however not gauge symmetries since gauge invariance is still present. In fact,
the construction of WCW geometry relies on the assumption that symplectic transformations of
δM4

+ × CP2 which infinitesimally correspond to combinations of M4
+ local CP2 symplectic and

CP2-local M4
+ symplectic transformations act as isometries of WCW . In zero energy ontology

these transformations act simultaneously on all partonic 2-surfaces characterizing the space-time
sheet representing a generalized Feynman diagram inside CD.

The fact that CP2 symplectic transformations do not act as genuine gauge transformations
means that U(1) gauge invariance is effectively broken. This has non-trivial implications. The
field equations allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics
[K6]. For the known extremals (massless extremals) they are light-like and a possible interpretation
is in terms of Bose-Einstein condensates of collinear massless bosons.

Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to M4
+×Y 2, Y 2 any Lagrangian sub-manifold

of CP2 are vacua irrespective of the topology and that symplectic transformations of CP2 generate
new surfaces Y 2. If preferred extremals are obtained as small deformations of vacuum extremals
(for which the criticality is maximal), one expects therefore enormous ground state degeneracy,
which could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy
corresponds to the hypothesis that WCW is a union of symmetric spaces labeled by zero modes
which do not appear at the line-element of the WCW metric.

Zero modes define what might be called the counterpart of spin glass energy landscape
and the maxima Kähler function as a function of zero modes define a discrete set which might
be called reduced configuration space. Spin glass degeneracy turns out to be crucial element for
understanding how macro-temporal quantum coherence emerges in TGD framework. One of the
basic ideas about p-adicization is that the maxima of Kähler function define the TGD counterpart
of spin glass energy landscape [K52, K21]. The hierarchy of discretizations of the symmetric
spaces corresponding to a hierarchy of measurement resolutions [K62] could allow an identification
in terms of a hierarchy spin glass energy landscapes so that the algebraic points of the WCW
would correspond to the maxima of Kähler function. The hierarchical structure would be due
to the failure of strict non-determinism of Kähler action allowing in zero energy ontology to add
endlessly details to the space-time sheets representing zero energy states in shorter scale.

Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to
δH = δM4

+×CP2. An analogous idea in string model context became later known as quantum grav-
itational holography. The basic implication of the vacuum degeneracy is classical non-determinism,
which is expected to reflect itself as the properties of the Kähler function and WCW geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the
degeneracy and save quantum gravitational holography in its simplest form. This would mean
that one just replaces space-like 3-surfaces with “association sequences” consisting of sequences of
space-like 3-surfaces with time like separations as causal determinants. This would mean that the
absolute minima of Kähler function would become degenerate: same space-like 3-surface at δH
would correspond to several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP2 type extremals have Euclidian
signature of the induced metric and therefore CP2 type extremals glued to space-time sheet with
Minkowskian signature of the induced metric are surrounded by light like surfaces X3

l , which might
be called elementary particle horizons. The non-determinism of the CP2 type extremals suggests
strongly that also elementary particle horizons behave non-deterministically and must be regarded
as causal determinants having time like projection in M4

+. Pieces of CP2 type extremals are good
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candidates for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and
are also surrounded by an elementary particle horizons and non-determinism is also now present.
That this non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most
plausible treatment of the non-determinism and has indeed led to a breakthrough in the construc-
tion and understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs
containing zero energy states represent a hierarchy of radiative corrections so that the classical
determinism is direct correlate for the quantum non-determinism. Determinism makes sense only
when one has specified the length scale of measurement resolution. One can always add a CD
containing a vacuum extremal to get a new zero energy state and a preferred extremal containing
more details.

Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must
for several reasons. Quantum classical correspondence, which has become a basic guide line in
the development of TGD, states that all quantum phenomena have classical space-time correlates.
This is not new as far as properties of quantum states are considered. What is new that also
quantum jumps and quantum jump sequences which define conscious existence in TGD Universe,
should have classical space-time correlates: somewhat like written language is correlate for the
contents of consciousness of the writer. Classical non-determinism indeed makes this possible.
Classical non-determinism makes also possible the realization of statistical ensembles as ensembles
formed by strictly deterministic pieces of the space-time sheet so that even thermodynamics has
space-time representations. Space-time surface can thus be seen as symbolic representations for
the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quan-
tum gravitational holography would work in the most strict sense, time would be lost also in
TGD since all relevant information about quantum states would be determined by the moment of
big bang. More precisely, geometro-temporal localization for the contents of conscious experience
would not be possible. Classical non-determinism together with quantum-classical correspondence
however suggests that it is possible to have quantum jumps in which non-determinism is concen-
trated in space-time region so that also conscious experience contains information about this region
only.

2.4.2 Four-Dimensional General Coordinate Invariance

The proposed definition of the Kähler function is consistent with GCI and implies also 4-dimensional
Diff degeneracy of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in
the sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the
light-like 3-surfaces connecting the ends. This implies that basic geometric objects are partonic
2-surfaces at the boundaries of CDs identified as the intersections of these two kinds of surfaces.
Besides this the distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so
that one would have only effective 2-dimensionality. The failure of the non-determinism of Kähler
action in the standard sense of the word affects the situation also and one must allow a fractal
hierarchy of CDs inside CDs having interpretation in terms of radiative corrections.

Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like
vibrational excitations possess zero norm they contribute tachyonic term to the mass squared
operator of Super Kac Moody algebra. This difficulty is familiar already from string models
[B37, B35].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees
that time like excitations do not contribute to the mass squared operator so that mass spectrum
is tachyon free. It also implies the decoupling of the tachyons from physical states: the propagator
of the theory corresponds essentially to the inverse of the Kähler metric and therefore decouples
from time like vibrational excitations. The experience with string model suggests that if metric is
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degenerate with respect to diffeomorphisms of X4(X3) there are indeed good hopes that time like
excitations possess vanishing norm with respect to WCW metric.

The four-dimensional Diff invariance of the Kähler function implies that Diff invariance is
guaranteed in the strong sense since the scalar product of two Diff vector fields given by the matrix
associated with (1, 1) part of the second variation of the Kähler action vanishes identically. This
property gives hopes of obtaining theory, which is free from Diff anomalies: in fact loop space
metric is not Diff degenerate and this might be the underlying reason to the problems encountered
in string models [B37, B35].

Complexification of WCW

Strong form of GCI plays a fundamental role in the complexification of WCW . GCI in strong
form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D
tangent space data associated with ends of light-like 3-surface at light-like boundaries of CD. At
boths end the imbedding space is effectively reduces to δM4

+ × CP2 (forgetting the complications
due to non-determinism of Kähler action). Light cone boundary in turn is metrically 2-dimensional
Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure.
Therefore one can say that in certain sense configuration space metric inherits the Kähler structure
of S2 × CP2. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kähler structure. In fact, it turns out that the quantum
fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of S2 ×
CP2 and thus as an infinite-dimensional analog of symmetric space as the considerations of [K13]
demonstrate.

The details of the complexification were understood only after the construction of WCW
geometry and spinor structure in terms of second quantized induced spinor fields [K62]. This also
allows to make detailed statements about complexification [K13].

Contravariant metric and Diff4 degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered
in both GRT and gauge theories [B48, B36]. In TGD a solution of the problem is provided by the
existence of infinite-dimensional isometry group. If the generators of this group form a complete
set in the sense that any vector of the tangent space is expressible as as sum of these generators
plus some zero norm vector fields then one can restrict the consideration to this subspace and in
this subspace the matrix g(X,Y ) defined by the components of the metric tensor indeed indeed
possesses well defined inverse g−1(X,Y ). This procedure is analogous to gauge fixing conditions
in gauge theories and coordinate fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes
possible an approach to WCW integration based on harmonic analysis replacing the perturbative
approach based on perturbative functional integral. This approach allows also a p-adic variant
and leads an effective discretization in terms of discrete variants of WCW for which the points of
symmetric space consist of algebraic points. There is an infinite number of these discretizations
[K52] and the interpretation is in terms of finite measurement resolution. This gives a connection
with the p-adicization program, infinite primes, inclusions of hyper-finite factors as representation
of the finite measurement resolution, and the hierarchy of Planck constants [K51] so that various
approaches to quantum TGD converge nicely.

General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff4 invariant. This in
fact fixes not only classical but also quantum dynamics completely. The point is that the values
of the WCW spinor fields must be essentially same for all Diff4 related 3-surfaces at the orbit X4

associated with a given 3-surface. This would mean that the time development of Diff4 invariant
configuration spinor field is completely determined by its initial value at the moment of the big
bang!
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This is of course a naive over statement. The non-determinism of Kähler action and zero
energy ontology force to take the causal diamond (CD) defined by the intersection of future and
past directed light-cones as the basic structural unit of WCW , and there is fractal hierarchy of CDs
within CDs so that the above statement makes sense only for giving CD in measurement resolution
neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW
spinor fields into a sum of products associated with various partonic 2-surfaces. In particular, one
obtains time-like entanglement between positive and negative energy parts of zero energy states
and entanglement coefficients define what can be identified as M -matrix expressible as a “complex
square root” of density matrix and reducing to a product of positive definite diagonal square root
of density matrix and unitary S-matrix. The collection of orthonormal M -matrices in turn define
unitary U -matrix between zero energy states. M -matrix is the basic object measured in particle
physics laboratory.

2.4.3 WCW Geometry, Generalized Catastrophe Theory, And Phase
Transitions

The definition of WCW geometry has nice catastrophe theoretic interpretation. To understand
the connection consider first the definition of the ordinary catastrophe theory [A51].

1. In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c. The basic space decomposes locally into
cartesian product E = C × X of control variables c, appearing as parameters in potential
function V (c, x) and of state variables x appearing as dynamical variables. Equilibrium states
of the system correspond to the extrema of the potential V (x, c) with respect to the variables
x and in the absence of symmetries they form a sub-manifold of M with dimension equal to
that of the parameter space C. In some regions of C there are several extrema of potential
function and the extremum value of x as a function of c is multi-valued. These regions of
C ×X are referred to as catastrophes. The simplest example is cusp catastrophe (see Fig.
?? ) with two control parameters and one state variable.

2. In catastrophe regions the actual equilibrium state must be selected by some additional phys-
ical requirement. If system obeys flow dynamics defined by first order differential equations
the catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On
the other hand, the Maxwell rule obeyed by thermodynamic phase transitions states that
the equilibrium state corresponds to the absolute minimum of the potential function and
the state of system changes in discontinuous manner along the Maxwell line in the middle
between the folds of the cusp (see Fig. 2.1 ).

3. As far as discontinuous behavior is considered, fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there “satellites” and one aim of the catastrophe theory is to
derive all possible manners for the stable organization of folds into higher catastrophes. The
fundamental result of the catastrophe theory is that for dimensions d of C smaller than 5
there are only 7 basic catastrophes and polynomial potential functions provide a canonical
representation for the catastrophes: fold catastrophe corresponds to third order polynomial
(in fold the two real roots become a pair of complex conjugate roots), cusp to fourth order
polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe
theories.

1. The first one is related to Kähler action as a local functional of 4-surface. The nature of this
catastrophe theory depends on what one means with the preferred extremals.

2. Second catastrophe theory corresponds to Kähler function a non-local functional of 3-surface.
The maxima of the vacuum functional defined as the exponent of Kähler function define
what might called effective space-times, and discontinuous jumps changing the values of the
parameters characterizing the maxima are possible.

Consider first the option based on Kähler action.
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1. Potential function corresponds to Kähler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kähler
action with respect to to the variables of X (time derivatives of coordinates of C specifying
X3 in Ha) keeping the variables of C specifying 3-surface X3 fixed. Preferred extremal
property is analogous to the Bohr quantization since canonical momenta cannot be chosen
freely as in the ordinary initial value problems of the classical physics. Preferred extremals
are by definition at criticality. Behavior variables correspond to the deformations of the 4-
surface keeping partonic 2-surfaces and 3-D tangent space data fixed and preserving extremal
property. Control variables would correspond to these data.

2. At criticality the rank of the infinite-dimensional matrix defined by the second functional
derivatives of the Kähler action is reduced. Catastrophes form a hierarchy characterized by
the reduction of the rank of this matrix and Thom’s catastrophe theory generalizes to infinite-
dimensional context. Criticality in this sense would be one aspect of quantum criticality
having also other aspects. No discrete jumps would occur and system would only move along
the critical surface becoming more or less critical.

3. There can exist however several critical extremals assignable to a given partonic 2-surface
but have nothing to do with the catastrophes as defined in Thom’s approach. In presence of
degeneracy one should be able to choose one of the critical extremals or replace this kind of
regions of WCW by their multiple coverings so that single partonic 2-surface is replaced with
its multiple copy. The degeneracy of the preferred extremals could be actually a deeper reason
for the hierarchy of Planck constants involving in its most plausible version n-fold singular
coverings of CD and CP2. This interpretation is very satisfactory since the generalization of
the imbedding space and hierarchy of Planck constants would follow naturally from quantum
criticality rather than as separate hypothesis.

4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kähler action.
For example, for pieces of Minkowski space in M4

+ ×CP2 the second variation of the Kähler
action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces
are analogous to the tip of the cusp catastrophe. There are also space-time surfaces for
which the second variation is non-vanishing but degenerate and a hierarchy of subsets in
the space of extremal 4-surfaces with decreasing degeneracy of the second variation defines
the boundaries of the projection of the catastrophe surface to the space of 3-surfaces. The
space-times for which second variation is degenerate contain as subset the critical and initial
value sensitive preferred extremal space-times.

Consider next the catastrophe theory defined by Kähler function.

1. In this case the most obvious identification for the behavior variables would be in terms of
the space of all 3-surfaces in CD × CP2 - and if one believes in holography and zero energy
ontology - the 2-surfaces assignable the boundaries of causal diamonds (CDs).

2. The natural control variables are zero modes whereas behavior variables would correspond
to quantum fluctuating degrees of freedom contributing to the WCW metric. The induced
Kähler form at partonic 2-surface would define infinitude of purely classical control variables.
There is also a correlation between zero modes identified as degrees of freedom assignable to
the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic
2-surfaces. This is nothing but holography and effective 2-dimensionality justifying the basic
assumption of quantum measurement theory about the correspondence between classical
and quantum variables. The absence of several maxima implies also the presence of saddle
surfaces at which the rank of the matrix defined by the second derivatives is reduced. This
could lead to a non-positive definite metric. It seems that it is possible to have maxima of
Kähler function without losing positive definiteness of the metric since metric is defined as
(1, 1)-type derivatives with respect to complex coordinates. In case of CP2 however Kähler
function has single degenerate maximum corresponding to the homologically trivial geodesic
sphere at r =∞. It might happen that also in the case of infinite-D symmetric space finite
maxima are impossible.
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3. The criticality of Kähler function would be analogous to thermodynamical criticality and to
the criticality in the sense of catastrophe theory. In this case Maxwell’s rule is possible and
even plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kähler
action (as distinguished from that for Kähler function).

1. The set M of the critical 4-surfaces corresponds to the V -shaped boundary of the 2-D cusp
catastrophe in 3-D space to plane. In general case it forms codimension one set in WCW
. In TGD Universe physical system would reside at this line or its generalization to higher
dimensional catastrophes. For the criticality associated with Kähler action the transitions
would be smooth transitions between different criticalities characterized by the rank defined
above: in the case of cusp (see Fig. 2.1 ) from the tip of cusp to the vertex of cusp or
vice versa. Evolution could mean a gradual increase of criticality in this sense. If preferred
extremals are not unique, cusp catastrophe does not provide any analogy. The strong form
of criticality would mean that the system would be always “at the tip of cusp” in metaphoric
sense. Vacuum extremals are maximally critical in trivial sense, and the deformations of
vacuum extremals could define the hierarchy of criticalities.

2. For the criticality of Kähler action Maxwell’s rule stating that discontinuous jumps occur
along the middle line of the cusp is in conflict with catastrophe theory predicting that jumps
occurs along at criticality. For the criticality of Kähler function - if allowed at all by symmetric
space property - Maxwell’s rule can hold true but cannot be regarded as a fundamental law.
It is of course known that phase transitions can occur in different manners (super heating
and super cooling).

Figure 2.1: Cusp catastrophe

The natural expectation is that the number of critical deformations is infinite and corre-
sponds to conformal symmetries naturally assignable to criticality. Conformal symmetry would
be naturally associated with the super-symplectic algebra of δM4

± for which the light-like radial
coordinate plays the role of complex coordinate z for ordinary 2-D conformal symmetry. At criti-
cality the symplectic subalgebra represented as gauge symmetries would change to its isomorphic
subalgebra or which versa and having conformal weights are multiples of integer n. One would
have fractal hierarchies of sub-algebras characterized by integers ni+1 =

∏
k<i+1mk.

In each transition to lower criticality the gauge sub-algebra of the symplectic algebra would
become a sub-algebra of the original one. These transitions would occur spontaneously. The
transitions in the reverse direction would not take place spontaneously. The proposal is that these
phase transitions take place in both directions in living matter and that the phase transitions
reducing criticality require metabolic energy.

The number n of conformal equivalence classes of the deformations can be finite and n would
naturally relate to the hierarchy of Planck constants heff = n× h (see Fig. http://tgdtheory.

fi/appfigures/planckhierarchy.jpg or Fig. ?? in the appendix of this book). The hierarchy
of Planck constants in turn is identified as dark phases of matter [K17].

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg


Chapter 3

Construction of WCW Kähler
Geometry from Symmetry
Principles

3.1 Introduction

The most general expectation is that configuration space (“world of classical worlds” (WCW))
can be regarded as a union of coset spaces which are infinite-dimensional symmetric spaces with
Kähler structure: C(H) = ∪iG/H(i). Index i labels 3-topology and zero modes. The group G,
which can depend on 3-surface, can be identified as a subgroup of diffeomorphisms of δM4

+ ×CP2

and H must contain as its subgroup a group, whose action reduces to Diff(X3) so that these
transformations leave 3-surface invariant.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the
opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kähler
action. The interpretation would be in terms of holography. One can also consider the inclusion
of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so
that it would become connected.

The task is to identify plausible candidate for G and H and to show that the tangent space
of the WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow
complexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course
understand what “preferred” means.

3.1.1 General Coordinate Invariance And Generalized Quantum Grav-
itational Holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces
to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ ×
CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum theory and its
geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded into
Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler
function reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on δM4

+ × CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of
Y 3 at X4(Y 3) Kähler function would have the same value so that Diff4 invariance and degeneracy
would be the outcome. The proposal was that the preferred extremals are absolute minima of
Kähler action.

55
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This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said. Note that the inclusion of space-like ends at boundaries of CD gives
analog of Wilson loop.

2. It has also become obvious that the gigantic symmetries associated with δM4
± × CP2 ⊂

CD × CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of the WCW to a union of configuration spaces assignable to causal diamonds CDs defined
as intersections of future and past directed light-cones. The minimum assumption is that
CDs label the sectors of CH: the nice feature of this option is that the considerations of
this chapter restricted to δM4

+ × CP2 generalize almost trivially. This option is beautiful
because the center of mass degrees of freedom associated with the different sectors of CH
would correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface
is unique among all its Diff4 translates. This also allows physically preferred “gauge fixing” allowing
to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of
the space-time sheet must define the preferred 3-surface X3

l .

The realization of this vision means a considerable mathematical challenge. The effective
metric 2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal
and symplectic symmetries allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

3.1.2 Light Like 3-D Causal Determinants And Effective 2-Dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic ex-

amples are boundaries and elementary particle horizons (parton orbits) at which Minkowskian
signature of the induced metric transforms to Euclidian one. This brings in a second conformal
symmetry related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry
is analogous to TGD counterpart of the Kac Moody symmetry of string models and seems to
be associated with quantum criticality implying non-uniqueness of the space-time surface with
given space-like ends at boundaries of CD. Critical deformations would be Kac-Moody type trans-
formation preserving the light-likeness of the parton orbits. The challenge is to understand the
relationship of this symmetry to WCW geometry and the interaction between the two conformal
symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l )∩CD×CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kähler form of δM4

± × CP2 - allows identification as a coset space obtained
by dividing the symplectic group of δM4

± × CP2 with Kac-Moody group, whose generators
vanish at X2 = X3

l × δM4
±×CP2. One can say that quantum fluctuating degrees of freedom

in a very concrete sense correspond to the local variant of S2 × CP2.
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The analog of conformal invariance in the light-like direction of X3
l and in the light-like

radial direction of δM4
± suggests that the data at either X3 or X3

l should be enough to determine
WCW geometry. This implies that the relevant data is contained to their intersection X2 at least
for finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving
light likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-
CD:s brings in improved measurement resolution and means also that effective 2-dimensionality is
realized in the scale of sub-CD only.

Experience has however taught to be extremely cautious: it could also be that in ZEO the
unions of the space-like 3-surfaces at the ends of CD and of the light-like partonic orbits at which
the signature of the induced metric changes are the basic objects analogous to Wilson loops. In
this case the notion of effective 2-dimensionality is not so clear. Also in this case the Kac-Moody
type symmetry preserving the light-likeness of partonic orbits could reduce the additional degrees
of freedom to a finite number of conformal equivalence classes of partonic orbits for given pair of
3-surfaces.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed sim-
plifies dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over
X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by pre-
ferred extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is

one-to-one.

3.1.3 Magic Properties Of Light Cone Boundary And Isometries Of
WCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kähler structure. Kähler structure is not unique: possible Kähler structures of light cone
boundary are parameterized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the
isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical 3-momentum
assigned to X4(Y 3) defined as a preferred extremum of Kähler action, fixes the choice of the
complex structure uniquely. Therefore group theoretical approach and the approach based on
Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light
cone boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes local-

ized with respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic

structure.

Hence any function of δM4
+ × CP2 would serve as a Hamiltonian transformation acting in

both CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary

local gauge transformations. This group leaves the symplectic form of δM4
+ × CP2, defined

as the sum of light cone and CP2 symplectic forms, invariant. The group of symplectic
transformations of δM4

+ × CP2 is a good candidate for the isometry group of the WCW.

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the
symplectic transformations of CP2, CP2 symplectic transformations wiykd correspond to
zero modes having zero norm in the Kähler metric of WCW. This does not make sense since
symplectic transformations of δM4 × CP2 actually parameterize the quantum fluctuation
degrees of freedom.

3. The groups G and H, and thus WCW itself, should inherit the complex structure of the
light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
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extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

3.1.4 Symplectic Transformations Of ∆M4
+×CP2 As Isometries Of WCW

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplectic

transformations of the WCW acting as isometries. There are however deep differences with respect
to the Kac Moody algebras.

1. The conformal algebra of the WCW is gigantic when compared with the Virasoro + Kac
Moody algebras of string models as is clear from the fact that the Lie-algebra generator of a
symplectic transformation of δM4

+×CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the notion

of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+×CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

The most natural option is that symplectic and Kac-Moody algebras together generate
the isometry algebra and that the corresponding transformations leaving invariant the partonic
2-surfaces and their 4-D tangent space data act as gauge transformations and affect only zero
modes.

3.1.5 Does The Symmetric Space Property Reduce To Coset Construc-
tion For Super Virasoro Algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h . [t, t] ⊂ h . [h, t] ⊂ t . (3.1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.



3.1. Introduction 59

WCW geometry allows two super-conformal symmetries assignable the coset space decom-
position G/H for a sector of WCW with fixed values of zero moes. One can assign to the tangent
space algebras g resp. h of G resp. H analogous to Kac-Moody algebras super Virasoro al-
gebras and construct super-conformal representation as a coset representation meaning that the
differences of super Virasoro generators annihilate the physical states. This obviously generalizes
Goddard-Olive-Kent construction [A62].

The identification of the two algeras is not a mechanical task and has involved a lot of trial
and erroring. The algebra g should be be spanned by the generators of super-symplectic algebra
of light-cone boundary and by the Kac-Moody algebra acting on light-like orbits of partonic 2-
surfaces. The sub-algebra h should be spanned by generators which vanish for a preferred point of
WCW analogous to origin of CP2 = SU(3)/U(2). Now this point would correspond to maximum
or minimum of Kähler function (no saddle points are allowed if the WCW metric has definite
signature). In hindsight it is obvious that the generators of both symplectic and Kac-Moody
algebras are needed to generate g and h: already the effective 2-dimensionality meaning that 4-D
tangent space data of partonic surface matters requires this.

The maxima of Kähler function could correspond to this kind of points (pairs formed by
3-surfaces at different ends of CD in ZEO) and could play also an essential role in the integration
over WCW by generalizing the Gaussian integration of free quantum field theories. It took quite
a long time to realize that Kähler function must be identified as Kähler action for the Euclidian
region of preferred extremal. Kähler action for Minkowskian regions gives imaginary contribution
to the action exponential and has interpretation in terms of Morse function. This part of Kähler
action can have and is expected to have saddle points and to define Hessian with signature which
is not positive definite.

3.1.6 What Effective 2-Dimensionality And Holography Really Mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points,
which directly relate to what one means with holography.

1. Holography suggests that light-like 3-surfaces with fixed ends give rise to same WCW metric
and the deformations of these surfaces by Kac-Moody algebra correspond to zero modes
just like the interior degrees of freedom for space-like 3-surface do. The same would be
true for space-like 3-surfaces at the ends of space-time surface with respect to symplectic
transformations.

2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective

2-dimensionality and holography would encourage the interpretation of Kac-Moody symme-
tries acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic
2-surfaces at their ends would be equivalent physically and effective 2-dimensionality and
holography would be realized modulo gauge transformations. As a matter fact, the action
on WCW metric would be a change of zero modes so that one could identify it as analog
of conformal scaling. The action of symplectic transformations vanishing in the interior of
space-like 3-surface at the end of space-time surface affects only zero modes.

3.1.7 For The Reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making
clear the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult
for me to control the internal consistency and for the possible reader to distinguish between the big
ideas and ad hoc guesses, most of them related to the detailed realization of big visions. Therefore
I have made now and the the decision to clean up a lot of the ad hoc stuff. In this process I have
also changed the representation so that it is more top-down and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion
of these visions. Hence simple linear representation in which reader climbs to a tree of wisdom is
impossible. I must summarize overall view from the beginning and refer to the results deduced in
chapters towards the end of the book and also to ideas discussed in other books. For instance, the
construction of WCW (“world of classical worlds” (WCW)) spinor structure discussed in chapters
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[K62, K18, K73] provides the understanding necessary to make the construction of configuration
space geometry more detailed. Also number theoretical vision discussed in another book [K50] is
necessary. Somehow it seems that a graphic representation emphasizing visually the big picture
should be needed to make the representation more comprehensible.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L14].

3.2 How To Generalize The Construction Of WCW Geome-
try To Take Into Account The Classical Non-Determinism?

If the imbedding space were H+ = M4
+ × CP2 and if Kähler action were deterministic, the con-

struction of WCW geometry reduces to δM4
+ × CP2. Thus in this limit quantum holography

principle [B22, B38] would be satisfied also in TGD framework and actually reduce to the general
coordinate invariance. The classical non-determinism of Kähler action however means that this
construction is not quite enough and the challenge is to generalize the construction.

3.2.1 Quantum Holography In The Sense Of Quantum GravityTheories

In string theory context quantum holography is more or less synonymous with Maldacena con-
jecture Maldacena which (very roughly) states that string theory in Anti-de-Sitter space AdS is
equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational
context [B22] , quantum holography principle states that quantum gravitational interactions at
high energy limit in AdS can be described using a topological field theory reducing to a conformal
(and non-gravitational) field theory defined at the time like boundary of the AdS. Thus the time
like boundary plays the role of a dynamical hologram containing all information about correlation
functions of d+ 1 dimensional theory. This reduction also conforms with the fact that black hole
entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action princi-
ple assigning space-time surface to a given 3-surface X3 at light cone boundary were completely
deterministic, four-dimensional general coordinate invariance would reduce the construction of the
configuration geometry for the space of 3-surfaces in M4

+×CP2 to the construction of the geometry
at the boundary of WCW consisting of 3-surfaces in δM4

+ × CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in
this strong form fails. This is very desirable from the point of view of both physics and consciousness
theory. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT.
Classical non-determinism is also absolutely essential for quantum consciousness and makes possible
conscious experiences with contents localized into finite time interval despite the fact that quantum
jumps occur between WCW spinor fields defining what I have used to call quantum histories.
Classical non-determinism makes it also possible to generalize quantum-classical correspondence
in the sense that classical non-determinism at the space-time level provides correlate for quantum
non-determinism. The failure of classical determinism is a difficult challenge for the construction
of WCW geometry. One might however hope that the notion of quantum holography generalizes.

3.2.2 How Does The Classical Determinism Fail In TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the
notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with
very strong but not complete correlations between the space-like 3-surfaces. In this case the non-
determinism would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most
enumerable number of preferred extremals X4(Y 3) of Kähler action so that one would get finite
or at most enumerably infinite number of replicas of a given WCW region and the construction
would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of
H for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are different since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles have M4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons
to suspect that classical non-determinism might destroy the dream about complete reduction
to the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the
understanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely
crucial for the ordinary elementary particle physics. It seems that the conformal symmetries
responsible for the ordinary elementary particle quantum numbers acting in these degrees of
freedom do not contribute to the WCW metric line element.

The treatment of the non-determinism in a framework in which the prediction of time
evolution is seen as initial value problem, seems to be difficult. Also the notion of WCW becomes a
messy concept. ZEO changes the situation completely. Light-like 3-surfaces become representations
of generalized Feynman diagrams and brings in the notion of finite time resolution. One obtains a
direct connection with the concepts of quantum field theory with path integral with cutoff replaced
with a sum over various preferred extremals with cutoff in time resolution.

3.2.3 The Notions Of Imbedding Space, 3-Surface, And Configuration
Space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (“world of
classical worlds”, WCW) are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible
3-surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to
each X3 a unique space-time surface X4(X3) allowing in this manner to realize general coordinate
invariance. During years these notions have however evolved considerably. Therefore it seems
better to begin directly from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision
[K52, K53, K51] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of ZEO [K62, K12] it became clear that the so called causal diamonds
(CDs) interpreted as intersections M4

+ ∩ M4
− of future and past directed light-cones of

M4 × CP2 define correlates for the quantum states. The position of the “lower” tip of
CD characterizes the position of CD in H. If the temporal distance between upper and
lower tip of CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypoth-
esis [K36] follows as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2

resp. δM4
− × CP2 of CD can be regarded as the carrier of positive resp. negative energy

part of the state. All net quantum numbers of states vanish so that everything is creatable
from vacuum. Space-time surfaces assignable to zero energy states would would reside inside
CD × CP2s and have their 3-D ends at the light-like boundaries of CD × CP2. Fractal
structure is present in the sense that CDs can contains CDs within CDs, and measurement
resolution dictates the length scale below which the sub-CDs are not visible.
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3. The realization of the hierarchy of Planck constants [K17] led to a further generalization of
the notion of imbedding space - at least as a convenient auxialiary structure. Generalized
imbedding space is obtained by gluing together Cartesian products of singular coverings and
factor spaces of CD and CP2 to form a book like structure. The particles at different pages
of this book behave like dark matter relative to each other. This generalization also brings in
the geometric correlate for the selection of quantization axes in the sense that the geometry
of the sectors of the generalized imbedding space with non-standard value of Planck constant
involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking,
each CD and CP2 is replaced with a union of CDs and CP2s corresponding to different choices
of quantization axes so that no breaking of Poincare and color symmetries occurs at the level
of entire WCW.

It seems that the covering of imbedding space is only a convenient auxiliary structure. The
space-time surfaces in the n-fold covering correspond to the n conformal equivalence classes
of space-time surfaces connecting fixed 3-surfaces at the ends of CD: the space-time surfaces
are branched at their ends. The situation can be interpreted at the level of WCW in sev-
eral manners. There is single 3-surface at both ends but by non-determinism there are n
space-time branches of the space-time surface connecting them so that the Kähler action is
multiplied by factor n. If one forgets the presence of the n branches completely, one can say
that one has heff = n × h giving 1/αK = n/αK(n = 1) and scaling ofKähler action. One
can also imagine that the 3-surfaces at the ends of CD are actually surfaces in the n-fold
covering space consisting of n identical copies so that Kähler action is multiplied by n. One
could also include the light-like partonic orbits to the 3-surface so that 3-surfaces would not
have boundaries: in this case the n-fold degeneracy would come out very naturally.

4. The construction of quantum theory at partonic level brings in very important delicacies
related to the Kähler gauge potential of CP2. Kähler gauge potential must have what one
might call pure gauge parts in M4 in order that the theory does not reduce to mere topological
quantum field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down
in a delicate manner. These additional gauge components -present also in CP2- play key role
in the model of anyons, charge fractionization, and quantum Hall effect [K39] .

The notion of 3-surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to
Equivalence implied by General Coordinate Invariance. There was a problem related to the
realization of General Coordinate Invariance since it was not at all obvious why the preferred
extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D
sense (obviously the identification resolves the above mentioned problem) and understanding
the conformal symmetries of the theory. On basis of these symmetries light-like 3-surfaces
can be regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional.
It is however important to emphasize that this indeed holds true only locally. At the level
of WCW metric this means that the components of the Kähler form and metric can be
expressed in terms of data assignable to 2-D partonic surfaces and their 4-D tangent spaces.
It is however essential that information about normal space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.
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4. A further complication relates to the hierarchy of Planck constants. At “microscopic” level
this means that there number of conformal equivalence classes of space-time surfaces con-
necting the 3-surfaces at boundaries of CD matters and this information is coded by the value
of heff = n × h. One can divide WCW to sectors corresponding to different values of heff
and conformal symmetry breakings connect these sectors: the transition n1 → n2 such that
n1 divides n2 occurs spontaneously since it reduces the quantum criticality by transforming
super-generators acting as gauge symmetries to dynamical ones.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (“world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 × CP2 or
M4

+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question “M4
+ or M4?” had been settled in favor of M4

+

by the fact that M4
+ has interpretation as empty Roberson-Walker cosmology. The huge

conformal symmetries assignable to δM4
+×CP2 were interpreted as cosmological rather than

laboratory symmetries. The work with the conceptual problems related to the notions of
energy and time, and with the symmetries of quantum TGD, however led gradually to the
realization that there are strong reasons for considering M4 instead of M4

+.

2. With the discovery of ZEO (with motivation coming from the non-determinism of Kähler
action) it became clear that the so called causal diamonds (CDs) define excellent candidates
for the fundamental building blocks of WCW or “world of classical worlds” (WCW). The
spaces CD × CP2 regarded as subsets of H defined the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW.

The gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of
the imbedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surface X3

l , which can be boundaries of X4 and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with
the spaces CD × CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having
interpretation in terms of measurement resolution results. Since the complications due to p-adic
sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to
a high degree to a study of a simple special case δM4

+ × CP2.
A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
εαβJαβ at X2 define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and δM4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of δM4

± × CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
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coset space S2×CP2 is in question: this was one of the first ideas about WCW which I gave
up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning
since they realize Equivalence Principle at quantum level. Contrary to the original belief,
this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of clas-
sical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts
assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by
lumping many-sheeted space-time to M4 with effective metric satisfying Einstein’s equations
as a reflection of the underlying Poincare invariance.

5. Now it has become clear that EP in the sense of quantum classical correspondence allows
a concrete realization for the fermion lines defined by the light-like boundaries of string
world sheets at light-like orbits of partonic 2-surfaces. Fermion lines are always light-like
or space-like locally. Kähler-Dirac equation reducing to its algebraic counterpart with light-
like 8-momentum defined by the tangent of the boundary curve. 8-D light-likeness means
the possibility of massivation in M4 sense and gravitational mass is defined in an obvious
manner. The M4-part of 8-momentum is by quantum classical correspondence equal to the
4-momentum assignable to the incoming fermion. EP generalizes also to CP2 degrees of
freedom and relates SO(4) acting as symmetries of Eucldian part of 8-momentum to color
SU(3). SO(4) can be assigned to hadrons and SU(3) to quarks and gluons.

The 8-momentum is light-like with respect to the effective metric defined by K-D gamma
matrices. Is it also light-like with respect to the induced metric and proportional to the
tangent vector of the fermion line? If this is not the case, the boundary curve is locally
space-like in the induced metric. Could this relate to the still poorly understand question how
the necessariy tachyonic ground state conformal weight of super-conformal representations
needed in padic mass calculations [K28] emerges? Could it be that ”empty” lines carrying
no fermion number are tachyonic with respect to the induced metric?

3.2.4 The Treatment Of Non-Determinism Of Kähler Action In Zero
Energy Ontology

The non-determinism of Kähler action means that the reduction of the construction of WCW
geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of Kähler
action, the non-determinism should manifest itself as a presence of causal determinants also other
than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces representing

wormhole throats act as causal determinants for the space-time dynamics defined by Kähler
action. The boundary values of this dynamics have been already considered.

2. At imbedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero
energy states having interpretation as pairs of initial and final states in standard quantum
theory.

The manner to treat the classical non-determinism would be roughly following.

1. The replacement of space-like 3-surfaceX3 withX3
l transforms initial value problem forX3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⊂ δCD×CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to WCW geometry or whether they provide descriptions,
which are in some sense dual.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the

2-D intersections of X3
l with the boundary of causal diamond (CD) defined as intersection
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of future and past directed light-cones super-symplectic algebra makes sense. This implies
effective two-dimensionality which is broken by the non-determinism represented using the
hierarchy of CDs meaning that the data from these 2-D surfaces and their normal spaces at
boundaries of CDs in various scales determine the WCW metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality
seems to be satisfied in the sense of generalized coset construction meaning that the dif-
ferences of Super Virasoro generators of super-symplectic and super Kac-Moody algebras
annihilate physical states. Among other things this means that four-momenta assignable to
the two Super Virasoro representations are identical. T he interpretation is in terms of a
generalization of Equivalence Principle [K62, K12] . This gives also a justification for p-adic
thermodynamics applying only to Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite
length resolution mean means also a cutoff in the number of generalized Feynman diagrams
and this number remains always finite if the light-like 3-surfaces identifiable as maxima of
Kähler function correspond to the diagrams. The finiteness of this number is also essential for
number theoretic universality since it guarantees that the elements of M -matrix are algebraic
numbers if momenta and other quantum numbers have this property. The introduction of
new sub-CDs means also introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution
the non-determinism of Kähler action remains invisible below the time scale assigned to the
smallest CDs. One could also say that complete non-determinism characterized in terms path
integral with cutoff is replaced in TGD framework with the partial failure of classical non-
determinism leading to generalized Feynman diagrams. This gives rise to to discrete coupling
constant evolution and avoids the mathematical ill-definedness and infinities plaguing path
integral formalism since the functional integral over 3-surfaces is well defined.

3.2.5 Category Theory And WCW Geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very
far from simple Cartesian clockworks, and the understanding of the general structure of WCW is
a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of WCW geometry and the basic ideas of category theory are
discussed in this spirit and as an innocent layman. It indeed turns out that the approach makes
highly non-trivial predictions.

In ZEO the effects of non-determinism are taken into account in terms of causal diamonds
forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs within
CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs and
corresponding algebraic structures could define categories. If one does not allow overlapping CDs
then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then CDs would form a structure analogous to the set of open sets used in set theoretic topology.
One could indeed see CDs (or rather their Cartesian products with CP2) as analogs of open sets
in Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD
and allow to build bridge to topological and conformal field theories. This discussion based on
standard ontology. In [K9] rather detailed category theoretical constructions are discussed. Im-
portant role is played by the notion of operad operad,operads : this structure can be assigned with
both generalized Feynman diagrams and with the hierarchy of symplectic fusion algebras realizing
symplectic analogs of the fusion rules of conformal field theories.
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3.3 Identification Of The Symmetries And Coset Space Struc-
ture Of WCW

In this section the identification of the isometry group of the configuration (“world of classical
worlds” or briefly WCW ) will be discussed at general level.

3.3.1 Reduction To The Light Cone Boundary

The reduction to the light cone boundary would occur exactly if Kähler action were strictly de-
terministic. This is not the case but it is possible to generalize the construction at light cone
boundary to the general case if causal diamonds define the basic structural units of the WCW .

Old argument

The identification of WCW follows as a consequence of 4-dimensional Diff invariance. The right
question to ask is the following one. How could one coordinatize the physical(!) vibrational degrees
of freedom for 3-surfaces in Diff4 invariant manner: coordinates should have same values for all
Diff4 related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y 3) on the orbit of X3 in Diff4 invariant manner.

2. Use as WCW coordinates of X3 and all its diffeomorphs the coordinates parameterizing small
deformations of Y 3. This kind of replacement is physically acceptable since metrically the
WCW is equivalent with Map/Diff4.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in
question leave light M4

+ invariant and thus act as isometries.

The simplest choice of Y 3 is the intersection of the orbit of 3-surface (X4) with the set δM4
+×CP2,

where δM4
+ denotes the boundary of the light cone (moment of big bang):

Y 3 = X4 ∩ δM4
+ × CP2 (3.3.1)

Lorentz invariance allows also the choice X × CP2, where X corresponds to the hyperboloid a =√
(m0)2 − r2

M = constant but only the proposed choice (a = 0) leads to a natural complexification
in M4 degrees of freedom. This choice is also cosmologically very natural and completely analogous
to the quantum gravitational holography of string theories.

WCW has a fiber space structure. Base space consists of 3-surfaces Y 3 ⊂ δM4
+ × CP2

and fiber consists of 3-surfaces on the orbit of Y 3, which are Diff4 equivalent with Y 3. The
distance between the surfaces in the fiber is vanishing in WCW metric. An elegant manner to
avoid difficulties caused by Diff4 degeneracy in WCW integration is to define integration measure
as integral over the reduced WCW consisting of 3-surfaces Y 3 at the light cone boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kähler action suggests
strongly classical non-determinism so that there are several, possibly, infinite number of preferred
extremals X4(Y 3) associated with given Y 3 on light cone boundary. This implies additional de-
generacy.

One might hope that the reduced WCW could be replaced by its covering space so that given
Y 3 corresponds to several points of the covering space and WCW has many-sheeted structure.
Obviously the copies of Y 3 have identical geometric properties. WCW integral would decompose
into a sum of integrals over different sheets of the reduced WCW . Note that WCW spinor fields
are in general different on different sheets of the reduced WCW .

Even this is probably not enough: it is quite possible that all light like surfaces of M4

possessing Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with
the construction of the WCW geometry. Because of their metric two-dimensionality the proposed
construction should generalize. This would mean that WCW geometry has also local laboratory
scale aspects and that the general ideas might allow testing.
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New version of the argument

The above summary was the basic argument for two decades ago. A more elegant formulation
would in terms of light-like 3-surfaces connecting the boundaries of causal diamond taken as basic
geometric objects and identified as generalized Feynman diagrams so that they are singular as
manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2-
dimensionality must hold true in the scale of given CD. In other words, the intersection X2 =
X3
l ∩ X3 at the boundary of CD is effectively the basic dynamical unit. The failure of strict

non-determinism however forces to introduce entire hierarchy of CDs responsible also for coupling
constant evolution defined in terms of the measurement resolution identified as the size of the
smallest CD present.

3.3.2 WCW As A Union Of Symmetric Spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = ∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G
and H depend on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all
orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the
coset space decomposition give very strong constraints on the group H, which certainly contains
the subgroup of G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability
of the theory are enormous since it suffices to find metric and curvature tensor for single repre-
sentative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative
calculation of matrix elements as functional integrals over the WCW ). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero
mode structure of the WCW . Almost twenty (seven according to long held belief!) years after the
discovery of the candidate for the Kähler function defining the metric, it became finally clear that
these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transfor-
mations of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values
of Kähler form at partonic 2-surfaces (remember effective 2-dimensionality realized in simplistic
manner) are zero modes and WCW allows slicing to symplectic orbits of the partonic 2-surface
with fixed induced Kähler form. Quantum fluctuating degrees of freedom would correspond to
symplectic group and to the fluctuations of the induced metric. The group H dividing G would
act as diffeomorphisms at the preferred 3-surface X3 and leaving X3 itself invariant. Therefore
the identification of g and h would be in terms of tangent space algebra of WCW sector realized
as coset space G/H.

Coset space structure of WCW and Equivalence Principle

The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H (anal-
ogous to CP2 = SU(3)/U(2)) suggests that one can assign super-Virasoro algebras with G. What
the two algebras g and h are is however difficult question. The following vision is only one of the
many (the latest one).

1. Symplectic algebra g generates isometries and h is identified as algebra, whose generators
generate diffeormorphisms at preferred X3.

2. The original long-held belief was that the Super Kac-Moody symmetry corresponds to local
imbedding space isometries for light-like 3-surfaces X3

l , which might be boundaries of X4
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(probably not: it seems that boundary conditions cannot be satisfied so that space-time
surfaces must consists of regions defining at least double coverings of M4) and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry would be identifiable as the counterpart of the Kac Moody symmetry of string
models.

It has turned out that one can assume Kac-Moody algebra to be sub-algebra of symplectic
algebra consisting of the symplectic isometries of imbedding space. This Super Kac-Moody
algebra is generated by super-currents assignable to the modes of induced spinor fields other
than right-handed neutrino and localized at string world sheets. The entire symplectic algebra
would correspond to the modes of right-handed neutrino and the entire algebra one would
be direct sum of these two algebras so that the number of tensor factors would be indeed 5.
The beauty of this option is that localization would be for both algebras inherent and with
respect to the light-like coordinate of light-cone boundary rather than forced by hand.

3. p-Adic mass calculations require that symplectic and Kac-Moody algebras together generate
the entire algebra. In this situation strong form of holography implies that transformations
located to the interior of space-like 3-surface and light-like partonic orbit define zero modes
and act like gauge symmetries. The physically non-trivial transformations correspond to
transformations acting non-trivially at partonic 2-surfaces. g corresponds to the algebra
generated by these transformations and for preferred 3-surface - identified as (say) maximum
of Kähler function - h corresponds to the elements of this algebra generating diffeomorphisms
of X3. Super-conformal representation has five tensor factors corresponding to color algebra,
two factors from electroweak U(2), one factor from transversal M4 translations and one factor
from symplectic algebra (note that also Hamiltonians which are products of δM4

+ and CP2

Hamiltonians are possible.

Equivalence Principle (EP) has been a longstanding problem for TGD although the recent
stringy view about graviton mediated scattering makes it can be argued to reduce to a tautology.
I have considered several explanations for EP and coset representation has been one of them.

1. Coset representation associated with the super Virasoro algebra is defined by the condition
that the differences of super Virasoro generators for g and h annihilate the physical. The
original proposal for the realization of EP was that this condition implies that the four-
momenta associated with g and h are identical and identifiable as inertial and gravitational
four-momenta. Translations however lead out from CD boundary and cannot leave 3-surface
invariant. Hence the Virasoro generators for h should not carry four-momentum. Therefore
EP cannot be understood in terms of coset representations.

2. The equivalence of classical Noether momentum associated with Kähler action with eigen-
values of the corresponding quantal momentum for Kähler-Dirac action certainly realizes
quantum classical correspondence (QCC) EP could correspond to QCC.

3. A further option is that EP reduces to the identification of the four momenta for Super Vi-
rasoro representations assignable to space-like and light-like 3-surfaces and therefore become
part of strong form of holography in turn implied by strong form of GCI! It seems that this
option is the most plausible one found hitherto.

WCW isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of δM4

+×CP2. These diffeomorphisms indeed
act in a natural manner in δCH, the space of 3-surfaces in δM4

+ × CP2. WCW is expected to
decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the
vector fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend
on the topology of X3 and since G does not change the topology of 3-surface each 3-topology
defines separate orbit of G. Therefore, the union involves sum over all topologies of X3 plus
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possibly other “zero modes”. Different topologies are naturally glued together since singular 3-
surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with different topologies.

Isometries of WCW geometry as symplectic transformations of δM4
+ × CP2

During last decade I have considered several candidates for the group G of isometries of WCW as
the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write the general
decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (3.3.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light
cone diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with
respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since
the theory should be more or less equivalent with topological field theory in this case. Consider
now the various candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical

symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms of the
light cone boundary and symplectic transformations of CP2 could leave Kähler function in-
variant and thus correspond to zero modes. The symplectic transformations of CP2 localized
with respect to light cone boundary acting as symplectic transformations of CP2 have inter-
pretation as local color transformations and are a good candidate for the isometries. The
fact that local color transformations are not even approximate symmetries of Kähler action
is not a problem: if they were exact symmetries, Kähler function would be invariant and zero
modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+.

Besides this there is a huge group of the symplectic symmetries of δM4
+ × CP2 if light

cone boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. δM4

+×CP2 option exploits fully the special properties of
δM4

+×CP2, and one can develop simple argument demonstrating that δM4
+×CP2 symplectic

invariance is the correct option. Also the construction of WCW gamma matrices as super-
symplectic charges supports δM4

+ × CP2 option.

WCW as a union of symmetric spaces

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (3.3.3)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough. [t, t] ⊂ h condition is highly nontrivial and equivalent with the
existence of involution. Inversion in the light-like radial coordinate of δM4 is a natural guess for
this involution and induces complex conjugation in super-conformal algebras mapping positive and
negative conformal weights to each other.

WCW geometry allows two super-conformal symmetries. The first one corresponds to super-
symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry. The original identification of Kac-Moody was in terms of defor-
mations of light-like 3-surfaces respecting their light-likeness. This not wrong as such: also entire
symplectic algebra can be assigned with light-like surfaces and the theory can be constructed using
also these conformal algebras. This identification however makes it very difficult to see how Kac-
Moody could act as isometry: in particular, the localization with respect to internal coordinates
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of 3-surface produces technical problems since symplectic algebra is localized with respect to the
light-like radial coordinate of light-cone boundary.

The more plausible identification is as the sub-algebra of symplectic algebra realized as
isometries of δCD so that localization is inherent and in terms of the radial light-like coordinate
of light-like boundary [K84]. This identification is made possible by the wisdom gained from the
solutions of the Kähler-Dirac equations predicting the localization of its modes (except right-handed
neutrino) to string world sheets.

1. g would thus correspond to a direct sum of super-symplectic algebra and super Kac-Moody
algebra defined by its isometry sub-algebra but represented in different manner (this is ab-
solutely essential!). More concretely, neutrino modes defined super Hamiltonians associated
with the super symplectic algebra and other modes of induced spinor field the super Hamil-
tonians associated with the super Kac-Moody algebra. The maxima of Kähler function could
be chosen as natural candidates for the preferred points and could play also an essential role
in WCW integration by generalizing the Gaussian integration of free quantum field theories.

2. These super-conformal algebra representations form a direct sum. p-Adic mass calculations
require five super-conformal tensor factors and the number of tensor factors would be indeed
this.

3. This algebra has as sub-algebra the algebra for which generators leave 3-surface invariant -
in other words, induce its diffeomorphism. Quantum states correspond to the coset repre-
sentations for entire algebra and this algebra so that differences of the corresponding super-
Virasoro generators annihilate physical states. This obviously generalizes Goddard-Olive-
Kent construction [A62]. It seems now clear that coset representation does not imply EP:
the four-momentum simply does not appear in the representation of the isotropy sub-algebra
since translations lead out of CD boundary.

To minimize confusions it must be emphasized that only the contribution of the symplectic
algebra realized in terms of single right-handed neutrino mode is discussed in this chapter and
the WCW Hamiltonians have 2-dimensional representation. Also the direct connection with the
dynamics of Kähler action is lacking. A more realistic construction [K84] uses 3-dimensional
representations of Hamiltonians and requires all modes of right-handed neutrino for symplectic
algebra and the modes of induced spinor field carrying electroweak quantum numbers in the case
of Kac-Moody algebra.

3.4 Complexification

A necessary prerequisite for the Kähler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.

3.4.1 Why Complexification Is Needed?

The Minkowskian signature of M4 metric seems however to represent an insurmountable obstacle
for the complexification of M4 type vibrational degrees of freedom. On the other hand, complexi-
fication seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation
polarization vector e and massless four-momentum vector p (p2 = 0, p ·e = 0). These vectors
define the decomposition of the tangent space of M4: M4 = M2 × E2, where M2 type
polarizations correspond to zero norm states and E2 type polarizations correspond to physical
states with non-vanishing norm. Same type of decomposition occurs also in the linearized
theory of gravitation. The crucial feature is that E2 allows complexification! The general
conclusion is that the modes of massless, linear, boson fields define always complexification
of M4 (or its tangent space) by effectively reducing it to E2. Also in string models similar
situation is encountered. For a string in D-dimensional space only D-2 transversal Euclidian
degrees of freedom are physical.
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2. Since symplectically extended isometry generators are expected to create physical states in
TGD approach same kind of physical complexification should take place for them, too: this
indeed takes place in string models in critical dimension. Somehow one should be able to
associate polarization vector and massless four momentum vector to the deformations of a
given 3-surface so that these vectors define the decomposition M4 = M2×E2 for each mode.
Configuration space metric should be degenerate: the norm of M2 deformations should vanish
as opposed to the norm of E2 deformations.

Consider now the implications of this requirement.

1. In order to associate four-momentum and polarization (or at least the decomposition M4 =
M2 ×E2) to the deformations of the 3-surface one should have field equations, which deter-
mine the time development of the 3-surface uniquely. Furthermore, the time development
for small deformations should be such that it makes sense to associate four momentum and
polarization or at least the decomposition M4 = M2 × E2 to the deformations in suitable
basis.

The solution to this problem is afforded by the proposed definition of the Kähler function.
The definition of the Kähler function indeed associates to a given 3-surface a unique four-
surface as the preferred extremal of the Kähler action. Therefore one can associate a unique
time development to the deformations of the surface X3 and if TGD describes the observed
world this time development should describe the evolution of photon, gluon, graviton, etc.
states and so we can hope that tangent space complexification could be defined.

2. We have found that M2 part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in WCW metric. This is true if Kähler function is
not only Diff3 invariant but also Diff4 invariant in the sense that Kähler function has same
value for all 3-surfaces belonging to the orbit of X3 and related to X3 by diffeomorphism of
X4. This is indeed the case.

3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3
so that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Diff4 invariance makes possible to
identify the complexification. Crucial role is played by the special properties of the boundary of
4-dimensional light cone, which is metrically two-sphere and thus allows generalized complex and
Kähler structure.

3.4.2 The Metric, Conformal And Symplectic Structures Of The Light
Cone Boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone bound-
ary is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard
spherical Minkowski coordinates light cone boundary is defined by the equation rM = m0 and
induced metric reads

ds2 = −r2
MdΩ2 = −r2

Mdzdz̄/(1 + zz̄)2 , (3.4.1)

and has Euclidian signature. Since S2 allows complexification and thus also Kähler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M4 degrees of freedom: WCW would effectively inherit its
Kähler structure from S2 × CP2.

By its effective two-dimensionality the boundary of the four-dimensional light cone has
infinite-dimensional group of (local) conformal transformations. Using complex coordinate z for
S2 the general local conformal transformation reads (see Fig. 3.1 )
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Figure 3.1: Conformal symmetry preserves angles in complex plane

r → f(rM , z, z̄) ,

z → g(z) , (3.4.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = L⊕R ,

[L,R] ⊂ R , (3.4.3)

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

Ln = zn+1d/dz (3.4.4)

and R denotes the algebra generated by the vector fields

Rn = fn(z, z̄, rM )∂rM , (3.4.5)

where f(z, z̄, rM ) forms complete real scalar function basis for light cone boundary. The vector
fields of R have the special property that they have vanishing norm in M4 metric.

This modification of conformal group implies that the Virasoro generator L0 becomes L0 =
zd/dz − rMd/drM so that the scaling momentum becomes the difference n −m or S2 and radial
scaling momenta. One could achieve conformal invariance by requiring that S2 and radial scaling
quantum numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isome-
tries! An arbitrary conformal transformation z → f(z) induces to the metric a conformal factor
given by |df/dz|2. The compensating radial scaling rM → rM/|df/dz| compensates this factor so
that the line element remains invariant.

The Kähler structure of light cone boundary defines automatically symplectic structure.
The symplectic form is degenerate and just the area form of S2 given by

J = r2
Msin(θ)dθ ∧ dφ,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S2) invariant. These transformations
are local with respect to the radial coordinate rM . The symplectic and Kähler structures of light
cone boundary are not unique: different structures are labeled by the coset space SO(3, 1)/SO(3).
One can however associate with a given 3-surface Y 3 a unique structure by requiring that the
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corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved classical
four-momentum assigned to Y 3 by the preferred extremal property.

In the case of δM4
+ × CP2 both the conformal transformations, isometries and symplectic

transformations of the light cone boundary can be made local also with respect to CP2. The idea
that the infinite-dimensional algebra of symplectic transformations of δM4

+×CP2 act as isometries
of WCW and that radial vector fields having zero norm in the metric of light cone boundary possess
zero norm also in WCW metric, looks extremely attractive.

In the case of δM4
+ × CP2 one could combine the symplectic and Kähler structures of

δM4
+ and CP2 to single symplectic/Kähler structure. The symplectic transformations leaving this

symplectic structure invariant would be generated by the function algebra of δM4
+×CP2 such that

a arbitrary function serves as a Hamiltonian of a symplectic transformation. This group serves as a
candidate for the isometry group of WCW . An alternative identification for the isometry algebra is
as symplectic symmetries of CP2 localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of δM4

+×CP2 but their Poisson brackets would
be defined using only CP2 symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the
latter option. The symplecticly imbedded CP2 would be left invariant under δM4

+ local symplec-
tic transformations of CP2. This seems strange. Under symplectic algebra of δM4

+ × CP2 also
symplecticly imbedded CP2 is deformed and this sounds more realistic. The isometry algebra
is therefore assumed to be the group can(δM4

+ × CP2) generated by the scalar function basis
S(δM4

+ × CP2) = S(δM4
+)× S(CP2) of the light cone boundary using the Poisson brackets to be

discussed in more detail later.
There are some no-go theorems associated with higher-dimensional Abelian extensions [A67],

and although the contexts are quite different, it is interesting to consider the recent situation in
light of these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra asso-
ciated with the metrically 2-dimensional elementary particle horizons surrounding wormhole
contacts allows the usual Kac Moody algebra and actually also contributes to the WCW
metric.

2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result
has an analog at the level of WCW geometry. The extension associated with the symplectic
algebra of CP2 localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p, q} = 1. The central extension is the function space
associated with δM4

+ and indeed infinite-dimensional if only only CP2 symplectic structure
induces the Poisson bracket but one-dimensional if δM4

+ × CP2 Poisson bracket induces
the extension. In the latter case the symmetries fix the metric completely at the point
corresponding to the origin of symmetric space (presumably the maximum of Kähler function
for given values of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [A67]. It might be that the degeneracy of the WCW metric is the analog
for the loss of faithful representations.

3.4.3 Complexification And The Special Properties Of The Light Cone
Boundary

In case of Kähler metric G and H Lie-algebras must allow complexification so that the isometries
can act as holomorphic transformations. Since G and H can be regarded as subalgebras of the
vector fields of δM4

+ × CP2, they inherit in a natural manner the complex structure of the light
cone boundary.

There are two candidates for WCW complexification. The simplest, and also the correct,
alternative is that complexification is induced by natural complexification of vector field basis on
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δM4
+ × CP2. In CP2 degrees of freedom there is natural complexification

ξ → ξ̄ .

In δM4
+ degrees of freedom this could involve the transformation

z → z̄

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

f(rM )→ f(rM ) ,

which turns out to play same role as the function basis of circle in the Kähler geometry of loop
groups [A45].

The requirement that the functions are eigen functions of radial scalings favors functions
(rM/r0)k, where k is in general a complex number. The function can be expressed as a product
of real power of rM and logarithmic plane wave. It turns out that the radial complexification
alternative is the correct manner to obtain Kähler structure. The reason is that symplectic trans-
formations leave the value of rM invariant. Radial Virasoro invariance plays crucial role in making
the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the WCW
geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: Ln → L−n = L†n. Clearly this complexification is induced from the transformation
z → 1

z and differs from the complexification induced by complex conjugation z → z̄. The basis
would be polynomial in z and z̄. Since radial algebra could be also seen as Virasoro algebra
localized with respect to S2 × CP2 one could consider the possibility that also in radial direction
the inversion rM → 1

rM
is involved.

In fact, the complexification changing the signs of radial conformal weights is induced from
inversion rM/r0 → r0/rM . This transformation is also an excellent candidate for the involution
necessary for obtaining the structure of symmetric space implying among other things the covariant
constancy of the curvature tensor, which is of special importance in infinite-D context.

The essential prerequisite for the Kähler structure is that both G and H allow same com-
plexification so that the isometries in question can be regarded as holomorphic transformations. In
finite-dimensional case this essentially what is needed since metric can be constructed by parallel
translation along the orbit of G from H-invariant Kähler metric at a representative point. The
requirement of H-invariance forces the radial complexification based on complex powers rkM : radial
complexification works since symplectic transformations leave rM invariant.

Some comments on the properties of the proposed complexification are in order.

1. The proposed complexification, which is analogous to the choice of gauge in gauge theories
is not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart
from SO(3) rotation not affecting the value of the radial coordinate rM (if the imaginary
part of k in rkM is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying CP2 Hamiltonians
corresponds to unitary representations of the Lorentz group at light cone boundary so that
the Lorentz invariance is rather manifest.

3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mk = (m0,mi) momentum is proportional to the vector (m0,−mi). Since the particles
are massless only two polarization vectors are possible and these correspond to the tangent
vectors to the sphere m0 = rM . Of course, one must always fix polarizations at some point
of tangent space but since massless polarization vectors are not physical this doesn’t imply
difficulties: different choices correspond to different gauges.
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4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere SD−2 and the decomposition to (1, 0) and (0, 1) parts is
possible only when the sphere in question is two-dimensional since other spheres do allow
neither complexification nor Kähler structure.

3.4.4 How To Fix The Complex And Symplectic Structures In A Lorentz
Invariant Manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S2.
The possible symplectic structures of δM4

+ are parameterized by the coset space SO(3, 1)/SO(3)),
where H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of
the spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest
Lorentz invariance but is possible if physical theory remains Lorentz invariant. The more natural
possibility is that 3-surface Y 3 itself fixes in some natural manner the choice of the symplectic
structure so that there is unique subgroup SO(3) of SO(3, 1) associated with Y 3. If WCW Kähler
function corresponds to a preferred extremal of Kähler action, this is indeed the case. One can
associate unique conserved four-momentum P k(Y 3) to the preferred extremal X4(Y 3) of the Kähler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P k(Y 3) invariant, fixes the symplectic structure associated with Y 3 uniquely.

Therefore WCW decomposes into a union of symplectic spaces labeled by SO(3, 1)/SO(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular
momentum vector wk = εklmnPlJmn determined by the classical angular momentum tensor of
associated with Y 3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3)
acting as rotation around this coordinate axis acts as phase transformation of the complex coordi-
nate z of S2. Other rotations act as nonlinear holomorphic transformations respecting the complex
structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multi-
plication in this case. If P k(Y 3) is light like, one can only require that the rotation group SO(2)
serving as the isotropy group of 3-momentum belongs to the group SO(3) characterizing the sym-
plectic structure and it seems that symplectic structure cannot be uniquely fixed without additional
constraints in this case. Probably this has no practical consequences since the 3-surfaces considered
have actually infinite size and 4-momentum is most probably time like for them. Note however
that the direction of 3-momentum defines unique axis such that SO(2) rotations around this axis
are represented as phase multiplication.

Similar almost unique frame exists also in CP2 degrees of freedom and corresponds to the
complex coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra
element defined by classical color charges Qa of Y 3. One can fix unique Cartan subgroup of U(2)
by noticing that SU(3) allows completely symmetric structure constants dabc such that Ra =
d bc
a QbQc defines Lie-algebra element commuting with Qa. This means that Ra and Qa span in

generic case U(1) × U(1) Cartan subalgebra and there are unique complex coordinates for which
this subgroup acts as phase multiplications. The space of nonequivalent frames is isomorphic
with CP (2) so that one can say that cm degrees of freedom correspond to Cartesian product
of SO(3, 1)/SO(3) hyperboloid and CP2 whereas coordinate choices correspond to the Cartesian
product of SO(3, 1)/SO(2) and SU(3)/U(1)× U(1).

Symplectic transformations leave the value of δM4
+ radial coordinate rM invariant and this

implies large number of additional zero modes characterizing the size and shape of the 3-surface.
Besides this Kähler magnetic fluxes through the rM = constant sections of X3 as a function of rM
provide additional invariants, which are functions rather than numbers. The Fourier components
for the magnetic fluxes provide infinite number of symplectic invariants. The presence of these
zero modes imply that 3-surfaces behave much like classical objects in the sense that neither their
shape nor form nor classical Kähler magnetic fields, are subject to Gaussian fluctuations. Of
course, quantum superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations
correspond to zero modes of the Kähler metric (symplectic transformations act as dynamical sym-
metries of the vacuum extremals of the Kähler action). If this is indeed the case, one can ask
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whether it is possible to identify an integration measure for them.
If one can associate symplectic structure with zero modes, the symplectic structure defines

integration measure in a standard manner (for 2n-dimensional symplectic manifold the integration
measure is just the n-fold wedge power J ∧ J... ∧ J of the symplectic form J). Unfortunately, in
infinite-dimensional context this is not enough since divergence free functional integral analogous to
a Gaussian integral is needed and it seems that it is not possible to integrate in zero modes and that
this relates in a deep manner to state function reduction. If all symplectic transformations of δM4

+×
CP2 are represented as symplectic transformations of the configuration space, then the existence of
symplectic structure decomposing into Kähler (and symplectic) structure in complexified degrees
of freedom and symplectic (but not Kähler) structure in zero modes, is an automatic consequence.

3.4.5 The General Structure Of The Isometry Algebra

There are three options for the isometry algebra of WCW .

1. Isometry algebra as the algebra of CP2 symplectic transformations leaving invariant the
symplectic form of CP2 localized with respect to δM4

+.

2. Certainly the WCW metric in δM4
+ must be non-trivial and actually given by the magnetic

flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic genera-
tors constructed from quarks automatically give as anti-commutators this part of the WCW
metric. One could interpret these symplectic invariants as WCW Hamiltonians for δM4

+

symplectic transformations obtained when CP2 Hamiltonian is constant.

3. Isometry algebra consists of δM4
+×CP2 symplectic transformations. In this case a local color

transformation involves necessarily a local S2 transformation. Unfortunately, it is difficult
to decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the
basic functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S2 provide an alternative function basis for the light cone boundary:

Hm
jk ≡ Yjm(θ, φ)rkM .

(3.4.6)

One can criticize this basis for not having nice properties under Lorentz group.
The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor

product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator L0 generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator L0 = zd/dz = ρ∂ρ− 2

2∂φ has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of L0, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions Hm
j1k1

and Hm
j2k2

can be calculated and is of the general
form

{Hm1

j1k
, Hm2

j2k2
} ≡ C(j1m1j2m2|j,m1 +m2)AH

m1+m2

j,k1+k2

. (3.4.7)

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the
representations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accom-
panied by a local radial scaling compensating the conformal factor coming from the conformal
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transformations having parametric dependence of radial variable and CP2 coordinates. It seems
however that isometries cannot in general be realized as symplectic transformations. The first
difficulty is that symplectic transformations cannot affect the value of the radial coordinate. For
rotation algebra the representation as symplectic transformations is however possible.

In CP2 degrees of freedom scalar function basis having definite color transformation prop-
erties is desirable. Scalar function basis can be obtained as the algebra generated by the Hamilto-
nians of color transformations by multiplication. The elements of basis can be typically expressed
as monomials of color Hamiltonians HA

c

HA
D =

∑
{Bj}

CADB1B2....BN

∏
Bi

HBi
c , (3.4.8)

where summation over all index combinations {Bi} is understood. The coefficients CADB1B2....BN
are Glebch-Gordan coefficients for completely symmetric N : th power 8 ⊗ 8... ⊗ 8 of octet repre-
sentations. The representation is not unique since

∑
AH

A
c H

A
c = 1 holds true. One can however

find for each representation D some minimum value of N .
The product of Hamiltonians HD1

A and HB
D2

can be decomposed by Glebch-Gordan coeffi-
cients of the symmetrized representation (D1 ⊗D2)S as

HA
D1
HB
D2

= CABDD1D2DC(S)HC
D , (3.4.9)

where ′S′ indicates that the symmetrized representation is in question. In the similar manner one
can decompose the Poisson bracket of two Hamiltonians

{HA
D1
, HB

D2
} = CABDD1D2DC(A)HC

D . (3.4.10)

Here ′A′ indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the
representations D1 and D2 are in question.

One can express the infinitesimal generators of CP2 symplectic transformations in terms of
the color isometry generators JBc using the expansion of the Hamiltonian in terms of the monomials
of color Hamiltonians:

jADN = FADBJ
B
c ,

FADB = N
∑
{Bj}

CADB1B2...BN−1B

∏
j

HBj
c , (3.4.11)

where summation over all possible {Bj}: s appears. Therefore, the interpretation as a color group
localized with respect to CP2 coordinates is valid in the same sense as the interpretation of space-
time diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized
with respect to the entire δM4

+ × CP2.
A convenient basis for the Hamiltonians of δM4

+ × CP2 is given by the functions

HmA
jkD = Hm

jkH
A
D .

The symplectic transformation generated by HmA
jkD acts both in M4 and CP2 degrees of freedom

and the corresponding vector field is given by

Jr = HA
DJ

rl(δM4
+)∂lH

m
jk +Hm

jkJ
rl(CP2)∂lH

A
D . (3.4.12)

The general form for their Poisson bracket is:

{Hm1A1

j1k1D1
, Hm2A2

j2k2D2
} = HA1

D1
HA2

D2
{Hm1

j1k1
, Hm2

j2k2
}+Hm1

j1k1
Hm2

j2k2
{HA1

D1
, HA2

D2
}

=
[
CA1A2A
D1D2D

(S)C(j1m1j2m2|jm)A + CA1A2A
D1D2D

(A)C(j1m1j2m2|jm)S

]
HmA
j,k1+k2,D .

(3.4.13)

What is essential that radial “momenta” and angular momentum are additive in δM4
+ degrees of

freedom and color quantum numbers are additive in CP2 degrees of freedom.



78 Chapter 3. Construction of WCW Kähler Geometry from Symmetry Principles

3.4.6 Representation Of Lorentz Group And Conformal Symmetries At
Light Cone Boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary
might provide natural building blocks for the construction of the WCW Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced,
and a function basis giving rise to the representations of Lorentz group and having very simple
properties under modified Poisson bracket of δM4

+ is constructed.

Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for
S2. The expression for the SU(2) generators of the Lorentz group are

Jx = (z2 − 1)d/dz + c.c. = L1 − L−1 + c.c. ,

Jy = (iz2 + 1)d/dz + c.c. = iL1 + iL−1 + c.c. ,

Jz = iz
d

dz
+ c.c. = iLz + c.c. . (3.4.14)

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m3

direction corresponds to an infinitesimal transformation

δm3 = −εrM ,

δrM = −εm3 = −ε
√
r2
M − (m1)2 − (m2)2 . (3.4.15)

The relationship between complex coordinates of S2 and M4 coordinates mk is given by stereo-
graphic projection

z =
(m1 + im2)

(rM −
√
r2
M − (m1)2 − (m2)2)

=
sin(θ)(cosφ+ isinφ)

(1− cosθ)
,

cot(θ/2) = ρ =
√
zz̄ ,

tan(φ) =
m2

m1
. (3.4.16)

This implies that the change in z coordinate doesn’t depend at all on rM and is of the following
form

δz = −ε
2

(1 +
z(z + z̄)

2
)(1 + zz̄) . (3.4.17)

The infinitesimal generator for the boosts in z-direction is therefore of the following form

Lz = [
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
− iJz . (3.4.18)

Generators of Lx and Ly are most conveniently obtained as commutators of [Lz, Jy] and [Lz, Jx].
For Ly one obtains the following expression:

Ly = 2
(zz̄(z + z̄) + i(z − z̄))

(1 + zz̄)2
rM

∂

∂rM
− iJy , (3.4.19)



3.4. Complexification 79

For Lx one obtains analogous expressions. All Lorentz boosts are of the form Li = −iJi +
local radial scaling and of zeroth degree in radial variable so that their action on the general gen-
erator Xklm ∝ zkz̄lrmM doesn’t change the value of the label m being a mere local scaling transfor-
mation in radial direction. If radial scalings correspond to zero norm isometries this representation
is metrically equivalent with the representations of Lorentz boosts as Möbius transformations.

Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S2 define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure r2

MdΩdrM/rM remains invariant under Lorentz boosts since the scaling of rM induced by
the Lorentz boost compensates for the conformal scaling of dΩ induced by a Lorentz transformation
represented as a Möbius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-
integer m and imaginary number k2 = iρ, where ρ is any real number [A57]. A natural guess
is that m = 0 holds true for all representations realizable at the light cone boundary and that
radial waves are of form rkM , k = k1 + ik2 = −1 + iρ and thus eigen states of the radial scaling so
that the action of Lorentz boosts is simple in the angular momentum basis. The inner product in
radial degrees of freedom reduces to that for ordinary plane waves when log(rM ) is taken as a new
integration variable. The complexification is well-defined for non-vanishing values of ρ.

It is also possible to have non-unitary representations of the Lorentz group and the realiza-
tion of the symmetric space structure suggests that one must have k = k1 +ik2, k1 half-integer. For
these representations unitarity fails because the inner product in the radial degrees of freedom is
non-unitary. A possible physical interpretation consistent with the general ideas about conformal
invariance is that the representations k = −1+ iρ correspond to the unitary ground state represen-
tations and k = −1 + n/2 + iρ, n = ±1,±2, ..., to non-unitary representations. The general view
about conformal invariance suggests that physical states constructed as tensor products satisfy the
condition

∑
i ni = 0 completely analogous to Virasoro conditions.

Representations of the Lorentz group with E2 × SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2, C) is the group generated by the generators L0 and L± of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator Jz and corresponding boost generator Lz. For functions which
do not depend on rM these generators are completely analogous to the generators L0 generating
scalings and iL0 generating rotations. Also the generator of radial scalings appears in the formulas
and one must consider the possibility that it corresponds to the generator L0.

In order to construct scalar function eigen basis of Lz and Jz, one can start from the
expressions

L3 ≡ i(Lz + Lz̄) = 2i[
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
+ iρ∂ρ ,

J3 ≡ iLz − iLz̄ = i∂φ . (3.4.20)

If the eigen functions do not depend on rM , one obtains the usual basis zn of Virasoro algebra, which
however is not normalizable basis. The eigenfunctions of the generators L3, J3 and L0 = irMd/drM
satisfying

J3fm,n,k = mfm,n,k ,

L3fm,n,k = nfm,n,k ,

L0fm,n,k = kfm,n,k . (3.4.21)

are given by
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fm,n,k = eimφ
ρn−k

(1 + ρ2)k
× (

rM
r0

)k . (3.4.22)

n = n1 + in2 and k = k1 + ik2 are in general complex numbers. The condition

n1 − k1 ≥ 0

is required by regularity at the origin of S2 The requirement that the integral over S2 defining
norm exists (the expression for the differential solid angle is dΩ = ρ

(1+ρ2)2 dρdφ) implies

n1 < 3k1 + 2 .

From the relationship (cos(θ), sin(θ)) = (ρ2 − 1)/(ρ2 + 1), 2ρ/(ρ2 + 1)) one can conclude that
for n2 = k2 = 0 the representation functions are proportional to f sin(θ)n−k(cos(θ) − 1)n−k.
Therefore they have in their decomposition to spherical harmonics only spherical harmonics with
angular momentum l < 2(n− k). This suggests that the condition

|m| ≤ 2(n− k) (3.4.23)

is satisfied quite generally.

The emergence of the three quantum numbers (m,n, k) can be understood. Light cone
boundary can be regarded as a coset space SO(3, 1)/E2 × SO(2), where E2 × SO(2) is the group
leaving the light like vector defined by a particular point of the light cone invariant. The natural
choice of the Cartan group is therefore E2 × SO(2). The three quantum numbers (m,n, k) have
interpretation as quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and
one complex parameter. Thus k2 and n2, which are Lorentz invariants, might not be independent
parameters, and the simplest option is k2 = n2.

The nice feature of the function basis is that various quantum numbers are additive under
multiplication:

f(ma, na, ka)× f(mb, nb, kb) = f(ma +mb, na + nb, ka + kb) .

These properties allow to cast the Poisson brackets of the symplectic algebra of WCW into an
elegant form.

The Poisson brackets for the δM4
+ Hamiltonians defined by fmnk can be written using the

expression Jρφ = (1 + ρ2)/ρ as

{fma,na,ka , fmb,nb,kb} = i [(na − ka)mb − (nb − kb)ma]× fma+mb,na+nb−2,ka+kb

+ 2i [(2− ka)mb − (2− kb)ma]× fma+mb,na+nb−1,ka+kb−1 .

(3.4.24)

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations Gelfand.

1. The unitary representations discussed in [A57] are characterized by are constructed by deduc-
ing the explicit representations for matrix elements of the rotation generators Jx, Jy, Jz and
boost generators Lx, Ly, Lz by decomposing the representation into series of representations
of SU(2) defining the isotropy subgroup of a time like momentum. Therefore the states are
labeled by eigenvalues of Jz. In the recent case the isotropy group is E2 × SO(2) leaving
light like point invariant. States are therefore labeled by three different quantum numbers.
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2. The representations of [A57] are realized the space of complex valued functions of complex
coordinates ξ and ξ labeling points of complex plane. These functions have complex degrees
n+ = m/2 − 1 + l1 with respect to ξ and n− = −m/2 − 1 + l1 with respect to ξ. l0
is complex number in the general case but for unitary representations of main series it is
given by l1 = iρ and for the representations of supplementary series l1 is real and satisfies
0 < |l1| < 1. The main series representation is derived from a representation space consisting
of homogenous functions of variables z0, z1 of degree n+ and of z0 and z1 of degrees n±.

One can separate express these functions as product of (z1)n
+

(z1)n− and a polynomial of
ξ = z1/z2 and ξ with degrees n+ and n−. Unitarity reduces to the requirement that the
integration measure of complex plane is invariant under the Lorentz transformations acting
as Moebius transformations of the complex plane. Unitarity implies l1 = −1 + iρ.

3. For the representations at δM4
+ formal unitarity reduces to the requirement that the inte-

gration measure of r2
MdΩdrM/rM of δM4

+ remains invariant under Lorentz transformations.
The action of Lorentz transformation on the complex coordinates of S2 induces a confor-
mal scaling which can be compensated by an S2 local radial scaling. At least formally the
function space of δM4

+ thus defines a unitary representation. For the function basis fmnk
k = −1 + iρ defines a candidate for a unitary representation since the logarithmic waves in
the radial coordinate are completely analogous to plane waves for k1 = −1. This condition
would be completely analogous to the vanishing of conformal weight for the physical states
of super conformal representations. The problem is that for k1 = −1 guaranteeing square
integrability in S2 implies −2 < n1 < −2 so that unitarity is possible only for the function
basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k1 is half-integer valued. First of all, WCW spinor fields are analogous to
ordinary spinor fields in M4, which also define non-unitary representations of Lorentz group.
Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals defined by
fmnk over 3-surfaces Y 3 are always well-defined. Thirdly, the continuous spectrum of k2

could be transformed to a discrete spectrum when k1 becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S2 degrees of
freedom and the non-unitarity of the inner product reflects itself as non-orthogonality of the eigen
function basis. Introducing the variable u = ρ2 + 1 as a new integration variable, one can express
the inner product in the form

〈ma, na, ka|mb, nb, kb〉 = πδ(k2a − k2b)× δm1,m2 × I ,

I =

∫ ∞
1

f(u)du ,

f(u) =
(u− 1)

(N−K)+i∆
2

uK+2
. (3.4.25)

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = k1a + k1b > −1. For k1i = −1/2 the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the
integrand and given by

f(u)− f(ei2πu) =
[
1− e−π∆

]
f(u) ,

∆ = n1a − k1a − n1b + k1b . (3.4.26)

This means that one can transform the integral to an integral around the cut. This integral can
in turn completed to an integral over closed loop by adding the circle at infinity to the integration
path. The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains
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I =
2πi

1− e−π∆
×R× (R− 1)....× (R−K − 1)× (−1)

N−K
2 −K−1 ,

R ≡ N −K
2

+ i∆ . (3.4.27)

This expression is non-vanishing for ∆ 6= 0. Thus it is not possible to satisfy orthogonality
conditions without the un-physical n = k, k1 = 1/2 constraint. The result is finite for K > −1 so
that k1 > −1/2 must be satisfied and if one allows only half-integers in the spectrum, one must
have k1 ≥ 0, which is very natural if real conformal weights which are half integers are allowed.

3.4.7 How The Complex Eigenvalues Of The Radial Scaling Operator-
Relate To Symplectic Conformal Weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator rMd/drM ,
and the first guess was that the correct interpretation is as conformal weights. The problem is
however that the eigenvalues are complex. Second problem is that general arguments are not
enough to fix the spectrum of eigenvalues. There should be a direct connection to the dynamics
defined by Kähler action and the Kähler-Dirac action defined by it.

The construction of WCW spinor structure in terms of second quantized induced spinor
fields [K62] leads to the conclusion that the modes of induced spinor fields must be restricted at
surfaces with 2-D CP2 projection to guarantee vanishing W fields and well-defined em charge for
them. In the generic case these surfaces are 2-D string world sheets (or possibly also partonic
2-surfaces) and in the non-generic case can be chosen to be such. The modes are labeled by
generalized conformal weights assignable to complex or hypercomplex string coordinate. Conformal
weights are expected to be integers from the experience with string models.

It is an open question whether these conformal weights are independent of the symplectic
formal weights or not but on can consider also the possibility that they are dependent. Note
hovewer that string coordinate is not reducible to the light-like radial coordinate in the generic
case and one can imagine situations in which rM is constant although string coordinate varies.
Dependency would be achieved if the Hamiltonians are generalized eigen modes of D = γxd/dx,
x = log(r/r0), satisfying DH = λγxH and thus of form exp(λx) = (r/r0)λ with the same spectrum
of eigenvalues λ as associated with the Kähler-Dirac operator. That log(r/r0) naturally corresponds
to the coordinate u assignable to the generalized eigen modes of Kähler-Dirac operator supports
this interpretation.

The recent view is that the two conformal weights are independent. The conformal weights
associated with the modes of Kähler-Dirac operator localized at string world sheets by the condition
that the electromagnetic charge is well-defined for the modes (classical induced W field must vanish
at string world sheets). The conformal weights of spinor modes would be integer valued as in string
models. About super-symplectic conformal weights associated one cannot say this.

This revives the forgotten TGD inspired conjecture that the conformal weights associated
with the generators (in the technical sense of the word) of the super-symplectic algebra are given by
the negatives of the zeros of Riemann Zeta h = −1/2+ iyi. Note that these conformal weights have
negative real part having interpretation in terms of tachyonic ground state needed in p-adic mass
calculations [K28]. The spectrum of conformal weights would be of form h = n/2 +

∑
i niyi. This

would conform with the association of Riemann Zeta to critical systems. From the identification of
mass squared as conformal weight, the total conformal weights for the physical states should have
vanishing imaginary part be therefore non-negative integers. This would give rise to what might
be called conformal confinement.

3.5 Magnetic And Electric Representations Of WCW Hamil-
tonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor
depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads
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to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the
Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of
CP2 corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic
and electric parts of Kähler form are identical.

3.5.1 Radial Symplectic Invariants

All δM4
+ × CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 × CP2 coordinates serves
as height function. The number, type, ordering and values for the extrema for this height function
in the interior and boundary components are isometry invariants. These invariants characterize
not only the topology but also the size and shape of the 3-surface. The result implies that WCW
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of
the situation. A good example about non-topological extrema is provided by a sphere with two
horns.

There are additional symplectic invariants. The “magnetic fluxes” associated with the δM4
+

symplectic form

JS2 = r2
Msin(θ)dθ ∧ dφ

over any X2 ⊂ X3 are symplectic invariants. In particular, the integrals over rM = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the
solid angle Ω(rM ) spanned by rM = constant section and thus r2

MΩ(rM ) characterizes transversal
geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider
the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

Ω(k) =

∫ rmax

rmin

(rM/rmax)kΩ(rM )
drM
rM

, k = k1 + ik2 , perk1 ≥ 0 . (3.5.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize
the situation consider torus as an example).

Also the quantities

Ω+(X2) =

∫
X2

|J | ≡
∫
|εαβJαβ |

√
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These
fluxes are non-vanishing also for closed surfaces and give information about the geometry of the
boundary components of 3-surface (signed fluxes vanish for boundary components unless they
enclose the dip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to
the Kähler metric vanishes. It is not at all obvious whether WCW integration measure in these
degrees of freedom exists at all. A localization in zero modes occurring in each quantum jump
seems a more plausible and under suitable additional assumption it would have interpretation as
a state function reduction. In string model similar situation is encountered; besides the functional
integral determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance
discussed in the introduction is accepted, there is no need to integrate over the variable rM and just
the fluxes over the 2-surfaces X2

i identified as intersections of light like 3-D causal determinants
with X3 contain the data relevant for the construction of the WCW geometry. Also the symplectic
invariants associated with these surfaces are enough.
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3.5.2 Kähler Magnetic Invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and
by its absolute value

Qm(X2) =

∫
X2

JCP2 = Jαβε
αβ√g2d

2x ,

Q+
m(X2) =

∫
X2

|JCP2
| ≡

∫
X2

|Jαβεαβ |
√
g2d

2x , (3.5.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic
transformations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing
for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary
of X2 only: ∫

X2 J =
∫
δX2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of
X2 in which the sign of J remains fixed.

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2 | ≡
∫
X2

|Jαβεαβ |
√
g2d

2x , (3.5.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X2) =

∫
X2

fKJCP2
,

Q+
m(K,X2) =

∫
X2

fK |JCP2 | ,

fK≡(s,n,k) = eisφ × ρn−k

(1 + ρ2)k
× (

rM
r0

)k (3.5.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3,
and the magnetic fluxes over the representatives these surfaces give thus good candidates for zero
modes.

1. If effective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light

like 3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic trans-
formations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of
fluxes are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface,
these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier
transforms of these invariants are needed. One must however notice that rM = constant
surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.
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3.5.3 Isometry Invariants And Spin Glass Analogy

The presence of isometry invariants implies coset space decomposition ∪iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in
vacuum modes. Therefore the functional integral over the WCW decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for
the various vacuum mode contributions are given by the probability density associated with the
zero modes. The integration over the zero modes is a highly problematic notion and it could be
eliminated if a localization in the zero modes occurs in quantum jumps. The localization would
correspond to a state function reduction and zero modes would be effectively classical variables
correlated in one-one manner with the quantum numbers associated with the quantum fluctuating
degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity
with spin glass phase for which one has probability distribution for Hamiltonians appearing in
the partition function exp(−H/T ). In fact, since TGD Universe is also critical, exact similarity
requires that also the temperature is critical for various contributions to the average partition
function of spin glass phase. The characterization of isometry invariants and zero modes of the
Kähler metric provides a precise characterization for how TGD Universe is quantum analog of spin
glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field
theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase
motivates the hypothesis that effective quantum average space-time possesses ultra-metric topology.
This approach leads to excellent predictions for elementary particle masses and predicts even new
branches of physics [K31, K56]. As a matter fact, an entire fractal hierarchy of copies of standard
physics is predicted.

3.5.4 Magnetic Flux Representation Of The Symplectic Algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X2

i defined by
the intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD considered.
Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration
on fluxes at δM4

+ × CP2 One must also remember that if the proposed symmetries hold true, it
is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-
time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically
attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is
discussed in [K25] by starting from the observation that TGD could define a natural realization of
braids, braid cobordisms, and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for WCW
. Symplectic transformations of CP2 act as U(1) gauge transformations on the Kähler potential of
CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing

the Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k (see Eq. 3.4.22 ) defining the Lorentz covariant function basis HA, A ≡ (a,m, n, k)
at the light cone boundary: HA = Ha × f(m,n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic
flux via the following formulas:

Qm(HA|X2) =

∫
X2

HAJ ,

Q+
m(HA|X2) =

∫
X2

HA|J | .

(3.5.5)
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Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Qα,βm (HA|X2) = αQm(HA|X2) + βQ+
m(HA|X2) , A ≡ (a, s, n, k) (3.5.6)

provide representations of Hamiltonians. Note that symplectic invariants Qα,βm correspond to HA =
1 and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket
algebra. Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows
as a natural consequence.

The obvious question concerns about the correct values of the parameters α and β. One
possibility is that the flux is an unsigned flux so that one has α = 0. This option is favored by
the construction of the WCW spinor structure involving the construction of the fermionic super
charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so
that β vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the
defining formulas with its dual ∗J

∗Jαβ = ε γδ
αβ Jγδ.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not
symplectic covariants since the definition of the dual involves the induced metric, which is not
symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the
color group ought to be important in the description of hadrons, not only as string like objects,
but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of
freedom involving genuinely classical Kähler field whereas quarks and gluons would correspond to
the perturbative degrees of freedom, that is the interactions between CP2 type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that
the Lie-derivative of the flux Qα,βm (HA) with respect to the vector field X(HB) is given by

X(HB) ·Qα,βm (HA) = Qα,βm ({HB , HA}) . (3.5.7)

The transformation properties of Qα,βm (HA) are very nice if the basis for HB transforms according
to appropriate irreducible representation of color group and rotation group. This in turn implies
that the fluxes Qα,βm (HA) as functionals of 3-surface on given orbit provide a representation for the
Hamiltonian as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two
fluxes Qα,βm (HA) and Qα,βm (HB) can be defined as

{Qα,βm (HA), Qα,βm (HB)} ≡ X(HB) ·Qα,βm (HA)

= Qα,βm ({HA, HB}) = Qα,βm ({HA, HB}) . (3.5.8)

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the
supercharges associated with the radial deformations vanish identically so that radial deformations
correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The
reason is that super generators involve the invariants jakγk which vanish by γrM = 0.

The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!)
induces a central extension of this algebra. The central extension term resulting from {HA, HB}
when CP2 Hamiltonians have {p, q} = 1 equals to the symplectic invariant Qα,βm (f(ma +mb, na +
nb, ka+kb)) on the right hand side. This extension is however anti-symmetric in symplectic degrees
of freedom rather than in loop space degrees of freedom and therefore does not lead to the standard
Kac Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the deformations
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of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at δCD intact
and are highly relevant to the elementary particle physics. This algebra allows a representation in
terms of X3

l local Hamiltonians generating isometries of δM4
± ×CP2. Hamiltonian representation

is essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians
rather than vector fields: this is one of the deep differences between TGD and string models.
Kac-Moody algebra does not contribute to WCW metric since by definition the generators vanish
at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light
cone boundary and relevant to the configuration space geometry. This extends to S2 × CP2 -or
rather δM4

± × CP2 symplectic algebra and this gives the strongest predictions concerning WCW
metric. The local radial Virasoro localized with respect to S2 × CP2 acts in zero modes and has
automatically vanishing norm with respect to WCW metric defined by super charges.

3.5.5 Symplectic Transformations Of ∆M4
± × CP2 As Isometries And

Electric-Magnetic Duality

According to the construction of Kähler metric, symplectic transformations of δM4
± × CP2 act

as isometries whereas radial Virasoro algebra localized with respect to CP2 has zero norm in the
WCW metric.

Hamiltonians can be organized into light like unitary representations of so(3, 1)× su(3) and
the symmetry condition Zg(X,Y ) = 0 requires that the component of the metric is so(3, 1) ×
su(3) invariant and this condition is satisfied if the component of metric between two different
representationsD1 andD2 of so(3, 1)×su(3) is proportional to Glebch-Gordan coefficient CD1D2,DS

between D1⊗D2 and singlet representation DS . In particular, metric has components only between
states having identical so(3, 1)× su(3) quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic trans-
formations of the light cone boundary as WCW isometries is an intrinsic property of the light cone
boundary. If electric-magnetic duality holds true, the preferred extremal property only determines
the conformal factor of the metric depending on zero modes. This is precisely as it should be
if the group theoretical construction works. Hence it should be possible by a direct calculation
check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in
complex coordinates is invariant under isometries. Symplectic invariance of the metric means that
matrix elements of the metric are left translates of the metric along geodesic lines starting from the
origin of coordinates, which now naturally corresponds to the preferred extremal of Kähler action.
Since metric derives from symplectic form this means that the matrix elements of symplectic form
given by Poisson brackets of Hamiltonians must be left translates of their values at origin along
geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic
transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian,
it seems that the conditions are satisfied.

3.5.6 Quantum Counterparts Of The Symplectic Hamiltonians

The matrix elements of WCW Kähler metric can be expressed in terms of anti-commutators of
WCW gamma matrices identified as super-symplectic super-charges, which might be called super-
Hamiltonians. It is these operators which are the most relevant from the point of view of quantum
TGD.

The generalization for the definition WCW super-Hamiltonians defining WCW gamma ma-
trices is discussed in detail in [K84] feeds in the wisdom gained about preferred extremals of Kähler
action and solutions of the Kähler-Dirac action: in particular, about their localization at string
worlds sheets (right handed neutrino could be an exception). Second quantized Noether charges
in turn define representation of WCW Hamiltonians as operators.

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of
δM4
±×CP2 at given point of partonic 2-surface is replaced with the Noether super charge associated

with the Hamiltonian obtained by integrating the 1-D super current over string emanating from
partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the Kähler-Dirac
operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic
algebra corresponding to symplectic isometries at light-cone boundary and CP2. The original
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proposal involved only the contractions with covariantly constant right- handed neutrino spinor
mode but now one can allow contractions with all spinor modes - both quark like and leptonic
ones. One obtains entire super-symplectic algebra and the direct sum of these algebras is used
to construct physical states. This step is analogous to the replacement of point like particle with
string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two
conformal weights. The first one is the conformal weight associated with the light-like coordinate of
δM4
±×CP2. Second conformal weight is associated with the spinor mode and the coordinate along

stringy curve and corresponds to the usual stringy conformal weight. The symplectic conformal
weight can be more general - I have proposed its spectrum to be generated by the zeros of Riemann
zeta. The total conformal weight of a physical state would be non-negative real integer meaning
conformal confinement. Symplectic conformal symmetry can be assumed to be broken: an entire
hierarchy of breakings is obtained corresponding to hierarchies of sub-algebra of the symplectic
algebra isomorphic with it quantum criticalities, Planck constants, and dark matter. Breaking
means that only the sub-algebra of super-symplectic algebra isomorphic to it corresponds vanishing
elements of the WCW metric: in Hilbert space picture these gauge degrees of freedom correspond
to zero norm states.

The presence of two conformal weights is in accordance with the idea that a generalization of
conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries
is possible and would bring an additional integer n telling the degree of multi-locality of Yangian
generators defined as the number of strings at which the generator acts (the original not proposal
was as the number of partonic 2-surfaces). For super-symplectic algebra the degree of multi-locality
equals to n = 1. Measurement resolution increases with n. This is also visible in the properties
of space-time surfaces since string world sheets and possibly also partonic 2-surfaces and their
light-like orbits provide the holographic data - kind of skeleton - determining space-time surface
associated with them.

3.6 General Expressions For The Symplectic And Kähler
Forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of
WCW . The fact that these expressions involve only first variation of the Kähler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.

3.6.1 Closedness Requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+ × CP2 suggest

a general representation for the components of the symplectic form of the WCW . The basic
requirement is that Kähler form satisfies the defining condition

X · J(Y, Z) + J([X,Y ], Z) + J(X, [Y,Z]) = 0 , (3.6.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.6.2 Matrix Elements Of The Symplectic Form As Poisson Brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and
X(HB)) defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as
Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (3.6.2)
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JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Qα,βm (HA,k) of Eq. 3.5.5 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Qα,βm ({HA, HB}) .

(3.6.3)

Recall that the superscript α, β refers the coefficients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Qα,βm contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y 3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

Qα,βm (HA)em = Qα,βe (HA) +Qα,βm (HA) = (1 +K)Qα,βm (HA) . (3.6.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are
dimensionless so that commutators do not involve ~. The commutators would come as

Qα,βem ({HA, HB})→ (1 +K)Qα,βm ({HA, HB}) . (3.6.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives

of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (3.6.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has JI 6= 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in

Darboux coordinates as

A =
∑
I

JIPIdQ
I . (3.6.7)
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3.6.3 General Expressions For Kähler Form, Kähler Metric And Kähler
Function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZ
iZ̄j = iGZ

iZ̄j = ∂HAZ
i∂HB Z̄

jJAB , (3.6.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j = iGZ

iZ̄j =
∑
I

J(I)(∂P iZ
i∂QI Z̄

j − ∂QIZi∂P I Z̄j) . (3.6.9)

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (3.6.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZ
i −AZ̄idZ̄i) . (3.6.11)

3.6.4 Diff(X3) Invariance And Degeneracy And Conformal Invariances
Of The Symplectic Form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degener-
ate. This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA

or HB is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality
holds true, J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism
d(HA) at the surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA

of some X2
i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of

X2, the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM+εrnM
is given by rnMdX/drM . Replacing rM with r−n+1

M /(−n+ 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.



3.6. General Expressions For The Symplectic And Kähler Forms 91

3.6.5 Complexification And Explicit Form Of The Metric And Kähler
Form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to “positive” frequencies and which to “negative frequencies” and which to zero frequencies that
is to decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0.
One must distinguish between Can0 and zero modes, which are not considered here at all. For
instance, CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight
whereas the real part defines the g = t + h decomposition naturally. The wave vector associated
with the radial logarithmic plane wave corresponds to the angular momentum quantum number
associated with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (3.6.12)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (3.6.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson
bracket defined by Eq. 3.6.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (3.6.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.
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3.6.6 Comparison Of CP2 Kähler Geometry With Configuration Space
Geometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition
corresponds to? Can one derive the components of the metric and Kähler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of CP2 u(2) sub-algebra transforms as g ◦ u(2) ◦ g−1 when the point s is replaced by gsg−1.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to
identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components Ja+ = jak∂k and ja− = jak̄∂k̄. One can introduce what might be
called half Poisson bracket and half inner product defined as

{Ha, Hb}−+ ≡ ∂k̄H
aJ k̄l∂lH

b

= jakJkl̄j
bl̄ = −i(ja+, jb−) . (3.6.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
(
i{Ha, Hb}−+

)
,

(ja, jb) = 2Re
(
i(ja+, j

b
−)
)

= 2Re
(
i{Ha, Hb}−+

)
. (3.6.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}−+ = 0 ,

Re (i{h, t}−+) = 0 , Im (i{h, t}−+) = 0 ,

Re (i{t, t}−+) 6= 0 , Im (i{t, t}−+) 6= 0 .

(3.6.17)
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2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the
only possibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, t} brackets at origin as being due to a symplectic central extension. For instance,
for S2 the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(θ) representing a rotation around z-axis with H3 = cos(θ)− 1 so that
the Poisson bracket of the generators H1 and H2 can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW . The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kähler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing phys-
ically. Cartan decomposition had to be assigned with something and in lack of anything better
it was assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but
without any strong physical justification.

It must be however emphasized that holography implying effective 2-dimensionality of 3-
surfaces in some length scale resolution is absolutely essential for this construction since it allows
to effectively reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

±×CP2. In the
similar manner super-symplectic generators can be dimensionally reduced to X2. Number theoret-
ical compactification forces the dimensional reduction and the known extremals are consistent with
it [K6]. The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K62] relies to this picture as also the recent view about M -matrix [K11].

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

3.6.7 Comparison With Loop Groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting
of maps from circle to Lie group G [A45], which served as the inspirer of the WCW geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ikφ)TA, where TA generates the finite-dimensional Lie-algebra g and φ denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition



94 Chapter 3. Construction of WCW Kähler Geometry from Symmetry Principles

T = {X(k > 0, A)} ⊕ {X(k < 0, A)} ⊕ {X(k = 0, A)} = T+ ⊕ T− ⊕ T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2δ(k1 + k2)δ(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of δM4

+×CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length ∆rM with periodic
boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of CP2 might correspond to
non-zero modes also because they are not exact symmetries of Kähler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cutoffs although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP2 symplectic transformations
local with respect to δM4

+ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.6.8 Symmetric Space Property Implies Ricci Flatness And Isometric
Action Of Symplectic Transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(3.6.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can(6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(δM4

+ × CP2) as well as Ricci flatness
of the WCW metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra
possess generalized parity P such that the generators in t have parity P = −1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = −1 and even values to
P = 1. Since n is additive in commutation, this would automatically imply h⊕t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
half-odd integer conformal weight corresponds to parity P = −1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by
vector field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y,Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (3.6.19)
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If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (3.6.19 ) vanish separately. This is true if the conditions

Qα,βm ({HA, {HB , HC}}) = 0 , (3.6.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from
the [t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot
pose the conditions of Eq. (3.6.20 ) as consistency conditions on the initial values of the time
derivatives of imbedding space coordinates whereas in general case this is possible. If the consis-
tency conditions are satisfied for a single surface on the orbit of symplectic group then they are
satisfied on the entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement
of time reversal invariance might well force Kähler electric alternative.

3.7 Ricci Flatness And Divergence Cancelation

Divergence cancelation in WCW integration requires Ricci flatness and in this section the argu-
ments in favor of Ricci flatness are discussed in detail.

3.7.1 Inner Product From Divergence Cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product
is given by integrating the usual Fock space inner product defined at each point of WCW over
the reduced WCW containing only the 3-surfaces Y 3 belonging to δH = δM4

+ × CP2 (“light-cone
boundary”) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (3.7.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the
degenerate extremals associated with Y 3. The restriction of the integration on light cone boundary
is Diff4 invariant procedure and resolves in elegant manner the problems related to the integration
over Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic
vacuum functional exp(K) from the definition of the inner product and by assuming that it is
included into the spinor fields themselves. Probably it is just a matter of taste how the necessary
bosonic vacuum functional is included into the inner product: what is essential that the vacuum
functional exp(K) is somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product
and from the unitarity of the standard L2 inner product defined by WCW integration in the set of
the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the reduction
of WCW integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function
appears in the inner product also in the context of the finite dimensional group representations. For
the representations of the non-compact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1)
endowed with Kähler metric) the exponent of Kähler function is necessary in order to get square in-
tegrable representations [B25]. The scalar product for two complex valued representation functions
is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (3.7.2)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite



96 Chapter 3. Construction of WCW Kähler Geometry from Symmetry Principles

dimensional case this corresponds to the restriction to single unitary representation of the group
in question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system
is bound from above: the generation of electric Kähler fields gives negative contributions to the
action. This implies that at the limit of the infinite system the average action per volume is non-
positive. For systems having negative average density of action vacuum functional exp(K) vanishes
so that only configurations with vanishing average action per volume have significant probability.
On the other hand, the choice exp(−K) would make theory unstable: probability amplitude would
be infinite for all configurations having negative average action per volume. In the fourth part of
the book it will be shown that the requirement that average Kähler action per volume cancels has
important cosmological consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the
Kähler function as a Taylor series around maximum of Kähler function and use the contravariant
Kähler metric as a propagator. Gaussian and metric determinants cancel each other for a unique
vacuum functional. Ricci flatness guarantees that metric determinant is constant in complex
coordinates so that one avoids divergences coming from it. The non-locality of the Kähler function
as a functional of the 3-surface serves as an additional regulating mechanism: if K(X3) were a
local functional of X3 one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of
quantum field theories implies that quantum jump involves localization in zero modes. Localization
in the zero modes implies automatically p-adic evolution since the decomposition of the WCW
into sectors DP labeled by the infinite primes P is determined by the corresponding decomposition
in zero modes. Localization in zero modes would suggest that the calculation of the physical
predictions does not involve integration over zero modes: this would dramatically simplify the
calculational apparatus of the theory. Probably this simplification occurs at the level of practical
calculations if U -matrix separates into a product of matrices associated with zero modes and fiber
degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions
to different values of zero modes and here one cannot actually avoid integrals over zero modes.
To achieve this one is forced to define the transition probabilities for quantum jumps involving a
localization in zero modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m→ s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level
of S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function
basis can be freely constructed so that divergence difficulties could be avoided. An open question
is whether this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since WCW metric is degenerate and the bosonic propagator is essentially the contravariant
metric, bosonic integration is expected to reduce to an integration over the zero modes. For
instance, isometry invariants are variables of this kind. These modes are analogous to the
parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in WCW integration. It should be noticed that
αK , when defined by the criticality condition, could also depend on the coordinates param-
eterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the
bosonic integral. Symmetric space property suggests that for the given values of the zero
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modes there is only single extremum and corresponds to the maximum of the Kähler function.
There are theorems ( Duistermaat-Hecke theorem) stating that semiclassical approximation
is exact for certain systems (for example for integrable systems [A46] ). Symmetric space
property suggests that Kähler function might possess the properties guaranteeing the exact-
ness of the semiclassical approximation. This would mean that the calculation of the integral∫
exp(K)

√
GdY 3 and even more complex integrals involving WCW spinor fields would be

completely analogous to a Gaussian integration of free quantum field theory. This kind of
reduction actually occurs in string models and is consistent with the criticality of the Kähler
coupling constant suggesting that all loop integrals contributing to the renormalization of
the Kähler action should vanish. Also the condition that WCW integrals are continuable to
p-adic number fields requires this kind of reduction.

3.7.2 Why Ricci Flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the WCW. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kähler action gives good hopes of obtaining divergence free pertur-
bation theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well
defined. The problem is that the square of Dirac operator contains curvature scalar, which
need not be finite since it is obtained via two infinite-dimensional trace operations from the
curvature tensor. In case of loop spaces [A45] the Kähler property implies that even Ricci
tensor is only conditionally convergent. In fact, loop spaces with Kähler metric are Einstein
spaces (Ricci tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [A52]

Rkl̄ = ∂k∂l̄ln(det(g)) (3.7.3)

in Kähler metric. This obviously simplifies considerably functional integration over WCW:
one obtains just the standard perturbative field theory in the sense that metric determinant
gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it
also eliminates divergences. This is seen by expanding the determinant as a functional Taylor
series with respect to the coordinates of WCW. In local complex coordinates the first term
in the expansion of the metric determinant is determined by Ricci tensor

δ
√
g ∝ Rkl̄zkz̄l . (3.7.4)

In WCW integration using standard rules of Gaussian integration this term gives a contri-
bution proportional to the contraction of the propagator with Ricci tensor. But since the
propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.
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4. The following group theoretic argument suggests that Ricci tensor either vanishes or is di-
vergent. The holonomy group of the WCW is a subgroup of U(n = ∞) (D = 2n is the
dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the
trace of the U(1) generator and since this generator corresponds to an infinite dimensional
unit matrix the trace diverges: therefore given element of the Ricci tensor is either infinite or
vanishes. Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity.
This naive argument doesn’t hold true in the case of loop spaces, for which Kähler metric
with finite non-vanishing Ricci tensor exists [A45] . Note however that also in this case the
sum defining Ricci tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the
vanishing of the Ricci tensor is equivalent with the absence of divergences in WCW integration.
That divergences are absent is suggested by the non-locality of the Kähler function as a functional
of 3-surface: the divergences of local field theories result from the locality of interaction vertices.
Ricci flatness in vibrational degrees of freedom is not only necessary mathematically. It is also
appealing physically: one can regard Ricci flat WCW as a vacuum solution of Einstein’s equations
Gαβ = 0.

3.7.3 Ricci Flatness And Hyper Kähler Property

Ricci flatness property is guaranteed if WCW geometry is Hyper Kähler [A83, A37] (there exists
3 covariantly constant antisymmetric tensor fields, which can be regarded as representations of
quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to
traces over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that
the traces vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the
vibrational degrees is a multiple of the metric tensor so that Ricci scalar has an infinite value. This
is basically due to the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the WCW.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of
U(1) algebra. Since volume preserving transformations are in question, the traces of the
symplectic generators vanish identically and in finite-dimensional this should be enough for
Ricci flatness even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The ele-
ments of the Ricci tensor are expressible in terms of traces of the generators of the holonomy
group U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci
tensor is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of
Kähler function and holonomy group corresponds to super-symplectic generators labelled by
integer valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n
vanish at the maximum of the Kähler function, the curvature scalar should vanish at the
maximum and by the symmetric space property everywhere. These conditions correspond to
Virasoro conditions in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing
even when the holonomy algebra does not contain U(1) factor. It will be found that symmetric
space property guarantees Ricci flatness even in this case and the reason is essentially the
vanishing of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.
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1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of WCW in vibrational modes is indeed multiple of four as required by Hyper
Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of WCW. Since any direction on the sphere S2 defined by the linear combinations of
quaternionic imaginary units with unit norm defines a particular complexification physically,
Hyper Kähler property means the possibility to perform complexification in S2-fold manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of WCW.
First of all, the direction of the quantization axis for the spherical harmonics or for the eigen
states of Lorentz Cartan algebra at δM4

+ can be chosen in S2-fold manners. Quaternion
conformal invariance means Hyper Kähler property almost by definition and the S2-fold
degeneracy for the complexification is obvious in this case.

If these naive arguments survive a more critical inspection, the conclusion would be that the
effective 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic
symmetries would also imply Hyper Kähler property of WCW and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension
of Minkowski space factor of the imbedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy
group of WCW is isomorphic to some subgroup of SU(n = ∞) instead of U(n = ∞) (n is the
complex dimension of WCW) implied by the Kähler property of the metric. We also derive an
expression for the Ricci tensor in terms of the structure constants of the isometry algebra and
WCW metric. The expression for the Ricci tensor is formally identical with that obtained by
Freed for loop spaces: the only difference is that the structure constants of the finite-dimensional
group are replaced with the group Can(δH). Also the arguments in favor of Hyper Kähler property
are discussed in more detail.

3.7.4 The Conditions Guaranteeing Ricci Flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci
tensor is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (3.7.5)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (3.7.6)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (3.7.7)

where the summation is only over the holomorphic indices C. This expression can be regarded as a
trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is taken
over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if WCW metric is Kähler and possesses infinite-dimensional isometry
algebra with the property that its generators form a complete basis for the tangent space (every
tangent vector is expressible as a superposition of the isometry generators plus zero norm vector)
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it is possible to derive a representation for the Ricci tensor in terms of the structure constants of
the isometry algebra and of the components of the metric and its inverse in the basis formed by the
isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the WCW provided the generators {HA,m 6=0, HB,n6=0} correspond to zero norm vector fields of
WCW.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (3.7.8)

If the vector fields considered are isometry generators the covariant derivative operator is given by
the expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (3.7.9)

where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to WCW metric.
In the sequel we shall assume that the vector fields in question belong to the basis formed

by the isometry generators. The matrix representation of AdX in terms of the structure constants
CX,Y :Z of the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V ,

(3.7.10)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field of Y
with respect to the WCW metric. From its definition one obtains for Ad∗X the matrix representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (3.7.11)

where the summation takes place over the repeated indices.
Using the representations of ∇X in terms of AdX and its adjoint and the representa-

tions of AdX and Ad∗X in terms of the structure constants and some obvious identities (such
as C[X,Y ],Z:V = CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a
more detailed expression for the curvature tensor and Ricci tensor. Straightforward calculation
of the Ricci tensor has however turned to be very tedious even in the case of the diagonal metric
and in the following we shall use a more convenient representation [A45] of the curvature tensor
applying in case of the Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators
TX defined as linear operators in the “positive energy part” G+ of the isometry algebra spanned
by the (1, 0) parts of the isometry generators. In present case the positive and negative energy
parts and cm part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (3.7.12)

Here HAk denote the Hamiltonians generating the symplectic transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1+iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
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is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to
be the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (3.7.13)

Here ”+” denotes the projection to “positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:

Φ(X0) = TX0
, X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (3.7.14)

Here “*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [A45]

Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (3.7.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and
structure constants of the isometry algebra are in the case of the diagonal metric given by the
expressions

Φ(X0)Y+ = CX0,Y+:U+
U+ ,

Φ(X−)Y+ = CX−,Y+:U+
U+ ,

Φ(X+)Y+ =
d(Y )

d(U)
CX−,Y−:U−U+ . (3.7.16)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [A45] :

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (3.7.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci
tensor is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of
the curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(3.7.18)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit ex-

pression for the Ricci tensor
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Ricci(X+, Y−) = Trace{[D−1TX+
D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (3.7.19)

This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case.
This term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic
transformations are volume-preserving the traces of Lie-algebra generators vanish so that this term
is absent. The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces.
It can be written explicitly using the explicit representations of the various operators appearing in
the formula:

Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)

d(U)
] . (3.7.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect
to radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci
tensor. Furthermore, one has m(U) = m(Z) −m(Y ), which eliminates summation over m(U) in
the first term and summation over m(Z) in the second term. Note however, that summation over
other labels related to symplectic algebra are present.

By performing the change U → Z in the second term one can combine the sums together
and as a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)
= C

∑
0<m(Z)<m(X)

m(X)

m(Z)−m(X)
,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)

d0(Z)
. (3.7.21)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on
kX . The dependence on m(X) in the resulting expression factorizes out, and one obtains just the
purely group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is
instructive to write the sum in terms of the metric in the symplectic degrees of freedom to see the
geometry behind the Ricci flatness:

C =
∑
Z,U

g([Y,Z], U)g−1([X,U ], Z) . (3.7.22)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commuta-
tors in complexified basis are always between generators in Can6=0; that is they do not not belong
to rigid su(2)× su(3).

The condition guaranteeing Ricci flatness at the maximum of Kähler function and thus
everywhere is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of
CP2 Kähler geometry this would correspond to the vanishing of the U(2) generators at the origin
of CP2 (note that the holonomy group is U(2) in case of CP2). At least formally stronger condition
is that the algebra generated by elements of this type, the commutator algebra associated with
Can6=0, consist of elements of zero norm. Already the (possibly) weaker condition implies that
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adjoint map AdX 6=0 and its hermitian adjoint Ad∗X6=0
create zero norm states. Since isometry

conditions involve also adjoint action the condition also implies that Can6=0 acts as isometries.
More concrete form for the condition is that all flux factors involving double Poisson bracket and
three generators in Can6=0 vanish:

Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (3.7.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [K13] , is implied by the [t, t] ⊂ h property of the
Lie-algebra of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by
the symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein
equations. The existence of the infinite parameter isometry group in turn follows basically from
the condition guaranteeing the existence of the Riemann connection. Therefore vacuum Einstein
equations seem to arise, not only as a consequence of a physically motivated variational principle
but as a mathematical consistency condition in infinite dimensional Kähler geometry. The flux rep-
resentation seems to provide elegant manner to formulate and solve these conditions and isometry
invariance implies Ricci flatness.

3.7.5 Is WCW Metric Hyper Kähler?

The requirement that WCW integral integration is divergence free implies that WCW metric is
Ricci flat. The so called Hyper-Kähler metrics [A83, A37] , [B40] are particularly nice representa-
tives of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are briefly
described and the problem whether Hyper Kähler property could realized in case of M4

+ × CP2 is
considered.

Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure
in the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed
Kähler forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic
imaginary units and have square equal to - 1, which corresponds to the metric of Hyper Kähler
space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (3.7.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each
other playing thus the role of quaternion automorphisms. This group acts also as coordinate
transformations in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coor-
dinates, I and J being tensors of type (2, 0) + (0, 2). The forms I + iJ and I − iJ are holomorphic
and anti-holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step oper-
ators I+ and I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k),
k ≤ dimM/4, the group of k × k unitary matrices with quaternionic entries. This group is indeed
subgroup of SU(2k), so that its generators are traceless and Hyper Kähler metric is therefore Ricci
flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmet-
ric sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is
that target space allows Hyper Kähler metric [B40, B12] . In particular, it has been found that
Hyper Kähler property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [A37] . The moduli
spaces for monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is
characteristic for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems.
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Since YM action appears in the definition of WCW metric there are hopes that also in present
case the metric possesses Hyper-Kähler property.

CP2 allows what might be called almost Hyper-Kähler structure known as quaternionion
structure. This means that the Weil tensor of CP2 consists of three components in one-one cor-
respondence with components of iso-spin and only one of them- the one corresponding to Kähler
form- is covariantly constant. The physical interpretation is in terms of electroweak symmetry
breaking selecting one isospin direction as a favored direction.

Does the “almost” Hyper-Kähler structure of CP2 lift to a genuine Hyper-Kähler
structure in WCW?

The Hyper-Kähler property of WCW metric does not seem to be in conflict with the general
structure of TGD.

1. In string models the dimension of the “space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time
is four and one therefore might hope that quaternions play a similar role. Indeed, Weyl
invariance implies YM action in dimension 4 and as already mentioned moduli spaces of
instantons and monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the imbedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of WCW is indeed infinite multiple of 8: each
vibrational mode giving one “8”.

3. The complexification of the WCW in symplectic degrees of freedom is inherited from S2×CP2

and CP2 Kähler form defines the symplectic form of WCW. The point is that CP2 Weyl tensor
has 3 covariantly constant components, having as their square metric apart from sign. One
of them is Kähler form, which is closed whereas the other two are non-closed forms and
therefore fail to define Kähler structure. The group SU(2) of electro-weak isospin rotations
rotate these forms to each other. It would not be too surprising if one could identify WCW
counterparts of these forms as representations of quaternionic units at the level of WCW. The
failure of the Hyper Kähler property at the level of CP2 geometry is due to the electro-weak
symmetry breaking and physical intuition (in particular, p-adic mass calculations [K76] )
suggests that electro-weak symmetry might not be broken at the level of WCW geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomol-
ogy of WCW: the three Kähler forms must be co-homologically trivial as is clear from the following
argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3) symmetry
rotating Kähler forms to each other all must be co-homologically nontrivial. On the other hand,
electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux associated
with this form is in general not integer valued. The point is however that Kähler form forms only
the (1, 1) part of the symplectic form and must be co-homologically trivial whereas the zero mode
part is same for all complexifications and can be co-homologically nontrivial. The co-homological
non-triviality of the zero mode part of the symplectic form is indeed a nice feature since it fixes the
normalization of the Kähler function apart from a multiplicative integer. On the other hand the
hypothesis that Kähler coupling strength is analogous to critical temperature provides a dynamical
(and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the WCW metric are inherited from M4
+ ×CP2 then also the Hyper

Kähler property should be understandable in terms of the imbedding space geometry. In partic-
ular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2. Hyper
Kähler property implies the existence of a continuum (sphere S2) of complex structures: any linear
superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore
also CP2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-
forms then it would be easy to understand the Hyper Kähler structure of WCW. Given the Kähler
structure of WCW would be obtained by replacing induced Kähler electric and magnetic fields in
the definition of flux factors Q(HA,m) with the appropriate component of the induced Weyl tensor.
CP2 indeed manages to be very nearly Hyper Kähler manifold!
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How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl
tensor of CP2 allows three independent components, which are self dual as 2-forms and rotated to
each other by vielbein rotations.

W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (3.7.25)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted
as Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when
appropriate normalization factor is used. If these forms were covariantly constant Kähler action
defined by any linear superposition of these forms would indeed define Kähler structure in WCW
and the group SO(3) would rotate these forms to each other. The projections of the components
of the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector
fields (Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter
parts of quaternion units associated with the broken Hyper Kähler structure, that is quaternion
structure. The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler
electric field implies that the electric parts of the other two components of induced Weyl tensor
are symplectic invariants. This is the minimum requirement. What is however obvious is that the
magnetic parts cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter
example is enough and CP2 type extremals seem to provide this counter example: the components
of the induced Weyl tensor are just the same as they are for CP2 and clearly not symplectically
invariant.

Thus it seems that WCW could allow Hyper Kähler structure broken by electro-weak in-
teractions but it cannot be inherited from CP2. An open question is whether it allows gen-
uine quaternionic structure. Good prospects for obtaining quaternionic structure are provided by
the quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset space structure
QP2 = Sp(3)/Sp(2) × Sp(1). This choice does not seem to be consistent with the symmetries
of the standard model. Note however that the over all symmetry group is obtained by replacing
complex numbers with quaternions on the matrix representation of the standard model group.

Could different complexifications for M4
+ and light like surfaces induce Hyper Kähler

structure for WCW?

Quaternionic structure means also the existence of a family of complex structures parameterized
by a sphere S2. The complex structure of the WCW is inherited from the complex structure of
some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of
4-dimensional space-times.

This might relate to the fact that WCW geometry is not determined by the symplectic
algebra of CP2 localized with respect to the light cone boundary as one might first expect but
consists of M4

+×CP2 Hamiltonians so that infinitesimal symplectic transformation of CP2 involves
always also M4

+-symplectic transformation. M4
+ Hamiltonians are defined by a function basis

generated as products of the Hamiltonians H3 and H1 ± iH2 generating rotations with respect to
three orthogonal axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfaces X3
l associated with quaternion conformal invariance are deter-

mined by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices
are labelled by S2. In this case, the presence of quaternion conformal structure would be almost
obvious since it is possible to choose some complex coordinate in several manners and the choices
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are labelled by S2. The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for
which the remaining coordinates are constant. X2 need not however be located at the elementary
particle horizon unless one poses additional constraint. One might hope that different choices of X2

resulting in this manner correspond to all possible different selections of the complex structure and
that this choice could fix uniquely the conformal equivalence class of X2 appearing as argument in
elementary particle vacuum functionals. If X2 has a more complex topology the identification is
not so clear but since conformal algebra SL(2,C) containing algebra of rotation group is involved,
one might argue that the choice of quantization axis also now involves S2 degeneracy. If these
arguments are correct one could conclude that Hyper Kähler structure is implicitly involved and
guarantees Ricci flatness of the WCW metric.



Chapter 4

WCW Spinor Structure

4.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space
(“world of classical worlds” (WCW)). The possibility to express the components of WCW Kähler
metric as anti-commutators of WCW gamma matrices becomes a practical tool if one assumes
that WCW gamma matrices correspond to Noether super charges for super-symplectic algebra of
WCW. The possibility to express the Kähler metric also in terms of Kähler function identified as
Kähler for Euclidian space-time regions leads to a duality analogous to AdS/CFT duality.

4.1.1 Basic Principles

Physical states should correspond to the modes of the WCW spinor fields and the identification
of the fermionic oscillator operators as super-symplectic charges is highly attractive. WCW spinor
fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion number.
Concerning the construction of the WCW spinor structure there are some important clues.

Geometrization of fermionic statistics in terms of WCW spinor structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the WCW spinor structure in the sense that the anti-commutation
relations for WCW gamma matrices require anti-commutation relations for the oscillator operators
for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely
related to the configuration space spinor structure. [B37] has as its basic field the anti-
commuting field Γk(x), whose Fourier components are analogous to the gamma matrices
of the configuration space and which behaves like a spin 3/2 fermionic field rather than a
vector field. This suggests that the are analogous to spin 3/2 fields and therefore expressible
in terms of the fermionic oscillator operators so that their naturally derives from the anti-
commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the “orbital” degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition
of the WCW spinor structure somehow. The properties of the associated with the induced
spinor structure are indeed very physical. The modified massless Dirac equation for the
induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary
to the long held belief it seems that covariantly constant right handed neutrino does not
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generate . The differences between quarks and leptons result from the different couplings to
the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
the success of 10-dimensional super string models for which the physical degrees of freedom
effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB .

where JAB denotes the matrix elements of the Kähler form of the WCW. The presence of the
Hermitian conjugation is necessary because WCW gamma matrices carry fermion number.
This definition is numerically equivalent with the standard one in the complex coordinates.
The realization of this delicacy is necessary in order to understand how the square of the
WCW Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second
quantization of the induced spinor fields should be carried out and space-time conformal
symmetries allow to explicitly solve the Dirac equation associated with the Kähler-Dirac
action in the interior and at the 3-D light like causal determinants. An essentially new element
is the notion of number theoretic braid forced by the fact that the Kähler-Dirac operator
allows only finite number of generalized eigen modes so that the number of fermionic oscillator
operators is finite. As a consequence, anti-commutation relations can be satisfied only for a
finite set of points defined by the number theoretic braid, which is uniquely identifiable. The
interpretation is in terms of finite measurement resolution. The finite Clifford algebra spanned
by the fermionic oscillator operators is interpreted as the factor spaceM/N of infinite hyper-
finite factors of type II1 defined by WCW Clifford algebra N and included Clifford algebra
M⊂ N interpreted as the characterizer of the finite measurement resolution. Note that the
finite number of eigenvalues guarantees that Dirac determinant identified as the exponent of
Kähler function is finite. Finite number of eigenvalues is also essential for number theoretic
universality.

Identification of WCW gamma matrices as super Hamiltonians and expression of
WCW Kähler metric

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded as a
generalization N super algebras by replacing N with the number of solutions of the Kähler-Dirac
equation which can be infinite. This leads to QFT SUSY limit of TGD different in many respects
crucially from standard SUSYs.

WCW gamma matrices are identified as super generators of super-symplectic and are ex-
pressible in terms of these oscillator operators. In the original proposal super-symplectic and super
charges were assumed to be expressible as integrals over 2-dimensional partonic surfaces X2 and
interior degrees of freedom of X4 can be regarded as zero modes representing classical variables
in one-one correspondence with quantal degrees of freedom at X3

l as indeed required by quantum
measurement theory.
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It took quite long time to realize that it is possible to second quantize induced spinor fields
by using just the standard canonical quantization. The only new element is the replacement of the
ordinary gamma matrices with K-D gamma matrices identified as canonical momentum currents
contracted with the imbedding space gamma matrices. This allows to deduce super-generators of
super-symplectic algebra as Noether supercharges assignable to the fermionic strings connecting
partonic 2-surfaces. Their anti-commutators giving the matrix elements of WCW Kähler metric
can be deduced explicitly. This is a decisive calculational advantage since the formal expression of
the matrix elements in terms of second derivatives of Kähler function is not possible to calculate
with the recent understanding. WCW gamma matrices provide also a natural identification for
the counterparts of fermionic oscillator operators creating physical states.

One can also deduce the fermionic Hamiltonians as conserved Noether charges. The expres-
sions for Hamiltonians generalized the earlier expressions as Hamiltonian fluxes in the sense that
the imbedding space Hamiltonian is replaced with the corresponding fermionic Noether charge.
This replacement is analogous to a transition from field theory to string models requiring the re-
placement of points of partonic 2-surfaces with stringy curves connecting the points of two partonic
2-surfaces. One can consider also several strings emanating from a given partonic 2-surface. This
leads to an extension of the super-symplectic algebra to a Yangian, whose generators are multi-local
(multi-stringy) operators. This picture does not mean loss of effective 2-dimensionality implied by
strong form of general coordinate invariance but allows genuine generalization of super-conformal
invariance in 4-D context.

4.1.2 Kähler-Dirac Action

Supersymmetry fixes the interior part of Kähler-Dirac uniquely. The K-D gamma matrices are con-
tractions of the canonical momentum currents of Kähler action with the imbedding space gamma
matrices and this gives field equations consistent with hermitian conjugation. The modes of K-D
equation must be restricted to 2-D string world sheets with vanishing induced W boson fields in
order that they have a well-defined em charge. It is not yet clear whether this restriction is part
of variational principle or whether it is a property of spinor modes. For the latter option modes
one can have 4-D modes if the space-time surface has CP2 projection carrying vanishing W gauge
potentials. Also covariantly constant right-handed neutrino defines this kind of mode.

The boundary terms of Kähler action and Kähler-Dirac action

A long standing question has been whether Kähler action could contain Chern-Simons term can-
celling the Chern-Simons contribution of Kähler action at space-time interior at partonic orbit
reducing to Chern-Simons terms so that only the contribution at space-like ends of space-time
surface at the boundaries of causal diamond (CD) remains. This is however not necessary and
super-symmetry would require Chern-Simons-Dirac term as boundary term in Dirac action. This
however has unphysical implications since C-S-D Dirac operator acts on CP2 coordinates only.

The intuitive expectation is that fermionic propagators assignable to string boundaries at
light-like partonic orbits are needed in the construction of the scattering amplitudes. These bound-
aries can be locally space-like or light-like. One could add 1-D massles Dirac action with gamma
matrices defined in the induced metric, which is by supersymmetry accompanied by the action
defined by geodesic length, which however vanishes for light-like curves. Massless Dirac equation
at the boundary of string world sheet fixes the boundary conditions for the spinor modes at the
string world sheet. This option seems to be the most plausible at this moment.

Kähler-Dirac equation for induced spinor fields

It has become clear that Kähler-Dirac action with induced spinor fields localized at string world
sheets carrying vanishing classical W fields, and the light-like boundaries of the string world sheets
at light-like orbits of partonic 2-surfaces carrying massless Dirac operator for induced gamma
matrices is the most natural looking option.

The light-like momentum associated with the boundary is a light-like curve of imbedding
space and defines light-like 8-momentum, whose M4 projection is in general time-like. This leads
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to an 8-D generalization of twistor formalism. The squares of the M4 and CP2 parts of the 8-
momentum could be identified as mass squared for the imbedding space spinor mode assignable to
the ground state of super-symplectic representation. This would realize quantum classical corre-
spondence for fermions. The four-momentum assignable to fermion line would have identification
as gravitational four-momentum and that associated with the mode of imbedding space spinor field
as inertial four-momentum.

There are several approaches for solving the Kähler-Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking effects since induce W fields and possibly also Z0 field above weak scale, vanish at
these surfaces.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the Kähler-Dirac
equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the Kähler-Dirac operator generate badly broken super-symmetries.

3. Well-definedness of em charge is not enough to localize spinor modes at string world sheets.
Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing CP2 part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the CP2 part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry.This super-symmetry seems however to differ from the ordinary one
in that νR is expected to behave like a passive spectator in the scattering. Also for the
left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or CP2 like inside the world sheet.

Quantum criticality and K-D action

A detailed view about the physical role of quantum criticality results. Quantum criticality fixes
the values of Kähler coupling strength as the analog of critical temperature. The recent formu-
lation of quantum criticality states the existence of hierarchy of sub-algebras of super-symplectic
algebras isomorphic with the original algebra. The conformal weights of given sub-algebra are
n-multiples of those of the full algebra. n would also characterize the value of Planck constant
heff = n× h assignable to various phases of dark matter. These sub-algebras correspond to a hi-
erarchy of breakings of super-symplectic gauge symmetry to a sub-algebra. Accordingly the super-
symplectic Noether charges of the sub-algebra annihilate physical states and the corresponding
classical Noether charges vanish for Kähler action at the ends of space-time surfaces. This defines
the notion of preferred extremal. These sub-algebras form an inclusion hierarchy defining a hier-
archy of symmetry breakings. n would also characterize the value of Planck constant heff = n×h
assignable to various phases of dark matter.

Quantum criticality implies that second variation of Kähler action vanishes for critical de-
formations defined by the sub-algebra and vanishing of the corresponding Noether charges and
super-charges for physical stats. It is not quite clear whether the charges corresponding to broken
super-symplectic symmetries are conserved. If this is the case, Kähler action is invariant under
brokent symplectic transformations although the second variation is non-vanishing so these de-
formations contribute to Kähler metric and are thus quantum fluctuating dynamical degrees of
freedom.
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Quantum classical correspondence

Quantum classical correspondence (QCC) requires a coupling between quantum and classical and
this coupling should also give rise to a generalization of quantum measurement theory. The big
question mark is how to realize this coupling.

1. As already described, the massless Dirac equation for induced gamma matrices at the bound-
ary of string world sheets gives as solutions for which local 8-momentum is light-like. The
M4 part of this momentum is in general time-like and can be identified as the 8-momentum
of incoming fermion assignable to an imbedding space spinor mode. The interpretation is as
equivalence of gravitational and inertial masses.

2. QCC can be realized at the level of WCW Dirac operator and Kähler-Dirac operator contains
only interior term. The vanishing of the normal component of fermion current replaces Chern-
Simons Dirac operator at various boundary like surfaces. I have proposed that WCW spinor
fields with given quantum charges in Cartan algebra are superpositions of space-time surfaces
with same classical charges. A stronger form of QCC at the level of WCW would be that
classical correlation functions for various geometric observables are identical with quantal
correlation functions.

QCC could be realized at the level of WCW by putting it in by hand. One can of course
consider also the possibility that the equality of quantal and classical Cartan charges is real-
ized by adding constraint terms realized using Lagrange multipliers at the space-like ends of
space-time surface at the boundaries of CD. This procedure would be very much like the ther-
modynamical procedure used to fix the average energy or particle number of the the system
with Lagrange multipliers identified as temperature or chemical potential. Since quantum
TGD in zero energy ontology (ZEO) can be regarded as square root of thermodynamics, the
procedure looks logically sound.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L14].

4.2 WCW Spinor Structure: General Definition

The basic problem in constructing WCW spinor structure is clearly the construction of the explicit
representation for the gamma matrices of WCW . One should be able to identify the space, where
these gamma matrices act as well as the counterparts of the “free” gamma matrices, in terms of
which the gamma matrices would be representable using generalized vielbein coefficients.

4.2.1 Defining Relations For Gamma Matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{γA, γB} = 2gAB .

This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD
context until the difficulties related to the understanding of WCW d’Alembertian defined in terms
of the square of the Dirac operator forced to reconsider the definition. If WCW allows Kähler struc-
ture, the most general definition allows to replace the metric any covariantly constant Hermitian
form. In particular, gAB can be replaced with

{Γ†A,ΓB} = iJAB , (4.2.1)

where JAB denotes the matrix element of the Kähler form of WCW . The reason is that gamma
matrices carry fermion number and are non-hermitian in all coordinate systems. This definition is
numerically equivalent with the standard one in the complex coordinates but in arbitrary coordi-
nates situation is different since in general coordinates iJkl is a nontrivial positive square root of

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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gkl. The realization of this delicacy is necessary in order to understand how the square of WCW
Dirac operator comes out correctly. Obviously, what one must do is the equivalent of replacing
D2 = (ΓkDk)2 with DD̂ with D̂ defined as

D̂ = iJklΓ†lDk .

4.2.2 General Vielbein Representations

There are two ideas, which make the solution of the problem obvious.

1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is
coded into the geometry of WCW it seems natural to expect that same applies in the case
of the spinor structure. The time development of the induced spinor fields dictated by TGD
counterpart of the massless Dirac action should be coded into the definition of the WCW
spinor structure. This leads to the challenge of defining what classical spinor field means.

2. Since classical scalar field in WCW corresponds to second quantized boson fields of the
imbedding space same correspondence should apply in the case of the fermions, too. The
spinor fields of WCW should correspond to second quantized fermion field of the imbedding
space and the space of the configuration space spinors should be more or less identical with
the Fock space of the second quantized fermion field of imbedding space or X4(X3). Since
classical spinor fields at space-time surface are obtained by restricting the spinor structure to
the space-time surface, one might consider the possibility that life is really simple: the second
quantized spinor field corresponds to the free spinor field of the imbedding space satisfying
the counterpart of the massless Dirac equation and more or less standard anti-commutation
relations. Unfortunately life is not so simple as the construction of WCW spinor structure
demonstrates: second quantization must be performed for induced spinor fields.

It is relatively simple to fill in the details once these basic ideas are accepted.

1. The only natural candidate for the second quantized spinor field is just the on X4. Since
this field is free field, one can indeed perform second quantization and construct fermionic
oscillator operator algebra with unique anti-commutation relations. The space of WCW
spinors can be identified as the associated with these oscillator operators. This space depends
on 3-surface and strictly speaking one should speak of the Fock bundle having WCW as its
base space.

2. The gamma matrices of WCW (or rather fermionic Kac Moody generators) are representable
as super positions of the fermionic oscillator algebra generators:

Γ+
A = EnAa

†
n

Γ−A = ĒnAan

iJAB̄ =
∑
n

EnAĒ
n
B (4.2.2)

where EnA are the vielbein coefficients. Induced spinor fields can possess zero modes and
there is no oscillator operators associated with these modes. Since oscillator operators are
spin 1/2 objects, WCW gamma matrices are analogous to spin 3/2 spinor fields (in a very
general sense). Therefore the generalized vielbein and WCW metric is analogous to the pair
of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the contractions
jAkΓk of the complexified gamma matrices with the isometry generators are genuine spin
1/2 objects labeled by the quantum numbers labeling isometry generators. In particular, in
CP2 degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic and Kähler structures of WCW is that
configuration gamma matrices are actually generators of super-symplectic symmetries. This
simplifies enormously the construction allows to deduce explicit formulas for the gamma
matrices.
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4.2.3 Inner Product For WCW Spinor Fields

The conjugation operation for WCW spinor s corresponds to the standard ket → bra operation
for the states of the Fock space:

Ψ ↔ |Ψ〉
Ψ̄ ↔ 〈Ψ| (4.2.3)

The inner product for WCW spinor s at a given point of WCW is just the standard Fock space
inner product, which is unitary.

Ψ̄1(X3)Ψ2(X3) = 〈Ψ1|Ψ2〉|X3 (4.2.4)

WCW inner product for two WCW spinor fields is obtained as the integral of the Fock space inner
product over the whole WCW using the vacuum functional exp(K) as a weight factor

〈Ψ1|Ψ2〉 =

∫
〈Ψ1|Ψ2〉|X3exp(K)

√
GdX3 (4.2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by
including the factor exp(K/2) in the definition of the spinor field. In fact, the construction of the
central extension for the isometry algebra leads automatically to the appearance of this factor in
vacuum spinor field.

The inner product differs from the standard inner product for, say, Minkowski space spinors
in that integration is over the entire WCW rather than over a time= constant slice of the WCW .
Also the presence of the vacuum functional makes it different from the finite dimensional inner prod-
uct. These are not un-physical features. The point is that (apart from classical non-determinism
forcing to generalized the concept of 3-surface) Diff4 invariance dictates the behavior of WCW
spinor field completely: it is determined form its values at the moment of the big bang. Therefore
there is no need to postulate any Dirac equation to determine the behavior and therefore no need
to use the inner product derived from dynamics.

4.2.4 Holonomy Group Of The Vielbein Connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables
is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is
indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators.
The holonomy group of the vielbein connection is the WCW counterpart of the electro-weak gauge
group and its algebra is expected to have same general structure as the algebra of the WCW
isometries. In particular, the generators of this algebra should be labeled by conformal weights
like the elements of Kac Moody algebras. In present case however conformal weights are complex
as the construction of WCW geometry demonstrates.

4.2.5 Realization Of WCW Gamma Matrices In Terms Of Super Sym-
metry Generators

In string models super symmetry generators behave effectively as gamma matrices and it is very
tempting to assume that WCW gamma matrices can be regarded as generators of the symplectic
algebra extended to super-symplectic Kac Moody type algebra. The experience with string models
suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are good
reasons to expect that WCW Dirac operator and its square give automatically a realization of this
algebra. It this is indeed the case, then WCW spinor structure as well as Dirac equation reduces
to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a
direct generalization of the ordinary super Kac Moody algebra. The complexified super generators
SA are identifiable as WCW gamma matrices:
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ΓA = SA . (4.2.6)

The anti-commutators {Γ†A,ΓB}+ = i2JA,B define a Hermitian matrix, which is proportional to the
Kähler form of the configuration space rather than metric as usually. Only in complex coordinates
the anti-commutators equal to the metric numerically. This is, apart from the multiplicative
constant n, is expressible as the Poisson bracket of the WCW Hamiltonians HA and HB . Therefore
one should be able to identify super generators SA(rM ) for each values of rM as the counterparts
of fluxes. The anti-commutators between the super generators SA and their Hermitian conjugates
should read as

{SA, S†B}+ = iQm(H[A,B]) . (4.2.7)

and should be induced directly from the anti-commutation relations of free second quantized spinor
fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transfor-
mation properties of the super generators under symplectic transformations, which are same as for
the Hamiltonians themselves

{HAm, SBn}− = S[Am,Bn] , (4.2.8)

and are of the same form as in the case of Super-Kac-Moody algebra.
The task is to derive an explicit representation for the super generators SA in both cases. For

obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary δM4
+×CP2

can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type
algebra.

What is then the strategy that one should follow?

1. WCW Hamiltonians correspond to either magnetic or electric flux Hamiltonians and the
conjecture is that these representations are equivalent. It turns out that this electric-magnetic
duality generalizes to the level of super charges. It also turns out that quark representation
is the only possible option whereas leptonic super charges super-symmetrize the ordinary
function algebra of the light cone boundary.

2. The simplest option would be that second quantized imbedding space spinors could be used
in the definition of super charges. This turns out to not work and one must second quantize
the induced spinor fields.

3. The task is to identify a super-symmetric variational principle for the induced spinors: ordi-
nary Dirac action does not work. It turns out that in the most plausible scenario the Kähler-
Dirac action varied with respect to both imbedding space coordinates and spinor fields is the
fundamental action principle. The c-number parts of the conserved symplectic charges asso-
ciated with this action give rise to bosonic conserved charges defining WCW Hamiltonians.
The second quantization of the spinor fields reduces to the requirement that super charges and
Hamiltonians generate super-symplectic algebra determining the anti-commutation relations
for the induced spinor fields.

4.2.6 Central Extension As Symplectic Extension At WCW Level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra
were based on the notion of symplectic extension. This general view is not given up although it
seems that this abstract approach is not very practical. Symplectic extension emerged originally in
the attempts to construct formal expression for the WCW Dirac equation. The rather obvious idea
was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro generators
involving the Dirac operator of the imbedding space. The basic difficulty was the necessity to
assign to the gamma matrices of the imbedding space fermion number. In the recent formulation
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the Dirac operator of H does not appear in in the Super Virasoro conditions so that this problem
disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the
commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks
rather feasible. One could call these conditions as WCW Dirac equation but at this moment I feel
that this would be just play with words and mask the group theoretical content of these conditions.
In any case, the formulas for the symplectic extension and action of isometry generators on WCW
spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick.
Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator,
by the covariant derivatives defined by a coupling to a multiple of the Kähler potential.

jAk∂k → jAkDk ,

Dk = ∂k + ikAk/2 . (4.2.9)

where Ak denotes Kähler potential. The reality of the parameter k is dictated by the Hermiticity
requirement and also by the requirement that Abelian extension reduces to the standard form
in Cartan algebra. k is expected to be integer also by the requirement that covariant derivative
corresponds to connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators JA read:

[JA, JB ] = J [A,B] + ikjAkJklj
Bl ≡ J [A,B] + ikJAB . (4.2.10)

Since Kähler form defines symplectic structure in WCW one can express Abelian extension term
as a Poisson bracket of two Hamiltonians

JAB ≡ jAkJklj
Bl = {HA, HB} . (4.2.11)

Notice that Poisson bracket is well defined also when Kähler form is degenerate.

The extension indeed has acceptable properties:

1. Jacobi-identities reduce to the form

∑
cyclic

H [A,[B,C]] = 0 , (4.2.12)

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representa-
tion.

2. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket
for two commuting generators must be a multiple of a unit matrix. This feature is clearly
crucial for the non-triviality of the Abelian extension and is encountered already at the level
of ordinary (q, p) Poisson algebra: although the differential operators ∂p and ∂q commute the
Poisson bracket of the corresponding Hamiltonians p and q is nontrivial: {p, q} = 1. Therefore
the extension term commutes with the generators of the Cartan subalgebra. Extension is
also local U(1) extension since Poisson algebra differs from the Lie-algebra of the vector fields
in that it contains constant Hamiltonian (”1” in the commutator), which commutes with all
other Hamiltonians and corresponds to a vanishing vector field.
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3. For the generators not belonging to Cartan sub-algebra of CH isometries Abelian extension
term is not annihilated by the generators of the original algebra and in this respect the
extension differs from the standard central extension for the loop algebras. It must be
however emphasized that for the super-symplectic algebra generators correspond to products
of δM4

+ and CP2 Hamiltonians and this means that generators of say δM4
+-local SU(3)

Cartan algebra are non-commuting and the commutator is completely analogous to central
extension term since it is symmetric with respect to SU(3) generators.

4. The proposed method yields a trivial extension in the case of Diff4. The reason is the (four-
dimensional!) Diff degeneracy of the Kähler form. Abelian extension term is given by the
contraction of the Diff4 generators with the Kähler potential

jAkJklj
Bl = 0 , (4.2.13)

which vanishes identically by the Diff degeneracy of the Kähler form. Therefore neither
3- or 4-dimensional Diff invariance is not expected to cause any difficulties. Recall that 4-
dimensional Diff degeneracy is what is needed to eliminate time like vibrational excitations
from the spectrum of the theory. By the way, the fact that the loop space metric is not Diff
degenerate makes understandable the emergence of Diff anomalies in string models [B37, B35]
.

5. The extension is trivial also for the other zero norm generators of the tangent space algebra,
in particular for the k2 = Im(k) = 0 symplectic generators possible present so that these
generators indeed act as genuine U(1) transformations.

6. Concerning the solution of WCW Dirac equation the maximum of Kähler function is expected
to be special, much like origin of Minkowski space and symmetric space property suggests
that the construction of solutions reduces to this point. At this point the generators and
Hamiltonians of the algebra h in the defining Cartan decomposition g = h+ t should vanish.
h corresponds to integer values of k1 = Re(k) for Cartan algebra of super-symplectic algebra
and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces
at the maximum to an exceptionally simple form since only central extension contributes
to the metric and Kähler form. In the ideal case the elements of the metric and Kähler
form could be even diagonal. The degeneracy of the metric might of course pose additional
complications.

Super symplectic action on WCW spinor s

The generators of symplectic transformations are obtained in the spinor representation of the
isometry group of WCW by the following formal construction. Take isometry generator in the
spinor representation and add to the covariant derivative Dk defined by vielbein connection the
coupling to the multiple of the Kähler potential: Dk → Dk + ikAk/2.

JA = jAkDk +DljkΣkl/2 ,

→ ĴA = jAk(Dk + ikAk/2) +Dlj
A
k Σkl/2 ,

(4.2.14)

This induces the required central term to the commutation relations. Introduce complex coor-
dinates and define bosonic creation and annihilation operators as (1, 0) and (0, 1) parts of the
modified isometry generators

B†A = JA+ = jAk(Dk + ... ,

BA = JA− = jAk̄(Dk̄ + ... .

(4.2.15)
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where ”k” refers now to complex coordinates and ”k̄” to their conjugates.
Fermionic generators are obtained as the contractions of the complexified gamma matrices

with the isometry generators

Γ†A = jAkΓk ,

ΓA = jAk̄Γk̄ . (4.2.16)

Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation
relations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the
sense that creation type generators are hermitian conjugates of the annihilation operator type
generators. There are two kinds of representations depending on whether one uses leptonic or
quark like oscillator operators to construct the gammas. These will be assumed to correspond to
Ramond and NS type generators with the radial plane waves being labeled by integer and half odd
integer indices respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given
by the matrix elements of the Kähler form in the basis of formed by the isometry generators

[B†A, BB ] = J(jA†, jB) ≡ JĀB . (4.2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not
belonging to Cartan algebra are just those of the local gauge algebra with Abelian extension term
added.

The anti-commutators between the fermionic generators are given by the elements of the
metric (as opposed to Kähler form in the case of bosonic generators) in the basis formed by the
isometry generators

{ΓA†,ΓB} = 2g(jA†, jB) ≡ 2gĀB . (4.2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators differ
only the presence of the imaginary unit and the scale factor R relating the metric and Kähler form
to each other (the factor R is same for CP2 metric and Kähler form).

The commutators between bosonic and fermionic generators are given by

[BA,ΓB ] = Γ[A,B] . (4.2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is
essential for obtaining these nice commutations relations. The commutators vanish identically for
Cartan algebra generators. From the commutation relations it is clear that Super Kac Moody
algebra structure is directly related to the Kähler structure of WCW : the anti-commutator of
fermionic generators is proportional to the metric and the commutator of the bosonic generators
is proportional to the Kähler form. It is this algebra, which should generate the solutions of the
field equations of the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the
fermionic oscillator operators and this suggests the interpretation as the fermionic contribution to
the isometry currents. This means that the action of the bosonic generators is essentially non-
perturbative since it creates fermion anti-fermion pairs besides exciting bosonic degrees of freedom.

4.2.7 WCW Clifford Algebra As AHyper-Finite Factor Of Type II1

The naive expectation is that the trace of the unit matrix associated with the Clifford algebra
spanned by WCW sigma matrices is infinite and thus defines an excellent candidate for a source of
divergences in perturbation theory. This potential source of infinities remained un-noticed until it
became clear that there is a connection with von Neumann algebras [A66]. In fact, for a separable
Hilbert space defines a standard representation for so called [A55]. This guarantees that the trace
of the unit matrix equals to unity and there is no danger about divergences.
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Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation ∗ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to
1-dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one
is that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing pro-
jection probabilities. Quantum measurements can lead with a finite probability only to mixed
states with a density matrix which is projection operator to infinite-dimensional subspace. The
simple von Neumann algebras for which unit operator has unit trace are known as factors of type
II1 [A55].

The definitions of adopted by von Neumann allow however more general algebras. Type In
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of
type III non-trivial traces are always infinite and the notion of trace becomes useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as funda-
mental and factors of type III as pathological. The highly pragmatic and successful approach of
Dirac based on the notion of delta function, plus the emergence of Feynman graphs, the possibility
to formulate the notion of delta function rigorously in terms of distributions, and the emergence
of path integral approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum
field theories [A84, A49] allowing to deduce invariants of knots, links and 3-manifolds. Also al-
gebraic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A41, A60] relate
closely to type II1 factors. In topological quantum computation [B32] based on braid groups [A89]
modular S-matrices they play an especially important role.

Clifford algebra of WCW as von Neumann algebra

The Clifford algebra of WCW provides a school example of a hyper-finite factor of type II1,
which means that fermionic sector does not produce divergence problems. Super-symmetry means
that also “orbital” degrees of freedom corresponding to the deformations of 3-surface define similar
factor. The general theory of hyper-finite factors of type II1 is very rich and leads to rather detailed
understanding of the general structure of S-matrix in TGD framework. For instance, there is a
unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner
single particle time evolution. Also a connection with 3-dimensional topological quantum field
theories and knot theory, conformal field theories, braid groups, quantum groups, and quantum
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counterparts of quaternionic and octonionic division algebras emerges naturally. These aspects are
discussed in detail in [K61].

4.3 Under What Conditions Electric Charge Is Conserved
For The Kähler-Dirac Equation?

One might think that talking about the conservation of electric charge at 21st century is a waste
of time. In TGD framework this is certainly not the case.

1. In quantum field theories there are two manners to define em charge: as electric flux over
2-D surface sufficiently far from the source region or in the case of spinor field quantum
mechanically as combination of fermion number and vectorial isospin. The latter definition
is quantum mechanically more appropriate.

2. There is however a problem. In standard approach to gauge theory Dirac equation in pres-
ence of charged classical gauge fields does not conserve electric charge as quantum number:
electron is transformed to neutrino and vice versa. Quantization solves the problem since the
non-conservation can be interpreted in terms of emission of gauge bosons. In TGD framework
this does not work since one does not have path integral quantization anymore. Preferred
extremals carry classical gauge fields and the question whether em charge is conserved arises.
Heuristic picture suggests that em charge must be conserved.

It seems that one should pose the well-definedness of spinorial em charge as an additional
condition. Well-definedness of em charge is not the only problem. How to avoid large parity
breaking effects due to classical Z0 fields? How to avoid the problems due to the fact that color
rotations induced vielbein rotation of weak fields? Does this require that classical weak fields
vanish in the regions where the modes of induced spinor fields are non-vanishing?

This condition might be one of the conditions defining what it is to be a preferred ex-
tremal/solution of Kähler Dirac equation. It is not however trivial whether this kind of additional
condition can be posed unless it follows automatically from the recent formulation for Kähler ac-
tion and Kähler Dirac action. The common answer to these questions is restriction of the modes
of induced spinor field to 2-D string world sheets (and possibly also partonic 2-surfaces) such
that the induced weak fields vanish. This makes string/parton picture part of TGD. The van-
ishing of classical weak fields has also number theoretic interpretation: space-time surfaces would
have quaternionic (hyper-complex) tangent space and the 2-surfaces carrying spinor fields complex
(hyper-complex) tangent space.

4.3.1 Conservation Of EM Charge For Kähler Dirac Equation

What does the conservation of em charge imply in the case of the Kähler-Dirac equation? The
obvious guess that the em charged part of the Kähler-Dirac operator must annihilate the solutions,
turns out to be correct as the following argument demonstrates.

1. Em charge as coupling matrix can be defined as a linear combination Q = aI + bI3, I3 =
JklΣ

kl, where I is unit matrix and I3 vectorial isospin matrix, Jkl is the Kähler form of CP2,
Σkl denotes sigma matrices, and a and b are numerical constants different for quarks and
leptons. Q is covariantly constant in M4 × CP2 and its covariant derivatives at space-time
surface are also well-defined and vanish.

2. The modes of the Kähler-Dirac equation should be eigen modes of Q. This is the case if the
Kähler-Dirac operator D commutes with Q. The covariant constancy of Q can be used to
derive the condition

[D,Q] Ψ = D1Ψ = 0 ,

D = Γ̂µDµ , D1 = [D,Q] = Γ̂µ1Dµ , Γ̂µ1 =
[
Γ̂µ, Q

]
. (4.3.1)
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Covariant constancy of J is absolutely essential: without it the resulting conditions would
not be so simple.

It is easy to find that also [D1, Q]Ψ = 0 and its higher iterates [Dn, Q]Ψ = 0, Dn = [Dn−1, Q]
must be true. The solutions of the Kähler-Dirac equation would have an additional symmetry.

3. The commutator D1 = [D,Q] reduces to a sum of terms involving the commutators of the
vectorial isospin I3 = JklΣ

kl with the CP2 part of the gamma matrices:

D1 = [Q,D] = [I3,Γr]∂µs
rTαµDα . (4.3.2)

In standard complex coordinates in which U(2) acts linearly the complexified gamma matrices
can be chosen to be eigenstates of vectorial isospin. Only the charged flat space complexified
gamma matrices ΓA denoted by Γ+ and Γ− possessing charges +1 and -1 contribute to the
right hand side. Therefore the additional Dirac equation D1Ψ = 0 states

D1Ψ = [Q,D]Ψ = I3(A)eArΓ
A∂µs

rTαµDαΨ

= (e+rΓ
+ − e−rΓ−)∂µs

rTαµDαΨ = 0 . (4.3.3)

The next condition is

D2Ψ = [Q,D]Ψ = (e+rΓ
+ + e−rΓ

−)∂µs
rTαµDαΨ = 0 . (4.3.4)

Only the relative sign of the two terms has changed. The remaining conditions give nothing
new.

4. These equations imply two separate equations for the two charged gamma matrices

D+Ψ = Tα+Γ+DαΨ = 0 ,

D−Ψ = Tα−Γ−DαΨ = 0 ,

Tα± = e±r∂µs
rTαµ . (4.3.5)

These conditions state what one might have expected: the charged part of the Kähler-Dirac
operator annihilates separately the solutions. The reason is that the classical W fields are
proportional to er±.

The above equations can be generalized to define a decomposition of the energy momentum
tensor to charged and neutral components in terms of vierbein projections. The equations
state that the analogs of the Kähler-Dirac equation defined by charged components of the
energy momentum tensor are satisfied separately.

5. In complex coordinates one expects that the two equations are complex conjugates of each
other for Euclidian signature. For the Minkowskian signature an analogous condition should
hold true. The dynamics enters the game in an essential manner: whether the equations
can be satisfied depends on the coefficients a and b in the expression T = aG + bg implied
by Einstein’s equations in turn guaranteeing that the solution ansatz generalizing minimal
surface solutions holds true [K6].
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6. As a result one obtains three separate Dirac equations corresponding to the neutral part
D0Ψ = 0 and charged parts D±Ψ = 0 of the Kähler-Dirac equation. By acting on the equa-
tions with these Dirac operators one obtains also that the commutators [D+, D−], [D0, D±]
and also higher commutators obtained from these annihilate the induced spinor field model.
Therefore entire -possibly- infinite-dimensional algebra would annihilate the induced spinor
fields. In string model the counterpart of Dirac equation when quantized gives rise to Super-
Virasoro conditions. This analogy would suggest that Kähler-Dirac equation gives rise to
the analog of Super-Virasoro conditions in 4-D case. But what the higher conditions mean?
Could they relate to the proposed generalization to Yangian algebra [A30] [B29, B23, B24]?
Obviously these conditions resemble structurally Virasoro conditions Ln|phys〉 = 0 and their
supersymmetric generalizations, and might indeed correspond to a generalization of these
conditions just as the field equations for preferred extremals could correspond to the Vira-
soro conditions if one takes seriously the analogy with the quantized string.

What could this additional symmetry mean from the point of view of the solutions of the
Kähler-Dirac equation? The field equations for the preferred extremals of Kähler action reduce to
purely algebraic conditions in the same manner as the field equations for the minimal surfaces in
string model. Could this happen also for the Kähler-Dirac equation and could the condition on
charged part of the Dirac operator help to achieve this?

This argument was very general and one can ask for simple manners to realize these con-
ditions. Obviously the vanishing of classical W fields in the region where the spinor mode is
non-vanishing defines this kind of condition.

4.3.2 About The Solutions Of Kähler Dirac Equation For Known Ex-
tremals

To gain perpective consider first Dirac equation in in H. Quite generally, one can construct the
solutions of the ordinary Dirac equation in H from covariantly constant right-handed neutrino
spinor playing the role of fermionic vacuum annihilated by the second half of complexified gamma
matrices. Dirac equation reduces to Laplace equation for a scalar function and solution can be
constructed from this “vacuum” by multiplying with the spherical harmonics of CP2 and apply-
ing Dirac operator [K28]. Similar construction works quite generally thanks to the existence of
covariantly constant right handed neutrino spinor. Spinor harmonics of CP2 are only replaced
with those of space-time surface possessing either hermitian structure or Hamilton-Jacobi struc-
ture (corresponding to Euclidian and Minkowskian signatures of the induced metric [K6, K62] ).
What is remarkable is that these solutions possess well-defined em charge although classical W
boson fields are present.

This in sense that H d’Alembertian commutes with em charge matrix defined as a linear
combination of unit matrix and the covariantly constant matrix JklΣkl since the commutators of
the covariant derivatives give constant Ricci scalar and JklΣkl term to the d’Alembertian besides
scalar d’Alembertian commuting with em charge. Dirac operator itself does not commute with em
charge matrix since gamma matrices not commute with em charge matrix.

Consider now Kähler Dirac operator. The square of Kähler Dirac operator contains com-
mutator of covariant derivatives which contains contraction [Γµ,Γν ]Fweakµν which is quadratic in
sigma matrices of M4×CP2 and does not reduce to a constant term commuting which em charge
matrix. Therefore additional condition is required even if one is satisfies with the commutativity
of d’Alembertian with em charge. Stronger condition would be commutativity with the Kähler
Dirac operator and this will be considered in the following.

To see what happens one must consider space-time regions with Minkowskian and Euclidian
signature. What will be assumed is the existence of Hamilton-Jacobi structure [K6] meaning com-
plex structure in Euclidian signature and hyper-complex plus complex structure in Minkowskian
signature. The goal is to get insights about what the condition that spinor modes have a well-
defined em charge eigenvalue requires. Or more concretely: is the localization at string world
sheets guaranteeing well-defined value of em charge predicted by Kähler Dirac operator or must
one introduce this condition separately? One can also ask whether this condition reduces to
commutativity/co-commutativity in number theoretic vision.
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1. CP2 type vacuum extremals serve as a convenient test case for the Euclidian signature. In
this case the Kähler-Dirac equation reduces to the massless ordinary Dirac equation in CP2

allowing only covariantly constant right-handed neutrino as solution. Only part of CP2 so
that one give up the constraint that the solution is defined in the entire CP2. In this case
holomorphic solution ansatz obtained by assuming that solutions depend on the coordinates
ξi, i = 1, 2 but not on their conjugates and that the gamma matrices Γi, i = 1, 2, annihilate
the solutions, works. The solutions ansatz and its conjugate are of exactly the same form as
in case string models where one considers string world sheets instead of CP2 region.

The solutions are not restricted to 2-D string world sheets and it is not clear whether one can
assign to them a well-defined em charge in any sense. Note that for massless Dirac equation
in H one obtains all CP2 harmonics as solutions, and it is possible to talk about em charge
of the solution although solution itself is not restricted to 2-D surface of CP2.

2. For massless extremals and a very wide class of solutions produced by Hamilton-Jacobi struc-
ture - perhaps all solutions representable locally as graphs for map M4 → CP2 - canonical
momentum densities are light-like and solutions are hyper-holomorphic in the coordinates
associated with with string world sheet and annihilated by the conjugate gamma and arbi-
trary functions in transversal coordinates. This allows localization to string world sheets.
The localization is now strictly dynamical and implied by the properties of Kähler Dirac
operator.

3. For string like objects one obtains massless Dirac equation in X2 × Y 2 ⊂ M4 × Y 2, Y 2 a
complex 2-surface in CP2. Homologically trivial geodesic sphere corresponds to the simplest
choice for Y 2. Modified Dirac operator reduces to a sum of massless Dirac operators as-
sociated with X2 and Y 2. The most general solutions would have Y 2 mass. Holomorphic
solutions reduces to product of hyper-holomorphic and holomorphic solutions and massless
2-D Dirac equation is satisfied in both factors.

For instance, for S2 a geodesic sphere and X2 = M2 one obtains M2 massivation with mass
squared spectrum given by Laplace operator for S2. Conformal and hyper-conformal sym-
metries are lost, and one might argue that this is quite not what one wants. One must be
however resist the temptation to make too hasty conclusions since the massivation of string
like objects is expected to take place. The question is whether it takes place already at the
level of fundamental spinor fields or only at the level of elementary particles constructed as
many-fermion states of them as twistor Grassmann approach assuming massless M4 propa-
gators for the fundamental fermions strongly suggests [K55].

4. For vacuum extremals the Kähler Dirac operator vanishes identically so that it does not make
sense to speak about solutions.

What can one conclude from these observations?

1. The localization of solutions to 2-D string world sheets follows from Kähler Dirac equation
only for the Minkowskian regions representable as graphs of map M4 → CP2 locally. For
string like objects and deformations of CP2 type vacuum extremals this is not expected to
take place.

2. It is not clear whether one can speak about well-defined em charge for the holomorphic
spinors annihilated by the conjugate gamma matrices or their conjugates. As noticed, for
imbedding space spinor harmonics this is however possible.

3. Strong form of conformal symmetry and the condition that em charge is well-defined for
the nodes suggests that the localization at 2-D surfaces at which the charged parts of in-
duced electroweak gauge fields vanish must be assumed as an additional condition. Number
theoretic vision would suggest that these surfaces correspond to 2-D commutative or co-
commutative surfaces. The string world sheets inside space-time surfaces would not emerge
from theory but would be defined as basic geometric objects.

This kind of condition would also allow duals of string worlds sheets as partonic 2-surfaces
identified number theoretically as co-commutative surfaces. Commutativity and co-commutativity
would become essential elemenents of the number theoretical vision.
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4. The localization of solutions of the Kähler-Dirac action at string world sheets and partonic
2-surfaces as a constraint would mean induction procedure for Kähler-Dirac matrices from
SX4 to X2 - that is projection. The resulting em neutral gamma matrices would correspond
to tangent vectors of the string world sheet. The vanishing of the projections of charged
parts of energy momentum currents would define these surfaces. The conditions would apply
both in Minkowskian and Euclidian regions. An alternative interpretation would be number
theoretical: these surface would be commutative or co-commutative.

4.3.3 Concrete Realization Of The Conditions Guaranteeing Well-Defined
Em Charge

Well-definedness of the em charge is the fundamental condiiton on spinor modes. Physical intuition
suggests that also classical Z0 field should vanish - at least in scales longer than weak scale. Above
the condition guaranteeing vanishing of em charge has been discussed at very general level. It has
however turned out that one can understand situation by simply posing the simplest condition
that one can imagine: the vanishing of classical W and possibly also Z0 fields inducing mixing of
different charge states.

1. Induced W fields mean that the modes of Kähler-Dirac equation do not in general have well-
defined em charge. The problem disappears if the induced W gauge fields vanish. This does
not yet guarantee that couplings to classical gauge fields are physical in long scales. Also
classical Z0 field should vanish so that the couplings would be purely vectorial. Vectoriality
might be true in long enough scales only. If W and Z0 fields vanish in all scales then
electroweak forces are due to the exchanges of corresponding gauge bosons described as
string like objects in TGD and represent non-trivial space-time geometry and topology at
microscopic scale.

2. The conditions solve also another long-standing interpretational problem. Color rotations
induce rotations in electroweak-holonomy group so that the vanishing of all induced weak
fields also guarantees that color rotations do not spoil the property of spinor modes to be
eigenstates of em charge.

One can study the conditions quite concretely by using the formulas for the components of
spinor curvature [L2] (http://tinyurl.com/z86o5qk ).

1. The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(4.3.6)

R01 = R23 and R03 = −R31 combine to form purely left handed classical W boson fields and
Z0 field corresponds to Z0 = 2R03.

Kähler form is given by

J = 2(e0 ∧ e3 + e1 ∧ e2) . (4.3.7)

2. The vanishing of classical weak fields is guaranteed by the conditions

e0 ∧ e1 − e2 ∧ e3 = 0 ,

e0 ∧ e2 − e3 ∧ e1 ,

4e0 ∧ e3 + 2e1 ∧ e2 .

(4.3.8)

http://tinyurl.com/z86o5qk
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3. There are many manners to satisfy these conditions. For instance, the condition e1 = a× e0

and e2 = −a× e3 with arbitrary a which can depend on position guarantees the vanishing of
classical W fields. The CP2 projection of the tangent space of the region carrying the spinor
mode must be 2-D.

Also classical Z0 vanishes if a2 = 2 holds true. This guarantees that the couplings of induced
gauge potential are purely vectorial. One can consider other alternaties. For instance, one
could require that only classical Z0 field or induced Kähler form is non-vanishing and deduce
similar condition.

4. The vanishing of the weak part of induced gauge field implies that the CP2 projection of the
region carrying spinor mode is 2-D. Therefore the condition that the modes of induced spinor
field are restricted to 2-surfaces carrying no weak fields sheets guarantees well-definedness of
em charge and vanishing of classical weak couplings. This condition does not imply string
world sheets in the general case since the CP2 projection of the space-time sheet can be 2-D.

How string world sheets could emerge?

1. Additional consistency condition to neutrality of string world sheets is that Kähler-Dirac
gamma matrices have no components orthogonal to the 2-surface in question. Hence various
fermionic would flow along string world sheet.

2. If the Kähler-Dirac gamma matrices at string world sheet are expressible in terms of two
non-vanishing gamma matrices parallel to string world sheet and sheet and thus define an
integrable distribution of tangent vectors, this is achieved. What is important that modified
gamma matrices can indeed span lower than 4-D space and often do so as already described.
Induced gamma matrices defined always 4-D space so that the restriction of the modes to
string world sheets is not possible.

3. String models suggest that string world sheets are minimal surfaces of space-time surface or
of imbedding space but it might not be necessary to pose this condition separately.

In the proposed scenario string world sheets emerge rather than being postulated from
beginning.

1. The vanishing conditions for induced weak fields allow also 4-D spinor modes if they are
true for entire spatime surface. This is true if the space-time surface has 2-D projection.
One can expect that the space-time surface has foliation by string world sheets and the
general solution of K-D equation is continuous superposition of the 2-D modes in this case
and discrete one in the generic case.

2. If the CP2 projection of space-time surface is homologically non-trivial geodesic sphere S2,
the field equations reduce to those in M4 × S2 since the second fundamental form for S2 is
vanishing. It is possible to have geodesic sphere for which induced gauge field has only em
component?

3. If the CP2 projection is complex manifold as it is for string like objects, the vanishing of
weak fields might be also achieved.

4. Does the phase of cosmic strings assumed to dominate primordial cosmology correspond to
this phase with no classical weak fields? During radiation dominated phase 4-D string like
objects would transform to string world sheets.Kind of dimensional transmutation would
occur.

Right-handed neutrino has exceptional role in K-D action.

1. Electroweak gauge potentials do not couple to νR at all. Therefore the vanishing of W
fields is un-necessary if the induced gamma matrices do not mix right handed neutrino
with left-handed one. This is guaranteed if M4 and CP2 parts of Kähler-Dirac operator
annihilate separately right-handed neutrino spinor mode. Also νR modes can be interpreted
as continuous superpositions of 2-D modes and this allows to define overlap integrals for them
and induced spinor fields needed to define WCW gamma matrices and super-generators.
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2. For covariantly constant right-handed neutrino mode defining a generator of super-symmetries
is certainly a solution of K-D. Whether more general solutions of K-D exist remains to be
checked out.

4.3.4 Connection With Number Theoretic Vision?

The interesting potential connection of the Hamilton-Jacobi vision to the number theoretic vision
about field equations has been already mentioned.

1. The vision that associativity/co-associativity defines the dynamics of space-time surfaces
boils down toM8−H duality stating that space-time surfaces can be regarded as associative/co-
associative surfaces either inM8 orH [K53, K85]. Associativity reduces to hyper-quaternionicity
implying that that the tangent/normal space of space-time surface at each point contains
preferred sub-space M2(x) ⊂M8 and these sub-spaces forma an integrable distribution. An
analogous condition is involved with the definition of Hamilton-Jacobi structure.

2. The octonionic representation of the tangent space of M8 and H effectively replaces SO(7, 1)
as tangent space group with its octonionic analog obtained by the replacement of sigma
matrices with their octonionic counterparts defined by anti-commutators of gamma matrices.
By non-associativity the resulting algebra is not ordinary Lie-algebra and exponentiates to a
non-associative analog of Lie group. The original wrong belief was that the reduction takes
place to the group G2 of octonionic automorphisms acting as a subgroup of SO(7). One can
ask whether the conditions on the charged part of energy momentum tensor could relate to
the reduction of SO(7, 1)

3. What puts bells ringing is that the Kähler-Dirac equation for the octonionic representation of
gamma matrices allows the conservation of electromagnetic charge in the proposed sense. The
reason is that the left handed sigma matrices (W charges are left-handed) in the octonionic
representation of gamma matrices vanish identically! What remains are vectorial=right-
handed em and Z0 charge which becomes proportional to em charge since its left-handed part
vanishes. All spinor modes have a well-defined em charge in the octonionic sense defined by
replacing imbedding space spinor locally by its octonionic variant? Maybe this could explain
why H spinor modes can have well-defined em charge contrary to the naive expectations.

4. The non-associativity of the octonionic spinors is however a problem. Even non-commutativity
poses problems - also at space-time level if one assumes quaternion-real analyticity for the
spinor modes. Could one assume commutativity or co-commutativity for the induced spinor
modes? This would mean restriction to associative or co-associative 2-surfaces and (hyper-
)holomorphic depends on its (hyper-)complex coordinate. The outcome would be a local-
ization to a hyper-commutative of commutative 2-surface, string world sheet or partonic
2-surface.

5. These conditions could also be interpreted by saying that for the Kähler Dirac operator the
octonionic induced spinors assumed to be commutative/co-commutative are equivalent with
ordinary induced spinors. The well-definedness of em charge for ordinary spinors would corre-
spond to commutativity/co-commutativity for octonionic spinors. Even the Dirac equations
based on induced and Kähler-Dirac gamma matrices could be equivalent since it is essentially
holomorphy which matters.

To sum up, these considerations inspire to ask whether the associativity/co-associativity
of the space-time surface is equivalent with the reduction of the field equations to stringy field
equations stating that certain components of the induced metric in complex/Hamilton-Jacobi co-
ordinates vanish in turn guaranteeing that field equations reduce to algebraic identifies following
from the fact that energy momentum tensor and second fundamental form have no common compo-
nents? Commutativity/co-commutativity would characterize fermionic dynamics and would have
physical representation as possibility to have em charge eigenspinors. This should be the case if
one requires that the two solution ansätze are equivalent.



126 Chapter 4. WCW Spinor Structure

4.4 Representation Of WCW Metric As Anti-Commutators
Of Gamma Matrices Identified As Symplectic Super-
Charges

WCW gamma matrices identified as symplectic super Noether charges suggest an elegant represen-
tation of WCW metric and Kähler form, which seems to be more practical than the representations
in terms of Kähler function or representations guessed by symmetry arguments.

This representation is equivalent with the somewhat dubious representation obtained using
symmetry arguments - that is by assuming that that the half Poisson brackets of imbedding space
Hamiltonians defining Kähler form and metric can be lifted to the level of WCW, if the conformal
gauge conditions hold true for the spinorial conformal algebra, which is the TGD counterpart of
the standard Kac-Moody type algebra of the ordinary strings models. For symplectic algebra the
hierarchy of breakings of super-conformal gauge symmetry is possible but not for the standard
conformal algebras associated with spinor modes at string world sheets.

4.4.1 Expression For WCW Kähler Metric As Anticommutators As
Symplectic Super Charges

During years I have considered several variants for the representation of symplectic Hamiltonians
and WCW gamma matrices and each of these proposals have had some weakness. The key question
has been whether the Noether currents assignable to WCW Hamiltonians should play any role in
the construction or whether one can use only the generalization of flux Hamiltonians.

The original approach based on flux Hamiltonians did not use Noether currents.

1. Magnetic flux Hamiltonians do not refer to the space-time dynamics and imply genuine
rather than only effective 2-dimensionality, which is more than one wants. If the sum of
the magnetic and electric flux Hamiltonians and the weak form of self duality is assumed,
effective 2-dimensionality might be achieved.

The challenge is to identify the super-partners of the flux Hamiltonians and postulate correct
anti-commutation relations for the induced spinor fields to achieve anti-commutation to flux
Hamiltonians. It seems that this challenge leads to ad hoc constructions.

2. For the purposes of generalization it is useful to give the expression of flux Hamiltonian.
Apart from normalization factors one would have

Q(HA) =

∫
X2

HAJµνdx
µ ∧ dxν .

Here A is a label for the Hamiltonian of δM4
± × CP2 decomposing to product of δM4

± and
CP2 Hamiltonians with the first one decomposing to a product of function of the radial light-
like coordinate rM and Hamiltonian depending on S2 coordinates. It is natural to assume
that Hamiltonians have well- defined SO(3) and SU(3) quantum numbers. This expressions
serves as a natural starting point also in the new approach based on Noether charges.

The approach identifying the Hamiltonians as symplectic Noether charges is extremely nat-
ural from physics point of view but the fact that it leads to 3-D expressions involving the induced
metric led to the conclusion that it cannot work. In hindsight this conclusion seems wrong: I
had not yet realized how profound that basic formulas of physics really are. If the generalization
of AdS/CFT duality works, Kähler action can be expressed as a sum of string area actions for
string world sheets with string area in the effective metric given as the anti-commutator of the
Kähler-Dirac gamma matrices for the string world sheet so that also now a reduction of dimension
takes place. This is easy to understand if the classical Noether charges vanish for a sub-algebra of
symplectic algebra for preferred extremals.

1. If all end points for strings are possible, the recipe for constructing super-conformal generators
would be simple. The imbedding space Hamiltonian HA appearing in the expression of the
flux Hamiltonian given above would be replaced by the corresponding symplectic quantum
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Noether charge Q(HA) associated with the string defined as 1-D integral along the string. By
replacing Ψ or its conjugate with a mode of the induced spinor field labeled by electroweak
quantum numbers and conformal weight nm one would obtain corresponding super-charged
identifiable as WCW gamma matrices. The anti-commutators of the super-charges would
give rise to the elements of WCW metric labelled by conformal weights n1, n2 not present in
the naive guess for the metric. If one assumes that the fermionic super-conformal symmetries
act as gauge symmetries only ni = 0 gives a non-vanishing matrix element.

Clearly, one would have weaker form of effective 2-dimensionality in the sense that Hamilto-
nian would be functional of the string emanating from the partonic 2-surface. The quantum
Hamiltonian would also carry information about the presence of other wormhole contacts-
at least one- when wormhole throats carry Kähler magnetic monopole flux. If only discrete
set for the end points for strings is possible one has discrete sum making possible easy p-
adicization. It might happen that integrability conditions for the tangent spaces of string
world sheets having vanishing W boson fields do not allow all possible strings.

2. The super charges obtained in this manner are not however entirely satisfactory. The problem
is that they involve only single string emanating from the partonic 2-surface. The intuitive
expectation is that there can be an arbitrarily large number of strings: as the number of
strings is increased the resolution improves. Somehow the super-conformal algebra defined
by Hamiltonians and super-Hamiltonians should generalize to allow tensor products of the
strings providing more physical information about the 3-surface.

3. Here the idea of Yangian symmetry [K55] suggests itself strongly. The notion of Yangian
emerges from twistor Grassmann approach and should have a natural place in TGD. In
Yangian algebra one has besides product also co-product, which is in some sense ”time-
reversal” of the product. What is essential is that Yangian algebra is also multi-local.

The Yangian extension of the super-conformal algebra would be multi-local with respect to
the points of partonic surface (or multi-stringy) defining the end points of string. The basic
formulas would be schematically

OA1 = fABCT
B ⊗ TB ,

where a summation of B,C occurs and fABC are the structure constants of the algebra. The
operation can be iterated and gives a hierarchy of n-local operators. In the recent case
the operators are n-local symplectic super-charges with unit fermion number and symplectic
Noether charges with a vanishing fermion number. It would be natural to assume that also
the n-local gamma matrix like entities contribute via their anti-commutators to WCW metric
and give multi-local information about the partonic 2-surface and 3-surface.

The operation generating the algebra well-defined if one an assumes that the second quanti-
zation of induced spinor fields is carried out using the standard canonical quantization. One
could even assume that the points involved belong to different partonic 2-surfaces belong-
ing even at opposite boundaries of CD. The operation is also well-defined if one assumes
that induced spinor fields at different space-time points at boundaries of CD always anti-
commute. This could make sense at boundary of CD but lead to problems with imbedding
space-causality if assumed for the spinor modes at opposite boundaries of CD.

4.4.2 Handful Of Problems With A Common Resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma ma-
trices and propose Kähler-Dirac action as their solution.
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Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of Kähler-
Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal
components in complex coordinates (z, z) and the second fundamental form has only diagonal
components of type Hk

zz. This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kähler action are minimal surfaces, it seems difficult to believe that
minimal surface property plus extremization of Kähler action could really boil down to the absolute
minimization of Kähler action or some other general principle selecting preferred extremals as Bohr
orbits [K13, K53].

This brings in mind a similar long-standing problem associated with the Dirac equation for
the induced spinors. The problem is that right-handed neutrino generates super-symmetry only
provided that space-time surface and its boundary are minimal surfaces. Although one could inter-
pret this as a geometric symmetry breaking, there is a strong feeling that something goes wrong.
Induced Dirac equation and super-symmetry fix the variational principle but this variational prin-
ciple is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors
is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kähler action also induced spinor fields represent vacua. This
is however not the case. This super-symmetry is however assumed in the construction of WCW
geometry so that there is internal inconsistency.

Super-symmetry forces Kähler-Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (4.4.1)

Here Tαk is canonical momentum current of Kähler action. If super-symmetry is present one can
assign to this current its super-symmetric counterpart

Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (4.4.2)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note also that the
super current

Jα = νRT
α
l ΓlΨ (4.4.3)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one finds that the

divergence of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(4.4.4)
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The requirement that this current vanishes is guaranteed if one assumes that Kähler-Dirac equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (4.4.5)

This equation must be derivable from a Kähler-Dirac action. It indeed is. The action is given by

L = ΨΓ̂αDαΨ . (4.4.6)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with Kähler-Dirac gamma matrices and the requirement

DµΓ̂µ = 0 (4.4.7)

guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kähler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.

As a matter fact, any mode of Kähler-Dirac equation contracted with second quantized
induced spinor field or its conjugate defines a conserved super charge. Also super-symplectic
Noether charges and their super counterparts can be assigned to symplectic generators as Noether
charges but they need not be conserved.

Second quantization of the K-D action

Second quantization of Kähler-Dirac action is crucial for the construction of the Kähler metric of
world of classical worlds as anti-commutators of gamma matrices identified as super-symplectic
Noether charges. To get a unique result, the anti-commutation relations must be fixed uniquely.
This has turned out to be far from trivial.

1. Canonical quantization works after all

The canonical manner to second quantize fermions identifies spinorial canonical momentum
densities and their conjugates as Π = ∂LKD/∂Ψ = ΨΓt and their conjugates. The vanishing of Γt

at points, where the induced Kähler form J vanishes can cause problems since anti-commutation
relations are not internally consistent anymore. This led me to give up the canonical quantization
and to consider various alternatives consistent with the possibility that J vanishes. They were
admittedly somewhat ad hoc. Correct (anti-)commutation relations for various fermionic Noether
currents seem however to fix the anti-commutation relations to the standard ones. It seems that it
is better to be conservative: the canonical method is heavily tested and turned out to work quite
nicely.

The canonical manner to second quantize fermions identifies spinorial canonical momentum
densities and their conjugates as Π = ∂LKD/∂Ψ = ΨΓt and their conjugates. The vanishing of Γt

at points, where the induced Kähler form J vanishes can cause problems since anti-commutation
relations are not internally consistent anymore. This led originally to give up the canonical quan-
tization and to consider various alternatives consistent with the possibility that J vanishes. They
were admittedly somewhat ad hoc. Correct commutation relations for various fermionic Noether
currents seem however to fix the anti-commutation relations to the standard ones.

Consider first the 4-D situation without the localization to 2-D string world sheets. The
canonical anti-commutation relations would state {Π,Ψ} = δ3(x, y) at the space-like boundaries of
the string world sheet at either boundary of CD. At points where J and thus T t vanishes, canonical
momentum density vanishes identically and the equation seems to be inconsistent.

If fermions are localized at string world sheets assumed to always carry a non-vanishing J at
their boundaries at the ends of space-time surfaces, the situation changes since Γt is non-vanishing.
The localization to string world sheets, which are not vacua saves the situation. The problem is
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that the limit when string approaches vacuum could be very singular and discontinuous. In the
case of elementary particle strings are associated with flux tubes carrying monopole fluxes so that
the problem disappears.

It is better to formulate the anti-commutation relations for the modes of the induced spinor
field. By starting from

{Π(x),Ψ(y)} = δ1(x, y)

(4.4.8)

and contracting with Ψ(x) and Π(y) and integrating, one obtains using orthonormality of the
modes of Ψ the result

{b†m, bn} = γ0δm,n

(4.4.9)

holding for the nodes with non-vanishing norm. At the limit J → 0 there are no modes with
non-vanishing norm so that one avoids the conflict between the two sides of the equation.

The proposed anti-commutator would realize the idea that the fermions are massive. The
following alternative starts from the assumption of 8-D light-likeness.

2. Does one obtain the analogy of SUSY algebra? In super Poincare algebra anti-commutators

of super-generators give translation generator: anti-commutators are proportional to pkσk. Could
it be possible to have an anti-commutator proportional to the contraction of Dirac operator pkσk of
4-momentum with quaternionic sigma matrices having or 8-momentum with octonionic 8-matrices?

This would give good hopes that the GRT limit of TGD with many-sheeted space-time
replaced with a slightly curved region of M4 in long length scales has large N SUSY as an approx-
imate symmetry: N would correspond to the maximal number of oscillator operators assignable
to the partonic 2-surface. If conformal invariance is exact, it is just the number of fermion states
for single generation in standard model.

1. The first promising sign is that the action principle indeed assigns a conserved light-like 8-
momentum to each fermion line at partonic 2-surface. Therefore octonionic representation
of sigma matrices makes sense and the generalization of standard twistorialization of four-
momentum also. 8-momentum can be characterized by a pair of octonionic 2-spinors (λ, λ)
such that one has λλ) = pkσk.

2. Since fermion line as string boundary is 1-D curve, the corresponding octonionic sub-spaces
is just 1-D complex ray in octonion space and imaginary axes is defined by the associated
imaginary octonion unit. Non-associativity and non-commutativity play no role and it is as
if one had light like momentum in say z-direction.

3. One can select the ininitial values of spinor modes at the ends of fermion lines in such a
manner that they have well-defined spin and electroweak spin and one can also form linear
superpositions of the spin states. One can also assume that the 8-D algebraic variant of Dirac
equation correlating M4 and CP2 spins is satisfied.

One can introduce oscillator operators b†m,α and bn,α with α denoting the spin. The motiva-
tion for why electroweak spin is not included as an index is due to the correlation between
spin and electroweak spin. Dirac equation at fermion line implies a complete correlation
between directions of spin and electroweak spin: if the directions are same for leptons (con-
vention only), they are opposite for antileptons and for quarks since the product of them
defines imbedding space chirality which distinguishes between quarks and leptons. Instead of
introducing electroweak isospin as an additional correlated index one can introduce 4 kinds
of oscillator operators: leptonic and quark-like and fermionic and antifermionic.

4. For definiteness one can consider only fermions in leptonic sector. In hope of getting the
analog of SUSY algebra one could modify the fermionic anti-commutation relations such
that one has
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{b†m,α, bn,β} = ±iεαβδm,n .

(4.4.10)

Here α is spin label and ε is the standard antisymmetric tensor assigned to twistors. The anti-
commutator is clearly symmetric also now. The anti-commmutation relations with different
signs ± at the right-hand side distinguish between quarks and leptons and also between
fermions and anti-fermions. ± = 1 could be the convention for fermions in lepton sector.

5. One wants combinations of oscillator operators for which one obtains anti-commutators hav-
ing interpretation in terms of translation generators representing in terms of 8-momentum.
The guess would be that the oscillator operators are given by

B†n = b†m,αλ
α , Bn = λ

α
bm,α .

(4.4.11)

The anti-commutator would in this case be given by

{B†m, Bn} = iλ
α
εαβλ

βδm,n
= Tr(pkσk)δm,n = 2p0δm,n .

(4.4.12)

The inner product is positive for positive value of energy p0. This form of anti-commutator
obviously breaks Lorentz invariance and this us due the number theoretic selection of pre-
ferred time direction as that for real octonion unit. Lorentz invariance is saved by the fact
that there is a moduli space for the choices of the quaternion units parameterized by Lorentz
boosts for CD.

The anti-commutator vanishes for covariantly constant antineutrino so that it does not gen-
erate sparticle states. Only fermions with non-vanishing four-momentum do so and the
resulting algebra is very much like that associated with a unitary representation of super
Poincare algebra.

6. The recipe gives one helicity state for lepton in given mode m (conformal weight). One
has also antilepton with opposite helicity with ± = −1 in the formula defining the anti-
commutator. In the similar manner one obtains quarks and antiquarks.

7. Contrary to the hopes, one did not obtain the anti-commutator pkσk but Tr(p0σ0). 2p0

is however analogous to the action of Dirac operator pkσk to a massless spinor mode with
”wrong” helicity giving 2p0σ0. Massless modes with wrong helicity are expected to appear
in the fermionic propagator lines in TGD variant of twistor approach. Hence one might hope
that the resulting algebra is consistent with SUSY limit.

The presence of 8-momentum at each fermion line would allow also to consider the intro-
duction of anti-commutators of form pk(8)σk directly making N = 8 SUSY at parton level
manifest. This expression restricts for time-like M4 momenta always to quaternion and one
obtains just the standard picture.

8. Only the fermionic states with vanishing conformal weight seem to be realized if the confor-
mal symmetries associated with the spinor modes are realized as gauge symmetries. Super-
generators would correspond to the fermions of single generation standard model: 4+4 =8
states altogether. Interestingly, N = 8 correspond to the maximal SUSY for super-gravity.
Right-handed neutrino would obviously generate the least broken SUSY. Also now mixing of
M4 helicities induces massivation and symmetry breaking so that even this SUSY is broken.
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One must however distinguish this SUSY from the super-symplectic conformal symmetry.
The space in which SUSY would be realized would be partonic 2-surfaces and this distin-
guishes it from the usual SUSY. Also the conservation of fermion number and absence of
Majorana spinors is an important distinction.

3. What about quantum deformations of the fermionic oscillator algebra?

Quantum deformation introducing braid statistics is of considerable interest. Quantum
deformations are essentially 2-D phenomenon, and the experimental fact that it indeed occurs
gives a further strong support for the localization of spinors at string world sheets. If the existence
of anyonic phases is taken completely seriously, it supports the existence of the hierarchy of Planck
constants and TGD view about dark matter. Note that the localization also at partonic 2-surfaces
cannot be excluded yet.

I have wondered whether quantum deformation could relate to the hierarchy of Planck
constants in the sense that n = heff/h corresponds to the value of deformation parameter q =
exp(i2π/n).

A q-deformation of Clifford algebra of WCW gamma matrices is required. Clifford algebra
is characterized in terms of anti-commutators replaced now by q-anticommutators. The natural
identification of gamma matrices is as complexified gamma matrices. For q-deformation q-anti-
commutators would define WCW Kähler metric. The commutators of the supergenerators should
still give anti-symmetric sigma matrices. The q-anticommutation relations should be same in
the entire sector of WCW considered and be induced from the q-anticommutation relations for
the oscillator operators of induced spinor fields at string world sheets, and reflect the fact that
permutation group has braid group as covering group in 2-D case so that braid statistics becomes
possible.

In [A56] (http://tinyurl.com/y9e6pg4d) the q-deformations of Clifford algebras are dis-
cussed, and this discussion seems to apply in TGD framework.

1. It is assumed that a Lie-algebra g has action in the Clifford algebra. The q-deformations of
Clifford algebra is required to be consistent with the q-deformation of the universal enveloping
algebra Ug.

2. The simplest situation corresponds to group su(2) so that Clifford algebra elements are
labelled by spin ±1/2. In this case the q-anticommutor for creation operators for spin up
states reduces to an anti-commutator giving q-deformation Iq of unit matrix but for the spin
down states one has genuine q-anti-commutator containing besides Iq also number operator
for spin up states at the right hand side.

3. The undeformed anti-commutation relations can be witten as

P+kl
ij akal = 0 , P+kl

ij a†ka
†
l = 0 , aia†j + P ihjka

†
ha
k = δij1 .

(4.4.13)

Here P klij = δilδ
j
k is the permutator and P+kl

ij = (1 + P )/2 is projector. The q-deformation
reduces to a replacement of the permutator and projector with q-permutator Pq and q-
projector and P+

q , which are both fixed by the quantum group.

4. Also the condition that deformed algebra has same Poincare series as the original one is
posed. This says that the representation content is not changed that is the dimensions of
summands in a representation as direct sum of graded sub-spaces are same for algebra and
its q-deformation. If one has quantum group in a strict sense of the word (quasi-triangularity
(genuine braid group) rather that triangularity requiring that the square of the deformed
permutator Pq is unit matrix, one can have two situations.

(a) g = sl(N) (special linear group such as SL(2, F ), F = R,C) or g = Sp(N = 2n)
(symplectic group such as Sp(2) = SL(2, R)), which is subgroup of sl(N). Creation
(annihilation-) operators must form the N -dimensional defining representation of g.

http://tinyurl.com/y9e6pg4d
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(b) g = sl(N) and one has direct sum of M N -dimensional defining representations of g.
The M copies of representation are ordered so that they can be identified as strands of
braid so that the deformation makes sense at the space-like ends of string world sheet
naturally. q-projector is proportional to so called universal R-matrix.

5. It is also shown that q-deformed oscillator operators can be expressed as polynomials of the
ordinary ones.

The following argument suggest that the g must correspond to the minimal choices sl(2, R)
(or su(2)) in TGD framework.

1. The q-Clifford algebra structure of WCW should be induced from that for the fermionic
oscillator algebra. g cannot correspond to su(2)spin × su(2)ew since spin and weak isospin
label fermionic oscillator operators beside conformal weights but must relate closely to this
group. The physical reason is that the separate conservation of quark and lepton numbers
and light-likeness in 8-D sense imply correlations between the components of the spinors and
reduce g.

2. For a given H-chirality (quark/ lepton) 8-D light-likeness forced by massless Dirac equation at
the light-like boundary of the string world sheet at parton orbit implies correlation between
M4 and CP2 chiralities. Hence there are 4+4 spinor components corresponding to fermions
and antifermions with physical (creation oeprators) and unphysical (annihilation operators)
polarizations. This allows two creation operators with given H-chirality (quark or lepton)
and fermion number. Same holds true for antifermions. By fermion number conservation
one obtains a reduction to SU(2) doublets and the quantum group would be sl(2) = sp(2)
for which “special linear” implies “symplectic”.

4.5 Quantum Criticality And Kähler-Dirac Action

The precise mathematical formulation of quantum criticality has remained one of the basic chal-
lenges of quantum TGD. The belief has been that the existence of conserved current for Kähler-
Dirac equation are possible if Kähler action is critical for the 3-surface in question in the sense that
the deformation in question corresponds to vanishing of second variation of Kähler action. The
vanishing of the second variation states that the deformation of the Kähler-Dirac gamma matrix
is divergence free just like the Kähler-Dirac gamma matrix itself and is therefore very natural.

2-D conformal invariance accompanies 2-D criticality and allows to satisfy these conditions
for spinor modes localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces.
This localization is in the generic case forced by the conditions that em charge is well-defined for the
spinor modes: this requires that classical W fields vanish and also the vanishing of classical Z0 field
is natural -at least above weak scale. Only 2 Kähler-Dirac gamma matrices can be non-vanishing
and this is possible only for Kähler-Dirac action.

4.5.1 What Quantum Criticality Could Mean?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means math-
ematically is however far from clear and one can imagine several meanings for it.

1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of the
imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which
in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of
criticality.

2. At more technical level one would expect criticality to correspond to deformations of a given
preferred extremal defining a vanishing second variation of Kähler Khler function or Kähler
action.
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(a) For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would be
naturally zero modes not contribution to Kähler metric of WCW but appearing as
parameters in it. The bevavior variables correspond to quantum fluctuating degrees of
freedom and according to catastrophe theory a big change can in quantum fluctuating
degrees of freedom at criticality for zero modes. This would be control of quantum
state by varying classical variables. Cusp catastrophe is standard example of this. One
can imagined also a situation in which the roles of zero modes and behavior variables
change and big jump in the values of zero modes is induced by small variation in behavior
variables. This would mean quantum control of classical variables.

(b) Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have max-
imum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional
model is provided by the catastrophe theory of Thom [A51]. Cusp catastrophe (see
http://tinyurl.com/yddpfdgo) [A3] is the simplest catastrophe one can think of, and
here the folds of cusp where discontinuous jump occurs correspond to criticality with
respect to one control variable and the tip to criticality with respect to both control
variables.

3. Quantum criticality makes sense also for Kähler action.

(a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of
CD. The non-determinism of Kähler action allows the possibility of having several space-
time sheets connecting the ends of space-time surface but the conditions that classical
charges are same for them reduces this number so that it could be finite. Quantum
criticality in this sense implies non-determinism analogous to that of critical systems
since preferred extremals can co-incide and suffer this kind of bifurcation in the interior
of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and
the integer n in heff = n×h [K17] corresponds to the number of degenerate space-time
sheets with same Kähler action and conserved classical charges.

(b) Also now one expects a hierarchy of criticalitiesandsince criticality and conformal in-
variance are closely related, a natural conjecture is that the fractal hierarchy of sub-
algebras of conformal algebra isomorphic to conformal algebra itself and having confor-
mal weights coming as multiples of n corresponds to the hierarchy of Planck constants.
This hierarchy would define a hierarchy of symmetry breakings in the sense that only
the sub-algebra would act as gauge symmetries.

(c) The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary R+ × S2 which are confor-
mal transformations of sphere S2 with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

4. I have discussed what criticality could mean for Kähler-Dirac action [K62].

(a) I have conjectured that it leads to the existence of additional conserved currents defined
by the variations which do not affect the value of Kähler action. These arguments are
far from being mathematically rigorous and the recent view about the solutions of the
Kähler-Dirac equation predicting that the spinor modes are restricted to 2-D string
world sheets requires a modification of these arguments.

(b) The basic challenge is to understand the mechanism making this kind of currents con-
served: the same challenge is met already in the case of isometries since imbedding
space coordinates appear as parameters in Kähler-Dirac action. Kähler-Dirac equation

http://tinyurl.com/yddpfdgo
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is satisfied if the first variation of the canonical momentum densities contracted with the
imbedding space gamma matrices annihilates the spinor mode. Situation is analogous
to massless Dirac equation: it does not imply the vanishing of four-momentum, only the
vanishing of mass. One obtains conserved fermion current associated with deformations
only if the deformation of the Kähler-Dirac gamma matrix is divergenceless just like the
Kähler-Dirac gamma matrix itself. This conditions requires the vanishing of the second
variation of Kähler action.

(c) It is far from obvious that these conditions can be satisfied. The localization of the
spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generic
case that em charge is well-defined for spinor modes implies holomorphy allowing to
formulate current conservation for the deformations of the space-time surface for second
quantized induced spinor field. The crux is that the deformation respects the holomor-
phy properties of the Kähler-Dirac gamma matrices at string world sheet and thus does
not mix Γz with Γz. The deformation of Γz has only z-component and also annihilates
the holomorphic spinor.

This mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma
matrices in directions orthogonal to the 2-surface must vanish and this is not possible
for other actions. This also means that energy momentum tensor has rank 2 as a matrix.
Cosmic string solutions are an exception since in this case CP2 projection of space-time
surface is 2-D and conditions guaranteing vanishing of classical W fields can be satisfied
without the restriction to 2-surface.

The vacuum degeneracy of Kähler action strongly suggests that the number of critical de-
formations is always infinite and that these deformations define an infinite inclusion hierarchy
of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of
breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge
theories. These super-conformal inclusion hierarchies would realize the inclusion hierarchies for
hyper-finite factors of type II1.

4.5.2 Quantum Criticality And Fermionic Representation Of Conserved
Charges Associated With Second Variations Of Kähler Action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The de-
velopment of the understanding of conservation laws has been however slow. Kähler-Dirac action
provides excellent candidates for quantum counterparts of Noether charges. The problem is that
the imbedding space coordinates are in the role of classical external fields and induces spinor fields
are second quantized so that it is not at all clear whether one obtains conserved charges.

What does the conservation of the fermionic Noether current require?

The obvious anser to the question of the title is that the conservation of the fermionic current
requires the vanishing of the first variation of Kähler-Dirac action with respect to imbedding space
coordinates. This is certainly true but need not mean vanishing of the second variation of Kähler
action as thought first. Hence fermionic conserved currents might be obtained for much more
general variations than critical ones.

1. The Kähler-Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation of
the Kähler-Dirac action under this deformation vanishes.

The vanishing of the first variation for the Kähler-Dirac action is equivalent with the vanishing
of the second variation for the Kähler action. This can be seen by the explicit calculation of
the second variation of the Kähler-Dirac action and by performing partial integration for the
terms containing derivatives of Ψ and Ψ to give a total divergence representing the difference
of the charge at upper and lower boundaries of the causal diamond plus a four-dimensional
integral of the divergence term defined as the integral of the quantity
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∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (4.5.1)

Here hkβ denote partial derivative of the imbedding space coordinates with respect to space-
time coordinates. ∆SD vanishes if this term vanishes:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. This condition is however un-necessarily strong. It is enough that that the deformation of
Dirac operator anihilates the spinor mode, which can also change in the deformation. It
must be possible to compensate the change of the covariant derivative in the deformation
by a gauge transformation which requires that deformations act as gauge transformations on
induce gauge potentials. This gives additional constraint and strongly suggests Kac-Moody
type algebra for the deformations. Conformal transformations would satisfy this constraint
and are suggested by quantum criticality.

3. It is essential that the Kähler-Dirac equation holds true so that the Kähler-Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the Kähler-Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined
by the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (4.5.2)

Here 1/D is the inverse of the Kähler-Dirac operator defining the counterpart of the fermionic
propagator.

4. The fermionic conserved currents associated with the deformations are obtained from the
standard conserved fermion current

Jα = ΨΓαΨ . (4.5.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the Kähler-Dirac equation for
Ψ and its conjugate as well as absence of mass term essential for super-conformal invariance.
Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing Kähler-Dirac gamma matrices with their increments in the deformation keeping Ψ
and its conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ.
The third term is obtained by performing same operation for δΨ.
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Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (4.5.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra.

5. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right handed neutrino spinor
or its conjugate in the expression for the conserved fermion current and performing the
above procedure giving two terms since nothing happens to the covariantly constant right
handed-neutrino spinor. Second class of conserved currents is defined by the solutions of
the Kähler-Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same
procedure gives three terms appearing in the super current.

6. The existence of vanishing of second variations is analogous to criticality in systems defined
by a potential function for which the rank of the matrix defined by second derivatives of
the potential function vanishes at criticality. Quantum criticality becomes the prerequisite
for the existence of quantum theory since fermionic anti-commutation relations in principle
can be fixed from the condition that the algebra in question is equivalent with the algebra
formed by the vector fields defining the deformations of the space-time surface defining second
variations. Quantum criticality in this sense would also select preferred extremals of Kähler
action as analogs of Bohr orbits and the spectrum of preferred extremals would be more or
less equivalent with the expected existence of infinite-dimensional symmetry algebras.

It is far from obvious that the criticality conditions or even the weaker conditions guaranteing
the existence of (say) isometry charges can be satisfied. It seems that the restriction of spinor modes
to 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - implied by the condition
that em charge is well-define for them, is the manner to achieve this. The reason is that conformal
invariance allows complexification of the Kähler-Dirac gamma matrices and allows to construct
spinor modes as holomorphic modes and their conjugates. Holomorphy reduces K-D equation to
algebraic condition that Γz annihilates the spinor mode. If this is true also the deformation of Γz

then the existince of conserved current follows. It is essential that only two Kähler-Dirac gamma
matrices are non-vanishing and this is possible only for Kähler-Dirac action.

About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding second
order charges for Kähler action are conserved but vanish since the corresponding conjugate
coordinates are cyclic for the Kähler metric and Kähler form so that the conserved current is
proportional to the gradient of a Killing vector field which is constant in these coordinates.

2. Contrary to the original conclusion, the corresponding fermionic charges expressible as fermionic
bilinears are first order in deformation and do not vanish! Four-momentum and color quan-
tum numbers are defined for Kähler action as classical conserved quantities and for Kähler-
Dirac action as quantal charges.

Critical manifold is infinite-dimensional for Kähler action

Some examples might help to understand what is involved.

1. The action defined by four-volume gives a first glimpse about what one can expect. In this
case Kähler-Dirac gamma matrices reduce to the induced gamma matrices. Second variations
satisfy d’Alembert type equation in the induced metric so that the analogs of massless fields
are in question. Mass term is present only if some dimensions are compact. The vanishing
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of excitations at light-like boundaries is a natural boundary condition and might well imply
that the solution spectrum could be empty. Hence it is quite possible that four-volume action
leads to a trivial theory.

2. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations
vanishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation
for second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a non-vanishing term and an equation analogous
to massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also
for the vacuum extremals of Kähler action with 2-D CP2 projection all terms involving
induced Kähler form vanish and the field equations reduce to d’Alembert type equations for
CP2 coordinates. A possible interpretation is as the classical analog of Higgs field. For the
deformations of non-vacuum extremals this would suggest the presence of terms analogous
to mass terms: these kind of terms indeed appear and are proportional to δsk. M4 degrees
of freedom decouple completely and one obtains QFT type situation.

3. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies
of inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of
inclusions of the super conformal algebras defined by the critical deformations.

4. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would
correspond to maximal criticality analogous to that encountered at the tip of the cusp catas-
trophe. The natural guess would be that as one deforms the vacuum extremal the previously
critical degrees of freedom are transformed to non-critical ones. The dimension of the critical
manifold could remain infinite for all preferred extremals of the Kähler action. For instance,
for cosmic string like objects any complex manifold of CP2 defines cosmic string like objects
so that there is a huge degeneracy is expected also now. For CP2 type vacuum extremals
M4 projection is arbitrary light-like curve so that also now infinite degeneracy is expected
for the deformations.

This leads to the conjecture that the critical deformations correspond to sub-algebras of
super-conformal algebras with conformal weights coming as integer multiples of fixed integer m.
One would have infinite hierarchy of breakings of conformal symmetry labelled by m. The super-
conformal algebras would be effectively m-dimensional. Since all commutators with the critical
sub-algebra would create zero energy states. In ordinary conformal field theory one have maximal
criticality corresponding to m = 1.

Critical super-algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler
action for preferred extremals means that the critical variations are orthogonal to all defor-
mations of the space-time surface with respect to the WCW metric.

The original expectation was that critical deformations correspond to zero modes but this
interpretation need not be correct since critical deformations can leave 3-surface invariant
but affect corresponding preferred extremal: this would conform with the non-deterministic
character of the dynamics which is indeed the basic signature of criticality. Rather, criti-
cal deformations are limiting cases of ordinary deformations acting in quantum fluctuating
degrees of freedom.

This conforms with the fact that WCW metric vanishes identically for canonically imbedded
M4 and that Kähler action has fourth order terms as first non-vanishing terms in perturbative
expansion (for Kähler-Dirac the expansion is quadratic in deformation).

Therefore the super-conformal algebra associated with the critical deformations has genuine
physical content.
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2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quan-

tum fluctuating degrees of freedom, critical deformations cannot correspond to this kind of
Hamiltonians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond
to this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give
WCW metric as their anti-commutator. This would also lead to a conflict with the effective
2-dimensionality stating that WCW line-element is expressible as sum of contribution coming
from partonic 2-surfaces as also with fermionic anti-commutation relations.

Connection with quantum criticality

The notion of quantum criticality of TGD Universe was originally inspired by the question how
to make TGD unique if Kähler function for WCW is defined by the Kähler action for a preferred
extremal assignable to a given 3-surface. Vacuum functional defined by the exponent of Kähler
function is analogous to thermodynamical weight and the obviou idea with Kähler coupling strength
taking the role of temperature. The obvious idea was that the value of Kähler coupling strength
is analogous to critical temperature so that TGD would be more or less uniquely defined.

To understand the delicacies it is convenient to consider various variations of Kähler action
first.

1. The variation can leave 3-surface invariant but modify space-time surface such that Kähler
action remains invariant. In this case infinitesimal deformation reduces to a diffeomorphism
at space-like 3-surface and perhaps also at light-like 3-surfaces. In this case the correspon-
dence between X3 and X4(X3) would not be unique and one would have non-deterministic
dynamics characteristic for critical systems. This criticality would correspond to criticality of
Kähler action at X3. Note that the original working hypothesis was that X4(X3) is unique.
The failure of the strict classical determinism implying spin glass type vacuum degeneracy
indeed suggets that this is the case.

2. The variation could act on zero modes which do not affect Kähler metric which corresponds to
(1, 1) part of Hessian in complex coordinates for WCW . Only the zero modes characterizing
3-surface appearing as parameters in the metric WCW would be affected and the result would
be a generalization of conformal transformation. Kähler function would change but only due
to the change in zero modes. These transformations do not seem to correspond to critical
transformations since Kähler function changes.

3. The variation could act on 3-surface both in zero modes and dynamical degrees of freedom
represented by complex coordinates. It would of course affect also the space-time surface.
Criticality for Kähler function would mean that Kähler metric has zero modes at X3 meaning
that (1, 1) part of Hessian is degenerate. This could mean that in the vicinity of X3 the
Kähler form has non-definite signature: physically this is unacceptable since inner product
in Hilbert space would not be positive definite.

Critical transformations might relate closely to the coset space decomposition of WCW to
a union of coset spaces G/H labelled by zero modes.

1. The critical deformations leave 3-surface X3 invariant as do also the transformations of H
associated with X3. If H affects X4(X3) and corresponds to critical transformations then
critical transformation would extend WCW to a bundle for which 3-surfaces would be base
points and preferred extremals X4(X3) would define the fiber. Gauge invariance with respect
to H would generalize the assumption that X4(X3) is unique.

2. Critical deformations could correspond to H or sub-group of H (which dependes on X3).
For other 3-surfaces than X3 the action of H is non-trivial as the case of CP2 = SU(3)/U(2)
makes easy to understand.
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3. A possible identification of Lie-algebra of H is as a sub-algebra of Virasoro algebra associated
with the symplectic transformations of δM4 × CP2 and acting as diffeomorphisms for the
light-like radial coordinate of δM4

+. The sub-algebras of Virasoro algebra have conformal
weights coming as integer multiplies of a given conformal weight m and form inclusion hier-
archies suggesting a direct connection with finite measurement resolution realized in terms of
inclusions of hyperfinite factors of type II1. For m > 1 one would have breaking of maximal
conformal symmetry. The action of these Virasoro algebra on symplectic algebra would make
the corresponding sub-algebras gauge degrees of freedom so that the number of symplectic
generators generating non-gauge transformations would be finite. This result is not surpris-
ing since also for 2-D critical systems criticality corresponds to conformal invariance acting
as local scalings.

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. Quantum criticality realized as the vanishing of the second variation gives hopes about
a more or less unique identification of preferred extremals and considered alternative identifications
such as absolute minimization of Kähler action which is just the opposite of criticality.

One must be very cautious here: there are two criticalities: one for the extremals of Kähler
action with respect to deformations of four-surface and second for the Kähler function itself with
respect to deformations of 3-surface: these criticalities are not equivalent since in the latter case
variation respects preferred extremal property unlike in the first case.

1. The criticality for preferred extremals would make 4-D criticality a property of all physical
systems.

2. The criticality for Kähler function would be 3-D and might hold only for very special systems.
In fact, the criticality means that some eigenvalues for the Hessian of Kähler function vanish
and for nearby 3-surfaces some eigenvalues are negative. On the other hand the Kähler
metric defined by (1, 1) part of Hessian in complex coordinates must be positive definite.
Thus criticality might imply problems.

This allows and suggests non-criticality of Kähler function coming from Kähler action for
Euclidian space-time regions: this is mathematically the simplest situation since in this case
there are no zero modes causing troubles in Gaussian approximation to functional integral.
The Morse function coming from Kähler action in Minkowskian as imaginary contribution
analogous to that appearing in path integral could be critical and allow non-definite signature
in principle. In fact this is expected by the defining properties of Morse function.

3. The almost 2-dimensionality implied by strong form of holography suggests that the interior
degrees of freedom of 3-surface can be regarded almost gauge degrees of freedom and that this
relates directly to generalised conformal symmetries associated with symplectic isometries of
WCW . These degrees of freedom are not critical in the sense inspired by G/H decomposition.
The only plausible interaction seems to be that these degrees of freedom correspond to
deformations in zero modes.

Both the super-symmetry of DK and conservation Dirac Noether currents for Kähler-Dirac
action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are character-
ized by the matrix defined by the second derivatives of the potential function and the rank of
system classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to
the complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies,
when the numbers of behavior and control variables are small (smaller than 5). In the recent
case the situation is infinite-dimensional and the criticality conditions give additional field
equations as existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy
of criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection
the matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the

matrix (Jαk + J α
k )(Jβl + J β

l ) vanishes by the antisymmetry Jαk = −J α
k .
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The formulation of quantal version of Equivalence Principle (EP) in string picture demon-
strates that the conservation of of fermionic Noether currents defining gravitational four-
momentum and other Poincare quantum numbers requires that the deformation of the
Kähler-Dirac equation obtained by replacing Kähler-Dirac gamma matrices with their defor-
mations is also satisfied. Holomorphy can guarantee this. The original wrong conclusion was
that this condition is equivalent with much stronger condition stating the vanishing of the
second variation of Kähler action, which it is not. There is analogy for this: massless Dirac
equation does not imply the vanishing of four-momentum.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in
terms of the fermionic oscillator operators if the second variations defined by the infinitesi-
mal isometries vanish for the Kähler-Dirac action. For vacuum extremals the dimension of
the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which
this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type II1. Also the
conserved charges associated with super-symplectic and Super Kac-Moody algebras would
require infinite-dimensional critical manifold defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the
hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [K17] with degrees of freedom
below the measurement resolution identified as gauge degrees of freedom.

5. Does this criticality have anything to do with the criticality against the phase transitions
changing the value of Planck constant? If the geodesic sphere S2

I for which induced Kähler
form vanishes corresponds to the back of the CP2 book (as one expects), this could be the
case. The homologically non-trivial geodesic sphere S12II is as far as possible from vacuum
extremals. If it corresponds to the back of CP2 book, cosmic strings would be quantum
critical with respect to phase transition changing Planck constant. They cannot however
correspond to preferred extremals.

4.5.3 Preferred Extremal Property As Classical Correlate For Quantum
Criticality, Holography, And Quantum Classical Correspondence

The Noether currents assignable to the Kähler-Dirac equation are conserved only if the first vari-
ation of the Kähler-Dirac operator DK defined by Kähler action vanishes. This is equivalent with
the vanishing of the second variation of Kähler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly

to quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago! The question whether these extremals correspond to absolute
minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations repre-
senting dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the
rank of the matrix defined by the second derivatives of potential function defines a hierarchy of
criticalities with the tip of bifurcation set of the catastrophe representing the complete vanishing
of this matrix. In the recent case this theory would be generalized to infinite-dimensional context.
There are three kind of variables now but quantum classical correspondence (holography) allows
to reduce the types of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the “tip” of the multi-furcation set).
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2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l

with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kähler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D “causal boundary” X2 of X3(X2) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X3

l involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [B6] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to
lead “to the edge”. The challenge is to understand how system ends up to a critical state,
which by definition is unstable. Mechanisms for this have been discovered and based on
phase transitions occurring in a wide range of parameters so that critical point extends to
a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism
of this kind. The criticality for the preferred extremals of Kähler action would mean that
classically all systems are critical in well-defined sense and the question is only about the
degree of criticality. Evolution could be seen as a process leading gradually to increasingly
critical systems. One must however distinguish between the criticality associated with the
preferred extremals of Kähler action and the criticality caused by the spin glass like energy
landscape like structure for the space of the maxima of Kähler function.

4.5.4 Quantum Criticality And Electroweak Symmetries

In the following quantum criticali and electroweak symmetries are discussed for Kähler-Dirac ac-
tion.

What does one mean with quantum criticality?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means math-
ematically is however far from clear and one can imagine several meanings for it.

1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of the
imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which
in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of
criticality.
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2. At more technical level one would expect criticality to corresponds to deformations of a given
preferred extremal defining a vanishing second variation of Kähler Khler function or Kähler
action.

(a) For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would be
naturally zero modes not contribution to Kähler metric of WCW but appearing as
parameters in it. The bevavior variables correspond to quantum fluctuating degrees of
freedom and according to catastrophe theory a big change can in quantum fluctuating
degrees of freedom at criticality for zero modes. This would be control of quantum
state by varying classical variables. Cusp catastrophe is standard example of this. One
can imagined also a situation in which the roles of zero modes and behavior variables
change and big jump in the values of zero modes is induced by small variation in behavior
variables. This would mean quantum control of classical variables.

(b) Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have max-
imum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional
model is provided by the catastrophe theory of Thom [A51]. Cusp catastrophe (see
http://tinyurl.com/yddpfdgo) [A3] is the simplest catastrophe one can think of, and
here the folds of cusp where discontinuous jump occurs correspond to criticality with
respect to one control variable and the tip to criticality with respect to both control
variables.

3. Quantum criticality makes sense also for Kähler action.

(a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of
CD. The non-determinism of Kähler action allows the possibility of having several space-
time sheets connecting the ends of space-time surface but the conditions that classical
charges are same for them reduces this number so that it could be finite. Quantum
criticality in this sense implies non-determinism analogous to that of critical systems
since preferred extremals can co-incide and suffer this kind of bifurcation in the interior
of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and
the integer n in heff = n×h [K17] corresponds to the number of degenerate space-time
sheets with same Kähler action and conserved classical charges.

(b) Also now one expects a hierarchy of criticalitiesandsince criticality and conformal in-
variance are closely related, a natural conjecture is that the fractal hierarchy of sub-
algebras of conformal algebra isomorphic to conformal algebra itself and having confor-
mal weights coming as multiples of n corresponds to the hierarchy of Planck constants.
This hierarchy would define a hierarchy of symmetry breakings in the sense that only
the sub-algebra would act as gauge symmetries.

(c) The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary R+ × S2 which are confor-
mal transformations of sphere S2 with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

4. I have discussed what criticality could mean for Kähler-Dirac action [K62].

(a) I have conjectured that it leads to the existence of additional conserved currents defined
by the variations which do not affect the value of Kähler action. These arguments are
far from being mathematically rigorous and the recent view about the solutions of the
Kähler-Dirac equation predicting that the spinor modes are restricted to 2-D string
world sheets requires a modification of these arguments.

http://tinyurl.com/yddpfdgo
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(b) The basic challenge is to understand the mechanism making this kind of currents con-
served: the same challenge is met already in the case of isometries since imbedding space
coordinates appear as parameters in Kähler-Dirac action. The existence of conserved
currents does not actually require the vanishing of the second variation of Kähler action
as claimed earlier. It is enough that the first variation of the canonical momentum
densities contracted with the imbedding space gamma matrices annihilates the spinor
mode. Situation is analogous to massless Dirac equation: it does not imply the van-
ishing of four-momentum, only the vanishing of mass. Hence conserved currents are
obtained also outside the quantum criticality.

(c) It is far from obvious that these conditions can be satisfied. The localization of the
spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generaic
case that em charge is well-defined for spinor modes implies holomorphy allowing to
formulate current conservation for currents associated with the deformations of the
space-time surface for second quantized induced spinor field. The crux is that the
deformation respects the holomorphy properties of the modified gamma matrices at
string world sheet and thus does not mix Γz with Γz. The deformation of Γz has only z-
component and also annihilates the holomorphic spinor. This mechanism is possible only
for Kähler-Dirac action since the Kähler-Dirac gamma matrices in directions orthogonal
to the 2-surface must vanish and this is not possible for other actions. This also means
that energy momentum tensor has rank 2 as matrix. Cosmic string solutions are an
exception since in this case CP2 projection of space-time surface is 2-D and conditions
guaranteing vanishing of classical W fields can be satisfied.

In the following these arguments are formulated more precisely. The unexpected result
is that critical deformations induce conformal scalings of the modified metric and electro-weak
gauge transformations of the induced spinor connection at X2. Therefore holomorphy brings in
the Kac-Moody symmetries associated with isometries of H (gravitation and color gauge group)
and quantum criticality those associated with the holonomies of H (electro-weak-gauge group) as
additional symmetries.

The variation of modes of the induced spinor field in a variation of space-time surface
respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface respecting
the preferred extremal property. The deformation must be such that the deformed Kähler-Dirac
operator D annihilates the modified mode. By writing explicitly the variation of the Kähler-Dirac
action (the action vanishes by Kähler-Dirac equation) one obtains deformations and requiring its
vanishing one obtains

δΨ = D−1(δD)Ψ . (4.5.5)

D−1 is the inverse of the Kähler-Dirac operator defining the analog of Dirac propagator and δD
defines vertex completely analogous to γkδAk in gauge theory context. The functional integral
over preferred extremals can be carried out perturbatively by expressing δD in terms of δhk and
one obtains stringy perturbation theory around X2 associated with the preferred extremal defining
maximum of Kähler function in Euclidian region and extremum of Kähler action in Minkowskian
region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions
at the ends of braid strands located at partonic 2-surfaces and representing intersections of string
world sheets and partonic 2-surfaces at the light-like boundaries of CDs. δD- or more precisely, its
partial derivatives with respect to functional integration variables - appear atthe vertices located
anywhere in the interior of X2 with outgoing fermions at braid ends. Bosonic propagators are
replaced with correlation functions for δhk. Fermionic propagator is defined by D−1.

After 35 years or hard work this provides for the first time a reasonably explicit formula
for the N-point functions of fermions. This is enough since by bosonic emergence these N-point
functions define the basic building blocks of the scattering amplitudes. Note that bosonic emergence
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states that bosons corresponds to wormhole contacts with fermion and anti-fermion at the opposite
wormhole throats.

What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and partonic
2-surfaces. The problematic part seems to be the variation of the Kähler-Dirac operator since it
involves gradient. One cannot require that covariant derivative remains invariant since this would
require that the components of the induced spinor connection remain invariant and this is quite
too restrictive condition. Right handed neutrino solutions de-localized into entire X2 are however
an exception since they have no electro-weak gauge couplings and in this case the condition is
obvious: Kähler-Dirac gamma matrices suffer a local scaling for critical deformations:

δΓµ = Λ(x)Γµ . (4.5.6)

This guarantees that the Kähler-Dirac operator D is mapped to ΛD and still annihilates the modes
of νR labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is
obvious. Ψ suffers an electro-weak gauge transformation as does also the induced spinor connection
so that Dµ is not affected at all. Criticality condition states that the deformation of the space-time
surfaces induces a conformal scaling of Γµ at X2. It might be possible to continue this conformal
scaling of the entire space-time sheet but this might be not necessary and this would mean that all
critical deformations induced conformal transformations of the effective metric of the space-time
surface defined by {Γµ,Γν} = 2Gµν . Thus it seems that effective metric is indeed central concept
(recall that if the conjectured quaternionic structure is associated with the effective metric, it might
be possible to avoid problem related to the Minkowskian signature in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of the
induced spinor field would be mixed together in the infinitesimal deformation besides infinitesimal
electroweak gauge transformation, which is same for all modes. This would extend electroweak
gauge symmetry. Kähler-Dirac equation holds true also for these deformations. One might wonder
whether the conjectured dynamically generated gauge symmetries assignable to finite measurement
resolution could be generated in this manner.

The infinitesimal generator of a critical deformation JM can be expressed as tensor product of
matrix AM acting in the space of zero modes and of a generator of infinitesimal electro-weak gauge
transformation TM (x) acting in the same manner on all modes: JM = AM ⊗ TM (x). AM is a spa-
tially constant matrix and TM (x) decomposes to a direct sum of left- and right-handed SU(2)×U(1)
Lie-algebra generators. Left-handed Lie-algebra generator can be regarded as a quaternion and
right handed as a complex number. One can speak of a direct sum of left-handed local quater-
nion qM,L and right-handed local complex number cM,R. The commutator [JM , JN ] is given by
[JM , JN ] = [AM , AN ]⊗{TM (x), TN (x)}+{AM , AN}⊗ [TM (x), TN (x)]. One has {TM (x), TN (x)} =
{qM,L(x), qN,L(x)} ⊕ {cM,R(x), cN,R(x)} and [TM (x), TN (x)] = [qM,L(x), qN,L(x)]. The commuta-
tors make sense also for more general gauge group but quaternion/complex number property might
have some deeper role.

Thus the critical deformations would induce conformal scalings of the effective metric and
dynamical electro-weak gauge transformations. Electro-weak gauge symmetry would be a dynam-
ical symmetry restricted to string world sheets and partonic 2-surfaces rather than acting at the
entire space-time surface. For 4-D de-localized right-handed neutrino modes the conformal scalings
of the effective metric are analogous to the conformal transformations of M4 for N = 4 SYMs.
Also ordinary conformal symmetries of M4 could be present for string world sheets and could act
as symmetries of generalized Feynman graphs since even virtual wormhole throats are massless.
An interesting question is whether the conformal invariance associated with the effective metric is
the analog of dual conformal invariance in N = 4 theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents.
By using standard Noetherian formulas one can write

Jµi = ΨΓµδiΨ + δiΨΓµΨ . (4.5.7)
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Here δΨi denotes derivative of the variation with respect to a group parameter labeled by i. Since
δΨi reduces to an infinitesimal gauge transformation of Ψ induced by deformation, these currents
are the analogs of gauge currents. The integrals of these currents along the braid strands at the
ends of string world sheets define the analogs of gauge charges. The interpretation as Kac-Moody
charges is also very attractive and I have proposed that the 2-D Hodge duals of gauge potentials
could be identified as Kac-Moody currents. If so, the 2-D Hodge duals of J would define the
quantum analogs of dynamical electro-weak gauge fields and Kac-Moody charge could be also
seen as non-integral phase factor associated with the braid strand in Abelian approximation (the
interpretation in terms of finite measurement resolution is discussed earlier).

One can also define super currents by replacing Ψ or Ψ by a particular mode of the induced
spinor field as well as c-number valued currents by performing the replacement for both Ψ or Ψ.
As expected, one obtains a super-conformal algebra with all modes of induced spinor fields acting
as generators of super-symmetries restricted to 2-D surfaces. The number of the charges which
do not annihilate physical states as also the effective number of fermionic modes could be finite
and this would suggest that the integer N for the supersymmetry in question is finite. This would
conform with the earlier proposal inspired by the notion of finite measurement resolution implying
the replacement of the partonic 2-surfaces with collections of braid ends.

Note that Kac-Moody charges might be associated with “long” braid strands connecting
different wormhole throats as well as short braid strands connecting opposite throats of wormhole
contacts. Both kinds of charges would appear in the theory.

What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge
transformations are induced by the deformations of preferred extremals and a good guess is that
they correspond to holomorphic gauge group elements as in theories with Kac-Moody symmetry.
What is the physical character of this dynamical gauge symmetry?

1. Do the gauge charges vanish? Do they annihilate the physical states? Do only their positive
energy parts annihilate the states so that one has a situation characteristic for the represen-
tation of Kac-Moody algebras. Or could some of these charges be analogous to the gauge
charges associated with the constant gauge transformations in gauge theories and be there-
fore non-vanishing in the absence of confinement. Now one has electro-weak gauge charges
and these should be non-vanishing. Can one assign them to deformations with a vanishing
conformal weight and the remaining deformations to those with non-vanishing conformal
weight and acting like Kac-Moody generators on the physical states?

2. The simplest option is that the critical Kac-Moody charges/gauge charges with non-vanishing
positive conformal weight annihilate the physical states. Critical degrees of freedom would not
disappear but make their presence known via the states labelled by different gauge charges
assignable to critical deformations with vanishing conformal weight. Note that constant
gauge transformations can be said to break the gauge symmetry also in the ordinary gauge
theories unless one has confinement.

3. The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak Kac-
Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings in which
the number of Kac-Moody generators not annihilating the physical states gradually increases
as also modes with a higher value of positive conformal weight fail to annihilate the physical
state?

The only manner to have a hierarchy of algebras is by assuming that only the generators
satisfying n mod N = 0 define the sub-Kac-Moody algebra annihilating the physical states
so that the generators with n mod N 6= 0 would define the analogs of gauge charges. I
have suggested for long time ago the relevance of kind of fractal hierarchy of Kac-Moody and
Super-Virasoro algebras for TGD but failed to imagine any concrete realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in the
sense that the actions of generators Qn and Qn+kN are identical. This would correspond to
periodic boundary conditions in the space of conformal weights. The notion of finite mea-
surement resolution suggests that the number of independent fermionic oscillator operators
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is proportional to the number of braid ends so that an effective reduction to a finite algebra
is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about
electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives
rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian generators
associated with gravitation also SU(3) generators associated with color symmetries. Vanishing
second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by
decomposing it to an integral over zero modes for which deformations of X4 induce only an electro-
weak gauge transformation of the induced spinor field and to an integral over moduli corresponding
to the remaining degrees of freedom.

4.5.5 The Emergence Of Yangian Symmetry And Gauge Potentials As
Duals Of Kac-Moody Currents

Yangian symmetry plays a key role in N = 4 super-symmetric gauge theories. What is special
in Yangian symmetry is that the algebra contains also multi-local generators. In TGD framework
multi-locality would naturally correspond to that with respect to partonic 2-surfaces and string
world sheets and the proposal has been that the Super-Kac-Moody algebras assignable to string
worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B23]. Yangian is generated
by two kinds of generators JA and QA by a repeated formation of commutators. The number of
commutations tells the integer characterizing the multi-locality and provides the Yangian algebra
with grading by natural numbers. Witten describes a 2-dimensional QFT like situation in which
one has 2-D situation and Kac-Moody currents assignable to real axis define the Kac-Moody
charges as integrals in the usual manner. It is also assumed that the gauge potentials defined by
the 1-form associated with the Kac-Moody current define a flat connection:

∂µj
A
ν − ∂νjAν + [jAµ , j

A
ν ] = 0 . (4.5.8)

This condition guarantees that the generators of Yangian are conserved charges. One can however
consider alternative manners to obtain the conservation.

1. The generators of first kind - call them JA - are just the conserved Kac-Moody charges. The
formula is given by

JA =

∫ ∞
−∞

dxjA0(x, t) . (4.5.9)

2. The generators of second kind contain bi-local part. They are convolutions of generators of
first kind associated with different points of string described as real axis. In the basic formula
one has integration over the point of real axis.

QA = fABC

∫ ∞
−∞

dx

∫ ∞
x

dyjB0(x, t)jC0(y, t)− 2

∫ ∞
−∞

jAx dx . (4.5.10)

These charges are indeed conserved if the curvature form is vanishing as a little calculation
shows.

How to generalize this to the recent context?
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1. The Kac-Moody charges would be associated with the braid strands connecting two par-
tonic 2-surfaces - Strands would be located either at the space-like 3-surfaces at the ends
of the space-time surface or at light-like 3-surfaces connecting the ends. Kähler-Dirac equa-
tion would define Super-Kac-Moody charges as standard Noether charges. Super charges
would be obtained by replacing the second quantized spinor field or its conjugate in the
fermionic bilinear by particular mode of the spinor field. By replacing both spinor field and
its conjugate by its mode one would obtain a conserved c-number charge corresponding to an
anti-commutator of two fermionic super-charges. The convolution involving double integral
is however not number theoretically attractive whereas single 1-D integrals might make sense.

2. An encouraging observation is that the Hodge dual of the Kac-Moody current defines the ana-
log of gauge potential and exponents of the conserved Kac-Moody charges could be identified
as analogs for the non-integrable phase factors for the components of this gauge potential.
This identification is precise only in the approximation that generators commute since only in
this case the ordered integral P (exp(i

∫
Adx)) reduces to P (exp(i

∫
Adx)).Partonic 2-surfaces

connected by braid strand would be analogous to nearby points of space-time in its discretiza-
tion implying that Abelian approximation works. This conforms with the vision about finite
measurement resolution as discretization in terms partonic 2-surfaces and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms of gauge
symmetries. For isometries one would obtain color gauge potentials and the analogs of
gauge potentials for graviton field (in TGD framework the contraction with M4 vierbein
would transform tensor field to 4 vector fields). For Kac-Moody generators corresponding to
holonomies one would obtain electroweak gauge potentials. Note that super-charges would
give rise to a collection of spartners of gauge potentials automatically. One would obtain a
badly broken SUSY with very large value of N defined by the number of spinor modes as
indeed speculated earlier [K19].

3. The condition that the gauge field defined by 1-forms associated with the Kac-Moody currents
are trivial looks unphysical since it would give rise to the analog of topological QFT with
gauge potentials defined by the Kac-Moody charges. For the duals of Kac-Moody currents
defining gauge potentials only covariant divergence vanishes implying that curvature form is

Fαβ = εαβ [jµ, j
µ] , (4.5.11)

so that the situation does not reduce to topological QFT unless the induced metric is diagonal.
This is not the case in general for string world sheets.

4. It seems however that there is no need to assume that jµ defines a flat connection. Witten
mentions that although the discretization in the definition of JA does not seem to be possible,
it makes sense for QA in the case of G = SU(N) for any representation of G. For general
G and its general representation there exists no satisfactory definition of Q. For certain
representations, such as the fundamental representation of SU(N), the definition of QA is
especially simple. One just takes the bi-local part of the previous formula:

QA = fABC
∑
i<j

JBi J
C
j . (4.5.12)

What is remarkable that in this formula the summation need not refer to a discretized point
of braid but to braid strands ordered by the label i by requiring that they form a connected
polygon. Therefore the definition of JA could be just as above.

5. This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian would
be identified as the algebra generated by the logarithms of non-integrable phase factors in
Abelian approximation assigned with pairs of partonic 2-surfaces defined in terms of Kac-
Moody currents assigned with the Kähler-Dirac action. Partonic 2-surfaces connected by
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braid strand would be analogous to nearby points of space-time in its discretization. This
would fit nicely with the vision about finite measurement resolution as discretization in terms
partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

[
JA, JB

]
= fABC JC ,

[
JA, QB

]
= fABC QC . (4.5.13)

plus the rather complex Serre relations described in [B23].

4.6 Kähler-Dirac Equation And Super-Symmetries

The previous considerations concerning super-conformal symmetries and space-time SUSY have
been based on general arguments. The new vision about preferred extremals and Kähler-Dirac
equation however leads to a rather detailed understanding of super-conformal symmetries at the
level of field equations and is bound to modify the existing vision about super-conformal symme-
tries.

Whether TGD predicts some variant of space-time SUSY or not has been a long-standing
issue: the reason is that TGD does not allow Majorana spinors since fermion number conservation
is exact. The more precise formulation of field equations made possible by the realization that
spinor modes are localized at string world sheets allows to conclude that the analog of broken
N = 8 SUSY is predicted at parton level and that right-handed neutrino generates the minimally
broken N = 2 sub-SUSY.

One important outcome of criticality is the identification of gauge potentials as duals of Kac-
Moody currents at the boundaries of string world sheets: quantum gauge potentials are defined
only where they are needed that is string curves defining the non-integrable phase factors. This
gives also rise to the realization of the conjectured Yangian in terms of the Kac-Moody charges
and commutators in accordance with the earlier conjecture.

4.6.1 Super-Conformal Symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD allows
two kinds of super-conformal symmetries.

1. The first super-conformal symmetry is associated with δM4
±×CP2 and corresponds to sym-

plectic symmetries of δM4
±×CP2. The reason for extension of conformal symmetries is metric

2-dimensionality of the light-like boundary δM4
± defining upper/lower boundary of causal di-

amond (CD). This super-conformal symmetry is something new and corresponds to replacing
finite-dimensional Lie-group G for Kac-Moody symmetry with infinite-dimensional symplec-
tic group. The light-like radial coordinate of δM4

± takes the role of the real part of complex
coordinate z for ordinary conformal symmetry. Together with complex coordinate of S2 it
defines 3-D restriction of Hamilton-Jacobi variant of 4-D super-conformal symmetries. One
can continue the conformal symmetries from light-cone boundary to CD by forming a slicing
by parallel copies of δM4

±. There are two possible slicings corresponding to the choices δM4
+

and δM4
− assignable to the upper and lower boundaries of CD. These two choices correspond

to two arrows of geometric time for the basis of zero energy states in ZEO.

2. Super-symplectic degrees of freedom determine the electroweak and color quantum numbers
of elementary particles. Bosonic emergence implies that ground states assignable to par-
tonic 2-surfaces correspond to partial waves in δM4

± and one obtains color partial waves
in particular. These partial waves correspond to the solutions for the Dirac equation in
imbedding space and the correlation between color and electroweak quantum numbers is not
quite correct. Super-Kac-Moody generators give the compensating color for massless states
obtained from tachyonic ground states guaranteeing that standard correlation is obtained.
Super-symplectic degrees are therefore directly visible in particle spectrum. One can say
that at the point-like limit the WCW spinors reduce to tensor products of imbedding space
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spinors assignable to the center of mass degrees of freedom for the partonic 2-surfaces defining
wormhole throats.

I have proposed a physical interpretation of super-symplectic vibrational degrees of freedom
in terms of degrees of freedom assignable to non-perturbative QCD. These degrees of freedom
would be responsible for most of the baryon masses but their theoretical understanding is
lacking in QCD framework.

3. The second super-conformal symmetry is assigned light-like 3-surfaces and to the isometries
and holonomies of the imbedding space and is analogous to the super-Kac-Moody symmetry
of string models. Kac-Moody symmetries could be assigned to the light-like deformations
of light-like 3-surfaces. Isometries give tensor factor E2 × SU(3) and holonomies factor
SU(2)L × U(1). Altogether one has 5 tensor factors to super-conformal algebra. That the
number is just five is essential for the success p-adic mass calculations [K76, K28].

The construction of solutions of the Kähler-Dirac equation suggests strongly that the fermionic
representation of the Super-Kac-Moody algebra can be assigned as conserved charges associ-
ated with the space-like braid strands at both the 3-D space-like ends of space-time surfaces
and with the light-like (or space-like with a small deformation) associated with the light-like
3-surfaces. The extension to Yangian algebra involving higher multi-linears of super-Kac
Moody generators is also highly suggestive. These charges would be non-local and assignable
to several wormhole contacts simultaneously. The ends of braids would correspond points of
partonic 2-surfaces defining a discretization of the partonic 2-surface having interpretation
in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to gravitation.
The duals of the currents giving rise to Kac-Moody charges would define the counterparts
of gauge potentials and the conserved Kac-Moody charges would define the counterparts of
non-integrable phase factors in gauge theories. The higher Yangian charges would define
generalization of non-integrable phase factors. This would suggest a rather direct connection
with the twistorial program for calculating the scattering amplitudes implies also by zero
energy ontology.

Quantization recipes have worked in the case of super-string models and one can ask whether
the application of quantization to the coefficients of powers of complex coordinates or Hamilton-
Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal symmetries
and give detailed information about the representations of the Kac-Moody algebra too.

4.6.2 WCW Geometry And Super-Conformal Symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps of
progress induce to it only small modifications if any.

1. Kähler geometry is forced by the condition that hermitian conjugation allows geometrization.
Kähler function is given by the Kähler action coming from space-time regions with Euclid-
ian signature of the induced metric identifiable as lines of generalized Feynman diagrams.
Minkowskian regions give imaginary contribution identifiable as the analog of Morse func-
tion and implying interference effects and stationary phase approximation. The vision about
quantum TGD as almost topological QFT inspires the proposal that Kähler action reduces
to 3-D terms reducing to Chern-Simons terms by the weak form of electric-magnetic duality.
The recent proposal for preferred extremals is consistent with this property realizing also
holography implied by general coordinate invariance. Strong form of general coordinate in-
variance implying effective 2-dimensionality in turn suggests that Kähler action is expressible
string world sheets and possibly also areas of partonic 2-surfaces.

2. The complexified gamma matrices of WCW come as hermitian conjugate pairs and anti-
commute to the Kähler metric of WCW . Also bosonic generators of symplectic transforma-
tions of δM4

± × CP2 a assumed to act as isometries of WCW geometry can be complexified
and appear as similar pairs. The action of isometry generators co-incides with that of sym-
plectic generators at partonic 2-surfaces and string world sheets but elsewhere inside the
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space-time surface it is expected to be deformed from the symplectic action. The super-
conformal transformations of δM4

± × CP2 acting on the light-like radial coordinate of δM4
±

act as gauge symmetries of the geometry meaning that the corresponding WCW vector fields
have zero norm.

3. WCW geometry has also zero modes which by definition do not contribute to WCW metric
expect possibly by the dependence of the elements of WCW metric on zero modes through
a conformal factor. In particular, induced CP2 Kähler form and its analog for sphere rM =
constant of light cone boundary are symplectic invariants, and one can define an infinite
number of zero modes as invariants defined by Kähler fluxes over partonic 2-surfaces and
string world sheets. This requires however the slicing of CD parallel copies of δM4

+ or δM4
−.

The physical interpretation of these non-quantum fluctuating degrees of freedom is as classical
variables necessary for the interpretation of quantum measurement theory. Classical variable
would metaphorically correspond the position of the pointer of the measurement instrument.

4. The construction receives a strong philosophical inspiration from the geometry of loop spaces.
Loop spaces allow a unique Kähler geometry with maximal isometry group identifiable as
Kac-Moody group. The reason is that otherwise Riemann connection does not exist. The only
problem is that curvature scalar diverges since the Riemann tensor is by constant curvature
property proportional to the metric. In 3-D case one would have union of constant curvature
spaces labelled by zero modes and the situation is expected to be even more restrictive.
The conjecture indeed is that WCW geometry exists only for H = M4 × CP2: infinite-D
Kähler geometric existence and therefore physics would be unique. One can also hope that
Ricci scalar is finite and therefore zero by the constant curvature property so that Einstein’s
equations are satisfied.

5. The matrix elements of WCW Kähler metric are given in terms of the anti-commutators of the
fermionic Noether super-charges associated with symplectic isometry currents. A given mode
of induced spinor field characterized by imbedding space chirality (quark or lepton), by spin
and weak spin plus conformal weight n. If the super-conformal transformations for string
modes act gauge transformations only the spinor modes with vanishing conformal weight
correspond to non-zero modes of the WCW metric and the situation reduces essentially to
the analog of N = 8 SUSY.

The WCW Hamiltonians generating symplectic isometries correspond to the Hamiltonians
spanning the symplectic group of δM4

± × CP2. One can say that the space of quantum
fluctuating degrees of freedom is this symplectic group of δM4

± × CP2 or its subgroup or
coset space: this must have very deep implications for the structure of the quantum TGD.

An interesting possibility is that the radial conformal weights of the symplectic algebra are
linear combinations of the zeros of Riemann Zeta with integer coefficients. Also this option
allows to realize the hierarchy of super-symplectic conformal symmetry breakings in terms
of sub-algebras isomorphic to the entire super-symplectic algebra. WCW would have fractal
structure corresponding to a hierarchy of quantum criticalities.

6. The localization of the induced spinors to string world sheets means that the super-symplectic
Noether charges are associated with strings connecting partonic 2-surfaces. The physically
obvious fact that given partonic surface can be accompanied by an arbitrary number of
strings, forces a generalization of the super-symplectic algebra to a Yangian containing infinite
number of n-local variants of various super-symplectic Noether charges. For instance, four
-momentum is accompanied by multi-stringy variants involving four-momentum PA0 and
angular momentum generators. At the first level of the hierarchy one has PA1 = fABCP

B
0 ⊗JC .

This hierarchy might play crucial role in understanding of the four-momenta of bound states.

7. Zero energy ontology brings in additional delicacies. Basic objects are now unions of partonic
2-surfaces at the ends of CD. One can generalize the expressions for the isometry genera-
tors in a straightforward manner by requiring that given isometry restricts to a symplectic
transformation at partonic 2-surfaces and string world sheets.

8. One could criticize the effective metric 2-dimensionality forced by the general consistency
arguments as something non-physical. The WCW Hamiltonians are expressed using only
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the data at partonic 2-surfaces and string string world sheets: this includes also 4-D tangent
space data via the weak form of electric-magnetic duality so that one has only effective 2-
dimensionality. Obviously WCW geometry must huge large gauge symmetries besides zero
modes. The hierarchy of super-symplectic symmetries indeed represent gauge symmetries of
this kind.

Effective 2-dimensionality realizing strong form of holography in turn is induced by the
strong form of general coordinate invariance. Light-like 3-surfaces at which the signature of
the induced metric changes must be equivalent with the 3-D space-like ends of space-time
surfaces at the light-boundaries of space-time surfaces as far as WCW geometry is considered.
This requires that the data from their 2-D intersections defining partonic 2-surfaces should
dictate the WCW geometry. Note however that Super-Kac-Moody charges giving information
about the interiors of 3-surfaces appear in the construction of the physical states.

4.6.3 The Relationship Between Inertial Gravitational Masses

The relationship between inertial and gravitational masses and Equivalence Principle have been
on of the longstanding problems in TGD. Not surprisingly, the realization how GRT space-time
relates to the many-sheeted space-time of TGD finally allowed to solve the problem.

ZEO and non-conservation of Poincare charges in Poincare invariant theory of gravi-
tation

In positive energy ontology the Poincare invarance of TGD is in sharpt contrast with the fact
that GRT based cosmology predicts non-conservation of Poincare charges (as a matter fact, the
definition of Poincare charges is very questionable for general solutions of field equations).

In zero energy ontology (ZEO) all conserved (that is Noether-) charges of the Universe
vanish identically and their densities should vanish in scales below the scale defining the scale for
observations and assignable to causal diamond (CD). This observation allows to imagine a ways
out of what seems to be a conflict of Poincare invariance with cosmological facts.

ZEO would explain the local non-conservation of average energies and other conserved quan-
tum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations. Classical
gravitation should have a thermodynamical description if this interpretation is correct. The av-
erage values of the quantum numbers assignable to a space-time sheet would depend on the size
of CD and possibly also its location in M4. If the temporal distance between the tips of CD
is interpreted as a quantized variant of cosmic time, the non-conservation of energy-momentum
defined in this manner follows. One can say that conservation laws hold only true in given scale
defined by the largest CD involved.

Equivalence Principle at quantum level

The interpretation of EP at quantum level has developed slowly and the recent view is that it
reduces to quantum classical correspondence meaning that the classical charges of Kähler action
can be identified with eigen values of quantal charges associated with Kähler-Dirac action.

1. At quantum level I have proposed coset representations for the pair of super-symplectic
algebras assignable to the light-like boundaries of CD and the Super Kac-Moody algebra
assignable to the light-like 3-surfaces defining the orbits of partonic 2-surfaces as realization
of EP. For coset representation the differences of super-conformal generators would annihilate
the physical states so that one can argue that the corresponding four-momenta are identical.
One could even say that one obtains coset representation for the “vibrational” parts of the
super-conformal algebras in question. It is now clear that this idea does not work. Note
however that coset representations occur naturally for the subalgebras of symplectic algebra
and Super Kac-Moody algebra and are naturally induced by finite measurement resolution.

2. The most recent view (2014) about understanding how EP emerges in TGD is described
in [K57] and relies heavily on superconformal invariance and a detailed realisation of ZEO
at quantum level. In this approach EP corresponds to quantum classical correspondence
(QCC): four-momentum identified as classical conserved Noether charge for space-time sheets
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associated with Käbler action is identical with quantal four-momentum assignable to the
representations of super-symplectic and super Kac-Moody algebras as in string models and
having a realisation in ZEO in terms of wave functions in the space of causal diamonds (CDs).

3. The latest realization is that the eigenvalues of quantal four-momentum can be identified as
eigenvalues of the four-momentum operator assignable to the Kähler-Dirac equation. This
realisation seems to be consistent with the p-adic mass calculations requiring that the super-
conformal algebra acts in the tensor product of 5 tensor factors.

Equivalence Principle at classical level

How Einstein’s equations and General Relativity in long length scales emerges from TGD has been
a long-standing interpretational problem of TGD.

The first proposal making sense even when one does not assume ZEO is that vacuum ex-
tremals are only approximate representations of the physical situation and that small fluctuations
around them give rise to an inertial four-momentum identifiable as gravitational four-momentum
identifiable in terms of Einstein tensor. EP would hold true in the sense that the average grav-
itational four-momentum would be determined by the Einstein tensor assignable to the vacuum
extremal. This interpretation does not however take into account the many-sheeted character of
TGD spacetime and is therefore questionable.

The resolution of the problem came from the realization that GRT is only an effective theory
obtained by endowing M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets (see Fig. http://

tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ?? in the appendix of this book).

2. This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would correspond
to that of General Relativity. This resolves long standing issues relating to the interpretation
of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
effective metric. The conjecture vanishing of divergence of Khler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in zero
energy ontology (ZEO), in which various conserved charges are length dependent and defined
separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of QCC
rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for
Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein’s equations
with cosmological term hold true. This is the case also now but one can consider also more
general solutions in which one has two cosmological constants which are not genuine constants
anymore [K78].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color charges and
the charges defined by the conserved currents associated with color isometries would define “iner-
tial” color charges. Since the induced color fields are proportional to color Hamiltonians multiplied
by Kähler form they vanish identically for vacuum extremals in accordance with “gravitational”
color confinement.

http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core element of
p-adic mass calculations.

1. The first thing that one can get worried about relates to the extension of conformal sym-
metries. If the conformal symmetries generalize to D = 4, how can one take seriously the
results of p-adic mass calculations based on 2-D conformal invariance? There is no reason
to worry. The reduction of the conformal invariance to 2-D one for the preferred extremals
takes care of this problem. This however requires that the fermionic contributions assignable
to string world sheets and/or partonic 2-surfaces - Super- Kac-Moody contributions - should
dictate the elementary particle masses. For hadrons also symplectic contributions should be
present. This is a valuable hint in attempts to identify the mathematical structure in more
detail.

2. ZEO suggests that all particles, even virtual ones correspond to massless wormhole throats
carrying fermions. As a consequence, twistor approach would work and the kinematical
constraints to vertices would allow the cancellation of divergences. This would suggest that
the p-adic thermal expectation value is for the longitudinal M2 momentum squared (the
definition of CD selects M1 ⊂ M2 ⊂ M4 as also does number theoretic vision). Also
propagator would be determined by M2 momentum. Lorentz invariance would be obtained
by integration of the moduli for CD including also Lorentz boosts of CD.

3. In the original approach one allows states with arbitrary large values of L0 as physical states.
Usually one would require that L0 annihilates the states. In the calculations however mass
squared was assumed to be proportional L0 apart from vacuum contribution. This is a
questionable assumption. ZEO suggests that total mass squared vanishes and that one can
decompose mass squared to a sum of longitudinal and transversal parts. If one can do the
same decomposition to longitudinal and transverse parts also for the Super Virasoro algebra
then one can calculate longitudinal mass squared as a p-adic thermal expectation in the
transversal super-Virasoro algebra and only states with L0 = 0 would contribute and one
would have conformal invariance in the standard sense.

4. In the original approach the assumption motivated by Lorentz invariance has been that mass
squared is replaced with conformal weight in thermodynamics, and that one first calculates
the thermal average of the conformal weight and then equates it with mass squared. This
assumption is somewhat ad hoc. ZEO however suggests an alternative interpretation in
which one has zero energy states for which longitudinal mass squared of positive energy state
derive from p-adic thermodynamics. Thermodynamics - or rather, its square root - would
become part of quantum theory in ZEO. M -matrix is indeed product of hermitian square root
of density matrix multiplied by unitary S-matrix and defines the entanglement coefficients
between positive and negative energy parts of zero energy state.

5. The crucial constraint is that the number of super-conformal tensor factors is N = 5: this
suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom assignable
to string world sheets is enough, when one is interested in the masses of fermions and gauge
bosons. Super-symplectic degrees of freedom can also contribute and determine the dominant
contribution to baryon masses. Should also this contribution obey p-adic thermodynamics in
the case when it is present? Or does the very fact that this contribution need not be present
mean that it is not thermal? The symplectic contribution should correspond to hadronic p-
adic length prime rather the one assignable to (say ) u quark. Hadronic p-adic mass squared
and partonic p-adic mass squared cannot be summed since primes are different. If one accepts
the basic rules [K34], longitudinal energy and momentum are additive as indeed assumed in
perturbative QCD.

6. Calculations work if the vacuum expectation value of the mass squared must be assumed to be
tachyonic. There are two options depending on whether one whether p-adic thermodynamics
gives total mass squared or longitudinal mass squared.
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(a) One could argue that the total mass squared has naturally tachyonic ground state expec-
tation since for massless extremals longitudinal momentum is light-like and transversal
momentum squared is necessary present and non-vanishing by the localization to topo-
logical light ray of finite thickness of order p-adic length scale. Transversal degrees of
freedom would be modeled with a particle in a box.

(b) If longitudinal mass squared is what is calculated, the condition would require that
transversal momentum squared is negative so that instead of plane wave like behavior
exponential damping would be required. This would conform with the localization in
transversal degrees of freedom.

4.6.4 Realization Of Space-Time SUSY In TGD

The generators of super-conformal algebras are obtained by taking fermionic currents for second
quantized fermions and replacing either fermion field or its conjugate with its particular mode. The
resulting super currents are conserved and define super charges. By replacing both fermion and
its conjugate with modes one obtains c-number valued currents. In this manner one also obtains
the analogs of super-Poincare generators labelled by the conformal weight and other spin quantum
numbers as Noether charges so that space-time SUSY is suggestive.

The super-conformal invariance in spinor modes is expected to be gauge symmetry so that
only the generators with vanishing string world sheet conformal weight create physical states.
This would leave only the conformal quantum numbers characterizing super-symplectic generators
(radial conformal weight included) under consideration and the hierarchy of its sub-algebras acting
as gauge symmetries giving rise to a hierarchy of criticalities having interpretation in terms of dark
matter.

As found in the earlier section, the proposed anti-commutation relations for fermionic os-
cillator operators at the ends of string world sheets can be formulated so that they are analogous
to those for Super Poincare algebra. The reason is that field equations assign a conserved 8-
momentum to the light-like geodesic line defining the boundary of string at the orbit of partonic
2-surface. Octonionic representation of sigma matrices making possible generalization of twistor
formalism to 8-D context is also essential. As a matter, the final justification for the analog of
space-time came from the generalization of twistor approach to 8-D context.

By counting the number of spin and weak isospin components of imbedding space spinors
satisfying massless algebraic Dirac equation one finds that broken N = 8 SUSY is the expected
space-time SUSY. N = 2 SUSY assignable to right-handed neutrino is the least broken sub-
SUSY and one is forced to consider the possibility that spartners correspond to dark matter with
heff = n× h and therefore remaining undetected in recent particle physics experiments.

Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coordinates
as a formal tool. Many mathematicians are not enthusiastic about this approach because of the
purely formal nature of anti-commuting coordinates. Also I regard them as a non-sense geometri-
cally and there is actually no need to introduce them as the following little argument shows.

Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann
algebra and the natural object replacing super-space is this Grassmann algebra with coefficients
of Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just an
ordinary space with additional algebraic structure: the mysterious anti-commuting coordinates are
not needed. To me this notion is one of the conceptual monsters created by the over-pragmatic
thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely well-
defined object mathematically, and leave space-time untouched. Linear field space is simply re-
placed with its Grassmann algebra. For non-linear field space this replacement does not work. This
allows to formulate the notion of linear super-field just in the same manner as it is done usually.

The generators of super-symmetries in super-space formulation reduce to super translations,
which anti-commute to translations. The super generators Qα and Qβ̇ of super Poincare algebra
are Weyl spinors commuting with momenta and anti-commuting to momenta:
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{Qα, Qβ̇} = 2σµ
α ˙beta

Pµ . (4.6.1)

One particular representation of super generators acting on super fields is given by

Dα = i
∂

∂θα
,

Dα̇ = i
∂

∂θ ˙alpha

+ θβσµβα̇∂µ (4.6.2)

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor εαβ . Super-space
interpretation is not necessary since one can interpret this action as an action on Grassmann
algebra valued field mixing components with different fermion numbers.

Chiral superfields are defined as fields annihilated by Dα̇. Chiral fields are of form Ψ(xµ +
iθσµθ, θ). The dependence on θα̇ comes only from its presence in the translated Minkowski coordi-
nate annihilated by Dα̇. Super-space enthusiast would say that by a translation of M4 coordinates
chiral fields reduce to fields, which depend on θ only.

The space of fermionic Fock states at partonic 2-surface as TGD counterpart of chiral
super field

As already noticed, another manner to realize SUSY in terms of representations the super algebra of
conserved super-charges. In TGD framework these super charges are naturally associated with the
modified Dirac equation, and anti-commuting coordinates and super-fields do not appear anywhere.
One can however ask whether one could identify a mathematical structure replacing the notion of
chiral super field.

In [K19] it was proposed that generalized chiral super-fields could effectively replace induced
spinor fields and that second quantized fermionic oscillator operators define the analog of SUSY
algebra. One would have N = ∞ if all the conformal excitations of the induced spinor field
restricted on 2-surface are present. For right-handed neutrino the modes are labeled by two integers
and de-localized to the interior of Euclidian or Minkowskian regions of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components
many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in one-one
correspondence with fermionic creation operators and their hermitian conjugates.

1. Fermionic creation operators - in classical theory corresponding anti-commuting Grassmann
parameters - replace theta parameters. Theta parameters and their conjugates are not in
one-one correspondence with spinor components but with the fermionic creation operators
and their hermitian conjugates. One can say that the super-field in question is defined in the
“world of classical worlds” ( WCW ) rather than in space-time. Fermionic Fock state at the
partonic 2-surface is the value of the chiral super field at particular point of WCW .

2. The matrix defined by the σµ∂µ is replaced with a matrix defined by the Kähler-Dirac
operator D between spinor modes acting in the solution space of the Kähler-Dirac equation.
Since Kähler-Dirac operator annihilates the modes of the induced spinor field, super covariant
derivatives reduce to ordinary derivatives with respect the theta parameters labeling the
modes. Hence the chiral super field is a field that depends on θm or conjugates θm only. In
second quantization the modes of the chiral super-field are many-fermion states assigned to
partonic 2-surfaces and string world sheets. Note that this is the only possibility since the
notion of super-coordinate does not make sense now.

3. It would seem that the notion of super-field does not bring anything new. This is not
the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that
one cannot assign to the fermions of the many-fermion states separate non-parallel or even
parallel four-momenta. The many-fermion state behaves like elementary particle. This has
non-trivial implications for propagators and a simple argument [K19] leads to the proposal
that propagator for N-fermion partonic state is proportional to 1/pN . This would mean that
only the states with fermion number equal to 1 or 2 behave like ordinary elementary particles.
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4.6.5 Comparison Of TGD And Stringy Views About Super-Conformal
Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison with
the conformal symmetries of super string models.

Basic differences between the realization of super conformal symmetries in TGD and
in super-string models

The realization super conformal symmetries in TGD framework differs from that in string models
in several fundamental aspects.

1. In TGD framework super-symmetry generators acting as configuration space gamma matri-
ces carry either lepton or quark number. Majorana condition required by the hermiticity
of super generators which is crucial for super string models would be in conflict with the
conservation of baryon and lepton numbers and is avoided. This is made possible by the
realization of bosonic generators represented as Hamiltonians of X2-local symplectic trans-
formations rather than vector fields generating them [K13]. This kind of representation
applies also in Kac-Moody sector since the local transversal isometries localized in X3

l and
respecting light-likeness condition can be regarded as X2 local symplectic transformations,
whose Hamiltonians generate also isometries. Localization is not complete: the functions of
X2 coordinates multiplying symplectic and Kac-Moody generators are functions of the sym-
plectic invariant J = εµνJµν so that effective one-dimensionality results but in different sense
than in conformal field theories. This realization of super symmetries is what distinguishes
between TGD and super string models and leads to a totally different physical interpretation
of super-conformal symmetries. The fermionic representations of super-symplectic and super
Kac-Moody generators can be identified as Noether charges in standard manner.

2. A long-standing problem of quantum TGD was that stringy propagator 1/G does not make
sense if G carries fermion number. The progress in the understanding of second quantization
of the modified Dirac operator made it however possible to identify the counterpart of G as
a c-number valued operator and interpret it as different representation of G [K11].

3. The notion of super-space is not needed at all since Hamiltonians rather than vector fields
represent bosonic generators, no super-variant of geometry is needed. The distinction be-
tween Ramond and N-S representations important for N = 1 super-conformal symmetry and
allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2 super-conformal
symmetry it is already possible to generate spectral flow transforming these Ramond and
N-S representations to each other (Gn is not Hermitian anymore).

4. If Kähler action defines the Kähler-Dirac operator, the number of spinor modes could be
finite. One must be here somewhat cautious since bound state in the Coulomb potential
associated with electric part of induced electro-weak gauge field might give rise to an infinite
number of bound states which eigenvalues converging to a fixed eigenvalue (as in the case of
hydrogen atom). Finite number of generalized eigenmodes means that the representations
of super-conformal algebras reduces to finite-dimensional ones in TGD framework. Also the
notion of number theoretic braid indeed implies this. The physical interpretation would be in
terms of finite measurement resolution. If Kähler action is complexified to include imaginary
part defined by CP breaking instanton term, the number of stringy mass square eigenvalues
assignable to the spinor modes becomes infinite since conformal excitations are possible. This
means breakdown of exact holography and effective 2-dimensionality of 3-surfaces. It seems
that the inclusion of instanton term is necessary for several reasons. The notion of finite
measurement resolution forces conformal cutoff also now. There are arguments suggesting
that only the modes with vanishing conformal weight contribute to the Dirac determinant
defining vacuum functional identified as exponent of Kähler function in turn identified as
Kähler action for its preferred extremal.

5. What makes spinor field mode a generator of gauge super-symmetry is that is c-number and
not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom. If the
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number of eigen modes of DK(X2) is indeed finite means that most of spinor field modes
represent super gauge degrees of freedom.

The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro rep-
resentations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason is that
WCW gamma matrices possess a well defined fermion number. The hermiticity of the WCW
gamma matrices Γ and of the Super Virasoro current G could be achieved by posing Majorana
conditions on the second quantized H-spinors. Majorana conditions can be however realized only
for space-time dimension D mod 8 = 2 so that super string type approach does not work in TGD
context. This kind of conditions would also lead to the non-conservation of baryon and lepton
numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the
general situation corresponds to super symmetric operators S, S†, whose anti-commutator is Hamil-
tonian: {S, S†} = H. One can define a simpler system by considering a Hermitian operator
S0 = S + S† satisfying S2

0 = H: this relation is completely analogous to the ordinary Super Vi-
rasoro relation GG = L. On basis of this observation it is clear that one should replace ordinary
Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the doubling
of super generators and super generators carry U(1) charge having an interpretation as fermion
number in recent context. The so called short representations of N = 2 super-symmetry algebra
can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix Γn, n > 0 corresponds to an operator creating fermion whereas Γn,
n < 0 annihilates anti-fermion. For the Hermitian conjugate Γ†n the roles of fermion and anti-
fermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian
conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian and
are constructed as bilinears of the gamma matrices and their Hermitian conjugates and, just like
conserved currents of the ordinary quantum theory, contain parts proportional to a†a, b†b, a†b† and
ab (a and b refer to fermionic and anti-fermionic oscillator operators). The commutators between
Kac Moody generators and Kac Moody generators and gamma matrices remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0 annihilates anti-
fermions. Analogous result holds for G†n. Virasoro generators remain Hermitian and decompose
just like Kac Moody generators do. Thus the usual anti-commutation relations for the super
Virasoro generators must be replaced with anti-commutations between Gm and G†n and one has

{Gm, G†n} = 2Lm+n + c
3 (m2 − 1

4 )δm,−n ,
{Gm, Gn} = 0 ,
{G†m, G†n} = 0 .

(4.6.3)

The commutators of type [Lm, Ln] are not changed. Same applies to the purely kinematical
commutators between Ln and Gm/G†m.

The Super Virasoro conditions satisfied by the physical states are as before in case of Ln
whereas the conditions for Gn are doubled to those of Gn, n < 0 and G†n, n > 0.

What could be the counterparts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the
complex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine two
counterparts of the stringy coordinate z in TGD framework.

1. Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the sense
that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than being

completely free [K13]. Thus the real variable J replaces complex (or hyper-complex) stringy
coordinate and effective 1-dimensionality holds true also now but in different sense than for
conformal field theories.
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2. The slicing of X4 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number
theoretical compactification implies string-parton duality and involves the super conformal
fermionic gauge symmetries associated with the coordinates u and w in the dual dimensional
reductions to stringy and partonic dynamics. These coordinates define the natural analogs of
stringy coordinate. The effective reduction of X3

l to braid by finite measurement resolution
implies the effective reduction of X4(X3) to string world sheet. This implies quite strong
resemblance with string model. The realization that spinor modes with well- define em
charge must be localized at string world sheets makes the connection with strings even more
explicit [K62].

One can understand how Equivalence Principle emerges in TGD framework at space-time
level when many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/manysheeted.
jpg or Fig. 9 in the appendix of this book) is replaced with effective space-time lumping to-
gether the space-time sheets to M4 endowed with effective metric. The quantum counterpart
EP has most feasible interpretation in terms of Quantum Classical Correspondence (QCC):
the conserved Kähler four-momentum equals to an eigenvalue of conserved Kähler-Dirac
four-momentum acting as operator.

3. The conformal fields of string model would reside at X2 or Y 2 depending on which description
one uses and complex (hyper-complex) string coordinate would be identified accordingly. Y 2

could be fixed as a union of stringy world sheets having the strands of number theoretic braids
as its ends. The proposed definition of braids is unique and characterizes finite measurement
resolution at space-time level. X2 could be fixed uniquely as the intersection of X3

l (the
light-like 3-surface at which induced metric of space-time surface changes its signature) with
δM4
± × CP2. Clearly, wormhole throats X3

l would take the role of branes and would be
connected by string world sheets defined by number theoretic braids.

4. An alternative identification for TGD parts of conformal fields is inspired by M8−H duality.
Conformal fields would be fields in WCW . The counterpart of z coordinate could be the
hyper-octonionic M8 coordinate m appearing as argument in the Laurent series of WCW
Clifford algebra elements. m would characterize the position of the tip of CD and the fractal
hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and thus inclusions
of hyper-finite factors of type II1. Reduction to hyper-quaternionic field -that is field in M4

center of mass degrees of freedom- would be needed to obtained associativity. The arguments
m at various level might correspond to arguments of N-point function in quantum field theory.

4.7 Still about induced spinor fields and TGD counterpart
for Higgs

The understanding of the modified Dirac equation and of the possible classical counterpart of Higgs
field in TGD framework is not completely satisfactory. The emergence of twistor lift of Kähler
action [K88] [L23] inspired a fresh approach to the problem and it turned out that a very nice
understanding of the situation emerges.

More precise formulation of the Dirac equation for the induced spinor fields is the first
challenge. The well-definedness of em charge has turned out to be very powerful guideline in the
understanding of the details of fermionic dynamics. Although induced spinor fields have also a
part assignable space-time interior, the spinor modes at string world sheets determine the fermionic
dynamics in accordance with strong form of holography (SH).

The well-definedness of em charged is guaranteed if induced spinors are associated with 2-
D string world sheets with vanishing classical W boson fields. It turned out that an alternative
manner to satisfy the condition is to assume that induced spinors at the boundaries of string world
sheets are neutrino-like and that these string world sheets carry only classical W fields. Dirac
action contains 4-D interior term and 2-D term assignable to string world sheets. Strong form
of holography (SH) allows to interpret 4-D spinor modes as continuations of those assignable to
string world sheets so that spinors at 2-D string world sheets determine quantum dynamics.

Twistor lift combined with this picture allows to formulate the Dirac action in more detail.
Well-definedness of em charge implies that charged particles are associated with string world sheets

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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assignable to the magnetic flux tubes assignable to homologically non-trivial geodesic sphere and
neutrinos with those associated with homologically trivial geodesic sphere. This explains why
neutrinos are so light and why dark energy density corresponds to neutrino mass scale, and provides
also a new insight about color confinement.

A further important result is that the formalism works only for imbedding space dimension
D = 8. This is due the fact that the number of vector components is the same as the number of
spinor components of fixed chirality for D = 8 and corresponds directly to the octonionic triality.

p-Adic thermodynamics predicts elementary particle masses in excellent accuracy without
Higgs vacuum expectation: the problem is to understand fermionic Higgs couplings. The obser-
vation that CP2 part of the modified gamma matrices gives rise to a term mixing M4 chiralities
contain derivative allows to understand the mass-proportionality of the Higgs-fermion couplings at
QFT limit.

4.7.1 More precise view about modified Dirac equation

Consistency conditions demand that modified Dirac equation with modified gamma matrices Γα

defined as contractions Γα = Tαkγk of canonical momentum currents Tαk associated with the
bosonic action with imbedding space gamma matrices γk [K62, K84]. The Dirac operator is not
hermitian in the sense that the conjugation for the Dirac equation for Ψ does not give Dirac equation
for Ψ unless the modified gamma matrices have vanishing covariant divergence as vector at space-
time surface. This says that classical field equations are satisfied. This consistency condition holds
true also for spinor modes possibly localized at string world sheets to which one can perhaps assign
area action plus topological action defined by Kähler magnetic flux. The interpretation is in terms
of super-conformal invariance.

The challenge is to formulate this picture more precisely and here I have not achieved a
satisfactory formulation. The question has been whether interior spinor field Ψ are present at all,
whether only Ψ is present and somehow becomes singular at string world sheets, or whether both
stringy spinors Ψs and interior spinors Ψ are present. Both Ψ and Ψs could be present and Ψs

could serve as source for interior spinors with the same H-chirality.
The strong form of holography (SH) suggests that interior spinor modes Ψn are obtained as

continuations of the stringy spinor modes Ψs,n and one has Ψ = Ψs at string world sheets. Dirac
action would thus have a term localized at strong world sheets and bosonic action would contain
similar term by the requirement of super-conformal symmetry. Can one realize this intuition?

1. Suppose that Dirac action has interior and stringy parts. For the twistor lift of TGD [L23]
the interior part with gamma matrices given by the modified gamma matrices associated
with the sum of Kähler action and volume action proportional to cosmological constant Λ.
The variation with respect to the interior spinor field Ψ gives modified Dirac equation in
the interior with source term from the string world sheet. The H-chiralites of Ψ and Psis
would be same. Quark like and leptonic H-chiralities have different couplings to Kähler gauge
potential and mathematical consistency strongly encourages this.

What is important is that the string world sheet part, which is bilinear in interior and string
world sheet spinor fields Ψ and Ψs and otherwise has the same form as Dirac action. The
natural assumption is that the stringy Dirac action corresponds to the modified gamma
matrices assignable to area action.

2. String world sheet must be minimal surface: otherwise hermiticity is lost. This can be
achieved either by adding to the Kähler action string world sheet area term. Whatever the
correct option is, quantum criticality should determine the value of string tension. The first
string model inspired guess is that the string tension is proportional to gravitational constant
1/G = 1/l2P defining the radius fo M4 twistor sphere or to 1/R2, R CP2 radius. This would
however allow only strings not much longer than lP or R. A more natural estimate is that
string tension is proportional to the cosmological constant Λ and depends on p-adic length
scale as 1/p so that the tension becomes small in long length scales. Since Λ coupling contant
type parameter, this estimate looks rather reasonable.

3. The variation of stringy Dirac action with action density



4.7. Still about induced spinor fields and TGD counterpart for Higgs 161

L = [ΨsD
→
s Ψ−ΨsD

←
s Ψ]
√
g2 + h.c. (4.7.1)

with respect to stringy spinor field Ψs gives for Ψ Dirac equation DsΨ = 0 if there are no
Lagrange multiplier terms (see below). The variation in interior gives DΨ = S = DsΨs ,
where the source term S is located at string world sheets. Ψ satisfies at string world sheet
the analog of 2-D massless Dirac equation associated with the induced metric. This is just
what stringy picture suggests.

The stringy source term for D equals to DsΨs localized at string world sheets: the con-
struction of solutions would require the construction of propagator for D, and this does not
look an attractive idea. For DsΨs = 0 the source term vanishes. Holomorphy for Ψs indeed
implies DsΨ = 0.

4. Ψs = Ψ would realize SH as a continuation of Ψs from string world sheet to Ψ in the interior.
Could one introduce Lagrange multiplier term

L1 = Λ(Ψ−Ψs) + h.c.

to realize Ψs = Ψ? Lagrange multiplier spinor field Λ would serve a source in the Dirac
equation for Ψ = Ψs and Ψ should be constructed at string world sheet in terms of stringy
fermionic propagator with Λ as source. The solution for Ψs would require the construction
of 2-D stringy propagator for Ψs but in principle this is not a problem since the modes can
be solved by holomorphy in hypercomplex stringy coordinate. The problem of this option is
that the H-chiralities of Λ and Ψ would be opposite and the coupling of opposite H-chiralities
is not in spirit with H-chirality conservation.

A possible cure is to replace the Lagrange multiplier term with

L1 = Λ
k
γk(Ψ−Ψs) + h.c. . (4.7.2)

The variation with respect to the spin 3/2 field Λk would give 8 conditions - just the number
of spinor components for given H-chirality - forcing Ψ = Ψs! D = 8 would be in crucial role!
In other imbedding space dimensions the number of conditions would be too high or too low.

One would however obtain

DsΨ = DsΨs = Λkγk . (4.7.3)

One could of course solve Ψ at string world sheet from Λkγk by constructing the 2-D prop-
agator associated with Ds. Conformal symmetry for the modes however implies DsΨ = 0
so that one has actually Λk = 0 and Λk remains mere formal tool to realize the constraint
Ψ = Ψs in mathematically rigorous manner for imbedding space dimension D = 8. This is a
new very powerful argument in favor of TGD.

5. At the string world sheets Ψ would be annihilated both by D and Ds. The simplest possibility
is that the actions of D and Ds are proportional to each other at string world sheets. This
poses conditions on string world sheets, which might force the CP2 projection of string world
sheet to belong to a geodesic sphere or circle of CP2. The idea that string world sheets and
also 3-D surfaces with special role in TGD could correspond to singular manifolds at which
trigonometric functions representing CP2 coordinates tend to go outside their allowed value
range supports this picture. This will be discussed below.
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(a) For the geodesic sphere of type II induced Kähler form vanishes so that the action of
4-D Dirac massless operator would be determined by the volume term (cosmological
constant). Could the action of D reduce to that of Ds at string world sheets? Does this
require a reduction of the metric to an orthogonal direct sum from string world sheet
tangent space and normal space and that also normal part of D annihilates the spinors
at the string world sheet? The modes of Ψ at string world sheets are locally constant
with respect to normal coordinates.

(b) For the geodesic sphere of type I induced Kähler form is non-vanishing and brings
an additional term to D coming from CP2 degrees of freedom. This might lead to
trouble since the gamma matrix structures of D and Ds would be different. One could
however add to string world sheet bosonic action a topological term as Kähler magnetic
flux. Although its contribution to the field equations is trivial, the contribution to the
modified gamma matrices is non-vanishing and equal to the contraction Jαkγk of half
projection of the Kähler form with CP2 gamma matrices. The presence of this term
could allow the reduction of DΨs = 0 and DsΨs = 0 to each other also in this case.

4.7.2 A more detailed view about string world sheets

In TGD framework gauge fields are induced and what typically occurs for the space-time surfaces
is that they tend to “go out” from CP2. Could various lower-D surfaces of space-time surface
correspond to sub-manifolds of space-time surface?

1. To get a concrete idea about the situation it is best to look what happens in the case of
sphere S2 = CP1. In the case of sphere S2 the Kähler form vanishes at South and North
poles. Here the dimension is reduced by 2 since all values of φ correspond to the same point.
sin(Θ) equals to 1 at equator - geodesic circle - and here Kähler form is non-vanishing. Here
dimension is reduced by 1 unit. This picture conforms with the expectations in the case of
CP2 These two situations correspond to 1-D and 2-D geodesic sub-manifolds.

2. CP2 coordinates can be represented as cosines or sines of angles and the modules of cosine
or sine tends to become larger than 1 (see http://tinyurl.com/z3coqau). In Eguchi-
Hanson coordinates (r,Θ,Φ,Ψ) the coordinates r and Θ give rise to this kind of trigonometric
coordinates. For the two cyclic angle coordinates (Φ,Ψ) one does not encounter this problem.

3. In the case of CP2 only geodesic sub-manifolds with dimensions D = 0, 1, 2 are possible.
1-D geodesic submanifolds carry vanishing induce spinor curvature. The impossibility of 3-D
geodesic sub-manifolds would suggest that 3-D surfaces are not important. CP2 has two
geodesic spheres: S2

I is homologically non-trivial and S2
II homologically trivial (see http:

//tinyurl.com/z3coqau).

(a) Let us consider S2
I first. CP2 has 3 poles, which obviously relates to SU(3), and in

Eguchi Hanson coordinates (r, θ,Φ,Ψ) the surface r =∞ is one of them and corresponds
- not to a 3-sphere - but homologically non-trivial geodesic 2- sphere, which is complex
sub-manifold and orbits of SU(2) × U(1) subgroup. Various values of the coordinate
Ψ correspond to same point as those of Φ at the poles of S2. The Kähler form J
and classical Z0 and γ fields are non-vanishing whereas W gauge fields vanish leaving
only induced γ and Z0 field as one learns by studying the detailed expressions for the
curvature of spinor curvature and vierbein of CP2.

String world sheet could have thus projection to S2
I but both γ and Z0 would be vanish-

ing except perhaps at the boundaries of string world sheet, where Z0 would naturally
vanish in the picture provided by standard model. One can criticize the presence of
Z0 field since it would give a parity breaking term to the modified Dirac operator. SH
would suggest that the reduction to electromagnetism at string boundaries might make
sense as counterpart for standard model picture. Note that the original vision was that
besides induced Kähler form and em field also Z0 field could vanish at string world
sheets.

http://tinyurl.com/z3coqau
http://tinyurl.com/z3coqau
http://tinyurl.com/z3coqau
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(b) The homologically trivial geodesic sphere S2
II is the orbit of SO(3) subgroup and not a

complex manifold. By looking the standard example about S2
I , one finds that the both

J , Z0, and γ vanish and only the W components of spinor connection are non-vanishing.
In this case the notion of em charge would not be well-defined for S2

II without additional
conditions. Partonic 2-surfaces, their light-like orbits, and boundaries of string world
sheets could do so since string world sheets have 1-D intersection with with the orbits.
This picture would make sense for the minimal surfaces replacing vacuum extremals in
the case of twistor lift of TGD.

Since em fields are not present, the presence of classical W fields need not cause prob-
lems. The absence of classical em fields however suggests that the modes of induced
spinor fields at boundaries of string worlds sheets must be em neutral and represent
therefore neutrinos. The safest but probably too strong option would be right-handed
neutrino having no coupling spinor connection but coupling to the CP2 gamma matri-
ces transforming it to left handed neutrino. Recall that νR represents a candidate for
super-symmetry.

Neither charged leptons nor quarks would be allowed at string boundaries and classical
W gauge potentials should vanish at the boundaries if also left-handed neutrinos are
allowed: this can be achieved in suitable gauge. Quarks and charged leptons could
reside only at string world sheets assignable to monopole flux tubes. This could relate
to color confinement and also to the widely different mass scales of neutrinos and other
fermions as will be found.

To sum up, the new result is that the distinction between neutrinos and other fermions could
be understood in terms of the condition that em charge is well-defined. What looked originally a
problem of TGD turns out to be a powerful predictive tool.

4.7.3 Classical Higgs field again

A motivation for returning back to Higgs field comes from the twistor lift of Kähler action.

1. The twistor lift of TGD [K88] [L23] brings in cosmological constant as the coefficient of volume
term resulting in dimensional reduction of 6-D Kähler action for twistor space of space-time
surface realized as surface in the product of twistor space of M4 and CP2. The radius of the
sphere of M4 twistor bundle corresponds to Planck length. Volume term is extremely small
but removes the huge vacuum degeneracy of Kähler action. Vacuum extremals are replaced
by 4-D minimal surfaces and modified Dirac equation is just the analog of massless Dirac
equation in complete analogy with string models.

2. The well-definedness and conservation of fermionic em charges and SH demand the localiza-
tion of fermions to string world sheets. The earlier picture assumed only em fields at string
world sheets. More precise picture allows also W fields.

3. The first guess is that string world sheets are minimal surfaces and this is supported by
the previous considerations demanding also string area term and Kähler magnetic flux tube.
Here gravitational constant assignable to M4 twistor space would be the first guess for the
string tension.

What one can say about the possible existence of classical Higgs field?

1. TGD predicts both Higgs type particles and gauge bosons as bound states of fermions and
antifermions and they differ only in that their polarization are in M4 resp. CP2 tangent
space. p-adic thermodynamics [K28] gives excellent predictions for elementary particle masses
in TGD framework. Higgs vacuum expectation is not needed to predict fermion or boson
masses. Standard model gives only a parametrization of these masses by assuming that Higgs
couplings to fermions are proportional to their masses, it does not predict them.

The experimental fact is however that the couplings of Higgs are proportional to fermion
masses and TGD should be able to predict this and there is a general argument for the
proportonality, which however should be deduced from basic TGD. Can one achieve this?
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2. Can one imagine any candidate for the classical Higgs field? There is no covariantly constant
vector field in CP2, whose space-time projection could define a candidate for classical Higgs
field. This led years ago before the model for how bosons emerge from fermions to the wrong
conclusion that TGD does not predict Higgs.

The first guess for the possibly existing classical counterpart of Higgs field would be as CP2

part for the divergence of the space-time vector defined modified gamma matrices expressible
in terms of canonical momentum currents having natural interpretation as a generalization
of force for point like objects to that for extended objects. Higgs field in this sense would
however vanish by above consistency conditions and would not couple to spinors at all.

Classical Higgs field should have only CP2 part being CP2 vector. What would be also
troublesome that this proposale for classical Higgs field would involve second derivatives of
imbedding space coordinates. Hence it seems that there is no hope about geometrization of
classical Higgs fields.

3. The contribution of the induced Kähler form gives to the modified gamma matrices a term
expressible solely in terms of CP2 gamma matrices. This term appears in modified Dirac
equation and mixes M4 chiralities - a signal for the massivation. This term is analogous to
Higgs term expect that it contains covariant derivative.

The question that I have not posed hitherto is whether this term could at QFT limit of TGD
give rise to vacuum expectation of Higgs. The crucial observation is that the presence of
derivative, which in quantum theory corresponds roughly to mass proportionality of chirality
mixing coupling at QFT limit. This could explain why the coupling of Higgs field to fermions
is proportional to the mass of the fermion at QFT limit!

4. For S2
II type string world sheets assignable to neutrinos the contribution to the chirality

mixing coupling should be of order of neutrino mass. The coefficient 1/L4 of the volume term
defining cosmological constant [L23] separates out as over all factor in massless Dirac equation
and the parameter characterizing the mass scale causing the mixing is of order m = ω1ω2R.
Here ω1 characterizes the scale of gradient for CP2 coordinates. The simplest minimal surface
is that for which CP2 projection is geodesic line with Φ = ω1t. ω2 characterizes the scale of
the gradient of spinor mode.

Assuming ω1 = ω2 ≡ ω the scale m is of order neutrino mass mν ' .1 eV from the condition
m ∼ ω2R ∼ mν . This gives the estimate ω ∼ √mCP2

mν ∼ 102mp from mCP2
∼ 10−4mP ,

which is weak mass scale and therefore perfectly sensible. The reduction ∆c/c of the light
velocity from maximal signal velocity due the replacement gtt = 1 − R2ω2 is ∆c/c ∼ 10−34

and thus completely negligible. This estimate does not make sense for charged fermions,
which correspond to S2

I type string world sheets.

A possible problem is that if the value of the cosmological constant Λ evolves as 1/p as
function of the length mass scale the mass scale of neutrinos should increase in short scales.
This looks strange unless the mass scale remains below the cosmic temperature so that
neutrinos would be always effectively massless.

5. For S2
I type string world sheets assignable to charged fermions Kähler action dominates

and the mass scales are expected to be higher than for neutrinos. For S2
I type strings the

modified gamma matrices contain also Kähler term and a rough estimate is that the ratio
of two contributions is the ratio of the energy density of Kähler action to vacuum energy
density. As Kähler energy density exceeds the value corresponding to vacuum energy density
1/L4, L ∼ 40 µm, Kähler action density begins to dominate over dark energy density.

To sum up, this picture suggest that the large difference between the mass scales of neutrinos
and em charged fermions is due to the fact that neutrinos are associated with string world sheet
of type II and em charged fermions with string world sheets of type I. Both strings world sheets
would be accompanied by flux tubes but for charged particles the flux tubes would carry Kähler
magnetic flux. Cosmological constant forced by twistor lift would make neutrinos massive and
allow to understand neutrino mass scale.



Chapter 5

About Identification of the
Preferred extremals of Kähler
Action

5.1 Introduction

Preferred extremal of Kähler action have remained one of the basic poorly defined notions of TGD.
There are pressing motivations for understanding what the attribute “preferred” really means.
Symmetries give a clue to the problem. The conformal invariance of string models naturally
generalizes to 4-D invariance defined by quantum Yangian of quantum affine algebra (Kac-Moody
type algebra) characterized by two complex coordinates and therefore explaining naturally the
effective 2-dimensionality [K55]. Preferred extremal property should rely on this symmetry.

In Zero Energy Ontology (ZEO) preferred extremals are space-time surfaces connecting two
space-like 3-surfaces at the ends of space-time surfaces at boundaries of causal diamond (CD). A
natural looking condition is that the symplectic Noether charges associated with a sub-algebra
of symplectic algebra with conformal weights n-multiples of the weights of the entire algebra
vanish for preferred extremals. These conditions would be classical counterparts the the condition
that super-symplectic sub-algebra annihilates the physical states. This would give a hierarchy of
super-symplectic symmetry breakings and quantum criticalities having interpretation in terms of
hierarchy of Planck constants heff = n × h identified as a hierarchy of dark matter. n could be
interpreted as the number of space-time conformal gauge equivalence classes for space-time sheets
connecting the 3-surfaces at the ends of space-time surface.

There are also many other proposals for what preferred extremal property could mean
or imply. The weak form of electric-magnetic duality combined with the assumption that the
contraction of the Kähler current with Kähler gauge potential vanishes for preferred extremals
implies that Kähler action in Minkowskian space-time regions reduces to Chern-Simons terms at
the light-like orbits of wormhole throats at which the signature of the induced metric changes
its signature from Minkowskian to Euclidian. In regions with 4-D CP2 projection (wormhole
contacts) also a 3-D contribution not assignable to the boundary of the region might be possible.
These conditions pose strong physically feasible conditions on extremals and might be true for
preferred extremals too.

Number theoretic vision leads to a proposal that either the tangent space or normal space
of given point of space-time surface is associative and thus quaternionic. Also the formulation in
terms of quaternion holomorphy and quaternion-Kähler property is an attractive possibility. So
called M8−H duality is a variant of this vision and would mean that one can map associative/co-
associative space-time surfaces from M8 to H and also iterate this mapping from H to H to
generate entire category of preferred extremals. The signature of M4 is a general technical prob-
lem. For instance, the holomorphy in 2 complex variables could correspond to what I have called
Hamilton-Jacobi property. Associativity/co-associativity of the tangent space makes sense also in
Minkowskian signature.
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In this chapter various views about preferred extremal property are discussed.

5.1.1 Preferred Extremals As Critical Extremals

The study of the Kähler-Dirac equation leads to a detailed view about criticality. Quantum
criticality [D2] fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular cover-
ing spaces of CD × CP2 can be understood in terms of the extremely non-linear dynamics of
Kähler action implying 1-to-many correspondence between canonical momentum densities and
time derivatives of the imbedding space coordinates led to a further very concrete understanding
of the criticality at space-time level and its relationship to zero energy ontology [K24].

Criticality is accompanied by conformal invariance and this leads to the proposal that critical
deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the
partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with
conformal weights divisible by integer n would act as gauge symmetries and these algebras would
form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize
the value of Planck constant heff = n× h assignable to various phases of dark matter.

5.1.2 Construction Of Preferred Extremals

There has been considerable progress in the understanding of both preferred extremals and Kähler-
Dirac equation.

1. For preferred extremals the generalization of conformal invariance to 4-D situation is very
attractive idea and leads to concrete conditions formally similar to those encountered in
string model [K6]. In particular, Einstein’s equations with cosmological constant would solve
consistency conditions and field equations would reduce to a purely algebraic statements
analogous to those appearing in equations for minimal surfaces if one assumes that space-
time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure
(Appendix). The older approach based on basic heuristics for massless equations, on effective
3-dimensionality, weak form of electric magnetic duality, and Beltrami flows is also promising.
An alternative approach is inspired by number theoretical considerations and identifies space-
time surfaces as associative or co-associative sub-manifolds of octonionic imbedding space
[K53].

The basic step of progress was the realization that the known extremals of Kähler action -
certainly limiting cases of more general extremals - can be deformed to more general extremals
having interpretation as preferred extremals.

(a) The generalization boils down to the condition that field equations reduce to the condi-
tion that the traces Tr(THk) for the product of energy momentum tensor and second
fundamental form vanish. In string models energy momentum tensor corresponds to
metric and one obtains minimal surface equations. The equations reduce to purely
algebraic conditions stating that T and Hk have no common components. Complex
structure of string world sheet makes this possible.

Stringy conditions for metric stating gzz = gzz = 0 generalize. The condition that
field equations reduce to Tr(THk) = 0 requires that the terms involving Kähler gauge
current in field equations vanish. This is achieved if Einstein’s equations hold true
(one can consider also more general manners to satisfy the conditions). The conditions
guaranteeing the vanishing of the trace in turn boil down to the existence of Hermitian
structure in the case of Euclidian signature and to the existence of its analog - Hamilton-
Jacobi structure - for Minkowskian signature (Appendix). These conditions state that
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certain components of the induced metric vanish in complex coordinates or Hamilton-
Jacobi coordinates.

In string model the replacement of the imbedding space coordinate variables with quan-
tized ones allows to interpret the conditions on metric as Virasoro conditions. In the
recent case a generalization of classical Virasoro conditions to four-dimensional ones
would be in question. An interesting question is whether quantization of these con-
ditions could make sense also in TGD framework at least as a useful trick to deduce
information about quantum states in WCW degrees of freedom.

The interpretation of the extended algebra as Yangian [A30] [B23] suggested previ-
ously [K55] to act as a generalization of conformal algebra in TGD Universe is at-
tractive. There is also the conjecture that preferred extremals could be interpreted as
quaternionic of co-quaternionic 4-surface of the octonionic imbedding space with oc-
tonionic representation of the gamma matrices defining the notion of tangent space
quanternionicity.

5.2 Weak Form Electric-Magnetic Duality And Its Im-
plications

The notion of electric-magnetic duality [B4] was proposed first by Olive and Montonen and
is central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and
ordinary particles are two different phases of theory and that the description in terms of
monopoles can be applied at the limit when the running gauge coupling constant becomes
very large and perturbation theory fails to converge. The notion of electric-magnetic self-
duality is more natural since for CP2 geometry Kähler form is self-dual and Kähler magnetic
monopoles are also Kähler electric monopoles and Kähler coupling strength is by quantum
criticality renormalization group invariant rather than running coupling constant. The no-
tion of electric-magnetic (self-)duality emerged already two decades ago in the attempts to
formulate the Kähler geometric of world of classical worlds. Quite recently a considerable
step of progress took place in the understanding of this notion [K13] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces.
What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this
concept leads to precise predictions. The point is that elementary particles do not generate
monopole fields in macroscopic length scales: at least when one considers visible matter. The
first question is whether elementary particles could have vanishing magnetic charges: this
turns out to be impossible. The next question is how the screening of the magnetic charges
could take place and leads to an identification of the physical particles as string like objects
identified as pairs magnetic charged wormhole throats connected by magnetic flux tubes.

(a) The first implication is a new view about electro-weak massivation reducing it to weak
confinement in TGD framework. The second end of the string contains particle having
electroweak isospin neutralizing that of elementary fermion and the size scale of the
string is electro-weak scale would be in question. Hence the screening of electro-weak
force takes place via weak confinement realized in terms of magnetic confinement.

(b) This picture generalizes to the case of color confinement. Also quarks correspond to pairs
of magnetic monopoles but the charges need not vanish now. Rather, valence quarks
would be connected by flux tubes of length of order hadron size such that magnetic
charges sum up to zero. For instance, for baryonic valence quarks these charges could
be (2,−1,−1) and could be proportional to color hyper charge.

(c) The highly non-trivial prediction making more precise the earlier stringy vision is that
elementary particles are string like objects: this could become manifest at LHC energies.

(d) The weak form electric-magnetic duality together with Beltrami flow property of Kähler
leads to the reduction of Kähler action to Chern-Simons action so that TGD reduces
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to almost topological QFT and that Kähler function is explicitly calculable. This has
enormous impact concerning practical calculability of the theory.

(e) One ends up also to a general solution ansatz for field equations from the condition that
the theory reduces to almost topological QFT. The solution ansatz is inspired by the idea
that all isometry currents are proportional to Kähler current which is integrable in the
sense that the flow parameter associated with its flow lines defines a global coordinate.
The proposed solution ansatz would describe a hydrodynamical flow with the property
that isometry charges are conserved along the flow lines (Beltrami flow). A general
ansatz satisfying the integrability conditions is found.

The strongest form of the solution ansatz states that various classical and quantum
currents flow along flow lines of the Beltrami flow defined by Kähler current. Intuitively
this picture is attractive. A more general ansatz would allow several Beltrami flows
meaning multi-hydrodynamics. The integrability conditions boil down to two scalar
functions: the first one satisfies massless d’Alembert equation in the induced metric
and the gradients of the scalar functions are orthogonal. The interpretation in terms of
momentum and polarization directions is natural.

5.2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the
wormhole throats at which the signature of the induced metric changes. A stronger condition
allows all partonic 2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and
string world sheets. Number theoretical vision suggests that hyper-quaternionicity resp. co-
hyperquaternionicity constraint could be enough to fix the initial values of time derivatives of
the imbedding space coordinates in the space-time regions with Minkowskian resp. Euclidian
signature of the induced metric. This is a condition on modified gamma matrices and hyper-
quaternionicity states that they span a hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The
argument goes as follows.

(a) The expression of the matrix elements of the metric and Kähler form of WCW in terms
of the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2

looks very attractive. These expressions however carry no information about the 4-D
tangent space of the partonic 2-surfaces so that the theory would reduce to a genuinely
2-dimensional theory, which cannot hold true. One would like to code to the WCW
metric also information about the electric part of the induced Kähler form assignable
to the complement of the tangent space of X2 ⊂ X4.

(b) Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes.
The presence of the induced metric is however troublesome since the presence of the
induced metric means that the simple transformation properties of flux Hamiltonians
under symplectic transformations -in particular color rotations- are lost.

(c) A less trivial formulation of electric-magnetic duality would be as an initial condition
which eliminates the induced metric from the electric flux. In the Euclidian version of
4-D YM theory this duality allows to solve field equations exactly in terms of instantons.
This approach involves also quaternions. These arguments suggest that the duality in
some form might work. The full electric magnetic duality is certainly too strong and
implies that space-time surface at the partonic 2-surface corresponds to piece of CP2

type vacuum extremal and can hold only in the deep interior of the region with Euclidian
signature. In the region surrounding wormhole throat at both sides the condition must
be replaced with a weaker condition.
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(d) To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordi-
nates labeling partonic 2-surfaces in the slicing of the space-time surface by partonic
2-surfaces and string world sheets making sense in the regions of space-time sheet with
Minkowskian signature. The assumption about the slicing allows to preserve general
coordinate invariance. The weakest condition is that the generalized Kähler electric
fluxes are apart from constant proportional to Kähler magnetic fluxes. This requires
the condition

J03√g4 = KJ12 . (5.2.1)

A more general form of this duality is suggested by the considerations of [K24] reducing
the hierarchy of Planck constants to basic quantum TGD and also reducing Kähler
function for preferred extremals to Chern-Simons terms [B1] at the boundaries of CD
and at light-like wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (5.2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either
boundary of CD or for light-like wormhole throat. ε is a sign factor which is opposite
for the two ends of CD. It could be also opposite of opposite at the opposite sides of the
wormhole throat. Note that the dependence on induced metric disappears at the right
hand side and this condition eliminates the potentials singularity due to the reduction
of the rank of the induced metric at wormhole throat.

(e) Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition
are used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (5.2.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial
WCW metric even for K = 0, which could correspond to the ends of a cosmic string
like solution carrying only Kähler magnetic fields. This condition suggests that it can
depend only on Kähler magnetic flux and other symplectic invariants. Whether local
symplectic coordinate invariants are possible at all is far from obvious, If the slicing
itself is symplectic invariant then K could be a non-constant function of X2 depending
on string world sheet coordinates. The light-like radial coordinate of the light-cone
boundary indeed defines a symplectically invariant slicing and this slicing could be
shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints
are obtained if one assumes that the quantization of electro-weak charges reduces to this
condition at classical level?

(a) The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.
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(b) The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L2]
, [L2] read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (5.2.4)

Here R03 is one of the components of the curvature tensor in vielbein representation
and Fem and FZ correspond to the standard field tensors. From this expression one can
deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (5.2.5)

(c) The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (5.2.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L +

sin2(θW )Qem appears. The reason is that only the vectorial isospin is same for left and
right handed components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (5.2.7)

(d) There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic
2-surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned
to the partonic 2-surface. The assumption of standard quantized values for Qem and
QZ would be also seen as the identification of the fine structure constants αem and αZ .
This however requires weak isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

(a) The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler
electric field equals to the Kähler charge gK would give the condition K = g2

K/~, where
gK is Kähler coupling constant which should invariant under coupling constant evolution
by quantum criticality. Within experimental uncertainties one has αK = g2

K/4π~0 =
αem ' 1/137, where αem is finite structure constant in electron length scale and ~0 is
the standard value of Planck constant.

(b) The quantization of Planck constants makes the condition highly non-trivial. The most
general quantization of r is as rationals but there are good arguments favoring the
quantization as integers corresponding to the allowance of only singular coverings of CD
andn CP2. The point is that in this case a given value of Planck constant corresponds
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to a finite number pages of the “Big Book”. The quantization of the Planck constant
implies a further quantization of K and would suggest that K scales as 1/r unless the
spectrum of values of Qem and QZ allowed by the quantization condition scales as r.
This is quite possible and the interpretation would be that each of the r sheets of the
covering carries (possibly same) elementary charge. Kind of discrete variant of a full
Fermi sphere would be in question. The interpretation in terms of anyonic phases [K39]
supports this interpretation.

(c) The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/αK and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2

K/4π becomes very small and large fluctuations
are suppressed in the functional integral. The basic motivation for introducing the
hierarchy of Planck constants was indeed that the scaling α → α/r allows to achieve
the convergence of perturbation theory: Nature itself would solve the problems of the
theoretician. This of course does not mean that the physical states would remain as
such and the replacement of single particles with anyonic states in order to satisfy the
condition for K would realize this concretely.

(d) The conditionK = g2
K/~ implies that the Kähler magnetic charge is always accompanied

by Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (5.2.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition
that abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the
wormhole throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (5.2.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian
side of the wormhole throat. Also the fact that one cannot distinguish between electric and
magnetic charges in Euclidian region since all charges are magnetic can be used to argue in
favor of this form. The same constraint arises from the condition that the action for CP2

type vacuum extremal has the value required by the argument leading to a prediction for
gravitational constant in terms of the square of CP2 radius and αK the effective replacement
g2
K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form
at the Euclidian side of the wormhole throat inspires the question whether all Euclidian
regions could be self-dual so that the density of Kähler action would be just the instanton
density. Self-duality follows if the deformation of the metric induced by the deformation
of the canonically imbedded CP2 is such that in CP2 coordinates for the Euclidian region
the tensor (gαβgµν − gανgµβ)/

√
g remains invariant. This is certainly the case for CP2 type

vacuum extremals since by the light-likeness of M4 projection the metric remains invariant.
Also conformal scalings of the induced metric would satisfy this condition. Conformal scaling
is not consistent with the degeneracy of the 4-metric at the wormhole.

Reduction of the quantization of Kähler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality
based on the induced Kähler form.
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(a) Physically it would seem more sensible to pose the duality on electromagnetic charge
rather than Kähler charge. This would replace induced Kähler form with electromag-
netic field, which is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (5.2.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L2]. For a
vanishing Weinberg angle the condition reduces to that for Kähler form.

(b) For the Euclidian space-time regions having interpretation as lines of generalized Feyn-
man diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Wein-
berg angle could however vanish. If so, the condition guaranteeing that electromagnetic
charge of the partonic 2-surfaces equals to the above condition stating that the em
charge assignable to the fermion content of the partonic 2-surfaces reduces to the classi-
cal Kähler electric flux at the Minkowskian side of the wormhole throat. One can argue
that Weinberg angle must increase smoothly from a vanishing value at both sides of
wormhole throat to its value in the deep interior of the Euclidian region.

(c) The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are
effectively absent. Only in phases with a large value of Planck constant classical Z0

field and other classical weak fields and color gauge field could make themselves visible.
Cell membrane could be one such system [K44]. This conforms with the general picture
about color confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

(a) The value of the Kähler coupling strength mut be very near to the value of the fine
structure constant in electron length scale and these constants can be assumed to be
equal.

(b) GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is
non-vanishing only in Euclidian regions of space-time so that both Reissner-Nordström
metric and CP2 are allowed as simplest possible solutions of field equations [K57]. The
extremely small value of the observed cosmological constant needed in GRT type cos-
mology could be equal to the large cosmological constant associated with CP2 metric
multiplied with the 3-volume fraction of Euclidian regions.

(c) Also at GRT limit quantum theory would reduce to almost topological QFT since
Einstein-Maxwell action reduces to 3-D term by field equations implying the vanish-
ing of the Maxwell current and of the curvature scalar in Minkowskian regions and
curvature scalar + cosmological constant term in Euclidian regions. The weak form of
electric-magnetic duality would guarantee also now the preferred extremal property and
prevent the reduction to a mere topological QFT.

(d) GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian re-
gions. A non-vanishing Weinberg angle would make sense in the deep interior of the
Euclidian regions where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

5.2.2 Magnetic Confinement, The Short Range Of Weak Forces,
And Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one com-
bines it with some very general empirical facts such as the non-existence of magnetic monopole
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fields in macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length
scale and one should have a mechanism neutralizing the monopole charge. How electroweak
interactions become short ranged in TGD framework is still a poorly understood problem.
What suggests itself is the neutralization of the weak isospin above the intermediate gauge
boson Compton length by neutral Higgs bosons. Could the two neutralization mechanisms
be combined to single one?

(a) In the case of fermions and their super partners the opposite magnetic monopole would
be a wormhole throat. If the magnetically charged wormhole contact is electromagneti-
cally neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the
fermion only the electromagnetic charge of the fermion is visible on longer length scales.
The distance of this wormhole throat from the fermionic one should be of the order weak
boson Compton length. An interpretation as a bound state of fermion and a wormhole
throat state with the quantum numbers of a neutral Higgs boson would therefore make
sense. The neutralizing throat would have quantum numbers of X−1/2 = νLνR or
X1/2 = νLνR. νLνR would not be neutral Higgs boson (which should correspond to
a wormhole contact) but a super-partner of left-handed neutrino obtained by adding a
right handed neutrino. This mechanism would apply separately to the fermionic and
anti-fermionic throats of the gauge bosons and corresponding space-time sheets and
leave only electromagnetic interaction as a long ranged interaction.

(b) One can of course wonder what is the situation situation for the bosonic wormhole
throats feeding gauge fluxes between space-time sheets. It would seem that these worm-
hole throats must always appear as pairs such that for the second member of the pair
monopole charges and I3

V cancel each other at both space-time sheets involved so that
one obtains at both space-time sheets magnetic dipoles of size of weak boson Comp-
ton length. The proposed magnetic character of fundamental particles should become
visible at TeV energies so that LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is
very natural constraint and not trivially satisfied because classical W boson fields are present.
As a matter fact, all weak fields should be effectively absent above weak scale. How this is
possible classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time
region in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced
W boson fields are vanishing. The vanishing of classical Z0 field can be poses as additional
condition - at least in scales above weak scale. In the generic case this requires that the spinor
mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface.
This implies that TGD reduces to string model in fermionic sector. Even for preferred
extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces.
This localization is possible only for Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced met-
rics of space-time sheets from Minkowski metric. For gauge potentials a similar identification
applies. YM-Einstein equations coupled with matter and with non-vanishing cosmological
constant are expected on basis of Poincare invariance. One cannot exclude the possibility
that the sums of weak gauge potentials from different space-time sheet tend to vanish above
weak scale and that well-definedness of em charge at classical level follows from the effective
absence of classical weak gauge fields.
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Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider
also the situation in which the magnetic charges of quarks (more generally, of color excited
leptons and quarks) do not vanish and they form color and magnetic singles in the hadronic
length scale. This would mean that magnetic charges of the state q±1/2−X∓1/2 representing
the physical quark would not vanish and magnetic confinement would accompany also color
confinement. This would explain why free quarks are not observed. To how degree then
quark confinement corresponds to magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the
spectrum of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether
color hyper-charge correlates with the Kähler magnetic charge. The geometric picture would
be three strings connected to single vertex. Amusingly, the idea that color hypercharge could
be proportional to color hyper charge popped up during the first year of TGD when I had
not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak
physics. For p-adically scaled up variants the mass scales would be scaled by a power of√

2 in the most general case. The dark variants of the particle would have the same mass
as the original one. In particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes
MG,k = (1 + i)k − 1 has been proposed to define zoomed copies of these physics. At the
level of magnetic confinement this would mean hierarchy of length scales for the magnetic
confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The
size scale of color confinement for this physics would be same as the weal length scale. It
would look more natural that the weak confinement for the quarks of M89 physics takes place
in some shorter scale and M61 is the first Mersenne prime to be considered. The mass scale of
M61 weak bosons would be by a factor 2(89−61)/2 = 214 higher and about 1.6×104 TeV. M89

quarks would have virtually no weak interactions but would possess color interactions with
weak confinement length scale reflecting themselves as new kind of jets at collisions above
TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as
many as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with

Gaussian Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence
of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale
in this range. There are recent claims about experimental evidence for magnetic monopole
pairs [D1] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that
the descriptions in terms of particles and monopoles are in some sense dual descriptions.
Fermions would be replaced by string like objects defined by the magnetic flux tubes and
bosons as pairs of wormhole contacts would correspond to pairs of the flux tubes. Therefore
the sharp distinction between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole
contacts is that one cannot construct spin two objects using only single fermion states at
wormhole throats. Of course, also super partners of these states with higher spin obtained
by adding fermions and anti-fermions at the wormhole throat but these do not give rise to
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graviton like states [K19] . The upper and lower wormhole throat pairs would be quantum
superpositions of fermion anti-fermion pairs with sum over all fermions. The reason is that
otherwise one cannot realize graviton emission in terms of joining of the ends of light-like
3-surfaces together. Also now magnetic monopole charges are necessary but now there is no
need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below
this length scale the charges of the fermions become visible. Mersenne hypothesis suggests
that some Mersenne prime is in question. One proposal is that gravitonic size scale is given
by electronic Mersenne prime M127. It is however difficult to test whether graviton has a
structure visible below this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at
all clear how closely they relate to ordinary Feynman diagrams. All depends on what one
is ready to assume about what happens in the vertices. One could of course hope that zero
energy ontology could allow some very simple description allowing perhaps to get rid of the
problematic aspects of Feynman diagrams.

(a) Consider first the recent view about generalized Feynman diagrams which relies ZEO.
A highly attractive assumption is that the particles appearing at wormhole throats are
on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass
shell momenta. For virtual bosons they the wormhole throats would have opposite
sign of energy and the sum of on mass shell states would give virtual net momenta.
This would make possible twistor description of virtual particles allowing only massless
particles (in 4-D sense usually and in 8-D sense in TGD framework). The notion of
virtual fermion makes sense only if one assumes in the interaction region a topological
condensation creating another wormhole throat having no fermionic quantum numbers.

(b) The addition of the particles X± replaces generalized Feynman diagrams with the
analogs of stringy diagrams with lines replaced by pairs of lines corresponding to fermion
and X±1/2. The members of these pairs would correspond to 3-D light-like surfaces glued
together at the vertices of generalized Feynman diagrams. The analog of 3-vertex would
not be splitting of the string to form shorter strings but the replication of the entire
string to form two strings with same length or fusion of two strings to single string along
all their points rather than along ends to form a longer string. It is not clear whether
the duality symmetry of stringy diagrams can hold true for the TGD variants of stringy
diagrams.

(c) How should one describe the bound state formed by the fermion and X±? Should
one describe the state as superposition of non-parallel on mass shell states so that the
composite state would be automatically massive? The description as superposition of
on mass shell states does not conform with the idea that bound state formation requires
binding energy. In TGD framework the notion of negentropic entanglement has been
suggested to make possible the analogs of bound states consisting of on mass shell
states so that the binding energy is zero [K30] . If this kind of states are in question the
description of virtual states in terms of on mass shell states is not lost. Of course, one
cannot exclude the possibility that there is infinite number of this kind of states serving
as analogs for the excitations of string like object.

(d) What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell
excitations are possible. If this picture is correct, the situation would not change in an
essential manner from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become
manifest at LHC energies. This adds one further item to the list of non-trivial predictions of
TGD about physics at LHC energies [K31] .
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5.2.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD
reduces to almost topological quantum theory in the sense that the counterpart of Chern-
Simons action assigned with the wormhole throats somehow dictates the dynamics. This
proposal can be formulated also for the Kähler-Dirac action action. I gave up this proposal
but the following argument shows that Kähler action with weak form of electric-magnetic
duality effectively reduces to Chern-Simons action plus Coulomb term.

(a) Kähler action density can be written as a 4-dimensional integral of the Coulomb term
jαKAα plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats

and of the quantity J0βAβ
√
g4 over the ends of the 3-surface.

(b) If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-

Simons action evaluated at the ends and throats. It would have same value for each
branch and the replacement h → n × h would effectively describe this. Boundary
conditions would however give 1/n factor so that ~ would disappear from the Kähler
function! It is somewhat surprising that Kähler action gives Chern-Simons action in the
vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would
reduce to an almost topological QFT. The attribute “almost” would come from the fact
that one has non-vanishing classical Noether charges defined by Kähler action and non-
trivial quantum dynamics in M4 degrees of freedom. One could also assign to space-time
surfaces conserved four-momenta which is not possible in topological QFTs. For this reason
the conditions guaranteeing the vanishing of Coulomb interaction term deserve a detailed
analysis.

(a) For the known extremals jαK either vanishes or is light-like (“massless extremals” for
which weak self-duality condition does not make sense [K6] ) so that the Coulomb term
vanishes identically in the gauge used. The addition of a gradient to A induces terms
located at the ends and wormhole throats of the space-time surface but this term must
be cancelled by the other boundary terms by gauge invariance of Kähler action. This
implies that the M4 part of WCW metric vanishes in this case. Therefore massless
extremals as such are not physically realistic: wormhole throats representing particles
are needed.

(b) The original naive conclusion was that since Chern-Simons action depends on CP2

coordinates only, its variation with respect to Minkowski coordinates must vanish so
that the WCW metric would be trivial in M4 degrees of freedom. This conclusion is in
conflict with quantum classical correspondence and was indeed too hasty. The point is
that the allowed variations of Kähler function must respect the weak electro-magnetic
duality which relates Kähler electric field depending on the induced 4-metric at 3-surface
to the Kähler magnetic field. Therefore the dependence on M4 coordinates creeps via
a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβ gamma)

√
g4d

3x . (5.2.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

(c) This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that
for rM = constant sphere - call it J1. The generalization of the weak form of self-
duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary
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term gives a non-trivial contribution to the M4 part of the WCW metric even without
the constraint from electric-magnetic duality. Kähler charge is not affected unless the
partonic 2-surface contains the tip of CD in its interior. In this case the value of Kähler
charge is shifted by a topological contribution. Whether this term can survive depends
on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

(d) The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (5.2.12)

This differential equation can be reduced to an ordinary differential equation along
the flow lines jK by using dxα/dt = jαK . Global solution is obtained only if one can
combine the flow parameter t with three other coordinates- say those at the either end
of CD to form space-time coordinates. The condition is that the parameter defining the
coordinate differential is proportional to the covariant form of Kähler current: dt = φjK .
This condition in turn implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying
jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (5.2.13)

jK is a four-dimensional counterpart of Beltrami field [B9] and could be called general-
ized Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K6] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton
current: jK = φjI , where jI = ∗(J ∧A) is the instanton current, which is not conserved
for 4-D CP2 projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ
and from this φ can be integrated if the integrability condition jI ∧ djI = 0 holds true
implying the same condition for jK . By introducing at least 3 or CP2 coordinates as
space-time coordinates, one finds that the contravariant form of jI is purely topological
so that the integrability condition fixes the dependence on M4 coordinates and this
selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated
with the critical deformations of the space-time surface.

(e) There are gauge transformations respecting the vanishing of the Coulomb term. The
vanishing condition for the Coulomb term is gauge invariant only under the gauge
transformations A→ A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces

to a total divergence a giving an integral over various 3-surfaces at the ends of CD and at
throats vanishes. This is satisfied if the allowed gauge transformations define conserved
currents

Dα(jαφ) = 0 . (5.2.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-
Simons type term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA

over wormhole throats is conserved. The existence of an infinite number of conserved
weighted magnetic fluxes is in accordance with the electric-magnetic duality. How these
fluxes relate to the flux Hamiltonians central for WCW geometry is not quite clear.
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(f) The gauge transformations respecting the reduction to almost topological QFT should
have some special physical meaning. The measurement interaction term in the Kähler-
Dirac interaction corresponds to a critical deformation of the space-time sheet and is
realized as an addition of a gauge part to the Kähler gauge potential of CP2. It would
be natural to identify this gauge transformation giving rise to a conserved charge so
that the conserved charges would provide a representation for the charges associated
with the infinitesimal critical deformations not affecting Kähler action. The gauge
transformed Kähler gauge potential couples to the Kähler-Dirac equation and its effect
could be visible in the value of Kähler function and therefore also in the properties of
the preferred extremal. The effect on WCW metric would however vanish since K would
transform only by an addition of a real part of a holomorphic function.

(g) A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1)
gauge transformation induced by a transformation of δCD×CP2 generating the gauge
transformation represented by φ. This interpretation makes sense if the fluxes defined
by Qmφ and corresponding Hamiltonians affect only zero modes rather than quantum
fluctuating degrees of freedom.

(h) Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic or-
bits and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged.
Measurement interaction terms would correspond to Lagrange multiplier terms at the
ends of space-time surface fixing the values of classical conserved charges to their quan-
tum values. Super-symmetry requires the assignment of this kind of term also to Kähler-
Dirac action as boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direc-
tion annihilates the spinor modes. The normal vector would be light-like and the value
of the incoming on mass shell four-momentum would be coded to the geometry of the
space-time surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition
would be that the action of C-S-D operator equals to that of massless M4 Dirac operator.
C-S-D Dirac action would give rise to massless Dirac propagator. Twistor Grassmann
approach suggests that also the virtual fermions reduce effectively to massless on-shell
states but have non-physical helicity.

To sum up, one could understand the basic properties of WCW metric in this framework.
Effective 2-dimensionality would result from the existence of an infinite number of conserved
charges in two different time directions (genuine conservation laws plus gauge fixing). The
infinite-dimensional symmetric space for given values of zero modes corresponds to the Carte-
sian product of the WCWs associated with the partonic 2-surfaces at both ends of CD and
the generalized Chern-Simons term decomposes into a sum of terms from the ends giving
single particle Kähler functions and to the terms from light-like wormhole throats giving
interaction term between positive and negative energy parts of the state. Hence Kähler func-
tion could be calculated without any knowledge about the interior of the space-time sheets
and TGD would reduce to almost topological QFT as speculated earlier. Needless to say this
would have immense boost to the program of constructing WCW Kähler geometry.

5.3 An attempt to understand preferred extremals of
Kähler action

Preferred extremal of Kähler action is one of the basic poorly defined notions of TGD. There
are pressing motivations for understanding what ”preferred” really means. For instance,
the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two
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complex coordinates and therefore explaining naturally the effective 2-dimensionality [K63].
The problem is however how to assign a complex coordinate with the string world sheet
having Minkowskian signature of metric. One can hope that the understanding of preferred
extremals could allow to identify two preferred complex coordinates whose existence is also
suggested by number theoretical vision giving preferred role for the rational points of partonic
2-surfaces in preferred coordinates. The best one could hope is a general solution of field
equations in accordance with the hints that TGD is integrable quantum theory.

5.3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

(a) In positive energy ontology preferred extremal would be a space-time surface assignable
to given 3-surface and unique in the ideal situation: since one cannot pose conditions
to the normal derivatives of imbedding space coordinates at 3-surface, there is infinity
of extremals. Some additional conditions are required and space-time surface would
be analogous to Bohr orbit: hence the attribute “preferred”. The problem would be
to understand what “preferred” could mean. The non-determinism of Kähler action
however destroyed this dream in its original form and led to zero energy ontology (ZEO).

(b) In ZEO one considers extremals as space-time surfaces connecting two space-like 3-
surfaces at the boundaries. One might hope that these 4-surfaces are unique. The
non-determinism of Kähler action suggests that this is not the case. At least there is
conformal invariance respecting the light-likeness of the 3-D parton orbits at which the
signature of the induced metric changes: the conformal transformations would leave
the space-like 3-D ends or at least partonic 2-surfaces invariant. This non-determinism
would correspond to quantum criticality.

(c) Effective 2-dimensionality follows from strong form of general coordinate invariance
(GCI) stating that light-like partonic orbits and space-like 3-surfaces at the ends of
space-time surface are equivalent physically: partonic 2-surfaces and their 4-D tangent
space data would determine everything. One can however worry about how effective 2-
dimensionality relates to the fact that the modes of the induced spinor field are localized
at string world sheets and partonic 2-surface. Are the tangent space data equivalent with
the data characterizing string world sheets as surfaces carrying vanishing electroweak
fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires
that the conformal equivalence classes of light-like surfaces must be counted as physical
degrees of freedom so that either space-like or light-like surfaces do not seem to be quite
enough.

Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the
conformal equivalence class of the preferred extremal be unique without any additional
conditions? If so, one could get rid of the attribute “preferred”. The fractal character of
the many-sheeted space-time however suggests that one can have this kind of uniqueness
only in given length scale resolution and that “radiative corrections” due to the non-
determinism are always present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute “preferred” is needed. If not then the
question is what are the extremals of Kähler action.

5.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are
heuristic and rely heavily on physical intuition. The following considerations relate to the
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space-time regions having Minkowskian signature of the induced metric. The attempt to
generalize the construction also to Euclidian regions could be very rewarding. Only a humble
attempt to combine various ideas to a more coherent picture is in question.

The core observations and visions are following.

(a) Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred
coordinates for Minkowskian space-time sheet and might allow to identify string world
sheets for X4 as those for M4. Hamilton-Jacobi coordinates consist of light-like coordi-
nate m and its dual defining local 2-plane M2 ⊂M4 and complex transversal complex
coordinates (w,w) for a plane E2

x orthogonal to M2
x at each point of M4. Clearly,

hyper-complex analyticity and complex analyticity are in question.

(b) Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

(c) The quaternionic planes of octonion space containing preferred hyper-complex plane
are labelled by CP2, which might be called CPmod2 [K53]. The identification CP2 =
CPmod2 motivates the notion of M8 − −M4 × CP2 duality [K12]. It also inspires a
concrete solution ansatz assuming the equivalence of two different identifications of the
quaternionic tangent space of the space-time sheet and implying that string world sheets
can be regarded as strings in the 6-D coset space G2/SU(3). The group G2 of octonion
automorphisms has already earlier appeared in TGD framework.

(d) The duality between partonic 2-surfaces and string world sheets in turn suggests that
the CP2 = CPmod2 conditions reduce to string model for partonic 2-surfaces in CP2 =
SU(3)/U(2). String model in both cases could mean just hypercomplex/complex an-
alyticity for the coordinates of the coset space as functions of hyper-complex/complex
coordinate of string world sheet/partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

(a) To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I
is an octonionic imaginary unit in the complement of fixed a quaternionic sub-space of
octonions. Map preferred coordinates of H = M4×CP2 to octonionic coordinate, form
an arbitrary octonion analytic function having expansion with real Taylor or Laurent
coefficients to avoid problems due to non-commutativity and non-associativity. Map
the outcome to a point of H to get a map H → H. This procedure is nothing but a
generalization of Wick rotation to get an 8-D generalization of analytic map.

(b) Identify the preferred extremals of Kähler action as surfaces obtained by requiring the
vanishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and
string world sheets would correspond to commutative sub-manifolds of the space-time
surface and of imbedding space and would emerge naturally. The ends of braid strands
at partonic 2-surface would naturally correspond to the poles of the octonion analytic
functions. This would mean a huge generalization of conformal invariance of string
models to octonionic conformal invariance and an exact solution of the field equations
of TGD and presumably of quantum TGD itself.

5.3.3 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world
sheets. The challenge is to formulate this more precisely at the level of the preferred extremals
of Kähler action.

(a) Almost topological QFT property means that the Kähler action reduces to Chern-
Simons terms assignable to 3-surfaces. This is guaranteed by the vanishing of the
Coulomb term in the action density implied automatically if conserved Kähler current
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is proportional to the instanton current with proportionality coefficient some scalar
function.

(b) The field equations reduce to the conservation of isometry currents. An attractive ansatz
is that the flow lines of these currents define global coordinates. This means that these
currents are Beltrami flows [B9] so that corresponding 1-forms J satisfy the condition
J ∧ dJ = 0. These conditions are satisfied if

J = Φ∇Ψ

hold true for conserved currents. From this one obtains that Ψ defines global coordinate
varying along flow lines of J .

(c) A possible interpretation is in terms of local polarization and momentum directions
defined by the scalar functions involved and natural additional conditions are that the
gradients of Ψ and Φ are orthogonal:

∇Φ · ∇Ψ = 0 ,

and that the Ψ satisfies massless d’Alembert equation

∇2Ψ = 0

as a consequence of current conservation. If Ψ defines a light-like vector field - in other
words

∇Ψ · ∇Ψ = 0 ,

the light-like dual of Φ -call it Φc- defines a light-like like coordinate and Φ and Φc
defines a light-like plane at each point of space-time sheet.

If also Φ satisfies d’Alembert equation

∇2Φ = 0 ,

also the current

K = Ψ∇Φ

is conserved and its flow lines define a global coordinate in the polarization plane or-
thogonal to time-lik plane defined by local light-like momentum direction.

If Φ allows a continuation to an analytic function of the transversal complex coordi-
nate, one obtains a coordinatization of space-time surface by Ψ and its dual (defining
hyper-complex coordinate) and w,w. Complex analyticity and its hyper-complex vari-
ant would allow to provide space-time surface with four coordinates very much analogous
with Hamilton-Jacobi coordinates of M4.

This would mean a decomposition of the tangent space of space-time surface to orthog-
onal planes defined by light-like momentum and plane orthogonal to it. If the flow
lines of J defined Beltrami flow it seems that the distribution of momentum planes is
integrable.

(d) General arguments suggest that the space-time sheets allow a slicing by string world
sheets parametrized by partonic 2-surfaces or vice versa. This would mean a inti-
mate connection with the mathematics of string models. The two complex coordinates
assignable to the Yangian of affine algebra would naturally relate to string world sheets
and partonic 2-surfaces and the highly non-trivial challenge is to identify them appro-
priately.
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Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K6] led to the realization that so
called Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets
parametrized by partonic 2-surfaces. m would be pair of light-like conjugate coordinates
associated with an integrable distribution of planes M2 and w would define a complex co-
ordinate for the integrable distribution of 2-planes E2 orthogonal to M2. There is a great
temptation to assume that these coordinates define preferred coordinates for M4.

(a) The slicing is very much analogous to that for space-time sheets and the natural question
is how these slicings relate. What is of special interest is that the momentum plane M2

can be defined by massless momentum. The scaling of this vector does not matter
so that these planes are labelled by points z of sphere S2 telling the direction of the
line M2 ∩ E3, when one assigns rest frame and therefore S2 with the preferred time
coordinate defined by the line connecting the tips of CD. This direction vector can be
mapped to a twistor consisting of a spinor and its conjugate. The complex scalings of the
twistor (u, u)→ λu, u/λ) define the same plane. Projective twistor like entities defining
CP1 having only one complex component instead of three are in question. This complex
number defines with certain prerequisites a local coordinate for space-time sheet and
together with the complex coordinate of E2 could serve as a pair of complex coordinates
(z, w) for space-time sheet. This brings strongly in mind the two complex coordinates
appearing in the expansion of the generators of quantum Yangian of quantum affine
algebra [K63].

(b) The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining
M2 distribution. Its hyper-complex conjugate would define Ψc and conjugate light-
like direction. An attractive possibility is that Φ allows analytic continuation to a
holomorphic function of w. In this manner one would have four coordinates for M4 also
for space-time sheet.

(c) The general vision is that at each point of space-time surface one can decompose the
tangent space to M2(x) ⊂M4 = M2

x ×E2
x representing momentum plane and polariza-

tion plane E2 ⊂ E2
x × T (CP2). The moduli space of planes E2 ⊂ E6 is 8-dimensional

and parametrized by SO(6)/SO(2) × SO(4) for a given E2
x. How can one achieve this

selection and what conditions it must satisfy? Certainly the choice must be integrable
but this is not the only condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

(a) Octonionic structure is defined in terms of the octonionic representaton of gamma ma-
trices of the imbedding space existing only in dimension D = 8 since octonion units
are in one-one correspondence with tangent vectors of the tangent space. Octonionic
real unit corresponds to a preferred time axes (and rest frame) identified naturally as
that connecting the tips of CD. What modified gamma matrices mean depends on vari-
ational principle for space-time surface. For volume action one would obtain induced
gamma matrices. For Kähler action one obtains something different. In particular, the
modified gamma matrices do not define vector basis identical with tangent vector basis
of space-time surface.

(b) Quaternionicity means that the modified gamma matrices defined as contractions of
gamma matrices of H with canonical momentum densities for Kähler action span quater-
nionic sub-space of the octonionic tangent space [K62, ?]. A further condition is that
each quaternionic space defined in this manner contains a preferred hyper-complex sub-
space of octonions.
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(c) The sub-space defined by the modified gamma matrices does not co-incide with the tan-
gent space of space-time surface in general so that the interpretation of this condition is
far from obvious. The canonical momentum densities need not define four independent
vectors at given point. For instance, for massless extremals these densities are propor-
tional to light-like vector so that the situation is degenerate and the space in question
reduces to 2-D hyper-complex sub-space since light-like vector defines plane M2.

The obvious questions are following.

(a) Does the analog of tangent space defined by the octonionic modified gammas contain
the local tangent space M2 ⊂M4 for preferred extremals? For massless extremals [K6]
this condition would be true. The orthogonal decomposition T (X4) = M2 ⊕⊥ E2 can
be defined at each point if this is true. For massless extremals also the functions Ψ and
Φ can be identified.

(b) One should answer also the following delicate question. Can M2 really depend on point
x of space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2

is same everywhere. It however seems that one should allow an integrable distribution
of M2

x such that M2
x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time
sheet even when M2

x varies?

i. Note first that G2 (see http://tinyurl.com/y9rrs7un) defines the Lie group of
octonionic automorphisms and G2 action is needed to change the preferred hyper-
octonionic sub-space. Various SU(3) subgroups of G2 are related by G2 auto-
morphism. Clearly, one must assign to each point of a string world sheet in the
slicing parameterizing the partonic 2-surfaces an element of G2. One would have
Minkowskian string model with G2 as a target space. As a matter fact, this string
model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

ii. This would allow to identify at each point of the string world sheet standard quater-
nionic basis - say in terms of complexified basis vectors consisting of two hyper-
complex units and octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color
hypercharge” Y = −1/3 and its conjugate q1 with opposite color isospin and hy-
percharge.

iii. The CP2 point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually cor-
respond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is
the basic property of the solutions of the field equations representing Minkowskian
string world sheets. Also now the same assumption is highly natural. In the case
of string models in Minkowski space, the reduction of the induced metric to stan-
dard form implies Virasoro conditions and similar conditions are expected also now.
There is no need to introduce action principle -just the hyper-complex analycitity
is enough-since Kähler action already defines it.

(c) The WZW model (see http://tinyurl.com/ydxcvfhv) inspired approach to the situ-
ation would be following. The parameterization corresponds to a map g : X2 → G2 for
which g defines a flat G2 connection at string world sheet. WZW type action would
give rise to this kind of situation. The transition G2 → G2/SU(3) would require that
one gauges SU(3) degrees of freedom by bringing in SU(3) connection. Similar proce-
dure for CP2 = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2) gauge
field. Instead of introducing these connections one can simply introduce G2/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed
predicts gluons and electroweak gauge bosons assignable to string like objects so that
the mathematical picture would be consistent with physical intuition.

The two interpretations of CP2

An old observation very relevant for what I have called M8 − H duality [K12] is that the
moduli space of quaternionic sub-spaces of octonionic space (identifiable as M8) containing

http://tinyurl.com/y9rrs7un
http://tinyurl.com/ydxcvfhv
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preferred hyper-complex plane is CP2. Or equivalently, the space of two planes whose ad-
dition extends hyper-complex plane to some quaternionic subspace can be parametrized by
CP2. This CP2 can be called it CPmod2 to avoid confusion. In the recent case this would
mean that the space E2(x) ⊂ E2

x × T (CP2) is represented by a point of CPmod2 . On the
other hand, the imbedding of space-time surface to H defines a point of ”real” CP2. This
gives two different CP2s.

(a) The highly suggestive idea is that the identification CPmod2 = CP2 (apart from isometry)
is crucial for the construction of preferred extremals. Indeed, the projection of the space-
time point to CP2 would fix the local polarization plane completely. This condition for
E2(x) would be purely local and depend on the values of CP2 coordinates only. Second
condition for E2(x) would involve the gradients of imbedding space coordinates including
those of CP2 coordinates.

(b) The conditions that the planes M2
x form an integrable distribution at space-like level

and that M2
x is determined by the modified gamma matrices. The integrability of this

distribution for M4 could imply the integrability for X2. X4 would differ from M4 only
by a deformation in degrees of freedom transversal to the string world sheets defined by
the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2

coordinates and makes them non-constant but allows to depend only on transversal
degrees of freedom? This condition is too strong even for simplest massless extremals
for which CP2 coordinates depend on transversal coordinates defined by ε ·m and ε · k.
One could however allow dependence of CP2 coordinates on light-like M4 coordinate
since the modification of the induced metric is light-like so that light-like coordinate
remains light-like coordinate in this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of CP2 points on the light-like coordinates assignable to the distri-
bution of M2

x would be dependence on either of the light-like coordinates of Hamilton-
Jacobi coordinates but not both.

5.3.4 What could be the construction recipe for the preferred ex-
tremals assuming CP2 = CPmod

2 identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod2

identification and by the tangent space of E2
x×CP2 are same. The challenge is to transform

this condition to an explicit form. CP2 = CPmod2 identification should be general coordinate
invariant. This requires that also the representation of E2 as (e2, e3) plane is general coor-
dinate invariant suggesting that the use of preferred CP2 coordinates - presumably complex
Eguchi-Hanson coordinates - could make life easy. Preferred coordinates are also suggested
by number theoretical vision. A careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space
of X4 but not in general identical with the tangent space: this would be the case only if
the action were 4-volume. I will use the notation Tmx (X4) about the modified tangent space
and call the vectors of Tmx (X4) modified tangent vectors. I hope that this would not cause
confusion.

CP2 = CPmod2 condition

Quaternionic property of the counterpart of Tmx (X4) allows an explicit formulation using the
tangent vectors of Tmx (X4).

(a) The unit vector pair (e2, e3) should correspond to a unique tangent vector of H de-
fined by the coordinate differentials dhk in some natural coordinates used. Complex
Eguchi-Hanson coordinates [L2] are a natural candidate for CP2 and require complex-
ified octonionic imaginary units. If octonionic units correspond to the tangent vector
basis of H uniquely, this is possible.
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(b) The pair (e2, e3) as also its complexification (q1 = e2+ie3, q1 = e2−ie3) is expressible as
a linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod2 =
CP2 in canonical manner. This mapping is what should be expressed explicitly. One
should express given (e2, e3) in terms of SU(3) rotation applied to a standard vector.
After that one should define the corresponding CP2 point by the bundle projection
SU(3)→ CP2.

(c) The tangent vector pair

(∂wh
k, ∂wh

k)

defines second representation of the tangent space of E2(x). This pair should be equiv-
alent with the pair (q1, q1). Here one must be however very cautious with the choice of
coordinates. If the choice of w is unique apart from constant the gradients should be
unique. One can use also real coordinates (x, y) instead of (w = x+ iy, w = x− iy) and
the pair (e2, e3). One can project the tangent vector pair to the standard vielbein basis
which must correspond to the octonionic basis

(∂xh
k, ∂yh

k)→ (∂xh
keAk eA, ∂yh

keAk )eA)↔ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of
CP2 projection.

Formulation of quaternionicity condition in terms of octonionic structure con-
stants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3)
expressed in terms of octonionic units deducible from the condition that unit vectors obey
quaternionic algebra. The expressions for octonionic (see http://tinyurl.com/5m5lqr)
resp. quaternionic (see http://tinyurl.com/3rr79p9) structure constants can be found
at [A20] resp. [A22].

(a) The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ≡

7∑
k=2

E2ke
k , E3 = E3ke

k ≡
7∑
k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (5.3.1)

(b) The multiplication table for octonionic units expressible in terms of octonionic triangle
(see http://tinyurl.com/5m5lqr) [A20] gives

f1klE2k = E3l , f1klE3k = −E2l , fklrE2kE3l = δr1 . (5.3.2)

Here the indices are raised by unit metric so that there is no difference between lower
and upper indices. Summation convention is assumed. Also the contribution of the real
unit is present in the structure constants of third equation but this contribution must
vanish.

(c) The conditions are linear and quadratic in the coefficients E2k and E3k and are expected
to allow an explicit solution. The first two conditions define homogenous equations
which must allow solution. The coefficient matrix acting on (E2, E3) is of the form(

f1 1
−1 f1

)
,

http://tinyurl.com/5m5lqr
http://tinyurl.com/3rr79p9
http://tinyurl.com/5m5lqr
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where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be
due to the highly symmetric properties of the structure constants. In fact the equations
can be written as eigen conditions

f1 ◦ (E2 ± iE3) = ∓i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator
defined by I1 analogous to color hyper charge. Both values of color hyper charged are
obtained.

Explicit expression for the CP2 = CPmod2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

(a) One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write com-
plexified basis as (1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis
elements are

(q1, q2, q3) =
1√
2

(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all
lines containing 3 units defined associative triple: any pair of octonion units at this kind
of line can be used to form pair of complexified unit and its conjugate. In the tangent
space of M4 × CP2 the basis vectors q1, and q2 are mixtures of E2

x and CP2 tangent
vectors. q3 involves only CP2 tangent vectors and there is a temptation to interpret it
as the analog of the quark having no color isospin.

(b) The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any
quark in the triplet and q1 its conjugate in antitriplet. Having fixed some basis one
can perform SU(3) rotations to get a new basis. The action of the rotation is by 3× 3
special unitary matrix. The over all phases of its rows do not matter since they induce
only a rotation in (e2, e3) plane not affecting the plane itself. The action of SU(3) on
q1 is simply the action of its first row on (q1, q2, q3) triplet:

q1 → (Uq)1 = U11q1 + U12q2 + U13q3 ≡ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (5.3.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall
phase does not matter a point of CP2 is in question. The new real octonion units are
given by the formulas

e2 → Re(z1)e2 +Re(z2)e4 +Re(z3)e6 − Im(z1)e3 − Im(z2)e5 − Im(z3)e7 ,

e3 → Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(5.3.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with
z3 6= 0 are obtained as (ξ1, ξ2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod2 equivalence
can be expressed explicitly as first order differential equations. The conditions state the
equivalence

(e2, e3) ↔ (∂xh
keAk eA, ∂yh

keAk eA) , (5.3.5)
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where eA denote octonion units. The comparison of two pairs of vectors requires normal-
ization of the tangent vectors on the right hand side to unit vectors so that one takes unit
vector in the direction of the tangent vector. After this the vectors can be equated. This
allows to expresses the contractions of the partial derivatives with vielbein vectors with the
6 components of e2 and e3. Each condition gives 6+6 first order partial differential equations
which are non-linear by the presence of the overal normalization factor for the right hand
side. The equations are invariant under scalings of (x, y). The very special form of these
equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: or-
dinary Minkowski coordinates and Hamilton-Jacobi coordinates for M4 and Eguchi-Hanson
complex coordinates in which SU(2)×U(1) is represented linearly for CP2. These coordinates
are preferred because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 =
CPmod2 conditions one has what one might call string model with 6-dimensional G2/SU(3) as
targent space. The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable
as a point of G2/SU(3) defining what one means with standard quaternionic plane at given
point of string world sheet. The hypothesis is that hyper-complex analyticity solves these
equations.

The conjectured electric-magnetic duality implies duality between string world sheet and
partonic 2-surfaces central for the proposed mathematical applications of TGD [K25, K26,
K51, K64]. This duality suggests that the solutions to the CP2 = CPmod2 conditions could
reduce to holomorphy with respect to the coordinate w for partonic 2-surface plus the analogs
of Virasoro conditions. The dependence on light-like coordinate would appear as a parametric
dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models in G2/SU(3) and SU(3)/U(2) and also to string model in M4 and X4! In
the previous arguments one ends up to string models in moduli spaces of string world sheets
and partonic 2-surfaces. TGD seems to yield an inflation of string models! This not actually
surprising since the slicing of space-time sheets by string world sheets and partonic 2-surfaces
implies automatically various kinds of maps having interpretation in terms of string orbits.

5.4 In What Sense TGD Could Be An Integrable The-
ory?

During years evidence supporting the idea that TGD could be an integrable theory in some
sense has accumulated. The challenge is to show that various ideas about what integrability
means form pieces of a bigger coherent picture. Of course, some of the ideas are doomed to
be only partially correct or simply wrong. Since it is not possible to know beforehand what
ideas are wrong and what are right the situation is very much like in experimental physics
and it is easy to claim (and has been and will be claimed) that all this argumentation is
useless speculation. This is the price that must be paid for real thinking.

Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for
a linear system. In TGD framework this translates to quantum classical correspondence. The
solutions of Kähler-Dirac equation define the scattering data. This data should define a real
analytic function whose octonionic extension defines the space-time surface as a surface for
which its imaginary part in the representation as bi-quaternion vanishes. There are excellent
hopes about this thanks to the reduction of the Kähler-Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories,
list some bits of evidence for integrability in TGD framework, discuss once again the question
whether the different pieces of evidence are consistent with other and what one really means
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with various notions. An an outcome I represent what I regard as a more coherent view
about integrability of TGD. The notion of octonion analyticity developed in the previous
section is essential for the for what follows.

5.4.1 What Integrable Theories Are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable
theories.

Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Soli-
tons and various other particle like structures are the characteristic phenomenon in these the-
ories. Scattering matrix is trivial in the sense that the particles go through each other in the
scattering and suffer only a phase change. In particular, momenta are conserved. Korteveg-
de Vries equation (see http://tinyurl.com/3cyt8hk) [B2] was motivated by the attempt
to explain the experimentally discovered shallow water wave preserving its shape and moving
with a constant velocity. Sine-Gordon equation (see http://tinyurl.com/yafl243x) [B7]
describes geometrically constant curvature surfaces and defines a Lorentz invariant non-linear
field theory in 1+1-dimensional space-time, which can be applied to Josephson junctions (in
TGD inspired quantum biology it is encountered in the model of nerve pulse [K44] ). Non-
linear Schrödinger equation (see http://tinyurl.com/y88efbo7) [B5] having applications
to optics and water waves represents a further example. All these equations have various
variants.

From TGD point of view conformal field theories represent an especially interesting example
of integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by
its infinite-dimensional character implies infinite number of conserved quantities. The con-
struction of the theory reduces to the construction of the representations of (super-)conformal
algebra. One can solve 2-point functions exactly and characterize them in terms of (possibly
anomalous) scaling dimensions of conformal fields involved and the coefficients appearing in
3-point functions can be solved in terms of fusion rules leading to an associative algebra for
conformal fields. The basic applications are to 2-dimensional critical thermodynamical sys-
tems whose scaling invariance generalizes to conformal invariance. String models represent
second application in which a collection of super-conformal field theories associated with var-
ious genera of 2-surface is needed to describe loop corrections to the scattering amplitudes.
Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories (see http://tinyurl.com/lsvx7g3) are also examples of
integrable theories. Because of its independence on the metric Chern-Simons action (see
http://tinyurl.com/ydgsqm2c) is in 3-D case the unique action defining a topological
quantum field theory. The calculations of knot invariants (for TGD approach see [K25] ),
topological invariants of 3-manifolds and 4-manifolds, and topological quantum computation
(see http://tinyurl.com/dkpo4y) (for a model of DNA as topological quantum computer
see [K15] ) represent applications of this approach. TGD as almost topological QFT means
that the Kähler action for preferred extremals reduces to a surface term by the vanishing of
Coulomb term in action and by the weak form of electric-magnetic duality reduces to Chern-
Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.

N = 4 SYM is the a four-dimensional and very nearly realistic candidate for an integral
quantum field theory. The observation that twistor amplitudes allow also a dual of the 4-D
conformal symmetry motivates the extension of this symmetry to its infinite-dimensional
Yangian variant [A30]. Also the enormous progress in the construction of scattering ampli-
tudes suggests integrability. In TGD framework Yangian symmetry would emerge naturally
by extending the symplectic variant of Kac-Moody algebra from light-cone boundary to the
interior of causal diamond and the Kac-Moody algebra from light-like 3-surface representing
wormhole throats at which the signature of the induced metric changes to the space-time
interior [K55].

http://tinyurl.com/3cyt8hk
http://tinyurl.com/yafl243x
http://tinyurl.com/y88efbo7
http://tinyurl.com/lsvx7g3
http://tinyurl.com/ydgsqm2c
http://tinyurl.com/dkpo4y
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About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed
to the development of the modern mathematical physics. Mention only quantum groups,
conformal algebras, and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical
problem for which the interaction is characterized by a potential function or its analog to
a linear scattering problem depending on time. For instance, for the ordinary Schrödinger
function one can solve potential once single solution of the equation is known. This does
not work in practice. One can however gather information about the asymptotic states in
scattering to deduce the potential. One cannot do without information about bound state
energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like
boundaries of CD (more precisely: the largest CD involved and defining the IR resolution for
momenta). From the scattering data coding information about scattering for various values
of energy of the incoming particle one deduced the potential function or its analog.

(a) The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan
(GML) transform (see http://tinyurl.com/y9f7ybln) described in simple terms in
[B8].

i. In 1+1 dimensional case the S-matrix characterizing scattering is very simple since
the only thing that can take place in scattering is reflection or transmission. There-
fore the S-matrix elements describe either of these processes and by unitarity the
sum of corresponding probabilities equals to 1. The particle can arrive to the poten-
tial either from left or right and is characterized by a momentum. The transmission
coefficient can have a pole meaning complex (imaginary in the simplest case) wave
vector serving as a signal for the formation of a bound state or resonance. The
scattering data are represented by the reflection and transmission coefficients as
function of time.

ii. One can deduce an integral equation for a propagator like functionK(t, x) describing
how delta pulse moving with light velocity is scattered from the potential and is
expressible in terms of time integral over scattering data with contributions from
both scattering states and bound states. The derivation of GML transform [B8]
uses time reversal and time translational invariance and causality defined in terms
of light velocity. After some tricks one obtains the integral equation as well as an
expression for the time independent potential as V (x) = K(x, x). The argument
can be generalized to more complex problems to deduce the GML transform.

(b) The so called Lax pair (see http://tinyurl.com/yc93nw53) is one manner to describe
integrable systems [B3]. Lax pair consists of two operators L and M . One studies what
might be identified as “energy” eigenstates satisfying L(x, t)Ψ = λΨ. λ does not depend
on time and one can say that the dynamics is associated with x coordinate whereas as t
is time coordinate parametrizing different variants of eigenvalue problem with the same
spectrum for L. The operator M(t) does not depend on x at all and the independence
of λ on time implies the condition

∂tL = [L,M ] .

This equation is analogous to a quantum mechanical evolution equation for an operator
induced by time dependent “Hamiltonian” M and gives the non-linear classical evolu-
tion equation when the commutator on the right hand side is a multiplicative operator
(so that it does not involve differential operators acting on the coordinate x). Non-
linear classical dynamics for the time dependent potential emerges as an integrability
condition.

One could say that M(t) introduces the time evolution of L(t, x) as an automorphism
which depends on time and therefore does not affect the spectrum. One has L(t, x) =

http://tinyurl.com/y9f7ybln
http://tinyurl.com/yc93nw53
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U(t)L(0, x)U−1(t) with dU(t)/dt = M(t)U(t). The time evolution of the analog of the
quantum state is given by a similar equation.

(c) A more refined view about Lax pair is based on the observation that the above equation
can be generalized so that M depends also on x. The generalization of the basic equation
for M(x, t) reads as

∂tL− ∂xM − [L,M ] = 0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential
having components Ax = L,At = M . This generalization allows a beautiful geometric
formulation of the integrability conditions and extends the applicability of the inverse
scattering transform. The monodromy of the flat connection becomes important in
this approach. Flat connections in moduli spaces are indeed important in topological
quantum field theories and in conformal field theories.

(d) There is also a connection with the so called Riemann-Hilbert problem (see http:

//tinyurl.com/ybay4qjg) [A24]. The monodromies of the flat connection define mon-
odromy group and Riemann-Hilbert problem concerns the existence of linear differential
equations having a given monodromy group. Monodromy group emerges in the analytic
continuation of an analytic function and the action of the element of the monodromy
group tells what happens for the resulting many-valued analytic function as one turns
around a singularity once (“mono-” ). The linear equations obviously relate to the linear
scattering problem. The flat connection (M,L) in turn defines the monodromy group.
What is needed is that the functions involved are analytic functions of (t, x) replaced
with a complex or hyper-complex variable. Again Wick rotation is involved. Similar
approach generalizes also to higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of math-
ematical apparatus could be used. An interesting possibility is that finite measurement
resolution could be realized in terms of a gauge group or Kac-Moody type group rep-
resented by trivial gauge potential defining a monodromy group for n-point functions.
Monodromy invariance would hold for the full n-point functions constructed in terms of
analytic n-point functions and their conjugates. The ends of braid strands are natural
candidates for the singularities around which monodromies are defined.

5.4.2 Why TGD Could Be Integrable Theory In Some Sense?

There are many indications that TGD could be an integrable theory in some sense. The
challenge is to see which ideas are consistent with each other and to build a coherent picture
where everything finds its own place.

(a) 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for
integrability. Effective 2-dimensionality is suggested by the strong form of General
Coordinate Invariance implying also holography and generalized conformal invariance
predicting infinite number of conservation laws. The dual roles of partonic 2-surfaces and
string world sheets supports a four-dimensional generalization of conformal invariance.
Twistor considerations [K60] indeed suggest that Yangian invariance and Kac-Moody
invariances combine to a 4-D analog of conformal invariance induced by 2-dimensional
one by algebraic continuation.

(b) Octonionic representation of imbedding space Clifford algebra and the identification of
the space-time surfaces as quaternionic space-time surfaces would define a number the-
oretically natural generalization of conformal invariance. The reason for using gamma
matrix representation is that vector field representation for octonionic units does not
exist. The problem concerns the precise meaning of the octonionic representation of
gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is
analytically continued from string curve to 8-D space by octonion real-analyticity. The

http://tinyurl.com/ybay4qjg
http://tinyurl.com/ybay4qjg
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question is whether the Clifford algebra based notion of tangent space quaternionicity
is equivalent with octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must con-
sider seriously the possibility that associativity-co-associativity dichotomy corresponds
to Minkowskian-Euclidian dichotomy.

(c) Field equations define hydrodynamic Beltrami flows satisfying integrability conditions
of form J ∧ dJ = 0.

i. One can assign local momentum and polarization directions to the preferred ex-
tremals and this gives a decomposition of Minkowskian space-time regions to mass-
less quanta analogous to the 1+1-dimensional decomposition to solitons. The linear
superposition of modes with 4-momenta with different directions possible for free
Maxwell action does not look plausible for the preferred extremals of Kähler action.
This rather quantal and solitonic character is in accordance with the quantum clas-
sical correspondence giving very concrete connection between quantal and classical
particle pictures. For 4-D volume action one does not obtain this kind of decom-
position. In 2-D case volume action gives superposition of solutions with different
polarization directions so that the situation is nearer to that for free Maxwell action
and is not like soliton decomposition.

ii. Beltrami property in strong sense allows to identify 4 preferred coordinates for
the space-time surface in terms of corresponding Beltrami flows. This is possible
also in Euclidian regions using two complex coordinates instead of hyper-complex
coordinate and complex coordinate. The assumption that isometry currents are
parallel to the same light-like Beltrami flow implies hydrodynamic character of
the field equations in the sense that one can say that each flow line is analogous to
particle carrying some quantum numbers. This property is not true for all extremals
(say cosmic strings).

iii. The tangent bundle theoretic view about integrability is that one can find a Lie
algebra of vector fields in some manifold spanning the tangent space of a lower-
dimensional manifolds and is expressed in terms of Frobenius theorem (see http:

//tinyurl.com/of6vfz5) [A8]. The gradients of scalar functions defining Beltrami
flows appearing in the ansatz for preferred exremals would define these vector fields
and the slicing. Partonic 2-surfaces would correspond to two complex conjugate
vector fields (local polarization direction) and string world sheets to light-like vector
field and its dual (light-like momentum directions). This slicing generalizes to the
Euclidian regions.

(d) Infinite number of conservation laws is the signature of integrability. Classical field
equations follow from the condition that the vector field defined by Kähler-Dirac gamma
matrices has vanishing divergence and can be identified an integrability condition for
the Kähler-Dirac equation guaranteeing also the conservation of super currents so that
one obtains an infinite number of conserved charges.

(e) Quantum criticality is a further signal of integrability. 2-D conformal field theories
describe critical systems so that the natural guess is that quantum criticality in TGD
framework relates to the generalization of conformal invariance and to integrability.
Quantum criticality implies that Kähler coupling strength is analogous to critical tem-
perature. This condition does affects classical field equations only via boundary condi-
tions expressed as weak form of electric magnetic duality at the wormhole throats at
which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined
by the second derivatives of potential is similar signature and applies in catastrophe
theory. Therefore the existence of vanishing second variations of Kähler action should
characterize criticality and define a property of preferred extremals. The vanishing of
second variations indeed leads to an infinite number of conserved currents [K18, K6]
following the conditions that the deformation of Kähler-Dirac gamma matrix is also
divergenceless and that the Kähler-Dirac equation associated with it is satisfied.

http://tinyurl.com/of6vfz5
http://tinyurl.com/of6vfz5
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5.4.3 Could TGD Be An Integrable Theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical corre-
spondence could be seen as a correspondence between linear quantum dynamics and non-
linear classical dynamics. Integrability would realize this correspondence. In integrable
models such as Sine-Gordon equation particle interactions are described by potential in 1+1
dimensions. This too primitive for the purposes of TGD. The vertices of generalized Feyn-
man diagrams take care of this. At lines one has free particle dynamics so that the situation
could be much simpler than in integrable models if one restricts the considerations to the
lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized
Feynman diagram should be obtainable from the linear dynamics for the induced spinor fields
defined by Kähler-Dirac operator. There are two options.

(a) Strong form of the quantum classical correspondence states that each solution for the
linear dynamics of spinor fields corresponds to space-time sheet. This is analogous to
solving the potential function in terms of a single solution of Schrödinger equation.
Coupling of space-time geometry to quantum numbers via measurement interaction
term is a proposal for realizing this option. It is however the quantum numbers of
positive/negative energy parts of zero energy state which would be visible in the classical
dynamics rather than those of induced spinor field modes.

(b) Only overall dynamics characterized by scattering data- the counterpart of S-matrix for
the Kähler-Dirac operator- is mapped to the geometry of the space-time sheet. This is
much more abstract realization of quantum classical correspondence.

(c) Can these two approaches be equivalent? This might be the case since quantum numbers
of the state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying Kähler-Dirac equa-
tion?

(a) If the solution of field equation has hydrodynamic character, the solutions of the Kähler-
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow.
These correspond to basic solutions and the general solution is a superposition of these.
There is no dispersion and the dynamics is that of geometric optics at the basic level.
This means geometric optics like character of the spinor dynamics.

Solutions of the Kähler-Dirac equation are completely analogous to the pulse solutions
defining the fundamental solution for the wave equation in the argument leading from
wave equation with external time independent potential to Marchenko-Gelfand-Levitan
equation allowing to identify potential in terms of scattering data. There is however no
potential present now since the interactions are described by the vertices of Feynman
diagram where the particle lines meet. Note that particle like regions are Euclidian and
that this picture applies only to the Minkowskian exteriors of particles.

(b) Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected
by flow lines. Partonic 2-surfaces at which the signature of the induced metric changes
are in a special position. Only the imaginary part of the bi-quaternionic value of the
octonion valued map is non-vanishing at these surfaces which can be said to be co-
complex 2-surfaces. By geometric optics behavior the scattering data correspond to a
diffeomorphism mapping initial partonic 2-surface to the final one in some preferred
complex coordinates common to both ends of the line.

(c) What could be these preferred coordinates? Complex coordinates for S2 at light-cone
boundary define natural complex coordinates for the partonic 2-surface. With these co-
ordinates the diffeomorphism defining scattering data is diffeomorphism of S2. Suppose
that this map is real analytic so that maps “real axis” of S2 to itself. This map would
be same as the map defining the octonionic real analyticity as algebraic extension of
the complex real analytic map. By octonionic analyticity one can make large number
of alternative choices for the coordinates of partonic 2-surface.



5.5. Do Geometric Invariants Of Preferred Extremals Define Topological Invariants
Of Space-time Surface And Code For Quantumphysics? 193

(d) There can be non-uniqueness due to the possibility of G2/SU(3) valued map character-
izing the local octonionic units. The proposal is that the choice of octonionic imaginary
units can depend on the point of string like orbit: this would give string model in
G2/SU(3). Conformal invariance for this string model would imply analyticity and
helps considerably but would not probably fix the situation completely since the ele-
ment of the coset space would constant at the partonic 2-surfaces at the ends of CD. One
can of course ask whether the G2/SU(3) element could be constant for each propagator
line and would change only at the 2-D vertices?

This would be the inverse scattering problem formulated in the spirit of TGD. There could
be also dependence of space-time surface on quantum numbers of quantum states but not
on individual solution for the induced spinor field since the scattering data of this solution
would be purely geometric.

5.5 Do Geometric Invariants Of Preferred Extremals De-
fine Topological Invariants Of Space-time Surface And
Code For Quantumphysics?

The recent progress in the understanding of preferred extremals [K6] led to a reduction of the
field equations to conditions stating for Euclidian signature the existence of Kähler metric.
The resulting conditions are a direct generalization of corresponding conditions emerging for
the string world sheet and stating that the 2-metric has only non-diagonal components in
complex/hypercomplex coordinates. Also energy momentum of Kähler action and has this
characteristic (1, 1) tensor structure. In Minkowskian signature one obtains the analog of
4-D complex structure combining hyper-complex structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmological
term follow as a consistency condition guaranteeing that the covariant divergence of the
Maxwell’s energy momentum tensor assignable to Kähler action vanishes. This gives T =
kG+ Λg. By taking trace a further condition follows from the vanishing trace of T :

R =
4Λ

k
. (5.5.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological
constant is very strong prediction. Note that the accelerating expansion of the Universe would
support positive value of Λ. Note however that both Λ and k ∝ 1/G are both parameters
characterizing one particular preferred extremal. One could of course argue that the dynamics
allowing only constant curvature space-times is too simple. The point is however that particle
can topologically condense on several space-time sheets meaning effective superposition of
various classical fields defined by induced metric and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canoni-
cal representatives for the constant curvature manifolds playing central role in Thurston’s
geometrization theorem (see http://tinyurl.com/y8bbzlnr) [A27] known also as hyper-
bolization theorem implying that geometric invariants of space-time surfaces transform to
topological invariants. The generalization of the notion of Ricci flow to Maxwell flow in the
space of metrics and further to Kähler flow for preferred extremals in turn gives a rather
detailed vision about how preferred extremals organize to one-parameter orbits. It is quite
possible that Kähler flow is actually discrete. The natural interpretation is in terms of dissi-
pation and self organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for
space-time topology but also for quantum physics? How to calculate the correlation func-
tions and coupling constant evolution has remained a basic unresolved challenge of quantum

http://tinyurl.com/y8bbzlnr
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TGD. Could the correlation functions be reduced to statistical geometric invariants of pre-
ferred extemals? The latest (means the end of 2012) and perhaps the most powerful idea
hitherto about coupling constant evolution is quantum classical correspondence in statistical
sense stating that the statistical properties of a preferred extremal in quantum superposition
of them are same as those of the zero energy state in question. This principle would be quan-
tum generalization of ergodic theorem stating that the time evolution of a single member of
ensemble represents the ensemble statistically. This principle would allow to deduce correla-
tion functions and S-matrix from the statistical properties of single preferred extremal alone
using classical intuition. Also coupling constant evolution would be coded by the statistical
properties of the representative preferred extremal.

5.5.1 Preferred Extremals Of Kähler Action As Manifolds With
Constant Ricci Scalar Whose Geometric Invariants Are Topological-
Invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants
of space-time surface serve as topological invariants. The reduction of Kähler action to 3-
D Chern-Simons terms (see http://tinyurl.com/ybp86sho) [K6] gives support for this
conjecture as a classical counterpart for the view about TGD as almost topological QFT.
The following arguments give a more precise content to this conjecture in terms of existing
mathematics.

(a) It is not possible to represent the scaling of the induced metric as a deformation of the
space-time surface preserving the preferred extremal property since the scale of CP2

breaks scale invariance. Therefore the curvature scalar cannot be chosen to be equal to
one numerically. Therefore also the parameter R = 4Λ/k and also Λ and k separately
characterize the equivalence class of preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains con-
stant along the orbits of the flow and thus characterizes the space-time surface. Λ and
even k ∝ 1/G can indeed depend on space-time sheet and p-adic length scale hypoth-
esis suggests a discrete spectrum for Λ/k expressible in terms of p-adic length scales:
Λ/k ∝ 1/L2

p with p ' 2k favored by p-adic length scale hypothesis. During cosmic evo-
lution the p-adic length scale would increase gradually. This would resolve the problem
posed by cosmological constant in GRT based theories.

(b) One could also see the preferred extremals as 4-D counterparts of constant curvature
3-manifolds in the topology of 3-manifolds. An interesting possibility raised by the
observed negative value of Λ is that most 4-surfaces are constant negative curvature
4-manifolds. By a general theorem coset spaces (see http://tinyurl.com/y8d3udpr)
H4/Γ, where H4 = SO(1, 4)/SO(4) is hyperboloid of M5 and Γ a torsion free discrete
subgroup of SO(1, 4) [A12]. It is not clear to me, whether the constant value of Ricci
scalar implies constant sectional curvatures and therefore hyperbolic space property. It
could happen that the space of spaces with constant Ricci curvature contain a hyperbolic
manifold as an especially symmetric representative. In any case, the geometric invariants
of hyperbolic metric are topological invariants.

By Mostow rigidity theorem (see http://tinyurl.com/yacbu8sk) [A19] finite-volume
hyperbolic manifold is unique for D > 2 and determined by the fundamental group
of the manifold. Since the orbits under the Kähler flow preserve the curvature scalar
the manifolds at the orbit must represent different imbeddings of one and hyperbolic
4-manifold. In 2-D case the moduli space for hyperbolic metric for a given genus g >
0 is defined by Teichmueller parameters and has dimension 6(g − 1). Obviously the
exceptional character of D = 2 case relates to conformal invariance. Note that the
moduli space in question (see http://tinyurl.com/ybowqm5v) plays a key role in p-
adic mass calculations [K10].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions
and maybe generalize also to Minkowskian regions. If so then both “topological” and

http://tinyurl.com/ybp86sho
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“geometro” in “Topological GeometroDynamics” would be fully justified. The fact that
geometric invariants become topological invariants also conforms with “TGD as almost
topological QFT” and allows the notion of scale to find its place in topology. Also
the dream about exact solvability of the theory would be realized in rather convincing
manner.

These conjectures are the main result independent of whether the generalization of the Ricci
flow discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates
in the space of preferred extremals of Kähler action. My sincere hope is that the reader could
grasp how far reaching these result really are.

5.5.2 Is There A Connection Between Preferred Extremals And
AdS4/CFT Correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and
have negative scalar curvature for negative value of Λ. 4-D space-times with hyperbolic metric
provide canonical representation for a large class of four-manifolds and an interesting question
is whether these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This suggests
at connection with AdS4/CFT correspondence of M-theory. The boundary of AdS would
be now replaced with 3-D light-like orbit of partonic 2-surface at which the signature of
the induced metric changes. The metric 2-dimensionality of the light-like surface makes
possible generalization of 2-D conformal invariance with the light-like coordinate taking the
role of complex coordinate at light-like boundary. AdS could represent a special case of a
more general family of space-time surfaces with constant Ricci scalar satistying Einstein-
Maxwell equations and generalizing the AdS4/CFT correspondence. There is however a
strong objection from cosmology: the accelerated expansion of the Universe requires positive
value of Λ and favors De Sitter Space dS4 instead of AdS4.

These observations provide motivations for finding whether AdS4 and/or dS4 allows an
imbedding as a vacuum extremal to M4 × S2 ⊂ M4 × CP2, where S2 is a homologically
trivial geodesic sphere of CP2. It is easy to guess the general form of the imbedding by
writing the line elements of, M4, S2, and AdS4.

(a) The line element of M4 in spherical Minkowski coordinates (m, rM , θ, φ) reads as

ds2 = dm2 − dr2
M − r2

MdΩ2 . (5.5.2)

(b) Also the line element of S2 is familiar:

ds2 = −R2(dΘ2 + sin2(θ)dΦ2) . (5.5.3)

(c) By visiting in Wikipedia (see http://tinyurl.com/y9hw95ql) one learns that in spher-
ical coordinate the line element of AdS4/dS4 is given by

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dΩ2 ,

A(r) = 1 + εy2 , y =
r

r0
,

ε = 1 for AdS4 , ε = −1 for dS4 . (5.5.4)

(d) From these formulas it is easy to see that the ansatz is of the same general form as for
the imbedding of Schwartschild-Nordstöm metric:

m = Λt+ h(y) , rM = r ,
Θ = s(y) , Φ = ω(t+ f(y)) .

(5.5.5)

http://tinyurl.com/y9hw95ql
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The non-trivial conditions on the components of the induced metric are given by

gtt = Λ2 − x2sin2(Θ) = A(r) ,

gtr =
1

r0

[
Λ
dh

dy
− x2sin2(θ)

df

dr

]
= 0 ,

grr =
1

r2
0

[
(
dh

dy
)2 − 1− x2sin2(θ)(

df

dy
)2 −R2(

dΘ

dy
)2

]
= − 1

A(r)
,

x = Rω . (5.5.6)

By some simple algebraic manipulations one can derive expressions for sin(Θ), df/dr and
dh/dr.

(a) For Θ(r) the equation for gtt gives the expression

sin(Θ) = ±P
1/2

x
,

P = Λ2 −A = Λ2 − 1− εy2 . (5.5.7)

The condition 0 ≤ sin2(Θ) ≤ 1 gives the conditions

(Λ2 − x2 − 1)1/2 ≤ y ≤ (Λ2 − 1)1/2 for ε = 1 (AdS4) ,
(−Λ2 + 1)1/2 ≤ y ≤ (x2 + 1− Λ2)1/2 for ε = −1 (dS4) .

(5.5.8)

Only a spherical shell is possible in both cases. The model for the final state of star
considered in [K57] predicted similar layer layer like structure and inspired the proposal
that stars quite generally have an onion-like structure with radii of various shells char-
acterize by p-adic length scale hypothesis and thus coming in some powers of

√
2. This

brings in mind also Titius-Bode law.

(b) From the vanishing of gtr one obtains

dh

dy
=

P

Λ

df

dy
.

(5.5.9)

(c) The condition for grr gives

(
df

dy
)2 =

r2
0

AP
[A−1 −R2(

dΘ

dy
)2] . (5.5.10)

Clearly, the right-hand side is positive if P ≥ 0 holds true and RdΘ/dy is small. One
can express dΘ/dy using chain rule as

(
dΘ

dy
)2 = x2y2

P (P−x2) . (5.5.11)

One obtains

(
df

dy
)2 = Λr2

0

y2

AP

[
1

1 + y2
− x2(

R

r0
)2 1

P (P − x2)

]
.

(5.5.12)

The right hand side of this equation is non-negative for certain range of parameters
and variable y. Note that for r0 � R the second term on the right hand side can be
neglected. In this case it is easy to integrate f(y).
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The conclusion is that both AdS4 and dS4 allow a local imbedding as a vacuum extremal.
Whether also an imbedding as a non-vacuum preferred extremal to M4×S2, S2 a homolog-
ically non-trivial geodesic sphere is possible, is an interesting question.

5.5.3 Generalizing Ricci Flow To Maxwell Flow For 4-Geometries
And Kähler Flow For Space-Time Surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants
of Riemann manifolds. I certainly did not have this in mind when I choose to call my
unification attempt “Topological Geometrodynamics” but this title strongly suggests that a
suitable generalization of Ricci flow could play a key role in the understanding of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a
generalization of the well-known volume preserving Ricci flow (see http://tinyurl.com/

2cwlzh9l) [A23] introduced by Richard Hamilton. Ricci flow is defined in the space of
Riemann metrics as

dgαβ
dt

= −2Rαβ + 2
Ravg
D

gαβ . (5.5.13)

Here Ravg denotes the average of the scalar curvature, and D is the dimension of the Riemann
manifold. The flow is volume preserving in average sense as one easily checks (〈gαβdgαβ/dt〉 =
0). The volume preserving property of this flow allows to intuitively understand that the
volume of a 3-manifold in the asymptotic metric defined by the Ricci flow is topological
invariant. The fixed points of the flow serve as canonical representatives for the topological
equivalence classes of 3-manifolds. These 3-manifolds (for instance hyperbolic 3-manifolds
with constant sectional curvatures) are highly symmetric. This is easy to understand since
the flow is dissipative and destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called
Maxwell flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

(a) First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for
the volume preserving character of the flow defined as

dgαβ
dt

= Tαβ . (5.5.14)

Taking covariant divergence on both sides and assuming that d/dt and Dα commute,
one obtains that Tαβ is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgαβ
dt

= kGαβ + Λgαβ = kRαβ + (−kR
2

+ Λ)gαβ . (5.5.15)

The trace of this equation gives that the curvature scalar is constant. Note that the
value of the Kähler coupling strength plays a highly non-trivial role in these equations
and it is quite possible that solutions exist only for some critical values of αK . Quantum
criticality should fix the allow value triplets (G,Λ, αK) apart from overall scaling

(G,Λ, αK)→ (xG,Λ/x, xαK .

Fixing the value of G fixes the values remaining parameters at critical points. The
rescaling of the parameter t induces a scaling by x.

http://tinyurl.com/2cwlzh9l
http://tinyurl.com/2cwlzh9l
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(b) By taking trace one obtains the already mentioned condition fixing the curvature to be
constant, and one can write

dgαβ
dt

= kRαβ − Λgαβ . (5.5.16)

Note that in the recent case Ravg = R holds true since curvature scalar is constant.
The fixed points of the flow would be Einstein manifolds (see http://tinyurl.com/

ybrnakuu) [A7, A36] satisfying

Rαβ =
Λ

k
gαβ (5.5.17)

.

(c) It is by no means obvious that continuous flow is possible. The condition that Einstein-
Maxwell equations are satisfied might pick up from a completely general Maxwell flow
a discrete subset as solutions of Einstein-Maxwell equations with a cosmological term.
If so, one could assign to this subset a sequence of values tn of the flow parameter t.

(d) I do not know whether 3-dimensionality is somehow absolutely essential for getting the
topological classification of closed 3-manifolds using Ricci flow. This ignorance allows
me to pose some innocent questions. Could one have a canonical representation of 4-
geometries as spaces with constant Ricci scalar? Could one select one particular Einstein
space in the class four-metrics and could the ratio Λ/k represent topological invariant if
one normalizes metric or curvature scalar suitably. In the 3-dimensional case curvature
scalar is normalized to unity. In the recent case this normalization would give k = 4Λ in
turn giving Rαβ = gαβ/4. Does this mean that there is only single fixed point in local
sense, analogous to black hole toward which all geometries are driven by the Maxwell
flow? Does this imply that only the 4-volume of the original space would serve as a
topological invariant?

Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be
the appropriate term and provides families of preferred extremals. Since space-time surfaces
inside CD are the basic physical objects are in TGD framework, a possible interpretation
of these families would be as flows describing physical dissipation as a four-dimensional
phenomenon polishing details from the space-time surface interpreted as an analog of Bohr
orbit.

(a) The flow is now induced by a vector field jk(x, t) of the space-time surface having values
in the tangent bundle of imbedding space M4 ×CP2. In the most general case one has
Kähler flow without the Einstein equations. This flow would be defined in the space
of all space-time surfaces or possibly in the space of all extremals. The flow equations
reduce to

hklDαj
k(x, t)Dβh

l =
1

2
Tαβ . (5.5.18)

The left hand side is the projection of the covariant gradient Dαj
k(x, t) of the flow

vector field jk(x, t) to the tangent space of the space-time surface. Dalpha is covariant
derivative taking into account that jk is imbedding space vector field. For a fixed point
space-time surface this projection must vanish assuming that this space-time surface
reachable. A good guess for the asymptotia is that the divergence of Maxwell energy
momentum tensor vanishes and that Einstein’s equations with cosmological constant
are well-defined.

http://tinyurl.com/ybrnakuu
http://tinyurl.com/ybrnakuu
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Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vacuum
extremals and in Minkowskian regions to any space-time surface in any 6-D sub-manifold
M4 × Y 2, where Y 2 is Lagrangian sub-manifold of CP2 having therefore vanishing in-
duced Kähler form. Symplectic transformations of CP2 combined with diffeomorphisms
of M4 give new Lagrangian manifolds. One would expect that vacuum extremals are
approached but never reached at second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals
must be Einstein manifolds. For CP2 type vacuum extremals this is the case. It is quite
possible that these fixed points do not actually exist in Minkowskian sector, and could
be replaced with more complex asymptotic behavior such as limit, chaos, or strange
attractor.

(b) The flow could be also restricted to the space of preferred extremals. Assuming that
Einstein Maxwell equations indeed hold true, the flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
(kRαβ − Λgαβ) . (5.5.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the
space of all 4-surfaces.

(c) One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining a
flow in the entire imbedding space. This assumption is probably too restrictive. In this
case the equations reduce to

(Drjl(x, t) +Dljr)∂αh
r∂βh

l = kRαβ − Λgαβ . (5.5.20)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl +Dkjl
becomes orthogonal to the space-time surface. Note for that Killing vector fields of H
the left hand side vanishes identically. Killing vector fields are indeed symmetries of
also asymptotic states.

It must be made clear that the existence of a continuous flow in the space of preferred
extremals might be too strong a condition. Already the restriction of the general Maxwell
flow in the space of metrics to solutions of Einstein-Maxwell equations with cosmological
term might lead to discretization, and the assumption about reprentability as 4-surface in
M4 × CP2 would give a further condition reducing the number of solutions. On the other
hand, one might consiser a possibility of a continuous flow in the space of constant Ricci
scalar metrics with a fixed 4-volume and having hyperbolic spaces as the most symmetric
representative.

Dissipation, self organization, transition to chaos, and coupling constant evolu-
tion

A beautiful connection with concepts like dissipation, self-organization, transition to chaos,
and coupling constant evolution suggests itself.

(a) It is not at all clear whether the vacuum extremal limits of the preferred extremals can
correspond to Einstein spaces except in special cases such as CP2 type vacuum extremals
isometric with CP2. The imbeddability condition however defines a constraint force
which might well force asymptotically more complex situations such as limit cycles and
strange attractors. In ordinary dissipative dynamics an external energy feed is essential
prerequisite for this kind of non-trivial self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces
due to the imbeddability condition. It is not too difficult to imagine that the flow (if
it exists!) could define something analogous to a transition to chaos taking place in
a stepwise manner for critical values of the parameter t. Alternatively, these discrete
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values could correspond to those values of t for which the preferred extremal property
holds true for a general Maxwell flow in the space of 4-metrics. Therefore the preferred
extremals of Kähler action could emerge as one-parameter (possibly discrete) families
describing dissipation and self-organization at the level of space-time dynamics.

(b) For instance, one can consider the possibility that in some situations Einstein’s equations
split into two mutually consistent equations of which only the first one is independent

xJανJ
νβ = Rαβ ,

LK = xJανJ
νβ = 4Λ ,

x =
1

16παK
. (5.5.21)

Note that the first equation indeed gives the second one by tracing. This happens for
CP2 type vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a con-
tinuous spectrum if this happens always. A more plausible alternative is that this holds
true only asymptotically. In this case the flow equation could not lead arbitrary near to
vacuum extremal, and one can think of situation in which LK = 4Λ defines an analog of
limiting cycle or perhaps even strange attractor. In any case, the assumption would al-
low to deduce the asymptotic value of the action density which is of utmost importance
from calculational point of view: action would be simply SK = 4ΛV4 and one could also
say that one has minimal surface with Λ taking the role of string tension.

(c) One of the key ideas of TGD is quantum criticality implying that Kähler coupling
strength is analogous to critical temperature. Second key idea is that p-adic coupling
constant evolution represents discretized version of continuous coupling constant evo-
lution so that each p-adic prime would correspond a fixed point of ordinary coupling
constant evolution in the sense that the 4-volume characterized by the p-adic length
scale remains constant. The invariance of the geometric and thus geometric parameters
of hyperbolic 4-manifold under the Kähler flow would conform with the interpretation
as a flow preserving scale assignable to a given p-adic prime. The continuous evolution
in question (if possible at all!) might correspond to a fixed p-adic prime. Also the hier-
archy of Planck constants relates to this picture naturally. Planck constant ~eff = n~
corresponds to a multi-furcation generating n-sheeted structure and certainly affecting
the fundamental group.

(d) One can of course question the assumption that a continuous flow exists. The property
of being a solution of Einstein-Maxwell equations, imbeddability property, and preferred
extremal property might allow allow only discrete sequences of space-time surfaces per-
haps interpretable as orbit of an iterated map leading gradually to a fractal limit. This
kind of discrete sequence might be also be selected as preferred extremals from the orbit
of Maxwell flow without assuming Einstein-Maxwell equations. Perhaps the discrete
p-adic coupling constant evolution could be seen in this manner and be regarded as an
iteration so that the connection with fractality would become obvious too.

Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost
constancy of LK suggest an interpretation in terms of 4-D variant of thermodynamics natural
in zero energy ontology (ZEO), where physical states are analogs for pairs of initial and final
states of quantum event are quantum superpositions of classical time evolutions. Quantum
theory becomes a “square root” of thermodynamics so that 4-D analog of thermodynamics
might even replace ordinary thermodynamics as a fundamental description. If so this 4-D
thermodynamics should be qualitatively consistent with the ordinary 3-D thermodynamics.

(a) The first naive guess would be the interpretation of the action density LK as an analog
of energy density e = E/V3 and that of R as the analog to entropy density s = S/V3.
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The asymptotic states would be analogs of thermodynamical equilibria having constant
values of LK and R.

(b) Apart from an overall sign factor ε to be discussed, the analog of the first law de =
Tds− pdV/V would be

dLK = kdR+ Λ
dV4

V4
.

One would have the correspondences S → εRV4, e → εLK and k → T , p → −Λ.
k ∝ 1/G indeed appears formally in the role of temperature in Einstein’s action defining
a formal partition function via its exponent. The analog of second law would state the
increase of the magnitude of εRV4 during the Kähler flow.

(c) One must be very careful with the signs and discuss Euclidian and Minkowskian regions
separately. Concerning purely thermodynamic aspects at the level of vacuum functional
Euclidian regions are those which matter.

i. For CP2 type vacuum extremals LK ∝ E2 + B2, R = Λ/k, and Λ are positive. In
thermodynamical analogy for ε = 1 this would mean that pressure is negative.

ii. In Minkowskian regions the value of R = Λ/k is negative for Λ < 0 suggested by the
large abundance of 4-manifolds allowing hyperbolic metric and also by cosmological
considerations. The asymptotic formula LK = 4Λ considered above suggests that
also Kähler action is negative in Minkowskian regions for magnetic flux tubes dom-
inating in TGD inspired cosmology: the reason is that the magnetic contribution
to the action density LK ∝ E2 −B2 dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the evolution by quantum jumps has Kähler flow as a space-time cor-
relate.

(a) In Euclidian regions the choice ε = 1 seems to be more reasonable one. In Euclidian
regions −Λ as the analog of pressure would be negative, and asymptotically (that is for
CP2 type vacuum extremals) its value would be proportional to Λ ∝ 1/GR2, where R
denotes CP2 radius defined by the length of its geodesic circle.

A possible interpretation for negative pressure is in terms of string tension effectively
inducing negative pressure (note that the solutions of the Kähler-Dirac equation indeed
assign a string to the wormhole contact). The analog of the second law would require
the increase of RV4 in quantum jumps. The magnitudes of LK , R, V4 and Λ would
be reduced and approach their asymptotic values. In particular, V4 would approach
asymptotically the volume of CP2.

(b) In Minkowskian regions Kähler action contributes to the vacuum functional a phase
factor analogous to an imaginary exponent of action serving in the role of Morse function
so that thermodynamics interpretation can be questioned. Despite this one can check
whether thermodynamic interpretation can be considered. The choice ε = −1 seems
to be the correct choice now. −Λ would be analogous to a negative pressure whose
gradually decreases. In 3-D thermodynamics it is natural to assign negative pressure
to the magnetic flux tube like structures as their effective string tension defined by the
density of magnetic energy per unit length. −R ≥ 0 would entropy and −LK ≥ 0 would
be the analog of energy density.

R = Λ/k and the reduction of Λ during cosmic evolution by quantum jumps suggests
that the larger the volume of CD and thus of (at least) Minkowskian space-time sheet
the smaller the negative value of Λ.

Assume the recent view about state function reduction explaining how the arrow of
geometric time is induced by the quantum jump sequence defining experienced time [K4].
According to this view zero energy states are quantum superpositions over CDs of
various size scales but with common tip, which can correspond to either the upper or
lower light-like boundary of CD. The sequence of quantum jumps the gradual increase of
the average size of CD in the quantum superposition and therefore that of average value
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of V4. On the other hand, a gradual decrease of both −LK and −R looks physically
very natural. If Kähler flow describes the effect of dissipation by quantum jumps in
ZEO then the space-time surfaces would gradually approach nearly vacuum extremals
with constant value of entropy density −R but gradually increasing 4-volume so that
the analog of second law stating the increase of −RV4 would hold true.

(c) The interpretation of −R > 0 as negentropy density assignable to entanglement is
also possible and is consistent with the interpretation in terms of second law. This
interpretation would only change the sign factor ε in the proposed formula. Otherwise
the above arguments would remain as such.

5.5.4 Could Correlation Functions, S-Matrix, And Coupling Con-
stant Evolution Be Coded The Statistical Properties Of Preferred
Extremals?

How to calculate the correlation functions and coupling constant evolution has remained a
basic unresolved challenge. Generalized Feynman diagrams provide a powerful vision which
however does not help in practical calculations. Some big idea has been lacking.

Quantum classical correspondence states that all aspects of quantum states should have
correlates in the geometry of preferred extremals. In particular, various elementary particle
propagators should have a representation as properties of preferred extremals. This would
allow to realize the old dream about being able to say something interesting about coupling
constant evolution although it is not yet possible to calculate the M-matrices and U-matrix.
The general structure of U-matrix is however understood [K66]. Hitherto everything that has
been said about coupling constant evolution has been rather speculative arguments except
for the general vision that it reduces to a discrete evolution defined by p-adic length scales.
General first principle definitions are however much more valuable than ad hoc guesses even
if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum
state should code for its properties. By quantum classical correspondence these correlation
functions should have counterparts in the geometry of preferred extremals. Even more: these
classical counterparts for a given preferred extremal ought to be identical with the quantum
correlation functions for the superposition of preferred extremals. This correspondence could
be called quantum ergodicity by its analogy with ordinary ergodicity stating that the member
of ensemble becomes representative of ensemble.

This principle would be a quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This symmetry
principle analogous to holography might allow to fix S-matrix uniquely even in the case that
the hermitian square root of the density matrix appearing in the M-matrix would lead to a
breaking of quantum ergodicity as also 4-D spin glass degeneracy suggests.

This principle would allow to deduce correlation functions from the statistical properties of
single preferred extremal alone using just classical intuition. Also coupling constant evolu-
tion would be coded by the statistical properties of preferred extremals. Quantum ergodicity
would mean an enormous simplification since one could avoid the horrible conceptual com-
plexities involved with the functional integrals over WCW .

This might of course be too optimistic guess. If a sub-algebra of symplectic algebra acts
as gauge symmmetries of the preferred extremals in the sense that corresponding Noether
charges vanish, it can quite well be that correlations functions correspond to averages for
extremals belonging to single conformal equivalence class.

(a) The marvellous implication of quantum ergodicity would be that one could calculate
everything solely classically using the classical intuition - the only intuition that we
have. Quantum ergodicity would also solve the paradox raised by the quantum classical
correspondence for momentum eigenstates. Any preferred extremal in their superposi-
tion defining momentum eigenstate should code for the momentum characterizing the
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superposition itself. This is indeed possible if every extremal in the superposition codes
the momentum to the properties of classical correlation functions which are identical
for all of them.

(b) The only manner to possibly achieve quantum ergodicity is in terms of the statistical
properties of the preferred extremals. It should be possible to generalize the ergodic
theorem stating that the properties of statistical ensemble are represented by single
space-time evolution in the ensemble of time evolutions. Quantum superposition of
classical worlds would effectively reduce to single classical world as far as classical cor-
relation functions are considered. The notion of finite measurement resolution suggests
that one must state this more precisely by adding that classical correlation functions are
calculated in a given UV and IR resolutions meaning UV cutoff defined by the smallest
CD and IR cutoff defined by the largest CD present.

(c) The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that
this quantum ergodic theorem must be broken. In the case of the ordinary spin classes
one has not only statistical average for a fixed Hamiltonian but a statistical average
over Hamiltonians. There is a probability distribution over the coupling parameters
appearing in the Hamiltonian. Maybe the quantum counterpart of this is needed to
predict the physically measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with
different classical correlation functions? This kind of average is indeed taken in density
matrix formalism. Or could it be that the square root of thermodynamics defined by
ZEO actually gives automatically rise to this average? The eigenvalues of the “hermitian
square root” of the density matrix would code for components of the state characterized
by different classical correlation functions. One could assign these contributions to
different “phases”.

(d) Quantum classical correspondence in statistical sense would be very much like holog-
raphy (now individual classical state represents the entire quantum state). Quantum
ergodicity would pose a rather strong constraint on quantum states. This symmetry
principle could actually fix the spectrum of zero energy states to a high degree and
fix therefore the M-matrices given by the product of hermitian square root of density
matrix and unitary S-matrix and unitary U-matrix constructible as inner products of
M-matrices associated with CDs with various size scales [K66].

(e) In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the
postulate that the space-time geometry provides a symbolic representation for the quan-
tum states and also for the contents of consciousness assignable to quantum jumps be-
tween quantum states. Quantum ergodicity would realize this strongly self-referential
looking condition. The positive and negative energy parts of zero energy state would be
analogous to the initial and final states of quantum jump and the classical correlation
functions would code for the contents of consciousness like written formulas code for the
thoughts of mathematician and provide a sensory feedback.

How classical correlation functions should be defined?

(a) General Coordinate Invariance and Lorentz invariance are the basic constraints on the
definition. These are achieved for the space-time regions with Minkowskian signature
and 4-D M4 projection if linear Minkowski coordinates are used. This is equivalent
with the contraction of the indices of tensor fields with the space-time projections of
M4 Killing vector fields representing translations. Accepting ths generalization, there is
no need to restrict oneself to 4-D M4 projection and one can also consider also Euclidian
regions identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2

Killing vector fields can be projected to space-time surface and give a representation
for classical gluon fields. These in turn can be contracted with M4 Killing vectors giv-
ing rise to gluon fields as analogs of graviton fields but with second polarization index
replaced with color index.
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(b) The standard definition for the correlation functions associated with classical time evolu-
tion is the appropriate starting point. The correlation function GXY (τ) for two dynam-
ical variables X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t + τ)dt/T

over an interval of length T , and one can also consider the limit T →∞. In the recent
case one would replace τ with the difference m1 −m2 = m of M4 coordinates of two
points at the preferred extremal and integrate over the points of the extremal to get
the average. The finite time interval T is replaced with the volume of causal diamond
in a given length scale. Zero energy state with given quantum numbers for positive and
negative energy parts of the state defines the initial and final states between which the
fields appearing in the correlation functions are defined.

(c) What correlation functions should be considered? Certainly one could calculate corre-
lation functions for the induced spinor connection given electro-weak propagators and
correlation functions for CP2 Killing vector fields giving correlation functions for gluon
fields using the description in terms of Killing vector fields. If one can uniquely separate
from the Fourier transform uniquely a term of form Z/(p2 − m2) by its momentum
dependence, the coefficient Z can be identified as coupling constant squared for the
corresponding gauge potential component and one can in principle deduce coupling
constant evolution purely classically. One can imagine of calculating spinorial propa-
gators for string world sheets in the same manner. Note that also the dependence on
color quantum numbers would be present so that in principle all that is needed could be
calculated for a single preferred extremal without the need to construct QFT limit and
to introduce color quantum numbers of fermions as spin like quantum numbers (color
quantum numbers corresponds to CP2 partial wave for the tip of the CD assigned with
the particle).

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The
notion of quantum ergodicity could however be one of the really deep ideas about coupling
constant evolution comparable to the notion of p-adic coupling constant evolution. Quantum
Ergodicity (briefly QE) would also state something extremely non-trivial also about the
construction of correlation functions and S-matrix. Because this principle is so new, the rest
of the chapter does not yet contain any applications of QE. This should not lead the reader
to under-estimate the potential power of QE.

5.6 About Deformations Of Known Extremals Of Kähler
Action

I have done a considerable amount of speculative guesswork to identify what I have used to
call preferred extremals of Kähler action. The difficulty is that the mathematical problem at
hand is extremely non-linear and that I do not know about existing mathematical literature
relevant to the situation. One must proceed by trying to guess the general constraints on
the preferred extremals which look physically and mathematically plausible. The hope is
that this net of constraints could eventually chrystallize to Eureka! Certainly the recent
speculative picture involves also wrong guesses. The need to find explicit ansatz for the
deformations of known extremals based on some common principles has become pressing.
The following considerations represent an attempt to combine the existing information to
achieve this.

5.6.1 What Might Be The Common Features Of The Deformations
Of Known Extremals

The dream is to discover the deformations of all known extremals by guessing what is common
to all of them. One might hope that the following list summarizes at least some common
features.
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Effective three-dimensionality at the level of action

(a) Holography realized as effective 3-dimensionality also at the level of action requires that
it reduces to 3-dimensional effective boundary terms. This is achieved if the contraction
jαAα vanishes. This is true if jα vanishes or is light-like, or if it is proportional to
instanton current in which case current conservation requires that CP2 projection of
the space-time surface is 3-dimensional. The first two options for j have a realization
for known extremals. The status of the third option - proportionality to instanton
current - has remained unclear.

(b) As I started to work again with the problem, I realized that instanton current could
be replaced with a more general current j = ∗B ∧ J or concretely: jα = εαβγδBβJγδ,
where B is vector field and CP2 projection is 3-dimensional, which it must be in any
case. The contractions of j appearing in field equations vanish automatically with this
ansatz.

(c) Almost topological QFT property in turn requires the reduction of effective boundary
terms to Chern-Simons terms: this is achieved by boundary conditions expressing weak
form of electric magnetic duality. If one generalizes the weak form of electric-magnetic
duality to J = Φ ∗ J one has B = dΦ and j has a vanishing divergence for 3-D CP2

projection. This is clearly a more general solution ansatz than the one based on pro-
portionality of j with instanton current and would reduce the field equations in concise
notation to Tr(THk) = 0.

(d) Any of the alternative properties of the Kähler current implies that the field equations
reduce to Tr(THk) = 0, where T and Hk are shorthands for Maxwellian energy mo-
mentum tensor and second fundamental form and the product of tensors is obvious
generalization of matrix product involving index contraction.

Could Einstein’s equations emerge dynamically?

For jα satisfying one of the three conditions, the field equations have the same form as the
equations for minimal surfaces except that the metric g is replaced with Maxwell energy
momentum tensor T .

(a) This raises the question about dynamical generation of small cosmological constant Λ:
T = Λg would reduce equations to those for minimal surfaces. For T = Λg Kähler-Dirac
gamma matrices would reduce to induced gamma matrices and the Kähler-Dirac oper-
ator would be proportional to ordinary Dirac operator defined by the induced gamma
matrices. One can also consider weak form for T = Λg obtained by restricting the con-
sideration to a sub-space of tangent space so that space-time surface is only “partially”
minimal surface but this option is not so elegant although necessary for other than CP2

type vacuum extremals.

(b) What is remarkable is that T = Λg implies that the divergence of T which in the
general case equals to jβJαβ vanishes. This is guaranteed by one of the conditions for
the Kähler current. Since also Einstein tensor has a vanishing divergence, one can ask
whether the condition to T = κG + Λg could the general condition. This would give
Einstein’s equations with cosmological term besides the generalization of the minimal
surface equations. GRT would emerge dynamically from the non-linear Maxwell’s theory
although in slightly different sense as conjectured [K57] ! Note that the expression for
G involves also second derivatives of the imbedding space coordinates so that actually a
partial differential equation is in question. If field equations reduce to purely algebraic
ones, as the basic conjecture states, it is possible to have Tr(GHk) = 0 and Tr(gHk) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents.
The recent proposal would give the analog of ordinary Einstein equations as a dynamical
constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.
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(c) Minimal surface property is physically extremely nice since field equations can be inter-
preted as a non-linear generalization of massless wave equation: something very natural
for non-linear variant of Maxwell action. The theory would be also very “stringy” al-
though the fundamental action would not be space-time volume. This can however hold
true only for Euclidian signature. Note that for CP2 type vacuum extremals Einstein
tensor is proportional to metric so that for them the two options are equivalent. For
their small deformations situation changes and it might happen that the presence of G
is necessary. The GRT limit of TGD discussed in [K57] [L12] indeed suggests that CP2

type solutions satisfy Einstein’s equations with large cosmological constant and that the
small observed value of the cosmological constant is due to averaging and small volume
fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

(d) For massless extremals and their deformations T = Λg cannot hold true. The reason is
that for massless extremals energy momentum tensor has component T vv which actually
quite essential for field equations since one has Hk

vv = 0. Hence for massless extremals
and their deformations T = Λg cannot hold true if the induced metric has Hamilton-
Jacobi structure meaning that guu and gvv vanish. A more general relationship of
form T = κG+ ΛG can however be consistent with non-vanishing T vv but require that
deformation has at most 3-D CP2 projection (CP2 coordinates do not depend on v).

(e) The non-determinism of vacuum extremals suggest for their non-vacuum deformations
a conflict with the conservation laws. In, also massless extremals are characterized by
a non-determinism with respect to the light-like coordinate but like-likeness saves the
situation. This suggests that the transformation of a properly chosen time coordinate
of vacuum extremal to a light-like coordinate in the induced metric combined with
Einstein’s equations in the induced metric of the deformation could allow to handle the
non-determinism.

Are complex structure of CP2 and Hamilton-Jacobi structure of M4 respected by
the deformations?

The complex structure of CP2 and Hamilton-Jacobi structure of M4 could be central for the
understanding of the preferred extremal property algebraically.

(a) There are reasons to believe that the Hermitian structure of the induced metric ((1, 1)
structure in complex coordinates) for the deformations of CP2 type vacuum extremals
could be crucial property of the preferred extremals. Also the presence of light-like
direction is also an essential elements and 3-dimensionality of M4 projection could
be essential. Hence a good guess is that allowed deformations of CP2 type vacuum
extremals are such that (2, 0) and (0, 2) components the induced metric and/or of the
energy momentum tensor vanish. This gives rise to the conditions implying Virasoro
conditions in string models in quantization:

gξiξj = 0 , g
ξ
i
ξ
j = 0 , i, j = 1, 2 . (5.6.1)

Holomorphisms of CP2 preserve the complex structure and Virasoro conditions are
expected to generalize to 4-dimensional conditions involving two complex coordinates.
This means that the generators have two integer valued indices but otherwise obey an
algebra very similar to the Virasoro algebra. Also the super-conformal variant of this
algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for CP2 type vacuum extremals.
One expects similar conditions hold true also in field space, that is for M4 coordinates.

(b) The integrable decompositionM4(m) = M2(m)+E2(m) ofM4 tangent space to longitu-
dinal and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi
structure- could be a very general property of preferred extremals and very natural since
non-linear Maxwellian electrodynamics is in question. This decomposition led rather
early to the introduction of the analog of complex structure in terms of what I called
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Hamilton-Jacobi coordinates (u, v, w,w) for M4. (u, v) defines a pair of light-like co-
ordinates for the local longitudinal space M2(m) and (w,w) complex coordinates for
E2(m). The metric would not contain any cross terms between M2(m) and E2(m):
guw = gvw = guw = gvw = 0.

A good guess is that the deformations of massless extremals respect this structure.
This condition gives rise to the analog of the constraints leading to Virasoro conditions
stating the vanishing of the non-allowed components of the induced metric. guu = gvv =
gww = gww = guw = gvw = guw = gvw = 0. Again the generators of the algebra would
involve two integers and the structure is that of Virasoro algebra and also generalization
to super algebra is expected to make sense. The moduli space of Hamilton-Jacobi
structures would be part of the moduli space of the preferred extremals and analogous
to the space of all possible choices of complex coordinates. The analogs of infinitesimal
holomorphic transformations would preserve the modular parameters and give rise to a
4-dimensional Minkowskian analog of Virasoro algebra. The conformal algebra acting
on CP2 coordinates acts in field degrees of freedom for Minkowskian signature.

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically
conditions stating that the Maxwellian energy momentum tensor has no common index pairs
with the second fundamental form. For the deformations of CP2 type vacuum extremals T
is a complex tensor of type (1, 1) and second fundamental form Hk a tensor of type (2, 0)
and (0, 2) so that Tr(THk) = is true. This requires that second light-like coordinate of
M4 is constant so that the M4 projection is 3-dimensional. For Minkowskian signature of
the induced metric Hamilton-Jacobi structure replaces conformal structure. Here the depen-
dence of CP2 coordinates on second light-like coordinate of M2(m) only plays a fundamental
role. Note that now T vv is non-vanishing (and light-like). This picture generalizes to the
deformations of cosmic strings and even to the case of vacuum extremals.

5.6.2 What Small Deformations Of CP2 Type Vacuum Extremals
Could Be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which
would have 4-D CP2 and M4 projections - the Maxwell phase analogous to the solutions
of Maxwell’s equations that I conjectured long time ago. It however turned out that the
dimensions of the projections can be (DM4 ≤ 3, DCP2 = 4) or (DM4 = 4, DCP2 ≤ 3).
What happens is essentially breakdown of linear superposition so that locally one can have
superposition of modes which have 4-D wave vectors in the same direction. This is actually
very much like quantization of radiation field to photons now represented as separate space-
time sheets and one can say that Maxwellian superposition corresponds to union of separate
photonic space-time sheets in TGD.

Approximate linear superposition of fields is fundamental in standard physics framework and
is replaced in TGD with a linear superposition of effects of classical fields on a test particle
topologically condensed simultaneously to several space-time sheets. One can say that linear
superposition is replaced with a disjoint union of space-time sheets. In the following I shall
restrict the consideration to the deformations of CP2 type vacuum extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

(a) Effective 3-dimensionality for action (holography) requires that action decomposes to
vanishing jαAα term + total divergence giving 3-D “boundary” terms. The first term
certainly vanishes (giving effective 3-dimensionality) for
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DβJ
αβ = jα = 0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed
GRT limit these equations are true.

(b) How to obtain empty space Maxwell equations jα = 0? The answer is simple: assume
self duality or its slight modification:

J = ∗J

holding for CP2 type vacuum extremals or a more general condition

J = k ∗ J ,

In the simplest situation k is some constant not far from unity. * is Hodge dual involving
4-D permutation symbol. k = constant requires that the determinant of the induced
metric is apart from constant equal to that of CP2 metric. It does not require that
the induced metric is proportional to the CP2 metric, which is not possible since M4

contribution to metric has Minkowskian signature and cannot be therefore proportional
to CP2 metric.

One can consider also a more general situation in which k is scalar function as a gen-
eralization of the weak electric-magnetic duality. In this case the Kähler current is
non-vanishing but divergenceless. This also guarantees the reduction to Tr(THk) = 0.
In this case however the proportionality of the metric determinant to that for CP2

metric is not needed. This solution ansatz becomes therefore more general.

(c) Field equations reduce with these assumptions to equations differing from minimal sur-
faces equations only in that metric g is replaced by Maxwellian energy momentum tensor
T . Schematically:

Tr(THk) = 0 ,

where T is the Maxwellian energy momentum tensor and Hk is the second fundamental
form - asymmetric 2-tensor defined by covariant derivative of gradients of imbedding
space coordinates.

How to satisfy the condition Tr(THk) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization
of massless wave equations. It would be also nice to have the vanishing of the terms involving
Kähler current in field equations as a consequence of this condition. Indeed, T = κG + Λg
implies this. In the case of CP2 vacuum extremals one cannot distinguish between these
options since CP2 itself is constant curvature space with G ∝ g. Furthermore, if G and g
have similar tensor structure the algebraic field equations for G and g are satisfied separately
so that one obtains minimal surface property also now. In the following minimal surface
option is considered.

(a) The first opton is achieved if one has

T = Λg .

Maxwell energy momentum tensor would be proportional to the metric! One would have
dynamically generated cosmological constant! This begins to look really interesting since
it appeared also at the proposed GRT limit of TGD [L12] (see http://tinyurl.com/

hzkldnb). Note that here also non-constant value of Λ can be considered and would
correspond to a situation in which k is scalar function: in this case the the determinant
condition can be dropped and one obtains just the minimal surface equations.

http://tinyurl.com/hzkldnb
http://tinyurl.com/hzkldnb
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(b) Very schematically and forgetting indices and being sloppy with signs, the expression
for T reads as

T = JJ − g/4Tr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should
be proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on
metric and is constant.

For CP2 type vacuum extremals one obtains

T = −g + g = 0 .

Cosmological constant would vanish in this case.

(c) Could it happen that for deformations a small value of cosmological constant is gener-
ated?

The condition would reduce to

JJ = (Λ− 1)g .

Λ must relate to the value of parameter k appearing in the generalized self-duality
condition. For the most general ansatz Λ would not be constant anymore.

This would generalize the defining condition for Kähler form

JJ = −g (i2 = −1 geometrically)

stating that the square of Kähler form is the negative of metric. The only modification
would be that index raising is carried out by using the induced metric containing also
M4 contribution rather than CP2 metric.

(d) Explicitly:

JαµJ
µ
β = (Λ− 1)gαβ .

Cosmological constant would measure the breaking of Kähler structure. By writing
g = s + m and defining index raising of tensors using CP2 metric and their product
accordingly, this condition can be also written as

Jm = (Λ− 1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional
to the CP2 metric. If k is scalar function, this condition can be dropped. Cosmological
constant would not be constant anymore but the dependence on k would drop out from
the field equations and one would hope of obtaining minimal surface equations also now. It
however seems that the dimension of M4 projection cannot be four. For 4-D M4 projection
the contribution of the M2 part of the M4 metric gives a non-holomorphic contribution to
CP2 metric and this spoils the field equations.

For T = κG+ Λg option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K57] [L12]. The interpretation in this case is that the average
value of cosmological constant is small since the portion of space-time volume containing
generalized Feynman diagrams is very small.



210 Chapter 5. About Identification of the Preferred extremals of Kähler Action

More detailed ansatz for the deformations of CP2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the
induced metric is apart from constant conformal factor the metric of CP2. This would guar-
antee self-duality apart from constant factor and jα = 0. Metric would be in complex CP2

coordinates tensor of type (1, 1) whereas CP2 Riemann connection would have only purely
holomorphic or anti-holomorphic indices. Therefore CP2 contributions in Tr(THk) would
vanish identically. M4 degrees of freedom however bring in difficulty. The M4 contribution
to the induced metric should be proportional to CP2 metric and this is impossible due to the
different signatures. The M4 contribution to the induced metric breaks its Kähler property
but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of CP2 type vacuum
extremals is following.

(a) Physical intuition suggests that M4 coordinates can be chosen so that one has inte-
grable decomposition to longitudinal degrees of freedom parametrized by two light-like
coordinates u and v and to transversal polarization degrees of freedom parametrized by
complex coordinate w and its conjugate. M4 metric would reduce in these coordinates
to a direct sum of longitudinal and transverse parts. I have called these coordinates
Hamilton-Jacobi coordinates.

(b) w would be holomorphic function of CP2 coordinates and therefore satisfy the analog
of massless wave equation. This would give hopes about rather general solution ansatz.
u and v cannot be holomorphic functions of CP2 coordinates. Unless wither u or
v is constant, the induced metric would receive contributions of type (2, 0) and (0, 2)
coming from u and v which would break Kähler structure and complex structure. These
contributions would give no-vanishing contribution to all minimal surface equations.
Therefore either u or v is constant: the coordinate line for non-constant coordinate -say
u- would be analogous to the M4 projection of CP2 type vacuum extremal.

(c) With these assumptions the induced metric would remain (1, 1) tensor and one might
hope that Tr(THk) contractions vanishes for all variables except u because the there
are no common index pairs (this if non-vanishing Christoffel symbols for H involve only
holomorphic or anti-holomorphic indices in CP2 coordinates). For u one would obtain
massless wave equation expressing the minimal surface property.

(d) If the value of k is constant the determinant of the induced metric must be proportional
to the determinant of CP2 metric. The induced metric would contain only the contri-
bution from the transversal degrees of freedom besides CP2 contribution. Minkowski
contribution has however rank 2 as CP2 tensor and cannot be proportional to CP2

metric. It is however enough that its determinant is proportional to the determinant of
CP2 metric with constant proportionality coefficient. This condition gives an additional
non-linear condition to the solution. One would have wave equation for u (also w and its
conjugate satisfy massless wave equation) and determinant condition as an additional
condition.

The determinant condition reduces by the linearity of determinant with respect to its
rows to sum of conditions involved 0, 1, 2 rows replaced by the transversal M4 con-
tribution to metric given if M4 metric decomposes to direct sum of longitudinal and
transversal parts. Derivatives with respect to derivative with respect to particular CP2

complex coordinate appear linearly in this expression they can depend on u via the
dependence of transversal metric components on u. The challenge is to show that this
equation has (or does not have) non-trivial solutions.

(e) If the value of k is scalar function the situation changes and one has only the minimal
surface equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations
are in question, equations reduces to non-linear generalizations of Euclidian massless wave
equations, and possibly space-time dependent cosmological constant pops up dynamically.
These properties are true also for the GRT limit of TGD [L12] (see http://tinyurl.com/

hzkldnb).

http://tinyurl.com/hzkldnb
http://tinyurl.com/hzkldnb
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5.6.3 Hamilton-Jacobi Conditions In Minkowskian Signature

The maximally optimistic guess is that the basic properties of the deformations of CP2

type vacuum extremals generalize to the deformations of other known extremals such as
massless extremals, vacuum extremals with 2-D CP2 projection which is Lagrangian manifold,
and cosmic strings characterized by Minkowskian signature of the induced metric. These
properties would be following.

(a) The recomposition of M4 tangent space to longitudinal and transversal parts giving
Hamilton-Jacobi structure. The longitudinal part has hypercomplex structure but the
second light-like coordinate is constant: this plays a crucial role in guaranteeing the
vanishing of contractions in Tr(THk). It is the algebraic properties of g and T which
are crucial. T can however have light-like component T vv. For the deformations of CP2

type vacuum extremals (1, 1) structure is enough and is guaranteed if second light-like
coordinate of M4 is constant whereas w is holomorphic function of CP2 coordinates.

(b) What could happen in the case of massless extremals? Now one has 2-D CP2 projection
in the initial situation and CP2 coordinates depend on light-like coordinate u and single
real transversal coordinate. The generalization would be obvious: dependence on single
light-like coordinate u and holomorphic dependence on w for complex CP2 coordinates.
The constraint is T = Λg cannot hold true since T vv is non-vanishing (and light-like).
This property restricted to transversal degrees of freedom could reduce the field equa-
tions to minimal surface equations in transversal degrees of freedom. The transversal
part of energy momentum tensor would be proportional to metric and hence covariantly
constant. Gauge current would remain light-like but would not be given by j = ∗dφ∧J .
T = κG+ Λg seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T = κG+ λg ,

which has structure (1, 1) in both M2(m) and E2(m) degrees of freedom apart from the
presence of T vv component with deformations having no dependence on v. If the second
fundamental form has (2, 0)+(0, 2) structure, the minimal surface equations are satisfied
provided Kähler current satisfies on of the proposed three conditions and if G and g have
similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints
leading to Virasoro conditions in quantization to give

guu = 0 , gvv = 0 , gww = 0 , gww = 0 . (5.6.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for
which an identification in terms of non-local Yangian symmetry [A30] [B29, B23, B24] has
been proposed [K55]. The number of conditions is four and the same as the number of inde-
pendent field equations. One can consider similar conditions also for the energy momentum
tensor T but allowing non-vanishing component T vv if deformations has no v-dependence.
This would solve the field equations if the gauge current vanishes or is light-like. On this case
the number of equations is 8. First order differential equations are in question and they can
be also interpreted as conditions fixing the coordinates used since there is infinite number of
manners to choose the Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations
in the linear case by writing the solution as a superposition of left and right propagating
solutions:

ξk = fk+(u,w) + fk+(v, w) . (5.6.3)
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This could guarantee that second fundamental form is of form (2, 0)+(0, 2) in both M2 and
E2 part of the tangent space and these terms if Tr(THk) vanish identically. The remaining
terms involve contractions of Tuw, Tuw and T vw, T vw with second fundamental form. Also
these terms should sum up to zero or vanish separately. Second fundamental form has
components coming from fk+ and fk−

Second fundamental form Hk has as basic building bricks terms Ĥk given by

Ĥk
αβ = ∂α∂βh

k +
(
k
l m

)
∂αh

l∂βh
m . (5.6.4)

For the proposed ansatz the first terms give vanishing contribution to Hk
uv. The terms

containing Christoffel symbols however give a non-vanishing contribution and one can allow
only fk+ or fk− as in the case of massless extremals. This reduces the dimension of CP2

projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type Jww
whose contravariant counterpart gives rise to space-like current component. Juw and Juw give
rise to light-like currents components. The condition would state that the Jww is covariantly
constant. Solutions would be characterized by a constant Kähler magnetic field. Also electric
field is represent. The interpretation both radiation and magnetic flux tube makes sense.

5.6.4 Deformations Of Cosmic Strings

In the physical applications it has been assumed that the thickening of cosmic strings to
Kähler magnetic flux tubes takes place. One indeed expects that the proposed construction
generalizes also to the case of cosmic strings having the decomposition X4 = X2 × Y 2 ⊂
M4 × CP2, where X2 is minimal surface and Y 2 a complex homologically non-trivial sub-
manifold of CP2. Now the starting point structure is Hamilton-Jacobi structure for M2

m×Y 2

defining the coordinate space.

(a) The deformation should increase the dimension of either CP2 or M4 projection or both.
How this thickening could take place? What comes in mind that the string orbits X2 can
be interpreted as a distribution of longitudinal spaces M2(x) so that for the deformation
w coordinate becomes a holomorphic function of the natural Y 2 complex coordinate so
that M4 projection becomes 4-D but CP2 projection remains 2-D. The new contribution
to the X2 part of the induced metric is vanishing and the contribution to the Y 2 part
is of type (1, 1) and the ansatz T = κG+ Λg might be needed as a generalization of the
minimal surface equations The ratio of κ and G would be determined from the form
of the Maxwellian energy momentum tensor and be fixed at the limit of undeformed
cosmic strong to T = (ag(Y 2) − bg(Y 2). The value of cosmological constant is now
large, and overall consistency suggests that T = κG+ Λg is the correct option also for
the CP2 type vacuum extremals.

(b) One could also imagine that remaining CP2 coordinates could depend on the complex
coordinate of Y 2 so that also CP2 projection would become 4-dimensional. The induced
metric would receive holomorphic contributions in Y 2 part. As a matter fact, this option
is already implied by the assumption that Y 2 is a complex surface of CP2.

5.6.5 Deformations Of Vacuum Extremals?

What about the deformations of vacuum extremals representable as maps from M4 to CP2?

(a) The basic challenge is the non-determinism of the vacuum extremals. One should per-
form the deformation so that conservation laws are satisfied. For massless extremals
there is also non-determinism but it is associated with the light-like coordinate so that
there are no problems with the conservation laws. This would suggest that a properly
chosen time coordinate consistent with Hamilton-Jacobi decomposition becomes light-
like coordinate in the induced metric. This poses a conditions on the induced metric.
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(b) Physical intuition suggests that one cannot require T = Λg since this would mean that
the rank of T is maximal whereas the original situation corresponds to the vanishing of
T . For small deformations rank two for T looks more natural and one could think that
T is proportional to a projection of metric to a 2-D subspace. The vision about the
long length scale limit of TGD is that Einstein’s equations are satisfied and this would
suggest T = kG or T = κG + Λg. The rank of T could be smaller than four for this
ansatz and this conditions binds together the values of κ and G.

(c) These extremals have CP2 projection which in the generic case is 2-D Lagrangian sub-
manifold Y 2. Again one could assume Hamilton-Jacobi coordinates for X4. For CP2

one could assume Darboux coordinates (Pi, Qi), i = 1, 2, in which one has A = PidQ
i,

and that Y 2 ⊂ CP2 corresponds to Qi = constant. In principle Pi would depend on
arbitrary manner on M4 coordinates. It might be more convenient to use as coordinates
(u, v) for M2 and (P1, P2) for Y 2. This covers also the situation when M4 projection
is not 4-D. By its 2-dimensionality Y 2 allows always a complex structure defined by its
induced metric: this complex structure is not consistent with the complex structure of
CP2 (Y 2 is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y 2 is a 2-dimensional
sub-manifold X2 of X4 and defines also 2-D sub-manifold of M4. The following pic-
ture suggests itself. The projection of X2 to M4 can be seen for a suitable choice of
Hamilton-Jacobi coordinates as an analog of Lagrangian sub-manifold in M4 that is as
surface for which v and Im(w) vary and u and Re(w) are constant. X2 would be ob-
tained by allowing u and Re(w) to vary: as a matter fact, (P1, P2) and (u,Re(w)) would
be related to each other. The induced metric should be consistent with this picture.
This would requires guRe(w) = 0.

For the deformations Q1 and Q2 would become non-constant and they should depend
on the second light-like coordinate v only so that only guu and guw and guw gw,w and
gw,w receive contributions which vanish. This would give rise to the analogs of Virasoro
conditions guaranteeing that T is a tensor of form (1, 1) in both M2 and E2 indices and
that there are no cross components in the induced metric. A more general formulation
states that energy momentum tensor satisfies these conditions. The conditions on T
might be equivalent with the conditions for g and G separately.

(d) Einstein’s equations provide an attractive manner to achieve the vanishing of effective
3-dimensionality of the action. Einstein equations would be second order differential
equations and the idea that a deformation of vacuum extremal is in question suggests
that the dynamics associated with them is in directions transversal to Y 2 so that only
the deformation is dictated partially by Einstein’s equations.

(e) Lagrangian manifolds do not involve complex structure in any obvious manner. One
could however ask whether the deformations could involve complex structure in a natural
manner in CP2 degrees of freedom so that the vanishing of gww would be guaranteed
by holomorphy of CP2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the
complex structure should relate to the geometry of CP2 somehow. The complex co-
ordinate defined by say z = P1 + iQ1 for the deformation suggests itself. This would
suggest that at the limit when one puts Q1 = 0 one obtains P1 = P1(Re(w)) for the
vacuum extremals and the deformation could be seen as an analytic continuation of
real function to region of complex plane. This is in spirit with the algebraic approach.
The vanishing of Kähler current requires that the Kähler magnetic field is covariantly
constant: DzJ

zz = 0 and DzJ
zz = 0 .

(f) One could consider the possibility that the resulting 3-D sub-manifold of CP2 can be
regarded as contact manifold with induced Kähler form non-vanishing in 2-D section
with natural complex coordinates. The third coordinate variable- call it s- of the contact
manifold and second coordinate of its transversal section would depend on time space-
time coordinates for vacuum extremals. The coordinate associated with the transversal
section would be continued to a complex coordinate which is holomorphic function of w
and u.
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(g) The resulting thickened magnetic flux tubes could be seen as another representation of
Kähler magnetic flux tubes: at this time as deformations of vacuum flux tubes rather
than cosmic strings. For this ansatz it is however difficult to imagine deformations
carrying Kähler electric field.

5.6.6 About The Interpretation Of The Generalized Conformal Al-
gebras

The long-standing challenge has been finding of the direct connection between the super-
conformal symmetries assumed in the construction of the geometry of the “world of classical
worlds” ( WCW ) and possible conformal symmetries of field equations. 4-dimensionality
and Minkowskian signature have been the basic problems. The recent construction provides
new insights to this problem.

(a) In the case of string models the quantization of the Fourier coefficients of coordinate
variables of the target space gives rise to Kac-Moody type algebra and Virasoro algebra
generators are quadratic in these. Also now Kac-Moody type algebra is expected. If one
were to perform a quantization of the coefficients in Laurents series for complex CP2

coordinates, one would obtain interpretation in terms of su(3) = u(2)+t decomposition,
where t corresponds to CP3: the oscillator operators would correspond to generators in t
and their commutator would give generators in u(2). SU(3)/SU(2) coset representation
for Kac-Moody algebra would be in question. Kac-Moody algebra would be associated
with the generators in both M4 and CP2 degrees of freedom. This kind of Kac-Moody
algebra appears in quantum TGD.

(b) The constraints on induced metric imply a very close resemblance with string models
and a generalization of Virasoro algebra emerges. An interesting question is how the two
algebras acting on coordinate and field degrees of freedom relate to the super-conformal
algebras defined by the symplectic group of δM4

+ ×CP2 acting on space-like 3-surfaces
at boundaries of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It
has been conjectured that these algebras allow a continuation to the interior of space-
time surface made possible by its slicing by 2-surfaces parametrized by 2-surfaces. The
proposed construction indeed provides this kind of slicings in both M4 and CP2 factor.

(c) In the recent case, the algebras defined by the Fourier coefficients of field variables
would be Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would
be expressed in terms of the Kac-Moody algebra in the standard Sugawara construction
applied in string models. The algebra acting on field space would be analogous to the
conformal algebra assignable to the symplectic algebra so that also symplectic algebra
is present. Stringy pragmatist could imagine quantization of symplectic algebra by
replacing CP2 coordinates in the expressions of Hamiltonians with oscillator operators.
This description would be counterpart for the construction of spinor harmonics in WCW
and might provide some useful insights.

(d) For given type of space-time surface either CP2 or M4 corresponds to Kac-Moody
algebra but not both. From the point of view of quantum TGD it looks as that something
were missing. An analogous problem was encountered at GRT limit of TGD [L12].
When Euclidian space-time regions are allowed Einstein-Maxwell action is able to mimic
standard model with a surprising accuracy but there is a problem: one obtains either
color charges or M4 charges but not both. Perhaps it is not enough to consider either
CP2 type vacuum extremal or its exterior but both to describe particle: this would give
the direct product of the Minkowskian and Euclidian algebras acting on tensor product.
This does not however seem to be consistent with the idea that the two descriptions are
duality related (the analog of T-duality).

5.7 Appendix: Hamilton-Jacobi Structure

In the following the definition of Hamilton-Jacobi structure is discussed in detail.
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5.7.1 Hermitian And Hyper-Hermitian Structures

The starting point is the observation that besides the complex numbers forming a number
field there are hyper-complex numbers. Imaginary unit i is replaced with e satisfying e2 = 1.
One obtains an algebra but not a number field since the norm is Minkowskian norm x2− y2,
which vanishes at light-cone x = y so that light-like hypercomplex numbers x ± e) do not
have inverse. One has “almost” number field.

Hyper-complex numbers appear naturally in 2-D Minkowski space since the solutions of a
massless field equation can be written as f = g(u = t−ex)+h(v = t+ex) whith e2 = 1 realized
by putting e = 1. Therefore Wick rotation relates sums of holomorphic and antiholomorphic
functions to sums of hyper-holomorphic and anti-hyper-holomorphic functions. Note that u
and v are hyper-complex conjugates of each other.

Complex n-dimensional spaces allow Hermitian structure. This means that the metric has
in complex coordinates (z1, ...., zn) the form in which the matrix elements of metric are non-
vanishing only between zi and complex conjugate of zj . In 2-D case one obtains just ds2 =
gzzdzdz. Note that in this case metric is conformally flat since line element is proportional
to the line element ds2 = dzdz of plane. This form is always possible locally. For complex
n-D case one obtains ds2 = gijdz

idzj . gij = gji guaranteeing the reality of ds2. In 2-D case
this condition gives gzz = gzz.

How could one generalize this line element to hyper-complex n-dimensional case. In 2-D case
Minkowski space M2 one has ds2 = guvdudv, guv = 1. The obvious generalization would
be the replacement ds2 = guivjdu

idvj . Also now the analogs of reality conditions must hold
with respect to ui ↔ vi.

5.7.2 Hamilton-Jacobi Structure

Consider next the path leading to Hamilton-Jacobi structure.

4-D Minkowski space M4 = M2 × E2 is Cartesian product of hyper-complex M2 with com-
plex plane E2, and one has ds2 = dudv + dzdz in standard Minkowski coordinates. One
can also consider more general integrable decompositions of M4 for which the tangent space
TM4 = M4 at each point is decomposed to M2(x) × E2(x). The physical analogy would
be a position dependent decomposition of the degrees of freedom of massless particle to lon-
gitudinal ones (M2(x): light-like momentum is in this plane) and transversal ones (E2(x):
polarization vector is in this plane). Cylindrical and spherical variants of Minkowski coordi-
nates define two examples of this kind of coordinates (it is perhaps a good exercise to think
what kind of decomposition of tangent space is in question in these examples). An interesting
mathematical problem highly relevant for TGD is to identify all possible decompositions of
this kind for empty Minkowski space.

The integrability of the decomposition means that the planes M2(x) are tangent planes for
2-D surfaces of M4 analogous to Euclidian string world sheet. This gives slicing of M4 to
Minkowskian string world sheets parametrized by euclidian string world sheets. The question
is whether the sheets are stringy in a strong sense: that is minimal surfaces. This is not the
case: for spherical coordinates the Euclidian string world sheets would be spheres which are
not minimal surfaces. For cylindrical and spherical coordinates howeverr M2(x) integrate to
plane M2, which is minimal surface.

Integrability means in the case of M2(x) the existence of light-like vector field J whose flow
lines define a global coordinate. Its existence implies also the existence of its conjugate
and together these vector fields give rise to M2(x) at each point. This means that one has
J = Ψ∇Φ: Φ indeed defines the global coordinate along flow lines. In the case of M2 either
the coordinate u or v would be the coordinate in question. This kind of flows are called
Beltrami flows. Obviously the same holds for the transversal planes E2.

One can generalize this metric to the case of general 4-D space with Minkowski signature of
metric. At least the elements guv and gzz are non-vanishing and can depend on both u, v



216 Chapter 5. About Identification of the Preferred extremals of Kähler Action

and z, z. They must satisfy the reality conditions gzz = gzz and guv = gvu where complex
conjugation in the argument involves also u↔ v besides z ↔ z.

The question is whether the components guz, gvz, and their complex conjugates are non-
vanishing if they satisfy some conditions. They can. The direct generalization from complex
2-D space would be that one treats u and v as complex conjugates and therefore requires a
direct generalization of the hermiticity condition

guz = gvz , gvz = guz .

This would give complete symmetry with the complex 2-D (4-D in real sense) spaces. This
would allow the algebraic continuation of hermitian structures to Hamilton-Jacobi structures
by just replacing i with e for some complex coordinates.



Chapter 6

Recent View about Kähler
Geometry and Spin Structure of
WCW

6.1 Introduction

The construction of Kähler geometry of WCW (“world of classical worlds”) is fundamental
to TGD program. I ended up with the idea about physics as WCW geometry around 1985
and made a breakthrough around 1990, when I realized that Kähler function for WCW could
correspond to Kähler action for its preferred extremals defining the analogs of Bohr orbits so
that classical theory with Bohr rules would become an exact part of quantum theory and path
integral would be replaced with genuine integral over WCW. The motivating construction
was that for loop spaces leading to a unique Kähler geometry [A45]. The geometry for the
space of 3-D objects is even more complex than that for loops and the vision still is that the
geometry of WCW is unique from the mere existence of Riemann connection.

The basic idea is that WCW is union of symmetric spaces G/H labelled by zero modes which
do not contribute to the WCW metric. There have been many open questions and it seems
the details of the ealier approach [?]ust be modified at the level of detailed identifications
and interpretations.

(a) A longstanding question has been whether one could assign Equivalence Principle (EP)
with the coset representation formed by the super-Virasoro representation assigned to G
and H in such a manner that the four-momenta associated with the representations and
identified as inertial and gravitational four-momenta would be identical. This does not
seem to be the case. The recent view will be that EP reduces to the view that the clas-
sical four-momentum associated with Kähler action is equivalent with that assignable
to Kähler-Dirac action supersymmetrically related to Kähler action: quantum classical
correspondence (QCC) would be in question. Also strong form of general coordinate in-
variance implying strong form of holography in turn implying that the super-symplectic
representations assignable to space-like and light-like 3-surfaces are equivalent could
imply EP with gravitational and inertial four-momenta assigned to these two represen-
tations.

At classical level EP follows from the interpretation of GRT space-time as effective
space-time obtained by replacing many-sheeted space-time with Minkowski space with
effective metric determined as a sum of Minkowski metric and sum over the deviations of
the induced metrices of space-time sheets from Minkowski metric. Poincare invariance
suggests strongly classical EP for the GRT limit in long length scales at least.

(b) The detailed identification of groups G and H and corresponding algebras has been a
longstanding problem. Symplectic algebra associated withδM4

± × CP2 (δM4
± is light-
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cone boundary - or more precisely, with the boundary of causal diamond (CD) defined
as Cartesian product of CP2 with intersection of future and past direct light cones of
M4 has Kac-Moody type structure with light-like radial coordinate replacing complex
coordinate z. Virasoro algebra would correspond to radial diffeomorphisms. I have also
introduced Kac-Moody algebra assigned to the isometries and localized with respect to
internal coordinates of the light-like 3-surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian and which serve as natural correlates
for elementary particles (in very general sense!). This kind of localization by force
could be however argued to be rather ad hoc as opposed to the inherent localization of
the symplectic algebra containing the symplectic algebra of isometries as sub-algebra.
It turns out that one obtains direct sum of representations of symplectic algebra and
Kac-Moody algebra of isometries naturally as required by the success of p-adic mass
calculations.

(c) The dynamics of Kähler action is not visible in the earlier construction. The construction
also expressed WCW Hamiltonians as 2-D integrals over partonic 2-surfaces. Although
strong form of general coordinate invariance (GCI) implies strong form of holography
meaning that partonic 2-surfaces and their 4-D tangent space data should code for
quantum physics, this kind of outcome seems too strong. The progress in the under-
standing of the solutions of Kähler-Dirac equation led however to the conclusion that
spinor modes other than right-handed neutrino are localized at string world sheets with
strings connecting different partonic 2-surfaces. This leads to a modification of earlier
construction in which WCW super-Hamiltonians are essentially integrals with integrand
identified as a Noether super current for the deformations in G Each spinor mode gives
rise to super current and the modes of right-handed neutrino and other fermions differ
in an essential manner. Right-handed neutrino would correspond to symplectic algebra
and other modes to the Kac-Moody algebra and one obtains the crucial 5 tensor factors
of Super Virasoro required by p-adic mass calculations.

The matrix elements of WCW metric between Killing vectors are expressible as anti-
commutators of super-Hamiltonians identifiable as contractions of WCW gamma ma-
trices with these vectors and give Poisson brackets of corresponding Hamiltonians. The
anti-commutation relates of induced spinor fields are dictated by this condition. Ev-
erything is 3-dimensional although one expects that symplectic transformations local-
ized within interior of X3 act as gauge symmetries so that in this sense effective 2-
dimensionality is achieved. The components of WCW metric are labelled by standard
model quantum numbers so that the connection with physics is extremely intimate.

(d) An open question in the earlier visions was whether finite measurement resolution is
realized as discretization at the level of fundamental dynamics. This would mean that
only certain string world sheets from the slicing by string world sheets and partonic
2-surfaces are possible. The requirement that anti-commutations are consistent sug-
gests that string world sheets correspond to surfaces for which Kähler magnetic field is
constant along string in well defined sense (Jµνε

µνg1/2 remains constant along string).
It however turns that by a suitable choice of coordinates of 3-surface one can guarantee
that this quantity is constant so that no additional constraint results.

(e) Quantum criticality is one of the basic notions of quantum TGD and its relationship
to coset construction has remained unclear. In this chapter the concrete realization of
criticality in terms of symmetry breaking hierarchy of Super Virasoro algebra acting
on symplectic and Kac-Moody algebras. Also a connection with finite measurement
resolution - second key notion of TGD - emerges naturally.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L14].

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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6.2 WCW As A Union Of Homogenous Or Symmetric
Spaces

The physical interpretation and detailed mathematical understanding of super-conformal
symmetries has developed rather slowly and has involved several side tracks. In the following
I try to summarize the basic picture with minimal amount of formulas with the understand-
ing that the statement “Noether charge associated with geometrically realized Kac-Moody
symmetry” is enough for the reader to write down the needed formula explicitly. Formula
oriented reader might deny the value of the approach giving weight to principles. My personal
experience is that piles of formulas too often hide the lack of real understanding.

In the following the vision about WCW as union of coset spaces is discussed in more detail.

6.2.1 Basic Vision

The basic view about coset space construction for WCW has not changed.

(a) The idea about WCW as a union of coset spaces G/H labelled by zero modes is ex-
tremely attractive. The structure of homogenous space [A11] (http://tinyurl.com/
y7u2t8jo ) means at Lie algebra level the decomposition g = h⊕ t to sub-Lie-algebra h
and its complement t such that [h, t] ⊂ t holds true. Homogeneous spaces have G as its
isometries. For symmetric space the additional condition [t, t] ⊂ h holds true and implies
the existence of involution changing at the Lie algebra level the sign of elements of t and
leaving the elements of h invariant. The assumption about the structure of symmetric
space [A26] (http://tinyurl.com/ycouv7uh ) implying covariantly constant curvature
tensor is attractive in infinite-dimensional case since it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP2, which is
symmetric space A particular choice of h corresponds to Lie-algebra elements realized as
Killing vector fields which vanish at particular point of WCW and thus leave 3-surface
invariant. A preferred choice for this point is as maximum or minimum of Kähler func-
tion. For this 3-surface the Hamiltonians of h should be stationary. If symmetric space
property holds true then commutators of [t, t] also vanish at the minimum/maximum.
Note that Euclidian signature for the metric of WCW requires that Kähler function can
have only maximum or minimum for given zero modes.

(b) The basic objection against TGD is that one cannot use the powerful canonical quan-
tization using the phase space associated with configuration space - now WCW . The
reason is the extreme non-linearity of the Kähler action and its huge vacuum degen-
eracy, which do not allow the construction of Hamiltonian formalism. Symplectic and
Kähler structure must be realized at the level of WCW . In particular, Hamiltonians
must be represented in completely new manner. The key idea is to construct WCW
Hamiltonians as anti-commutators of super-Hamiltonians defining the contractions of
WCW gamma matrices with corresponding Killing vector fields and therefore defining
the matrix elements of WCW metric in the tangent vector basis defined by Killing vec-
tor fields. Super-symmetry therefre gives hopes about constructing quantum theory in
which only induced spinor fields are second quantized and imbedding space coordinates
are treated purely classically.

(c) It is important to understand the difference between symmetries and isometries assigned
to the Kähler function. Symmetries of Kähler function do not affect it. The symmetries
of Kähler action are also symmetries of Kähler action because Kähler function is Kähler
action for a preferred extremal (here there have been a lot of confusion). Isometries
leave invariant only the quadratic form defined by Kähler metric gMN = ∂M∂LK but
not Kähler function in general. For G/H decomposition G represents isometries and H
both isometries and symmetries of Kähler function.

CP2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler func-
tion invariant since it depends on the U(2) invariant radial coordinate r of CP2. The ori-

http://tinyurl.com/y7u2t8jo
http://tinyurl.com/y7u2t8jo
http://tinyurl.com/ycouv7uh
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gin r = 0 is left invariant by U(2) but for r > 0 U(2) performs a rotation at r = constant
3-sphere. This simple picture helps to understand what happens at the level of WCW .

How to then distinguish between symmetries and isometries? A natural guess is that
one obtains also for the isometries Noether charges but the vanishing of boundary terms
at spatial infinity crucial in the argument leading to Noether theorem as ∆S = ∆Q = 0
does not hold true anymore and one obtains charges which are not conserved anymore.
The symmetry breaking contributions would now come from effective boundaries defined
by wormhole throats at which the induce metric changes its signature from Minkowskian
to Euclidian. A more delicate situation is in which first order contribution to ∆S
vanishes and therefore also ∆Q and the contribution to ∆S comes from second variation
allowing also to define Noether charge which is not conserved.

(d) The simple picture about CP2 as symmetric space helps to understand the general vision
if one assumes that WCW has the structure of symmetric space. The decomposition
g = h+t corresponds to decomposition of symplectic deformations to those which vanish
at 3-surface (h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators associated
with t give Hamiltonians of h identifiable as the matrix elements of WCW metric. They
would not vanish although they are stationary at 3-surface meaning that Riemann con-
nection vanishes at 3-surface. The Hamiltonians which vanish at 3-surface X3 would
correspond to t and the Hamiltonians for which Killing vectors vanish and which there-
fore are stationary at X3 would correspond to h. Outside X3 the situation would of
course be different. The metric would be obtained by parallel translating the metric
from the preferred point of WCW to elsewhere and symplectic transformations would
make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t would
still give Hamiltonians identifiable as matrix elements of WCW metric but now they
would be necessary those of h. In particular, the Hamiltonians of t do not in general
vanish at X3.

6.2.2 Equivalence Principle And WCW

6.2.3 Ep At Quantum And Classical Level

Quite recently I returned to an old question concerning the meaning of Equivalence Principle
(EP) in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a
pseudo problem due to uncritical assumption there really are two different four-momenta
which must be identified. If even the identification of these two different momenta is difficult,
the pondering of this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by graviton exchange
are proportional to the product of four-momenta of particles and that the proportionality
constant does not depend on any other parameters characterizing particle (except spin). The
are excellent reasons to expect that the stringy picture for interactions predicts this.

(a) The old idea is that EP reduces to the coset construction for Super Virasoro algebra
using the algebras associated with G and H. The four-momenta assignable to these
algebras would be identical from the condition that the differences of the generators
annihilate physical states and identifiable as inertial and gravitational momenta. The
objection is that for the preferred 3-surface H by definition acts trivially so that time-
like translations leading out from the boundary of CD cannot be contained by H unlike
G. Hence four-momentum is not associated with the Super-Virasoro representations
assignable to H and the idea about assigning EP to coset representations does not look
promising.
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(b) Another possibility is that EP corresponds to quantum classical correspondence (QCC)
stating that the classical momentum assignable to Kähler action is identical with gravi-
tational momentum assignable to Super Virasoro representations. This forced to recon-
sider the questions about the precise identification of the Kac-Moody algebra and about
how to obtain the magic five tensor factors required by p-adic mass calculations [K57].

A more precise formulation for EP as QCC comes from the observation that one
indeed obtains two four-momenta in TGD approach. The classical four-momentum
assignable to the Kähler action and that assignable to the Kähler-Dirac action. This
four-momentum is an operator and QCC would state that given eigenvalue of this oper-
ator must be equal to the value of classical four-momentum for the space-time surfaces
assignable to the zero energy state in question. In this form EP would be highly non-
trivial. It would be justified by the Abelian character of four-momentum so that all
momentum components are well-defined also quantum mechanically. One can also con-
sider the splitting of four-momentum to longitudinal and transversal parts as done in the
parton model for hadrons: this kind of splitting would be very natural at the boundary
of CD. The objection is that this correspondence is nothing more than QCC.

(c) A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces
holds true. This is the case if the action of symplectic algebra can be defined at light-
like 3-surfaces or even for the entire space-time surfaces. This could be achieved by
parallel translation of light-cone boundary providing slicing of CD. The four-momenta
associated with the two representations of super-symplectic algebra would be naturally
identical and the interpretation would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an effective theory obtained by
endowing M4 with effective metric.

(a) The replacement of superposition of fields with superposition of their effects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the effects caused by the classical fields at the space-time
sheets.

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the effective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the effective space-time.

(d) The breaking of Poincare invariance could have interpretation as effective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K78].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color
charges and the charges defined by the conserved currents associated with color isometries
would define “inertial” color charges. Since the induced color fields are proportional to color
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Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in
accordance with “gravitational” color confinement.

6.2.4 Criticism Of The Earlier Construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criticized.

(a) Even after these more than twenty years it looks strange that the Hamiltonians should
reduce to flux integrals over partonic 2-surfaces. The interpretation has been in terms
of effective 2-dimensionality suggested strongly by strong form of general coordinate
invariance stating that the descriptions based on light-like orbits of partonic 2-surfaces
and space-like three surfaces at the ends of causal diamonds are dual so that only
partonic 2-surfaces and 4-D tangent space data at them would matter. Strong form of
holography implies effective 2-dimensionality but this should correspond gauge character
for the action of symplectic generators in the interior the space-like 3-surfaces at the
ends of CDs, which is something much milder.

One expects that the strings connecting partonic 2-surfaces could bring something
new to the earlier simplistic picture. The guess is that imbedding space Hamiltonian
assignable to a point of partonic 2-surface should be replaced with that defined as in-
tegral over string attached to the point. Therefore the earlier picture would suffer no
modification at the level of general formulas.

(b) The fact that the dynamics of Kähler action and Kähler-Dirac action are not directly in-
volved with the earlier construction raises suspicions. I have proposed that Kähler func-
tion could allow identification as Dirac determinant [K62] but one would expect more
intimate connection. Here the natural question is whether super-Hamiltonians for the
Kähler-Dirac action could correspond to Kähler charges constructible using Noether’s
theorem for corresponding deformations of the space-time surface and would also be
identifiable as WCW gamma matrices.

6.2.5 Is WCW Homogenous Or Symmetric Space?

A key question is whether WCW can be symmetric space [A26] (http://tinyurl.com/
y8ojglkb ) or whether only homogenous structure is needed. The lack of covariant constancy
of curvature tensor might produce problems in infinite-dimensional context.

The algebraic conditions for symmetric space are g = h + t, [h, t] ⊂ t, [t, t] ⊂ h. The latter
condition is the difficult one.

(a) δCD Hamiltonians should induce diffeomorphisms of X3 indeed leaving it invariant.
The symplectic vector fields would be parallel to X3. A stronger condition is that
they induce symplectic transformations for which all points of X3 remain invariant.
Now symplectic vector fields vanish at preferred 3-surface (note that the symplectic
transformations are rM local symplectic transformations of S2 × CP2).

(b) For Kac-Moody algebra inclusion H ⊂ G for the finite-dimensional Lie-algebra induces
the structure of symmetric space. If entire algebra is involved this does not look phys-
ically very attractive idea unless one believes on symmetry breaking for both SU(3),
U(2)ew, and SO(3) and E2 (here complex conjugation corresponds to the involution).
If one assumes only Kac-Moody algebra as critical symmetries, the number of tensor
factors is 4 instead of five, and it is not clear whether one can obtain consistency with
p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP2. They
could correspond to intersections of deformations of CP2 type vacuum extremals with
the boundary of CD. Also geodesic spheres S2 of CP2 are invariant under U(2) subgroup
and would relate naturally to cosmic strings. The corresponding 3-surface would be
L× S2, where L is a piece of light-like radial geodesic.

http://tinyurl.com/y8ojglkb
http://tinyurl.com/y8ojglkb
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(c) In the case of symplectic algebra one can construct the imbedding space Hamiltonians
inducing WCW Hamiltonians as products of elements of the isometry algebra of S2×CP2

for with parity under involution is well-defined. This would give a decomposition of the
symplectic algebra satisfying the symmetric space property at the level imbedding space.
This decomposition does not however look natural at the level of WCW since the only
single point of CP2 and light-like geodesic of δM4

+ can be fixed by SO(2)×U(2) so that
the 3-surfaces would reduce to pieces of light rays.

(d) A more promising involution is the inversion rM → 1/rM of the radial coordinate map-
ping the radial conformal weights to their negatives. This corresponds to the inversion
in Super Virasoro algebra. t would correspond to functions which are odd functions of
u ≡ log(rM/r0) and h to even function of u. Stationary 3-surfaces would correspond
to u = 1 surfaces for which log(u) = 0 holds true. This would assign criticality with
Virasoro algebra as one expects on general grounds.

rM = constant surface would most naturally correspond to a maximum of Kähler
function which could indeed be highly symmetric. The elements with even u-parity
should define Hamiltonians, which are stationary at the maximum of Kähler function.
For other 3-surfaces obtained by /rM -local) symplectic transformations the situation is
different: now H is replaced with its symplectic conjugate hHg−1 of H is acceptable and
if the conjecture is true one would obtained 3-surfaces assignable to perturbation theory
around given maximum as symplectic conjugates of the maximum. The condition that
H leaves X3 invariant in poin-twise manner is certainly too strong and imply that the
3-surface has single point as CP2 projection.

(e) One can also consider the possibility that critical deformations correspond to h and non-
critical ones to t for the preferred 3-surface. Criticality for given h would hold only for
a preferred 3-surface so that this picture would be very similar that above. Symplectic
conjugates of h would define criticality for other 3-surfaces. WCW would decompose
to a union corresponding to different criticalities perhaps assignable to the hierarchy of
sub-algebras of conformal algebra labelled by integer whose multiples give the allowed
conformal weights. Hierarchy of breakings of conformal symmetries would characterize
this hierarchy of sectors of WCW .

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra) the
condition [t, t] ⊂ h cannot hold true so that one would obtain only the structure of
homogenous space.

6.2.6 Symplectic And Kac-Moody Algebras As Basic Building Bricks

6.3 Updated View About Kähler Geometry Of WCW

During last years the understanding of the mathematical aspects of TGD and of its connection
with the experimental world has developed rapidly.

TGD differs in several respects from quantum field theories and string models. The basic
mathematical difference is that the mathematically poorly defined notion of path integral is
replaced with the mathematically well-defined notion of functional integral defined by the
Kähler function defining Kähler metric for WCW (“world of classical worlds”). Apart from
quantum jump, quantum TGD is essentially theory of classical WCW spinor fields with WCW
spinors represented as fermionic Fock states. One can say that Einstein’s geometrization of
physics program is generalized to the level of quantum theory.

It has been clear from the beginning that the gigantic super-conformal symmetries gener-
alizing ordinary super-conformal symmetries are crucial for the existence of WCW Kähler
metric. The detailed identification of Kähler function and WCW Kähler metric has however
turned out to be a difficult problem. It is now clear that WCW geometry can be under-
stood in terms of the analog of AdS/CFT duality between fermionic and space-time degrees
of freedom (or between Minkowskian and Euclidian space-time regions) allowing to express
Kähler metric either in terms of Kähler function or in terms of anti-commutators of WCW
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gamma matrices identifiable as super-conformal Noether super-charges for the symplectic
algebra assignable to δM4

± ×CP2. The string model type description of gravitation emerges
and also the TGD based view about dark matter becomes more precise. String tension is
however dynamical rather than pregiven and the hierarchy of Planck constants is necessary
in order to understand the formation of gravitationally bound states. Also the proposal that
sparticles correspond to dark matter becomes much stronger: sparticles actually are dark
variants of particles.

A crucial element of the construction is the assumption that super-symplectic and other
super-conformal symmetries having the same structure as 2-D super-conformal groups can
be seen a broken gauge symmetries such that sub-algebra with conformal weights coming as
n-ples of those for full algebra act as gauge symmetries. In particular, the Noether charges of
this algebra vanish for preferred extremals- this would realize the strong form of holography
implied by strong form of General Coordinate Invariance. This gives rise to an infinite number
of hierarchies of conformal gauge symmetry breakings with levels labelled by integers n(i)
such that n(i) divides n(i+ 1) interpreted as hierarchies of dark matter with levels labelled
by the value of Planck constant heff = n × h. These hierarchies define also hierarchies
of quantum criticalities, and are proposed to give rise to inclusion hierarchies of hyperfinite
factors of II1 having interpretation in terms of finite cognitive resolution with inclusions being
characterized by the integers n(+1)/n(i).

These hierarchies are fundamental for the understanding of living matter. Living matter is
fighting in order to stay at criticality and uses metabolic energy and homeostasis to achieve
this. In the biological death of the system (self) a phase transition increasing heff finally takes
place. The sub-selves of self experienced by self as mental images however die and are reborn
at opposite boundary of the corresponding causal diamond (CD) and they genuinely evolve
so that self can be said to become wiser even without dying! The purpose of this fighting
against criticality would thus allow a possibility for sub-selves to evolve via subsequent re-
incarnations. One interesting prediction is the possibility of time reversed mental images.
The challenge is to understand what they do mean at the level of conscious experience.

6.3.1 Kähler Function, Kähler Action, And Connection With String
Models

The definition of Kähler function in terms of Kähler action is possible because space-time
regions can have also Euclidian signature of induced metric. Euclidian regions with 4-D CP2

projection - wormhole contacts - are identified as lines of generalized Feynman diagrams -
space-time correlates for basic building bricks of elementary particles. Kähler action from
Minkowskian regions is imaginary and gives to the functional integrand a phase factor crucial
for quantum field theoretic interpretation. The basic challenges are the precise specification
of Kähler function of “world of classical worlds” ( WCW ) and Kähler metric.

There are two approaches concerning the definition of Kähler metric: the conjecture analo-
gous to AdS/CFT duality is that these approaches are mathematically equivalent.

(a) The Kähler function defining Kähler metric can be identified as Kähler action for space-
time regions with Euclidian signature for a preferred extremal containing 3-surface as
the ends of the space-time surfaces inside causal diamond (CD). Minkowskian space-time
regions give to Kähler action an imaginary contribution interpreted as the counterpart
of quantum field theoretic action. The exponent of Kähler function gives rise to a
mathematically well-defined functional integral in WCW . WCW metric is dictated by
the Euclidian regions of space-time with 4-D CP2 projection.

The basic question concerns the attribute ”preferred”. Physically the preferred extremal
is analogous to Bohr orbit. What is the mathematical meaning of preferred extremal
of Kähler action? The latest step of progress is the realization that the vanishing of
generalized conformal charges for the ends of the space-time surface fixes the preferred
extremals to high extent and is nothing but classical counterpart for generalized Virasoro
and Kac-Moody conditions.
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(b) Fermions are also needed. The well-definedness of electromagnetic charge led to the
hypothesis that spinors are restricted at string world sheets. One could also consider
associativity as basic contraint to fermionic dynamics combined with the requirement
that octonionic representation for gamma matrices is equivalent with the ordinary one.
The conjecture is that this leads to the same outcome. This point is highly non-trivial
and will be discussed below separately.

(c) Second manner to define Kähler metric is as anticommutators of WCW gamma matrices
identified as super-symplectic Noether charges for the Dirac action for induced spinors
with string tension proportional to the inverse of Newton’s constant. These charges are
associated with the 1-D space-like ends of string world sheets connecting the wormhole
throats. WCW metric contains contributions from the spinor modes associated with
various string world sheets connecting the partonic 2-surfaces associated with the 3-
surface.

It is clear that the information carried by WCW metric about 3-surface is rather limited
and that the larger the number of string world sheets, the larger the information. This
conforms with strong form of holography and the notion of measurement resolution as a
property of quantums state. Duality clearly means that Kähler function is determined
either by space-time dynamics inside Euclidian wormhole contacts or by the dynamics of
fermionic strings in Minkowskian regions outside wormhole contacts. This duality brings
strongly in mind AdS/CFT duality. One could also speak about fermionic emergence
since Kähler function is dictated by the Kähler metric part from a real part of gradient
of holomorphic function: a possible identification of the exponent of Kähler function is
as Dirac determinant.

6.3.2 Realization Of Super-Conformal Symmetries

The detailed realization of various super-conformal symmetries has been also a long standing
problem.

(a) Super-conformal symmetry requires that Dirac action for string world sheets is accom-
panied by string world sheet area as part of bosonic action. String world sheets are
implied and can be present only in Minkowskian regions if one demands that octonionic
and ordinary representations of induced spinor structure are equivalent (this requires
vanishing of induced spinor curvature to achieve associativity in turn implying that
CP2 projection is 1-D). Note that 1-dimensionality of CP2 projection is symplectically
invariant property. Kähler action is not invariant under symplectic transformations.
This is necessary for having non-trivial Kähler metric. Whether WCW really possesses
super-symplectic isometries remains an open problem.

(b) Super-conformal symmetry also demands that Kähler action is accompanied by what
I call Kähler-Dirac action with gamma matrices defined by the contractions of the
canonical momentum currents with imbedding space-gamma matrices. Both the well-
definedness of em charge and equivalence of octonionic spinor dynamics with ordinary
one require the restriction of spinor modes to string world sheets with light-like bound-
aries at wormhole throats. K-D action with the localization of induced spinors at string
world sheets is certainly the minimal option to consider.

(c) Strong form of holography implied by strong form of general coordinate invariance
strongly suggests that super-conformal symmetry is broken gauge invariance in the sense
that the clasical super-conformal charges for a sub-algebra of the symplectic algebra
with conformal weights vanishing modulo some integer n vanish. The proposal is that
n corresponds to the effective Planck constant as heff/h = n. The standard conformal
symmetries for spinors modes at string world sheets is always unbroken gauge symmetry.
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6.3.3 Interior Dynamics For Fermions, The Role Of Vacuum Ex-
tremals, And Dark Matter

The key role of CP2-type and M4-type vacuum extremals has been rather obvious from
the beginning but the detailed understanding has been lacking. Both kinds of extremals
are invariant under symplectic transformations of δM4 × CP2, which inspires the idea that
they give rise to isometries of WCW . The deformations CP2-type extremals correspond to
lines of generalized Feynman diagrams. M4 type vacuum extremals in turn are excellent
candidates for the building bricks of many-sheeted space-time giving rise to GRT space-
time as approximation. For M4 type vacuum extremals CP2 projection is (at most 2-D)
Lagrangian manifold so that the induced Kähler form vanishes and the action is fourth-order
in small deformations. This implies the breakdown of the path integral approach and of
canonical quantization, which led to the notion of WCW .

If the action in Minkowskian regions contains also string area, the situation changes dramati-
cally since strings dominate the dynamics in excellent approximation and string theory should
give an excellent description of the situation: this of course conforms with the dominance of
gravitation.

String tension would be proportional to 1/~G and this raises a grave classical counter ar-
gument. In string model massless particles are regarded as strings, which have contracted
to a point in excellent approximation and cannot have length longer than Planck length.
How this can be consistent with the formation of gravitationally bound states is however not
understood since the required non-perturbative formulation of string model required by the
large valued of the coupling parameter GMm is not known.

In TGD framework strings would connect even objects with macroscopic distance and would
obviously serve as correlates for the formation of bound states in quantum level description.
The classical energy of string connecting say the two wormhole contacts defining elementary
particle is gigantic for the ordinary value of ~ so that something goes wrong.

I have however proposed [K46, K38, K83] that gravitons - at least those mediating inter-
action between dark matter have large value of Planck constant. I talk about gravitational
Planck constant and one has ~eff = ~gr = GMm/v0, where v0/c < 1 (v0 has dimensions
of velocity). This makes possible perturbative approach to quantum gravity in the case of
bound states having mass larger than Planck mass so that the parameter GMm analogous
to coupling constant is very large. The velocity parameter v0/c becomes the dimensionless
coupling parameter. This reduces the string tension so that for string world sheets con-
necting macroscopic objects one would have T ∝ v0/G

2Mm. For v0 = GMm/~, which
remains below unity for Mm/m2

Pl one would have hgr/h = 1. Hence action remains small
and its imaginary exponent does not fluctuate wildly to make the bound state forming part
of gravitational interaction short ranged. This is expected to hold true for ordinary matter
in elementary particle scales. The objects with size scale of large neutron (100 µm in the
density of water) - probably not an accident - would have mass above Planck mass so that
dark gravitons and also life would emerge as massive enough gravitational bound states are
formed. hgr = heff hypothesis is indeed central in TGD based view about living matter.

If one assumes that for non-standard values of Planck constant only n-multiples of super-
conformal algebra in interior annihilate the physical states, interior conformal gauge degrees
of freedom become partly dynamical. The identification of dark matter as macroscopic
quantum phases labeled by heff/h = n conforms with this.

The emergence of dark matter corresponds to the emergence of interior dynamics via breaking
of super-conformal symmetry. The induced spinor fields in the interior of flux tubes obeying
Kähler Dirac action should be highly relevant for the understanding of dark matter. The
assumption that dark particles have essentially same masses as ordinary particles suggests
that dark fermions correspond to induced spinor fields at both string world sheets and in the
space-time interior: the spinor fields in the interior would be responsible for the long range
correlations characterizing heff/h = n. Magnetic flux tubes carrying dark matter are key
entities in TGD inspired quantum biology. Massless extremals represent second class of M4

type non-vacuum extremals.
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This view forces once again to ask whether space-time SUSY is present in TGD and how it
is realized. With a motivation coming from the observation that the mass scales of particles
and sparticles most naturally have the same p-adic mass scale as particles in TGD Universe
I have proposed that sparticles might be dark in TGD sense. The above argument leads to
ask whether the dark variants of particles correspond to states in which one has ordinary
fermion at string world sheet and 4-D fermion in the space-time interior so that dark matter
in TGD sense would almost by definition correspond to sparticles!

6.3.4 Classical Number Fields And Associativity And Commutativ-
ity As Fundamental Law Of Physics

The dimensions of classical number fields appear as dimensions of basic objects in quantum
TGD. Imbedding space has dimension 8, space-time has dimension 4, light-like 3-surfaces are
orbits of 2-D partonic surfaces. If conformal QFT applies to 2-surfaces (this is questionable),
one-dimensional structures would be the basic objects. The lowest level would correspond to
discrete sets of points identifiable as intersections of real and p-adic space-time sheets. This
suggests that besides p-adic number fields also classical number fields (reals, complex num-
bers, quaternions, octonions [A71]) are involved [K53] and the notion of geometry generalizes
considerably. In the recent view about quantum TGD the dimensional hierarchy defined by
classical number field indeed plays a key role. H = M4 × CP2 has a number theoretic
interpretation and standard model symmetries can be understood number theoretically as
symmetries of hyper-quaternionic planes of hyper-octonionic space.

The associativity condition A(BC) = (AB)C suggests itself as a fundamental physical law
of both classical and quantum physics. Commutativity can be considered as an additional
condition. In conformal field theories associativity condition indeed fixes the n-point functions
of the theory. At the level of classical TGD space-time surfaces could be identified as maximal
associative (hyper-quaternionic) sub-manifolds of the imbedding space whose points contain
a preferred hyper-complex plane M2 in their tangent space and the hierarchy finite fields-
rationals-reals-complex numbers-quaternions-octonions could have direct quantum physical
counterpart [K53]. This leads to the notion of number theoretic compactification analogous to
the dualities of M-theory: one can interpret space-time surfaces either as hyper-quaternionic
4-surfaces of M8 or as 4-surfaces in M4 × CP2. As a matter fact, commutativity in number
theoretic sense is a further natural condition and leads to the notion of number theoretic
braid naturally as also to direct connection with super string models.

At the level of Kähler-Dirac action the identification of space-time surface as a hyper-
quaternionic sub-manifold of H means that the modified gamma matrices of the space-time
surface defined in terms of canonical momentum currents of Kähler action using octonionic
representation for the gamma matrices of H span a hyper-quaternionic sub-space of hyper-
octonions at each point of space-time surface (hyper-octonions are the subspace of com-
plexified octonions for which imaginary units are octonionic imaginary units multiplied by
commutating imaginary unit). Hyper-octonionic representation leads to a proposal for how
to extend twistor program to TGD framework [K62, K55].

How to achieve associativity in the fermionic sector?

In the fermionic sector an additional complication emerges. The associativity of the tangent-
or normal space of the space-time surface need not be enough to guarantee the associativity
at the level of Kähler-Dirac or Dirac equation. The reason is the presence of spinor connec-
tion. A possible cure could be the vanishing of the components of spinor connection for two
conjugates of quaternionic coordinates combined with holomorphy of the modes.

(a) The induced spinor connection involves sigma matrices in CP2 degrees of freedom, which
for the octonionic representation of gamma matrices are proportional to octonion units
in Minkowski degrees of freedom. This corresponds to a reduction of tangent space
group SO(1, 7) to G2. Therefore octonionic Dirac equation identifying Dirac spinors
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as complexified octonions can lead to non-associativity even when space-time surface is
associative or co-associative.

(b) The simplest manner to overcome these problems is to assume that spinors are lo-
calized at 2-D string world sheets with 1-D CP2 projection and thus possible only in
Minkowskian regions. Induced gauge fields would vanish. String world sheets would
be minimal surfaces in M4 × D1 ⊂ M4 × CP2 and the theory would simplify enor-
mously. String area would give rise to an additional term in the action assigned to the
Minkowskian space-time regions and for vacuum extremals one would have only strings
in the first approximation, which conforms with the success of string models and with
the intuitive view that vacuum extremals of Kähler action are basic building bricks
of many-sheeted space-time. Note that string world sheets would be also symplectic
covariants.

Without further conditions gauge potentials would be non-vanishing but one can hope
that one can gauge transform them away in associative manner. If not, one can also
consider the possibility that CP2 projection is geodesic circle S1: symplectic invariance
is considerably reduces for this option since symplectic transformations must reduce to
rotations in S1.

(c) The fist heavy objection is that action would contain Newton’s constant G as a funda-
mental dynamical parameter: this is a standard recipe for building a non-renormalizable
theory. The very idea of TGD indeed is that there is only single dimensionless param-
eter analogous to critical temperature. One can of coure argue that the dimensionless
parameter is ~G/R2, R CP2 ”radius”.

Second heavy objection is that the Euclidian variant of string action exponentially
damps out all string world sheets with area larger than ~G. Note also that the classical
energy of Minkowskian string would be gigantic unless the length of string is of order
Planck length. For Minkowskian signature the exponent is oscillatory and one can argue
that wild oscillations have the same effect.

The hierarchy of Planck constants would allow the replacement ~ → ~eff but this is
not enough. The area of typical string world sheet would scale as heff and the size of
CD and gravitational Compton lengths of gravitationally bound objects would scale as√
heff rather than ~eff = GMm/v0, which one wants. The only way out of problem

is to assume T ∝ (~/heff )2 × (1/hbarG). This is however un-natural for genuine area
action. Hence it seems that the visit of the basic assumption of superstring theory to
TGD remains very short.

Is super-symmetrized Kähler-Dirac action enough?

Could one do without string area in the action and use only K-D action, which is in any case
forced by the super-conformal symmetry? This option I have indeed considered hitherto. K-
D Dirac equation indeed tends to reduce to a lower-dimensional one: for massless extremals
the K-D operator is effectively 1-dimensional. For cosmic strings this reduction does not
however take place. In any case, this leads to ask whether in some cases the solutions of
Kähler-Dirac equation are localized at lower-dimensional surfaces of space-time surface.

(a) The proposal has indeed been that string world sheets carry vanishing W and possibly
even Z fields: in this manner the electromagnetic charge of spinor mode could be well-
defined. The vanishing conditions force in the generic case 2-dimensionality.

Besides this the canonical momentum currents for Kähler action defining 4 imbedding
space vector fields must define an integrable distribution of two planes to give string
world sheet. The four canonical momentum currents Πkα = ∂LK/∂∂αhk identified as
imbedding 1-forms can have only two linearly independent components parallel to the
string world sheet. Also the Frobenius conditions stating that the two 1-forms are pro-
portional to gradients of two imbedding space coordinates Φi defining also coordinates
at string world sheet, must be satisfied. These conditions are rather strong and are
expected to select some discrete set of string world sheets.
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(b) To construct preferred extremal one should fix the partonic 2-surfaces, their light-like
orbits defining boundaries of Euclidian and Minkowskian space-time regions, and string
world sheets. At string world sheets the boundary condition would be that the normal
components of canonical momentum currents for Kähler action vanish. This picture
brings in mind strong form of holography and this suggests that might make sense and
also solution of Einstein equations with point like sources.

(c) The localization of spinor modes at 2-D surfaces would would follow from the well-
definedness of em charge and one could have situation is which the localization does
not occur. For instance, covariantly constant right-handed neutrinos spinor modes at
cosmic strings are completely de-localized and one can wonder whether one could give
up the localization inside wormhole contacts.

(d) String tension is dynamical and physical intuition suggests that induced metric at string
world sheet is replaced by the anti-commutator of the K-D gamma matrices and by
conformal invariance only the conformal equivalence class of this metric would matter
and it could be even equivalent with the induced metric. A possible interpretation is
that the energy density of Kähler action has a singularity localized at the string world
sheet.

Another interpretation that I proposed for years ago but gave up is that in spirit with
the TGD analog of AdS/CFT duality the Noether charges for Kähler action can be
reduced to integrals over string world sheet having interpretation as area in effective
metric. In the case of magnetic flux tubes carrying monopole fluxes and containing
a string connecting partonic 2-surfaces at its ends this interpretation would be very
natural, and string tension would characterize the density of Kähler magnetic energy.
String model with dynamical string tension would certainly be a good approximation
and string tension would depend on scale of CD.

(e) There is also an objection. For M4 type vacuum extremals one would not obtain any
non-vacuum string world sheets carrying fermions but the successes of string model
strongly suggest that string world sheets are there. String world sheets would represent
a deformation of the vacuum extremal and far from string world sheets one would have
vacuum extremal in an excellent approximation. Situation would be analogous to that
in general relativity with point particles.

(f) The hierarchy of conformal symmetry breakings for K-D action should make string
tension proportional to 1/h2

eff with heff = hgr giving correct gravitational Compton
length Λgr = GM/v0 defining the minimal size of CD associated with the system. Why
the effective string tension of string world sheet should behave like (~/~eff )2?

The first point to notice is that the effective metric Gαβ defined as hklΠα
kΠβ

l , where
the canonical momentum current Πkα = ∂LK/∂∂αhk has dimension 1/L2 as required.
Kähler action density must be dimensionless and since the induced Kähler form is di-
mensionless the canonical momentum currents are proportional to 1/αK .

Should one assume that αK is fundamental coupling strength fixed by quantum criti-
cality to αK = 1/137? Or should one regard g2

K as fundamental parameter so that one
would have 1/αK = ~eff/4πg2

K having spectrum coming as integer multiples (recall the
analogy with inverse of critical temperature)?

The latter option is the in spirit with the original idea stating that the increase of
heff reduces the values of the gauge coupling strengths proportional to αK so that
perturbation series converges (Universe is theoretician friendly). The non-perturbative
states would be critical states. The non-determinism of Kähler action implying that
the 3-surfaces at the boundaries of CD can be connected by large number of space-time
sheets forming n conformal equivalence classes. The latter option would giveGαβ ∝ h2

eff

and det(G) ∝ 1/h2
eff as required.

(g) It must be emphasized that the string tension has interpretation in terms of gravitational
coupling on only at the GRT limit of TGD involving the replacement of many-sheeted
space-time with single sheeted one. It can have also interpretation as hadronic string
tension or effective string tension associated with magnetic flux tubes and telling the
density of Kähler magnetic energy per unit length.
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Superstring models would describe only the perturbative Planck scale dynamics for
emission and absorption of heff/h = 1 on mass shell gravitons whereas the quantum
description of bound states would require heff/n > 1 when the masses. Also the
effective gravitational constant associated with the strings would differ from G.

The natural condition is that the size scale of string world sheet associated with the
flux tube mediating gravitational binding is G(M +m)/v0, By expressing string tension
in the form 1/T = n2~G1, n = heff/h, this condition gives ~G1 = ~2/M2

red, Mred =
Mm/(M +m). The effective Planck length defined by the effective Newton’s constant
G1 analogous to that appearing in string tension is just the Compton length associated
with the reduced mass of the system and string tension equals to T = [v0/G(M +m)]2

apart from a numerical constant (2G(M + m) is Schwartschild radius for the entire
system). Hence the macroscopic stringy description of gravitation in terms of string
differs dramatically from the perturbative one. Note that one can also understand
why in the Bohr orbit model of Nottale [E1] for the planetary system and in its TGD
version [K46] v0 must be by a factor 1/5 smaller for outer planets rather than inner
planets.

Are 4-D spinor modes consistent with associativity?

The condition that octonionic spinors are equivalent with ordinary spinors looks rather nat-
ural but in the case of Kähler-Dirac action the non-associativity could leak in. One could
of course give up the condition that octonionic and ordinary K-D equation are equivalent in
4-D case. If so, one could see K-D action as related to non-commutative and maybe even
non-associative fermion dynamics. Suppose that one does not.

(a) K-D action vanishes by K-D equation. Could this save from non-associativity? If
the spinors are localized to string world sheets, one obtains just the standard stringy
construction of conformal modes of spinor field. The induce spinor connection would
have only the holomorphic component Az. Spinor mode would depend only on z but
K-D gamma matrix Γz would annihilate the spinor mode so that K-D equation would be
satisfied. There are good hopes that the octonionic variant of K-D equation is equivalent
with that based on ordinary gamma matrices since quaternionic coordinated reduces to
complex coordinate, octonionic quaternionic gamma matrices reduce to complex gamma
matrices, sigma matrices are effectively absent by holomorphy.

(b) One can consider also 4-D situation (maybe inside wormhole contacts). Could some
form of quaternion holomorphy [A88] [K55] allow to realize the K-D equation just as
in the case of super string models by replacing complex coordinate and its conjugate
with quaternion and its 3 conjugates. Only two quaternion conjugates would appear in
the spinor mode and the corresponding quaternionic gamma matrices would annihilate
the spinor mode. It is essential that in a suitable gauge the spinor connection has
non-vanishing components only for two quaternion conjugate coordinates. As a special
case one would have a situation in which only one quaternion coordinate appears in the
solution. Depending on the character of quaternionion holomorphy the modes would be
labelled by one or two integers identifiable as conformal weights.

Even if these octonionic 4-D modes exists (as one expects in the case of cosmic strings),
it is far from clear whether the description in terms of them is equivalent with the de-
scription using K-D equation based ordinary gamma matrices. The algebraic structure
however raises hopes about this. The quaternion coordinate can be represented as sum
of two complex coordinates as q = z1 + Jz2 and the dependence on two quaternion
conjugates corresponds to the dependence on two complex coordinates z1, z2. The con-
dition that two quaternion complexified gammas annihilate the spinors is equivalent
with the corresponding condition for Dirac equation formulated using 2 complex coor-
dinates. This for wormhole contacts. The possible generalization of this condition to
Minkowskian regions would be in terms Hamilton-Jacobi structure.

Note that for cosmic strings of form X2 × Y 2 ⊂ M4 × CP2 the associativity condition
for S2 sigma matrix and without assuming localization demands that the commutator
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of Y 2 imaginary units is proportional to the imaginary unit assignable to X2 which
however depends on point of X2. This condition seems to imply correlation between
Y 2 and S2 which does not look physical.

To summarize, the minimal and mathematically most optimistic conclusion is that Kähler-
Dirac action is indeed enough to understand gravitational binding without giving up the
associativity of the fermionic dynamics. Conformal spinor dynamics would be associative if
the spinor modes are localized at string world sheets with vanishing W (and maybe also Z)
fields guaranteeing well-definedness of em charge and carrying canonical momentum currents
parallel to them. It is not quite clear whether string world sheets are present also inside
wormhole contacts: for CP2 type vacuum extremals the Dirac equation would give only
right-handed neutrino as a solution (could they give rise to N = 2 SUSY?).

The construction of preferred extremals would realize strong form of holography. By con-
formal symmetry the effective metric at string world sheet could be conformally equivalent
with the induced metric at string world sheets.

Dynamical string tension would be proportional to ~/h2
eff due to the proportionality αK ∝

1/heff and predict correctly the size scales of gravitationally bound states for ~gr = ~eff =
GMm/v0. Gravitational constant would be a prediction of the theory and be expressible in
terms of αK and R2 and ~eff (G ∝ R2/g2

K).

In fact, all bound states - elementary particles as pairs of wormhole contacts, hadronic strings,
nuclei [K32], molecules, etc. - are described in the same manner quantum mechanically.
This is of course nothing new since magnetic flux tubes associated with the strings provide
a universal model for interactions in TGD Universe. This also conforms with the TGD
counterpart of AdS/CFT duality.

The basic building bricks are symplectic algebra of δCD (this includes CP2 besides light-
cone boundary) and Kac-Moody algebra assignable to the isometries of δCD [K13]. It seems
however that the longheld view about the role of Kac-Moody algebra must be modified. Also
the earlier realization of super-Hamiltonians and Hamiltonians seems too naive.

(a) I have been accustomed to think that Kac-Moody algebra could be regarded as a sub-
algebra of symplectic algebra. p-Adic mass calculations however requires five tensor
factors for the coset representation of Super Virasoro algebra naturally assigned to the
coset structure G/H of a sector of WCW with fixed zero modes. Therefore Kac-Moody
algebra cannot be regarded as a sub-algebra of symplectic algebra giving only single
tensor factor and thus inconsistent with interpretation of p-adic mass calculations.

(b) The localization of Kac-Moody algebra generators with respect to the internal coordi-
nates of light-like 3-surface taking the role of complex coordinate z in conformal field
theory is also questionable: the most economical option relies on localization with re-
spect to light-like radial coordinate of light-cone boundary as in the case of symplectic
algebra. Kac-Moody algebra cannot be however sub-algebra of the symplectic algebra
assigned with covariantly constant right-handed neutrino in the earlier approach.

(c) Right-handed covariantly constant neutrino as a generator of super symmetries plays
a key role in the earlier construction of symplectic super-Hamiltonians. What raises
doubts is that other spinor modes - both those of right-handed neutrino and electro-
weakly charged spinor modes - are absent. All spinor modes should be present and thus
provide direct mapping from WCW geometry to WCW spinor fields in accordance with
super-symmetry and the general idea that WCW geometry is coded by WCW spinor
fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of the in-
duced spinor field which carry electroweak quantum numbers. If would be natural that
the modes of right-handed neutrino having no weak and color interactions would gen-
erate the huge symplectic algebra of symmetries and that the modes of fermions with
electroweak charges generate much smaller Kac-Moody algebra.

(d) The dynamics of Kähler action and Kähler-Dirac action action are invisible in the earlier
construction. This suggests that the definition of WCW Hamiltonians is too simplistic.
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The proposal is that the conserved super charges derivable as Noether charges and
identifiable as super-Hamiltonians define WCW metric and Hamiltonians as their anti-
commutators. Spinor modes would become labels of Hamiltonians and WCW geometry
relates directly to the dynamics of elementary particles.

(e) Note that light-cone boundary δM4
+ = S2 × R+ allows infinite-dimensional group of

isometries consisting of conformal transformation of the sphere S2 with conformal scal-
ing compensated by an S2 local scaling or the light-like radial coordinate of R+. These
isometries contain as a subgroup symplectic isometries and could act as gauge symme-
tries of the theory.

6.4 About some unclear issues of TGD

TGD has been in the middle of palace revolution during last two years and it is almost
impossible to keep the chapters of the books updated. Adelic vision and twistor lift of TGD
are the newest developments and there are still many details to be understood and errors to
be corrected. The description of fermions in TGD framework has contained some unclear
issues. Hence the motivation for the following brief comments.

There questions about the adelic vision about symmetries. Do the cognitive representations
implying number theoretic disretization of the space-time surface lead to the breaking of the
basic symmetries and are preferred imbedding space coordinates actually necessary?

In the fermionic sector there are many questions deserving clarification. How quantum classi-
cal correspondence (QCC) is realized for fermions? How is SH realized for fermions and how
does it lead to the reduction of dimension D = 4 to D = 2 (apart from number theoretical
discretization)? Can scattering amplitudes be really formulated by using only the data at
the boundaries of string sheets and what does this mean from the point of view of the mod-
ified Dirac equation? Are the spinors at light-like boundaries limiting values or sources? A
long-standing issue concerns the fermionic anti-commutation relations: what motivated this
article was the solution of this problem. There is also the general problem about whether
statistical entanglement is “real”.

6.4.1 Adelic vision and symmetries

In the adelic TGD SH is weakened: also the points of the space-time surface having imbedding
space coordinates in an extension of rationals (cognitive representation) are needed so that
data are not precisely 2-D. I have believed hitherto that one must use preferred coordinates
for the imbedding space H - a subset of these coordinates would define space-time coordi-
nates. These coordinates are determined apart from isometries. Does the number theoretic
discretization imply loss of general coordinate invariance and also other symmetries?

The reduction of symmetry groups to their subgroups (not only algebraic since powers of e
define finite-dimensional extension of p-adic numbers since ep is ordinary p-adic number) is
genuine loss of symmetry and reflects finite cognitive resolution. The physics itself has the
symmetries of real physics.

The assumption about preferred imbedding space coordinates is actually not necessary. Dif-
ferent choices of H-coordinates means only different and non-equivalent cognitive repre-
sentations. Spherical and linear coordinates in finite accuracy do not provide equivalent
representations.

6.4.2 Quantum-classical correspondence for fermions

Quantum-classical correspondence (QCC) for fermions is rather well-understood but deserves
to be mentioned also here.

QCC for fermions means that the space-time surface as preferred extremal should depend
on fermionic quantum numbers. This is indeed the case if one requires QCC in the sense
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that the fermionic representations of Noether charges in the Cartan algebras of symmetry
algebras are equal to those to the classical Noether charges for preferred extremals.

Second aspect of QCC becomes visible in the representation of fermionic states as point like
particles moving along the light-like curves at the light-like orbits of the partonic 2-surfaces
(curve at the orbit can be locally only light-like or space-like). The number of fermions and
antifermions dictates the number of string world sheets carrying the data needed to fix the
preferred extremal by SH. The complexity of the space-time surface increases as the number
of fermions increases.

6.4.3 Strong form of holography for fermions

It seems that scattering amplitudes can be formulated by assigning fermions with the bound-
aries of strings defining the lines of twistor diagrams [K88, L30]. This information theoretic
dimensional reduction from D = 4 to D = 2 for the scattering amplitudes can be partially
understood in terms of strong form of holography (SH): one can construct the theory by us-
ing the data at string worlds sheets and/or partonic 2-surfaces at the ends of the space-time
surface at the opposite boundaries of causal diamond (CD).

4-D modified Dirac action would appear at fundamental level as supersymmetry demands
but would be reduced for preferred extremals to its 2-D stringy variant serving as effective
action. Also the value of the 4-D action determining the space-time dynamics would reduce
to effective stringy action containing area term, 2-D Kähler action, and topological Kähler
magnetic flux term. This reduction would be due to the huge gauge symmetries of preferred
extremals. Sub-algebra of super-symplectic algebra with conformal weigths coming as n-
multiples of those for the entire algebra and the commutators of this algebra with the entire
algebra would annihilate the physical states, and thecorresponding classical Noether charges
would vanish.

One still has the question why not the data at the entire string world sheets is not needed
to construct scattering amplitudes. Scattering amplitudes of course need not code for the
entire physics. QCC is indeed motivated by the fact that quantum experiments are always
interpreted in terms of classical physics, which in TGD framework reduces to that for space-
time surface.

6.4.4 The relationship between spinors in space-time interior and
at boundaries between Euclidian and Minkoskian regions

Space-time surface decomposes to interiors of Minkowskian and Euclidian regions. At light-
like 3-surfaces at which the four-metric changes, the 4-metric is degenerate. These metrically
singular 3-surfaces - partonic orbits- carry the boundaries of string world sheets identified as
carriers of fermionic quantum numbers. The boundaries define fermion lines in the twistor
lift of TGD [K88, L30]. The relationship between fermions at the partonic orbits and interior
of the space-time surface has however remained somewhat enigmatic.

So: What is the precise relationship between induced spinors ΨB at light-like partonic 3-
surfaces and ΨI in the interior of Minkowskian and Euclidian regions? Same question can
be made for the spinors ΨB at the boundaries of string world sheets and ΨI in interior of
the string world sheets. There are two options to consider:

• Option I: ΨB is the limiting value of ΨI .

• Option II: ΨB serves as a source of ΨI .

For the Option I it is difficult to understand the preferred role of ΨB .

I have considered Option II already years ago but have not been able to decide.

(a) That scattering amplitudes could be formulated only in terms of sources only, would fit
nicely with SH, twistorial amplitude construction, and also with the idea that scattering
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amplitudes in gauge theories can be formulated in terms of sources of boson fields
assignable to vertices and propagators. Now the sources would become fermionic.

(b) One can take gauge theory as a guideline. One adds to free Dirac equation source term

kΨ. Therefore the natural boundary term in the action would be of the form (forgetting
overall scale factor)

SB = ΨIΓ
α(C − S)AαΨB + c.c .

Here the modified gamma matrix is Γα(C − S) (contravariant form is natural for light-
like 3-surfaces) is most naturally defined by the boundary part of the action - naturally
Chern-Simons term for Kähler action. A denotes the Kähler gauge potential.

(c) The variation with respect to ΨB gives

Gα(C − S)AαΨI = 0

at the boundary so that the C-S term and interaction term vanish. This does not
however imply vanishing of the source term! This condition can be seen as a boundary
condition.

The same argument applies also to string world sheets.

6.4.5 About second quantization of the induced spinor fields

The anti-commutation relations for the induced spinors have been a long-standing issue and
during years I have considered several options. The solution of the problem looks however
stupifuingly simple. The conserved fermion currents are accompanied by super-currents
obtained by replacing Ψ with a mode of the induced spinor field to get unΓαΨ or ΨΓαun
with the conjugate of the mode. One obtains infinite number of conserved super currents.
One can also replace both Ψ and Ψ in this manner to get purely bosonic conserved currents
umΓαun to which one can assign a conserved bosonic charges Qmn.

I noticed this years ago but did not realize that these bosonic charges define naturally anti-
commutators of fermionic creation and annihilation operators! The ordinary anti-commutators
of quantum field theory follow as a special case! By a suitable unitary transformation of the
spinor basis one can diagonalize the hermitian matrix defined by Qmn and by performing
suitable scalings one can transform anti-commutation relations to the standard form. An in-
teresting question is whether the diagonalization is needed, and whether the deviation of the
diagonal elements from unity could have some meaning and possibly relate to the hierarchy
heff = n× h of Planck constants - probably not.

6.4.6 Is statistical entanglement “real” entanglement?

The question about the “reality” of statistical entanglement has bothered me for years. This
entanglement is maximal and it cannot be reduced by measurement so that one can argue
that it is not “real”. Quite recently I learned that there has been a longstanding debate
about the statistical entanglement and that the issue still remains unresolved.

The idea that all electrons of the Universe are maximally entangled looks crazy. TGD pro-
vides several variants for solutions of this problem. It could be that only the fermionic oscil-
lator operators at partonic 2-surfaces associated with the space-time surface (or its connected
component) inside given CD anti-commute and the fermions are thus indistinguishable. The
extremist option is that the fermionic oscillator operators belonging to a network of par-
tonic 2-surfaces connected by string world sheets anti-commute: only the oscillator operators
assignable to the same scattering diagram would anti-commute.

What about QCC in the case of entanglement. ER-EPR correspondence introduced by
Maldacena and Susskind for 4 years ago proposes that blackholes (maybe even elementary
particles) are connected by wormholes. In TGD the analogous statement emerged for more
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than decade ago - magnetic flux tubes take the role of wormholes in TGD. Magnetic flux
tubes were assumed to be accompanied by string world sheets. I did not consider the question
whether string world sheets are always accompanied by flux tubes.

What could be the criterion for entanglement to be “real”? “Reality” of entanglement de-
mands some space-time correlate. Could the presence of the flux tubes make the entanglement
“real”? If statistical entanglement is accompanied by string connections without magnetic
flux tubes, it would not be “real”: only the presence of flux tubes would make it “real”. Or
is the presence of strings enough to make the statistical entanglement “real”. In both cases
the fermions associated with disjoint space-time surfaces or with disjoint CDs would not be
indistinguishable. This looks rather sensible.

The space-time correlate for the reduction of entanglement would be the splitting of a flux
tube and fermionic strings inside it. The fermionic strings associated with flux tubes carrying
monopole flux are closed and the return flux comes back along parallel space-time sheet.
Also fermionic string has similar structure. Reconnection of this flux tube with shape of very
long flattened square splitting it to two pieces would be the correlate for the state function
reduction reducing the entanglement with other fermions and would indeed decouple the
fermion from the network.

6.5 About The Notion Of Four-Momentum In TGD Frame-
work

The starting point of TGD was the energy problem of General Relativity [K57]. The solution
of the problem was proposed in terms of sub-manifold gravity and based on the lifting of the
isometries of space-time surface to those of M4 × CP2 in which space-times are realized as
4-surfaces so that Poincare transformations act on space-time surface as an 4-D analog of
rigid body rather than moving points at space-time surface. It however turned out that the
situation is not at all so simple.

There are several conceptual hurdles and I have considered several solutions for them. The
basic source of problems has been Equivalence Principle (EP): what does EP mean in TGD
framework [K57, K78] ? A related problem has been the interpretation of gravitational
and inertial masses, or more generally the corresponding 4-momenta. In General Relativity
based cosmology gravitational mass is not conserved and this seems to be in conflict with
the conservation of Noether charges. The resolution is in terms of zero energy ontology
(ZEO), which however forces to modify slightly the original view about the action of Poincare
transformations.

A further problem has been quantum classical correspondence (QCC): are quantal four-
momenta associated with super conformal representations and classical four-momenta as-
sociated as Noether charges with Kähler action for preferred extremals identical? Could
inertial-gravitational duality - that is EP - be actually equivalent with QCC? Or are EP
and QCC independent dualities. A powerful experimental input comes p-adic mass calcu-
lations [K76] giving excellent predictions provided the number of tensor factors of super-
Virasoro representations is five, and this input together with Occam’s razor strongly favors
QCC=EP identification.

There is also the question about classical realization of EP and more generally, TGD-GRT
correspondence.

Twistor Grassmannian approach has meant a technical revolution in quantum field theory
(for attempts to understand and generalize the approach in TGD framework see [K55]. This
approach seems to be extremely well suited to TGD and I have considered a generalization
of this approach from N = 4 SUSY to TGD framework by replacing point like particles
with string world sheets in TGD sense and super-conformal algebra with its TGD version:
the fundamental objects are now massless fermions which can be regarded as on mass shell
particles also in internal lines (but with unphysical helicity). The approach solves old prob-
lems related to the realization of stringy amplitudes in TGD framework, and avoids some
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problems of twistorial QFT (IR divergences and the problems due to non-planar diagrams).
The Yangian [A30] [B29, B23, B24] variant of 4-D conformal symmetry is crucial for the ap-
proach in N = 4 SUSY, and implies the recently introduced notion of amplituhedron [B14].
A Yangian generalization of various super-conformal algebras seems more or less a “must”
in TGD framework. As a consequence, four-momentum is expected to have characteristic
multilocal contributions identifiable as multipart on contributions now and possibly relevant
for the understanding of bound states such as hadrons.

6.5.1 Scale Dependent Notion Of Four-Momentum In Zero Energy
Ontology

Quite generally, General Relativity does not allow to identify four-momentum as Noether
charges but in GRT based cosmology one can speak of non-conserved mass [K47], which
seems to be in conflict with the conservation of four-momentum in TGD framework. The
solution of the problem comes in terms of zero energy ontology (ZEO) [K4, K74], which
transforms four-momentum to a scale dependent notion: to each causal diamond (CD) one
can assign four-momentum assigned with say positive energy part of the quantum state
defined as a quantum superposition of 4-surfaces inside CD.

ZEO is necessary also for the fusion of real and various p-adic physics to single coherent whole.
ZEO also allows maximal “free will” in quantum jump since every zero energy state can be
created from vacuum and at the same time allows consistency with the conservation laws.
ZEO has rather dramatic implications: in particular the arrow of thermodynamical time is
predicted to vary so that second law must be generalized. This has especially important
implications in living matter, where this kind of variation is observed.

More precisely, this superposition corresponds to a spinor field in the “world of classical
worlds” ( WCW ) [K74]: its components - WCW spinors - correspond to elements of fermionic
Fock basis for a given 4-surface - or by holography implied by general coordinate invariance
(GCI) - for 3-surface having components at both ends of CD. Strong form of GGI implies
strong form of holography (SH) so that partonic 2-surfaces at the ends of space-time surface
plus their 4-D tangent space data are enough to fix the quantum state. The classical dynamics
in the interior is necessary for the translation of the outcomes of quantum measurements to
the language of physics based on classical fields, which in turn is reduced to sub-manifold
geometry in the extension of the geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-QCC.
Strong form of holography has strongly stringy flavor: string world sheets connecting the
wormhole throats appearing as basic building bricks of particles emerge from the dynamics
of induced spinor fields if one requires that the fermionic mode carries well-defined electro-
magnetic charge [K62].

6.5.2 Are The Classical And Quantal Four-Momenta Identical?

One key question concerns the classical and quantum counterparts of four-momentum. In
TGD framework classical theory is an exact part of quantum theory. Classical four-momentum
corresponds to Noether charge for preferred extremals of Kähler action. Quantal four-
momentum in turn is assigned with the quantum superposition of space-time sheets assigned
with CD - actually WCW spinor field analogous to ordinary spinor field carrying fermionic
degrees of freedom as analogs of spin. Quantal four-momentum emerges just as it does in
super string models - that is as a parameter associated with the representations of super-
conformal algebras. The precise action of translations in the representation remains poorly
specified. Note that quantal four-momentum does not emerge as Noether charge: at at least
it is not at all obvious that this could be the case.

Are these classical and quantal four-momenta identical as QCC would suggest? If so, the
Noether four-momentum should be same for all space-time surfaces in the superposition.
QCC suggests that also the classical correlation functions for various general coordinate
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invariant local quantities are same as corresponding quantal correlation functions and thus
same for all 4-surfaces in quantum superposition - this at least in the measurement resolution
used. This would be an extremely powerful constraint on the quantum states and to a high
extend could determined the U-, M-, and S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects the descrip-
tions based on classical physics defined by Kähler action in the interior of space-time surface
and the quantal description in terms of quantum states assignable to the intersections of
space-like 3-surfaces at the boundaries of CD and light-like 3-surfaces at which the signature
of induced metric changes. SH means effective 2-dimensionality since the four-dimensional
tangent space data at partonic 2-surfaces matters. SH could be interpreted as Kac-Mody and
symplectic symmetries meaning that apart from central extension they act almost like gauge
symmetries in the interiors of space-like 3-surfaces at the ends of CD and in the interiors of
light-like 3-surfaces representing orbits of partonic 2-surfaces. Gauge conditions are replaced
with Super Virasoro conditions. The word “almost” is of course extremely important.

6.5.3 What Equivalence Principle (EP) Means In Quantum TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian theory. A possible
generalization would be equivalence of gravitational and inertial four-momenta. In GRT this
correspondence cannot be realized in mathematically rigorous manner since these notions are
poorly defined and EP reduces to a purely local statement in terms of Einstein’s equations.

What about TGD? What could EP mean in TGD framework?

(a) Is EP realized at both quantum and space-time level? This option requires the identifi-
cation of inertial and gravitational four-momenta at both quantum and classical level.
It is now clear that at classical level EP follows from very simple assumption that GRT
space-time is obtained by lumping together the space-time sheets of the many-sheeted
space-time and by the identification the effective metric as sum of M4 metric and de-
viations of the induced metrics of space-time sheets from M2 metric: the deviations
indeed define the gravitational field defined by multiply topologically condensed test
particle. Similar description applies to gauge fields. EP as expressed by Einstein’s
equations would follow from Poincare invariance at microscopic level defined by TGD
space-time. The effective fields have as sources the energy momentum tensor and YM
currents defined by topological inhomogenities smaller than the resolution scale.

(b) QCC would require the identification of quantal and classical counterparts of both gravi-
tational and inertial four-momenta. This would give three independent equivalences, say
PI,class = PI,quant, Pgr,class = Pgr,quant, Pgr,class = PI,quant, which imply the remaining
ones.

Consider the condition Pgr,class = PI,class. At classical level the condition that the stan-
dard energy momentum tensor associated with Kähler action has a vanishing divergence
is guaranteed if Einstein’s equations with cosmological term are satisfied. If preferred
extremals satisfy this condition they are constant curvature spaces for non-vanishing
cosmological constant. A more general solution ansatz involves several functions analo-
gous to cosmological constant corresponding to the decomposition of energy momentum
tensor to terms proportional to Einstein tensor and several lower-dimensional projection
operators [K78]. It must be emphasized that field equations are extremely non-linear
and one must also consider preferred extremals (which could be identified in terms of
space-time regions having so called Hamilton-Jacobi structure): hence these proposals
are guesses motivated by what is known about exact solutions of field equations.

Consider next Pgr,class = PI,class. At quantum level I have proposed coset representa-
tions for the pair of super conformal algebras g and h ⊂ g which correspond to the coset
space decomposition of a given sector of WCW with constant values of zero modes.
The coset construction would state that the differences of super-Virasoro generators
associated with g resp. h annhilate physical states.
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The identification of the algebras g and h is not straightforward. The algebra g could
be formed by the direct sum of super-symplectic and super Kac-Moody algebras and
its sub-algebra h for which the generators vanish at partonic 2-surface considered. This
would correspond to the idea about WCW as a coset space G/H of corresponding groups
(consider as a model CP2 = SU(3)/U(2) with U(2) leaving preferred point invariant).
The sub-algebra h in question includes or equals to the algebra of Kac-Moody generators
vanishing at the partonic 2-surface. A natural choice for the preferred WCW point would
be as maximum of Kähler function in Euclidian regions: positive definiteness of Kähler
function allows only single maximum for fixed values of zero modes). Coset construction
states that differences of super Virasoro generators associated with g and h annihilate
physical states. This implies that corresponding four-momenta are identical that is
Equivalence Principle.

(c) Does EP at quantum level reduce to one aspect of QCC? This would require that clas-
sical Noether four-momentum identified as inertial momentum equals to the quantal
four-momentum assignable to the states of super-conformal representations and identi-
fiable as gravitational four-momentum. There would be only one independent condition:
Pclass ≡ PI,class = Pgr,quant ≡ Pquant.
Holography realized as AdS/CFT correspondence states the equivalence of descriptions
in terms of gravitation realized in terms of strings in 10-D space-time and gauge fields at
the boundary of AdS. What is disturbing is that this picture is not completely equivalent
with the proposed one. In this case the super-conformal algebra would be direct sum of
super-symplectic and super Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calculations [K76]
have motivated the use of them as a guideline in attempts to understand TGD. The basic
outcome was that elementary particle spectrum can be understood if Super Virasoro algebra
has five tensor factors. Can one decide the fate of the two approaches to EP using this
number as an input?

This is not the case. For both options the number of tensor factors is five as required. Four
tensor factors come from Super Kac-Moody and correspond to translational Kac-Moody
type degrees of freedom in M4, to color degrees of freedom and to electroweak degrees of
freedom (SU(2)×U(1)). One tensor factor comes from the symplectic degrees of freedom in
∆CD × CP2 (note that Hamiltonians include also products of δCD and CP2 Hamiltonians
so that one does not have direct sum!).

The reduction of EP to the coset structure of WCW sectors is extremely beautiful property.
But also the reduction of EP to QCC looks very nice and deep. It is of course possible that
the two realizations of EP are equivalent and the natural conjecture is that this is the case.

For QCC option the GRT inspired interpretation of Equivalence Principle at space-time level
remains to be understood. Is it needed at all? The condition that the energy momentum
tensor of Kähler action has a vanishing divergence leads in General Relativity to Einstein
equations with cosmological term. In TGD framework preferred extremals satisfying the
analogs of Einstein’s equations with several cosmological constant like parameters can be
considered.

Should one give up this idea, which indeed might be wrong? Could the divergence of of energy
momentum tensor vanish only asymptotically as was the original proposal? Or should one
try to generalize the interpretation? QCC states that quantum physics has classical correlate
at space-time level and implies EP. Could also quantum classical correspondence itself have
a correlate at space-time level. If so, space-time surface would able to represent abstractions
as statements about statements about.... as the many-sheeted structure and the vision about
TGD physics as analog of Turing machine able to mimic any other Turing machine suggest.

6.5.4 TGD-GRT Correspondence And Equivalence Principle

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an effective theory obtained by
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endowing M4 with effective metric.

(a) The replacement of superposition of fields with superposition of their effects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the effects caused by the classical fields at the space-time
sheets (see Fig. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. ??
in the appendix of this book).

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the effective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the effective space-time.

(d) The breaking of Poincare invariance could have interpretation as effective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K78].

6.5.5 How Translations Are Represented At The Level Of WCW ?

The four-momentum components appearing in the formulas of super conformal generators
correspond to infinitesimal translations. In TGD framework one must be able to identify these
infinitesimal translations precisely. As a matter of fact, finite measurement resolution implies
that it is probably too much to assume infinitesimal translations. Rather, finite exponentials
of translation generators are involved and translations are discretized. This does not have
practical signficance since for optimal resolution the discretization step is about CP2 length
scale.

Where and how do these translations act at the level of WCW ? ZEO provides a possible
answer to this question.

Discrete Lorentz transformations and time translations act in the space of CDs:
inertial four-momentum

Quantum state corresponds also to wave function in moduli space of CDs. The moduli space
is obtained from given CD by making all boosts for its non-fixed boundary: boosts correspond
to a discrete subgroup of Lorentz group and define a lattice-like structure at the hyperboloid
for which proper time distance from the second tip of CD is fixed to Tn = n × T (CP2).
The quantization of cosmic redshift for which there is evidence, could relate to this lattice
generalizing ordinary 3-D lattices from Euclidian to hyperbolic space by replacing translations
with boosts (velocities).

The additional degree of freedom comes from the fact that the integer n > 0 obtains all
positive values. One has wave functions in the moduli space defined as a pile of these lattices
defined at the hyperboloid with constant value of T (CP2): one can say that the points of

http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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this pile of lattices correspond to Lorentz boosts and scalings of CDs defining sub- WCW :
s.

The interpretation in terms of group which is product of the group of shifts Tn(CP2) →
Tn+m(CP2) and discrete Lorentz boosts is natural. This group has same Cartesian prod-
uct structure as Galilean group of Newtonian mechanics. This would give a discrete rest
energy and by Lorentz boosts discrete set of four-momenta giving a contribution to the
four-momentum appearing in the super-conformal representation.

What is important that each state function reduction would mean localisation of either
boundary of CD (that is its tip). This localization is analogous to the localization of particle
in position measurement in E3 but now discrete Lorentz boosts and discrete translations
Tn − − > Tn+m replace translations. Since the second end of CD is necessary del-ocalized
in moduli space, one has kind of flip-flop: localization at second end implies de-localization
at the second end. Could the localization of the second end (tip) of CD in moduli space
correspond to our experience that momentum and position can be measured simultaneously?
This apparent classicality would be an illusion made possible by ZEO.

The flip-flop character of state function reduction process implies also the alternation of
the direction of the thermodynamical time: the asymmetry between the two ends of CDs
would induce the quantum arrow of time. This picture also allows to understand what the
experience growth of geometric time means in terms of CDs.

The action of translations at space-time sheets

The action of imbedding space translations on space-time surfaces possibly becoming triv-
ial at partonic 2-surfaces or reducing to action at δCD induces action on space-time sheet
which becomes ordinary translation far enough from end end of space-time surface. The
four-momentum in question is very naturally that associated with Kähler action and would
therefore correspond to inertial momentum for PI,class = Pquant,gr option. Indeed, one
cannot assign quantal four-momentum to Kähler action as an operator since canonical quan-
tization badly fails. In finite measurement infinitesimal translations are replaced with their
exponentials for PI,class = Pquant,gr option.

What looks like a problem is that ordinary translations in the general case lead out from
given CD near its boundaries. In the interior one expects that the translation acts like ordi-
nary translation. The Lie-algebra structure of Poincare algebra including sums of translation
generators with positive coefficient for time translation is preserved if only time-like super-
positions if generators are allowed also the commutators of time-like translation generators
with boost generators give time like translations. This defines a Lie-algebraic formulation for
the arrow of geometric time. The action of time translation on preferred extremal would be
ordinary translation plus continuation of the translated preferred extremal backwards in time
to the boundary of CD. The transversal space-like translations could be made Kac-Moody
algebra by multiplying them with functions which vanish at δCD.

A possible interpretation would be that Pquant,gr corresponds to the momentum assignable
to the moduli degrees of freedom and Pcl,I to that assignable to the time like translations.
Pquant,gr = Pcl,I would code for QCC. Geometrically quantum classical correspondence would
state that time-like translation shift both the interior of space-time surface and second bound-
ary of CD to the geometric future/past while keeping the second boundary of space-time
surface and CD fixed.

6.5.6 Yangian And Four-Momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach toN = 4
SUSY culminating in the notion of amplituhedron which promises to give a nice projective
geometry interpretation for the scattering amplitudes [B14]. Yangian symmetry is a multilo-
cal generalization of ordinary symmetry based on the notion of co-product and implies that
Lie algebra generates receive also multilocal contributions. I have discussed these topics from
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slightly different point of view in [K55], where also references to the work of pioneers can be
found.

Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group
in the study of integrable systems. Yangians are Hopf algebras which can be assigned with
Lie algebras as the deformations of their universal enveloping algebras. The elegant but
rather cryptic looking definition is in terms of the modification of the relations for generating
elements [K55]. Besides ordinary product in the enveloping algebra there is co-product ∆
which maps the elements of the enveloping algebra to its tensor product with itself. One
can visualize product and co-product is in terms of particle reactions. Particle annihilation
is analogous to annihilation of two particle so single one and co-product is analogous to the
decay of particle to two. ∆ allows to construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra
or Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its
super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for super-
conformal algebra in very elegant andconcrete manner in the article Yangian Symmetry in
D=4 superconformal Yang-Mills theory [B23]. Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with
a continuous one. Discrete index poses conditions on the Lie group and its representation
(adjoint representation in the case of N = 4 SUSY). One of the conditions conditions is
that the tensor product R ⊗R∗ for representations involved contains adjoint representation
only once. This condition is non-trivial. For SU(n) these conditions are satisfied for any
representation. In the case of SU(2) the basic branching rule for the tensor product of
representations implies that the condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra.
Now however the generators are labelled by non-negative integers labeling the light-like in-
coming and outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody
algebra also negative values are allowed. Note that only the generators with non-negative
conformal weight appear in the construction of states of Kac-Moody and Virasoro represen-
tations so that the extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be
labelled by conformal weights n = 0 and n = 1 and and their mutual commutation relations
are same as for Kac-Moody algebra. The commutators of n = 1 generators with themselves
are however something different for a non-vanishing deformation parameter h. Serre’s rela-
tions characterize the difference and involve the deformation parameter h. Under repeated
commutations the generating elements generate infinite-dimensional symmetric algebra, the
Yangian. For h = 0 one obtains just one half of the Virasoro algebra or Kac-Moody algebra.
The generators with n > 0 are n+ 1-local in the sense that they involve n+ 1-forms of local
generators assignable to the ordered set of incoming particles of the scattering amplitude.
This non-locality generalizes the notion of local symmetry and is claimed to be powerful
enough to fix the scattering amplitudes completely.

How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however possible
to keep discussion at general level and still say something interesting (as I hope!). The key
question is whether it could be possible to generalize the proposed Yangian symmetry and
geometric picture behind it to TGD framework.

(a) The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question
is quite too limited since it allows only single representation of the gauge group and
requires massless particles. One must allow all representations and massive particles so
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that the representation of symmetry algebra must involve states with different masses,
in principle arbitrary spin and arbitrary internal quantum numbers. The candidates
are obvious: Kac-Moody algebras [A15] and Virasoro algebras [A25] and their super
counterparts. Yangians indeed exist for arbitrary super Lie algebras. In TGD framework
conformal algebra of Minkowski space reduces to Poincare algebra and its extension to
Kac-Moody allows to have also massive states.

(b) The formal generalization looks surprisingly straightforward at the formal level. In zero
energy ontology one replaces point like particles with partonic two-surfaces appearing
at the ends of light-like orbits of wormhole throats located to the future and past light-
like boundaries of causal diamond (CD × CP2 or briefly CD). Here CD is defined as
the intersection of future and past directed light-cones. The polygon with light-like
momenta is naturally replaced with a polygon with more general momenta in zero
energy ontology and having partonic surfaces as its vertices. Non-point-likeness forces
to replace the finite-dimensional super Lie-algebra with infinite-dimensional Kac-Moody
algebras and corresponding super-Virasoro algebras assignable to partonic 2-surfaces.

(c) This description replaces disjoint holomorphic surfaces in twistor space with partonic
2-surfaces at the boundaries of CD × CP2 so that there seems to be a close analogy
with Cachazo-Svrcek-Witten picture. These surfaces are connected by either light-like
orbits of partonic 2-surface or space-like 3-surfaces at the ends of CD so that one indeed
obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

(a) At least it means that ordinary Super Kac-Moody and Super Virasoro algebras asso-
ciated with isometries of M4 × CP2 annihilating the scattering amplitudes must be
extended to a co-algebras with a non-trivial deformation parameter. Kac-Moody group
is thus the product of Poincare and color groups. This algebra acts as deformations of
the light-like 3-surfaces representing the light-like orbits of particles which are extremals
of Chern-Simon action with the constraint that weak form of electric-magnetic duality
holds true. I know so little about the mathematical side that I cannot tell whether
the condition that the product of the representations of Super-Kac-Moody and Super-
Virasoro algebras contains adjoint representation only once, holds true in this case. In
any case, it would allow all representations of finite-dimensional Lie group in vertices
whereas N = 4 SUSY would allow only the adjoint.

(b) Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-
Moody algebra associated with the light-cone boundary which is metrically 3-dimensional.
The finite-dimensional Lie group is in this case replaced with infinite-dimensional group
of symplectomorphisms of δM4

+/− made local with respect to the internal coordinates
of the partonic 2-surface. This picture also justifies p-adic thermodynamics applied to
either symplectic or isometry Super-Virasoro and giving thermal contribution to the
vacuum conformal and thus to mass squared.

(c) The construction of TGD leads also to other super-conformal algebras and the natural
guess is that the Yangians of all these algebras annihilate the scattering amplitudes.

(d) Obviously, already the starting point symmetries look formidable but they still act on
single partonic surface only. The discrete Yangian associated with this algebra associ-
ated with the closed polygon defined by the incoming momenta and the negatives of
the outgoing momenta acts in multi-local manner on scattering amplitudes. It might
make sense to speak about polygons defined also by other conserved quantum numbers
so that one would have generalized light-like curves in the sense that state are massless
in 8-D sense.

Could Yangian symmetry provide a new view about conserved quantum num-
bers?

The Yangian algebra has some properties which suggest a new kind of description for bound
states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute.
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Since the co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to
generators with high value of n, it seems that they commute also with n ≥ 1 generators. This
applies to four-momentum, color isospin and color hyper charge, and also to the Virasoro
generator L0 acting on Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum
of contributions from various levels? If so, the four momentum and mass squared would
involve besides the local term assignable to wormhole throats also n-local contributions.
The interpretation in terms of n-parton bound states would be extremely attractive. n-
local contribution would involve interaction energy. For instance, string like object would
correspond to n = 1 level and give n = 2-local contribution to the momentum. For baryonic
valence quarks one would have 3-local contribution corresponding to n = 2 level. The Yangian
view about quantum numbers could give a rigorous formulation for the idea that massive
particles are bound states of massless particles.

6.6 Generalization Of Ads/CFT Duality To TGD Frame-
work

AdS/CFT duality has provided a powerful approach in the attempts to understand the non-
perturbative aspects of super-string theories. The duality states that conformal field theory
in n-dimensional Minkowski space Mn identifiable as a boundary of n+ 1-dimensional space
AdSn+1 is dual to a string theory in AdSn+1 × S9−n.

As a mathematical discovery the duality is extremely interesting but it seems that it need not
have much to do with physics. From TGD point of view the reason is obvious: the notion
of conformal invariance is quite too limited. In TGD framework conformal invariance is
extended to a super-symplectic symmetry in δM4

±×CP2, whose Lie-algebra has the structure
of conformal algebra. Also ordinary super-conformal symmetries associated with string world
sheets are present as well as generalization of 2-D conformal symmetries to their analogs at
light-cone boundary and light-like orbits of partonic 2-surfaces. In this framework AdS/CFT
duality is expected to be modified and this seems to be the case.

The matrix elements of Kähler metric of WCW can be expressed in two manners. As con-
tractions of the derivatives ∂K∂LK of the Kähler function of WCW with isometry generators
or as anticommutators of WCW gamma matrices identified as supersymplectic Noether su-
per charges assignable to fermioni strings connecting partonic 2-surfaces. Kähler function
is identified as Kähler action for the Euclidian space-time regions with 4-D CP2 projection.
Kähler action defines the Kähler-Dirac gamma matrices appearing in K-D action as contrac-
tions of canonical momentum currents with imbedding space gamma matrices. Bosonic and
fermionic degrees of freedom are therefore dual in a well-defined sense.

This observation suggests various generalizations. There is super-symmetry between Kähler
action and Kähler-Dirac action. The problem is that induced spinor fields are localized at
2-D string world sheets. Strong form of holography implying effective 2-dimensionality sug-
gests the solution to the paradox. The paradox disappears if the Kähler action is expressible
as string area for the effective metric defined by the anti-commutators of K-D gamma ma-
trices at string world sheet. This expression allows to understand how strings connecting
partonic 2-surfaces give rise to the formation of gravitationally bound states. Bound states
of macroscopic size are however possible only if one allows hierarchy of Planck constants.
This representation of Kähler action can be seen as one aspect of the analog of AdS/CFT
duality in TGD framework.

One can imagine also other realizations. For instance, Dirac determinant for the spinors
associated with string world sheets should reduce to the exponent of Kähler action.
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6.6.1 Does The Exponent Of Chern-Simons Action Reduce To The
Exponent Of The Area Of Minimal Surfaces?

As I scanned of hep-th I found an interesting article (see http://tinyurl.com/ycpkrg4f) by
Giordano, Peschanski, and Seki [B34] based on AdS/CFT correspondence. What is studied is
the high energy behavior of the gluon-gluon and quark-quark scattering amplitudes of N = 4
SUSY.

(a) The proposal made earlier by Aldaya and Maldacena (see http://tinyurl.com/ybnk6kbs)
[B11] is that gluon-gluon scattering amplitudes are proportional to the imaginary expo-
nent of the area of a minimal surface in AdS5 whose boundary is identified as momentum
space. The boundary of the minimal surface would be polygon with light-like edges: this
polygon and its dual are familiar from twistor approach.

(b) Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy
quarks corresponds to the exponent of the area for a minimal surface in the Euclidian
version of AdS5 which is hyperbolic space (space with a constant negative curvature): it
is interpreted as a counterpart of WCW rather than momentum space and amplitudes
are obtained by analytic continuation. For instance, a universal Regge behavior is
obtained. For general amplitudes the exponent of the area alone is not enough since it
does not depend on gluon quantum numbers and vertex operators at the edges of the
boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum
TGD framework. I hasten to inform that I am not a specialist in AdS/CFT and can make
only general comments inspired by analogies with TGD and the generalization of AdS/CFT
duality to TGD framework based on the localization of induced spinors at string world sheets,
super-symmetry between bosonic and fermionic degrees of freedom at the level of WCW ,
and the notion of effective metric at string world sheets.

6.6.2 Does Kähler Action Reduce To The Sum Of Areas Of Minimal
Surfaces In Effective Metric?

Minimal surface conjectures are highly interesting from TGD point of view. The weak form of
electric magnetic duality implies the reduction of Kähler action to 3-D Chern-Simons terms.
Effective 2-dimensionality implied by the strong form of General Coordinate Invariance sug-
gests a further reduction of Chern-Simons terms to 2-D terms and the areas of string world
sheet and of partonic 2-surface are the only non-topological options that one can imagine.
Skeptic could of course argue that the exponent of the minimal surface area results as a
characterizer of the quantum state rather than vacuum functional. In the following I end up
with the proposal that the Kähler action should reduce to the sum of string world sheet areas
in the effective metric defines by the anticommutators of Kähler-Dirac gamma matrices at
string world sheets.

Let us look this conjecture in more detail.

(a) In zero energy ontology twistor approach is very natural since all physical states are
bound states of massless particles. Also virtual particles are composites of massless
states. The possibility to have both signs of energy makes possible space-like momenta
for wormhole contacts. Mass shell conditions at internal lines imply extremely strong
constraints on the virtual momenta and both UV and IR finiteness are expected to hold
true.

(b) The weak form of electric magnetic duality [K62] implies that the exponent of Kähler
action reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at
the ends of space-time surface inside CD and for light-like 3-surfaces. The coefficient
of this term is complex since the contribution of Minkowskian regions of the space-
time surface is imaginary (

√
g4 is imaginary) and that of Euclidian regions (generalized

Feynman diagrams) real. The Chern-Simons term from Minkowskian regions is like

http://tinyurl.com/ycpkrg4f
http://tinyurl.com/ybnk6kbs
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Morse function and that from Euclidian regions defines Kähler function and stationary
phase approximation makes sense. The two contributions are different since the space-
like 3-surfaces contributing to Kähler function and Morse function are different.

(c) Electric magnetic duality [K62] leads also to the conclusion that wormhole throats carry-
ing elementary particle quantum numbers are Kähler magnetic monopoles. This forces
to identify elementary particles as string like objects with ends having opposite monopole
charges. Also more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired
by quantum classical correspondence is that it corresponds to the p-adic length scale of
the particle characterizing its Compton length. Second possibility is that it corresponds
to electroweak scale. For leptons stringyness in Compton length scale might not have
any fatal implications since the second end of string contains only neutrinos neutralizing
the weak isospin of the state. This kind of monopole pairs could appear even in con-
densed matter scales: in particular if the proposed hierarchy of Planck constants [K17]
is realized.

(d) Strong form of General Coordinate Invariance requires effective 2-dimensionality. In
given UV and IR resolutions either partonic 2-surfaces or string world sheets form a finite
hierarchy of CDs inside CDs with given CD characterized by a discrete scale coming
as an integer multiple of a fundamental scale (essentially CP2 size). The string world
sheets have boundaries consisting of either light-like curves in induced metric at light-
like wormhole throats and space-like curves at the ends of CD whose M4 projections are
light-like. These braids intersect partonic 2-surfaces at discrete points carrying fermionic
quantum numbers.

This implies a rather concrete analogy with AdS5 × S5 duality, which describes gluons
as open strings. In zero energy ontology (ZEO) string world sheets are indeed a fun-
damental notion and the natural conjecture is that these surfaces are minimal surfaces
whose area by quantum classical correspondence depends on the quantum numbers of
the external particles. String tension in turn should depend on gauge couplings -perhaps
only Kähler coupling strength- and geometric parameters like the size scale of CD and
the p-adic length scale of the particle.

(e) One can of course ask whether the metric defining the string area is induced metric or
possibly the metric defined by the anti-commutators of Kähler-Dirac gamma matrices.
The recent view does not actually leave any other alternative. The analog of AdS/CFT
duality together with supersymmetry demands that Kähler action is proportional to the
sum of the areas of string world sheets in this effective metric. Whether the vanishing of
induced W fields (and possibly also Z0) making possible well-defined em charge for the
spinor nodes is realized by the condition that the string world sheet is a miniml surface
in the effective metric remains an open question.

The assumption that ordinary minimal surfaces are in question is not consistent with
the TGD view about the formation of gravitational bound states and if string tension
is 1/~G as in string models, only bound states with size of order Planck length are
possible. This strongly favors effective metric giving string tension proportional to
1/h2

eff . How 1/h2
eff proportionality might be understood is discussed in [K81] in terms

electric-magnetic duality.

(f) One can of course still consider also the option that ordinary minimal surfaces are in
question. Are the minimal surfaces in question minimal surfaces of the imbedding space
M4 × CP2 or of the space-time surface X4? All possible 2-surfaces at the boundary of
CD must be allowed so that they cannot correspond to minimal surfaces in M4 × CP2

unless one assumes that they emerge in stationary phase approximation only. The
boundary conditions at the ends of CD could however be such that any partonic 2-
surface correspond to a minimal surfaces in X4. Same applies to string world sheets.
One might even hope that these conditions combined with the weak form of electric
magnetic duality fixes completely the boundary conditions at wormhole throats and
space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic
2-surface as sub-manifold of space-time surface would vanish: this is nothing but a
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generalization of the geodesic motion obtained by replacing word line with a 2-D surface.
It does not imply the vanishing of the trace of the second fundamental form in M4×CP2

having interpretation as a generalization of particle acceleration [K57]. Effective 2-
dimensionality would be realized if Chern-Simons terms reduce to a sum of the areas of
these minimal surfaces.

2. These arguments suggest that scattering amplitudes are proportional to the product of ex-
ponents of 2-dimensional actions which can be either imaginary or real. Imaginary exponent
would be proportional to the total area of string world sheets and the imaginary unit would
come naturally from

√
g2, where g2 is effective metric most naturally. Teal exponent pro-

portional to the total area of partonic 2-surfaces. The coefficient of these areas would not in
general be same.

3. The reduction of the Kähler action from Minkowskian regions to Chern-Simons terms means
that Chern-Simons terms reduce to actions assignable to string world sheets. The equality
of the Minkowskian and Euclidian Chern-Simons terms is suggestive but not necessarily true
since there could be also other Chern-Simons contributions than those assignable to wormhole
throats and the ends of space-time. The equality would imply that the total area of string
world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality
meaning that either Euclidian or Minkowskian regions carry the needed information.

6.6.3 Surface Area As Geometric Representation Of Entanglement En-
tropy?

I encountered a link to a talk by James Sully and having the title “Geometry of Compression”
(see http://tinyurl.com/ycuu8xcr). I must admit that I understood very little about the talk.
My not so educated guess is however that information is compressed: UV or IR cutoff eliminating
entanglement in short length scales and describing its presence in terms of density matrix - that is
thermodynamically - is another manner to say it. The TGD inspired proposal for the interpretation
of the inclusions of hyper-finite factors of type II1 (HFFs) [K61] is in spirit with this.

The space-time counterpart for the compression would be in TGD framework discretization.
Discretizations using rational points (or points in algebraic extensions of rationals) make sense also
p-adically and thus satisfy number theoretic universality. Discretization would be defined in terms
of intersection (rational or in algebraic extension of rationals) of real and p-adic surfaces. At the
level of “world of classical worlds” the discretization would correspond to - say - surfaces defined
in terms of polynomials, whose coefficients are rational or in some algebraic extension of rationals.
Pinary UV and IR cutoffs are involved too. The notion of p-adic manifold allows to interpret the
p-adic variants of space-time surfaces as cognitive representations of real space-time surfaces.

Finite measurement resolution does not allow state function reduction reducing entangle-
ment totally. In TGD framework also negentropic entanglement stable under Negentropy Maxim-
ixation Principle (NMP) is possible [K30]. For HFFs the projection into single ray of Hilbert space
is indeed impossible: the reduction takes always to infinite-D sub-space.

The visit to the URL was however not in vain. There was a link to an article (see http:

//tinyurl.com/y9h3qtr8) [B47] discussing the geometrization of entanglement entropy inspired
by the AdS/CFT hypothesis.

Quantum classical correspondence is basic guiding principle of TGD and suggests that entan-
glement entropy should indeed have space-time correlate, which would be the analog of Hawking-
Bekenstein entropy.

Generalization of AdS/CFT to TGD context

AdS/CFT generalizes to TGD context in non-trivial manner. There are two alternative interpre-
tations, which both could make sense. These interpretations are not mutually exclusive. The first
interpretation makes sense at the level of “world of classical worlds” ( WCW ) with symplectic
algebra and extended conformal algebra associated with δM4

± replacing ordinary conformal and
Kac-Moody algebras. Second interpretation at the level of space-time surface with the extended
conformal algebras of the light-likes orbits of partonic 2-surfaces replacing the conformal algebra
of boundary of AdSn.

http://tinyurl.com/ycuu8xcr
http://tinyurl.com/y9h3qtr8
http://tinyurl.com/y9h3qtr8
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1. First interpretation
For the first interpretation 2-D conformal invariance is generalised to 4-D conformal invari-

ance relying crucially on the 4-dimensionality of space-time surfaces and Minkowski space.

1. One has an extension of the conformal invariance provided by the symplectic transformations
of δCD×CP2 for which Lie algebra has the structure of conformal algebra with radial light-
like coordinate of δM4

+ replacing complex coordinate z.

2. One could see the counterpart of AdSn as imbedding space H = M4×CP2 completely unique
by twistorial considerations and from the condition that standard model symmetries are
obtained and its causal diamonds defined as sub-sets CD×CP2, where CD is an intersection
of future and past directed light-cones. I will use the shorthand CD for CD × CP2. Strings
in AdS5 × S5 are replaced with space-time surfaces inside 8-D CD.

3. For this interpretation 8-D CD replaces the 10-D space-time AdS5 × S5. 7-D light-like
boundaries of CD correspond to the boundary of say AdS5, which is 4-D Minkowski space so
that zero energy ontology (ZEO) allows rather natural formulation of the generalization of
AdS/CFT correspondence since the positive and negative energy parts of zero energy states
are localized at the boundaries of CD.

Second interpretation

For the second interpretation relies on the observation that string world sheets as carriers of
induced spinor fields emerge in TGD framework from the condition that electromagnetic charge is
well-defined for the modes of induced spinor field.

1. One could see the 4-D space-time surfaces X4 as counterparts of AdS4. The boundary of
AdS4 is replaced in this picture with 3-surfaces at the ends of space-time surface at opposite
boundaries of CD and by strong form of holography the union of partonic 2-surfaces defining
the intersections of the 3-D boundaries between Euclidian and Minkowskian regions of space-
time surface with the boundaries of CD. Strong form of holography in TGD is very much
like ordinary holography.

2. Note that one has a dimensional hierarchy: the ends of the boundaries of string world sheets at
boundaries of CD as point-like partices, boundaries as fermion number carrying lines, string
world sheets, light-like orbits of partonic 2-surfaces, 4-surfaces, imbedding space M4 ×CP2.
Clearly the situation is more complex than for AdS/CFT correspondence.

3. One can restrict the consideration to 3-D sub-manifolds X3 at either boundary of causal
diamond (CD): the ends of space-time surface. In fact, the position of the other boundary
is not well-defined since one has superposition of CDs with only one boundary fixed to be
piece of light-cone boundary. The delocalization of the other boundary is essential for the
understanding of the arrow of time. The state function reductions at fixed boundary leave
positive energy part (say) of the zero energy state at that boundary invariant (in positive
energy ontology entire state would remain unchanged) but affect the states associated with
opposite boundaries forming a superposition which also changes between reduction: this is
analog for unitary time evolution. The average for the distance between tips of CDs in the
superposition increases and gives rise to the flow of time.

4. One wants an expression for the entanglement entropy between X3 and its partner. Beken-
stein area law allows to guess the general expression for the entanglement entropy: for the
proposal discussed in the article the entropy would be the area of the boundary of X3 divided
by gravitational constant: S = A/4G. In TGD framework gravitational constant might be
replaced by the square of CP2 radius apart from numerical constant. How gravitational con-
stant emerges in TGD framework is not completely understood although one can deduce for
it an estimate using dimensional analyses. In any case, gravitational constant is a parameter
which characterizes GRT limit of TGD in which many-sheeted space-time is in long scales re-
placed with a piece of Minkowski space such that the classical gravitational fields and gauge
potentials for sheets are summed. The physics behind this relies on the generalization of
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linear superposition of fields: the effects of different space-time sheets particle touching them
sum up rather than fields.

5. The counterpart for the boundary of X3 appearing in the proposal for the geometrization of
the entanglement entropy naturally corresponds to partonic 2-surface or a collection of them
if strong form of holography holds true.

There is however also another candidate to be considered! Partonic 2-surfaces are basic
objects, and one expects that the entanglement between fundamental fermions associated
with distinct partonic 2-surfaces has string world sheets as space-time correlates. Could the
area of the string world sheet in the effective metric defined by the anti-commutators of K-D
gamma matrices at string world sheet provide a measure for entanglement entropy? If this
conjecture is correct: the entanglement entropy would be proportional to Kähler action. Also
negative values are possible for Kähler action in Minkowskian regions but in TGD framework
number theoretic entanglement entropy having also negative values emerges naturally.

Which of these guesses is correct, if any? Or are they equivalent?

With what kind of systems 3-surfaces can entangle?

With what system X3 is entangled/can entangle? There are several options to consider and they
could correspond to the two TGD variants for the AdS/CFT correspondence.

1. X3 could correspond to a wormhole contact with Euclidian signature of induced metric. The
entanglement would be between it and the exterior region with Minkowskian signature of the
induced metric.

2. X3 could correspond to single sheet of space-time surface connected by wormhole contacts to
a larger space-time sheet defining its environment. More precisely, X3 and its complement
would be obtained by throwing away the wormhole contacts with Euclidian signature of
induce metric. Entanglement would be between these regions. In the generalization of the
formula

S =
A

4~G

area A would be replaced by the total area of partonic 2-surfaces and G perhaps with CP2

length scale squared.

3. In ZEO the entanglement could also correspond to time-like entanglement between the 3-D
ends of the space-time surface at opposite light-like boundaries of CD. M-matrix, which can
be seen as the analog of thermal S-matrix, decomposes to a product of hermitian square
root of density matrix and unitary S-matrix and this hermitian matrix could also define p-
adic thermodynamics. Note that in ZEO quantum theory can be regarded as square root of
thermodynamics.

Minimal surface property is not favored in TGD framework

Minimal surface property for the 3-surfaces X3 at the ends of space-time surface looks at first
glance strange but a proper generalization of this condition makes sense if one assumes strong
form of holography. Strong form of holography realizes General Coordinate Invariance (GCI) in
strong sense meaning that light-like parton orbits and space-like 3-surfaces at the ends of space-
time surfaces are equivalent physically. As a consequence, partonic 2-surfaces and their 4-D tangent
space data must code for the quantum dynamics.

The mathematical realization is in terms of conformal symmetries accompanying the sym-
plectic symmetries of δM4

± × CP2 and conformal transformations of the light-like partonic or-
bit [K62]. The generalizations of ordinary conformal algebras correspond to conformal algebra,
Kac-Moody algebra at the light-like parton orbits and to symplectic transformations δM4 × CP2

acting as isometries of WCW and having conformal structure with respect to the light-like radial
coordinate plus conformal transformations of δM4

+, which is metrically 2-dimensional and allows
extended conformal symmetries.
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1. If the conformal realization of the strong form of holography works, conformal transforma-
tions act at quantum level as gauge symmetries in the sense that generators with no-vanishing
conformal weight are zero or generate zero norm states. Conformal degeneracy can be elim-
inated by fixing the gauge somehow. Classical conformal gauge conditions analogous to
Virasoro and Kac-Moody conditions satisfied by the 3-surfaces at the ends of CD are natural
in this respect. Similar conditions would hold true for the light-like partonic orbits at which
the signature of the induced metric changes.

2. What is also completely new is the hierarchy of conformal symmetry breakings associated
with the hierarchy of Planck constants heff/h = n [K17]. The deformations of the 3-surfaces
which correspond to non-vanishing conformal weight in algebra or any sub-algebra with
conformal weights vanishing modulo n give rise to vanishing classical charges and thus do
not affect the value of the Kähler action [K62].

The inclusion hierarchies of conformal sub-algebras are assumed to correspond to those for
hyper-finite factors. There is obviously a precise analogy with quantal conformal invariance
conditions for Virasoro algebra and Kac-Moody algebra. There is also hierarchy of inclusions
which corresponds to hierarchy of measurement resolutions. An attractive interpretation is
that singular conformal transformations relate to each other the states for broken conformal
symmetry. Infinitesimal transformations for symmetry broken phase would carry fractional
conformal weights coming as multiples of 1/n.

3. Conformal gauge conditions need not reduce to minimal surface conditions holding true for
all variations.

4. Note that Kähler action reduces to Chern-Simons term at the ends of CD if weak form
of electric magnetic duality holds true. The conformal charges at the ends of CD cannot
however reduce to Chern-Simons charges by this condition since only the charges associated
with CP2 degrees of freedom would be non-trivial.

The way out of the problem is provided by the generalization of AdS/CFT conjecture. String
area is estimated in the effective metric provided by the anti-commutator of K-D gamma matrices
at string world sheet.

6.6.4 Related Ideas

p-Adic mass calculations led to the introduction of the p-adic variant of Bekenstein-Hawkin law
in which Planck length is replaced by p-adic length scale. This generalization is in spirit with the
idea that string world sheet area is estimated in effective rather than induced metric.

p-Adic variant of Bekenstein-Hawking law

When the 3-surface corresponds to elementary particle, a direct connection with p-adic thermo-
dynamics suggests itself and allows to answer the questions above. p-Adic thermodynamics could
be interpreted as a description of the entanglement with environment. In ZEO the entanglement
could also correspond to time-like entanglement between the 3-D ends of the space-time surface
at opposite light-like boundaries of CD. M-matrix, which can be seen as the analog of thermal S-
matrix, decomposes to a product of hermitian square root of density matrix and unitary S-matrix
and this hermitian matrix could also define p-adic thermodynamics.

1. p-Adic thermodynamics [K76] would not be for energy but for mass squared (or scaling
generator L0) would describe the entanglement of the particle with environment defined by
the larger space-time sheet. Conformal weights would comes as positive powers of integers
(pL0 would replace exp(−H/T ) to guarantee the number theoretical existence and convergence
of the Boltzmann weight: note that conformal invariance that is integer spectrum of L0 is
also essential).

2. The interactions with environment would excite very massive CP2 mass scale excitations
(mass scale is about 10−4 times Planck mass) of the particle and give it thermal mass squared
identifiable as the observed mass squared. The Boltzmann weights would be extremely small
having p-adic norm about 1/pn, p the p-adic prime: M127 = 2127 − 1 for electron.
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3. One of the first ideas inspired by p-adic vision was that p-adic entropy could be seen as
a p-adic counterpart of Bekenstein-Hawking entropy [K36]. S = (R2/~2) ×M2 holds true
identically apart from numerical constant. Note that one could interpret R2M/~ as the
counterpart of Schwartschild radius. Note that this radius is proportional to 1/

√
p so that

the area A would correspond to the area defined by Compton length. This is in accordance
with the third option.

What is the space-time correlate for negentropic entanglement?

The new element brought in by TGD framework is that number theoretic entanglement entropy
is negative for negentropic entanglement assignable to unitary entanglement (in the sense that
entanglement matrix is proportional to a unitary matrix) and NMP states that this negentropy
increases [K30]. Since entropy is essentially number of energy degenerate states, a good guess is
that the number n = heff/h of space-time sheets associated with heff defines the negentropy.
An attractive space-time correlate for the negentropic entanglement is braiding. Braiding defines
unitary S-matrix between the states at the ends of braid and this entanglement is negentropic.
This entanglement gives also rise to topological quantum computation.

6.6.5 The Importance Of Being Light-Like

The singular geometric objects associated with the space-time surface have become increasingly
important in TGD framework. In particular, the recent progress has made clear that these objects
might be crucial for the understanding of quantum TGD. The singular objects are associated not
only with the induced metric but also with the effective metric defined by the anti-commutators
of the Kähler-Dirac gamma matrices appearing in the Kähler-Dirac equation and determined by
the Kähler action.

The singular objects associated with the induced metric

Consider first the singular objects associated with the induced metric.

1. At light-like 3-surfaces defined by wormhole throats the signature of the induced metric
changes from Euclidian to Minkowskian so that 4-metric is degenerate. These surfaces are
carriers of elementary particle quantum numbers and the 4-D induced metric degenerates
locally to 3-D one at these surfaces.

2. Braid strands at partonic orbits - fermion lines identified as boundaries of string world sheets
in the more recent terminology - are most naturally light-like curves: this correspond to the
boundary condition for open strings. One can assign fermion number to the braid strands.
Braid strands allow an identification as curves along which the Euclidian signature of the
string world sheet in Euclidian region transforms to Minkowskian one. Number theoretic
interpretation would be as a transformation of complex regions to hyper-complex regions
meaning that imaginary unit i satisfying i2 = −1 becomes hyper-complex unit e satisfying
e2 = 1. The complex coordinates (z, z) become hyper-complex coordinates (u = t+ ex, v =
t− ex) giving the standard light-like coordinates when one puts e = 1.

The singular objects associated with the effective metric

There are also singular objects assignable to the effective metric. According to the simple argu-
ments already developed, string world sheets and possibly also partonic 2-surfaces are singular
objects with respect to the effective metric defined by the anti-commutators of the Kähler-Dirac
gamma matrices rather than induced gamma matrices. Therefore the effective metric might be
more than a mere formal structure. The following is of course mere speculation and should be
taken as such.

1. For instance, quaternionicity of the space-time surface might allow an elegant formulation in
terms of the effective metric avoiding the problems due to the Minkowski signature. This is
achieved if the effective metric has Euclidian signature ε × (1, 1, 1, 1), ε = ±1 or a complex
counterpart of the Minkowskian signature ε(1, 1,−1,−1).
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2. String word sheets and perhaps also partonic 2-surfaces might be be understood as singular-
ities of the effective metric. What happens that the effective metric with Euclidian signature
ε × (1, 1, 1, 1) transforms to the signature ε(1, 1,−1,−1) (say) at string world sheet so that
one would have the degenerate signature ε× (1, 1, 0, 0) at the string world sheet.

What is amazing is that this works also number theoretically. It came as a total surprise to
me that the notion of hyper-quaternions as a closed algebraic structure indeed exists. The
hyper-quaternionic units would be given by (1, I, iJ, iK), where i is a commuting imaginary
unit satisfying i2 = −1. Hyper-quaternionic numbers defined as combinations of these units
with real coefficients do form a closed algebraic structure which however fails to be a number
field just like hyper-complex numbers do. Note that the hyper-quaternions obtained with
real coefficients from the basis (1, iI, iJ, iK) fail to form an algebra since the product is not
hyper-quaternion in this sense but belongs to the algebra of complexified quaternions. The
same problem is encountered in the case of hyper-octonions defined in this manner. This
has been a stone in my shoe since I feel strong disrelish towards Wick rotation as a trick for
moving between different signatures.

3. Could also partonic 2-surfaces correspond to this kind of singular 2-surfaces? In principle, 2-D
surfaces of 4-D space intersect at discrete points just as string world sheets and partonic 2-
surfaces do so that this might make sense. By complex structure the situation is algebraically
equivalent to the analog of plane with non-flat metric allowing all possible signatures (ε1, ε2)
in various regions. At light-like curve either ε1 or ε2 changes sign and light-like curves for
these two kinds of changes can intersect as one can easily verify by drawing what happens.
At the intersection point the metric is completely degenerate and simply vanishes.

4. Replacing real 2-dimensionality with complex 2-dimensionality, one obtains by the univer-
sality of algebraic dimension the same result for partonic 2-surfaces and string world sheets.
The braid ends at partonic 2-surfaces representing the intersection points of 2-surfaces of this
kind would have completely degenerate effective metric so that the Kähler-Dirac gamma ma-
trices would vanish implying that energy momentum tensor vanishes as does also the induced
Kähler field.

5. The effective metric suffers a local conformal scaling in the critical deformations identified in
the proposed manner. Since ordinary conformal group acts on Minkowski space and leaves
the boundary of light-cone invariant, one has two conformal groups. It is not however clear
whether theM4 conformal transformations can act as symmetries in TGD, where the presence
of the induced metric in Kähler action breaks M4 conformal symmetry. As found, also in
TGD framework the Kac-Moody currents assigned to the braid strands generate Yangian:
this is expected to be true also for the Kac-Moody counterparts of the conformal algebra
associated with quantum criticality. On the other hand, in twistor program one encounters
also two conformal groups and the space in which the second conformal group acts remains
somewhat mysterious object. The Lie algebras for the two conformal groups generate the
conformal Yangian and the integrands of the scattering amplitudes are Yangian invariants.
Twistor approach should apply in TGD if zero energy ontology is right. Does this mean a
deep connection?

What is also intriguing that twistor approach in principle works in strict mathematical sense
only at signatures ε × (1, 1,−1 − 1) and the scattering amplitudes in Minkowski signature
are obtained by analytic continuation. Could the effective metric give rise to the desired
signature? Note that the notion of massless particle does not make sense in the signature
ε× (1, 1, 1, 1).

These arguments provide genuine a support for the notion of quaternionicity and suggest a
connection with the twistor approach.

6.7 Could One Define Dynamical Homotopy Groups In WCW?

Agostino Prastaro - working as professor at the University of Rome - has done highly interesting
work with partial differential equations, also those assignable to geometric variational principles
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such as Kähler action in TGD [A34, A35]. I do not understand the mathematical details but the
key idea is a simple and elegant generalization of Thom’s cobordism theory, and it is difficult to
avoid the idea that the application of Prastaro’s idea might provide insights about the preferred
extremals, whose identification is now on rather firm basis [K85].

One could also consider a definition of what one might call dynamical homotopy groups as
a genuine characteristics of WCW topology. The first prediction is that the values of conserved
classical Noether charges correspond to disjoint components of WCW. Could this mean that the
natural topology in the parameter space of Noether charges zero modes of WCW metric) is p-adic?
An analogous conjecture was made on basis of spin glass analogy long time ago. Second surprise is
that the only the six lowest dynamical homotopy groups of WCW would be non-trivial. The finite
number of these groups dictate by the dimension of imbedding space suggests also an interpretation
as analogs of homology groups.

In the following the notion of cobordism is briefly discussed and the idea of Prastaro about
assigning cobordism with partial differential equations is discussed.

6.7.1 About Cobordism As A Concept

To get some background consider first the notion of cobordism (http://tinyurl.com/y7wdhtmv).

1. Thom’s cobordism theory [A79] is inspired by the question “When an n-manifold can be
represented as a boundary of n+ 1-manifold”. One can also pose additional conditions such
as continuity, smoothness, orientability, one can add bundles structures and require that they
are induced to n-manifold from that of n+ 1-manifold. One can also consider sub-manifolds
of some higher-dimensional manifold.

One can also fix n-manifold M and ask “What is the set of n-manifolds N with the property
that there exists n+ 1-manifold W having union of M ∪N as its boundary”. One can also
allow M to have boundary and pose the same question by allowing also the boundary of
connecting n+ 1-manifold W contain also the orbits of boundaries of M and N .

The cobordism class of M can be defined as the set of manifolds N cobordant with M - that is
connectable in this manner. They have same cobordism class since cobordism is equivalence
relation. The classes form also a group with respect to disjoint union. Cobordism is much
rougher equivalence relation than diffeomorphy or homeomorphy since topology changes are
possible. For instance, every 3-D closed un-oriented manifold is a boundary of a 4-manifold!
Same is true for orientable cobordisms. Cobordism defines a category: objects are (say
closed) manifolds and morphisms are cobordisms.

2. The basic result of Morse, Thom, and Milnor is that cobordism as topology changes can be
engineered from elementary cobordisms. One take manifold M × I and imbeds to its other
n-dimensional end the manifold Sp × Dq, n = p + q, removes its interior and glues back
Dp+1×Sq−1 along its boundary to the boundary of the resulting hole. This gives n-manifold
with different topology, call it N . The outcome is a cobordism connecting M and N unless
there are some obstructions.

There is a connection with Morse theory (http://tinyurl.com/ych4chg9) in which cobor-
dism can be seen as a mapping of W to a unit interval such that the inverse images define a
slicing of W and the inverse images at ends correspond to M and N .

3. One can generalize the abstract cobordism to that for n-sub-manifolds of a given imbedding
space. This generalization is natural in TGD framework. This might give less trivial results
since not all connecting manifolds are imbeddable into a given imbedding space. If connecting
4-manifolds connecting 3-manifolds with Euclidian signature (of induced metric) are assumed
to have a Minkowskian signature, one obtains additional conditions, which might be too
strong (the classical result of Geroch [A80] implies that non-trivial cobordism implies closed
time loops - impossible in TGD).

From TGD point of view this is too strong a condition and in TGD framework space-time
surfaces with both Euclidian and Minkowskian signature of the induced metric are allowed.
Also cobordisms singular as 4-surfaces are analogous to 3-vertices of Feynman diagrams are
allowed.

http://tinyurl.com/y7wdhtmv
http://tinyurl.com/ych4chg9
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6.7.2 Prastaro’s Generalization Of Cobordism Concept To The Level Of
Partial Differential Equations

I am not enough mathematician in technical sense of the word to develop overall view about what
Prastaro has done and I have caught only the basic idea. I have tried to understand the articles
[A34, A35] with title “Geometry of PDE’s. I/II: Variational PDE’s and integral bordism groups”
(http://tinyurl.com/yb9wey8c and http://tinyurl.com/y9x55qmk), which seem to correspond
to my needs. The key idea is to generalize the cobordism concept also to partial differential
equations with cobordism replaced with the time evolution defined by partial differential equation.
In particular, to geometric variational principles defining as their extremals the counterparts of
cobordisms.

Quite generally, and especially so in the case of the conservation of Noether charges give rise
to strong selection rules since two n-surfaces with different classical charges cannot be connected
by extremals of the variational principle. Note however that the values of the conserved charges
depend on the normal derivatives of the imbedding space coordinates at the n-dimensional ends of
cobordism. If one poses additional conditions fixing these normal derivatives, the selection rules
become even stronger. In TGD framework Bohr orbit property central for the notion of WCW
geometry and holography allows to hope that conserved charges depend on 3-surfaces only.

What is so beautiful in this approach that it promises to generalize the notion of cobordism
and perhaps also the notions of homotopy/homology groups so that they would apply to partial
differential equations quite generally, and especially so in the case of geometric variational prin-
ciples giving rise to n+ 1-surfaces connecting n-surfaces characterizing the initial and final states
classically. TGD with n = 3 seems to be an ideal applications for these ideas.

Prastaro also proposes a generalization of cobordism theory to super-manifolds and quantum
super-manifolds. The generalization in the case of quantum theory utilizing path integral does
not not pose conditions on classical connecting field configurations. In TGD framework these
generalizations are not needed since fermion number is geometrized in terms of imbedding space
gamma matrices and super(-symplectic) symmetry is realized differently.

6.7.3 Why Prastaro’s Idea Resonates So Strongly With TGD

Before continuing I want to make clear why Prastaro’s idea resonates so strongly with TGD.

1. One of the first ideas as I started to develop TGD was that there might be selection rules
analogous to those of quantum theory telling which 3-surfaces can be connected by a space-
time surface. At that time I still believed in path integral formalism assuming that two
3-surfaces at different time slices with different values of Minkowski time can be connected
by any space-time surface for which imbedding space coordinates have first derivatives.

I soon learned about Thom’s theory but was greatly disappointed since no selection rules
were involved in the category of abstract 3-manifolds. I thought that possible selection rules
should result from the imbeddability of the connecting four-manifold to H = M4 × CP2

but my gut feeling was that these rules are more or less trivial since so many connecting
4-manifolds exist and some of them are very probably imbeddable.

One possible source of selection rules could have been the condition that the induced metric
has Minkowskian signature - one could justify it in terms of classical causality. This restricts
strongly topology change in general relativity (http://tinyurl.com/y6vuopgj). Geroch’s
classical result [A80] states that non-trivial smooth Lorentz cobordism between compact
3-surfaces implies the existence of closed time loop - not possible in TGD framework. Sec-
ond non-encouraging result is that scalar field propagating in trouser topology leads to an
occurrence of infinite energy burst (http://tinyurl.com/ybbuwyfj).

In the recent formulation of TGD however also Euclidian signature of the induced metric
is allowed. For space-time counterparts of 3-particle vertices three space-time surfaces are
glued along their smooth 3-D ends whereas space-time surface fails to be everywhere smooth
manifold. This picture fits nicely with the idea that one can engineer space-time surfaces by
gluing them together along their ends.

http://tinyurl.com/yb9wey8c
http://tinyurl.com/y9x55qmk
http://tinyurl.com/y6vuopgj
http://tinyurl.com/ybbuwyfj
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2. At that time (before 1980) the discovery of the geometry of the “World of Classical Worlds”
(WCW) as a possible solution to the failures of canonical quantization and path integral
formalism was still at distance of ten years in future. Around 1985 I discovered the notion
of WCW. I made some unsuccessful trials to construct its geometry, and around 1990 finally
realized that 4-D general coordinate invariance is needed although basic objects are 3-D
surfaces.

This is realized if classical physics is an exact part of quantum theory - not only something
resulting in a stationary phase approximation. Classical variational principle should assign
to a 3-surface a physically unique space-time surface - the analog of Bohr orbit - and the
action for this surface would define Kähler function defining the Kähler geometry of WCW
using standard formula.

This led to a notion of preferred extremal: absolute minimum of Kähler action was the first
guess and might indeed make sense in the space-time regions with Euclidian signature of
induced metric but not in Minkowskian regions, which give to the vacuum functional and
exponential of Minkowskian Kähler action multiplied by imaginary unit coming from

√
g

- just as in quantum field theories. Euclidian regions give the analog of the free energy
exponential of thermodynamics and transform path integral to mathematically well-defined
functional integral.

3. After having discovered the notion of preferred extremal, I should have also realized that
an interesting generalization of cobordism theory might make sense after all, and could even
give rise to the classical counterparts of the selection rules! For instance, conservation of
isometry charges defines equivalence classes of 3-surfaces endowed with tangent space data.
Bohr orbit property could fix the tangent space data (normal derivatives of imbedding space
coordinates) so that conserved classical charges would characterize 3-surfaces alone and thus
cobordism equivalence classes and become analogous to topological invariants. This would
be in spirit with the attribute ”Topological” in TGD!

6.7.4 What Preferred Extremals Are?

The topology of WCW has remained mystery hitherto - partly due to my very limited technical
skills and partly by the lack of any real physical idea. The fact, that p-adic topology seems to be
natural at least as an effective topology for the maxima of Kähler function of WCW gave a hint
but this was not enough.

I hope that the above summary has made clear why the idea about dynamical cobordism
and even dynamical homotopy theory is so attractive in TGD framework. One could even hope
that dynamics determines not only Kähler geometry but also the topology of WCW to some extend
at least! To get some idea what might be involved one must however first tell about the recent
situation concerning the notion of preferred extremal.

1. The recent formulation for the notion of preferred extremal relies on strong form of General
Coordinate Invariance (SGCI). SGCI states that two kinds of 3-surfaces can identified as fun-
damental objects. Either the light-light 3-D orbits of partonic 2-surfaces defining boundaries
between Minkowskian and Euclidian space-time regions or the space-like 3-D ends of space-
time surfaces at boundaries of CD. Since both choices are equally good, partonic 2-surfaces
and their tangent space-data at the ends of space-time should be the most economic choice.

This eventually led to the realization that partonic 2-surfaces and string world sheets should
be enough for the formulation of quantum TGD. Classical fields in the interior of space-
time surface would be needed only in quantum measurement theory, which demands classical
physics in order to interpret the experiments.

2. The outcome is strong form of holography (SH) stating that quantum physics should be
coded by string world sheets and partonic 2-surfaces inside given causal diamond (CD). SH
is very much analogous to the AdS/CFT correspondence but is much simpler: the simplicity
is made possible by much larger group of conformal symmetries.

If these 2-surfaces satisfy some consistency conditions one can continue them to 4-D space-
time surface inside CD such that string world sheets are surfaces inside them satisfying
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the condition that charged (possibly all) weak gauge potentials identified as components
of the induced spinor connection vanish at the string world sheets and also that energy
momentum currents flow along these surfaces. String world sheets carry second quantized
free induced spinor fields and fermionic oscillator operator basis is used to construct WCW
gamma matrices.

3. The 3-surfaces at the ends of WCW must satisfy strong conditions to guarantee effective
2-dimensionality. Quantum criticality suggests the identification of these conditions. All
Noether charges assignable to a sub-algebra of super-symplectic algebra isomorphic to it and
having conformal weights which are n-multiples of those of entire algebra vanish/annihilate
quantum states. One has infinite fractal hierarchy of broken super-conformal symmetries
with the property that the sub-algebra is isomorphic with the entire algebra. This like a ball
at the top of ball at the top of ....

The speculative vision is that super-symplectic subalgebra with weights coming as n-ples
of those for the entire algebra acts as an analog of conformal gauge symmetries on light-
like orbits of partonic 2-surfaces, and gives rise to a pure gauge degeneracy whereas other
elements of super-symplectic algebra act as dynamical symmetries. The hierarchy of quantum
criticalities defines hierarchies of symmetry breakings characterized by hierarchies of sub-
algebras for which one ni+1 is divisible by ni. The proposal is that conformal gauge invariance
means that the analogs of Bohr orbits are determined only apart from conformal gauge
transformations forming to ni conformal equivalence classes so that effectively one has ni
discrete degrees of freedom assignable to light-like partonic orbits.

4. In this framework manifolds M and N would correspond the 3-surfaces at the boundaries
of CD and containing a collection strings carrying induced spinor fields. The connecting
4-surface W would contain string world sheets and the light-like orbits of partonic 2-surfaces
as simultaneous boundaries for Minkowskian and Euclidian regions.

Propagator line has several meanings depending on whether one considers particles as strings,
as single fermion states localizable at the ends of strings, or as Euclidian space-time regions or their
light-like boundaries with singular induced metric having vanishing determinant. Vertices appear
as generalizations of the stringy vertices and as generalization of the vertices of Feynman diagrams
in which the incoming 4-surfaces meet along their ends.

1. Propagator line has several meanings depending on whether one considers particles as strings,
as single fermion states localizable at the ends of strings, or as Euclidian space-time regions
or their light-like boundaries with degenerate induced metric with vanishing determinant.
Vertices appear as generalizations of the stringy vertices and as generalization of the vertices
of Feynman diagrams in which the incoming 4-surfaces meet along their ends.

(a) The lines of generalized Feynman graphs defined in topological sense are identified as
slightly deformed pieces of CP2 defining wormhole contacts connecting two Minkowskian
regions and having wormhole throats identified as light-like parton orbits as boundaries.
Since there is a magnetic monopole flux through the wormhole contacts they must
appear as pairs (also larger number is possible) in order that magnetic field lines can
close. Elementary particles correspond to pairs of wormhole contacts. At both space-
time sheets the throats are connected by magnetic flux tubes carrying monopole flux
so that a closed flux tube results having a shape of an extremely flattened square and
having wormhole contacts at its ends. It is a matter of taste, whether to call the light-
like wormhole throats or their interiors as lines of the generalized Feynman/twistor
diagrams.

The light-like orbits of partonic 2-surfaces bring strongly in mind the light-like 3-surfaces
along which radiation fields can be restricted - kind of shockwaves at which the signature
of the induced space-time metric changes its signature.

(b) String world sheets as orbits of strings are also in an essential role and could be seen
as particle like objets. String world sheets could as kind of singular solutions of field
equations analogous to characteristics of hyperbolic differential equations. The isometry
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currents of Kähler action flow along string world sheets and field equations restricted to
them are satisfied. As if one would have 2-dimensional solution.

√
g4 would of course

vanishes for genuinely 2-D solution but this one can argue that this is not a problem
since

√
g4 can be eliminated from field equations. String world sheets could serve as

2-D a analoga for a solution of hyperbolic field equations defining expanding wave front
localized at 3-D light-like surface.

(c) Propagation in the third sense of word is assignable to the ends of string world sheets at
the light-like orbits of partonic 2-surfaces and possibly carrying fermion number. One
could say that in TGD one has both fundamental fermions serving as building bricks of
elementary particles and strings characterizing interactions between particles. Fermion
lines are massless in 8-D sense. By strong form of holography this quantum description
has 4-D description space-time description as a classical dual.

2. The topological description of interaction vertices brings in the most important deviation
from the standard picture behind cobordism: space-time surfaces are not smooth in TGD
framework. One allows topological analogs of 3-vertices of Feynman diagrams realized by
connecting three 4-surfaces along their smooth 3-D ends. 3-vertex is also an analog (actually
much more!) for the replication in biology. This vertex is not the analog of stringy trouser
vertex for which space-time surface is continuous whereas 3-surface at the vertex is singular
(also trouser vertex could appear in TGD).

The analog of trouser vertex for string world sheets means splitting of string and fermionic
field modes decompose into superposition of modes propagating along the two branches. For
instance, the propagation of photon along two paths could correspond to its geometric decay
at trouser vertex not identifiable as “decay” to two separate particles.

For the analog of 3-vertex of Feynman diagram the 3-surface at the vertex is non-singular
but space-time surface is singular. The gluing along ends corresponds to genuine 3-particle
vertex.

The view about solution of PDEs generalizes dramatically but the general idea about cobor-
dism might make sense also in the generalized context.

6.7.5 Could Dynamical Homotopy/Homology Groups Characterize WCW
Topology?

The challenge is to at least formulate (with my technical background one cannot dream of much
more) the analog of cobordism theory in this framework. One can actually hope even the analog
of homotopy/homology theory.

1. To a given 3-surface one can assign its cobordism class as the set of 3-surfaces at the opposite
boundary of CD connected by a preferred extremal. The 3-surfaces in the same cobordism
class are characterized by same conserved classical Noether charges, which become analogs
of topological invariants.

One can also consider generalization of cobordisms as analogs to homotopies by allowing
return from the opposite boundary of CD. This would give rise to first homotopy groupoid.
One can even go back and forth several times. These dynamical cobordisms allow to divide
3-surfaces at given boundary of CD in equivalence classes characterized among other things
by same values of conserved charges. One can also return to the original 3-surface. This
could give rise to the analog of the first homotopy group Π1.

2. If one takes the homotopy interpretation literally one must conclude that the 3-surfaces with
different conserved Noether charges cannot be connected by any path in WCW - they belong
to disjoint components of the WCW! The zeroth dynamical homotopy group Π0 of WCW
would be non-trivial and its elements would be labelled by the conserved Noether charges
defining topological invariants!

The values of the classical Noether charges would label disjoint components of WCW. The
topology for the space of these parameters would be totally disconnected - no two points
cannot be connected by a continuous path. p-Adic topologies are indeed totally disconnected.
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Could it be that p-adic topology is natural for the conserved classical Noether charges and
the sectors of WCW are characetrized by p-adic number fields and their algebraic extensions?

Long time ago I noticed that the 4-D spin glass degeneracy induced by the huge vacuum
degeneracy of Kähler action implies analogy between the space of maxima of Kähler function
and the energy landscape of spin glass systems [K36]. Ultrametricity (http://tinyurl.com/
y6vswdoh) is the basic property of the topology of the spin glass energy landscape. p-Adic
topology is ultrametric and the proposal was that the effective topology for the space of
maxima could be p-adic.

3. Isometry charges are the most important Noether charges. These Noether charges are very
probably not the only conserved charges. Also the generators in the complement of the gauge
sub-algebra of symplectic algebra acting as gauge conformal symmetries could be conserved.
All these conserved Noether charges would define a parameter space with a natural p-adic
topology.

Since integration is problematic p-adically, one can ask whether only discrete quantum su-
perpositions of 3-surfaces with different classical charges are allowed or whether one should
even assume fixed values for the total classical Noether charges appearing in the scattering
amplitudes.

I have proposed this kind of approach for the zero modes of WCW geometry not contributing
to the Kähler metric except as parameters. The integration for zero modes is also problematic
because there is no metric, which would define the integration measure. Since classical charges
do not correspond to quantum fluctuating degrees of freedom they should correspond to zero
modes. Hence these arguments are equivalent.

The above argument led to the identification of the analogs of the homotopy group Π0 and
led to the idea about homotopy groupoid/group Π1. The elements of Π1 would correspond to
space-time surfaces, which run arbitrary number of times fourth and back and return to the initial
3-surface at the boundary of CD. If the two preferred extremals connecting same pair of 3-surfaces
can be deformed to each other, one can say that they are equivalent as dynamical homotopies
(or cobordisms). What could be the allowed deformations? Are they cobordisms of cobordisms?
What this could mean? Could they define the analog of homotopy groupoid Π2 as foliations of
preferred extremals connecting the same 3-surfaces?

1. The number theoretic vision about generalized Feynman diagrams suggests a possible ap-
proach. Number theoretic ideas combined with the generalization of twistor approach [K85,
K55] led to the vision that generalized Feynman graphs can be identified as sequences or
webs of algebraic operations in the co-algebra defined by the Yangian assignable to super-
symplectic algebra [A30] [B29, B23, B24] and acting as symmetries of TGD. Generalized
Feynman graphs would represent algebraic computations. Computations can be done in very
many different manners and each of them corresponds to a generalized Feynman diagram.
These computations transform give same final collection of “numbers” when the initial col-
lection of “numbers” is given. Does this mean that the corresponding scattering amplitudes
must be identical?

If so, a huge generalization of the duality symmetry of the hadronic string models would
suggest itself. All computations can be reduced to minimal computations. Accordingly,
generalized Feynman diagrams can be reduced to trees by eliminating loops by moving the
ends of the loops to same point and snipping the resulting tadpole out! The snipped of
tadpole would give a mere multiplicative factor to the amplitude contributing nothing to the
scattering rate - just like vacuum bubbles contribute nothing in the case of ordinary Feynman
diagrams.

2. How this symmetry could be realized? Could one just assume that only the minimal gen-
eralized Feynman diagrams contribute? - not a very attractive option. Or could one hope
that only tree diagrams are allowed by the classical dynamics: this was roughly the origi-
nal vision? The huge vacuum degeneracy of Kähler action implying non-determinism does
not encourage this option. The most attractive and most predictive realization conforming
with the idea about generalized Feynman diagrammatics as arithmetics would be that all the

http://tinyurl.com/y6vswdoh
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diagrams differing by these moves give the same result. An analogous symmetry has been
discovered for twistor diagrams.

3. Suppose one takes seriously the snipping of a tadpole away from diagram as a move, which
does not affect the scattering amplitude. Could this move correspond to an allowed ele-
mentary cobordism of preferred extremal? If so, scattering amplitudes would have purely
topological meaning as representations of the elements of cobordism classes! TGD would
indeed be what it was proposed to be but in much deeper sense than I thought originally.
This could also conform with the interpretation of classical charges as topological invariants,
realize adelic physics at the level of WCW, and conform with the idea about TGD as almost
topological QFT and perhaps generalizing it to topological QFT in generalized sense.

4. One can imagine several interpretations for the snipping operation at space-time level. TGD
allows a huge classical vacuum degeneracy: all space-time surfaces having Lagrangian man-
ifold of CP2 as their CP2 projection are vacuum extremals of Kähler action. Also all CP2

extremals having 1-D light-like curve as M4 projection are vacuum extremals but have non-
vanishing Kähler action. This would not matter if one does not have superpositions since
multiplicative factors are eliminated in scattering amplitudes. Could the tadpoles correspond
to CP2 type vacuum extremals at space-time level?

There is also an alternative interpretation. In ZEO causal diamonds (CD) form a hierarchy
and one can imagine that the sub-CDs of given CD correspond to quantum fluctuations.
Could tadpoles be assigned to sub-CDs of CD be considered+

5. In this manner one could perhaps define elements of homotopy groupoid Π2 as foliations
preferred extremals with same ends - these would be 5-D surfaces. If one has two such 5-D
foliations with the same 4-D ends, one can form the reverse of the other and form a closed
surface. This would be analogous to a map of S2 to WCW. If the two 5-D foliations cannot
be transformed to each other, one would have something, which might be regarded as a
non-trivial element of dynamical homotopy group Π2.

One can ask whether one could define also the analogs of higher homology or homotopy
grouppoids and groupoids Π3 up to Π5 - the upper bound n = 5 = 8− 3 comes from the fact that
foliations of foliations.. can have maximum dimension D = 8 and from the dimension of D = 3 of
basic objects.

1. One could form a foliation of the foliations of preferred extremals as the element of the
homotopy groupoid Π3. Could allowed moves reduce to the snipping operation for generalized
Feynman diagrams but performed along direction characterized by a new foliation parameter.

2. The topology of the zero mode sector of WCW parameterized by fixed values of conserved
Noether charges as element of Π0 could be characterized by dynamical homotopy groups
Πn, n = 1, ..., 5 - at least partially. These degrees of freedom could correspond to quantum
fluctuating degrees of freedom. The Kähler structure of WCW and finite-D analogy suggests
that all odd dynamical homotopy groups vanish so that Π0, Π2 and Π4 would be the only
non-trivial dynamical homotopy groups. The vanishing of Π1 would imply that there is only
single minimal generalized Feynman diagram contributing to the scattering amplitude. This
also true if Feynman diagrams correspond to arithmetic operations.

3. Whether one should call these groups homotopy groups or homology groups is not obvious.
The construction means that the foliations of foliations of ... can be seen as images of
spheres suggesting “homotopy”. The number of these groups is determined by the dimension
of imbedding space, which suggests “homology”.

4. Clearly, the surfaces defining the dynamical homotopy groups/groupoids would be analogs of
branes of M-theory but would be obtained constructing paths of paths of paths... by starting
from preferred extremals. The construction of so called n-groups (http://tinyurl.com/
yckcjcln) brings strongly in mind this construction.

http://tinyurl.com/yckcjcln
http://tinyurl.com/yckcjcln
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6.7.6 Appendix: About Field Equations Of TGD In Jet Bundle Formu-
lation

Prastaro utilizes jet bundle (http://tinyurl.com/yb2575bm) formulation of partial differential
equations (PDEs). This notion allows a very terse formulation of general PDEs as compared to
the old-fashioned but much more concrete formulation that I have used. The formulation is rather
formula rich and reader might lose easily his/her patience since one must do hard work to learn
which formulas follow trivially from the basic definitions.

I will describe this formulation in TGD framework briefly but without explicit field equations,
which can be found at [K6]. To my view a representation by using a concrete example is always
more reader friendly than the general formulas derived in some reference. I explain my view about
the general ideas behind jet bundle formulation with minimal number amount of formulas. The
reader can find explicit formulas from the Wikipedia link above.

The basic goal is to have a geometric description of PDE. In TGD framework the geometric
picture is of course present from beginning: field patterns as 4-surfaces in field space - somewhat
formal geometric objects - are replaced with genuine 4-surfaces in M4 × CP2.

Field equations as conservation laws, Frobenius integrability conditions, and a con-
nection with quaternion analyticity

The following represents qualitative picture of field equations of TGD trying to emphasize the
physical aspects. Also the possibility that Frobenius integrability conditions are satisfied and
correspond to quaternion analyticity is discussed.

1. Kähler action is Maxwell action for induced Kähler form and metric expressible in terms
of imbedding space coordinates and their gradients. Field equations reduce to those for
imbedding space coordinates defining the primary dynamical variables. By GCI only four of
them are independent dynamical variables analogous to classical fields.

2. The solution of field equations can be interpreted as a section in fiber bundle. In TGD the
fiber bundle is just the Cartesian product X4 × CD × CP2 of space-time surface X4 and
causal diamond CD × CP2. CD is the intersection of future and past directed light-cones
having two light-like boundaries, which are cone-like pieces of light-boundary δM4

± × CP2.
Space-time surface serves as base space and CD × CP2 as fiber. Bundle projection Π is the
projection to the factor X4. Section corresponds to the map x → hk(x) giving imbedding
space coordinates as functions of space-time coordinates. Bundle structure is now trivial and
rather formal.

By GCI one could also take suitably chosen 4 coordinates of CD × CP2 as space-time coor-
dinates, and identify CD × CP2 as the fiber bundle. The choice of the base space depends
on the character of space-time surface. For instance CD, CP2 or M2 × S2 (S2 a geodesic
sphere of CP2), could define the base space. The bundle projection would be projection from
CD × CP2 to the base space. Now the fiber bundle structure can be non-trivial and make
sense only in some space-time region with same base space.

3. The field equations derived from Kähler action must be satisfied. Even more: one must have
a preferred extremal of Kähler action. One poses boundary conditions at the 3-D ends of
space-time surfaces and at the light-like boundaries of CD × CP2.

One can fix the values of conserved Noether charges at the ends of CD (total charges are
same) and require that the Noether charges associated with a sub-algebra of super-symplectic
algebra isomorphic to it and having conformal weights coming as n-ples of those for the
entire algebra, vanish. This would realize the effective 2-dimensionality required by SH. One
must pose boundary conditions also at the light-like partonic orbits. So called weak form of
electric-magnetic duality is at least part of these boundary conditions.

It seems that one must restrict the conformal weights of the entire algebra to be non-negative
r ≥ 0 and those of subalgebra to be positive: mn > 0. The condition that also the com-
mutators of sub-algebra generators with those of the entire algebra give rise to vanishing
Noether charges implies that all algebra generators with conformal weight m ≥ n vanish so

http://tinyurl.com/yb2575bm
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the dynamical algebra becomes effectively finite-dimensional. This condition generalizes to
the action of super-symplectic algebra generators to physical states.

M4 time coordinate cannot have vanishing time derivative dm0/dt so that four-momentum
is non-vanishing for non-vacuum extremals. For CP2 coordinates time derivatives dsk/dt
can vanish and for space-like Minkowski coordinates dmi/dt can be assumed to be non-
vanishing if M4 projection is 4-dimensional. For CP2 coordinates dsk/dt = 0 implies the
vanishing of electric parts of induced gauge fields. The non-vacuum extremals with the largest
conformal gauge symmetry (very small n) would correspond to cosmic string solutions for
which induced gauge fields have only magnetic parts. As n increases, also electric parts
are generated. Situation becomes increasingly dynamical as conformal gauge symmetry is
reduced and dynamical conformal symmetry increases.

4. The field equations involve besides imbedding space coordinates hk also their partial deriva-
tives up to second order. Induced Kähler form and metric involve first partial derivatives
∂αh

k and second fundamental form appearing in field equations involves second order partial
derivatives ∂α∂βh

k.

Field equations are hydrodynamical, in other worlds represent conservation laws for the
Noether currents associated with the isometries of M4 × CP2. By GCI there are only 4
independent dynamical variables so that the conservation of m ≤ 4 isometry currents is
enough if chosen to be independent. The dimension m of the tangent space spanned by the
conserved currents can be smaller than 4. For vacuum extremals one has m = 0 and for
massless extremals (MEs) m = 1! The conservation of these currents can be also interpreted
as an existence of m ≤ 4 closed 3-forms defined by the duals of these currents.

5. The hydrodynamical picture suggests that in some situations it might be possible to assign
to the conserved currents flow lines of currents even globally. They would define m ≤
4 global coordinates for some subset of conserved currents (4+8 for four-momentum and
color quantum numbers). Without additional conditions the individual flow lines are well-
defined but do not organize to a coherent hydrodynamic flow but are more like orbits of
randomly moving gas particles. To achieve global flow the flow lines must satisfy the condition
dφA/dxµ = kABJ

B
µ or dφA = kABJ

B so that one can special of 3-D family of flow lines parallel

to kABJ
B at each point - I have considered this kind of possibly in [K6] at detail but the

treatment is not so general as in the recent case.

Frobenius integrability conditions (http://tinyurl.com/yc6apam2) follow from the condi-
tion d2φA = 0 = dkAB∧JB+kABdJ

B = 0 and implies that dJB is in the ideal of exterior algebra
generated by the JA appearing in kABJ

B . If Frobenius conditions are satisfied, the field equa-
tions can define coordinates for which the coordinate lines are along the basis elements for
a sub-space of at most 4-D space defined by conserved currents. Of course, the possibility
that for preferred extremals there exists m ≤ 4 conserved currents satisfying integrability
conditions is only a conjecture.

It is quite possible to have m < 4. For instance for vacuum extremals the currents vanish
identically For MEs various currents are parallel and light-like so that only single light-like
coordinate can be defined globally as flow lines. For cosmic strings (cartesian products of
minimal surfaces X2 in M4 and geodesic spheres S2 in CP2 4 independent currents exist).
This is expected to be true also for the deformations of cosmic strings defining magnetic flux
tubes.

6. Cauchy-Riemann conditions in 2-D situation represent a special case of Frobenius conditions.
Now the gradients of real and imaginary parts of complex function w = w(z) = u+ iv define
two conserved currents by Laplace equations. In TGD isometry currents would be gradients
apart from scalar function multipliers and one would have generalization of C-R conditions.
In citeallbprefextremals,twistorstory I have considered the possibility that the generalization
of Cauchy-Riemann-Fuerter conditions [A88, A75] (http://tinyurl.com/yb8l34b5) could
define quaternion analyticity - having many non-equivalent variants - as a defining property
of preferred extremals. The integrability conditions for the isometry currents would be the
natural physical formulation of CRF conditions. Different variants of CRF conditions would
correspond to varying number of independent conserved isometry currents.

http://tinyurl.com/yc6apam2
http://tinyurl.com/yb8l34b5
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7. The problem caused by GCI is that there is infinite number of coordinate choices. How
to pick a physically preferred coordinate system? One possible manner to do this is to use
coordinates for the projection of space-time surface to some preferred sub-space of imbedding
- geodesic manifold is an excellent choice. Only M1×X3 geodesic manifolds are not possible
but these correspond to vacuum extremals.

One could also consider a philosophical principle behind integrability. The variational prin-
ciple itself could give rise to at least some preferred space-time coordinates in the same
manner as TGD based quantum physics would realize finite measurement resolution in terms
of inclusions of HFFs in terms of hierarchy of quantum criticalities and fermionic strings
connecting partonic 2-surfaces. Frobenius integrability of the isometry currents would define
some preferred coordinates. Their number need not be the maximal four however.

For instance, for massless extremals only light-like coordinate corresponding to the light-like
momentum is obtained. To this one can however assign another local light-like coordinate
uniquely to obtain integrable distribution of planes M2. The solution ansatz however defines
directly an integrable choice of two pairs of coordinates at imbedding space level usable also
as space-time coordinates - light-like local direction defining local plane M2 and polarization
direction defining a local plane E2. These choices define integrable distributions of orthogonal
planes and local hypercomplex and complex coordinates. Pair of analogs of C-R equations
is the outcome. I have called these coordinates Hamilton-Jacobi coordinates for M4.

8. This picture allows to consider a generalization of the notion of solution of field equation
to that of integral manifold (http://tinyurl.com/yajn7cuz. If the number of indepen-
dent isometry currents is smaller than 4 (possibly locally) and the integrability conditions
hold true, lower-dimensional sub-manifolds of space-time surface define integral manifolds as
kind of lower-dimensional effective solutions. Genuinely lower-dimensional solutions would
of course have vanishing

√
g4 and vanishing Kähler action.

String world sheets can be regarded as 2-D integral surfaces. Charged (possibly all) weak
boson gauge fields vanish at them since otherwise the electromagnetic charge for spinors
would not be well-defined. These conditions force string world sheets to be 2-D in the
generic case. In special case 4-D space-time region as a whole can satisfy these conditions.
Well-definedness of Kähler-Dirac equation [K62, K84] demands that the isometry currents
of Kähler action flow along these string world sheets so that one has integral manifold. The
integrability conditions would allow 2 < m ≤ n integrable flows outside the string world
sheets, and at string world sheets one or two isometry currents would vanish so that the
flows would give rise 2-D independent sub-flow.

9. The method of characteristics (http://tinyurl.com/y9dcdayt) is used to solve hyperbolic
partial differential equations by reducing them to ordinary differential equations. The (say 4-
D) surface representing the solution in the field space has a foliation using 1-D characteristics.
The method is especially simple for linear equations but can work also in the non-linear
case. For instance, the expansion of wave front can be described in terms of characteristics
representing light rays. It can happen that two characteristics intersect and a singularity
results. This gives rise to physical phenomena like caustics and shock waves.

In TGD framework the flow lines for a given isometry current in the case of an integrable flow
would be analogous to characteristics, and one could also have purely geometric counterparts
of shockwaves and caustics. The light-like orbits of partonic 2-surface at which the signature
of the induced metric changes from Minkowskian to Euclidian might be seen as an example
about the analog of wave front in induced geometry. These surfaces serve as carriers of fermion
lines in generalized Feynman diagrams. Could one see the particle vertices at which the 4-D
space-time surfaces intersect along their ends as analogs of intersections of characteristics -
kind of caustics? At these 3-surfaces the isometry currents should be continuous although
the space-time surface has “edge”.

10. The analogy with ordinary analyticity suggests that it might be possible to interpret string
world sheets and partonic 2-surfaces appearing in strong form of holography (SH) as co-
dimension 2 surfaces analogous to poles of analytic function in complex plane. Light-like 3-

http://tinyurl.com/yajn7cuz
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surfaces might be seen as analogs of cuts. The coding of analytic function by its singularities
could be seen as analog of SH.

Jet bundle formalism

Jet bundle formalism (http://tinyurl.com/yb2575bm) is a modern manner to formulate PDEs in
a coordinate independent manner emphasizing the local algebraic character of field equations. In
TGD framework GCI of course guarantees this automatically. Beside this integrability conditions
formulated in terms of Cartan’s contact forms are needed.

1. The basic idea is to take the partial derivatives of imbedding space coordinates as functions of
space-time coordinates as independent variables. This increases the number of independent
variables. Their number depends on the degree of the jet defined and for partial differential
equation of order r, for n dependent variables, and for N independent variables the number
of new degrees of freedom is determined by r, n, and N -just by counting the total number
of various partial derivatives from k = 0 to r. For r = 1 (first order PDE) it is N × (1 + n).

2. Jet at given space-time point is defined as a Taylor polynomial of the imbedding space coor-
dinates as functions of space-time coordinates and is characterized by the partial derivatives
at various points treated as independent coordinates analogous to imbedding space coordi-
nate. Jet degree r is characterized by the degree of the Taylor polynomial. One can sum and
multiply jets just like Taylor polynomials. Jet bundle assigns to the fiber bundle associated
with the solutions of PDE corresponding jet bundle with fiber at each point consisting of
jets for the independent variables (CD × CP2 coordinates) as functions of the dependent
variables (space-time coordinates).

3. The field equations from the variation of Kähler action are second order partial differential
equations and in terms of jet coefficients they reduce to local algebraic equations plus inte-
grability conditions. Since TGD is very non-linear one obtains polynomial equations at each
point - one for each imbedding space coordinate. Their number reduces to four by GCI. The
minimum degree of jet bundle is r = 2 if one wants algebraic equations since field equations
are second order PDEs.

4. The local algebraic conditions are not enough. One must have also conditions stating that
the new independent variables associated with partial derivatives of various order reduces to
appropriate multiple partial derivatives of imbedding space coordinates. These conditions can
be formulated in terms of Cartan’s contact forms, whose vanishing states these conditions.
For instance, if dhk is replaced by independent variable uk, the condition dhk − uk = 0 is
true for the solution surfaces.

5. In TGD framework there are good motivations to break the non-orthodoxy and use 1-jets
so that algebraic equations replaced by first order PDEs plus conditions requiring vanishing
of contact forms. These equations state the conservation of isometry currents implying that
the 3-forms defined by the duals of isometry currents are closed. As found, this formulation
reveals in TGD framework the hydrodynamic picture and suggests conditions making the
system integrable in Frobenius sense.

http://tinyurl.com/yb2575bm


Chapter 7

The Classical Part of the Twistor
Story

7.1 Introduction

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough
is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of
twistor structure to that for 8-D imbedding space H = M4 ×CP2 is necessary. M4 (and S4 as its
Euclidian counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces
allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1) × U(1) and F3 defines
twistor space for the imbedding space H and one can ask whether this generalized twistor structure
could allow to understand both quantum TGD [K45, K50, K77] and classical TGD [K37] defined
by the extremals of Kähler action.

In the following I summarize first the basic results and problems of the twistor approach.
After that I describe some of the mathematical background and develop a proposal for how to
construct extremals of Kähler action in terms of the generalized twistor structure. One ends up
with a scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so that
the twistor spaces give an alternative representation for generalized Feynman diagrams having as
lines space-time surfaces with Euclidian signature of induced metric and having wormhole contacts
as basic building bricks.

There is also a very close analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds [A2, A86] and the modification recipe for Calabi-Yau manifolds by removal of
singularities can be applied to remove self-intersections of twistor spaces and mirror symme-
try [B15]emerges naturally. The overall important implication is that the methods of algebraic
geometry used in super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. Twistor space has space-time as
base-space rather than forming with it Cartesian factors of a 10-D space-time. The Calabi-Yau
landscape is replaced with the space of twistor spaces of space-time surfaces having interpretation
as generalized Feynman diagrams and twistor spaces as sub-manifolds of P3×F3 replace Witten’s
twistor strings [B26]. The space of twistor spaces is the lift of the “world of classical worlds”
(WCW) by adding the CP1 fiber to the space-time surfaces so that the analog of landscape has
beautiful geometrization.

The classical view about twistorialization of TGD makes possible a more detailed formula-
tion of the previous ideas about the relationship between TGD and Witten’s theory and twistor
Grassmann approach.

1. The notion of quaternion analyticity extending the notion of ordinary analyticity to 4-D
context is highly attractive but has remained one of the long-standing ideas difficult to take
quite seriously but equally difficult to throw to paper basked. Four-manifolds possess almost
quaternion structure. In twistor space context the formulation of quaternion analyticity be-
comes possible and relies on an old notion of tri-holomorphy about which I had not been aware
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earlier. The natural formulation for the preferred extremal property is as a condition stating
that various charges associated with generalized conformal algebras vanish for preferred ex-
tremals. This leads to ask whether Euclidian space-time regions could be quaternion-Kähler
manifolds for which twistor spaces are so called Fano spaces. In Minkowskian regions so
called Hamilton-Jacobi property would apply.

2. The generalization of Witten’s twistor theory to TGD framework is a natural challenge and
the 2-surfaces studied defining scattering amplitudes in Witten’s theory could correspond to
partonic 2-surfaces identified as algebraic surfaces characterized by degree and genus. Besides
this also string world sheets are needed. String worlds have 1-D lines at the light-like orbits
of partonic 2-surfaces as their boundaries serving as carriers of fermions. This leads to a
rather detailed generalization of Witten’s approach using the generalization of twistors to
8-D context.

3. The generalization of the twistor Grassmannian approach to 8-D context is second fascinating
challenge. If one requires that the basic formulas relating twistors and four-momentum
generalize one must consider the situation in tangent space M8 of imbedding space (M8−H
duality) and replace the usual sigma matrices having interpretation in terms of complexified
quaternions with octonionic sigma matrices.

The condition that octonionic spinors are are equivalent with ordinary spinors has strong
consequences. Induced spinors must be localized to 2-D string world sheets, which are (co-
)commutative sub-manifolds of (co-)quaternionic space-time surface. Also the gauge fields
should vanish since they induce a breaking of associativity even for quaternionic and complex
surface so that CP2 projection of string world sheet must be 1-D. If one requires also the
vanishing of gauge potentials, the projection is geodesic circle of CP2 so that string world
sheets are restricted to Minkowskian space-time regions. Although the theory would be free
in fermionic degrees of freedom, the scattering amplitudes are non-trivial since vertices cor-
respond to partonic 2-surfaces at which partonic orbits are glued together along common
ends. The classical light-like 8-momentum associated with the boundaries of string world
sheets defines the gravitational dual for 4-D momentum and color quantum numbers associ-
ated with imbedding space spinor harmonics. This leads to a more detailed formulation of
Equivalence Principle which would reduce to M8 −H duality basically.

Number theoretic interpretation of the positivity of Grassmannians is highly suggestive since
the canonical identification maps p-adic numbers to non-negative real numbers. A possible
generalization is obtained by replacing positive real axis with upper half plane defining hyper-
bolic space having key role in the theory of Riemann surfaces. The interpretation of scattering
amplitudes as representations of permutations generalizes to interpretation as braidings at
surfaces formed by the generalized Feynman diagrams having as lines the light-like orbits of
partonic surfaces. This because 2-fermion vertex is the only interaction vertex and induced
by the non-continuity of the induced Dirac operator at partonic 2-surfaces. OZI rule gener-
alizes and implies an interpretation in terms of braiding consistent with the TGD as almost
topological QFT vision. This suggests that non-planar twistor amplitudes are constructible
as analogs of knot and braid invariants by a recursive procedure giving as an outcome planar
amplitudes.

4. Yangian symmetry is associated with twistor amplitudes and emerges in TGD from com-
pletely different idea interpreting scattering amplitudes as representations of algebraic ma-
nipulation sequences of minimal length (preferred extremal instead of path integral over
space-time surfaces) connecting given initial and final states at boundaries of causal dia-
mond. The algebraic manipulations are carried out in Yangian using product and co-product
defining the basic 3-vertices analogous to gauge boson absorption and emission. 3-surface
representing elementary particle splits into two or vice versa such that second copy carries
quantum numbers of gauge boson or its super counterpart. This would fix the scattering
amplitude for given 3-surface and leave only the functional integral over 3-surfaces.
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7.2 Background And Motivations

In the following some background plus basic facts and definitions related to twistor spaces are
summarized. Also reasons for why twistor are so relevant for TGD is considered at general level.

7.2.1 Basic Results And Problems Of Twistor Approach

The author describes both the basic ideas and results of twistor approach as well as the problems.

Basic results

There are three deep results of twistor approach besides the impressive results which have emerged
after the twistor resolution.

1. Massless fields of arbitrary helicity in 4-D Minkowski space are in 1-1 correspondence with
elements of Dolbeault cohomology in the twistor space CP3. This was already the discovery
of Penrose..The connection comes from Penrose transform. The light-like geodesics of M4

correspond to points of 5-D sub-manifold of CP3 analogous to light-cone boundary. The
points of M4 correspond to complex lines (Riemann spheres) of the twistor space CP3: one
can imagine that the point of M4 corresponds to all light-like geodesics emanating from it
and thus to a 2-D surface (sphere) of CP3. Twistor transform represents the value of a
massless field at point of M4 as a weighted average of its values at sphere of CP3. This
correspondence is formulated between open sets of M4 and of CP3. This fits very nicely with
the needs of TGD since causal diamonds which can be regarded as open sets of M4 are the
basic objects in zero energy ontology (ZEO).

2. Self-dual instantons of non-Abelian gauge theories for SU(n) gauge group are in one-one
correspondence with holomorphic rank-N vector bundles in twistor space satisfying some
additional conditions. This generalizes the correspondence of Penrose to the non-Abelian
case. Instantons are also usually formulated using classical field theory at four-sphere S4

having Euclidian signature.

3. Non-linear gravitons having self-dual geometry are in one-one correspondence with spaces
obtained as complex deformations of twistor space satisfying certain additional conditions.
This is a generalization of Penrose’s discovery to the gravitational sector.

Complexification of M4 emerges unavoidably in twistorial approach and Minkowski space
identified as a particular real slice of complexified M4 corresponds to the 5-D subspace of twistor
space in which the quadratic form defined by the SU(2,2) invariant metric of the 8-dimensional
space giving twistor space as its projectivization vanishes. The quadratic form has also positive
and negative values with its sign defining a projective invariant, and this correspond to complex
continuations of M4 in which positive/negative energy parts of fields approach to zero for large
values of imaginary part of M4 time coordinate.

Interestgingly, this complexification of M4 is also unavoidable in the number theoretic ap-
proach to TGD: what one must do is to replace 4-D Minkowski space with a 4-D slice of 8-D
complexified quaternions. What is interesting is that real M4 appears as a projective invariant
consisting of light-like projective vectors of C4 with metric signature (4,4). Equivalently, the points
of M4 represented as linear combinations of sigma matrices define hermitian matrices.

Basic problems of twistor approach

The best manner to learn something essential about a new idea is to learn about its problems.
Difficulties are often put under the rug but the thesis is however an exception in this respect. It
starts directly from the problems of twistor approach. There are two basic challenges.

1. Twistor approach works as such only in the case of Minkowski space. The basic condition for
its applicability is that the Weyl tensor is self-dual. For Minkowskian signature this leaves
only Minkowski space under consideration. For Euclidian signature the conditions are not
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quite so restrictive. This looks a fatal restriction if one wants to generalize the result of
Penrose to a general space-time geometry. This difficulty is known as “googly” problem.

According to the thesis MHV construction of tree amplitudes of N = 4 SYM based on topo-
logical twistor strings in CP3 meant a breakthrough and one can indeed understand also have
analogs of non-self-dual amplitudes. The problem is however that the gravitational theory
assignable to topological twistor strings is conformal gravity, which is generally regarded as
non-physical. There have been several attempts to construct the on-shell scattering ampli-
tudes of Einstein’s gravity theory as subset of amplitudes of conformal gravity and also thesis
considers this problem.

2. The construction of quantum theory based on twistor approach represents second challenge.
In this respect the development of twistor approach to N = 4 SYM meant a revolution and
one can indeed construct twistorial scattering amplitudes in M4.

7.2.2 Results About Twistors Relevant For TGD

First some background.

1. The twistors originally introduced by Penrose (1967) have made breakthrough during last
decade. First came the twistor string theory of Edward Witten [B26] proposed twistor string
theory and the work of Nima-Arkani Hamed and collaborators [B28] led to a revolution in the
understanding of the scattering amplitudes of scattering amplitudes of gauge theories [B20,
B19, B29]. Twistors do not only provide an extremely effective calculational method giving
even hopes about explicit formulas for the scattering amplitudes of N = 4 supersymmetric
gauge theories but also lead to an identification of a new symmetry: Yangian symmetry
[A30], [B23, B24], which can be seen as multilocal generalization of local symmetries.

This approach, if suitably generalized, is tailor-made also for the needs of TGD. This is why I
got seriously interested on whether and how the twistor approach in empty Minkowski space
M4 could generalize to the case of H = M4 × CP2. The twistor space associated with H
should be just the cartesian product of those associated with its Cartesian factors. Can one
assign a twistor space with CP2?

2. First a general result [A64] deserves to be mentioned: any oriented manifold X with Riemann
metric allows 6-dimensional twistor space Z as an almost complex space. If this structure is
integrable, Z becomes a complex manifold, whose geometry describes the conformal geometry
of X. In general relativity framework the problem is that field equations do not imply
conformal geometry and twistor Grassmann approach certainly requires conformal structure.

3. One can consider also a stronger condition: what if the twistor space allows also Kähler
structure? The twistor space of empty Minkowski space M4 (and its Euclidian counterpart
S4 is the Minkowskian variant of P3 = SU(2, 2)/SU(2, 1)× U(1) of 3-D complex projective
space CP3 = SU(4)/SU(3)× U(1) and indeed allows Kähler structure.

The points of the Euclidian twistor space CP3 = SU(4)/SU(3)×U(1) can be represented by
any column of the 4×4 matrix representing element of SU(4) with columns differing by phase
multiplication being identified. One has four coordinate charts corresponding to four different
choices of the column. The points of its Minkowskian variant CP2,1 = SU(2, 2)/SU(2, 1) ×
U(1) can be represented in similar manner as U(1) gauge equivalence classes for given column
of SU(3,1) matrices, whose rows and columns satisfy orthonormality conditions with respect
to the hermitian inner product defined by Minkowskian metric ε = (1, 1,−1,−1).

Rather remarkably, there are no other space-times with Minkowski signature allowing twistor
space with Kähler structure [A64]. Does this mean that the empty Minkowski space of special
relativity is much more than a limit at which space-time is empty?

This also means a problem for GRT. Twistor space with Kähler structure seems to be needed
but general relativity does not allow it. Besides twistor problem GRT also has energy prob-
lem: matter makes space-time curved and the conservation laws and even the definition of
energy and momentum are lost since the underlying symmetries giving rise to the conservation
laws through Noether’s theorem are lost. GRT has therefore two bad mathematical problems
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which might explain why the quantization of GRT fails. This would not be surprising since
quantum theory is to high extent representation theory for symmetries and symmetries are
lost. Twistors would extend these symmetries to Yangian symmetry but GRT does not allow
them.

4. What about twistor structure in CP2? CP2 allows complex structure (Weyl tensor is self-
dual), Kähler structure plus accompanying symplectic structure, and also quaternion struc-
ture. One of the really big personal surprises of the last years has been that CP2 twistor space
indeed allows Kähler structure meaning the existence of antisymmetric tensor representing
imaginary unit whose tensor square is the negative of metric in turn representing real unit.

The article by Nigel Hitchin, a famous mathematical physicist, describes a detailed argument
identifying S4 and CP2 as the only compact Riemann manifolds allowing Kählerian twistor
space [A64]. Hitchin sent his discovery for publication 1979. An amusing co-incidence is that
I discovered CP2 just this year after having worked with S2 and found that it does not really
allow to understand standard model quantum numbers and gauge fields. It is difficult to
avoid thinking that maybe synchrony indeed a real phenomenon as TGD inspired theory of
consciousness predicts to be possible but its creator cannot quite believe. Brains at different
side of globe discover simultaneously something closely related to what some conscious self
at the higher level of hierarchy using us as instruments of thinking just as we use nerve cells
is intensely pondering.

Although 4-sphere S4 allows twistor space with Kähler structure, it does not allow Kähler
structure and cannot serve as candidate for S in H = M4 × S. As a matter of fact, S4 can
be seen as a Wick rotation of M4 and indeed its twistor space is CP3.

In TGD framework a slightly different interpretation suggests itself. The Cartesian products
of the intersections of future and past light-cones - causal diamonds (CDs) - with CP2 - play
a key role in ZEO (ZEO) [K4]. Sectors of “world of classical worlds” (WCW) [K24, K13]
correspond to 4-surfaces inside CD×CP2 defining a the region about which conscious observer
can gain conscious information: state function reductions - quantum measurements - take
place at its light-like boundaries in accordance with holography. To be more precise, wave
functions in the moduli space of CDs are involved and in state function reductions come as
sequences taking place at a given fixed boundary. This kind of sequence is identifiable as self
and give rise to the experience about flow of time. When one replaces Minkowski metric with
Euclidian metric, the light-like boundaries of CD are contracted to a point and one obtains
topology of 4-sphere S4.

5. Another really big personal surprise was that there are no other compact 4-manifolds with
Euclidian signature of metric allowing twistor space with Kähler structure! The imbedding
space H = M4×CP2 is not only physically unique since it predicts the quantum number spec-
trum and classical gauge potentials consistent with standard model but also mathematically
unique!

After this I dared to predict that TGD will be the theory next to GRT since TGD generalizes
string model by bringing in 4-D space-time. The reasons are many-fold: TGD is the only
known solution to the two big problems of GRT: energy problem and twistor problem. TGD
is consistent with standard model physics and leads to a revolution concerning the identifi-
cation of space-time at microscopic level: at macroscopic level it leads to GRT but explains
some of its anomalies for which there is empirical evidence (for instance, the observation
that neutrinos arrived from SN1987A at two different speeds different from light velocity [?]
has natural explanation in terms of many-sheeted space-time). TGD avoids the landscape
problem of M-theory and anthropic non-sense. I could continue the list but I think that this
is enough.

6. The twistor space of CP2 is 3-complex dimensional flag manifold F3 = SU(3)/U(1) × U(1)
having interpretation as the space for the choices of quantization axes for the color hyper-
charge and isospin. This choice is made in quantum measurement of these quantum numbers
and a means localization to single point in F3. The localization in F3 could be higher level
measurement leading to the choice of quantizations for the measurement of color quantum
numbers.
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F3 is symmetric space meaning that besides being a coset space with SU(3) invariant metric
it also has involutions acting as a reflection at geodesics through a point remaining fixed
under the involution. As a symmetric space with Fubini-Study metric F3 is positive constant
curvature space having thus positive constant sectional curvatures. This implies Einstein
space property. This also conforms with the fact that F3 is CP1 bundle over CP2 as base
space (for more details see http://tinyurl.com/ychdeqjz ).

The points of flag manifold SU(3)/U(1)×U(1) can be represented locally by identifying SU(3)
matrices for which columns differ by multiplication from left with exponential ei(aY+bI3), a
and b arbitrary real numbers. This transformation allows what might be called a “gauge
choice”. For instance, first two elements of the first row can be made real in this manner.
These coordinates are not global.

7. Analogous interpretation could make sense for M4 twistors represented as points of P3.
Twistor corresponds to a light-like line going through some point of M4 being labelled by 4
position coordinates and 2 direction angles: what higher level quantum measurement could
involve a choice of light-like line going through a point of M4? Could the associated spatial
direction specify spin quantization axes? Could the associated time direction specify preferred
rest frame? Does the choice of position mean localization in the measurement of position? Do
momentum twistors relate to the localization in momentum space? These questions remain
fascinating open questions and I hope that they will lead to a considerable progress in the
understanding of quantum TGD.

8. It must be added that the twistor space of CP2 popped up much earlier in a rather unexpected
context [K22]: I did not of course realize that it was twistor space. Topologist Barbara
Shipman [A38] has proposed a model for the honeybee dance leading to the emergence of
F3. The model led her to propose that quarks and gluons might have something to do with
biology. Because of her position and specialization the proposal was forgiven and forgotten
by community. TGD however suggests both dark matter hierarchies and p-adic hierarchies of
physics [K17, K81]. For dark hierarchies the masses of particles would be the standard ones
but the Compton scales would be scaled up by heff/h = n [K81]. Below the Compton scale
one would have effectively massless gauge boson: this could mean free quarks and massless
gluons even in cell length scales. For p-adic hierarchy mass scales would be scaled up or
down from their standard values depending on the value of the p-adic prime.

7.2.3 Basic Definitions Related To Twistor Spaces

One can find from web several articles explaining the basic notions related to twistor spaces and
Calabi-Yau manifolds. At the first look the notions of twistor as it appears in the writings of
physicists and mathematicians don’t seem to have much common with each other and it requires
effort to build the bridge between these views. The bridge comes from the association of points of
Minkowski space with the spheres of twistor space: this clearly corresponds to a bundle projection
from the fiber to the base space, now Minkowski space. The connection of the mathematician’s
formulation with spinors remains still somewhat unclear to me although one can understand CP1

as projective space associated with spinors with 2 complex components. Minkowski signature poses
additional challenges. In the following I try my best to summarize the mathematician’s view, which
is very natural in classical TGD.

There are many variants of the notion of twistor depending on whether how powerful as-
sumptions one is willing to make. The weakest definition of twistor space is as CP1 bundle of
almost complex structures in the tangent spaces of an orientable 4-manifold. Complex structure
at given point means selection of antisymmetric form J whose natural action on vector rotates a
vector in the plane defined by it by π/2 and thus represents the action of imaginary unit. One must
perform this kind of choice also in normal plane and the direct sum of the two choices defines the
full J . If one chooses J to be self-dual or anti-self-dual (eigenstate of Hodge star operation), one
can fix J uniquely. Orientability makes possible the Hodge star operation involving 4-dimensional
permutation tensor.

The condition i1 = −1 is translated to the condition that the tensor square of J equals to
J2 = −g. The possible choices of J span sphere S2 defining the fiber of the twistor spaces. This is

http://tinyurl.com/ychdeqjz
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not quite the complex sphere CP1, which can be thought of as a projective space of spinors with
two complex components. Complexification must be performed in both the tangent space of X4

and of S2. Note that in the standard approach to twistors the entire 6-D space is projective space
P3 associated with the C8 having interpretation in terms of spinors with 4 complex components.

One can introduce almost complex structure also to the twistor space itself by extending
the almost complex structure in the 6-D tangent space obtained by a preferred choice of J by
identifying it as a point of S2 and acting in other points of S2 identified as antisymmetric tensors.
If these points are interpreted as imaginary quaternion units, the action is commutator action
divided by 2. The existence of quaternion structure of space-time surfaces in the sense as I have
proposed in TGD framework might be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex struc-
ture is characterized by a hermitian Kähler form ω defining the almost complex structure of the
twistor space. Three basic objects are involved: the hermitian form h, metric g and Kähler form
ω satisfying h = g + iω, g(X,Y ) = ω(X, JY ).

In the base space the metric of twistor space is the metric of the base space and in the
tangent space of fibre the natural metric in the space of antisymmetric tensors induced by the
metric of the base space. Hence the properties of the twistor structure depend on the metric of
the base space.

The relationship to the spinors requires clarification. For 2-spinors one has natural Lorentz
invariant antisymmetric bilinear form and this seems to be the counterpart for J?

One can consider various additional conditions on the definition of twistor space.

1. Kähler form ω is not closed in general. If it is, it defines symplectic structure and Kähler
structure. S4 and CP2 are the only compact spaces allowing twistor space with Kähler
structure [A64].

2. Almost complex structure is not integrable in general. In the general case integrability
requires that each point of space belongs to an open set in which vector fields of type (1,
0) or (0, 1) having basis ∂/∂zk and ∂/∂zk expressible as linear combinations of real vector
fields with complex coefficients commute to vector fields of same type. This is non-trivial
conditions since the leading names for the vector field for the partial derivatives does not yet
guarantee these conditions.

This necessary condition is also enough for integrability as Newlander and Nirenberg have
demonstrated. An explicit formulation for the integrability is as the vanishing of Nijenhuis
tensor associated with the antisymmetric form J (see (http://tinyurl.com/ybp9vsa5 and
http://tinyurl.com/y8j36p4m ). Nijenhuis tensor characterizes Nijenhuis bracket gener-
alizing ordinary Lie bracket of vector fields (for detailed formula see http://tinyurl.com/

y83mbnso ).

3. In the case of twistor spaces there is an alternative formulation for the integrability. Curvature
tensor maps in a natural manner 2-forms to 2-forms and one can decompose the Weyl tensor
W identified as the traceless part of the curvature tensor to self-dual and anti-self-dual parts
W+ and W−, whose actions are restricted to self-dual resp. antiself-dual forms (self-dual
and anti-self-dual parts correspond to eigenvalue + 1 and -1 under the action of Hodge ∗

operation: for more details see http://tinyurl.com/ybkhj4np ). If W+ or W− vanishes
- in other worlds W is self-dual or anti-self-dual - the assumption that J is self-dual or
anti-self-dual guarantees integrability. One says that the metric is anti-self-dual (ASD).
Note that the vanishing of Weyl tensor implies local conformal flatness (M4 and sphere are
obviously conformally flat). One might think that ASD condition guarantees that the parallel
translation leaves J invariant.

ASD property has a nice implication: the metric is balanced. In other words one has d(ω ∧
ω) = 2ω ∧ dω = 0.

4. If the existence of complex structure is taken as a part of definition of twistor structure, one
encounters difficulties in general relativity. The failure of spin structure to exist is similar
difficulty: for CP2 one must indeed generalize the spin structure by coupling Kähler gauge
potential to the spinors suitably so that one obtains gauge group of electroweak interactions.

http://tinyurl.com/ybp9vsa5 
http://tinyurl.com/y8j36p4m
http://tinyurl.com/y83mbnso
http://tinyurl.com/y83mbnso
http://tinyurl.com/ybkhj4np
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5. One could also give up the global existence of complex structure and require symplectic
structure globally: this would give dω = 0. A general result is that hyperbolic 4-manifolds
allow symplectic structure and ASD manifolds allow complex structure and hence balanced
metric.

7.2.4 Why Twistor Spaces With Kähler Structure?

I have not yet even tried to answer an obvious question. Why the fact that M4 and CP2 have
twistor spaces with Kähler structure could be so important that it could fix the entire physics?
Let us consider a less general question. Why they would be so important for the classical TGD -
exact part of quantum TGD - defined by the extremals of Kähler action [K6] ?

1. Properly generalized conformal symmetries are crucial for the mathematical structure of
TGD [K13, K62, K12, K55]. Twistor spaces have almost complex structure and in these
two special cases also complex, Kähler, and symplectic structures (note that the integrability
of the almost complex structure to complex structure requires the self-duality of the Weyl
tensor of the 4-D manifold).

For years ago I considered the possibility that complex 3-manifolds of CP3×CP3 could have
the structure of S2 fiber space and have space-time surfaces as base space. I did not realize
that these spaces could be twistor spaces nor did I realize that CP2 allows twistor space with
Kähler structure so that CP3 × F3 looks a more plausible choice.

The expectation was that the Cartesian product CP3 × F3 of the two twistor spaces with
Kähler structure is fundamental for TGD. The obvious wishful thought is that this space
makes possible the construction of the extremals of Kähler action in terms of holomorphic
surfaces defining 6-D twistor sub-spaces of CP3 × F3 allowing to circumvent the technical
problems due to the signature of M4 encountered at the level of M4 × CP2. It would also
make the magnificent machinery of the algebraic geometry so powerful in string theories
a tool of TGD. Here CP3 could be replaced with its non-compact form and the problem
is that one can have only compactification of M4 for which metric is defined only modulo
conformal scaling. There is however a problem: the compactified Minkowski space or its
complexification has a metric defined only modulo conformal factor. This is not a problem
in conformally invariant theories but becomes a problem if one wants to speak of induced
metric.

The next realization was that M4 allows twistor bundle also in purely geometric sense and
this bundle is just T (M4) = M4 × CP2. The two variants of twistor space would naturally
apply at the level of momentum space and imbedding space.

2. Every 4-D orientable Riemann manifold allows a twistor space as 6-D bundle with CP1 as fiber
and possessing almost complex structure. Metric and various gauge potentials are obtained
by inducing the corresponding bundle structures. Hence the natural guess is that the twistor
structure of space-time surface defined by the induced metric is obtained by induction from
that for T (M4) × F3 by restricting its twistor structure to a 6-D (in real sense) surface
of T (M4) × F3 with a structure of twistor space having at least almost complex structure
with CP1 as a fiber. For the imbedding of the twistor space of space-time this requires the
identification of S2 fibers of T (M4) and F3. If so then one can indeed identify the base space
as 4-D space-time surface in M4 × CP2 using bundle projections in the factors T (M4) and
F3.

3. There might be also a connection to the number theoretic vision about the extremals of Kähler
action. At space-time level however complexified quaternions and octonions could allow
alternative formulation. I have indeed proposed that space-time surfaces have associative of
co-associative meaning that the tangent space or normal space at a given point belongs to
quaternionic subspace of complexified octonions.
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7.3 The Identification Of 6-D Twistor Spaces As Sub-Manifolds
Of 12-D Twistor Space

How to identify the 6-D sub-manifolds with the structure of twistor space? Is this property all
that is needed? Can one find a simple solution to this condition? What is the relationship of
twistor spaces to the Calabi-Yau manifolds of super string models? In the following intuitive
considerations of a simple minded physicist. Mathematician could probably make much more
interesting comments.

7.3.1 Conditions For Twistor Spaces As Sub-Manifolds

Consider the conditions that must be satisfied using local trivializations of the twistor spaces. It
will be assumed that the twistor space T (M4) is CP3 or its Minkowskian variant. It has turned
out that a more reasonable option T (M4) = M4 × CP1 is possible. The following consideration
is however for CP3 option. Before continuing let us introduce complex coordinates zi = xi + iyi
resp. wi = ui + ivi for CP3 resp. F3.

1. 6 conditions are required and they must give rise by bundle projection to 4 conditions relating
the coordinates in the Cartesian product of the base spaces of the two bundles involved and
thus defining 4-D surface in the Cartesian product of compactified M4 and CP2.

2. One has Cartesian product of two fiber spaces with fiber CP1 giving fiber space with fiber
CP 1

1 × CP 2
1 . For the 6-D surface the fiber must be CP1. It seems that one must identify

the two spheres CP i1. Since holomorphy is essential, holomorphic identification w1 = f(z1)
or z1 = f(w1) is the first guess. A stronger condition is that the function f is meromorphic
having thus only finite numbers of poles and zeros of finite order so that a given point of CP i1
is covered by CP i+1

1 . Even stronger and very natural condition is that the identification is
bijection so that only Möbius transformations parametrized by SL(2, C) are possible.

3. Could the Möbius transformation f : CP 1
1 → CP 2

1 depend parametrically on the coordinates
z2, z3 so that one would have w1 = f1(z1, z2, z3), where the complex parameters a, b, c, d
(ad − bc = 1) of Möbius transformation depend on z2 and z3 holomorphically? Does this
mean the analog of local SL(2, C) gauge invariance posing additional conditions? Does this
mean that the twistor space as surface is determined up to SL(2, C) gauge transformation?

What conditions can one pose on the dependence of the parameters a, b, c, d of the Möbius
transformation on (z2, z3)? The spheres CP1 defined by the conditions w1 = f(z1, z2, z3)
and z1 = g(w1, w2, w3) must be identical. Inverting the first condition one obtains z1 =
f−1(w1, z2, z3). If one requires that his allows an expression as z1 = g(w1, w2, w3), one must
assume that z2 and z3 can be expressed as holomorphic functions of (w2, w3): zi = fi(wk),
i = 2, 3, k = 2, 3. Of course, non-holomorphic correspondence cannot be excluded.

4. Further conditions are obtained by demanding that the known extremals - at least non-
vacuum extremals - are allowed. The known extremals [K6] can be classified into CP2

type vacuum extremals with 1-D light-like curve as M4 projection, to vacuum extremals
with CP2 projection, which is Lagrangian sub-manifold and thus at most 2-dimensional, to
massless extremals with 2-D CP2 projection such that CP2 coordinates depend on arbitrary
manner on light-like coordinate defining local propagation direction and space-like coordinate
defining a local polarization direction, and to string like objects with string world sheet as
M4 projection (minimal surface) and 2-D complex sub-manifold of CP2 as CP2 projection, .
There are certainly also other extremals such as magnetic flux tubes resulting as deformations
of string like objects. Number theoretic vision relying on classical number fields suggest a
very general construction based on the notion of associativity of tangent space or co-tangent
space.

5. The conditions coming from these extremals reduce to 4 conditions expressible in the holo-
morphic case in terms of the base space coordinates (z2, z3) and (w2, w3) and in the more
general case in terms of the corresponding real coordinates. It seems that holomorphic ansatz
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is not consistent with the existence of vacuum extremals, which however give vanishing contri-
bution to transition amplitudes since WCW (“world of classical worlds”) metric is completely
degenerate for them.

The mere condition that one has CP1 fiber bundle structure does not force field equations
since it leaves the dependence between real coordinates of the base spaces free. Of course,
CP1 bundle structure alone does not imply twistor space structure. One can ask whether
non-vacuum extremals could correspond to holomorphic constraints between (z2, z3) and
(w2, w3).

6. The metric of twistor space is not Kähler in the general case. However, if it allows complex
structure there is a Hermitian form ω, which defines what is called balanced Kähler form [A85]
satisfying d(ω ∧ ω) = 2ω ∧ dω = 0: ordinary Kähler form satisfying dω = 0 is special case
about this. The natural metric of compact 6-dimensional twistor space is therefore balanced.
Clearly, mere CP1 bundle structure is not enough for the twistor structure. If the Kähler
and symplectic forms are induced from those of CP3 × Y3, highly non-trivial conditions are
obtained for the imbedding of the twistor space, and one might hope that they are equivalent
with those implied by Kähler action at the level of base space.

7. Pessimist could argue that field equations are additional conditions completely independent
of the conditions realizing the bundle structure! One cannot exclude this possibility. Mathe-
matician could easily answer the question about whether the proposed CP1 bundle structure
with some added conditions is enough to produce twistor space or not and whether field
equations could be the additional condition and realized using the holomorphic ansatz.

7.3.2 Twistor Spaces By Adding CP1 Fiber To Space-Time Surfaces

The physical picture behind TGD is the safest starting point in an attempt to gain some idea
about what the twistor spaces look like.

1. Canonical imbeddings of M4 and CP2 and their disjoint unions are certainly the natural
starting point and correspond to canonical imbeddings of CP3 and F3 to CP3 × F3.

2. Deformations of M4 correspond to space-time sheets with Minkowskian signature of the
induced metric and those of CP2 to the lines of generalized Feynman diagrams. The simplest
deformations of M4 are vacuum extremals with CP2 projection which is Lagrangian manifold.

Massless extremals represent non-vacuum deformations with 2-D CP2 projection. CP2 co-
ordinates depend on local light-like direction defining the analog of wave vector and local
polarization direction orthogonal to it.

The simplest deformations of CP2 are CP2 type extremals with light-like curve as M4 projec-
tion and have same Kähler form and metric as CP2. These space-time regions have Euclidian
signature of metric and light-like 3-surfaces separating Euclidian and Minkowskian regions
define parton orbits.

String like objects are extremals of type X2 × Y 2, X2 minimal surface in M4 and Y 2 a
complex sub-manifold of CP2. Magnetic flux tubes carrying monopole flux are deformations
of these.

Elementary particles are important piece of picture. They have as building bricks wormhole
contacts connecting space-time sheets and the contacts carry monopole flux. This requires
at least two wormhole contacts connected by flux tubes with opposite flux at the parallel
sheets.

3. Space-time surfaces are constructed using as building bricks space-time sheets, in particular
massless exrremals, deformed pieces of CP2 defining lines of generalized Feynman diagrams
as orbits of wormhole contacts, and magnetic flux tubes connecting the lines. Space-time
surfaces have in the generic case discrete set of self intersections and it is natural to remove
them by connected sum operation. Same applies to twistor spaces as sub-manifolds of CP3×
F3 and this leads to a construction analogous to that used to remove singularities of Calabi-
Yau spaces [A85].
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Physical intuition suggests that it is possible to find twistor spaces associated with the basic
building bricks and to lift this engineering procedure to the level of twistor space in the sense that
the twistor projections of twistor spaces would give these structure. Lifting would essentially mean
assigning CP1 fiber to the space-time surfaces.

1. Twistor spaces should decompose to regions for which the metric induced from the CP3×F3

metric has different signature. In particular, light-like 5-surfaces should replace the light-like
3-surfaces as causal horizons. The signature of the Hermitian metric of 4-D (in complex
sense) twistor space is (1, 1, -1, -1). Minkowskian variant of CP3 is defined as projective
space SU(2, 2)/SU(2, 1)× U(1). The causal diamond (CD) (intersection of future and past
directed light-cones) is the key geometric object in ZEO (ZEO) and the generalization to the
intersection of twistorial light-cones is suggestive.

2. Projective twistor space has regions of positive and negative projective norm, which are
3-D complex manifolds. It has also a 5-dimensional sub-space consisting of null twistors
analogous to light-cone and has one null direction in the induced metric. This light-cone has
conic singularity analogous to the tip of the light-cone of M4.

These conic singularities are important in the mathematical theory of Calabi-You manifolds
since topology change of Calabi-Yau manifolds via the elimination of the singularity can be
associated with them. The S2 bundle character implies the structure of S2 bundle for the
base of the singularity (analogous to the base of the ordinary cone).

3. Null twistor space corresponds at the level of M4 to the light-cone boundary (causal diamond
has two light-like boundaries). What about the light-like orbits of partonic 2-surfaces whose
light-likeness is due to the presence of CP2 contribution in the induced metric? For them
the determinant of induced 4-metric vanishes so that they are genuine singularities in metric
sense. The deformations for the canonical imbeddings of this sub-space (F3 coordinates
constant) leaving its metric degenerate should define the lifts of the light-like orbits of partonic
2-surface. The singularity in this case separates regions of different signature of induced
metric.

It would seem that if partonic 2-surface begins at the boundary of CD, conical singularity
is not necessary. On the other hand the vertices of generalized Feynman diagrams are 3-
surfaces at which 3-lines of generalized Feynman digram are glued together. This singularity
is completely analogous to that of ordinary vertex of Feynman diagram. These singularities
should correspond to gluing together 3 deformed F3 along their ends.

4. These considerations suggest that the construction of twistor spaces is a lift of construction
space-time surfaces and generalized Feynman diagrammatics should generalize to the level of
twistor spaces. What is added is CP1 fiber so that the correspondence would rather concrete.

5. For instance, elementary particles consisting of pairs of monopole throats connected buy
flux tubes at the two space-time sheets involved should allow lifting to the twistor level.
This means double connected sum and this double connected sum should appear also for
deformations of F3 associated with the lines of generalized Feynman diagrams. Lifts for the
deformations of magnetic flux tubes to which one can assign CP3 in turn would connect the
two F3s.

6. A natural conjecture inspired by number theoretic vision is that Minkowskian and Euclidian
space-time regions correspond to associative and co-associative space-time regions. At the
level of twistor space these two kinds of regions would correspond to deformations of CP3

and F3. The signature of the twistor norm would be different in this regions just as the
signature of induced metric is different in corresponding space-time regions.

These two regions of space-time surface should correspond to deformations for disjoint unions
of CP3s and F3s and multiple connected sum form them should project to multiple connected
sum (wormhole contacts with Euclidian signature of induced metric) for deformed CP3s.
Wormhole contacts could have deformed pieces of F3 as counterparts.

There are interesting questions related to the detailed realization of the twistor spaces of
space-time surfaces.
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1. In the case of CP2 J would naturally correspond to the Kähler form of CP2. Could one
identify J for the twistor space associated with space-time surface as the projection of J?
For deformations of CP2 type vacuum extremals the normalization of J would allow to satisfy
the condition J2 = −g. For general extremals this is not possible. Should one be ready to
modify the notion of twistor space by allowing this?

2. Or could the associativity/co-associativity condition realized in terms of quaternionicity of
the tangent or normal space of the space-time surface guaranteeing the existence of quaternion
units solve the problem and J could be identified as a representation of unit quaternion? In
this case J would be replaced with vielbein vector and the decomposition 1+3 of the tangent
space implied by the quaternion structure allows to use 3-dimensional permutation symbol
to assign antisymmetric tensors to the vielbein vectors. Also the triviality of the tangent
bundle of 3-D space allowing global choices of the 3 imaginary units could be essential.

3. Does associativity/co-associativity imply twistor space property or could it provide alterna-
tive manner to realize this notion? Or could one see quaternionic structure as an extension of
almost complex structure. Instead of single J three orthogonal J : s (3 almost complex struc-
tures) are introduced and obey the multiplication table of quaternionic units? Instead of S2

the fiber of the bundle would be SO(3) = S3. This option is not attractive. A manifold with
quaternionic tangent space with metric representing the real unit is known as quaternionic
Riemann manifold and CP2 with holonomy U(2) is example of it. A more restrictive condition
is that all quaternion units define closed forms: one has quaternion Kähler manifold, which is
Ricci flat and has in 4-D case Sp(1)=SU(2) holonomy. (see http://tinyurl.com/y9qtoebe

).

4. Anti-self-dual property (ASD) of metric guaranteeing the integrability of almost complex
structure of the twistor space implies the condition ω ∧ dω = 0 for the twistor space. What
does this condition mean physically for the twistor spaces associated with the extremals of
Kähler action? For the 4-D base space this property is of course identically true. ASD
property need of course not be realized.

7.3.3 Twistor Spaces As Analogs Of Calabi-Yau Spaces Of Super String
Models

CP3 is also a Calabi-Yau manifold in the strong sense that it allows Kähler structure and complex
structure. Witten’s twistor string theory considers 2-D (in real sense) complex surfaces in twistor
space CP3 or its Minkowskian variant. This choice does not however seem to be natural from the
point of view of the induced geometry although it looks natural at the level of momentum space.
It is less well-known that M4 allows also second twistor space T (M4) = M4×CP1, and this looks
very natural concerning twistor lift of TGD replacing space-time surfaces in H with their twistor
spaces in T (H) = T (M4)× T (CP2).

The original identification T (M4) with CP3 or its Minkowskian variant has been given up
bit it inspired some questions discussed in the sequel.

1. Could TGD in twistor space formulation be seen as a generalization of this theory?

2. General twistor space is not Calabi-Yau manifold because it does does not have Kähler
structure. Do twistor spaces replace Calabi-Yaus in TGD framework?

3. Could twistor spaces be Calabi-Yau manifolds in some weaker sense so that one would have
a closer connection with super string models.

Consider the last question.

1. One can indeed define non-Kähler Calabi-Yau manifolds by keeping the hermitian metric and
giving up symplectic structure or by keeping the symplectic structure and giving up hermitian
metric (almost complex structure is enough). Construction recipes for non-Kähler Calabi-
Yau manifold are discussed in [A85]. It is shown that these two manners to give up Kähler
structure correspond to duals under so called mirror symmetry [B15] which maps complex
and symplectic structures to each other. This construction applies also to the twistor spaces.

http://tinyurl.com/y9qtoebe
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2. For the modification giving up symplectic structure, one starts from a smooth Kähler Calabi-
Yau 3-fold Y , such as CP3. One assumes a discrete set of disjoint rational curves diffeomor-
phic to CP1. In TGD framework work they would correspond to special fibers of twistor
space.

One has singularities in which some rational curves are contracted to point - in twistorial case
the fiber of twistor space would contract to a point - this produces double point singularity
which one can visualize as the vertex at which two cones meet (sundial should give an idea
about what is involved). One deforms the singularity to a smooth complex manifold. One
could interpret this as throwing away the common point and replacing it with connected sum
contact: a tube connecting the holes drilled to the vertices of the two cones. In TGD one
would talk about wormhole contact.

3. Suppose the topology looks locally like S3 × S2 × R± near the singularity, such that two
copies analogous to the two halves of a cone (sundial) meet at single point defining double
point singularity. In the recent case S2 would correspond to the fiber of the twistor space. S3

would correspond to 3-surface and R± would correspond to time coordinate in past/future
direction. S3 could be replaced with something else.

The copies of S3×S2 contract to a point at the common end of R+ and R− so that both the
based and fiber contracts to a point. Space-time surface would look like the pair of future
and past directed light-cones meeting at their tips.

For the first modification giving up symplectic structure only the fiber S2 is contracted to a
point and S2 ×D is therefore replaced with the smooth ”bottom” of S3. Instead of sundial
one has two balls touching. Drill small holes two the two S3s and connect them by connected
sum contact (wormhole contact). Locally one obtains S3×S3 with k connected sum contacts.

For the modification giving up Hermitian structure one contracts only S3 to a point instead
of S2. In this case one has locally two CP3: s touching (one can think that CPn is obtained
by replacing the points of Cn at infinity with the sphere CP1). Again one drills holes and
connects them by a connected sum contact to get k-connected sum of CP3.

For k CP1s the outcome looks locally like to a k-connected sum of S3×S3 or CP3 with k ≥ 2.
In the first case one loses symplectic structure and in the second case hermitian structure.
The conjecture is that the two manifolds form a mirror pair.

The general conjecture is that all Calabi-Yau manifolds are obtained using these two modi-
fications. One can ask whether this conjecture could apply also the construction of twistor
spaces representable as surfaces in CP3 × F3 so that it would give mirror pairs of twistor
spaces.

4. This smoothing out procedures isa actually unavoidable in TGD because twistor space is
sub-manifold. The 6-D twistor spaces in 12-D T (M4) × F3 have in the generic case self
intersections consisting of discrete points. Since the fibers CP1 cannot intersect and since
the intersection is point, it seems that the fibers must contract to a point. In the similar
manner the 4-D base spaces should have local foliation by spheres or some other 3-D objects
with contract to a point. One has just the situation described above.

One can remove these singularities by drilling small holes around the shared point at the two
sheets of the twistor space and connected the resulting boundaries by connected sum contact.
The preservation of fiber structure might force to perform the process in such a manner that
local modification of the topology contracts either the 3-D base (S3 in previous example or
fiber CP1 to a point.

The interpretation of twistor spaces is of course totally different from the interpretation
of Calabi-Yaus in superstring models. The landscape problem of superstring models is avoided
and the multiverse of string models is replaced with generalized Feynman diagrams! Different
twistor spaces correspond to different space-time surfaces and one can interpret them in terms
of generalized Feynman diagrams since bundle projection gives the space-time picture. Mirror
symmetry means that there are two different Calabi-Yaus giving the same physics. Also now
twistor space for a given space-time surface can have several imbeddings - perhaps mirror pairs
define this kind of imbeddings.
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To sum up, the construction of space-times as surfaces of H lifted to those of (almost)
complex sub-manifolds in T (M4)timesF3 with induced twistor structure shares the spirit of the
vision that induction procedure is the key element of classical and quantum TGD. It also gives
deep connection with the mathematical methods applied in super string models and these methods
should be of direct use in TGD.

7.4 Witten’s Twistor String Approach And TGD

The twistor Grassmann approach has led to a phenomenal progress in the understanding of the
scattering amplitudes of gauge theories, in particular the N = 4 SUSY.

As a non-specialist I have been frustrated about the lack of concrete picture, which would
help to see how twistorial amplitudes might generalize to TGD framework. A pleasant surprise
in this respect was the proposal of a particle interpretation for the twistor amplitudes by Nima
Arkani Hamed et al in the article ”Unification of Residues and Grassmannian Dualities” [B30] (see
http://tinyurl.com/y86mad5n )

In this interpretation incoming particles correspond to spheres CP1 so that n-particle state
corresponds to (CP1)n/Gl(2) (the modding by Gl(2) might be seen as a kind of formal generaliza-
tion of particle identity by replacing permutation group S2 with Gl(2) of 2 × 2 matrices). If the
number of ”wrong” helicities in twistor diagram is k, this space is imbedded to CPnk−1/Gl(k) as a
surface having degree k − 1 using Veronese map to achieve the imbedding. The imbedding space
can be identified as Grassmannian G(k, n). This surface defines the locus of the multiple residue
integral defining the twistorial amplitude.

The particle interpretation brings in mind the extension of single particle configuration space
E3 to its Cartesian power E3n/Sn for n-particle system in wave mechanics. This description could
make sense when point-like particle is replaced with 3-surface or partonic 2-surface: one would
have Cartesian product of WCWs divided my Sn. The generalization might be an excellent idea
as far calculations are considered but is not in spirit with the very idea of string models and TGD
that many-particle states correspond to unions of 3-surfaces in H (or light-like boundaries of causal
diamond (CD) in Zero Energy Ontology (ZEO).

Witten’s twistor string theory [B26] is more in spirit with TGD at fundamental level since
it is based on the identification of generalization of vertices as 2-surfaces in twistor space.

1. There are several kinds of twistors involved. For massless external particles in eigenstates
of momentum and helicity null twistors code the momentum and helicity and are pairs of
2-spinor and its conjugate. More general momenta correspond to two independent 2-spinors.

One can perform twistor Fourier transform for the conjugate 2-spinor to obtain twistors
coding for the points of compactified Minkowski space. Wave functions in this twistor space
characterized by massless momentum and helicity appear in the construction of twistor ampli-
tudes. BCFW recursion relation [B19] allows to construct more complex amplitudes assuming
that intermediate states are on mass shells massless states with complex momenta.

One can perform twistor Fourier transformation (there are some technical problems in Minkowski
signature) also for the second 2-spinor to get what are called momentum twistors providing
in some aspects simpler description of twistor amplitudes. These code for the four-momenta
propagating between vertices at which the incoming particles arrive and the differences if
two subsequent momenta are equal to massless external momenta.

2. In Witten’s theory the interactions of incoming particles correspond to amplitudes in which
the twistors appearing as arguments of the twistor space wave functions characterized by
momentum and helicity are localized to complex curves X2 of twistor space CP3 or its
Minkowskian counterpart. This can be seen as a non-local twistor space variant of local
interactions in Minkowski space.

The surfaces X2 are characterized by their degree d (of the polynomial of complex coordinates
defining the algebraic 2-surface) the genus g of the algebraic surface, by the number k of
”wrong” (helicity violating) helicities, and by the number of loops of corresponding diagram
of SUSY amplitude: one has d = k − 1 + l, g ≤ l. The interaction vertex in twistor space is
not anymore completely local but the n particles are at points of the twistorial surface X2.

http://tinyurl.com/y86mad5n
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In the following a proposal generalizing Witten’s approach to TGD is discussed.

1. The fundamental challenge is the generalization of the notion of twistor associated with
massless particle to 8-D context, first for M4 = M4 ×E4 and then for H = M4 ×CP2. The
notion of twistor space solves this question at geometric level. As far as construction of the
TGD variant of Witten’s twistor string is considered, this might be quite enough.

2. M8 − H duality and quantum-classical correspondence however suggest that M8 twistors
might allow tangent space description of four-momentum, spin, color quantum numbers and
electroweak numbers and that this is needed. What comes in mind is the identification of
fermion lines as light-like geodesics possessing M8 valued 8-momentum, which would define
the long sought gravitational counterparts of four-momentum and color quantum numbers
at classical point-particle level. The M8 part of this four-momentum would be equal to
that associated with imbedding space spinor mode characterizing the ground state of super-
conformal representation for fundamental fermion.

Hence one might also think of starting from the 4-D condition relating Minkowski coordinates
to twistors and looking what it could mean in the case of M8. The generalization is indeed
possible in M8 = M4 × E4 by its flatness if one replaces gamma matrices with octonionic
gamma matrices.

In the case of M4 ×CP2 situation is different since for octonionic gamma matrices SO(1, 7)
is replaced with G2, and the induced gauge fields have different holonomy structure than for
ordinary gamma matrices and octonionic sigma matrides appearing as charge matrices bring
in also an additional source of non-associativity. Certainly the notion of the twistor Fourier
transform fails since CP2 Dirac operator cannot be algebraized.

Algebraic twistorialization however works for the light-like fermion lines at which the ordinary
and octonionic representations for the induced Dirac operator are equivalent. One can indeed
assign 8-D counterpart of twistor to the particle classically as a representation of light-like
hyper-octonionic four-momentum having massive M4 and CP2 projections and CP2 part
perhaps having interpretation in terms of classical tangent space representation for color and
electroweak quantum numbers at fermionic lines.

If all induced electroweak gauge fields - rather than only charged ones as assumed hitherto
- vanish at string world sheets, the octonionic representation is equivalent with the ordi-
nary one. The CP2 projection of string world sheet should be 1-dimensional: inside CP2

type vacuum extremals this is impossible, and one could even consider the possibility that
the projection corresponds to CP2 geodesic circle. This would be enormous technical sim-
plification. What is important that this would not prevent obtaining non-trivial scattering
amplitudes at elementary particle level since vertices would correspond to re-arrangement
of fermion lines between the generalized lines of Feynman diagram meeting at the vertices
(partonic 2-surfaces).

3. In the fermionic sector one is forced to reconsider the notion of the induced spinor field. The
modes of the imbedding space spinor field should co-incide in some region of the space-time
surface with those of the induced spinor fields. The light-like fermionic lines defined by the
boundaries of string world sheets or their ends are the obvious candidates in this respect.
String world sheets is perhaps too much to require.

The only reasonable identification of string world sheet gamma matrices is as induced gamma
matrices and super-conformal symmetry requires that the action contains string world sheet
area as an additional term just as in string models. String tension would correspond to
gravitational constant and its value - that is ratio to the CP2 radius squared, would be fixed
by quantum criticality.

4. The generalization of the Witten’s geometric construction of scattering amplitudes relying on
the induction of the twistor structure of the imbedding space to that associated with space-
time surface looks surprisingly straight-forward and would provide more precise formulation
of the notion of generalized Feynman diagrams forcing to correct some wrong details. One of
the nice outcomes is that the genus appearing in Witten’s formulation naturally corresponds
to family replication in TGD framework.
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7.4.1 Basic Ideas About Twistorialization Of TGD

The recent advances in understanding of TGD motive the attempt to look again for how twistor
amplitudes could be realized in TGD framework. There have been several highly non-trivial steps
of progress leading to a new more profound understanding of basic TGD.

1. M4×CP2 is twistorially unique [K55] in the sense that its factors are the only 4-D geometries
allowing twistor space with Kähler structure (M4 corresponds to S4 in Euclidian signature)
[A64]. The twistor spaces in question are CP3 for S4 and its Minkowskian variant for M4 (I
will use P 3 as short hand for both twistor spaces) and the flag manifold F = SU(3)/U(1)×
U(1) parametrizing the choices of quantization axes for color group SU(3) in the case of CP2.
Recall that twistor spaces are S2 bundles over the base space and that all orientable four-
manifolds have twistor space in this sense. Note that space-time surfaces allow always almost
quaternionic structure and that that preferred extremals are suggested to be quaternionic
[K55].

2. The light-likeness condition for twistors in M4 is fundamental in the ordinary twistor ap-
proach. In 8-D context light-likeness holds in generalized sense for the spinor harmonics of
H: the square of the Dirac operator annihilates spinor modes. In the case M8 one can indeed
define twistors by generalizing the standard approach by replacing ordinary gamma matrices
with octonionic ones [?] For H octonionic and ordinary gamma matrices are equivalent at
the fermionic lines defined by the light-like boundaries of string world sheets and at string
world sheets if they carry vanishing induced electro-weak gauge fields that is have 1-D CP2

projection.

3. Twistor spaces emerge in TGD framework as lifts of space-time surfaces to corresponding
twistor spaces realized as 6-surfaces in the lift of M4 × CP2 to T (H) = P 3 × F having as
base spaces space-time surfaces. This implies that that generalized Feynman diagrams and
also generalized twistor diagrams can be lifted to diagrams in T and that the construction
of twistor spaces as surfaces of T has very concrete particle interpretation.

The modes of the imbedding space spinor field defining ground states of the extended con-
formal algebras for which classical conformal charges vanish at the ends of the space-time
surface (this defines gauge conditions realizing strong form of holography [K62] ) are lifted to
the products of modes of spinor fields in T (H) characterized by four-momentum and helicity
in M4 degrees of freedom and by color quantum numbers and electroweak quantum numbers
in F degrees of freedom. Thus twistorialization provides a purely geometric representation of
spin and electro-weak spin and it seems that twistorialization allows to a formulation without
H-spinors.

What is especially nice, that twistorialization extends to from spin to include also electroweak
spin. These two spins correspond correspond to M4 and CP2 helicities for the twistor space
amplitude, and are non-local properties of these amplitudes. In TGD framework only twistor
amplitudes for which helicities correspond to that for massless fermion and antifermion are
possible and by fermion number conservation the numbers of positive and negative helicities
are identical and equal to the fermion number (or antifermion number). Separate lepton
and baryon number conservation realizing 8-D chiral symmetry implies that M4 and CP2

helicities are completely correlated.

For massless fermions in M4 sense helicity is opposite for fermion and antifermion and con-
served. The contributions of initial and final states to k are same and equal to ki = kf =
2(n(F ) − n(F ). This means restriction to amplitudes with k = 2(n(F ) − n(F ). If fermions
are massless only in M8 sense, chirality mixing occurs and this rule does not hold anymore.
This holds true in quark and lepton sector separately.

4. All generalized Feynman graphs defined in terms of Euclidian regions of space-time surface
are lifted to twistor spaces [K12]. Incoming particles correspond quantum mechanically to
twistor space amplitudes defined by their momenta and helicities and and classically to the
entire twistor space of space-time surface as a surface in the twistor space of H. Of course,
also the Minkowskian regions have this lift. The vertices of Feynman diagrams correspond to
regions of twistor space in which the incoming twistor spaces meet along their 5-D ends having
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also S2 bundle structure over space-like 3-surfaces. These space-like 3-surfaces correspond to
ends of Euclidian and Minkowskian space-time regions separated from each other by light-
like 3-surfaces at which the signature of the metric changes from Minkowskian to Euclidian.
These ”partonic orbits” have as their ends 2-D partonic surfaces. By strong form of General
Coordinate Invariance implying strong of holography, these 2-D partonic surfaces and their
4-D tangent space data should code for quantum physics. Their lifts to twistor space are 4-D
S2 bundles having partonic 2-surface X2 as base.

5. The well-definedness of em charge for the spinor modes demands that they are localized at
2-D string world sheets [K62] and also these world sheets are lifted to sub-spaces of twistor
space of space-time surface. If one demands that octonionic Dirac operator makes sense at
string world sheets, they must carry vanishing induced electro-weak gauge fields and string
world sheets could be minimal surfaces in M4 × S1, S1 ⊂ CP2 a geodesic circle.

The boundaries of string world sheets at partonic orbits define light-like curves identifiable
as carriers of fermion number and they define the analogs of lines of Feynman diagrams in
ordinary sense. The only purely fermionic vertices are 2-fermion vertices at the partonic 2-
surfaces at which the end of space-time surface meet. As already explained, the string world
sheets can be seen as correlates for the correlations between fermion vertices at different
wormhole throats giving rise to the counterpart of bosonic propagator in quantum field
theories.

The localization of spinor fields to 2-D string world sheets corresponds to the localization
of twistor amplitudes to their 4-D lifts, which are S2 bundles and the boundaries of string
world sheets are lifted to 3-D twistor lifts of fermion lines. Clearly, the localization of spinors
to string world sheets would be absolutely essential for the emergence of twistor description.

6. All elementary particles are many particle bound states of massless fundamental fermions: the
non-collinearity (and possible complex character) of massless momenta explains massivation.
The fundamental fermions are localized at wormhole throats defining the light-like orbits of
partonic 2-surfaces. Throats are associated with wormhole contacts connecting two space-
time sheets. Stability of the contact is guaranteed by non-vanishing monopole magnetic
flux through it and this requires the presence of second wormhole contact so that a closed
magnetic flux tube carrying monopole flux and involving the two space-time sheets is formed.
The net fermionic quantum numbers of the second throat correspond to particle’s quantum
numbers and above weak scale the weak isospins of the throats sum up to zero.

7. Fermionic 2-vertex is the only local many-fermion vertex [K12] being analogous to a mass
insertion. The non-triviality of fundamental 4-fermion vertex is due to classical interactions
between fermions at opposite throats of worm-hole. The non-triviality of the theory involves
also the analog of OZI mechanism: the fermionic lines inside partonic orbits are redistributed
in vertices. Lines can also turn around in time direction which corresponds to creation or
annihilation of a pair. 3-particle vertices are obtained only in topological sense as 3 space-
time surfaces are glued together at their ends. The interaction between fermions at different
wormhole throats is described in terms of string world sheets.

8. The earlier proposal was that the fermions in the internal fermion lines are massless in M4

sense but have non-physical helicity so that the algebraic M4 Dirac operator emerging from
the residue integration over internal four-momentum does not annihilate the state at the end
of the propagator line. Now the algebraic induced Dirac operator defines the propagator at
fermion lines. Should one assume generalization of non-physical helicity also now?

9. All this stuff must be lifted to twistorial level and one expects that the lift to S2 bundle allows
an alternative description of fermions and spinor structure so that one can speak of induced
twistor structure instead of induced spinor structure. This approach allows also a realization
of M4 conformal symmetries in terms of globally well-defined linear transformations so that it
might be that twistorialization is not a mere reformulation but provides a profound unification
of bosonic and fermionic degrees of freedom.
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7.4.2 The Emergence Of The Fundamental 4-Fermion Vertex And Of
Boson Exchanges

The emergence of the fundamental 4-fermion vertex and of boson exchanges deserves a more
detailed discussion.

1. I have proposed that the discontinuity of the Dirac operator at partonic two-surface (corner
of fermion line) defines both the fermion boson vertex and TGD analog of mass insertion
(not scalar but imbedding space vector) giving rise to mass parameter having interpretation
as Higgs vacuum expectation and various fermionic mixing parameters at QFT limit of TGD
obtained by approximating many-sheeted space-time of TGD with the single sheeted region of
M4 such that gravitational field and gauge potentials are obtained as sums of those associated
with the sheets.

2. Non-trivial scattering requires also correlations between fermions at different partonic 2-
surfaces. Both partonic 2-surfaces and string world sheets are needed to describe these
correlations. Therefore the string world sheets and partonic 2-surfaces cannot be dual: both
are needed and this means deviation from Witten’s theory. Fermion vertex corresponds to a
”corner” of a fermion line at partonic 2-surface at which generalized 4-D lines of Feynman
diagram meet and light-like fermion line changes to space-like one. String world sheet with its
corners at partonic 2-surfaces (wormhole throats) describes the momentum exchange between
fermions. The space-like string curve connecting two wormhole throats serves as the analog
of the exchanged gauge boson.

3. Two kinds of 4-fermion amplitudes can be considered depending on whether the string con-
nects throats of single wormhole contact (CP2 scale) or of two wormhole contacts (p-adic
length scale - typically of order elementary particle Compton length). If string worlds sheets
have 1-D CP2 projection, only Minkowskian string world sheets are possible. The exchange
in Compton scale should be assignable to the TGD counterpart of gauge boson exchange and
the fundamental 4-fermion amplitude should correspond to single wormhole contact: string
need not to be involved now. Interaction is basically classical interaction assignable to single
wormhole contact generalizing the point like vertex.

4. The possible TGD counterparts of BCFW recursion relations [B19] should use the twistorial
representations of fundamental 4-fermion scattering amplitude as seeds. Yangian invariance
poses very strong conditions on the form of these amplitudes and the exchange of massless
bosons is suggestive for the general form of amplitude.

The 4-fermion amplitude assignable to two wormhole throats defines the analog of gauge
boson exchange and is expressible as fusion of two fundamental 4-fermion amplitudes such
that the 8-momenta assignable to the fermion and anti-fermion at the opposite throats of
exchanged wormhole contact are complex by BCFW shift acting on them to make the ex-
changed momenta massless but complex. This entity could be called fundamental boson (not
elementary particle).

5. Can one assume that the fundamental 4-fermion amplitude allows a purely formal composi-
tion to a product of FFBv amplitudes, Bv a purely fictive boson? Two 8-momenta at both
FFBv vertices must be complex so that at least two external fermionic momenta must be
complex. These external momenta are naturally associated with the throats of the a worm-
hole contact defining virtual fundamental boson. Rather remarkably, without the assumption
about product representation one would have general four-fermion vertex rather than boson
exchange. Hence gauge theory structure is not put in by hand but emerges.

7.4.3 What About SUSY In TGD?

Extended super-conformal symmetry is crucial for TGD and extends to quaternion-super-conformal
symmetry giving excellent hopes about calculability of the theory. N = 4 space-time supersym-
metry is in the key role in the approach of Witten and others.

In TGD framework space-time SUSY could be present as an approximate symmetry.
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1. The many fermion states at partonic surfaces are created by oscillator operators of fermionic
Clifford algebra having also interpretation as a supersymmetric algebra but in principle hav-
ing N =∞. This SUSY is broken since the generators of SUSY carry four-momentum.

2. More concrete picture would be that various SUSY multiplets correspond to collinear many-
fermion states at the same wormhole throat. By fermionic statistics only the collinear states
for which internal quantum numbers are different are realized: other states should have
antisymmetric wave function in spatial degrees of freedom implying wiggling in CP2 scale so
that the mass of the state would be very high. In both quark and lepton sectors one would
have N = 4 SUSY so that one would have the analog N = ∀ SUSY (color is not spin-like
quantum number in TGD).

At the level of diagrammatics single line would be replaced with ”line bundle” representing the
fermions making the many-fermion state at the light-like orbit of the partonic 2-surface. The
fusion of neighboring collinear multifermion stats in the twistor diagrams could correspond
to the process in which partonic 2-surfaces and single and many-fermion states fuse.

3. Right handed neutrino modes, which are not covariantly constant, are also localized at the
fermionic lines and defines the least broken N = 2 SUSY. The covariantly constant mode
seems to be a pure gauge degree of freedom since it carriers no quantum numbers and the
SUSY norm associated with it vanishes. The breaking would be smallest for N = 2 variant
assignable to right-handed neutrino having no weak and color interactions with other particles
but whose mixing with left-handed neutrino already induces SUSY breaking.

Why this SUSY has not been observed? One can consider two scenarios [K71].

1. The first scenario relies on the absence of weak and color interactions: one can argue that
the bound states of fermions with right-handed neutrino are highly unstable since only grav-
itational interaction so that sparticle decays very rapidly to particle and right-handed or
left-handed neutrino. By Uncertainty Principle this makes sparticle very massive, maybe
having mass of order CP2 mass. Neutrino mixing caused by the mixing of M4 and CP2

gamma matrices in induced gamma matrices is the weak point of this argument.

2. The mixing of left and right-handed neutrinos could be characterized by the p-adic mass
scale of neutrinos and be long. Sparticles would have same p-adic mass scale as particles and
would be dark having non-standard value of Planck constant heff = n× h: this would scale
up the lifetime by factor n and correlate with breaking of conformal symmetry assignable to
the mixing [K71].

What implications the approximate SUSY would have for scattering amplitudes?

1. k = 2(n(F )− n(F ) condition reduces the number of amplitudes dramatically if the fermions
are massless in M4 sense but the presence of weak iso-spin implies that the number of
amplitudes is 2n as in non-supersymmetric gauge theories. One however expects broken
SUSY with generators consisting of fermionic oscillator operators at partonic 2-surfaces with
symmetry breaking taking place only at the level of physical particles identifiable as many
particle bound states of massless (in 8-D sense) particles. This motivates the guess that
the formal FFBv amplitudes defining fundamental 4-fermion vertex are expressible as those
associated with N = 4 SUSY in quark and lepton sectors respectively. This would reduce
the number of independent amplitudes to just one.

2. Since SUSY and its breaking emerge automatically in TGD framework, super-space can
provide a useful technical tool but is not fundamental.

Side note: The number of external fermions is always even suggesting that the super-
conformal anomalies plaguing the amplitudes with odd n (http://tinyurl.com/yb85tnvc
) [B42] are absent.

http://tinyurl.com/yb85tnvc
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7.4.4 What Does One Really Mean With The Induction Of Imbedding
Space Spinors?

The induction of spinor structure is a central notion of TGD but its detailed definition has remained
somewhat obscure. The attempt to generalize Witten’s approach has made it clear that the mere
restriction of spinor fields to space-time surfaces is not enough and that one must understand in
detail the correspondence between the modes of imbedding space spinor fields and those of induced
spinor fields.

Even the identification of space-time gamma matrices is far from obvious at string world
sheets.

1. The simplest notion of the space-time gamma matrices is as projections of imbedding space
gamma matrices to the space-time surface - induced gamma matrices. If one assumes that
induced spinor fields are defined at the entire space-time surfaces, this notion fails to be
consistent with fermionic super-conformal symmetry unless one replaces Kähler action by
space-time volume. This option is certainly unphysical.

2. The notion of Kähler-Dirac matrices in the interior of space as gamma matrices defined
as contractions of canonical momentum densities of Kähler with imbedding space gamma
matrices allows to have conformal super-symmetry with fermionic super charges assignable
to the modes of the induced spinor field. Also Chern-Simons action could define gamma
matrices in the same manner at the light-like 3-surfaces between Minkowskian and Euclidian
space-time regions and at space-like 3-surfaces at the ends of space-time surface. Chern-
Simons-Dirac matrices would involve only CP2 gamma matrices.

It is however not quite clear whether the spinor fields in the interior of space-time surface
are needed at all in the twistorial approach and they seem to be only an un-necessary complication.
For instance, their modes would have well-defined electromagnetic charge only when induced W
gauge fields vanish, which implies that CP2 projection is 2-dimensional. This forces to consider
very seriously the possibility that induced spinor fields reside at string world sheets only (their
ends are at partonic 2-surfaces). This option supported also by strong form of holography and
number theoretic universality.

What about the space-time gamma matrices at string world sheets and their boundaries?

1. The first option would be reduction of Kähler-Dirac gamma matrices by requiring that they
are parallel to the string world sheets. This however poses additional conditions besides the
vanishing of W fields already restricting the dimension to two in the generic case. The con-
ditions state that the imbedding space 1-forms defined by the canonical momentum densities
of Kähler action involve only 2 linearly independent ones and that they are proportional
to imbedding space coordinate gradients: this gives Frobenius conditions. These conditions
look first too strong but one can also think that one fixes first string world sheets, partonic
2-surfaces, and perhaps also their light-like orbits, requires that the normal components of
canonical momentum currents at string world sheets vanish, and deduces space-time surface
from this data. This would be nothing but strong form of holography!

For this option the string world sheets could emerge in the sense that it would be possible
to express Kähler action as an area of string world sheet in the effective metric defined by
the anticommutator of K-D gamma matrices appearing also in the expressions for the matrix
elements of WCW metric. Gravitational constant would be a prediction of the theory.

2. Second possibility is to use induced gamma matrices automatically parallel to the string
world sheet so that no additional conditions would result. This would also conform with the
ordinary view about string world sheets and spinors.

Supersymmetry would require the addition of the area of string world sheet to the action
defining Kähler function in Euclidian regions and its counterpart in Minkowskian regions.
This would bring in gravitational constant, which otherwise remains a prediction. Quantum
criticality could fix the ratio of ~G/R2 (R is CP2 radius). The vanishing of induced weak
gauge fields requires that string world sheets have 1-D CP2 projection and are thus restricted
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to Minkowskian regions with at most 3-D CP2 projection. Even stronger condition would be
that string world sheets are minimal surfaces in M4 × S1, S1 a geodesic sphere of CP2.

There are however grave objections. The presence of a dimensional parameter G as fun-
damental coupling parameter does not encourage hopes about the renomalizibility of the
theory. The idea that strings connecting partonic 2-surfaces gives rise to the formation of
gravitationally bound states is suggested by AdS/CFT correspondence. The problem is that
the string tension defined by gravitational constant is so large that only Planck length sized
bound states are feasible. Even the replacement ~→ ~eff fails to allow gravitationally bound
states with length scale of order Schwartschild radius. For the K-D option the string tension
behaves like 1/~2 and there are no problems in this respect.

At this moment my feeling is that the first option - essentially the original view - is the
correct one. The short belief that the second option is the correct choice was a sidetrack, which
however helped to become convinced that the original vision is indeed correct, and to understand
the general mechanism for the formation of bound states in terms of strings connection partonic
2-surfaces (in the earlier picture I talked about magnetic flux tubes carrying monopole flux: the
views are equivalent).

Both options have the following nice features.

1. Induced gammas at the light-like string boundaries would be light-like. Massless Dirac equa-
tion would assign to spinors at these lines a light-like space-time four-momentum and twisto-
rialize it. This four-momentum would be essentially the tangent vector of the light-like curve
and would not have a constant direction. Light-likeness for it means light-likeness in 8-D
sense since light-like curves in H correspond to non-like momenta in M4. Both M4 mass
squared and CP2 mass would be conserved. Even four-momentum could be conserved if M4

projection of stringy curve is geodesic line of M4.

2. A new connection with Equivalence Principle (EP) would emerge. One could interpret the
induced four-momentum as gravitational four-momentum which would be massless in 4-D
sense and correspond to inertial 8-momentum. EP wold state in the weakest form that only
the M4 masses associated with the two momenta are identical. Stronger condition would
be that that the Minkowski parts of the two momenta co-incide at the ends of fermion lines
at partonic 2-surfaces. Even stronger condition is that the 8-momentum is 8-momentum
is conserved along fermion line. This is certainly consistent with the ordinary view about
Feynman graphs. This is guaranteed if the light-like curve is light-like geodesic of imbedding
space.

The induction of spinor fields has also remained somewhat imprecise notion. It how seems
that quantum-classical correspondence forces a unique picture.

1. Does the induced spinor field co-incide with imbedding space spinor harmonic in some do-
main? This domain would certainly include the ends of fermionic lines at partonic 2-surfaces
associated with the incoming particles and vertices. Could it include also the boundaries of
string world sheets and perhaps also the string world sheets? The Kähler-Dirac equation
certainly does not allow this for entire space-time surface.

2. Strong form of holography suggest that the light-like momenta for the Dirac equation at
the ends of light-like string boundaries has interpretation as 8-D light-like momentum has
M4 projection equal to that of H spinor-harmonic. The mass squared of M4 momentum
would be same as the CP2 momentum squared in both senses. Unless the gravitational four-
momentum assignable to the induced Dirac operato r is conserved one cannot pose stronger
condition.

3. If the induced spinor mode equals to imbedding space-spinor mode also at fermion line, the
light like momentum is conserved. The fermion line would be also light-like geodesic of the
imbedding space so that twistor polygons would have very concrete interpretation. This
condition would be clearly analogous to the conditions in Witten’s twistor string theory. A
stronger condition would be that the mode of the imbedding space spinor field co-incides
with induced spinor field at the string world sheet.
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4. p-Adic mass calculations require that the massive excitations of imbedding space spinor
fields with CP2 mass scale are involved. The thermodynamics could be for fermion line,
wormhole throat carrying possible several fermions, or wormhole contact carrying fermion at
both throats. In the case of fermions physical intuition suggests that p-adic thermodynamics
must be associated with single fermionic line. The massive excitations would correspond to
light-like geodesics of the imbedding space.

To minimize confusion I must confess that until recently I have considered a different options
for the momenta associated with fermionic lines.

1. The action of the Kähler-Dirac operator on the induced spinor field at the fermionic line
equals to that of 4-D Dirac operator pkγk for a massless momentum identified as M4 mo-
mentum [K12].

Now the action reduces to that of 8-D massless algebraic Dirac operator for light-like string
boundaries in the case of induced gamma matrices. Explicit calculation shows that in case of
K-D gamma matrices and for light-like string boundaries it can happen that the 8-momentum
of the mode can be tachyonic. Intriguingly, p-adic mass calculations require a tachyonic
ground state?

2. For this option the helicities for virtual fermions were assumed to be non-physical in order to
get non-vanishing fermion lines by residue integration: momentum integration for Dirac op-
erator would replace Dirac propagators with Dirac operators. This would be the counterpart
for the disappearance of bosonic propagators in residue integration.

3. This option has problems: quantum classical correspondence is not realized satisfactorily and
the interpretation of p-adic thermodynamics is problematic.

7.4.5 About The Twistorial Description Of Light-Likeness In 8-D Sense
Using Octonionic Spinors

The twistor approach to TGD [K55] require that the expression of light-likeness of M4 momenta
in terms of twistors generalizes to 8-D case. The light-likeness condition for twistors states that
the 2× 2 matrix representing M4 momentum annihilates a 2-spinor defining the second half of the
twistor. The determinant of the matrix reduces to momentum squared and its vanishing implies
the light-likeness. This should be generalized to a situation in one has M4 and CP2 twistor which
are not light-like separately but light-likeness in 8-D sense holds true.

The case of M8 = M4 × E4

M8 −H duality [K53] suggests that it might be useful to consider first the twistorialiation of 8-D
light-likeness first the simpler case of M8 for which CP2 corresponds to E4. It turns out that
octonionic representation of gamma matrices provide the most promising formulation.

In order to obtain quadratic dispersion relation, one must have 2 × 2 matrix unless the
determinant for the 4× 4 matrix reduces to the square of the generalized light-likeness condition.

1. The first approach relies on the observation that the 2 × 2 matrices characterizing four-
momenta can be regarded as hyper-quaternions with imaginary units multiplied by a com-
muting imaginary unit. Why not identify space-like sigma matrices with hyper-octonion
units?

2. The square of hyper-octonionic norm would be defined as the determinant of 4 × 4 matrix
and reduce to the square of hyper-octonionic momentum. The light-likeness for pairs formed
by M4 and E4 momenta would make sense.

3. One can generalize the sigma matrices representing hyper-quaternion units so that they
become the 8 hyper-octonion units. Hyper-octonionic representation of gamma matrices
exists (γ0 = σz×1, γk = σy×Ik) but the octonionic sigma matrices represented by octonions
span the Lie algebra of G2 rather than that of SO(1, 7). This dramatically modifies the
physical picture and brings in also an additional source of non-associativity. Fortunately, the
flatness of M8 saves the situation.
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4. One obtains the square of p2 = 0 condition from the massless octonionic Dirac equation as
vanishing of the determinant much like in the 4-D case. Since the spinor connection is flat
for M8 the hyper-octonionic generalization indeed works.

This is not the only possibility that I have by-passingly considered [K12].

1. Is it enough to allow the four-momentum to be complex? One would still have 2× 2 matrix
and vanishing of complex momentum squared meaning that the squares of real and imaginary
parts are same (light-likeness in 8-D sense) and that real and imaginary parts are orthogonal
to each other. Could E4 momentum correspond to the imaginary part of four-momentum?

2. The signature causes the first problem: M8 must be replaced with complexified Minkowski
space M4

c for to make sense but this is not an attractive idea although M4
c appears as sub-

space of complexified octonions.

3. For the extremals of Kähler action Euclidian regions (wormhole contacts identifiable as defor-
mations of CP2 type vacuum extremals) give imaginary contribution to the four-momentum.
Massless complex momenta and also color quantum numbers appear also in the standard
twistor approach. Also this suggest that complexification occurs also in 8-D situation and is
not the solution of the problem.

The case of M8 = M4 × CP2

What about twistorialization in the case of M4 ×CP2? The introduction of wave functions in the
twistor space of CP2 seems to be enough to generalize Witten’s construction to TGD framework and
that algebraic variant of twistors might be needed only to realize quantum classical correspondence.
It should correspond to tangent space counterpart of the induced twistor structure of space-time
surface, which should reduce effectively to 4-D one by quaternionicity of the space-time surface.

1. For H = M4 × CP2 the spinor connection of CP2 is not trivial and the G2 sigma matrices
are proportional to M4 sigma matrices and act in the normal space of CP2 and to M4 parts
of octonionic imbedding space spinors, which brings in mind co-associativity. The octonionic
charge matrices are also an additional potential source of non-associativity even when one
has associativity for gamma matrices.

Therefore the octonionic representation of gamma matrices in entire H cannot be physical.
It is however equivalent with ordinary one at the boundaries of string world sheets, where
induced gauge fields vanish. Gauge potentials are in general non-vanishing but can be gauge
transformed away. Here one must be of course cautious since it can happen that gauge
fields vanish but gauge potentials cannot be gauge transformed to zero globally: topological
quantum field theories represent basic example of this.

2. Clearly, the vanishing of the induced gauge fields is needed to obtain equivalence with or-
dinary induced Dirac equation. Therefore also string world sheets in Minkowskian regions
should have 1-D CP2 projection rather than only having vanishing W fields if one requires
that octonionic representation is equivalent with the ordinary one. For CP2 type vacuum
extremals electroweak charge matrices correspond to quaternions, and one might hope that
one can avoid problems due to non-associativity in the octonionic Dirac equation. Unless
this is the case, one must assume that string world sheets are restricted to Minkowskian
regions. Also imbedding space spinors can be regarded as octonionic (possibly quaternionic
or co-quaternionic at space-time surfaces): this might force vanishing 1-D CP2 projection.

(a) Induced spinor fields would be localized at 2-surfaces at which they have no interaction
with weak gauge fields: of course, also this is an interaction albeit very implicit one!
This would not prevent the construction of non-trivial electroweak scattering amplitudes
since boson emission vertices are essentially due to re-groupings of fermions and based
on topology change.

(b) One could even consider the possibility that the projection of string world sheet to
CP2corresponds to CP2 geodesic circle so that one could assign light-like 8-momentum
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to entire string world sheet, which would be minimal surface in M4 × S1. This would
mean enormous technical simplification in the structure of the theory. Whether the
spinor harmonics of imbedding space with well-defined M4 and color quantum numbers
can co-incide with the solutions of the induced Dirac operator at string world sheets
defined by minimal surfaces remains an open problem.

(c) String world sheets cannot be present inside wormhole contacts which have 4-D CP2

projection so that string world sheets cannot carry vanishing induced gauge fields.

7.4.6 How To Generalize Witten’s Twistor String Theory To TGD Frame-
work?

The challenge is to lift the geometric description of particle like aspects of twistorial amplitudes
involving only algebraic curves (2-surfaces) in twistor space to TGD framework.

1. External particles correspond to the lifts of H-spinor harmonics to spinor harmonics in the
twistor space and are labeled by four-momentum, helicity, color, and weak helicity (isospin)
so that there should be no need to included fermions explicitly. The twistorial wave functions
would be superpositions of the eigenstates of helicity operator which would become a non-local
property in twistor space. Light-likeness would hold true in 8-D sense for spinor harmonics
as well as for the corresponding twistorial harmonics.

2. The surfaces X2 in Witten’s theory would be replaced with the lifts of partonic 2-surfaces
X2 to 4-D surfaces with bundle structure with X2 as base and S2 as fiber. S2 would be
non-dynamical. Whether X2 or its lift to 4-surface allows identification as algebraic surface
is not quite clear but it seems that X2 could be the relevant object identifiable as surface of
the base space of T (X4). If X2 is the basic object one would have the additional constraint
(not present in Witten’s theory) that it belongs to the base space X4. The genus of the lift
of X2 would be that of its base space X2. One obtains a union of partonic 2-surfaces rather
than single surface and lines connecting them as boundaries of string world sheets.

The n points of given X2 would correspond to the ends of boundaries of string world sheets at
the partonic 2-surface X2 carrying fermion number so that the helicities of twistorial spinor
modes would be highly fixed unless M4 chiralities mix making fermions massive in M4 sense.
This picture is in accordance with the fact that the lines of fundamental fermions should
correspond to QFT limit of TGD.

3. In TGD genus g of the partonic 2-surface labels various fermion families and g < 3 holds true
for physical fermions. The explanation could be that Z2 acts as global conformal symmetry
(hyper-ellipticity) for g < 3 surfaces irrespective of their conformal moduli but for g > 3 only
in for special moduli. Physically for g > 2 the additional handles would make the partonic
2-surface to behave like many-particle state of free particles defined by the handles.

This assumption suggests that assigns to the partonic surface what I have called modular
invariant elementary particle vacuum functional (EVPF) in modular degrees of freedom such
that for a particle characterized by genus g one has l ≥ g and l > g amplitudes are possible
because the EPVF leaks partially to higher genera [K10]. This would also induce a mixing of
boundary topologies explaining CKM mixing and its leptonic counterpart. In this framework
it would be perhaps more appropriate to define the number of loops as l1 = l − g.

A more precise picture is as follows. Elementary particles have actually four wormhole
throats corresponding to the two wormhole contacts. In the case of fermions the wormhole
throat carrying the electroweak quantum numbers would have minimum value g of genus
characterized by the fermion family. Furthermore, the universality of the standard model
physics requires that the couplings of elementary fermions to gauge bosons do not depend
on genus. This is the case if one has quantum superposition of the wormhole contacts
carrying the quantum numbers of observed gauge bosons at their opposite throats over the
three lowest genera g = 0, 1, 2 with identical coefficients. This meas SU(3) singlets for the
dynamical SU(3) associated with genus degeneracy. Also their exotic variants - say octets -
are in principle possible.



7.4. Witten’s Twistor String Approach And TGD 287

4. This description is not complete although already twistor string description involves integra-
tion over the conformal moduli of the partonic 2-surface. One must integrate over the “world
of classical worlds” (WCW) -roughly over the generalized Feynman diagrams and their com-
plements consisting of Minkowskian and Euclidian regions. TGD as almost topological QFT
reduces this integration to that of the boundaries of space-time regions.

By quaternion conformal invariance [K55] this functional integral could reduce to ordinary
integration over the quaternionic-conformal moduli space of space-time surfaces for which the
moduli space of partonic 2-surfaces should be contained (note that strong form of holography
suggests that only the modular invariants associated with the tangent space data should enter
the description). One might hope that twistor space approach allows an elegant description
of the moduli assignable to the tangent space data.

7.4.7 Yangian Symmetry

One of the victories of the twistor Grassmannian approach is the discovery of Yangian symmetry
[A30], [B24, B29], [K55], whose variant associated with extended super-conformal symmetries is
expected to be in key role in TGD.

1. The very nature of the residue integral implies that the complex surface serving as the
locus of the integrand of the twistor amplitude is highly non-unique. Indeed, the Yangian
symmetry [K55] acting as multi-local symmetry and implying dual of ordinary conformal
invariance acting on momentum twistors, has been found to reduce to diffeomorphisms of
G(k, n) respecting positivity property of the decomposition of G(k, n) to polyhedrons. It is
quite possible that this symmetry corresponds to quaternion conformal symmetries in TGD
framework.

2. Positivity of a given regions means parameterization by non-negative coordinates in TGD
framework a possible interpretation is based on the observation that canonical identification
mapping reals to p-adic number and vice versa is well-defined only for non-negative real
numbers. Number theoretical Universality of spinor amplitudes so that they make sense in
all number fields, would therefore be implied.

3. Could the crucial Yangian invariance generalizing the extended conformal invariance of TGD
could reduce to the diffeomorphisms of the extended twistor space T (H) respecting positivity.
In the case of CP2 all coordinates could be regarded as angle coordinates and be replaced
by phase factors coding for the angles which do not make sense p-adically. The number
theoretical existence of phase factors in p-adic case is guaranteed if they belong to some
algebraic extension of rationals and thus also p-adics containing these phases as roots of
unity. This implies discretization of CP2.

ZEO allows to reduce the consideration to causal diamond CD defined as an intersection of
future and past directed light-cones and having two light-like boundaries. CD is indeed a
natural counterpart for S4. One could use as coordinates light-cone proper time a invari-
ant under Lorentz transformations of either boundary of CD, hyperbolic angle η and two
spherical angles (θ, φ). The angle variables allow representation in terms of finite algebraic
extension. The coordinate a is naturally non-negative and would correspond to positivity.
The diffeomorphisms perhaps realizing Yangian symmetry would respect causality in the
sense that they do not lead outside CD.

Quaternionic conformal symmetries the boundaries of CD×CP2 continued to the interior by
translation of the light-cones serve as a good candidates for the diffeomorphisms in question
since they do not change the value of the Minkowski time coordinate associated with the line
connecting the tips of CD.

7.4.8 Does BCFW Recursion Have Counterpart In TGD?

Could BCFW recursion for tree diagrams and its generalization to diagrams with loops have a
generalization in TGD framework? Could the possible TGD counterpart of BCFW recursion have
a representation at the level of the TGD twistor space allowing interpretation in terms of geometry
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of partonic 2-surfaces and associated string world sheets? Supersymmetry is essential ingredient
in obtaining this formula and the proposed SUSY realized at the level of amplitudes and broken
at the level of states gives hopes for it. One could however worry about the fact that spinors are
Dirac spinors in TGD framework and that Majorana property might be essential element.

How to produce Yangian invariants

Nima Arkani-Hamed et al [B29] (http://tinyurl.com/y97rlzqb ) describe in detail various man-
ners to form Yangian invariants defining the singular parts of the integrands of the amplitudes
allowing to construct the full amplitudes. The following is only a rough sketch about what is
involved using particle picture and I cannot claim of having understood the details.

1. One can add particle ((k, n)→ (k+ 1, n+ 1)) to the amplitude by deforming the momentum
twistors of two neighboring particles in a manner depending on the momentum twistor of the
added particle. One inserts the new particle between n-1:th and 1st particle, modifies their
momentum twistors without changing their four-momenta, and multiplying the resulting
amplitude by a twistor invariant known as [n − 2, n − 1, n, 1, 2] so that there is dependence
on the added n:th momentum twistor.

2. One can remove particle ((k, n)→ (k− 1, n− 1)) by contour integrating over the momentum
twistor variable of one particle.

3. One can fuse invariants simply by multiplying them.

4. One can merge invariants by identifying momentum twistors appearing in the two invariants.
The integration over the common twistor leads to an elimination of particle.

5. One can form a BCFW bridge between n1 + 1-particle invariant and n2 + 1-particle invariant
to get n = n1 + n2-particle invariant using the operations listed. One starts with the fusion
giving the product I1(1, ..., n1, I)I2(n1+1, ..n, I) of Yangian invariants followed by addition of
n1 +1 to I1 between n1 and I and 1 to I2 between I and n1 +1 (see the first item for details).
After that follows the merging of lines labelled by I next to n1 in I1 and the predecessor of
n1 + 1 in I2 reducing particle number by one unit and followed by residue integration over
ZI reducing particle number further by one unit so that the resulting amplitude is n-particle
amplitude.

6. One can perform entangled removal of two particles. One could remove them one-by-one by
independent contour integrations but one can also perform the contour integrations in such
a manner that one first integrates over two twistors at the same complex line and then over
the lines: this operation adds to n-particle amplitude loop.

BCFW recursion formula

BCFW recursion formula allows to express n-particle amplitudes with l loops in terms of amplitudes
with amplitudes having at most l−1 loops. The basic philosophy is that singularities serve as data
allowing to deduce the full integrands of the amplitudes by generalized unitarity and other kinds
of arguments.

Consider first the arguments behind the BCFW formula.

1. BCFW formula is derived by performing the canonical momentum twistor deformation Zn →
zn+zZn−1, multiplying by 1/z and performing integration along small curve around origin so
that one obtains original amplitude from the residue inside the curve. One obtains also and
alternative of the residue integral expression as sum of residues from its complement. The
singularities emerge by residue integral from poles of scattering amplitudes and eliminate two
lines so that the recursion formula for n-particle amplitude can involve at most n+2-particle
amplitudes.

It seems that one must combine all n-particle amplitudes to form a single entity defining the
full amplitude. I do not quite understand what how this is done. In ZEO zero energy state
involving different particle numbers for the final state and expressible in terms of S-matrix
(actually its generalization to what I call M-matrix) might allow to understand this.

http://tinyurl.com/y97rlzqb


7.4. Witten’s Twistor String Approach And TGD 289

2. In the general formula for the BCFW bridge of the ”left” and ”right” amplitudes one has
nL + nR = n+ 2, kL + kR = k − 1, and lL + lR = l.

3. The singularities are easy to understand in the case of tree amplitudes: they emerge from the
poles of the conformally invariant quantities in the denominators of amplitudes. Physically
this means that the sum of the momenta for a subset of particles corresponds to a complex
pole (BCFW deformation makes two neighboring momenta complex). Hence one obtains
sum over products of j+ 1-particle amplitudes BCFW bridged with n− j-particle amplitude
to give n-particle amplitude by the merging process.

4. This is not all that is needed since the diagrams could be reduced to products of 1 loop
3-particle amplitudes which vanish by the triviality of coupling constant evolution in N = 4
SUSY. Loop amplitudes serving as a kind of source in the recursion relation save the situation.
There is indeed also a second set of poles coming from loop amplitudes.

One-loop case is the simplest one. One begins from n+ 2 particle amplitude with l−1 loops.
At momentum space level the momenta the neighboring particles have opposite light-like
momenta: one of the particles is not scattered at all. This is called forward limit. This limit
suffers from collinear divergences in a generic gauge theory but in supersymmetric theories the
limit is well-defined. This forward limit defines also a Yangian invariant at the level of twistor
space. It can be regarded as being obtained by entangled removal of two particles combined
with merge operation of two additional particles. This operation leads from (n + 2, l − 1)
amplitude to (n, l) amplitude.

Does BCFW formula make sense in TGD framework?

In TGD framework the four-fermion amplitude but restricted so that two outgoing particles have
(in general) complex massless 8-momenta is the basic building brick. This changes the character
of BCFW recursion relations although the four-fermion vertex effectively reduces to FFB vertex
with boson identified as wormhole contact carrying fermion and antifermion at its throats.

The fundamental 4-fermion vertices assignable to wormhole contact could be formally ex-
pressed in terms of the product of two FFBv vertices (MHV expression), where Bv is purely formal
gauge boson, using the analog of MHV expression and taking into account that the second FF
pair is associated with wormhole contact analogous to exchanged gauge boson.

If the fermions at fermion lines of the same partonic 2-surface can be assumed to be collinear
and thus to form single coherent particle like unit, the description as superspace amplitude seems
appropriate. Consequently, the effective FFBv vertices could be assumed to have supersymmetry
defined by the fermionic oscillator operator algebra at the partonic 2-surface (Clifford algebra).
A good approximation is to restrict this algebra to that generating various spinor components of
imbedding space spinors so that N = 4 SUSY is obtained in leptonic and quark sector. Together
these give rise to N = 8 SUSY at the level of vertices broken however at the level of states.

Side note: The number of external fermions is always even suggesting that the super-
conformal anomalies plaguing the SUSY amplitudes with odd n (http://tinyurl.com/yb85tnvc
) [B42] are absent in TGD: this would be basically due to the decomposition of gauge bosons to
fermion pairs.

The leading singularities of scattering amplitudes would naturally correspond to the bound-
aries of the moduli space for the unions of partonic 2-surfaces and string world sheets.

1. The tree contribution to the gauge boson scattering amplitudes with k = 0, 1 vanish as
found by Parke and Taylor who also found the simple twistorial form for the k = 2 case
(http://tinyurl.com/y7nas26b ). In TGD framework, where lowest amplitude is 4-fermion
amplitude, this situation is not encountered. According to Wikipedia article the so called
CSW rules inspired by Witten’s twistor theory have a problem due to the vanishing of ++−
vertex which is not MHV form unless one changes the definition of what it is to be ”wrong
helicity”. + +− is needed to construct + + ++ amplitude at one loop which does not vanish
in YM theory. In SUSY it however vanishes.

In TGD framework one does not encounter these problems since 4-fermion amplitudes are
the basic building bricks. Fermion number conservation and the assumption that helicities
do not mix (light-likeness in M4 rather than only M8-sense) implies k = 2(n(F )− n(F ).

http://tinyurl.com/yb85tnvc
http://tinyurl.com/y7nas26b
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In the general formula for the BCFW bridge of the ”left” and ”right” amplitudes one has
nL + nR = n + 2, kL + kR = k − 1. If the TGD counterpart of the bridge eliminates two
antifermions with the same ”wrong” helicity -1/2, and one indeed has kL + kR = k − 1
if fermions have well-defined M4 helicity rather than being in superposition in completely
correlated M4 and CP2 helicities.

2. In string theory loops correspond to handles of a string world sheet. Now one has partonic
2-surfaces and string world sheets and both can in principle have handles. The condition
l ≥ g of Witten’s theory suggests that l− g defines the handle number for string world sheet
so that l is the total number of handles.

The identification of loop number as the genus of partonic 2-surface is second alternative: one
would have l = g and string world sheets would not contain handles. This might be forced by
the Minkowskian signature of the induced metric at string world sheet. The signature of the
induced metric would be presumably Euclidian in some region of string world sheet since the
M4 projection of either homology generator assignable with the handle would presumably
define time loop in M4 since the derivative of M4 time coordinate with respect to string
world sheet time should vanish at the turning points for M4 time. Minimal surface property
might eliminate Euclidian regions of the string world sheet. In any case, the area of string
world sheet would become complex.

3. In the moduli space of partonic 2-surfaces first kind of leading singularities could correspond
to pinches formed as n partonic 2-surfaces decomposes to two 2-surfaces having at least
single common point so that moduli space factors into a Cartesian product. This kind of
singularities could serve as counterparts for the merge singularities appearing in the BCFW
bridging of amplitudes. The numbers of loops must be additive and this is consistent with
both interpretations for l.

4. What about forward limit? One particle should go through without scattering and is elimi-
nated by entangled removal. In ZEO one can ask whether there is also quantum entanglement
between the positive and negative energy parts of this single particle state and state func-
tion reduction does not occur. The addition of particle and merging it with another one
could correspond to a situation in which two points of partonic 2-surface touch. This means
addition of one handle so that loop number l increases.

It seems that analytically the loop is added by the entangled removal but at the level of
partonic surface it is added by the merging. Also now both l > g and l = g options make
sense.

7.4.9 Possible Connections Of TGD Approach With The Twistor Grass-
mannian Approach

For a non-specialist lacking the technical skills, the work related to twistors is a garden of mysteries
and there are a lot of questions to be answered: most of them of course trivial for the specialist.
The basic questions are following.

How the twistor string approach of Witten and its possible TGD generalization relate to the
approach involving residue integration over projective sub-manifolds of Grassmannians G(k, n)?

1. In [B30] Nima et al argue that one can transform Grassmannian representation to twistor
string representation for tree amplitudes. The integration over G(k, n) translates to integra-
tion over the moduli space of complex curves of degree d = k − 1 + l, l ≥ g is the number of
loops. The moduli correspond to complex coefficients of the polynomial of degree d and they
form naturally a projective space since an overall scaling of coefficients does not change the
surfaces. One can expect also in the general case that moduli space of the partonic 2-surfaces
can be represented as a projective sub-manifold of some projective space. Loop corrections
would correspond to the inclusion of higher degree surfaces.

2. This connection gives hopes for understanding the integration contours in G(k, n) at deeper
level in terms of the moduli spaces of partonic 2-surfaces possibly restricted by conformal
gauge conditions.
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Below I try to understand and relate the work of Nima Arkani Hamed et al with twistor
Grassmannian approach to TGD.

The notion of positive Grassmannian

The notion of positive Grassmannian is one of the central notions introduced by Nima et al.

1. The claim is that the sub-spaces of the real Grassmannian G(k, n) contributing to the am-
plitudes for + +−− signature are such that the determinants of the k× k minors associated
with ordered columns of the k × n matrix C representing point of G(k, n) are positive. To
be precise, the signs of all minors are positive or negative simultaneously: only the ratios of
the determinants defining projective invariants are positive.

2. At the boundaries of positive regions some of the determinants vanish. Some k-volumes
degenerate to a lower-dimensional volume. Boundaries are responsible for the leading singu-
larities of the scattering amplitudes and the integration measure associated with G(k, n) has
a logarithmic singularity at the boundaries. These boundaries would naturally correspond to
the boundaries of the moduli space for the partonic 2-surfaces. Here also string world sheets
could contribute to singularities.

3. This condition has a partial generalization to the complex case: the determinants whose ratios
serve as projectively invariant coordinates are non-vanishing. A possible further manner to
generalize this condition would be that the determinants have positive real part so that apart
from rotation by π/2 they would reside in the upper half plane of complex plane. Upper
half plane is the hyperbolic space playing key role in complex analysis and in the theory
of hyperbolic 2-manifolds for which it serves as universal covering space by a finite discrete
subgroup of Lorentz group SL(2, C). The upper half-plane having a deep meaning in the
theory of Riemann surfaces might play also a key role in the moduli spaces of partonic 2-
surfaces. The projective space would be based - not on projectivization of Cn but that of
Hn, H the upper half plane.

Could positivity have some even deeper meaning?

1. In TGD framework the number theoretical universality of amplitudes suggests this. Canonical
identification maps

∑
xnp

n →
∑
xnp

−n p-adic number to non-negative reals. p-Adicization
is possible for angle variables by replacing them by discrete phases, which are roots of unity.
For non-angle like variables, which are non-negative one uses some variant of canonical iden-
tification involving cutoffs [K79]. The positivity should hold true for all structures involved,
the G(2, n) points defined by the twistors characterizing momenta and helicities of particles
(actually pairs of orthogonal planes defined by twistors and their conjugates), the moduli
space of partonic 2-surfaces, etc...

2. p-Adicization requires discretization of phases replacing angles so that they come as roots
of unity associated with the algebraic extension used. The p-adic valued counterpart of
Riemann or Lebesque integral does not make sense p-adically. Residue integrals can however
allow to define p-adic integrals by analytic continuation of the integral and discretization of
the phase factor along the integration contour does not matter (not however the p-adically
troublesome factor 2π!).

3. TGD suggests that the generalization of positive real projectively invariant coordinates to
complex coordinates of the hyperbolic space representable as upper half plane, or equivalently
as unit disk obtained from the upper half plane by exponential mapping w = exp(iz): positive
coordinate α would correspond to the radial coordinate for the unit disk (Poincare hyperbolic
disk appearing in Escher’s paintings). The real measure dα/α would correspond to dz =
dw/w restricted to a radial line from origin to the boundary of the unit disk. This integral
should correspond to integral over a closed contour in complex case. This is the case if
the integrand is discontinuity over a radial cut and equivalent with an integral over curve
including also the boundary of the unit disk. This integral would reduce to the sum of the
residues of poles inside the unit disk.
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The notion of amplituhedron

The notion of amplituhedron is the latest step of progress in the twistor Grassmann approach
[B14, B13]. What is so remarkable, is the simplicity of the expressions for all-loop amplitudes and
the fact that positivity implies locality and unitarity for N = 4 SUSY.

Consider first tree amplitudes with general value of k.

1. The notion of amplituhedron relies on the mapping of G(k, n) to G+(k, k + m) n ≥ k + m.
G+(k, k+m) is positive Grassmannian characterized by the condition that all k× k- minors
k × (k +m) matrix representing the point of G+(k, k +m) are non-non-negative and vanish
at the boundaries G+(k, k + m). The value of m is m = 4 and follows from the conditions
that amplitudes come out correctly. The constraint Y = C · Z, where Y corresponds to
point of G+(k, k + 4) and Z to the point of G(k, n) performs this mapping, which is clearly
many-to one. One can decompose G+(k, k + 4) to positive regions intersecting only along
their common boundary portions. The decomposition of a convex polygon in plane represent
the basic example of this kind of decomposition.

2. Each decomposition defines a sum of contributions to the scattering amplitudes involving
integration of a projectively invariant volume form over the positive region in question. The
form has a logarithmic singularity at the boundaries of the integration region but spurious
singularities cancel so that only the contribution of the genuine boundary of G+(k, k + 4)
remains. There are additional delta function constraints fixing the integral completely in real
case.

3. In complex case one has residue integral. The proposed generalization to the complex case is
by analytic continuation. TGD inspired proposal is that the positivity condition in the real
case is generalized to the condition that the positive coordinates are replaced by complex
coordinates of hyperbolic space representable as upper half plane or equivalently as the unit
disk obtained from upper half plane by exponential mapping w = exp(iz). The measure dα/α
would correspond to dz = dw/w. If taken over boundary circle labelled by discrete phase
factors exp(iφ) given by roots of unity the integral would be numerically a discrete Riemann
sum making no sense p-adically but residue theorem could allow to avoid the discretizaton
and to define the p-adic variant of the integral by analytic continuation. These conditions
would be completely general conditions on various projectively invariant moduli involved.

4. One must extend the bosonic twistors Za of external particles by adding k coordinates.
Somewhat surprisingly, these coordinates are anticommutative super-coordinates expressible
as linear combinations of fermionic parts of super-twistor using coefficients, which are also
Grassmann numbers. Integrating over these one ends up with the standard expression of
the amplitude using canonical integration measure for the regions in the decomposition of
amplituhedron.

What looks to me intriguing is that there is only super-integration involved over the additional
k degrees of freedom. In Witten’s approach k− 1 corresponds to the minimum degree of the
polynomial defining the string world sheet representing tree diagram. In TGD framework
k + 1 (rather than k − 1) could correspond to the minimum degree of partonic 2-surface.
In TGD approximate SUSY would correspond to Grassmann algebra of fermionic oscillator
operators defined by the spinor basis for imbedding space spinors. The interpretation could
be that each fermion whose helicity differs from that allowed by light-likeness in M4 sense
(this requires non-vanishing M4 mass), contributes ∆k = 1 to the degree of corresponding
partonic 2-surface. Since the partonic 2-surface is common for all particles, one must have
d = k + 1 at least. The k-fold super integration would be basically integral over the moduli
characterizing the polynomials of degree k realizing quantum classical correspondence in
fermionic degrees of freedom.

BFCW recursion formula involves also loop amplitudes for which amplituhedron provides
also a very nice representation.

1. The basic operation is the addition of a loop to get (n, k, l) amplitude from (n + 2, k, l − 1)
amplitude. That 2 particles must be removed for each loop is not obvious in N = 4 SUSY
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but follows from the condition that positivity of the integration domain is preserved. This
procedure removes from (n+2, k, l−1)-amplitude 2 particles with opposite four-momenta so
that (n, k, l) amplitude is obtained. In the case of L-loops one extends G(k, n) by adding its
”complement” as a Cartesian factor G(n− k, n) and imbeds to G(n− k, n) 2-plane for each
loop. Positivity conditions can be generalized so that they apply to (k+2l)× (k+2l)-minors
associated with matrices having as rows 0 ≤ l ≤ L ordered Dik :s and of C. The general
expressions of the loop contributions are of the same form as for tree contributions: only the
number of integration variables is 4× (k + L).

2. As already explained, in TGD framework the addition of loop would correspond to the for-
mation of a handle to the partonic surface by fusing two points of partonic 2-surface and
thus creating a surface intermediate between topologies with g and g+1 handles. g would
correspond to the genus characterizing fermion family and one would have L ≥ g. In ele-
mentary particle wave functionals loop [K10] contributions would correspond to higher genus
contributions l1 = l−g > 0 with basic contribution coming from genus g. For scattering am-
plitudes loop contributions would involve the change of the genus of the incoming wormhole
throat so that they correspond to singular surfaces at the boundaries of their moduli space
identifiable as loop corrections. l1 = l − g > 0 would represent the number of pinches of the
partonic 2-surface.

What about non-planar amplitudes?

Non-planar Feynman diagrams have remained a challenge for the twistor approach. The problem
is simple: there is no canonical ordering of the extrenal particles and the loop integrand involving
tricky shifts in integrations to get finite outcome is not unique and well-defined so that twistor
Grasmann approach encounters difficulties.

Recently Nima Arkani-Hamed et al have considered also non-planar MHV diagrams [B31]
(having minimal number of ”wrong” helicities) of N=4 SUSY, and shown that they can be reduced
to non-planar diagrams for different permutations of vertices of planar diagrams ordered naturally.
There are several integration regions identified as positive Grassmannians corresponding to different
orderings of the external lines inducing non-planarity. This does not however hold true generally.

At the QFT limit the crossings of lines emerges purely combinatorially since Feynman di-
agrams are purely combinatorial objects with the ordering of vertices determining the topological
properties of the diagram. Non-planar diagrams correspond to diagrams, which do not allow
crossing-free imbedding to plane but require higher genus surface to get rid of crossings.

1. The number of the vertices of the diagram and identification of lines connecting them deter-
mines the diagram as a graph. This defines also in TGD framework Feynman diagram like
structure as a graph for the fermion lines and should be behind non-planarity in QFT sense.

2. Could 2-D Feynman graphs exists also at geometric rather than only combinatorial level?
Octonionization at imbedding space level requires identification of preferred M2 ⊂M4 defin-
ing a preferred hyper-complex sub-space. Could the projection of the Fermion lines defined
concrete geometric representation of Feynman diagrams?

3. Despite their purely combinatorial character Feynman diagrams are analogous to knots and
braids. For years ago [K25] I proposed the generalization of the construction of knot invariants
in which one gradually eliminates the crossings of the knot projection to end up with a trivial
knot is highly suggestive as a procedure for constructing the amplitudes associated with the
non-planar diagrams. The outcome should be a collection of planar diagrams calculable
using twistor Grassmannian methods. Scattering amplitudes could be seen as analogs of
knot invariants. The reduction of MHV diagrams to planar diagrams could be an example
of this procedure.

One can imagine also analogs of non-planarity, which are geometric and topological rather
than combinatorial and not visible at the QFT limit of TGD.

1. The fermion lines representing boundaries of string world sheets at the light-like orbits of
partonic 2-surfaces can get braided. The same can happen also for the string boundaries at
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space-like 3-surfaces at the ends of the space-time surface. The projections of these braids to
partonic 2-surfaces are analogs of non-planar diagrams. If the fermion lines at single wormhole
throat are regarded effectively as a line representing one member of super-multiplet, this kind
of braiding remains below the resolution used and cannot correspond to the braiding at QFT
limit.

2. 2-knotting and 2-braiding are possible for partonic 2-surfaces and string world sheets as
2-surfaces in 4-D space-time surfaces and have no counterpart at QFT limit.

7.4.10 Permutations, Braidings, And Amplitudes

In [B27] Nima Arkani-Hamed demonstrates that various twistorially represented on-mass-
shell amplitudes (allowing light-like complex momenta) constructible by taking products of
the 3-particle amplitude and its conjugate can be assigned with unique permutations of the
incoming lines. The article describes the graphical representation of the amplitudes and its
generalization. For 3-particle amplitudes, which correspond to + + − and + − − twistor
amplitudes, the corresponding permutations are cyclic permutations, which are inverses of
each other. One actually introduces double cover for the labels of the particles and speaks of
decorated permutations meaning that permutation is always a right shift in the integer and
in the range [1, 2× n].

Amplitudes as representation of permutations

It is shown that for on mass shell twistor amplitudes the definition using on-mass-shell 3-
vertices as building bricks is highly reducible: there are two moves for squares defining
4-particle sub-amplitudes allowing to reduce the graph to a simpler one. The first ove is
topologically like the s-t duality of the old-fashioned string models and second one corresponds
to the transformation black ↔ white for a square sub-diagram with lines of same color at
the ends of the two diagonals and built from 3-vertices.

One can define the permutation characterizing the general on mass shell amplitude by a
simple rule. Start from an external particle a and go through the graph turning in in white
(black) vertex to left (right). Eventually this leads to a vertex containing an external particle
and identified as the image P (a) of the a in the permutation. If permutations are taken as
right shifts, one ends up with double covering of permutation group with 2 × n! elements -
decorated permutations. In this manner one can assign to any any line of the diagram two
lines. This brings in mind 2-D integrable theories where scattering reduces to braiding and
also topological QFTs where braiding defines the unitary S-matrix. In TGD parton lines
involve braidings of the fermion lines so that an assignment of permutation also to vertex
would be rather nice.

BCFW bridge has an interpretation as a transposition of two neighboring vertices affecting
the lines of the permutation defining the diagram. One can construct all permutations as
products of transpositions and therefore by building BCFW bridges. BCFW bridge can be
constructed also between disjoint diagrams as done in the BCFW recursion formula.

Can one generalize this picture in TGD framework? There are several questions to be an-
swered.

(a) What should one assume about the states at the light-like boundaries of string world
sheets? What is the precise meaning of the supersymmetry: is it dynamical or gauge
symmetry or both?

(b) What does one mean with particle: partonic 2-surface or boundary line of string world
sheet? How the fundamental vertices are identified: 4 incoming boundaries of string
world sheets or 3 incoming partonic orbits or are both aspects involved?

(c) How the 8-D generalization of twistors bringing in second helicity and doubling the M4

helicity states assignable to fermions does affect the situation?
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(d) Does the crucial right-left rule relying heavily on the possibility of only 2 3-particle
vertices generalize? Does M4 massivation imply more than 2 3-particle vertices implying
many-to-one correspondence between on-mass-shell diagrams and permutations? Or
should one generalize the right-left rule in TGD framework?

Fermion lines for fermions massless in 8-D sense

What does one mean with particle line at the level of fermions?

(a) How the addition of CP2 helicity and complete correlation between M4 and CP2 chi-
ralities does affect the rules of N = 4 SUSY? Chiral invariance in 8-D sense guarantees
fermion number conservation for quarks and leptons separately and means conservation
of the product of M4 and CP2 chiralities for 2-fermion vertices. Hence only M4 chiral-
ity need to be considered. M4 massivation allows more 4-fermion vertices than N = 4
SUSY.

(b) One can assign to a given partonic orbit several lines as boundaries of string world sheets
connecting the orbit to other partonic orbits. Supersymmetry could be understoond in
two manners.

i. The fermions generating the state of super-multiplet correspond to boundaries of
different string world sheets which need not connect the string world sheet to same
partonic orbit. This SUSY is dynamical and broken. The breaking is mildest
breaking for line groups connected by string world sheets to same partonic orbit.
Right handed neutrinos generated the least broken N = 2 SUSY.

ii. Also single line carrying several fermions would provide realization of generalized
SUSY since the multi-fermion state would be characterized by single 8-momentum
and helicity. One would have N = 4 SUSY for quarks and leptons separately and
N = 8 if both quarks and leptons are allowed. Conserved total for quark and
antiquarks and leptons and antileptons characterize the lines as well.
What would be the propagator associated with many-fermion line? The first guess
is that it is just a tensor power of single fermion propagator applied to the tensor
power of single fermion states at the end of the line. This gives power of 1/p2n to the
denominator, which suggests that residue integral in momentum space gives zero
unless one as just single fermion state unless the vertices give compensating powers
of p. The reduction of fermion number to 0 or 1 would simplify the diagrammatics
enormously and one would have only 0 or 1 fermions per given string boundary line.
Multi-fermion lines would represent gauge degrees of freedom and SUSY would be
realized as gauge invariance. This view about SUSY clearly gives the simplest
picture, which is also consistent with the earlier one, and will be assumed in the
sequel

(c) The multiline containing n fermion oscillator operators can transform by chirality mixing
in 2n manners at 4-fermion vertex so that there is quite a large number of options for
incoming lines with ni fermions.

(d) In 4-D Dirac equation light-likeness implies a complete correlation between fermion
number and chirality. In 8-D case light-likeness should imply the same: now chirality
correspond to fermion number. Does this mean that one must assume just superposition
of different M4 chiralities at the fermion lines as 8-D Dirac equation requires. Or should
one assume that virtual fermions at the end of the line have wrong chirality so that
massless Dirac operator does not annihilate them?

Fundamental vertices

One can consider two candidates for fundamental vertices depending on whether one identifies
the lines of Feynman diagram as fermion lines or as light-like orbits of partonic 2-surfaces.
The latter vertices reduces microscopically to the fermionic 4-vertices.
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(a) If many-fermion lines are identified as fundamental lines, 4-fermion vertex is the fun-
damental vertex assignable to single wormhole contact in the topological vertex defined
by common partonic 2-surface at the ends of incoming light-like 3-surfaces. The discon-
tinuity is what makes the vertex non-trivial.

(b) In the vertices generalization of OZI rule applies for many-fermion lines since there are
no higher vertices at this level and interactions are mediated by classical induced gauge
fields and chirality mixing. Classical induced gauge fields vanish if CP2 projection is
1-dimensional for string world sheets and even gauge potentials vanish if the projection
is to geodesic circle. Hence only the chirality mixing due to the mixing of M4 and
CP2 gamma matrices is possible and changes the fermionic M4 chiralities. This would
dictate what vertices are possible.

(c) The possibility of two helicity states for fermions suggests that the number of amplitudes
is considerably larger than in N = 4 SUSY. One would have 5 independent fermion
amplitudes and at each 4-fermion vertex one should be able to choose between 3 options
if the right-left rule generalizes. Hence the number of amplitudes is larger than the
number of permutations possibly obtained using a generalization of right-left rule to
right-middle-left rule.

(d) Note however that for massless particles in M4 sense the reduction of helicity combina-
tions for the fermion and antifermion making virtual gauge boson happens. The fermion
and antifermion at the opposite wormhole throats have parallel four-momenta in good
approximation. In M4 they would have opposite chiralities and opposite helicities so
that the boson would be M4 scalar. No vector bosons would be obtained in this manner.

In 8-D context it is possible to have also vector bosons since the M4 chiralities can be
same for fermion and anti-fermion. The bosons are however massive, and even photon is
predicted to have small mass given by p-adic thermodynamics [K28]. Massivation brings
in also the M4 helicity 0 state. Only if zero helicity state is absent, the fundamental
four-fermion vertex vanishes for + + ++ and −−−− combinations and one extend the
right-left rule to right-middle-left rule. There is however no good reason for he reduction
in the number of 4-fermion amplitudes to take place.

Partonic surfaces as 3-vertices

At space-time level one could identify vertices as partonic 2-surfaces.

(a) At space-time level the fundamental vertices are 3-particle vertices with particle identi-
fied as wormhole contact carrying many-fermion states at both wormhole throats. Each
line of BCFW diagram would be doubled. This brings in mind the representation of
permutations and leads to ask whether this representation could be re-interpreted in
TGD framework. For this option the generalization of the decomposition of diagram
to 3-particle vertices is very natural. If the states at throats consist of bound states of
fermions as SUSY suggests, one could characterize them by total 8-momentum and he-
licity in good approximation. Both helicities would be however possible also for fermions
by chirality mixing.

(b) A genuine decomposition to 3-vertices and lines connecting them takes place if two of
the fermions reside at opposite throats of wormhole contact identified as fundamental
gauge boson (physical elementary particles involve two wormhole contacts).

The 3-vertex can be seen as fundamental and 4-fermion vertex becomes its microscopic
representation. Since the 3-vertices are at fermion level 4-vertices their number is greater
than two and there is no hope about the generalization of right-left rule.

OZI rule implies correspondence between permutations and amplitudes

The realization of the permutation in the same manner as for N = 4 amplitudes does not
work in TGD. OZI rule following from the absence of 4-fermion vertices however implies
much simpler and physically quite a concrete manner to define the permutation for external
fermion lines and also generalizes it to include braidings along partonic orbits.
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(a) Already N = 4 approach assumes decorated permutations meaning that each external
fermion has effectively two states corresponding to labels k and k + n (permutations
are shifts to the right). For decorated permutations the number of external states is
effectively 2n and the number of decorated permutations is 2 × n!. The number of
different helicity configurations in TGD framework is 2n for incoming fermions at the
vertex defined by the partonic 2-surface. By looking the values of these numbers for
lowest integers one finds 2n ≥ 2n: for n = 2 the equation is saturated. The inequality
log(n!) > nlog(n)/e) + 1 (see http://tinyurl.com/2bjk5h). gives

log(2n!)

log(2n)
≥ log(2) + 1 + nlog(n/e)

nlog(2)
= log(n/e)/log(2) +O(1/n)

so that the desired inequality holds for all interesting values of n.

(b) If OZI rule holds true, the permutation has very natural physical definition. One just
follows the fermion line which must eventually end up to some external fermion since
the only fermion vertex is 2-fermion vertex. The helicity flip would map k → k + n or
vice versa.

(c) The labelling of diagrams by permutations generalizes to the case of diagrams involving
partonic surfaces at the boundaries of causal diamond containing the external fermions
and the partonic 2-surfaces in the interior of CD identified as vertices. Permutations
generalize to braidings since also the braidings along the light-like partonic 2-surfaces are
allowed. A quite concrete generalization of the analogs of braid diagrams in integrable
2-D theories emerges.

(d) BCFW bridge would be completely analogous to the fundamental braiding operation
permuting two neighboring braid strands. The almost reduction to braid theory - apart
from the presence of vertices conforms with the vision about reduction of TGD to almost
topological QFT.

To sum up, the simplest option assumes SUSY as both gauge symmetry and broken dy-
namical symmetry. The gauge symmetry relates string boundaries with different fermion
numbers and only fermion number 0 or 1 gives rise to a non-vanishing outcome in the residue
integration and one obtains the picture used hitherto. If OZI rule applies, the decorated
permutation symmetry generalizes to include braidings at the parton orbits and k → k ± n
corresponds to a helicity flip for a fermion going through the 4-vertex. OZI rules follows
from the absence of non-linearities in Dirac action and means that 4-fermion vertices in the
usual sense making theory non-renormalizable are absent. Theory is essentially free field
theory in fermionic degrees of freedom and interactions in the sense of QFT are transformed
to non-trivial topology of space-time surfaces.

3. If one can approximate space-time sheets by maps from M4 to CP2, one expects General
Relativity and QFT description to be good approximations. GRT space-time is obtained
by replacing space-time sheets with single sheet - a piece of slightly deformed Minkowski
space but without assupmtion about imbedding to H. Induced classical gravitational field
and gauge fields are sums of those associated with the sheets. The generalized Feynman
diagrams with lines at various sheets and going also between sheets are projected to single
piece of M4. Many-sheetedness makes 1-homology non-trivial and implies analog of braiding,
which should be however invisible at QFT limit.

A concrete manner to eliminate line crossing in non-planar amplitude to get nearer to non-
planar amplitude could proceed roughly as follows. This is of course a pure guess motivated only
by topological considerations. Professional might kill it in few seconds.

1. If the lines carry no quantum numbers, reconnection allows to eliminate the crossings. Con-
sider the crossing line pair connecting AB in the initial state to CD in final state. The
crossing lines are AD and BC. Reconnection can take place in two manners: AD and BC
transform either to AB and CD or to AC and BD: neither line pair has crossing. The final
state of the braid would be quantum superposition of the resulting more planar braids.

http://tinyurl.com/2bjk5h
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2. The crossed lines however carry different quantum numbers in the generic situation: for
instance, they can be fermionic and bosonic. In this particular case the reconnection does
not make sense since a line carrying fermion number would transform to a line carrying
boson.

In TGD framework all lines are fermion lines at fundamental level but the constraint due to
different quantum numbers still remains and it is easy to see that mere reconnection is not
enough. Fermion number conservation allows only one of the two alternatives to be realized.
Conservation of quantum numbers forces to restrict gives an additional constraint which for
simplest non-planar diagram with two crossed fermion lines forces the quantum numbers of
fermions to be identical.

It seems also more natural to consider pairs of wormhole contacts defining elementary par-
ticles as ”lines” in turn consisting of fermion lines. Yangian symmetry allows to develop a
more detailed view about what this decomposition could mean.

Quantum number conservation demands that reconnection is followed by a formation of an
additional internal line connecting the non-crossing lines obtained by reconnection. The addi-
tional line representing a quantum number exchange between the resulting non-crossing lines
would guarantee the conservation of quantum numbers. This would bring in two additional
vertices and one additional internal line. This would be enough to reduce planarity. The
repeated application of this transformation should produced a sum of non-planar diagrams.

3. What could go wrong with this proposal? In the case of gauge theory the order of diagram
increases by g2 since two new vertices are generated. Should a multiplication by 1/g2 ac-
company this process? Or is this observation enough to kill the hypothesis in gauge theory
framework? In TGD framework the situation is not understood well enough to say anything.
Certainly the critical value of αK implies that one cannot regard it as a free parameter and
cannot treat the contributions from various orders as independent ones.

7.5 Could The Universe Be Doing Yangian Arithmetics?

One of the old TGD inspired really crazy ideas about scattering amplitudes is that Universe is
doing some sort of arithmetics so that scattering amplitude are representations for computational
sequences of minimum length. The idea is so crazy that I have even given up its original form,
which led to an attempt to assimilate the basic ideas about bi-algebras, quantum groups [K5],
Yangians [K55], and related exotic things. The work with twistor Grassmannian approach inspired
a reconsideration of the original idea seriously with the idea that super-symplectic Yangian could
define the arithmetics. I try to describe the background, motivation, and the ensuing reckless
speculations in the following.

7.5.1 Do Scattering Amplitudes Represent Quantal Algebraic Manipu-
lations?

I seems that tensor product ⊗ and direct sum ⊕ - very much analogous to product and sum
but defined between Hilbert spaces rather than numbers - are naturally associated with the basic
vertices of TGD. I have written about this a highly speculative chapter - both mathematically and
physically [K68]. The chapter [K5] is a remnant of earlier similar speculations.

1. In ⊗ vertex 3-surface splits to two 3-surfaces meaning that the 2 ”incoming” 4-surfaces
meet at single common 3-surface and become the outgoing 3-surface: 3 lines of Feynman
diagram meeting at their ends. This has a lower-dimensional shadow realized for partonic 2-
surfaces. This topological 3-particle vertex would be higher-D variant of 3-vertex for Feynman
diagrams.

2. The second vertex is trouser vertex for strings generalized so that it applies to 3-surfaces. It
does not represent particle decay as in string models but the branching of the particle wave
function so that particle can be said to propagate along two different paths simultaneously.
In double slit experiment this would occur for the photon space-time sheets.
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3. The idea is that Universe is doing arithmetics of some kind in the sense that particle 3-
vertex in the above topological sense represents either multiplication or its time-reversal
co-multiplication.

The product, call it ◦, can be something very general, say algebraic operation assignable
to some algebraic structure. The algebraic structure could be almost anything: a random list
of structures popping into mind consists of group, Lie-algebra, super-conformal algebra quantum
algebra, Yangian, etc.... The algebraic operation ◦ can be group multiplication, Lie-bracket, its
generalization to super-algebra level, etc...). Tensor product and thus linear (Hilbert) spaces are
involved always, and in product operation tensor product ⊗ is replaced with ◦.

1. The product Ak ⊗ Al → C = Ak ◦ Al is analogous to a particle reaction in which particles
Ak and Al fuse to particle Ak ⊗ Al → C = Ak ◦ Al. One can say that ⊗ between reactants
is transformed to ◦ in the particle reaction: kind of bound state is formed.

2. There are very many pairs Ak, Al giving the same product C just as given integer can be
divided in many manners to a product of two integers if it is not prime. This of course
suggests that elementary particles are primes of the algebra if this notion is defined for it!
One can use some basis for the algebra and in this basis one has C = Ak ◦Al = fklmAm, fklm
are the structure constants of the algebra and satisfy constraints. For instance, associativity
A(BC) = (AB)C is a constraint making the life of algebraist more tolerable and is almost
routinely assumed.

For instance, in the number theoretic approach to TGD associativity is proposed to serve
as fundamental law of physics and allows to identify space-time surfaces as 4-surfaces with
associative (quaternionic) tangent space or normal space at each point of octonionic imbed-
ding space M4 × CP2. Lie algebras are not associative but Jacobi-identities following from
the associativity of Lie group product replace associativity.

3. Co-product can be said to be time reversal of the algebraic operation ◦. Co-product can be
defined as C = Ak →

∑
lm f

lm
k Al⊗Am, where f lmk are the structure constants of the algebra.

The outcome is quantum superposition of final states, which can fuse to C (the ”reaction”
Ak ⊗ Al → C = Ak ◦ Al is possible). One can say that ◦ is replaced with ⊗: bound state
decays to a superposition of all pairs, which can form the bound states by product vertex.

There are motivations for representing scattering amplitudes as sequences of algebraic op-
erations performed for the incoming set of particles leading to an outgoing set of particles with
particles identified as algebraic objects acting on vacuum state. The outcome would be analogous
to Feynman diagrams but only the diagram with minimal length to which a preferred extremal
can be assigned is needed. Larger ones must be equivalent with it.

The question is whether it could be indeed possible to characterize particle reactions as
computations involving transformation of tensor products to products in vertices and co-products
to tensor products in co-vertices (time reversals of the vertices). A couple of examples gives some
idea about what is involved.

1. The simplest operations would preserve particle number and to just permute the particles: the
permutation generalizes to a braiding and the scattering matrix would be basically unitary
braiding matrix utilized in topological quantum computation.

2. A more complex situation occurs, when the number of particles is preserved but quantum
numbers for the final state are not same as for the initial state so that particles must interact.
This requires both product and co-product vertices. For instance, Ak⊗Al → fmklAm followed
by Am → frsmAr ⊗ As giving Ak → fmkl f

rs
mAr ⊗ As representing 2-particle scattering. State

function reduction in the final state can select any pair Ar ⊗ As in the final state. This
reaction is characterized by the ordinary tree diagram in which two lines fuse to single line
and defuse back to two lines. Note also that there is a non-deterministic element involved.
A given final state can be achieved from a given initial state after large enough number of
trials. The analogy with problem solving and mathematical theorem proving is obvious. If
the interpretation is correct, Universe would be problem solver and theorem prover!
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3. More complex reactions affect also the particle number. 3-vertex and its co-vertex are the
simplest examples and generate more complex particle number changing vertices. For in-
stance, on twistor Grassmann approach on can construct all diagrams using two 3-vertices.
This encourages the restriction to 3-vertice (recall that fermions have only 2-vertices)

4. Intuitively it is clear that the final collection of algebraic objects can be reached by a large
- maybe infinite - number of ways. It seems also clear that there is the shortest manner to
end up to the final state from a given initial state. Of course, it can happen that there is no
way to achieve it! For instance, if ◦ corresponds to group multiplication the co-vertex can
lead only to a pair of particles for which the product of final state group elements equals to
the initial state group element.

5. Quantum theorists of course worry about unitarity. How can avoid the situation in which the
product gives zero if the outcome is element of linear space. Somehow the product should be
such that this can be avoided. For instance, if product is Lie-algebra commutator, Cartan
algebra would give zero as outcome.

7.5.2 Generalized Feynman Diagram As Shortest Possible Algebraic
Manipulation Connecting Initial And Final Algebraic Objects

There is a strong motivation for the interpretation of generalized Feynman diagrams as shortest
possible algebraic operations connecting initial and final states. The reason is that in TGD one
does not have path integral over all possible space-time surfaces connecting the 3-surfaces at the
ends of CD. Rather, one has in the optimal situation a space-time surface unique apart from
conformal gauge degeneracy connecting the 3-surfaces at the ends of CD (they can have disjoint
components).

Path integral is replaced with integral over 3-surfaces. There is therefore only single minimal
generalized Feynman diagram (or twistor diagram, or whatever is the appropriate term). It would
be nice if this diagram had interpretation as the shortest possible computation leading from the
initial state to the final state specified by 3-surfaces and basically fermionic states at them. This
would of course simplify enormously the theory and the connection to the twistor Grassmann
approach is very suggestive. A further motivation comes from the observation that the state basis
created by the fermionic Clifford algebra has an interpretation in terms of Boolean quantum logic
and that in ZEO the fermionic states would have interpretation as analogs of Boolean statements
A→ B.

To see whether and how this idea could be realized in TGD framework, let us try to find
counterparts for the basic operations ⊗ and ◦ and identify the algebra involved. Consider first the
basic geometric objects.

1. Tensor product could correspond geometrically to two disjoint 3-surfaces representing 3-
particles. Partonic 2-surfaces associated with a given 3-surface represent second possibility.
The splitting of a partonic 2-surface to two could be the geometric counterpart for co-product.

2. Partonic 2-surfaces are however connected to each other and possibly even to themselves
by strings. It seems that partonic 2-surface cannot be the basic unit. Indeed, elementary
particles are identified as pairs of wormhole throats (partonic 2-surfaces) with magnetic
monopole flux flowing from throat to another at first space-time sheet, then through throat
to another sheet, then back along second sheet to the lower throat of the first contact and
then back to the thirst throat. This unit seems to be the natural basic object to consider.
The flux tubes at both sheets are accompanied by fermionic strings. Whether also wormhole
throats contain strings so that one would have single closed string rather than two open ones,
is an open question.

3. The connecting strings give rise to the formation of gravitationally bound states and the
hierarchy of Planck constants is crucially involved. For elementary particle there are just two
wormhole contacts each involving two wormhole throats connected by wormhole contact.
Wormhole throats are connected by one or more strings, which define space-like boundaries
of corresponding string world sheets at the boundaries of CD. These strings are responsible
for the formation of bound states, even macroscopic gravitational bound states.
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7.5.3 Does Super-Symplectic Yangian Define The Arithmetics?

Super-symplectic Yangian would be a reasonable guess for the algebra involved.

1. The 2-local generators of Yangian would be of form TA1 = fABCT
B ⊗ TC , where fABC are the

structure constants of the super-symplectic algebra. n-local generators would be obtained
by iterating this rule. Note that the generator TA1 creates an entangled state of TB and TC

with fABC the entanglement coefficients. TAn is entangled state of TB and TCn−1 with the same
coefficients. A kind replication of TAn−1 is clearly involved, and the fundamental replication
is that of TA. Note that one can start from any irreducible representation with well defined
symplectic quantum numbers and form similar hierarchy by using TA and the representation
as a starting point.

That the hierarchy TAn and hierarchies irreducible representations would define a hierarchy of
states associated with the partonic 2-surface is a highly non-trivial and powerful hypothesis
about the formation of many-fermion bound states inside partonic 2-surfaces.

2. The charges TA correspond to fermionic and bosonic super-symplectic generators. The geo-
metric counterpart for the replication at the lowest level could correspond to a fermionic/bosonic
string carrying super-symplectic generator splitting to fermionic/bosonic string and a string
carrying bosonic symplectic generator TA. This splitting of string brings in mind the basic
gauge boson-gauge boson or gauge boson-fermion vertex.

The vision about emission of virtual particle suggests that the entire wormhole contact pair
replicates. Second wormhole throat would carry the string corresponding to TA assignable
to gauge boson naturally. TA should involve pairs of fermionic creation and annihilation op-
erators as well as fermionic and anti-fermionic creation operator (and annihilation operators)
as in quantum field theory.

3. Bosonic emergence suggests that bosonic generators are constructed from fermion pairs with
fermion and anti-fermion at opposite wormhole throats: this would allow to avoid the prob-
lems with the singular character of purely local fermion current. Fermionic and anti-fermionic
string would reside at opposite space-time sheets and the whole structure would correspond to
a closed magnetic tube carrying monopole flux. Fermions would correspond to superpositions
of states in which string is located at either half of the closed flux tube.

4. The basic arithmetic operation in co-vertex would be co-multiplication transforming TAn
to TAn+1 = fABCT

B
n ⊗ TC . In vertex the transformation of TAn+1 to TAn would take place.

The interpretations would be as emission/absorption of gauge boson. One must include
also emission of fermion and this means replacement of TA with corresponding fermionic
generators FA, so that the fermion number of the second part of the state is reduced by one
unit. Particle reactions would be more than mere braidings and re-grouping of fermions and
anti-fermions inside partonic 2-surfaces, which can split.

5. Inside the light-like orbits of the partonic 2-surfaces there is also a braiding affecting the
M-matrix. The arithmetics involved would be therefore essentially that of measuring and
”co-measuring” symplectic charges.

Generalized Feynman diagrams (preferred extremals) connecting given 3-surfaces and many-
fermion states (bosons are counted as fermion-anti-fermion states) would have a minimum
number of vertices and co-vertices. The splitting of string lines implies creation of pairs of
fermion lines. Whether regroupings are part of the story is not quite clear. In any case,
without the replication of 3-surfaces it would not be possible to understand processes like e-e
scattering by photon exchange in the proposed picture.

It is easy to hear the comments of the skeptic listener in the back row.

1. The attribute ”minimal” - , which could translate to minimal value of Kähler function - is
dangerous. It might be very difficult to determine what the minimal diagram is - consider
only travelling salesman problem or the task of finding the shortest proof of theorem. It
would be much nicer to have simple calculational rules.



302 Chapter 7. The Classical Part of the Twistor Story

The original proposal might help here. The generalization of string model duality was in
question. It stated that that it is possible to move the positions of the vertices of the dia-
grams just as one does to transform s-channel resonances to t-channel exchange. All loops
of generalized diagrams could be be eliminated by transforming the to tadpoles and snipped
away so that only tree diagrams would be left. The variants of the diagram were identified as
different continuation paths between different paths connecting sectors of WCW correspond-
ing to different 3-topologies. Each step in the continuation procedure would involve product
or co-product defining what continuation between two sectors means for WCW spinors. The
continuations between two states require some minimal number of steps. If this is true, all
computations connecting identical states are also physically equivalent. The value of the
vacuum functional be same for all of them. This looks very natural.

That the Kähler action should be same for all computational sequences connecting the same
initial and final states looks strange but might be understood in terms of the vacuum degen-
eracy of Kähler action.

2. QFT perturbation theory requires that should have superposition of computations/continuations.
What could the superposition of QFT diagrams correspond to in TGD framework?

Could it correspond to a superposition of generators of the Yangian creating the physical
state? After all, already quantum computer perform superpositions of computations. The
fermionic state would not be the simplest one that one can imagine. Could AdS/CFT
analogy allow to identify the vacuum state as a superposition of multi-string states so that
single super-symplectic generator would be replaced with a superposition of its Yangian
counterparts with same total quantum numbers but with a varying number of strings? The
weight of a given superposition would be given by the total effective string world sheet area.
The sum of diagrams would emerge from this superposition and would basically correspond
to functional integration in WCW using exponent of Kähler action as weight. The stringy
functional integral (“functional” if also wormhole contacts contain string portion, otherwise
path integral) would give the perturbation theory around given string world sheet. One
would have effective reduction of string theory.

7.5.4 How Does This Relate To The Ordinary Perturbation Theory?

One can of course worry about how to understand the basic results of the usual perturbation theory
in this picture. How does one obtain a perturbation theory in powers of coupling constant, what
does running coupling constant mean, etc...? I have already discussed how the superposition of
diagrams could be understood in the new picture.

1. The QFT picture with running coupling constant is expected at QFT limit, when many-
sheeted space-time is replaced with a slightly curved region of M4 and gravitational field
and gauge potentials are identified as sums of the deviations of induced metric from M4

metric and classical induced gauge potentials associated with the sheets of the many-sheeted
space-time. The running coupling constant would be due to the dependence of the size scale
of CD, and p-adic coupling constant evolution would be behind the continuous one.

2. The notion of running coupling constant is very physical concept and should have a descrip-
tion also at the fundamental level and be due to a finite computational resolution, which
indeed has very concrete description in terms of Noether charges of super-symplectic Yan-
gian creating the states at the ends of space-time surface at the boundaries of CD. The
space-time surface and the diagram associated with a given pair of 3-surfaces and stringy
Noether charges associated with them can be characterized by a complexity measured in
terms of the number of vertices (3-surface at which three 3-surfaces meet).

For instance, 3-particle scattering can be possible only by using the simplest 3-vertex defined
by product or co-product for pairs of 3-surfaces. In the generic case one has more complex
diagram and what looks first 3-particle vertex has complex substructure rather than being
simple product or co-product.

3. Complexity seems to have two separate aspects: the complexities of the positive and negative
parts of zero energy state as many-fermion states and the complexity of associated 3-surfaces.
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The generalization of AdS/CFT however suggests that once the string world sheets and
partonic 2-surfaces appearing in the diagram have been fixed, the space-time surface itself is
fixed. The principle also suggests that the fixing partonic 2-surface and the strings connecting
them at the boundaries of CD fixes the 3-surface apart from the action of sub-algebra of
Yangian acting as gauge algebra (vanishing classical Noether charges). If one can determine
the minimal sequence of allowed algebraic operation of Yangian connecting initial and final
fermion states, one knows the minimum number of vertices and therefore the topological
structure of the connecting minimal space-time surface.

4. In QFT spirit one could describe the finite measurement resolution by introducing effective
3-point vertex, which is need not be product/co-produce anymore. 3-point scattering am-
plitudes in general involve microscopic algebraic structure involving several vertices. One
can however give up the nice algebraic interpretation and just talk about effective 3-vertex
for practical purposes. Just as the QFT vertex described by running coupling constant de-
composes to sum of diagrams, product/co-product in TGD could be replaced with effective
product/co-product expressible as a longer computation. This would imply coupling constant
evolution.

Fermion lines could however remain as such since they are massless in 8-D sense and mass
renormalization does not make sense.

Similar practical simplification could be done the initial and final states to get rid of su-
perposition of the Yangian generators with different numbers of strings (“cloud of virtual
particles”). This would correspond to wave function renormalization.

5. The number of vertices and wormhole contact orbits serves as a measure for the complexity
of the diagram. Since fermion lines are associated with wormhole throats assignable with
wormhole contacts identifiable as deformations CP2 type vacuum extremals, one expects that
the exponent of the Kähler function defining vacuum functional is in the first approximation
the total CP2 volume of wormhole contacts giving a measure for the importance of the
contribution in functional integral. If it converges very rapidly only Gaussian approximation
around maximum is needed.

6. Convergence depends on how large the fraction of volume of CP2 is associated with a given
wormhole contact. The volume is proportional to the length of the wormhole contact orbit.
One expects exponential convergence with the number of fermion lines and their lengths
for long lines. For short distances the exponential damping is small so that diagrams with
microscopic structure of diagrams are needed and are possible. This looks like adding small
scale details to the algebraic manipulations.

7. One must be of course be very cautious in making conclusions. The presence of 1/αK ∝ heff
in the exponent of Kähler function would suggest that for large values of heff only the 3-
surfaces with smallest possible number of wormhole contact orbits contribute. On the other
hand, the generalization of AdS/CFT duality suggests that Kähler action reducible to area of
string world sheet in the effective metric defined by canonical momentum currents of Kähler
action behaves as α2

K ∝ 1/h2
eff . What does this mean?

To sum up, the identification of vertex as a product or co-product in Yangian looks highly
promising approach. The Nother charges of the super-symplectic Yangian are associated with
strings and are either linear or bilinear in the fermion field. The fermion fields associated with
the partonic 2-surface defining the vertex are contracted with fermion fields associated with other
partonic 2-surfaces using the same rule as in Wick expansion in quantum field theories. The
contraction gives fermion propagator for each leg pair associated with two vertices. Vertex factor
is proportional to the contraction of spinor modes with the operators defining the Noether charge
or super charge and essentially Kähler-Dirac gamma matrix and the representation of the action of
the symplectic generator on fermion realizable in terms of sigma matrices. This is very much like
the corresponding expression in gauge theories but with gauge algebra replaced with symplectic
algebra. The possibility of contractions of creation and annihilation operator for fermion lines
associated with opposite wormhole throats at the same partonic 2-surface (for Noether charge
bilinear in fermion field) gives bosonic exchanges as lines in which the fermion lines turns in time
direction: otherwise only regroupings of fermions would take place.
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7.5.5 This Was Not The Whole Story Yet

The proposed amplitude represents only the value of WCW spinor field for single pair of 3-surfaces
at the opposite boundaries of given CD. Hence Yangian construction does not tell the whole story.

1. Yangian algebra would give only the vertices of the scattering amplitudes. On basis of
previous considerations, one expects that each fermion line carries propagator defined by
8-momentum. The structure would resemble that of super-symmetric YM theory. Fermionic
propagators should emerge from summing over intermediate fermion states in various vertices
and one would have integrations over virtual momenta which are carried as residue integra-
tions in twistor Grassmann approach. 8-D counterpart of twistorialization would apply.

2. Super-symplectic Yangian would give the scattering amplitudes for single space-time surface
and the purely group theoretical form of these amplitudes gives hopes about the independence
of the scattering amplitude on the pair of 3-surfaces at the ends of CD near the maximum
of Kähler function. This is perhaps too much to hope except approximately but if true, the
integration over WCW would give only exponent of Kähler action since metric and poorly
defined Gaussian and determinants would cancel by the basic properties of Kähler metric.
Exponent would give a non-analytic dependence on αK .

The Yangian supercharges are proportional to 1/αK since covariant Kähler-Dirac gamma
matrices are proportional to canonical momentum currents of Kähler action and thus to
1/αK . Perturbation theory in powers of αK = g2

K/4π~eff is possible after factorizing out
the exponent of vacuum functional at the maximum of Kähler function and the factors 1/αK
multiplying super-symplectic charges.

The additional complication is that the characteristics of preferred extremals contributing
significantly to the scattering amplitudes are expected to depend on the value of αK by quan-
tum interference effects. Kähler action is proportional to 1/αK . The analogy of AdS/CFT
correspondence states the expressibility of Kähler function in terms of string area in the
effective metric defined by the anti-commutators of K-D matrices. Interference effects elimi-
nate string length for which the area action has a value considerably larger than one so that
the string length and thus also the minimal size of CD containing it scales as heff . Quan-
tum interference effects therefore give an additional dependence of Yangian super-charges on
heff leading to a perturbative expansion in powers of αK although the basic expression for
scattering amplitude would not suggest this.

3. Non-planar diagrams of quantum field theories should have natural counterpart and linking
and knotting for braids defines it naturally. This suggests that the amplitudes can be inter-
preted as generalizations of braid diagrams defining braid invariants: braid strands would
appear as legs of 3-vertices representing product and co-product. Amplitudes could be con-
structed as generalized braid invariants transforming recursively braided tree diagram to an
un-braided diagram using same operations as for braids. In [L18] I considered a possible
breaking of associativity occurring in weak sense for conformal field theories and was led
to the vision that there is a fractal hierarchy of braids such that braid strands themselves
correspond to braids. This hierarchy would define an operad with subgroups of permutation
group in key role. Hence it seems that various approaches to the construction of amplitudes
converge.

7.6 Appendix: Some Mathematical Details About Gras-
mannian Formalism

In the following I try to summarize my amateurish understanding about the mathematical structure
behind the Grassmann integral approach. The representation summarizes what I have gathered
from the articles of Arkani-Hamed and collaborators [B28, B29]. These articles are rather sketchy
and the article of Bullimore provides additional details [B41] related to soft factors. The article
of Mason and Skinner provides excellent introduction to super-twistors [B24] and dual super-
conformal invariance. I apologize for unavoidable errors.
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Before continuing a brief summary about the history leading to the articles of Arkani-Hamed
and others is in order. This summary covers only those aspects which I am at least somewhat
familiar with and leaves out many topics about existence which I am only half-conscious.

1. It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a′ with λ̃ defined as complex conjugate of

λ and having opposite chirality. When λ is scaled by a complex number λ̃ suffers an opposite
scaling. The bi-spinors allow the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′λ
a′µb

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (7.6.1)

If the particle has spin one can assign it a positive or negative helicity h = ±1. Positive
helicity can be represented by introducing artitrary negative (positive) helicity bispinor µa
(µa′) not parallel to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (7.6.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

2. Tree amplitudes are considered and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n− 2 gluons
have the same helicity vanish. MHV amplitudes have exactly n− 2 gluons of same helicity-
taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(7.6.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].

3. The article of Witten [B26] proposed that twistor approach could be formulated as a twistor
string theory with string world sheets “living” in 6-dimensional CP3 possessing Calabi-Yau
structure and defining twistor space. In this article Witten introduced what is known as
half Fourier transform allowing to transform momentum integrals over light-cone to twistor
integrals. This operation makes sense only in space-time signature (2, 2). Witten also demon-
strated that maximal helicity violating (MHV) twistor amplitudes (two gluons with negative
helicity) with n particles with k + 2 negative helicities and l loops correspond in this ap-
proach to holomorphic 2-surfaces defined by polynomials defined by polynomials of degree
D = k − 1 + l, where the genus of the surface satisfies g ≤ l. AdS/CFT duality provides a
second stringy approach to N = 4 theory allowing to understand the scattering amplitudes
in terms of Wilson loops with light-like edges: about this I have nothing to say. In any case,
the generalization of twistor string theory to TGD context is highly attractive idea and will
be considered later.
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4. In the article [B20] Cachazo, Svrcek, and Witten propose the analog of Feynman diagrammat-
ics in which MHV amplitudes can be used as analogs of vertices and ordinary 1/P 2 propagator
as propagator to construct tree diagrams with arbitrary number of negative helicity gluons.
This approach is not symmetric with respect to the change of the sign of helicities since the
amplitudes with two positive helicities are constructed as tree diagrams. The construction
is non-trivial because one must analytically continue the on mass shell tree amplitudes to
off mass shell momenta. The problem is how to assign a twistor to these momenta. This
is achieved by introducing an arbitrary twistor ηa

′
and defining λa as λa = paa′η

a′ . This
works for both massless and massive case. It however leads to a loss of the manifest Lorentz
invariance. The paper however argues and the later paper [B19, B19] shows rigorously that
the loss is only apparent. In this paper also BCFW recursion formula is introduced allowing
to construct tree amplitudes recursively by starting from vertices with 2 negative helicity
gluons. Also the notion which has become known as BCFW bridge representing the massless
exchange in these diagrams is introduced. The tree amplitudes are not tree amplitudes in
gauge theory sense where correspond to leading singularities for which 4 or more lines of
the loop are massless and therefore collinear. What is important that the very simple MHV
amplitudes become the building blocks of more complex amplitudes.

5. The nex step in the progress was the attempt to understand how the loop corrections could be
taken into account in the construction BCFW formula. The calculation of loop contributions
to the tree amplitudes revealed the existence of dual super-conformal symmetry which was
found to be possessed also by BCFW tree amplitudes besides conformal symmetry. Together
these symmetries generate infinite-dimensional Yangian symmetry [B24].

6. The basic vision of Arkani-Hamed and collaborators is that the scattering amplitudes of
N = 4 SYM are constructible in terms of leading order singularities of loop diagrams. These
singularities are obtained by putting maximum number of momenta propagating in the lines
of the loop on mass shell. The non-leading singularities would be induced by the leading
singularities by putting smaller number of momenta on mass shell are dictated by these
terms. A related idea serving as a starting point in [B28] is that one can define loop integrals
as residue integrals in momentum space. If I have understood correctly, this means that
one an imagine the possibility that the loop integral reduces to a lower dimensional integral
for on mass shell particles in the loops: this would resemble the approach to loop integrals
based on unitarity and analyticity. In twistor approach these momentum integrals defined
as residue integrals transform to residue integrals in twistor space with twistors representing
massless particles. The basic discovery is that one can construct leading order singularities
for n particle scattering amplitude with k+2 negative helicities as Yangian invariants Yn,k for
momentum twistors and invariants constructed from them by canonical operations changing
n and k. The correspondence k = l does not hold true for the more general amplitudes
anymore.

7.6.1 Yangian Algebra And Its Super Counterpart

The article of Witten [B23] gives a nice discussion of the Yangian algebra and its super counterpart.
Here only basic formulas can be listed and the formulas relevant to the super-conformal case are
given.

Yangian algebra

Yangian algebra Y (G) is associative Hopf algebra. The elements of Yangian algebra are labelled by
non-negative integers so that there is a close analogy with the algebra spanned by the generators
of Virasoro algebra with non-negative conformal weight. The Yangian symmetry algebra is defined
by the following relations for the generators labeled by integers n = 0 and n = 1. The first half of
these relations discussed in very clear manner in [B23] follows uniquely from the fact that adjoint
representation of the Lie algebra is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (7.6.4)
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Besides this Serre relations are satisfied. These have more complex and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(7.6.5)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor gAB
or gAB . {A,B,C} denotes the symmetrized product of three generators.

Repeated commutators allow to generate the entire algebra whose elements are labeled by
non-negative integer n. The generators obtain in this manner are n-local operators arising in
(n− 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases the first
Serre relation implies the second one so the relations are redundant. Why Witten includes it is
for the purposed of demonstrating the conditions for the existence of Yangians associated with
discrete one-dimensional lattices (Yangians exists also for continuum one-dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representa-
tion for the Yangian algebra. One assumes that each lattice point allows a representation R of JA

so that one has JA =
∑
i J

A
i acting on the infinite tensor power of the representation considered.

The expressions for the generators J1A are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (7.6.6)

This formula gives the generators in the case of conformal algebra. This representation exists if
the adjoint representation of G appears only one in the decomposition of R ⊗R. This is the case
for SU(N) if R is the fundamental representation or is the representation of by kth rank completely
antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-
product ∆ is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(7.6.7)

∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-triviality
comes from the addition of the dual generator to the trivial co-product. In the case that the single
spin representation of J (1)A is trivial, the co-product gives just the expression of the dual generator
using the ordinary generators as a non-local generator. This is assumed in the recent case and also
for the generators of the conformal Yangian.

Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P
refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM and this super group
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is a real form of PSU(4|4). The main point of interest is whether this algebra allows Yangian
representation and Witten demonstrated that this is indeed the case [B23].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anti-commutator of fermionic generators can contain besides identity also bosonic generators
if the symmetrized tensor product in question contains adjoint representation. This is the case
if fermions are in the fundamental representation and its conjugate. For SU(3) the symmetrize
tensor product of adjoint representations contains adjoint (the completely symmetric structure
constants dabc) and this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters
involved) can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n×m and m×n matrices, whose anti-commutator is the direct sum of n×n and n×n
matrices. For n = m bosonic generators transform like Lie algebra generators of SU(n) × SU(n)
whereas fermionic generators transform like n ⊗ n ⊕ n ⊗ n under SU(n) × SU(n). Supertrace is
defined as Str(x) = Tr(a) − Tr(b). The vanishing of Str defines SU(n|m). For n 6= m the super
trace condition removes identity matrix and PU(n|m) and SU(n|m) are same. That this does not
happen for n = m is an important delicacy since this case corresponds to N = 4 SYM. If any two
matrices differing by an additive scalar are identified (projective scaling as now physical effect) one
obtains PSU(n|n) and this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗
R holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization
of the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4).
The defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J

(1)C′ = gCC′f
C′

AB

∑
i<j

JAi J
B
j

= gCC′f
C′

ABg
AA′gBB

′∑
i<j

J iA′J
j
B′ .

(7.6.8)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.

Generators of super-conformal Yangian symmetries

The explicit formula for the generators of super-conformal Yangian symmetries in terms of ordinary
twistors is given by

jAB =

n∑
i=1

ZAi ∂ZBi ,

j
(1)A
B =

∑
i<j

(−1)C
[
ZAi ∂ZCj Z

C
j ∂ZBj

]
. (7.6.9)

This formula follows from completely general formulas for the Yangian algebra discussed above

and allowing to express the dual generators j
(1)
N as quadratic expression of jN involving structures

constants. In this rather sketchy formula twistors are ordinary twistors. Note however that in the
recent case the lattice is replaced with its finite cutoff corresponding to the external particles of the
scattering amplitude. This probably corresponds to the assumption that for the representations
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considered only finite number of lattice points correspond to non-trivial quantum numbers or to
cyclic symmetry of the representations.

In the expression for the amplitudes the action of transformations is on the delta functions
and by partial integration one finds that a total divergence results. This is easy to see for the linear
generators but not so for the quadratic generators of the dual super-conformal symmetries. A

similar formula but with jAB and j
(1)A
B interchanged applies in the representation of the amplitudes

as Grassmann integrals using ordinary twistors. The verification of the generalization of Serre
formula is also straightforward.

7.6.2 Twistors And Momentum Twistors And Super-Symmetrization

In [B24] the basics of twistor geometry are summarized. Despite this it is perhaps good to collect
the basic formulas here.

Conformally compactified Minkowski space

Conformally compactified Minkowski space can be described as SO(2, 4) invariant (Klein) quadric

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0 . (7.6.10)

The coordinates (T, V,W,X, Y, Z) define homogenous coordinates for the real projective space
RP 5. One can introduce the projective coordinates Xαβ = −Xβα through the formulas

X01 = W − V , X02 = Y + iX , X03 = i√
2
T − Z ,

X12 = − i√
2
(T + Z) , X13 = Y − iX , X23 = 1

2 (V +W ) .
(7.6.11)

The motivation is that the equations for the quadric defining the conformally compactified Minkowski
space can be written in a form which is manifestly conformally invariant:

εαβγδXαβXγδ = 0 per. (7.6.12)

The points of the conformally compactified Minkowski space are null separated if and only
if the condition

εαβγδXαβYγδ = 0 (7.6.13)

holds true.

Correspondence with twistors and infinity twistor

One ends up with the correspondence with twistors by noticing that the condition is equivalent
with the possibility to expression Xαβ as

Xαβ = A[αBβ] , (7.6.14)

where brackets refer to antisymmetrization. The complex vectors A and B define a point in
twistor space and are defined only modulo scaling and therefore define a point of twistor space
CP3 defining a covering of 6-D Minkowski space with metric signature (2, 4). This corresponds
to the fact that the Lie algebras of SO(2, 4) and SU(2, 2) are identical. Therefore the points of
conformally compactified Minkowski space correspond to lines of the twistor space defining spheres
CP1 in CP3.

One can introduce a preferred scale for the projective coordinates by introducing what is
called infinity twistor (actually a pair of twistors is in question) defined by
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Iαβ =

(
εA
′B′ 0

0 0

)
. (7.6.15)

Infinity twistor represents the projective line for which only the coordinate X01 is non-vanishing
and chosen to have value X01 = 1.

One can define the contravariant form of the infinite twistor as

Iαβ = εαβγδIγδ =

(
0 0
0 εAB

)
. (7.6.16)

Infinity twistor defines a representative for the conformal equivalence class of metrics at the Klein
quadric and one can express Minkowski distance as

(x− y)2 =
XαβYαβ

IαβXαβIµνY µν
. (7.6.17)

Note that the metric is necessary only in the denominator. In twistor notation the distance can
be expressed as

(x− y)2 =
ε(A,B,C,D)

〈AB〉〈CD〉
. (7.6.18)

Infinite twistor Iαβ and its contravariant counterpart project the twistor to its primed and unprimed

parts usually denoted by µA
′

and λA and defined spinors with opposite chiralities.

Relationship between points of M4 and twistors

In the coordinates obtained by putting X01 = 1 the relationship between space-time coordinates
xAA

′
and Xαβ is

Xαβ =

(
− 1

2ε
A′B′x2 −ixA′B

ix B′

A εA,B

)
, Xαβ =

(
εA′B ′x

2 −ix B
A′

ixAB′ − 1
2ε
ABx2

)
, (7.6.19)

If the point of Minkowski space represents a line defined by twistors (µU , λU ) and (µV , λV ),
one has

xAC
′

= i
(µV λU − µUλV )AC

′

〈UV 〉
(7.6.20)

The twistor µ for a given point of Minkowski space in turn is obtained from λ by the twistor
formula by

µA
′

= −ixAA
′
λA . (7.6.21)

Generalization to the super-symmetric case

This formalism has a straightforward generalization to the super-symmetric case. CP3 is replaced
with CP3|4 so that Grassmann parameters have four components. At the level of coordinates this
means the replacement [WI ] = [Wα, χα]. Twistor formula generalizes to

µA
′

= −ixAA′λA , χα = θAαλA . (7.6.22)

The relationship between the coordinates of chiral super-space and super-twistors generalizes to
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(x, θ) =

(
i
(µV λU − µUλV )

〈UV 〉
,

(χV λU − χUλV )

〈UV 〉

)
(7.6.23)

The above formulas can be applied to super-symmetric variants of momentum twistors to
deduce the relationship between region momenta x assigned with edges of polygons and twistors
assigned with the ends of the light-like edges. The explicit formulas are represented in [B24].
The geometric picture is following. The twistors at the ends of the edge define the twistor pair
representing the region momentum as a line in twistor space and the intersection of the twistor
lines assigned with the region momenta define twistor representing the external momenta of the
graph in the intersection of the edges.

Basic kinematics for momentum twistors

The super-symmetrization involves replacement of multiplets with super-multiplets

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηiΓ
aλ, λ̃) + · · ·+ εabcdη

aηbηcηdG−(λ, λ̃) . (7.6.24)

Momentum twistors are dual to ordinary twistors and were introduced by Hodges. The light-like
momentum of external particle a is expressed in terms of the vertices of the closed polygon defining
the twistor diagram as

pµi = xµi − x
µ
i+1 = λiλ̃i , θi − θi+1 = λiηi . (7.6.25)

One can say that massless momenta have a conserved super-part given by λiηi. The dual of the
super-conformal group acts on the region momenta exactly as the ordinary conformal group acts
on space-time and one can construct twistor space for dua region momenta.

Super-momentum conservation gives the constraints

∑
pi = 0 ,

∑
λiηi = 0 . (7.6.26)

The twistor diagrams correspond to polygons with edges with lines carrying region momenta and
external massless momenta emitted at the vertices.

This formula is invariant under overall shift of the region momenta xµa . A natural interpre-
tation for xµa is as the momentum entering to the vertex where pa is emitted. Overall shift would
have interpretation as a shift in the loop momentum. xµa in the dual coordinate space is associated
with the line Za−1Za in the momentum twistor space. The lines Za−1Za and ZaZa+1 intersect at
Za representing a light-like momentum vector pµa .

The brackets 〈abcd〉 ≡ εIJKLZ
I
aZ

J
b Z

K
c Z

L
d define fundamental bosonic conformal invariants

appearing in the tree amplitudes as basic building blocks. Note that Za define points of 4-D complex
twistor space to be distinguished from the projective twistor space CP3. Za define projective
coordinates for CP3 and one of the four complex components of Za is redundant and one can take
Z0
a = 1 without a loss of generality.

7.6.3 Brief Summary Of The Work Of Arkani-Hamed And Collaborators

The following comments are an attempt to summarize my far from complete understanding about
what is involved with the representation as contour integrals. After that I shall describe in more
detail my impressions about what has been done.
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Limitations of the approach

Consider first the limitations of the approach.

1. The basis idea is that the representation for tree amplitudes generalizes to loop amplitudes.
On other words, the amplitude defined as a sum of Yangian invariants expressed in terms
of Grassmann integrals represents the sum of loops up to some maximum loop number.
The problem is here that shifts of the loop momenta are essential in the UV regularization
procedure. Fixing the coordinates x1, · · · , xn having interpretation as momenta associated
with lines in the dual coordinate space allows to eliminate the non-uniqueness due to the
common shift of these coordinates.

2. It is not however not possible to identify loop momentum as a loop momentum common
to different loop integrals unless one restricts to planar loops. Non-planar diagrams are
obtained from a planar diagram by permuting the coordinates xi but this means that the
unique coordinate assignment is lost. Therefore the representation of loop integrands as
Grassmann integrals makes sense only for planar diagrams. From TGD point of view one
could argue that this is one good reason for restricting the loops so that they are for on mass
shell particles with non-parallel on mass shell four-momenta and possibly different sign of
energies for given wormhole contact representing virtual particle.

3. IR regularization is needed even in N = 4 for SYM given by “moving out on the Coulomb
branch theory” so that IR singularities remain the problem of the theory.

What has been done?

The article proposes a generalization of the BCFW recursion relation for tree diagrams of N = 4
for SYM so that it applies to planar diagrams with a summation over an arbitrary number of loops.

1. The basic goal of the article is to generalize the recursion relations of tree amplitudes so that
they would apply to loop amplitudes. The key idea is following. One can formally represent
loop integrand as a contour integral in complex plane whose coordinate parameterizes the
deformations Zn → Zn + εZn−1 and re-interpret the integral as a contour integral with
oppositely oriented contour surrounding the rest of the complex plane which can be imagined
also as being mapped to Riemann sphere. What happens only the poles which correspond to
lower number of loops contribute this integral. One obtains a recursion relation with respect
to loop number. This recursion seems to be the counterpart for the recursive construction of
the loops corrections in terms of absorptive parts of amplitudes with smaller number of loop
using unitarity and analyticity.

2. The basic challenge is to deduce the Grassmann integrands as Yangian invariants. From these
one can deduce loop integrals by integration over the four momenta associated with the lines
of the polygonal graph identifiable as the dual coordinate variables xa. The integration over
loop momenta can induce infrared divergences breaking Yangian symmetry. The big idea
here is that the operations described above allow to construct loop amplitudes from the
Yangian invariants defining tree amplitudes for a larger number of particles by removing
external particles by fusing them to form propagator lines and by using the BCFW bridge to
fuse lower-dimensional invariants. Hence the usual iterative procedure (bottom-up) used to
construct scattering amplitudes is replaced with a recursive procedure (top-down). Of course,
once lower amplitudes has been constructed they can be used to construct amplitudes with
higher particle number.

3. The first guess is that the recursion formula involves the same lower order contributions as
in the case of tree amplitudes. These contributions have interpretation as factorization of
channels involving single particle intermediate states. This would however allow to reduce
loop amplitudes to 3-particle loop amplitudes which vanish inN = 4 SYM by the vanishing of
coupling constant renormalization. The additional contribution is necessary and corresponds
to a source term identifiable as a “forward limit” of lower loop integrand. These terms are
obtained by taking an amplitude with two additional particles with opposite four-momenta



7.6. Appendix: Some Mathematical Details About Grasmannian Formalism 313

and forming a state in which these particles are entangled with respect to momentum and
other quantum numbers. Entanglement means integral over the massless momenta on one
hand. The insertion brings in two momenta xa and xb and one can imagine that the loop is
represented by a branching of propagator line. The line representing the entanglement of the
massless states with massless momentum define the second branch of the loop. One can of
course ask whether only massless momentum in the second branch. A possible interpretation
is that this state is expressible by unitarity in terms of the integral over light-like momentum.

4. The recursion formula for the loop amplitude Mn,k,l involves two terms when one neglects
the possibility that particles can also suffer trivial scattering (cluster decomposition). This
term basically corresponds to the Yangian invariance of n arguments identified as Yangian
invariant of n− 1 arguments with the same value of k.

(a) The first term corresponds to single particle exchange between particle groups obtained
by splitting the polygon at two vertices and corresponds to the so called BCFW bridge
for tree diagrams. There is a summation over different splittings as well as a sum over
loop numbers and dimensions k for the Grassmann planes. The helicities in the two
groups are opposite.

(b) Second term is obtained from an amplitude obtained by adding of two massless particles
with opposite momenta and corresponds to n+ 2, k + 1, l− 1. The integration over the
light-like momentum together with other operations implies the reduction n + 2 → n.
Note that the recursion indeed converges. Certainly the allowance of added zero energy
states with a finite number of particles is necessary for the convergence of the procedure.

7.6.4 The General Form Of Grassmannian Integrals

If the recursion formula proposed in [B29] is correct, the calculations reduce to the construction
of NkMHV (super) amplitudes. MHV refers to maximal helicity violating amplitudes with 2
negative helicity gluons. For NkMHV amplitude the number of negative helicities is by definition
k + 2 [B28]. Note that the total right handed R-charge assignable to 4 super-coordinates ηi of
negative helicity gluons can be identified as R = 4k. BCFW recursion formula [B19, B19] allows
to construct from MHV amplitudes with arbitrary number of negative helicities.

The basic object of study are the leading singularities of color-stripped n-particle NkMHV
amplitudes. The discovery is that these singularities are expressible in terms Yangian invariants
Yn,k(Z1, · · · , Zn), where Zi are momentum super-twistors. These invariants are defined by residue
integrals over the compact nk − 1-dimensional complex space G(n, k) = U(n)/U(k) × U(n − k)
of k-planes of complex n-dimensional space. n is the number of external massless particles, k is
the number negative helicity gluons in the case of NkMHV amplitudes, and Za, i = 1, · · · , n
denotes the projective 4-coordinate of the super-variant CP 3|4 of the momentum twistor space
CP3 assigned to the massless external particles is following. Gl(n) acts as linear transformations
in the n-fold Cartesian power of twistor space. Yangian invariant Yn,k is a function of twistor
variables Za having values in super-variant CP3|3 of momentum twistor space CP3 assigned to the
massless external particles being simple algebraic functions of the external momenta.

It is also possible to defineNkMHV amplitudes in terms of Yangian invariants Ln,k+2(W1, · · · ,Wn)
by using ordinary twistors Wa and identical defining formula. The two invariants are related by
the formula Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Here M tree
MHV is the tree contri-

bution to the maximally helicity violating amplitude for the scattering of n particles: recall that
these amplitudes contain two negative helicity gluons whereas the amplitudes containing a smaller
number of them vanish [B20]. One can speak of a factorization to a product of n-particle ampli-
tudes with k − 2 and 2 negative helicities as the origin of the duality. The equivalence between
the descriptions based on ordinary and momentum twistors states the dual conformal invariance of
the amplitudes implying Yangian symmetry. It has been conjectured that Grassmannian integrals
generate all Yangian invariants.

The formulas for the Grassmann integrals for twistors and momentum twistors appearing
in the expressions of NkMHV amplitudes are given by following expressions.

1. The integrals Ln,k(W1, · · · ,Wn) associated with Nk−2MHV amplitudes in the description
based on ordinary twistors correspond to k negative helicities and are given by
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Ln,k(W1, · · · ,Wn) =
1

V ol(GL(2))

∫
dk×nCαa

(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)
×

×
k∏

α=1

d4|4Yα

n∏
i=1

δ4|4(Wi − CαiYα) .

(7.6.27)

Here Cαa denote the n× k coordinates used to parametrize the points of Gk,n.

2. The integrals Yn,k(W1, · · · ,Wn) associated with NkMHV amplitudes in the description
based on momentum twistors are defined as

Yn,k(Z1, · · · , Zn) =
1

V ol(GL(k))
×
∫

dk×nCαa
(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)

×
k∏

α=1

δ4|4(CαaZa) .

(7.6.28)

The possibility to select Z0
a = 1 implies

∑
k Cαk = 0 allowing to eliminate Cαn so that

the actual number of coordinates Grassman coordinates is nk − 1. As already noticed,
Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Momentum twistors are obviously cal-
culationally easier since the value of k is smaller by two units.

The 4k delta functions reduce the number of integration variables of contour integrals from
nk to (n− 4)k in the bosonic sector (the definition of delta functions involves some delicacies not
discussed here). The n quantities (m, · · ·m + k) are k × k-determinants defined by subsequent
columns from m to m+ k − 1 of the k × n matrix defined by the coordinates Cαa and correspond
geometrically to the k-volumes of the k-dimensional parallel-pipeds defined by these column vectors.
The fact that the scalings of twistor space coordinates Za can be compensated by scalings of Cαa
deforming integration contour but leaving the residue integral invariant so that the integral depends
on projective twistor coordinates only.

Since the integrand is a rational function, a multi-dimensional residue calculus allows to
deduce the values of these integrals as residues associated with the poles of the integrand in a
recursive manner. The poles correspond to the zeros of the k × k determinants appearing in the
integrand or equivalently to singular lower-dimensional parallel-pipeds. It can be shown that local
residues are determined by (k − 2)(n− k − 2) conditions on the determinants in both cases. The
value of the integral depends on the explicit choice of the integration contour for each variable
Cαa left when delta functions are taken into account. The condition that a correct form of tree
amplitudes is obtained fixes the choice of the integration contours.

For the ordinary twistors W the residues correspond to projective configurations in CPk−1,
or more precisely in the space CPnk−1/Gl(k), which is (k− 1)n− k2-dimensional space defining the
support for the residues integral. Gl(k) relates to each other different complex coordinate frames
for k-plane and since the choice of frame does not affect the plane itself, one has Gl(k) gauge
symmetry as well as the dual Gl(n− k) gauge symmetry.

CPk−1 comes from the fact that Cαk are projective coordinates: the amplitudes are indeed
invariant under the scalings Wi → tiWi, Cαi → tCαi. The coset space structure comes from
the fact that Gl(k) is a symmetry of the integrand acting as Cαi → Λ β

α Cβi . This analog of
gauge symmetry allows to fix k arbitarily chosen frame vectors Cαi to orthogonal unit vectors.
For instance, one can have Cαi = δαi for α = i ∈ 1, · · · , k. This choice is discussed in detail
in [B28]. The reduction to CPk−1 implies the reduction of the support of the integral to line in
the case of MHV amplitudes and to plane in the case of NMHV as one sees from the expression
dµ =

∏
α d

4|4Yα
∏n
i=1 δ

4|4(Wi − CαiYα). For (i1, · · · , ik) = 0 the vectors i1, ..ik belong to k − 2-
dimensional plane of CPk−1. In the case of NMHV (N2MHV ) amplitudes this translates at
the level of twistors to the condition that the corresponding twistors {i1, i2, i3} ({i1, i2, i3, i4}) are
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collinear (in the same plane) in twistor space. This can be understood from the fact that the delta
functions in dµ allow to express Wi in terms of k − 1 Yα: s in this case.

The action of conformal transformations in twistor space reduces to the linear action of
SU(2, 2) leaving invariant Hermitian sesquilinear form of signature (2, 2). Therefore the conformal
invariance of the Grassmannian integral and its dual variant follows from the possibility to perform
a compensating coordinate change for Cαa and from the fact that residue integral is invariant
under small deformations of the integration contour. The above described relationship between
representations based on twistors and momentum twistors implies the full Yangian invariance.

7.6.5 Canonical Operations For Yangian Invariants

General l-loop amplitudes can be constructed from the basic Yangian invariants defined byNkMHV
amplitudes by various operations respecting Yangian invariance apart from possible IR anomalies.
There are several operations that one can perform for Yangian invariants Yn,k and all these op-
erations appear in the recursion formula for planar all loop amplitudes. These operations are
described in [B29] much better than I could do it so that I will not go to any details. It is possible
to add and remove particles, to fuse two Yangian invariants, to merge particles, and to construct
from two Yangian invariants a higher invariant containing so called BCFW bridge representing
single particle exchange using only twistorial methods.

Inverse soft factors

Inverse soft factors add to the diagram a massless collinear particles between particles a and b and
by definition one has

On+1(a, c, b, · · · ) =
〈ab〉
〈ac〉〈cb〉

On(a′b′) . (7.6.29)

At the limit when the momentum of the added particle vanishes both sides approach the original
amplitude. The right-handed spinors and Grassmann parameters are shifted

λ̃′a = λ̃a + 〈cb〉
〈ab〉 λ̃c , λ̃′b = λ̃b + 〈ca〉

〈ba〉 λ̃c ,

η′a = ηa + 〈cb〉
〈ab〉ηc , η′b = ηb + 〈ca〉

〈ba〉ηc .
(7.6.30)

There are two kinds of inverse soft factors.

1. The addition of particle leaving the value k of negative helicity gluons unchanged means just
the re-interpretation

Y ′n,k(Z1, · · · , Zn−1, Zn) = Yn−1,k(Z1, · · · , Zn−1) (7.6.31)

without actual dependence on Zn. There is however a dependence on the momentum of the
added particle since the relationship between momenta and momentum twistors is modified
by the addition obtained by applying the basic rules relating region super momenta and
momentum twistors (light-like momentum determines λi and twistor equations for xi and
λi, ηi determine (µi, χi)) is expressible assigned to the external particles [B41]. Modifications
are needed only for the new vertex and its neighbors.

2. The addition of a particle increasing k with single unit is a more complex operation which can
be understood in terms of a residue of Yn,k proportional to Yn−1,k−1 and Yangian invariant
[z1 · · · z5] with five arguments constructed from basic Yangian invariants with four arguments.
The relationship between the amplitudes is now

Y ′n,k(.., Zn−1Zn, Z1 · · · ) = [n− 2 n− 1 n 1 2]× Yn−1,k−1(· · · Ẑn−1, Ẑ1, · · · ) .(7.6.32)
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Here

[abcde] =
δ0|4(ηa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (7.6.33)

denoted also by R(a, b, c, d, e) is the fundamental R-invariant appearing in one loop correc-
tions of MHV amplitudes and will appears also in the recursion formulas. 〈abcd〉 is the
fundamental super-conformal invariant associated with four super twistors defined in terms
of the permutation symbol.

Ẑn−1, Ẑ1 are deformed momentum twistor variables. The deformation is determined from the
relationship between external momenta, region momenta and momentum twistor variables.
Ẑ1 is the intersection Ẑ1 = (n−2 n−1 2)∩(12) of the line (12) with the plane (n−2 n−1 2)
and Ẑn−1 the intersection Ẑ1 = (12n)∩ (n− 2 n− 1) of the line (n− 2 n− 1) with the plane
(12n). The interpretation for the intersections at the level of ordinary Feynman diagrams is
in terms of the collinearity of the four-momenta involved with the underlying box diagram
with parallel on mass shell particles. These result from unitarity conditions obtained by
putting maximal number of loop momenta on mass shell to give the leading singularities.

The explicit expressions for the momenta are

Ẑ1 ≡ (n− 2 n− 1 2) ∩ (12)Z1 = 〈2 n− 2 n− 1 n〉+ Z2〈n− 2 n− 1 n 1〉 ,
Ẑn−1 ≡ (12n) ∩ (n− 2 n− 1) = Zn−2〈n− 2 n− 1 n 2〉+ Zn−1〈n 1 2 n− 2〉 .

(7.6.34)

These intersections also appear in the expressions defining the recursion formula.

Removal of particles and merge operation

Particles can be also removed. The first manner to remove particle is by integrating over the twistor
variable characterizing the particle. This reduces k by one unit. Merge operation preserves the
number of loops but removes a particle particle by identifying the twistor variables of neighboring
particles. This operation corresponds to an integral over on mass shell loop momentum at the level
of tree diagrams and by Witten’s half Fourier transform can be transformed to twistor integral.

The product

Y ′(Z1, · · ·Zn) = Y1(Z1, · · ·Zm)× Y2(Zm+1, · · ·Zn) (7.6.35)

of two Yangian invariants is again a Yangian invariant. This is not quite trivial since the depen-
dence of region momenta and momentum twistors on the momenta of external particles makes the
operation non-trivial.

Merge operation allows to construct more interesting invariants from the products of Yan-
gian invariants. One begins from a product of Yangian invariants (Yangian invariant trivially)
represented cyclically as points of circle and identifies the last twistor argument of given invariant
with the first twistor argument of the next invariant and performs integrals over the momentum
twistor variables appearing twice. The soft k-increasing and preserving operations can be described
also in terms of this operation for Yangian invariants such that the second invariant corresponds
to 3-vertex. The cyclic merge operation applied to four MHV amplitudes gives NMHV amplitudes
associated with on mass shell momenta in box diagrams. By applying similar operation to NMHV
amplitudes and MHV amplitudes one obtains 2-loop amplitudes. In [B29] examples about these
operations are described.
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BCFW bridge

BCFW bridge allows to build general tree diagrams from MHV tree diagrams [B19, B19] and
recursion formula of [B29] generalizes this to arbitrary diagrams. At the level of Feynman diagrams
it corresponds to a box diagram containing general diagrams labeled by L and R and MHV and
MHV 3-vertices (MHV 3-vertex allows expression in terms of MHV diagrams) with the lines of
the box on mass shell so that the three momenta emanating from the vertices are parallel and give
rise to a one-loop leading singularity.

At the level of Feynman diagrams BCFW bridge corresponds to so called “two-mass hard”
leading singularities associated with box diagrams with light-like momenta at the four lines of the
diagram [B28]. The motivation for the study of these diagrams comes from the hypothesis the
leading order singularities obtained by putting as many particles as possible on mass shell contain
the data needed to construct scattering amplitudes of N = 4 SYM completely. This representation
of the leading singularities generalizes to arbitrary loops. The recent article is a continuation of
this program to planar amplitudes.

Also BCFW bridge allows an interpretation as a particular kind fusion for Yang invariants
and involves all the basic operations. One starts from the amplitudes Y LnL,kL and Y RnR,kR and
constructs an amplitude Y ′nL+nR,kL+kR+1 representing the amplitude which would correspond to a
generalization of the MHV diagrams with the two tree diagrams connected by the MHV propagator
(BCFW bridge) replaced with arbitrary loop diagrams. Particle “1” resp. “j+1” is added by the
soft k-increasing factor to YnL+1,kL+1 resp. YnR+1,kR+1 giving amplitude with n+ 2 particles and
with k-charge equal to kL + kR + 2. The subsequent operations must reduce k-charge by one unit.
First repeated “1” and “j+1” are identified with their copies by k conserving merge operation,
and after that one performs an integral over the twistor variable ZI associated with the internal
line obtained and reducing k by one unit. The soft k-increasing factors bring in the invariants
[n− 1 n 1 I j + 2] associated with YL and [1 I j + 1 j j − 1] associated with YR. The integration
contour is chosen so that it selects the pole defined by ∠n − 1 n 1 I〉 in the denominator of
[n− 1 n 1 I j + 2] and the pole defined by 〈1 I j + 1 j〉 in the denominator of [1 I j + 1 j j − 1].

The explicit expression for the BCFW bridge is very simple:

(YL ⊗BCFW YR)(1, · · · , n) = [n− 1 n 1 j j + 1]× YR(1, · · · , j, I)YL(I, j + 1, · · · , n− 1, n̂) ,

n̂ = (n− 1 n) ∩ (j j + 1 1) , I = (j j + 1) ∩ (n− 1 n 1) . (7.6.36)

Single cuts and forward limit

Forward limit operation is used to increase the number of loops by one unit. The physical picture
is that one starts from say 1-loop amplitude and cuts one line by assigning to the pieces of the
line opposite light-like momenta having interpretation as incoming and outgoing particles. The
resulting amplitude is called forward limit. The only reasonable interpretation seems to be that
the loop integration is expressed by unitarity as forward limit meaning cutting of the line carrying
the loop momentum. This operation can be expressed in a manifestly Yangian invariant way as
entangled removal of two particles with the merge operation meaning the replacement Zn → Zn−1.
Particle n+ 1 is added adjacent to A,B as a k-increasing inverse soft factor and then A and B are
removed by entangled integration, and after this merge operation identifies n+ 1 and 1.

Forward limit is crucial for the existence of loops and for Yangian invariants it corresponds
to the poles arising from 〈(AB)qZn(z)Z1)〉 the integration contour Zn + zZn−1 around Zb in the
basic formula M =

∮
(dz/z)Mn leading to the recursion formula. A and B denote the momentum

twistors associated with opposite light-like momenta. In the generalized unitarity conditions the
singularity corresponds to the cutting of line between particles n and 1 with momenta q and −q,
summing over the multiplet of stats running around the loop. Between particles n2 and 1 one has
particles n−1, n with momenta q,−q. q = x1−xn = −xn+xn−1 giving x1 = xn−1. Light-likeness
of q means that the lines (71) = (76) and (15) intersect. At the forward limit giving rise to the pole
Z6 and Z7 approach to the intersection point (76) ∩ (15). In a generic gauge theories the forward
limits are ill-defined but in super-symmetric gauge theories situation changes.

The corresponding Yangian operation removes two external particles with opposite four-
momenta and involves integration over two twistor variables Za and Zb and gives rise to the
following expression
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∫
GL(2)

Y (· · · , Zn, ZA, ZB , Z1, · · · ) . (7.6.37)

The integration over GL(2) corresponds to integration over twistor variables associated ZA and
ZB . This operation allows addition of a loop to a given amplitude. The line ZaZb represents loop
momentum on one hand and the dual x-coordinate identified as momentum propagating along the
line on the other hand.

The integration over these variables is equivalent to an integration over loop momentum as
the explicit calculation of [B29] (see pages 12-13) demonstrates. If the integration contours are
products in the product of twistor spaces associated with a and b the and gives lower order Yangian
invariant as answer. It is however also possible to choose the integration contour to be entangled in
the sense that it cannot be reduced to a product of integration contours in the Cartesian product
of twistor spaces. In this case the integration gives a loop integral. In the removal operation
Yangian invariance can be broken by IR singularities associated with the integration contour and
the procedure does not produce genuine Yangian invariant always.

What is highly interesting from TGD point of view is that this integral can be expressed as
a contour integral over CP1 × CP1 combined with integral over loop momentum. If TGD vision
about generalized Feynman graps in zero energy ontology is correct, the loop momentum integral
is discretized to an an integral over discrete mass shells and perhaps also to a sum over discretized
momenta and one can therefore avoid IR singularities.

7.6.6 Explicit Formula For The Recursion Relation

Recall that the recursion formula is obtained by considering super-symmetric momentum-twistor
deformation Zn → Zn + zZn−1 and by integrating over z to get the identity

Mn,k,l =

∮
dz

z
M̂n,k,l(z) . (7.6.38)

This integral equals to integral with reversed integration contour enclosing the exterior of the
contour. The challenge is to deduce the residues contributing to the residue integral and the claim
of [B29] is that these residues reduce to simple basic types.

1. The first residue corresponds to a pole at infinity and reduces the particle number by one
giving a contribution Mn−1,k,l(1, · · · , n − 1) to Mn,k,l(1, · · · , n − 1, n). This is not totally
trivial since the twistor variables are related to momenta in different manner for the two
amplitudes. This gives the first contribution to the right hand side of the formula below.

2. Second pole corresponds to the vanishing of 〈Zn(z)Z1ZjZj+1〉 and corresponds to the factor-
ization of channels. This gives the second BCFW contribution to the right hand side of the
formula below. These terms are however not enough since the recursion formula would imply
the reduction to expressions involving only loop corrections to 3-loop vertex which vanish in
N = 4 SYM.

3. The third kind of pole results when 〈(AB)qZn(z)Z1〉 vanishes in momentum twistor space.
(AB)q denotes the line in momentum twistor space associated with q: th loop variable.

The explicit formula for the recursion relation yielding planar all loop amplitudes is obtained
by putting all these pieces together and reads as

Mn,k,l(1, · · · , n) = Mn−1,k,l(1, · · · , n− 1)

+
∑

nL,kL,lL;j

[j j + 1 n− 1 n 1]MR
nR,kR,lR(1, · · · , j, Ij)×ML

nL,kL,lL(Ij , j + 1, · · · , n̂j)

+

∫
GL(2)

[AB n− 1 n 1]Mn+2,k+1,n,k−1(1, · · · , n̂AB , Â, B) ,

nL + nR = n+ 2 , kL + kR = k − 1 , lR + lL = l .

(7.6.39)
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The momentum super-twistors are given by

n̂j = (n− 1 n) ∩ (j j + 1 1) , Ij = (j j + 1 1) ∩ (n− 1 n 1) ,

n̂AB = (n− 1 n) ∩ (AB 1) , Â = (AB) ∩ (n− 1 n 1) .
(7.6.40)

The index l labels loops in n+ 2-particle amplitude and the expression is fully symmetrized with
equal weight for all loop integration variables (AB)l. A and B are removed by entangled integration
meaning that GL(2) contour is chosen to encircle points where both points A,B on the line (AB)
are located at the intersection of the line (AB) with the plane (n− 1 n 1). GL(2) integral can be
done purely algebraically in terms of residues.

In [B29] and [B41] explicit calculations for NkMHV amplitudes are carried out to make
the formulas more concrete. For N1MHV amplitudes second line of the formula vanishes and the
integrals are rather simple since the determinants are 1× 1 determinants.



Chapter 8

Unified Number Theoretical
Vision

8.1 Introduction

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and
twistor spaces are highly relevant for quantum TGD. In the following some general observations
distilled during years are summarized. This summary involves several corrections to the picture
which has been developing for a decade or so.

A brief updated view about M8 − H duality and twistorialization is in order. There is a
beautiful pattern present suggesting that M8 −H duality makes sense and that H = M4 × CP2

is completely unique on number theoretical grounds.

1. M8−H duality allows to deduce M4×CP2 via number theoretical compactification. For the
option with minimal number of conjectures the associativity/co-associativity of the space-
time surfaces in M8 guarantees that the space-time surfaces in M8 define space-time surfaces
in H. The tangent/normal spaces of quaternionic/hyper-quaternionic surfaces in M8 contain
also an integrable distribution of hyper-complex tangent planes M2(x).

An important correction is that associativity/co-associativity does not make sense at the level
of H since the spinor structure of H is already complex quaternionic and reducible to the ordi-
nary one by using matrix representations for quaternions. The associativity condition should
however have some counterpart at level of H. One could require that the induced gamma ma-
trices at each point could span a real-quaternionic sub-space of complexified quaternions for
quaternionicity and a purely imaginary quaternionic sub-space for co-quaternionicity. One
might hope that it is consistent with - or even better, implies - preferred extremal property. I
have not however found a viable definition of quaternionic “reality”. On the other hand, it is
possible assigne the tangent space M8 of H with octonion structure and define associativity
as in case of M8.

M8 − H duality could generalize to H − H duality in the sense that also the image of the
space-time surface under duality map is not only preferred extremal but also associative (co-
associative) surface. The duality map H → H could be iterated and would define the arrow
for the category formed by preferred extremals.

2. M4 and CP2 are the unique 4-D spaces allowing twistor space with Kähler structure. M8

allows twistor space for octonionic spinor structure obtained by direct generalization of the
standard construction for M4. M4 × CP2 spinors can be regarded as tensor products of
quaternionic spinors associated with M4 and CP2: this trivial observation forces to challenge
the earlier rough vision, which however seems to stand up the challenge.

3. Octotwistors generalise the twistorial construction from M4 to M8 and octonionic gamma
matrices make sense also for H with quaternionicity condition reducing 12-D T (M8) =
G2/U(1)×U(1) to the 12-D twistor space T (H) = CP3×SU3/U(1)×U(1). The interpretation
of the twistor space in the case of M8 is as the space of choices of quantization axes for the

320
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2-D Cartan algebra of G2 acting as octonionic automorphisms. For CP2 one has space for
the chocies of quantization axes for the 2-D SU(3) Cartan algebra.

4. It is also possible that the dualities extend to a sequence M8 → H → H... by mapping the
associative/co-associative tangent space to CP2 and M4 point to M4 point at each step. One
has good reasons to expect that this iteration generates fractal as the limiting space-time
surface.

5. A fascinating structure related to octo-twistors is the non-associated analog of Lie group
defined by automorphisms by octonionic imaginary units: this group is topologically 7-sphere.
Second analogous structure is the 7-D Lie algebra like structure defined by octonionic analogs
of sigma matrices.

The analogy of quaternionicity of M8 pre-images of preferred extremals and quaternionicity
of the tangent space of space-time surfaces in H with the Majorana condition central in super
string models is very thought provoking. All this suggests that associativity at the level of M8

indeed could define basic dynamical principle of TGD.
Number theoretical vision about quantum TGD involves both p-adic number fields and

classical number fields and the challenge is to unify these approaches. The challenge is non-trivial
since the p-adic variants of quaternions and octonions are not number fields without additional
conditions. The key idea is that TGD reduces to the representations of Galois group of algebraic
numbers realized in the spaces of octonionic and quaternionic adeles generalizing the ordinary
adeles as Cartesian products of all number fields: this picture relates closely to Langlands program.
Associativity would force sub-algebras of the octonionic adeles defining 4-D surfaces in the space
of octonionic adeles so that 4-D space-time would emerge naturally. M8 − H correspondence in
turn would map the space-time surface in M8 to M4 × CP2.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L14].

8.2 Number Theoretic Compactification And M 8−H Dual-
ity

This section summarizes the basic vision about number theoretic compactification reducing the
classical dynamics to associativity or co-associativity. Originally M8 −H duality was introduced
as a number theoretic explanation for H = M4×CP2. Much later it turned out that the completely
exceptional twistorial properties of M4 and CP2 are enough to justify X4 ⊂ H hypothesis. Skeptic
could therefore criticize the introduction of M8 (actually its complexification) as an un-necessary
mathematical complication producing only unproven conjectures and bundle of new statements to
be formulated precisely. However, if quaternionicity can be realized in terms of M8

c using Oc-real
analytic functions and if quaternionicity is equivalent with preferred extremal property, a huge
simplification results and one can say that field equations are exactly solvable.

One can question the feasibility of M8−H duality if the dynamics is purely number theoretic
at the level of M8 and determined by Kähler action at the level of H. Situation becomes more
democratic if Kähler action defines the dynamics in both M8 and H: this might mean that
associativity could imply field equations for preferred extremals or vice versa or there might be
equivalence between two. This means the introduction Kähler structure at the level of M8, and
motivates also the coupling of Kähler gauge potential to M8 spinors characterized by Kähler charge
or em charge. One could call this form of duality strong form of M8 −H duality.

The strong form M8−H duality boils down to the assumption that space-time surfaces can
be regarded either as 4-surfaces of H or as surfaces of M8 or even M8

c composed of associative
and co-associative regions identifiable as regions of space-time possessing Minkowskian resp. Eu-
clidian signature of the induced metric. They have the same induced metric and Kähler form and
WCW associated with H should be essentially the same as that associated with M8. Associativity
corresponds to hyper-quaterniocity at the level of tangent space and co-associativity to co-hyper-
quaternionicity - that is associativity/hyper-quaternionicity of the normal space. Both are needed

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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to cope with known extremals. Since in Minkowskian context precise language would force to in-
troduce clumsy terms like hyper-quaternionicity and co-hyper-quaternionicity, it is better to speak
just about associativity or co-associativity.

Remark: The original assumption was that space-times could be regarded as surfaces in M8

rather than in its complexification M8
c identifiable as complexified octonions. This assumption is

un-necessarily strong and if one assumes that octonion-real analytic functions characterize these
surfaces M8

c must be assumed.
For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to

mere Kḧler or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian
in 4-D harmonic potential breaking SO(4) symmetry. Due to the enhanced symmetry of harmonic
oscillator, one expects that partial waves are classified by SU(4) and by reduction to SU(3)×U(1)
by em charge and color quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4×E4 and implies
Gaussian localization of the spinor modes near origin so that E4 effectively compactifies. The The
resulting physics brings strongly in mind low energy physics, where only electromagnetic interaction
is visible directly, and one cannot avoid associations with low energy hadron physics. These are
some of the reasons for considering M8−H duality as something more than a mere mathematical
curiosity.

Remark: The Minkowskian signatures of M8 and M4 produce technical nuisance. One
could overcome them by Wick rotation, which is however somewhat questionable trick. M8

c = Oc
provides the proper formulation.

1. The proper formulation is in terms of complexified octonions and quaternions involving the
introduction of commuting imaginary unit j. If complexified quaternions are used for H,
Minkowskian signature requires the introduction of two commuting imaginary units j and i
meaning double complexification.

2. Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions spanned
by real unit and jIk, where Ik are quaternionic units. These spaces are obviously not closed
under multiplication. One can however however define the notion of associativity for the sub-
space of M8 by requiring that the products and sums of the tangent space vectors generate
complexified quaternions.

3. Ordinary quaternions Q are expressible as q = q0 + qkIk. Hyper-quaternions are expressible
as q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q ⊕ jQ. Similar
formula applies to octonions and their hyper counterparts which can be regarded as subspaces
of complexified octonions O⊕ jO. Tangent space vectors of H correspond hyper-quaternions
qH = q0 + jqkIk + jiq2 defining a subspace of doubly complexified quaternions: note the
appearance of two imaginary units.

The recent definitions of associativity and M8 duality has evolved slowly from in-accurate
characterizations and there are still open questions.

1. Kähler form forM8 non-trivial only in E4 ⊂M8 implies unique decompositionM8 = M4×E4

needed to define M8−H duality uniquely. This applies also to M8
c . This forces to introduce

also Kähler action, induced metric and induced Kähler form. Could strong form of duality
meant that the space-time surfaces in M8 and H have same induced metric and induced
Kähler form? Could the WCW s associated with M8 and H be identical with this assumption
so that duality would provide different interpretations for the same physics?

2. One can formulate associativity in M8 (or M8
c ) by introducing octonionic structure in tangent

spaces or in terms of the octonionic representation for the induced gamma matrices. Does
the notion have counterpart at the level of H as one might expect if Kähler action is involved
in both cases? The analog of this formulation in H might be as quaternionic “reality”
since tangent space of H corresponds to complexified quaternions: I have however found no
acceptable definition for this notion.

The earlier formulation is in terms of octonionic flat space gamma matrices replacing the
ordinary gamma matrices so that the formulation reduces to that in M8 tangent space.



8.2. Number Theoretic Compactification And M8 −H Duality 323

This formulation is enough to define what associativity means although one can protest.
Somehow H is already complex quaternionic and thus associative. Perhaps this just what is
needed since dynamics has two levels: imbedding space level and space-time level. One must
have imbedding space spinor harmonics assignable to the ground states of super-conformal
representations and quaternionicity and octonionicity of H tangent space would make sense
at the level of space-time surfaces.

3. Whether the associativity using induced gamma matrices works is not clear for massless
extremals (MEs) and vacuum extremals with the dimension of CP2 projection not larger
than 2.

4. What makes this notion of associativity so fascinating is that it would allow to iterate duality
as a sequence M8 → H → H... by mapping the space-time surface to M4×CP2 by the same
recipe as in case of M8. This brings in mind the functional composition of Oc-real analytic
functions (Oc denotes complexified octonions: complexification is forced by Minkowskian
signature) suggested to produced associative or co-associative surfaces. The associative (co-
associative) surfaces in M8 would correspond to loci for vanishing of imaginary (real) part
of octonion-real-analytic function.

It might be possible to define associativity in H also in terms of Kähler-Dirac gamma
matrices defined by Kähler action (certainly not M8).

1. All known extremals are associative or co-associative in H in this sense. This would also
give direct correlation with the variational principle. For the known preferred extremals this
variant is successful partially because the Kähler-Dirac gamma matrices need not span the
entire tangent space. The space spanned by the Kähler-Dirac gammas is not necessarily tan-
gent space. For instance for CP2 type vacuum extremals the Kähler-Dirac gamma matrices
are CP2 gamma matrices plus an additional light-like component from M4 gamma matrices.

If the space spanned by Kähler-Dirac gammas has dimensionD smaller than 3 co-associativity
is automatic. If the dimension of this space is D = 3 it can happen that the triplet of gammas
spans by multiplication entire octonionic algebra. For D = 4 the situation is of course non-
trivial.

2. For Kähler-Dirac gamma matrices the notion of co-associativity can produce problems since
Kähler-Dirac gamma matrices do not in general span the tangent space. What does co-
associativity mean now? Should one replace normal space with orthogonal complement
of the space spanned by Kähler-Dirac gamma matrices? Co-associativity option must be
considered for D = 4 only. CP2 type vacuum extremals provide a good example. In this
case the Kähler-Dirac gamma matrices reduce to sums of ordinary CP2 gamma matrices and
ligt-like M4 contribution. The orthogonal complement for the Kähler-Dirac gamma matrices
consists of dual light-like gamma matrix and two gammas orthogonal to it: this space is
subspace of M4 and trivially associative.

8.2.1 Basic Idea Behind M8 −M4 × CP2 Duality

If four-surfaces X4 ⊂ M8 under some conditions define 4-surfaces in M4 × CP2 indirectly, the
spontaneous compactification of super string models would correspond in TGD to two different
manners to interpret the space-time surface. This correspondence could be called number theoret-
ical compactification or M8 −H duality.

The hard mathematical facts behind the notion of number theoretical compactification are
following.

1. One must assume that M8 has unique decomposition M8 = M4 × E4. This decomposition
generalizes also to the case of M8

c . This would be most naturally due to Kähler structure
in E4 defined by a self-dual Kähler form defining parallel constant electric and magnetic
fields in Euclidian sense. Besides Kähler form there is vector field coupling to sigma matrix
representing the analog of strong isospin: the corresponding octonionic sigma matrix however
is imaginary unit times gamma matrix - say ie1 in M4 - defining a preferred plane M2 in
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M4. Here it is essential that the gamma matrices of E4 defined in terms of octonion units
commute to gamma matrices in M4. What is involved becomes clear from the Fano triangle
illustrating octonionic multiplication table.

2. The space of hyper-complex structures of the hyper-octonion space - they correspond to the
choices of plane M2 ⊂ M8 - is parameterized by 6-sphere S6 = G2/SU(3). The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure
and thus leaves invariant one octonionic imaginary unit, call it e1. Fixed complex structure
therefore corresponds to a point of S6.

3. Quaternionic sub-algebras of M8 (and M8
c ) are parametrized by G2/U(2). The quaternionic

sub-algebras of octonions with fixed complex structure (that is complex sub-space defined
by real and preferred imaginary unit and parametrized by a point of S6) are parameterized
by SU(3)/U(2) = CP2 just as the complex planes of quaternion space are parameterized by
CP1 = S2. Same applies to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would
thus have an interpretation as the isometry group of CP2, as the automorphism sub-group of
octonions, and as color group. Thus the space of quaternionic structures can be parametrized
by the 10-dimensional space G2/U(2) decomposing as S6 × CP2 locally.

4. The basic result behind number theoretic compactification and M8 − H duality is that
associative sub-spaces M4 ⊂ M8 containing a fixed commutative sub-space M2 ⊂ M8 are
parameterized by CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3 with a
fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice of e2 and e3

amounts to fixing e2 ±
√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup of SU(3).

U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2) induces
rotations of the spinor having e2 and e3 components. Hence all possible completions of 1, e1

by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

Consider now the formulation of M8 −H duality.

1. The idea of the standard formulation is that associative manifold X4 ⊂ M8 has at its each
point associative tangent plane. That is X4 corresponds to an integrable distribution of
M2(x) ⊂M8 parametrized 4-D coordinate x that is map x→ S6 such that the 4-D tangent
plane is hyper-quaternionic for each x.

2. Since the Kähler structure of M8 implies unique decomposition M8 = M4×E4, this surface
in turn defines a surface in M4 × CP2 obtained by assigning to the point of 4-surface point
(m, s) ∈ H = M4 × CP2: m ∈M4 is obtained as projection M8 →M4 (this is modification
to the earlier definition) and s ∈ CP2 parametrizes the quaternionic tangent plane as point of
CP2. Here the local decomposition G2/U(2) = S6×CP2 is essential for achieving uniqueness.

3. One could also map the associative surface in M8 to surface in 10-dimensional S6×CP2. In
this case the metric of the image surface cannot have Minkowskian signature and one cannot
assume that the induced metrics are identical. It is not known whether S6 allows genuine
complex structure and Kähler structure which is essential for TGD formulation.

4. Does duality imply the analog of associativity for X4 ⊂ H? The tangent space of H can be
seen as a sub-space of doubly complexified quaternions. Could one think that quaternionic
sub-space is replaced with sub-space analogous to that spanned by real parts of complexi-
fied quaternions? The attempts to define this notion do not however look promising. One
can however define associativity and co-associativity for the tangent space M8 of H using
octonionization and can formulate it also terms of induced gamma matrices.

5. The associativity defined in terms of induced gamma matrices in both in M8 and H has
the interesting feature that one can assign to the associative surface in H a new associative
surface in H by assigning to each point of the space-time surface its M4 projection and point
of CP2 characterizing its associative tangent space or co-associative normal space. It seems
that one continue this series ad infinitum and generate new solutions of field equations! This
brings in mind iteration which is standard manner to generate fractals as limiting sets. This
certainly makes the heart of mathematician beat.
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6. Kähler structure in E4 ⊂M8 guarantees natural M4×E4 decomposition. Does associativity
imply preferred extremal property or vice versa, or are the two notions equivalent or only
consistent with each other for preferred extremals?

A couple of comments are in order.

1. This definition generalizes to the case of M8
c : all that matters is that tangent space-is is

complexified quaternionic and there is a unique identification M4 ⊂ M8
c : this allows to

assign the point of 4-surfaces a point of M4×CP2. The generalization is needed if one wants
to formulate the hypothesis about Oc real-analyticity as a manner to build quaternionic
space-time surfaces properly.

2. This definition differs from the first proposal for years ago stating that each point of X4

contains a fixed M2 ⊂ M4 rather than M2(x) ⊂ M8 and also from the proposal assuming
integrable distribution of M2(x) ⊂ M4. The older proposals are not consistent with the
properties of massless extremals and string like objects for which the counterpart of M2

depends on space-time point and is not restricted to M4. The earlier definition M2(x) ⊂M4

was problematic in the co-associative case since for the Euclidian signature is is not clear
what the counterpart of M2(x) could be.

3. The new definition is consistent with the existence of Hamilton-Jacobi structure meaning
slicing of space-time surface by string world sheets and partonic 2-surfaces with points of
partonic 2-surfaces labeling the string world sheets [K6]. This structure has been proposed
to characterize preferred extremals in Minkowskian space-time regions at least.

4. Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain integrable
distribution of M2(x). It is normal space which containsM2(x). Does this have some physical
meaning? Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson
field is pure gauge so that the modes of the modified Dirac operator [K62] restricted to the
string world sheet have well-defined em charge. This condition appears in the construction
of solutions of Kähler-Dirac operator.

For octonionic spinor structure the W coupling is however absent so that the condition
does not make sense in M8. The number theoretic condition would be as commutative or
co-commutative surface for which imaginary units in tangent space transform to real and
imaginary unit by a multiplication with a fixed imaginary unit! One can also formulate co-
associativity as a condition that tangent space becomes associative by a multiplication with
a fixed imaginary unit.

There is also another justification for the distribution of Euclidian tangent planes. The idea
about associativity as a fundamental dynamical principle can be strengthened to the state-
ment that space-time surface allows slicing by hyper-complex or complex 2-surfaces, which
are commutative or co-commutative inside space-time surface. The physical interpretation
would be as Minkowskian or Euclidian string world sheets carrying spinor modes. This would
give a connection with string model and also with the conjecture about the general structure
of preferred extremals.

5. Minimalist could argue that the minimal definition requires octonionic structure and asso-
ciativity only in M8. There is no need to introduce the counterpart of Kähler action in M8

since the dynamics would be based on associativity or co-associativity alone. The objection
is that one must assumes the decomposition M8 = M4 × E4 without any justification.

The map of space-time surfaces to those of H = M4 × CP2 implies that the space-time
surfaces in H are in well-defined sense quaternionic. As a matter of fact, the standard spinor
structure of H can be regarded as quaternionic in the sense that gamma matrices are essen-
tially tensor products of quaternionic gamma matrices and reduce in matrix representation
for quaternions to ordinary gamma matrices. Therefore the idea that one should introduce
octonionic gamma matrices in H is questionable. If all goes as in dreams, the mere associa-
tivity or co-associativity would code for the preferred extremal property of Kähler action in
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H. One could at least hope that associativity/co-associativity in H is consistent with the
preferred extremal property.

6. One can also consider a variant of associativity based on modified gamma matrices - but only
in H. This notion does not make sense in M8 since the very existence of quaternionic tangent
plane makes it possible to define M8−H duality map. The associativity for modified gamma
matrices is however consistent with what is known about extremals of Kähler action. The
associativity based on induced gamma matrices would correspond to the use of the space-time
volume as action. Note however that gamma matrices are not necessary in the definition.

8.2.2 Hyper-Octonionic Pauli “Matrices” And The Definition Of Asso-
ciativity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associativity
means at the level of M8 using gamma matrices (for background see [K60] ).

1. According to the standard definition space-time surface X4 ⊂M8 is associative if the tangent
space at each point of X4 in X4 ⊂ M8 picture is associative. The definition can be given
also in terms of octonionic gamma matrices whose definition is completely straightforward.

2. Could/should one define the analog of associativity at the level of H? One can identify the
tangent space of H as M8 and can define octonionic structure in the tangent space and this
allows to define associativity locally. One can replace gamma matrices with their octonionic
variants and formulate associativity in terms of them locally and this should be enough.

Skeptic however remindsM4 allows hyper-quaternionic structure and CP2 quaternionic struc-
ture so that complexified quaternionic structure would look more natural for H. The tangent
space would decompose as M8 = HQ+ ijQ, weher j is commuting imaginary unit and HQ
is spanned by real unit and by units iIk, where i second commutating imaginary unit and Ik
denotes quaternionic imaginary units. There is no need to make anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to be!) de-
fined globally. The lift of the CP2 spinor connection to its octonionic variant has questionable
features: in particular vanishing of the charged part and reduction of neutral part to photon.
Therefore is is unclear whether associativity condition makes sense for X4 ⊂M4×CP2. What
makes it so fascinating is that it would allow to iterate duality as a sequencesM8 → H → H....
This brings in mind the functional composition of octonion real-analytic functions suggested
to produced associative or co-associative surfaces.

I have not been able to settle the situation. What seems the working option is associativity
in both M8 and H and Kähler-Dirac gamma matrices defined by appropriate Kähler action and
correlation between associativity and preferred extremal property.

8.2.3 Are Kähler And Spinor Structures Necessary In M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8

Kähler action with same value of Kähler action defining Kähler function. As found, this leads to
the conclusion that the M8−H duality is Kähler isometry. Coupling of spinors to Kähler potential
is the next step and this in turn leads to the introduction of spinor structure so that quantum
TGD in H should have full M8 dual.

Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be in 1-1
correspondence with preferred extremals of Kähler action. This motivates the question whether
Kähler action make sense also in M8. This does not exclude the possibility that associativity
implies or is equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degener-
acy is obtained, one obtains massless extremals, string like objects, and counterparts of CP2 type
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vacuum extremals. All known extremals would be associative or co-associative if modified gamma
matrices define the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have
same induced metric same induced Kähler form. The basic difference would be that the spinor
connection for surfaces in M8 would be however neutral and have no left handed components and
only em gauge potential. A possible interpretation is that M8 picture defines a theory in the phase
in which electroweak symmetry breaking has happened and only photon belongs to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent
with WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the general
formulation of the WCW geometry generalizes from H to M8. Since the matrix elements of
symplectic super-Hamiltonians defining WCW gamma matrices are well defined as matrix elements
involve spinor modes with Gaussian harmonic oscillator behavior, the non-compactness of E4 does
not pose any technical problems.

Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2

of covariantly constant Kähler forms so that one can accommodate free independent Abelian
gauge fields assuming that the independent gauge fields are orthogonal to each other when
interpreted as realizations of quaternionic imaginary units. This is possible but perhaps a
more natural option is the introduction of just single Kähler form as in the case of CP2.

2. One should be able to distinguish between quarks and leptons also in M8, which suggests
that one introduce spinor structure and Kähler structure in E4. The Kähler structure of
E4 is unique apart form SO(3) rotation since all three quaternionic imaginary units and the
unit vectors formed from them allow a representation as an antisymmetric tensor. Hence one
must select one preferred Kähler structure, that is fix a point of S2 representing the selected
imaginary unit. It is natural to assume different couplings of the Kähler gauge potential
to spinor chiralities representing quarks and leptons: these couplings can be assumed to be
same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving
coupling to Kähler form and Z0 contains both axial and vector parts. The naive replacement
of sigma matrices appearing in the coupling of electroweak gauge fields takes the left handed
parts of these fields to zero so that only neutral part remains. Further, gauge fields correspond
to curvature of CP2 which vanishes for E4 so that only Kähler form form remains. Kähler
form couples to 3L and q so that the basic asymmetry between leptons and quarks remains.
The resulting field could be seen as analog of photon.

4. The absence of weak parts of classical electro-weak gauge fields would conform with the
standard thinking that classical weak fields are not important in long scales. A further
prediction is that this distinction becomes visible only in situations, where H picture is
necessary. This is the case at high energies, where the description of quarks in terms of SU(3)
color is convenient whereas SO(4) QCD would require large number of E4 partial waves.
At low energies large number of SU(3) color partial waves are needed and the convenient
description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction between
quarks and leptons.

1. The complexified octonions representing H spinors decompose to 1 + 1 + 3 + 3 under SU(3)
representing color automorphisms but the interpretation in terms of QCD color does not
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make sense. Rather, the triplet and single combine to two weak isospin doublets and quarks
and leptons corresponds to to “spin” states of octonion valued 2-spinor. The conservation of
quark and lepton numbers follows from the absence of coupling between these states.

2. One could modify the coupling so that coupling is on electric charge by coupling it to elec-
tromagnetic charge which as a combination of unit matrix and sigma matrix is proportional
to 1 + kI1, where I1 is octonionic imaginary unit in M2 ⊂M4. The complexified octonionic
units can be chosen to be eigenstates of Qem so that Laplace equation reduces to ordinary
scalar Laplacian with coupling to self-dual em field.

3. One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8

since the gauge potential is linear in E4 coordinates. One possibility is Cartesian coordinates
is A(Ax, Ay, Az, At) = k(−y, x, t,−z). Thhe coupling would make E4 effectively a compact
space.

4. The square of Dirac operator gives potential term proportional to r2 = x2 + y2 + z2 + t2 so
that the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized near
origin are expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial
SO(3) is expected since the coupling is proportional to 1 + ike1 defining electromagnetic
charge. Since the basis of complexified quaternions can be chosen to be eigenstates of e1

under multiplication, octonionic spinors are eigenstates of em charge and one obtains two
color singles 1 ± e1 and color triplet and antitriplet. The color triplets cannot be however
interpreted in terms of quark color.

Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the
reduction of the symmetry to SU(3)×U(1) corresponding to color symmetry and em charge
so that one would have same basic quantum numbers as tof CP2 harmonics. An interesting
question is how the spectrum and mass squared eigenvalues of harmonics differ from those
for CP2.

5. In the square of Dirac equation JklΣkl term distinguishes between different em charges (Σkl
reduces by self duality and by special properties of octonionic sigma matrices to a term
proportional to iI1 and complexified octonionic units can be chosen to be its eigenstates with
eigen value ±1. The vacuum mass squared analogous to the vacuum energy of harmonic
oscillator is also present and this contribution are expected to cancel themselves for neutrinos
so that they are massless whereas charged leptons and quarks are massive. It remains to be
checked that quarks and leptons can be classified to triality T = ±1 and t = 0 representations
of dynamical SU(3) respectively.

What about the analog of Kähler Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time sur-
faces: the reduction to Oc-real-analyticity would be extremely nice but not necessary (Oc denotes
complexified octonions needed to cope with Minkowskian signature). Most importantly, there
might be no need to introduce Kähler action (and Kähler form) in M8. Even the octonionic
representation of gamma matrices is un-necessary. Neither there is any absolute need to define oc-
tonionic Dirac equation and octonionic Kähler Dirac equation nor octonionic analog of its solutions
nor the octonionic variants of imbedding space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation
in H could have counterparts for octonionic spinors satisfying quaternionicity condition. One can
indeed wonder whether the restriction of the modes of induced spinor field to string world sheets
defined by integrable distributions of hyper-complex spaces M2(x) could be interpretated in terms
of commutativity of fermionic physics in M8. M8 −H correspondence could map the octonionic
spinor fields at string world sheets to their quaternionic counterparts in H. The fact that only
holomorphy is involved with the definition of modes could make this map possible.
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8.2.4 How Could One Solve Associativity/Co-Associativity Conditions?

The natural question is whether and how one could solve the associativity/-co-associativity con-
ditions explicitly. One can imagine two approaches besides M8 → H → H... iteration generating
new solutions from existing ones.

Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also the
field equations could be solved in terms of octonion-real-analyticity at the level of M8 perhaps also
at the level of H. Signature however causes problems - at least technical. Also the compactness of
CP2 causes technical difficulties but they need not be insurmountable.

For E8 the tangent space would be genuinely octonionic and one can define the notion
octonion-real analytic map as a generalization of real-analytic function of complex variables (the
coefficients of Laurent series are real to guarantee associativity of the series). The argument is
complexified octonion inO⊕iO forming an algebra but not a field. The norm square is Minkowskian
as difference of two Euclidian octonionic norms: N(o1 + io2) = N(o1) − N(o2) and vanishes
at 15-D light cone boundary. Obviously, differential calculus is possible outside the light-cone
boundary. Rational analytic functions have however poles at the light-cone boundary. One can
wonder whether the poles at M4 light-cone boundary, which is subset of 15-D light-cone boundary
could have physical significance and relevant for the role of causal diamonds in ZEO.

The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc for
complexified octonions) have Minkowskian signature of metric and are 4-surfaces at which the
projection of f(o1 + io2) to Im(O1), iIm(O2), and iRe(Q2) ⊕ Im(Q1) vanish so that only the
projection to hyper-quaternionic Minkowskian sub-space M4 = Re(Q1) + iIm(Q2) with signature
(1,−1,−, 1−, 1) is non-vanishing. The inverse image need not belong to M8 and in general it
belongs to M8

c but this is not a problem: all that is needed that the tangent space of inverse
image is complexified quaternionic. If this is the case then M8 − H duality maps the tangent
space of the inverse image to CP2 point and image itself defines the point of M4 so that a point
of H is obtained. Co-associative surfaces would be surfaces for which the projections of image to
Re(O1), iRe(O2), and to Im(O1) vanish so that only the projection to iIm(O2) with signature
(−1,−1,−1,−1) is non-vanishing.

The inverse images as 4-D sub-manifolds of M8
c (not M8!) are excellent candidates for asso-

ciative and co-associative 4-surfaces since M8−H duality assignes to them a 4-surface in M4×CP2

if the tangent space at given point is complexified quaternionic. This is true if one believes on the
analytic continuation of the intuition from complex analysis (the image of real axes under the map
defined by Oc-real-analytic function is real axes in the new coordinates defined by the map: the
intuition results by replacing “real” by “complexified quaternionic” ). The possibility to solve field
equations in this manner would be of enormous significance since besides basic arithmetic oper-
ations also the functional decomposition of Oc-real-analytic functions produces similar functions.
One could speak of the algebra of space-time surfaces.

What is remarkable that the complexified octonion real analytic functions are obtained by
analytic continuation from single real valued function of real argument. The real functions form
naturally a hierarchy of polynomials (maybe also rational functions) and number theoretic vision
suggests that there coefficients are rationals or algebraic numbers. Already for rational coefficients
hierarchy of algebraic extensions of rationals results as one solves the vanishing conditions. There
is a temptation to regard this hierarchy coding for space-time sheets as an analog of DNA.

Note that in the recent formulation there is no need to pose separately the condition about
integrable distribution of M2(x) ⊂M4.

Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time surfaces.
The following discussion applies to both M8 and H with minor modifications if one accepts that
also H can allow octonionic tangent space structure, which does not require gamma matrices.

1. Quaternionicity is equivalent with associativity guaranteed by the vanishing of the associator
A(a, b, c) = a(bc)− (ab)c for any triplet of imaginary tangent vectors in the tangent space of
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the space-time surface. The condition must hold true for purely imaginary combinations of
tangent vectors.

2. If one is able to choose the coordinates in such a manner that one of the tangent vectors
corresponds to real unit (in the imbedding map imbedding space M4 coordinate depends
only on the time coordinate of space-time surface), the condition reduces to the vanishing of
the octonionic product of remaining three induced gamma matrices interpreted as octonionic
gamma matrices. This condition looks very simple - perhaps too simple!- since it involves
only first derivatives of the imbedding space vectors.

One can of course whether quaternionicity conditions replace field equations or only select
preferred extremals. In the latter case, one should be able to prove that quaternionicity
conditions are consistent with the field equations.

3. Field equations would reduce to tri-linear equations in in the gradients of imbedding space co-
ordinates (rather than involving imbedding space coordinates quadratically). Sum of analogs
of 3× 3 determinants deriving from a× (b× b) for different octonion units is involved.

4. Written explicitly field equations give in terms of vielbein projections eAα , vielbein vectors eAk ,
coordinate gradients ∂αh

k and octonionic structure constants fABC the following conditions
stating that the projections of the octonionic associator tensor to the space-time surface
vanishes:

eAαe
B
β e

C
γ A

E
ABC = 0 ,

AEABC = f E
AD f D

BC − f D
AB f E

DC ,

eAα = ∂αh
keAk ,

Γk = eAk γA .

(8.2.1)

The very naive idea would be that the field equations are indeed integrable in the sense that
they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-trivial
outcome simplifying the situation further. These equations can be formulated as the as
purely algebraic equations written above plus integrability conditions

FAαβ = Dαe
A
β −Dβe

A
α = 0 . (8.2.2)

One could say that vielbein projections define an analog of a trivial gauge potential. Note
however that the covariant derivative is defined by spinor connection rather than this effective
gauge potential which reduces to that in SU(2). Similar formulation holds true for field
equations and one should be able to see whether the field equations formulated in terms of
derivatives of vielbein projections commute with the associatitivity conditions.

5. The quaternionicity conditions can be formulated as vanishing of generalization of Cayley’s
hyperdeterminant for “hypermatrix” aijk with 2-valued indiced
(see http://tinyurl.com/ya7h3n9z ). Now one has 8 hyper-matrices with 3 8-valued in-
dices associated with the vanishing AEBCDx

ByCzD = 0 of trilinear forms defined by the
associators. The conditions say somethig only about the octonioni structure constants and
since octonionic space allow quaternionic sub-spaces these conditions must be satisfied.

The inspection of the Fano triangle [A71] (see Fig. 8.1 ) expressing the multiplication table
for octonionic imaginary units reveals that give any two imaginary octonion units e1 and e2 their
product e1e2 (or equivalently commutator) is imaginary octonion unit (2 times octonion unit) and
the three units span together with real unit quaternionic sub-algebra. There it seems that one can
generate local quaternionic sub-space from two imaginary units plus real unit. This generalizes to

http://tinyurl.com/ya7h3n9z
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the vielbein components of tangent vectors of space-time surface and one can build the solutions
to the quaternionicity conditions from vielbein projections e1, e2, their product e3 = k(x)e1e2 and
real fourth “time-like” vielbein component which must be expressible as a combination of real unit
and imaginary units:

e0 = a× 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the latter
term. Besides these conditions one has integrability conditions and field equations for Kähler
action. This formulation suggests that quaternionicity is additional - perhaps defining - property
of preferred extremals.

Figure 8.1: Octonionic triangle: the six lines and one circle containing three vertices define the
seven associative triplets for which the multiplication rules of the ordinary quaternion imaginary
units hold true. The arrow defines the orientation for each associative triplet. Note that the
product for the units of each associative triplets equals to real unit apart from sign factor.

8.2.5 Quaternionicity At The Level Of Imbedding Space Quantum Num-
bers

From the multiplication table of octonions as illustrated by Fano triangle [A71] one finds that all
edges of the triangle, the middle circle and the three the lines connecting vertices to the midpoints
of opposite side define triplets of quaternionic units. This means that by taking real unit and any
imaginary unit in quaternionic M4 algebra spanning M2 ⊂ M4 and two imaginary units in the
complement representing CP2 tangent space one obtains quaternionic algebra. This suggests an
explanation for the preferred M2 contained in tangent space of space-time surface (the M2: s could
form an integrable distribution). Four-momentum restricted to M2 and I3 and Y interpreted as
tangent vectors in CP2 tangent space defined quaterionic sub-algebra. This could give content for
the idea that quantum numbers are quaternionic.

I have indeed proposed that the four-momentum belongs toM2. IfM2(x) form a distribution
as the proposal for the preferred extremals suggests this could reflect momentum exchanges between
different points of the space-time surface such that total momentum is conserved or momentum
exchange between two sheets connected by wormhole contacts.

8.2.6 Questions

In following some questions related to M8 −H duality are represented.
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Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form of M8 − H duality involving no Kähler action in M8 is
unrealistic. Why just Kähler action? What makes it so special? The only defense that I can
imagine is that Kähler action is in many respects unique choice.

An alternative approach would replace induced gamma matrices with the modified ones to
get the correlation In the case of M8 this option cannot work. One cannot exclude it for H.

1. For Kähler action the Kähler-Dirac gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, assign to a

given point of X4 a 4-D space which need not be tangent space anymore or even its sub-space.

The reason is that canonical momentum current contains besides the gravitational contri-
bution coming from the induced metric also the “Maxwell contribution” from the induced
Kähler form not parallel to space-time surface. In the case of M8 the duality map to H is
therefore lost.

2. The space spanned by the Kähler-Dirac gamma matrices need not be 4-dimensional. For
vacuum extremals with at most 2-D CP2 projection Kähler-Dirac gamma matrices vanish
identically. For massless extremals they span 1- D light-like subspace. For CP2 vacuum
extremals the modified gamma matrices reduces to ordinary gamma matrices for CP2 and the
situation reduces to the quaternionicity of CP2. Also for string like objects the conditions are
satisfied since the gamma matrices define associative sub-space as tangent space of M2×S2 ⊂
M4×CP2. It seems that associativity is satisfied by all known extremals. Hence Kähler-Dirac
gamma matrices are flexible enough to realize associativity in H.

3. Kähler-Dirac gamma matrices in Dirac equation are required by super conformal symmetry
for the extremals of action and they also guarantee that vacuum extremals defined by surfaces
in M4 × Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces.
The modified definition of associativity in H does not affect in any manner M8 −H duality
necessarily based on induced gamma matrices in M8 allowing purely number theoretic in-
terpretation of standard model symmetries. One can however argue that the most natural
definition of associativity is in terms of induced gamma matrices in both M8 and H.

Remark: A side comment not strictly related to associativity is in order. The anti-
commutators of the Kähler-Dirac gamma matrices define an effective Riemann metric and one
can assign to it the counterparts of Riemann connection, curvature tensor, geodesic line, volume,
etc... One would have two different metrics associated with the space-time surface. Only if the
action defining space-time surface is identified as the volume in the ordinary metric, these metrics
are equivalent. The index raising for the effective metric could be defined also by the induced
metric and it is not clear whether one can define Riemann connection also in this case. Could this
effective metric have concrete physical significance and play a deeper role in quantum TGD? For
instance, AdS-CFT duality leads to ask whether interactions be coded in terms of the gravitation
associated with the effective metric.

Now skeptic can ask why should one demand M8 − H correspondence if one in any case
is forced to introduced Kähler also at the level of M8? Does M8 − H correspondence help to
construct preferred extremals or does it only bring in a long list of conjectures? I can repeat the
questions of the skeptic.

Minkowskian-Euclidian ↔ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and as-
sociativity of the normal space- let us call this co-associativity of tangent space- as alternative
options. Both options are needed as has been already found. Since space-time surface decomposes
into regions whose induced metric possesses either Minkowskian or Euclidian signature, there is a
strong temptation to propose that Minkowskian regions correspond to associative and Euclidian
regions to co-associative regions so that space-time itself would provide both the description and
its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an
interesting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer
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as preferred p-adic length scales. Lp ∝
√
p corresponds to the p-adic length scale defining the

size of the space-time sheet at which elementary particle represented as CP2 type extremal is
topologically condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length

scale of the wormhole contacts associated with the CP2 type extremal and CP2 size is the natural
length unit now. Obviously the quantitative formulation for associative-co-associative duality
would be in terms p→ k duality.

Can M8 −H duality be useful?

Skeptic could of course argue that M8−H duality generates only an inflation of unproven conjec-
tures. This might be the case. In the following I will however try to defend the conjecture. One
can however find good motivations for M8 −H duality: both theoretical and physical.

1. If M8 −H duality makes sense for induced gamma matrices also in H, one obtains infinite
sequence if dualities allowing to construct preferred extremals iteratively. This might relate
to octonionic real-analyticity and composition of octonion-real-analytic functions.

2. M8 − H duality could provide much simpler description of preferred extremals of Kähler
action as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should
introduce the counterpart of Kähler action in M8 and the coupling of M8 spinors to Kähler
form. Note that the Kähler form in E4 would be self dual and have constant components:
essentially parallel electric and magnetic field of same constant magnitude.

3. M8 − H duality provides insights to low energy physics, in particular low energy hadron
physics. M8 description might work when H-description fails. For instance, perturbative
QCD which corresponds to H-description fails at low energies whereas M8 description might
become perturbative description at this limit. Strong SO(4) = SU(2)L × SU(2)R invariance
is the basic symmetry of the phenomenological low energy hadron models based on conserved
vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC).
Strong SO(4) = SU(2)L×SU(2)R relates closely also to electro-weak gauge group SU(2)L×
U(1) and this connection is not well understood in QCD description. M8 −H duality could
provide this connection. Strong SO(4) symmetry would emerge as a low energy dual of
the color symmetry. Orbital SO(4) would correspond to strong SU(2)L × SU(2)R and by
flatness of E4 spin like SO(4) would correspond to electro-weak group SU(2)L × U(1)R ⊂
SO(4). Note that the inclusion of coupling to Kähler gauge potential is necessary to achieve
respectable spinor structure in CP2. One could say that the orbital angular momentum in
SO(4) corresponds to strong isospin and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3)×U(1) ⊂ SU(4) symmetry for Mx
Dirac equation. One can however argue that SU(4) symmetry combines SO(4) multiplets
together. Furthermore, SO(4) represents the isometries leaving Kähler form invariant.

M8 −H duality in low energy physics and low energy hadron physics

M8−H can be applied to gain a view about color confinement. The basic idea would be that SO(4)
and SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial waves and low
energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of
freedom that can approximate CP2 with a small region of its tangent space E4. One could also
say that color interactions mask completely electroweak interactions so that the spinor connection
of CP2 can be neglected and one has effectively E4. The basic prediction is that SO(4) should
appear as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks
and gluons are expected to appear at the confinement limit. Since WCW degrees of freedom
begin to dominate, color confinement limit transcends the descriptive power of QCD.
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2. The success of SO(4) sigma model in the description of low lying hadrons would directly
relate to the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong
SO(4) quantum numbers can be identified as orbital counterparts of right and left handed
electro-weak isospin coinciding with strong isospin for lowest quarks. In sigma model pion
and sigma boson form the components of E4 valued vector field or equivalently collection
of four E4 Hamiltonians corresponding to spherical E4 coordinates. Pion corresponds to S3

valued unit vector field with charge states of pion identifiable as three Hamiltonians defined
by the coordinate components. Sigma is mapped to the Hamiltonian defined by the E4 radial
coordinate. Excited mesons corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4)
partial waves. At the low energy limit only lowest representations would be be important
whereas at higher energies higher partial waves would be excited and the description based
on CP2 partial waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left
resp. right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin
statistics problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both
cases so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-
adic mass calculations allowing fractally scaled up versions of various quarks allow to replace
Gell-Mann mass formula with highly successful predictions for hadron masses [K34].

To my opinion these observations are intriguing enough to motivate a concrete attempt to
construct low energy hadron physics in terms of SO(4) gauge theory.

8.2.7 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-associativity
of space-time surfaces define by induced gamma matrices and applying both for M8 and H. The
fact that the duality can be continued to an iterated sequence of duality maps M8 → H → H... is
what makes the proposal so fascinating and suggests connection with fractality.

The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is
highly natural. One can also consider the idea that the space-time surfaces in M8 and H have same
induced metric and Kähler form: for iterated duality map this would mean that the steps in the
map produce space-time surfaces which identical metric and Kähler form so that the sequence might
stop. M8

H duality might provide two descriptions of same underlying dynamics: M8 description
would apply in long length scales and H description in short length scales.

8.3 Quaternions and TGD

8.3.1 Are Euclidian Regions Of Preferred Extremals Quaternion- Kähler
Manifolds?

In blog comments Anonymous gave a link to an article (see http://tinyurl.com/y7j9hxr8) about
construction of 4-D quaternion-Kähler metrics with an isometry: they are determined by so called
SU(∞) Toda equation. I tried to see whether quaternion-Kähler manifolds could be relevant for
TGD.

From Wikipedia (see http://tinyurl.com/yd8feoev) one can learn that QK is charac-
terized by its holonomy, which is a subgroup of Sp(n) × Sp(1): Sp(n) acts as linear symplectic
transformations of 2n-dimensional space (now real). In 4-D case tangent space contains 3-D sub-
manifold identifiable as imaginary quaternions. CP2 is one example of QK manifold for which the
subgroup in question is SU(2)× U(1) and which has non-vanishing constant curvature: the com-
ponents of Weyl tensor represent the quaternionic imaginary units. QKs are Einstein manifolds:
Einstein tensor is proportional to metric.

http://tinyurl.com/y7j9hxr8
http://tinyurl.com/yd8feoev
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What is really interesting from TGD point of view is that twistorial considerations show that
one can assign to QK a special kind of twistor space (twistor space in the mildest sense requires
only orientability). Wiki tells that if Ricci curvature is positive, this (6-D) twistor space is what
is known as projective Fano manifold with a holomorphic contact structure. Fano variety has the
nice property that as (complex) line bundle (the twistor space property) it has enough sections to
define the imbedding of its base space to a projective variety. Fano variety is also complete: this
is algebraic geometric analogy of topological property known as compactness.

QK manifolds and twistorial formulation of TGD

How the QKs could relate to the twistorial formulation of TGD?

1. In the twistor formulation of TGD [K55] the space-time surfaces are 4-D base spaces of 6-D
twistor spaces in the Cartesian product of 6-D twistor spaces of M4 and CP2 - the only
twistor spaces with Kähler structure. In TGD framework space-time regions can have either
Euclidian or Minkowskian signature of induced metric. The lines of generalized Feynman
diagrams are Euclidian.

2. Could the twistor spaces associated with the lines of generalized Feynman diagrams be pro-
jective Fano manifolds? Could QK structure characterize Euclidian regions of preferred
extremals of Kähler action? Could a generalization to Minkowskian regions exist.

I have proposed that so called Hamilton-Jacobi structure [K62] characterizes preferred ex-
tremals in Minkowskian regions. It could be the natural Minkowskian counterpart for the
quaternion Kähler structure, which involves only imaginary quaternions and could make
sense also in Minkowski signature. Note that unit sphere of imaginary quaternions defines
the sphere serving as fiber of the twistor bundle.

Why it would be natural to have QK that is corresponding twistor space, which is projective
contact Fano manifold?

1. QK property looks very strong condition but might be true for the preferred extremals
satisfying very strong conditions stating that the classical conformal charges associated with
various conformal algebras extending the conformal algebras of string models [K62], [L20].
These conditions would be essentially classical gauge conditions stating that strong form of
holography implies by strong form of General Coordinate Invariance (GCI) is realized: that
is partonic 2-surfaces and their 4-D tangent space data code for quantum physics.

2. Kähler property makes sense for space-time regions of Euclidian signature and would be
natural is these regions can be regarded as small deformations of CP2 type vacuum extremals
with light-like M4 projection and having the same metric and Kähler form as CP2 itself.

3. Fano property implies that the 4-D Euclidian space-time region representing line of the
Feynman diagram can be imbedded as a sub-manifold to complex projective space CPn.
This would allow to use the powerful machinery of projective geometry in TGD framework.
This could also be a space-time correlate for the fact that CPns emerge in twistor Grassmann
approach expected to generalize to TGD framework.

4. CP2 allows both projective (trivially) and contact (even symplectic) structures. δM4
+×CP2

allows contact structure - I call it loosely symplectic structure. Also 3-D light-like orbits of
partonic 2-surfaces allow contact structure. Therefore holomorphic contact structure for the
twistor space is natural.

5. Both the holomorphic contact structure and projectivity of CP2 would be inherited if QK
property is true. Contact structures at orbits of partonic 2-surfaces would extend to holo-
morphic contact structures in the Euclidian regions of space-time surface representing lines
of generalized Feynman diagrams. Projectivity of Fano space would be also inherited from
CP2 or its twistor space SU(3)/U(1)×U(1) (flag manifold identifiable as the space of choices
for quantization axes of color isospin and hypercharge).
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The article considers a situation in which the QK manifold allows an isometry. Could the
isometry (or possibly isometries) for QK be seen as a remnant of color symmetry or rotational
symmetries of M4 factor of imbedding space? The only remnant of color symmetry at the level of
imbedding space spinors is anomalous color hyper charge (color is like orbital angular momentum
and associated with spinor harmonic in CP2 center of mass degrees of freedom). Could the isometry
correspond to anomalous hypercharge?

How to choose the quaternionic imaginary units for the space-time surface?

Parallellizability is a very special property of 3-manifolds allowing to choose quaternionic imaginary
units: global choice of one of them gives rise to twistor structure.

1. The selection of time coordinate defines a slicing of space-time surface by 3-surfaces. GCI
would suggest that a generic slicing gives rise to 3 quaternionic units at each point each
3-surface? The parallelizability of 3-manifolds - a unique property of 3-manifolds - means
the possibility to select global coordinate frame as section of the frame bundle: one has 3
sections of tangent bundle whose inner products give rose to the components of the metric
(now induced metric) guarantees this. The tri-bein or its dual defined by two-forms obtained
by contracting tri-bein vectors with permutation tensor gives the quanternionic imaginary
units. The construction depends on 3-metric only and could be carried out also in GRT
context. Note however that topology change for 3-manifold might cause some non-trivialities.
The metric 2-dimensionality at the light-like orbits of partonic 2-surfaces should not be a
problem for a slicing by space-like 3-surfaces. The construction makes sense also for the
regions of Minkowskian signature.

2. In fact, any 4-manifold (see http://tinyurl.com/yb8l34b5) [A88] allows almost quater-
nionic as the above slicing argument relying on parallelizibility of 3-manifolds strongly sug-
gests.

3. In zero energy ntology (ZEO)- a purely TGD based feature - there are very natural special
slicings. The first one is by linear time-like Minkowski coordinate defined by the direction
of the line connecting the tips of the causal diamond (CD). Second one is defined by the
light-cone proper time associated with either light-cone in the intersection of future and past
directed light-cones defining CD. Neither slicing is global as it is easy to see.

The relationship to quaternionicity conjecture and M8 −H duality

One of the basic conjectures of TGD is that preferred extremals consist of quaternionic/ co-
quaternionic (associative/co-associative) regions [K53]. Second closely related conjecture is M8 −
H duality allowing to map quaternionic/co-quaternionic surfaces of M8 to those of M4 × CP2.
Are these conjectures consistent with QK in Euclidian regions and Hamilton-Jacobi property in
Minkowskian regions? Consider first the definition of quaternionic and co-quaternionic space-time
regions.

1. Quaternionic/associative space-time region (with Minkowskian signature) is defined in terms
of induced octonion structure obtained by projecting octonion units defined by vielbein of
H = M4×CP2 to space-time surface and demanding that the 4 projections generate quater-
nionic sub-algebra at each point of space-time.

If there is also unique complex sub-algebra associated with each point of space-time, one ob-
tains one can assign to the tangent space-of space-time surface a point of CP2. This allows to
realize M8−H duality [K53] as the number theoretic analog of spontaneous compactification
(but involving no compactification) by assigning to a point of M4 = M4 × CP2 a point of
M4 × CP2. If the image surface is also quaternionic, this assignment makes sense also for
space-time surfaces in H so that M8 − H duality generalizes to H − Hduality allowing to
assign to given preferred extremal a hierarchy of extremals by iterating this assignment. One
obtains a category with morphisms identifiable as these duality maps.

http://tinyurl.com/yb8l34b5
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2. Co-quaternionic/co-associative structure is conjectured for space-time regions of Euclidian
signature and 4-D CP2 projection. In this case normal space of space-time surface is quater-
nionic/associative. A multiplication of the basis by preferred unit of basis gives rise to a
quaternionic tangent space basis so that one can speak of quaternionic structure also in this
case.

3. Quaternionicity in this sense requires unique identification of a preferred time coordinate
as imbedding space coordinate and corresponding slicing by 3-surfaces and is possible only
in TGD context. The preferred time direction would correspond to real quaternionic unit.
Preferred time coordinate implies that quaternionic structure in TGD sense is more specific
than the QK structure in Euclidian regions.

4. The basis of induced octonionic imaginary unit allows to identify quaternionic imaginary
units linearly related to the corresponding units defined by tri-bein vectors. Note that the
multiplication of octonionic units is replaced with multiplication of antisymmetric tensors
representing them when one assigns to the quaternionic structure potential QK structure.
Quaternionic structure does not require Kähler structure and makes sense for both signatures
of the induced metric. Hence a consistency with QK and its possible analog in Minkowskian
regions is possible.

5. The selection of the preferred imaginary quaternion unit is necessary for M8 − H corre-
spondence. This selection would also define the twistor structure. For quaternion-Kähler
manifold this unit would be covariantly constant and define Kähler form - maybe as the
induced Kähler form.

6. Also in Minkowskian regions twistor structure requires a selection of a preferred imaginary
quaternion unit. Could the induced Kähler form define the preferred imaginary unit also
now? Is the Hamilton-Jacobi structure consistent with this?

Hamilton-Jacobi structure involves a selection of 2-D complex plane at each point of space-
time surface. Could induced Kähler magnetic form for each 3-slice define this plane? It
is not necessary to require that 3-D Kähler form is covariantly constant for Minkowskian
regions. Indeed, massless extremals representing analogs of photons are characterized by
local polarization and momentum direction and carry time-dependent Kähler-electric and -
magnetic fields. One can however ask whether monopole flux tubes carry covariantly constant
Kähler magnetic field: they are indeed deformations of what I call cosmic strings [K6, K14]
for which this condition holds true?

8.3.2 The Notion of Quaternion Analyticity

The 4-D generalization of conformal invariance suggests strongly that the notion of analytic func-
tion generalizes somehow. The obvious ideas coming in mind are appropriately defined quaternionic
and octonion analyticity. I have used a considerable amount of time to consider these possibilities
but had to give up the idea about octonion analyticity could somehow allow to preferred extemals.

Basic idea

One can argue that quaternion analyticity is the more natural option in the sense that the local
octonionic imbedding space coordinate (or at least M8 or E8 coordinate, which is enough if M8−H
duality holds true) would for preferred extremals be expressible in the form

o(q) = u(q) + v(q)× I .

(8.3.1)

Here q is quaternion serving as a coordinate of a quaternionic sub-space of octonions, and I is
octonion unit belonging to the complement of the quaternionic sub-space, and multiplies v(q) from
right so that quaternions and quaternionic differential operators acting from left do not notice
these coefficients at all. A stronger condition would be that the coefficients are real. u(q) and v(q)
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would be quaternionic Taylor- of even Laurent series with coefficients multiplying powers of q from
right for the same reason.

The signature of M4 metric is a problem. I have proposed a complexification of M8 and
M4 to get rid of the problem by assuming that the imbedding space corresponds to surfaces in
the space M8 identified as octonions of form o8 = Re(o) + iIm(o), where o is imaginary part of
ordinary octonion and i is commuting imaginary unit. M4 would correspond to quaternions of
form q4 = Re(q) + iIm(q). What is important is that powers of q4 and o8 belong to this sub-space
(as follows from the vanishing of cross product term in the square of octonion/quaternion) so that
powers of q4 (o8) has imaginary part proportional to Im(q) (Im(o))

I ended up to reconsider the idea of quaternion analyticity after having found two very
interesting articles discussing the generalization of Cauchy-Riemann equations. The first ar-
ticle (see http://tinyurl.com/yb8l34b5) [A88] was about so called triholomorphic maps be-
tween 4-D almost quaternionic manifolds. The article gave as a reference an article (see http:

//tinyurl.com/y7kww2o2) [A75] about quaternionic analogs of Cauchy-Riemann conditions dis-
cussed by Fueter long ago (somehow I have managed to miss Fueter’s work just like I missed
Hitchin’s work about twistorial uniqueness of M4 and CP2), and also a new linear variant of these
conditions, which seems especially interesting from TGD point of view as will be found.

The first form of Cauchy-Riemann-Fueter conditions

Cauchy-Riemann-Fueter (CRF) conditions generalize Cauchy-Riemann conditions. These condi-
tions are however not unique. Consider first the translationally invariant form of CRF conditions.

1. The translationally invariant form of CRF conditions is ∂qf = 0 or explicitly

∂qf = d1f + d2f ≡ (∂t − ∂xI)f − (∂yJ + ∂zK)f = 0 .

(8.3.2)

This form is not unique: one can perform SO(3) rotations of the quaternionic imaginary
units acting as automorphisms of quaternions. This form does not allow quaternionic Taylor
series as a solution. Note that the Taylor coefficients multiplying powers of the coordinate
from right are arbitrary quaternions. What looks pathological is that even linear functions
of q fail be solve this condition. What is however interesting that in flat space the equation
is equivalent with Dirac equation for a pair of Majorana spinors [A88].

Function f = t + Ix − Jy − Kz is perhaps the simplest solution to the condition. One
can define also other variants of q, in particular the variant q = t + Ix − Jy − Kz giving
f = t+ Ix+ Jy +Kz as a solution.

2. The condition allows functions depending on complex coordinate z of some complex-plane
only. It also allows functions satisfying two separate analyticity conditions, say d1f = 0 and
d2f = 0, say

∂uf = (∂t − ∂xI)f = 0 ,

∂vf = −(∂yJ + ∂zK)f = −J(∂y − ∂zI)f = 0 .

(8.3.3)

In the latter formula J multiplies from left! One has good hopes of obtaining holomorphic
functions of two complex coordinates.

The simplest solution to the conditions is complex value function f(u = x+ iy, v = y+ iz) of
two complex variables. The image of E4 is 2-dimensional whereas for f0 = t+ Ix− Jy−Kz
it is 4-D.

http://tinyurl.com/yb8l34b5
http://tinyurl.com/y7kww2o2
http://tinyurl.com/y7kww2o2
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In Euclidian signature one obtains quaternion valued map if the Taylor coefficients amn in
the series of f(u, v) are quaternions and are taken to the right: q = f(u, v) =

∑
umvnamn

to avoid problems from non-commutativity. With this assumption the image would be 4-D
in the generic case.

In TGD one must consider Minkowskian signature and it turns out that the situation changes
dramatically, and the naive view about quaternion analyticity must be given up. The experience
about extermals of Kähler action suggests a modification of the analyticity properties consistent
with the signature but whether one should call this analyticity quaternion analyticity is a matter
of taste.

Second form of CRF conditions

Second form of CRF conditions proposed in [A75] is tailored in order to realize the almost obvious
manner to realize quaternion analyticity.

1. The ingenious idea is to replace preferred quaternionic imaginary unit by a imaginary unit
which is in radial direction: er = (xI + yJ + zK)/r and require analyticity with respect to
the coordinate t + err. The solution to the condition is power series in t + err = q so that
one obtains quaternion analyticity.

2. The explicit form of the conditions is

(∂t − er∂r)f = (∂t − er
r r∂r)f = 0 .

(8.3.4)

This form allows both the desired quaternionic Taylor series and ordinary holomorphic func-
tions of complex variable in one of the 3 complex coordinate planes as general solutions.

3. This form of CRF is neither Lorentz invariant nor translationally invariant but remains
invariant under simultaneous scalings of t and r and under time translations. Under rotations
of either coordinates or of imaginary units the spatial part transforms like vector so that
quaternionic automorphism group SO(3) serves as a moduli space for these operators.

4. The interpretation of the latter solutions inspired by ZEO would be that in Minkowskian
regions r corresponds to the light-like radial coordinate of the either boundary of CD, which
is part of δM4

±. The radial scaling operator is that assigned with the light-like radial co-
ordinate of the light-cone boundary. A slicing of CD by surfaces parallel to the δM4

± is
assumed and implies that the line r = 0 connecting the tips of CD is in a special role. The
line connecting the tips of CD defines coordinate line of time coordinate. The breaking of
rotational invariance corresponds to the selection of a preferred quaternion unit defining the
twistor structure and preferred complex sub-space.

In regions of Euclidian signature r could correspond to the radial Eguchi-Hanson coordinate
of CP2 and r = 0 corresponds to a fixed point of U(2) subgroup under which CP2 complex
coordinates transform linearly.

5. Also in this case one can ask whether solutions depending on two complex local coordinates
analogous to those for translationally invariant CRF condition are possible. The remain
imaginary units would be associated with the surface of sphere allowing complex structure.

Generalization of CRF conditions?

Could the proposed forms of CRF conditions be special cases of much more general CRF conditions
as CR conditions are?



340 Chapter 8. Unified Number Theoretical Vision

1. Ordinary complex analysis suggests that there is an infinite number of choices of the quater-
nionic coordinates related by the above described quaternion-analytic maps with 4-D images.
The form of of the CRF conditions would be different in each of these coordinate systems
and would be obtained in a straightforward manner by chain rule.

2. One expects the existence of large number of different quaternion-conformal structures not
related by quaternion-analytic transformations analogous to those allowed by higher genus
Riemann surfaces and that these conformal equivalence classes of four-manifolds are charac-
terized by a moduli space and the analogs of Teichmüller parameters depending on 3-topology.
In TGD framework strong form of holography suggests that these conformal equivalence
classes for preferred extremals could reduce to ordinary conformal classes for the partonic
2-surfaces. An attractive possibility is that by conformal gauge symmetries the functional
integral over WCW reduces to the integral over the conformal equivalence classes.

3. The quaternion-conformal structures could be characterized by a standard choice of quater-
nionic coordinates reducing to the choice of a pair of complex coordinates. In these coordi-
nates the general solution to quaternion-analyticity conditions would be of form described
for the linear ansatz. The moduli space corresponds to that for complex or hyper-complex
structures defined in the space-time region.

Geometric formulation of the CRF conditions

The previous naive generalization of CRF conditions treats imaginary units without trying to
understand their geometric content. This leads to difficulties when when tries to formulate these
conditions for maps between quaternionic and hyper-quaternionic spaces using purely algebraic
representation of imaginary units since it is not clear how these units relate to each other.

In [A88] the CRF conditions are formulated in terms of the antisymmetric (1, 1) type tensors
representing the imaginary units: they exist for almost quaternionic structure. One might hope
that this so also for the almost hyper-quaternionic structure needed in Minkowskian signature.

The generalization of CRF conditions is proposed in terms of the Jacobian J of the map
mapping tangent space TM to TN and antisymmetric tensors Ju and ju representing the quater-
nionic imaginary units of N and M respectively. The generalization of CRF conditions reads
as

J −
∑
u

Ju ◦ J ◦ ju = 0 . (8.3.5)

For N = M it reduces to the translationally invariant algebraic form of the conditions discussed
above. These conditions reduce to CR conditions in 2-D case when one has only single Ju. In
quaternionic case this form is only replaced with sum over all 3 antisymmetric forms representing
quaternionic units.

These conditions are not unique. One can perform an SO(3) rotation (quaternion automor-
phism) of the imaginary units mediated by matrix Λuv to obtain

J − ΛuvJu ◦ J ◦ jv = 0 .

(8.3.6)

The matrix Λ can depend on point so that one has a kind of gauge symmetry. The most general
triholomorphic map allows the presence of Λ. Note that these conditions make sense on any
coordinates and complex analytic maps generate new forms of these conditions.

In Minkowskian signature one would have 3 forms iJu serving as counterparts for iI, iJ, iK.
The most natural possibility is that i is represented as algebraic unit and I, J,K as antisymmetry
self-dual em fields with E and B constant and parallel to each other and normalize to have unit
lengths. Their directions would correspond to 3 orthogonal coordinate axis. The twistor lift forces
to introduce the generalization of Kähler form of M4 and one can introduce all these 3 independent
forms as counterpart of hyperquaternionic units: they are introduced also for ordinary twistor
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structure but one of them is selected as a preferred one. The only change in the conditions is
change of sign of the sign of the sum coming from i2 = −1 so that one has

J +
∑
u

Ju ◦ J ◦ ju = 0 . (8.3.7)

These conditions are therefore formally well-defined also when one maps quaternionic to hyper-
quaternionic space or vice versa.

In 2-dimensional hypercomplex case the conditions allow to write hypercomplex map X −
Y = U = f(x − y) and X + Y = V = f(x + y). In special case this solutions of massless
d’Alembertian in M2. Alternatively, one can express f as analytic function of x + iIy and pick
up X − Y and X + Y . It is however not clear whether one can write a Taylor expansion in
hyper-quaternionic coordinate in the similar manner.

Covariant forms of structure constant tensors reduce to octonionic structure constants and
this allows to write the conditions explicitly. The index raising of the second index of the structure
constants is however needed using the metrics of M and N . This complicates the situation and
spoils linearity: in particular, for surfaces induced metric is needed. Whether local SO(3) rotation
can eliminate the dependence on induced metric is an interesting question. Since M4 imaginary
units differ only by multiplication by i, Minkowskian structure constants differ only by sign from
the Euclidian ones.

In the octonionic case the geometric generalization of CRF conditions does not seem to make
sense. By non-associativity of octonion product it is not possible to have a matrix representation
for the matrices so that a faithful representation of octonionic imaginary units as antisymmetric
1-1 forms does not make sense. If this representation exists it it must map octonionic associators
to zero. Note however that CRF conditions do not involve products of three octonion units so that
they make sense as algebraic conditions at least.

Does residue calculus generalize?

CRF conditions allow to generalize Cauchy formula allowing to express value of analytic function in
terms of its boundary values [A88]. This would give a concrete realization of the holography in the
sense that the physical variables in the interior could be expressed in terms of the data at the light-
like partonic orbits and and the ends of the space-time surface. Triholomorphic function satisfies
d’Alembert/Laplace equations - in induced metric in TGD framework- so that the maximum
modulus principle holds true. The general ansatz for a preferred extremals involving Hamilton-
Jacobi structure leads to d’Alembert type equations for preferred extremals [K62].

Could the analog of residue calculus exist? Line integral would become 3-D integral reducing
to a sum over poles and possible cuts inside the 3-D contour. The space-like 3-surfaces at the ends
of CDs could define natural integration contours, and the freedom to choose contour rather freely
would reflect General Coordinate Invariance. A possible choice for the integration contour would
be the closed 3-surface defined by the union of space-like surfaces at the ends of CD and by the
light-like partonic orbits.

Poles and cuts would be in the interior of the space-time surface. Poles have co-dimension 2
and cuts co-dimension 1. Strong form of holography suggests that partonic 2-surfaces and perhaps
also string world sheets serve as candidates for poles. Light-like 3-surfaces (partonic orbits) defining
the boundaries between Euclidian and Minkowskian regions are singular objects and could serve as
cuts. The discontinuity would be due to the change of the signature of the induced metric. There
are CDs inside CDs and one can also consider the possibility that sub-CDs define cuts, which in
turn reduce to cuts associated with sub-CDs.

8.3.3 Are Preferred Extremals Quaternion-Analytic in Some Sense?

At what level quaternion analyticity could appear in TGD framework? Does it appear only in
the formulation of conformal algebras and replace loop algebra with double loop algebra (roughly
zm → umvn)? Or does it appear in some form also at the level of preferred extremals for which
geometric form of quaternionicity is expected to appear - at least at the level of M8?
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Minimalistic view

Before continuing it is good to bring in mind the minimal assumptions and general vision.

1. If M8 −H duality [K53] holds true, the space-time surface X4 ⊂M8 = M4 × E4 is quater-
nionic surface in the sense that it have quaternionic tangent space and contains preferred
M2 ⊂M4 as part of their tangent space or more generally the 2-D hyper-complex subspaces
M2(x) define and integrable distribution defining 2-D surface.

2. Quaternionicity in geometric sense in M8 alone implies the interpretation as a 4-D surface
in H = M4 × CP2. There is no need to assume quaternionicity in geometric sense in H
although it cannot be excluded and would have strong implications [K53]. This one should
remember in order to avoid drowning to an inflation of speculations.

It is not at all clear what quaternion analyticity in Minkowskian signature really means or
whether it is even possible. The skeptic inside me has a temptation to conclude that the direct
extrapolation of quaternion analyticity from Euclidian to Minkowskian signature for space-time
surfaces in H is not necessary and might be even impossible. On the other hand, the properties
of the known extremals strongly suggest its analog. Quaternion analyticity could however appear
at the tangent space level for various generalized conformal algebras transformed to double loop
algebras for the proposed realization of the quaternion analyticity.

The naive generalization of quaternion analyticity to Minkowski signature fails

Quaternion analyticity works nicely in Euclidian signature for maps E4 → E4. One can also
consider quaternion analytic maps E4 → E8 with E8 regarded as octonionic space of form E4⊕E4J ,
where E4 is quaternionic space and J is octonion unit in the complement of E4 ⊂ E8. The maps
decompose to sums f1 ⊕ f2J where fi are quaternion analytic maps E4 → E4. Consider maps
f : E4 → E8, whose graph should define Euclidian space-time surface.

1. One can construct octonion valued maps f(u, v) = f0 +
∑
umvnamn : E4 → E8 with E4

identified as quaternionic sub-space of E8. Recall that one has u = t + Iz, v = (x + Iy)J .
amn can be octonions with the proposed definition of the Taylor series. Since each power
umvn is analytic function, one still has quaternion analyticity in the proposed sense. The
image would be 4-D in the general case.

2. By linearity the solutions obey linear superposition. They can be also multiplied if the
product is defined as ordered product in such a manner that only the powers t + ix and
y + iz are multiplied together at left and coefficients amn are multiplied together at right.
The analogy with quantum non-commutativity is obvious.

Can one generalize this ansatz to Minkowskian signature? One can try to look the ansatz
for the imbedding X4 ⊂ M8 = M4 × E4J as sum f = (f1, f2) of quaternion analytic maps
f1 : X4 → M4 and f2 : X4 → E4. The general quaternion analytic ansatz for X4 ⊂ E8 fails due
to the non-commutativity of quaternions.

The comparison of 2-dimensional hypercomplex case with 4-D hyperquaternionic case reveals
the basic problem.

1. The analogs CR conditions allow to write hypercomplex map X − Y = U = f(x − y) and
X + Y = V = f(x + y). In special case this gives the solutions of massless d’Alembertian
in M2 as sum of these solutions. Alternatively, one can express f as analytic function of
x+ iIy and pick up X−Y and X+Y . The use of hypercomplex numbers and hypercomplex
analyticity is equivalent with use of functions f(x− y) or f(x+ y).

2. The essential point is that for M2 regarded as a sub-space of “complexified” complex numbers
z1 + iz2 consisting of points x+ iIy, the multiplication of numbers of form x+ iIy does not
lead out of M2. For M4 this is not anymore the case since iI × iJ = −K does not belong to
the Minkowskian subspace of complexified quaternions. Hence there are no hopes about the
existence of the analog of f(z) =

∑
anz

n. For this reason also non-trivial powers umvn are
excluded and one cannot build a Minkowskian generalization of quaternion analytic power
series.
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3. If one can allow the values of hyper-quaternion analytic functions to be in M4
c rather than

M4, there are no problems but if one wants to represents space-time surfaces as graphs of
hyper-quaternion analytic maps f : M4 →M8 one must pose strong restrictions on allowed
functions.

The restrictions on the allowed hyper-quaternion analytic functions look rather obvious for
what might be called hyper-quaternion analytic maps M4 →M4.

1. Assume a decomposition M4 = M2 × E2 such one has f = (f1, f2), where f1 : M2 →M2 is
analytic in hyper-complex sense and f2 : E2 → E2 is analytic in complex sense. Both these
options are possible. One can write the map as f(u, v) = f1(u = t+ iIz) + f2(v = x+ Iy)iJ
and it satisfies the usual conditions ∂uf = 0 and ∂vf = 0. Note that iJ is taken to the
right so that the differential operators acting from left in the analyticity conditions does not
“notice” it.

Linear superpositions of this kind of solutions with real coefficients are possible. One can
multiply this kind of solutions if the multiplication is done separately in the Cartesian factors.
Also functional composition is possible in the factors.

2. A generalization of the solution ansatz to integrable decompositions M4 = M2(x) ⊕ E2(x)
is rather plausible. This would mean a foliation of M4 by pairs of 2-D surfaces. String
world sheets and partonic 2-surfaces would be the physical counterpart for these foliations.
I have called this kind of foliation Hamilton-Jacobi structure [K86] and it would serve as a
generalization of the complex structure to 4-D Minkowskian case. In Euclidian signature it
corresponds to ordinary complex structure in 4-D sense.

3. The analogy of double loop Lie algebra replacing powers zm with umvn does does not however
seem to be possible. Could this relate to SH forcing to code data using only functions of u
or v and to select either string world sheet or partonic 2-surface (fixing the gauge)?

On the other hand, the supersymplectic algebra (SSA) and extension of Kac-Moody algebras
to light-like orbits of partonic 2-surfaces suggests strongly that functions of form (t− z)mvn
as basis associated with SSA and SKMAs must be allowed as basis at these 3-D light-like
surfaces. These functions generate deformations of boundaries defining symmetries but the
corresponding deformations in the interior of the preferred extremals are not expected to be
of this form. Double loop algebra would not be lost but would have a nice separable form
only at boundaries of CD and at light-like partonic orbits.

What can one conclude?

1. The general experience about the solutions of field equations conforms with this picture
coded to the notion of Hamilton-Jacobi structure [K86]. Field equations and purely number
theoretic conditions related to Minkowski signature force what might be called number the-
oretic spontaneous symmetry breaking. This symmetry breaking is analogous to a selection
of single imaginary unit defining the analog of Kähler structure for M4: this imaginary unit
defines a new kind of U(1) force in TGD explaining large scale breaking of CP,P, and T [L27].
This kind of selection occurs also for the quaternionic structure of CP2 [L30].

2. The realistic form of analyticity condition abstractable from the properties known extremals
seems to be following. For the Minkowskian space-time surfaces the complex coordinates
of H are analytic functions of complex coordinates and of light-like coordinate assignable
to space-time surface. These coordinates can be assigned to M4 and define decomposition
M4 = M2 × E2: this decomposition can be local but must be integrable (Hamilton-Jacobi
structure). For Euclidian regions with 4-D CP2 projection complex coordinate of E2 is
complex function of complex coordinates of CP2 and M2 light-like coordinate is function of
real CP2 coordinates and second light-like coordinate is constant.

3. The transition to Minkowskian signature by regardingM4 as sub-space of complex-quaternionic
M4 does not respect the notion of quaternion analyticity in the naivest sense. Both Euclidian
and Minkowskian variants of quaternionic (associative) sub-manifold however makes sense
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as also co-quaternionic (co-associative) sub-manifold. An attractive hypothesis is that the
geometric view about quaternionicity is consistent with the above view about analyticity.
The known extremals are consistent with this form of analyticity. Analyticity in this sense
should be consistent with the geometric quaternionicity of X4 in Minkowskian signature and
geometric co-quaternionicity in Euclidian signature.

4. The geometric form of quaternionicity (or associativity) requires that the associator a(bc)−
(ab)c for any 3 tangent space vectors vanishes. These conditions involve products of 3 partial
derivates of imbedding space coordinates. For co-associativity this holds true in the normal
space. Again one must remember that these conditions might be needed only in M8 but
make sense also for H.

One must be however cautious: quaternionicity (associativity) in M8 in the geometric sense
need not imply even the above realistic form of quaternion analyticity condition in M8 and
even less so in H: this however seems to be the case.

Can the known extremals satisfy the realistic form of quaternion-analyticity?

To test the consistency the realistic form of quaternion analyticity, at the level of M8 or even H,
the best thing to do is to look whether quaternion analyticity is possible for the known extremals
for the twistor lift of Kähler action.

Twistor lift drops away most vacuum extremals from consideration and leaves only minimal
surfaces. The surviving vacuum extremals include CP2 type extremals with light-like geodesic
rather than arbitrary light-like curve as M4 projection. Vacuum extremals expressible as graph of
map from M4 to a Lagrangian sub-manifold of CP2 remain in the spectrum only if they are also
minimal surfaces: this kind of minimal surfaces are known to exist.

Massless extremals (MEs) with 2-D CP2 projection remain in the spectrum. Cosmic strings
of form X2×Y 2 ⊂M4×CP2 such that X2 is string world sheet (minimal surface) and Y 2 complex
sub-manifold of CP2 are extremals of both Kähler action and volume term. One can also check
whether Hamilton-Jacobi structure of M4 and of Minkowskian space-time regions and complex
structure of CP2 have natural counterparts in the quaternion-analytic framework.

1. Consider first cosmic strings. In this case the quaternionic-analytic map from X4 = X2×Y 2

to M4×CP2 with octonion structure would be map X4 to 2-D string world sheet in M4 and
Y 2 to 2-D complex manifold of CP2. This could be achieved by using the linear variant of
CRF condition. The map from X4 to M4 would reduce to ordinary hyper-analytic map from
X2 with hyper-complex coordinate to M4 with hyper-complex coordinates just as in string
models. The map from X4 to CP2 would reduce to an ordinary analytic map from X2 with
complex coordinates. One would not leave the realm of string models.

2. For the simplest massless extremals (MEs) CP2 coordinates are arbitrary functions of light-
like coordinate u = k ·m, k constant light-like vector, and of v = ε·m, ε - a polarization vector
orthogonal to k. The interpretation as classical counterpart of photon or Bose-Einstein con-
densate of photons is obvious. There are good reasons to expect that this ansatz generalizes
by replacing the variables u and v with coordinate along the light-like and space-like coor-
dinate lines of Hamilton-Jacobi structure [K86]. The non-geodesic motion of photons with
light-velocity and variation of the polarization direction would be due to the interactions
with the space-time sheet to which it is topologically condensed.

Now space-time surface would have naturally M4 coordinates and the map M4 → M4

would be just identity map satisfying the radial CRF condition. Can one understand CP2

coordinates in terms of the realistic form of quaternion- analyticity? The dependence of CP2

coordinates on u = t−x only can be formulated as CFR condition ∂us
k = 0 and this could is

expected to generalize in the formulation using the geometric representation of quaternionic
imaginary units at both sides. The dependence on light-light coordinate u follows from the
translationally invariant CRF condition.

The dependence on the real coordinate v = t− z does not conform with the proposed ansatz
since the dependence is naturally on complex coordinate w assignable to the polarization
plane of form z = f(w). This would give dependence on 2 transversal coordinates and CP2
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projection would be 3-D rather than 2-D. One can of course ask whether this dependence
is actually present for preferred extremals? Could the polarization vector be complex local
polarization vector orthogonal to the light-like vector? In quantum theory complex polar-
ization vectors are used routinely and become oscillator operators in second quantization
and in TGD Universe MEs indeed serve as space-time correlates for photons or their BE
condensates.

If this picture makes sense, one must modify the ansatz for the preferred extremals with
Minkowskian signature. The E4 and coordinates and perhaps even real CP2 coordinates can
depend on light-like coordinate u.

3. Vacuum extremals with Lagrangian manifold as (in the generic case 2-D) CP2 projection
survive if they are minimal surfaces. This property should guarantee the realistic form of
quaternion analyticity. Hyper-quaternionic structure for space-time surface using Hamilton-
Jacobi structure is the first guess. CP2 should allow a quaternionic coordinate decomposing
to a pair of complex coordinates such that second complex coordinate is constant for 2-D
Lagrangian manifold and second parameterizes it. Any 2-D surface allows complex structure
defined by the induced metric so that there are good hopes that these coordinates exist. The
quaternion-analytic map would map in the most general case is trivial for both hypercomplex
and complex coordinate of M4 but the quaternionic Taylor coefficients reduce to real numbers
to that the image is 2-D.

4. For CP2 type vacuum extremals surviving as extremals the M4 projection is light-like
geodesic with t + z = 0 with suitable choice of light-like coordinates in M2. t − z can
arbitrary function of CP2 coordinates. Associativity of the normal space is the only possible
option now.

One can fix the coordinates of X4 to be complex coordinates of CP2 so that one gets rid of
the degeneracy due to the choice of coordinates. M4 allows hyper-quaternionic coordinates
and Hamilton-Jacobi structures define different choices of hyper-quaternionic coordinates.
Now the second light- like coordinate would vary along random light-like geodesics providing
slicing of M4 by 3-D surfaces. Hamilton-Jacobi structure defines at each point a plane M2(x)
fixed by the light-like vector at the point and the 2-D orthogonal plane. In fact 4-D coordinate
grid is defined.

5. In the naive generalization CRF conditions are linear. Whether this is the case in the
formulation using the geometric representation of the imaginary units is not clear since the
quaternionic imaginary units depend on the vielbein of the induced 3-metric (note however
that the SO(3) gauge rotation appearing in the conditions could allow to compensate for the
change of the tensors in small deformations of the spaced-time surface). If linearity is real
and not true only for small perturbations, one could have linear superpositions of different
types of solutions, which looks strange. Could the superpositions describe perturbations of
say cosmic strings and massless extremals?

6. According to [A75] both forms of the algebraic CRF conditions generalize to the octonionic
situation and right multiplication of powers of octonion by Taylor coefficients plus linearity
imply that there are no problems with associativity. This inspires several questions.

Could octonion analytic maps of imbedding space allow to construct new solutions from the
existing ones? Could quaternion analytic maps applied at space-time level act as analogs of
holomorphic maps and generalize conformal gauge invariance to 4-D context?

Quaternion analyticity and generalized conformal algebras

The realistic quaternionic analyticity should apply at the level of conformal algebras for conformal
algebra is replaced with a direct sum of 2-D conformal and hyper-conformal algebra assignable to
string world sheets and partonic 2-surfaces. This would conform with SH and the considerations
above.

It is however too early to exclude the possibility that the powers zn of conformal algebras are
replaced by umzn (u = t− z and w = x+ iy) for symmetries restricted to the light-like boundaries
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of CD and to the light-like orbits of partonic 2-surfaces. This preferred form at boundaries would
be essential for reducing degrees of freedom implied by SSA and SKMA gauge conditions. In the
interior of space-time surfaces this simple form would be lost.

This would realize the Minkowskian analog of double loop algebras suggested by 4-dimensionality.
This option is encouraged by the structure of super-symplectic algebra and generalization of Kac-
Moody algebras for light-like orbits of partonic 2-surfaces. Again one must however remember that
these algebras should have a realization at the level of M8 but might not be necessary at the level
of H.

1. The basic vision of quantum TGD is that string world sheets are replaced with 4-D surfaces
and this forces a generalization of the notion of conformal invariance and one indeed obtains
generalized conformal invariances for both the light-like boundaries of CD and for the light-
like 3-surfaces defining partonic orbits as boundaries between Minkowskian and Euclidian
space-time regions. One can very roughly say that string string world sheets parameterized
by complex coordinate are replaced by space-time surfaces parameterized by two complex
coordinates. Quaternion analyticity in the sense discussed would roughly conform with this
picture.

2. The recent work with the Yangians [K93] and so called n-structures related to the categori-
fication of TGD [K92] suggest that double loop algebras for which string world sheets are
replaced with 4-D complex spaces. Quantum groups and Yangians assignable to Kac-Moody
algebras rather than Lie algebras should be also central. Also double quantum groups de-
pending on 2 parameters with so called elliptic R-matrix seem to be important. This physical
intuition agrees with the general vision of Russian mathematician Igor Frenkel, who is one
of the pioneers of quantum groups. For the article summarizing the work of Frenkel see
http://tinyurl.com/y7eego8c). This article tells also about the work of Frenkel related to
quaternion analyticity, which he sees to be of physical relevance but as a mathematicians is
well aware of the fact that the non-commutativity of quaternions poses strong interpretation
problems and means the loss of many nice properties of the ordinary analyticity.

3. The twistor lift of TGD suggest similar picture [K88, L23, L30]. The 6-D twistor space of
space-time surface would be 6-surface in the product T (M4)× T (CP2) of geometric twistor
spaces of M4 and CP2 and have induced twistor structure. The detailed analysis of this
statement strongly suggests that data given at surfaces with dimension not higher than
D = 2 should fix the preferred extremals. For the twistor lift action contains besides Kähler
action also volume term. Asymptotic solutions are extremals of both Kähler action and
minimal surfaces and all non-vacuum extremals of Kähler action are minimal surfaces so
that the only change is that vacuum extremals of Kähler action must be restricted to be
minimal surfaces.

The article about the work of Igor Frenkel (see http://tinyurl.com/y7eego8c) explains
the general mathematics inspired vision about 3-levelled hierarchy of symmetries.

1. At the lowest level are Lie algebras. Gauge theories are prime example about this level.

2. At the second level loop algebras and quantum groups (defined as deformations of enveloping
algebra of Lie algebra) and also Yangians. Loop algebras correspond to string models and
quantum groups to TQFTs formulated at 3-D spaces.

3. At the third level are double loop algebras, quantum variants of loop algebras (also Yangians),
and double quantum quantum groups - deformations of Lie algebras for which the R-matrix
is elliptic function and depends on 2 complex parameters.

The conjecture of Frenkel (see http://tinyurl.com/y7eego8c) based on mathematical
intuition is that these levels are actually the only ones. The motivation for this claim is 2-
dimensionality making possible braiding and various quantum algebras. The set of poles for the
R-matrix forms Abelian group with respect to addition in complex plane and can have rank equal
to 0, 1, or (single pole, poles along line, lattice of poles). Higher ranks are impossible in D = 2.

In TGD framework physical intuition leads to a similar vision.

http://tinyurl.com/y7eego8c
http://tinyurl.com/y7eego8c
http://tinyurl.com/y7eego8c
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1. The dimension D = 4 for space-time surface and the choice H = M4 × CP2 have both
number theoretical and twistorial motivations [K93]. The replacement of point like particle
with partonic 2-surface implies that TGD corresponds to the third level since loop algebras
are replaced with their double loop analogs. 4-dimensionality makes also possible 2-braids
and reconnections giving rise to a new kind of topological physics.

The double loop group would represent the most dynamical level and its singly and doubly
quantized variants correspond to a reduction in degrees of freedom, which one cannot exclude
in TGD.

The interesting additional aspect relates to the adelic physics [L28] implying a hierarchy of
physics labelled by extensions of rationals. For cognitive representations the dynamics is
discretized [K92]. Light-like 3-surfaces as partonic orbits are part of the picture and Chern-
Simons term is naturally associated with them. TGD as almost topological QFT has been
one of the guiding ideas in the evolution of TGD.

2. Double loop algebras represent unknown territory of mathematical physics. Igor Frenkel
has also considered a possible realization of double loop algebras (see http://tinyurl.com/

y7eego8c). He starts from the work of Mickelson (by the way, my custos in my thesis defence
in 1982!) giving a realization of loop algebras: the idea is clearly motivated by WZW model
which is 2-D conformal field theory with action containing a term associated with a 3-ball
having 2-sphere as boundary.

Mickelson starts from a circle represented as a boundary of a disk at which the physical states
of CFT are realized. CFT is obtained by gluing together two disks with the boundary circles
identified. The sphere in turn can be regarded as a boundary of a ball. The proposal of
Frenkel is to complexify all these structures: circle becomes a Riemann surface, disk becomes
4-D manifold possessing complex structure in some sense, and 3-ball becomes 6-D complex
manifold in some sense conjectured to be Calabi-Yau manifold.

3. The twistor lift of TGD leads to an analogous proposal. Circle is replaced with partonic
2-surfaces and string world sheets. 2-D complex surface is replaced with space-time region
with complex structure or Hamilton-Jacobi structure [K86] and possessing twistor structure.
6-D Calabi-Yau manifold is replaced with the 6-D twistor space of space-time surface (sphere
bundle over space-time surface) represented as 6-surface in 12-D Cartesian product T (H) =
T (M4)× T (CP2) of the geometric twistor spaces of M4 and CP2.

Twistor structure is induced and this is conjectured to determine the dynamics to be that
for the preferred extremals of Kähler action plus volume term. This vision would generalize
Penrose’s original vision by eliminating gauge fields as primary dynamical variables and
replacing there dynamics with the geometrodynamics of space-time surface.

Do isometry currents of preferred extremals satisfy Frobenius integrability condi-
tions?

During the preparation of the book I learned that Agostino Prastaro [A34, A35] has done highly
interesting work with partial differential equations, also those assignable to geometric variational
principles such as Kähler action of its twistor lift in TGD. I do not understand the mathematical
details but the key idea is a simple and elegant generalization of Thom’s cobordism theory, and it
is difficult to avoid the idea that the application of Prastaro’s idea might provide insights about
the preferred extremals, whose identification is now on rather firm basis.

One could also consider a definition of what one might call dynamical homotopy groups as
a genuine characteristics of WCW topology. The first prediction is that the values of conserved
classical Noether charges correspond to disjoint components of WCW. Could the natural topology
in the parameter space of Noether charges zero modes of WCW metric) be p-adic and realize adelic
physics at the level of WCW? An analogous conjecture was made on basis of spin glass analogy
long time ago. Second surprise is that the only the 6 lowest dynamical homotopy/homology groups
of WCW would be non-trivial. The Kähler structure of WCW suggests that only Π0, Π2, and Π4

are non-trivial.
The interpretation of the analog of Π1 as deformations of generalized Feynman diagrams

with elementary cobordism snipping away a loop as a move leaving scattering amplitude invariant

http://tinyurl.com/y7eego8c
http://tinyurl.com/y7eego8c
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conforms with the number theoretic vision about scattering amplitude as a representation for a
sequence of algebraic operation can be always reduced to a tree diagram. TGD would be indeed
topological QFT: only the dynamical topology would matter.

A further outcome is an ansatz for generalizing the earlier proposal for preferred extremals
and stating that non-vanishing conserved isometry currents satisfy Frobenius integrability condi-
tions so that one could assign global coordinate with their flow lines. This ansatz looks very similar
to the CRF conditions stating quaternion analyticity [L16].

Conclusions

To sum up, connections between different conjectures related to the preferred extremals - M8−H
duality, Hamilton-Jacobi structure, induced twistor space structure, quaternion-Kähler property
and its Minkowskian counterpart, and perhaps even quaternion analyticity - albeit not in the naive
form , are clearly emerging. The underlying reason is strong form of GCI forced by the construction
of WCW geometry and implying strong from of holography posing extremely powerful quantization
conditions on the extremals of Kähler action in ZEO. Without the conformal gauge conditions the
mutual inconsistency of these conjectures looks rather infeasible.

8.4 Octo-Twistors And Twistor Space

The basic problem of the twistor approach is that one cannot represent massive momenta in terms
of twistors in an elegant manner. One can also consider generalization of the notion of spinor
and twistor. I have proposed a possible representation of massive states based on the existence
of preferred plane of M2 in the basic definition of theory allowing to express four-momentum as
one of two light-like momenta allowing twistor description. One could however ask whether some
more elegant representation of massive M4 momenta might be possible by generalizing the notion
of twistor -perhaps by starting from the number theoretic vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless
states in M8 and M4 × CP2 (recall M8 − H duality). One can therefore map any massive M4

momentum to a light-like M8 momentum and hope that this association could be made in a unique
manner. One should assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality.
The spinor assigned with the light-like four-momentum is not unique without additional conditions.
The existence of covariantly constant right-handed neutrino in CP2 degrees generating the super-
conformal symmetries could allow to eliminate the non-uniqueness. 8-dimensional twistor in M8

would be a pair of this kind of spinors fixing the momentum of massless particle and the point
through which the corresponding light-geodesic goes through: the set of these points forms 8-D
light-cone and one can assign to each point a spinor. In M4 × CP2 definitions makes also in the
case of M4×CP2 and twistor space would also now be a lifting of the space of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to
define the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of
sigma matrix algebra which is not a matrix representation. The mapping of gamma matrices to
this representation allows to define a notion of hyper-quaternionicity in terms of the Kähler-Dirac
gamma matrices both in M8 and H.

The basic challenge is to achieve twistorial description of four-momenta or even M4 × CP2

quantum numbers: this applies both to the momenta of fundamental fermions at the lines of
generalized Feynman diagrams and to the massive incoming and outcoming states identified as
their composites.

1. A rather attractive way to overcome the problem at the level of fermions propagating along
the braid strands at the light-like orbits of partonic 2-surfaces relies on the assumption that
generalized Feynman diagrammatics effectively reduces to a form in which all fermions in
the propagator lines are massless although they can have non-physical helicity [K55]. One
can use ordinary M4 twistors. This is consistent with the idea that space-time surfaces are
quaternionic sub-manifolds of octonionic imbedding space.

2. Incoming and outgoing states are composites of massless fermions and not massless. They
are however massless in 8-D sense. This suggests that they could be described using gener-
alization of twistor formalism from M4 to M8 and even betterm to M4 × CP2.
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In the following two possible twistorializations are considered.

8.4.1 Two Manners To Twistorialize Imbedding Space

In the following the generalization of twistor formalism for M8 or M4 ×CP2 will be considered in
more detail. There are two options to consider.

1. For the first option one assigns to M4 × CP2 twistor space as a product of corresponding
twistor spaces T (M4) = CP3 and the flag-manifold T (CP2) = SU(3)/U(1)×U(1) parameter-
izing the choices of quantization axes for SU(3): TH = T (M4)×T (CP2). Quite remarkably,
M4 and CP2 are the only 4-D manifolds allowing twistor space with Kähler structure. The
twistor space is 12-dimensional. The choice of quantization axis is certainly a physically
well-definec operation so that T (CP2) has physical interpretation. If all observable physical
states are color singlets situation becomes more complex. If one assumes QCC for color
quantum numbers Y and I3, then also the choice of color quantization axis is fixed at the
level of Kähler action from the condition that Y and I3 have classically their quantal values.

2. For the second option one generalizes the usual construction for M8 regarded as tangent
space of M4 × CP2 (unless one takes M8 −H duality seriously).

The tangent space option looks like follows.

1. One can map the points of M8 to octonions. One can consider 2-component spinors with
octonionic components and map points of M8 light-cone to linear combinations of 2×2 Pauli
sigma matrices but with octonionic components. By the same arguments as in the deduction
of ordinary twistor space one finds that 7-D light-cone boundary is mapped to 7+8 D space
since the octonionic 2-spinor/its conjugate can be multiplied/divided by arbitrary octonion
without changing the light-like point. By standard argument this space extends to 8+8-D
space. The points of M8 can be identified as 8-D octonionic planes (analogs of complex
sphere CP1 in this space. An attractive identification is as octonionic projective space OP2.
Remarkably, octonions do not allow higher dimensional projective spaces.

2. If one assumes that the spinors are quaternionic the twistor space should have dimension
7+4+1=12. This dimension is same as for M4 × CP2. Does this mean that quaternionicity
assumption reduces T (M8) = OP2 to T (H) = CP3 × SU(3)/U(1) × U(1)? Or does it
yield 12-D space G2/U(1) × U(1), which is also natural since G2 has 2-D Cartan algebra?
Number theoretical compactification would transform T (M8) = G2/U(1)×U(1) to T (H) =
CP3 × SU(3)/U(1) × U(1). This would not be surprising since in M8 − H-duality CP2

parametrizes (hyper)quaternionic planes containing preferred plane M2.

Quaternionicity is certainly very natural in TGD framework. Quaternionicity for 8-momenta
does not in general imply that they reduce to the observed M4-momenta unless one identifies
M4 as one particular subspace of M8. In M8 −H duality one in principle allows all choices
of M4: it is of course unclear whether this makes any physical difference. Color confinement
could be interpreted as a reduction of M8 momenta to M4 momenta and would also allow
the interpretational problems caused by the fact that CP2 momenta are not possible.

3. Since octonions can be regarded as complexified quaternions with non-commuting imaginary
unit, one can say that quaternionic spinors in M8 are “real” and thus analogous to Ma-
jorana spinors. Similar interpretation applies at the level of H. Could one can interpret
the quaternionicity condition for space-time surfaces and imbedding space spinors as TGD
analog of Majorana condition crucial in super string models? This would also be crucial for
understanding supersymmetry in TGD sense.

8.4.2 Octotwistorialization Of M8

Consider first the twistorialization in 4-D case. In M4 one can map light-like momoment to spinors
satisfying massless Dirac equation. General point m of M4 can be mapped to a pair of massless
spinors related by incidence relation defining the point m. The essential element of this association
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is that mass squared can be defined as determinant of the 2×2 matrix resulting in the assignment.
Light-likeness is coded to the vanishing of the determinant implying that the spinors defining
its rows are linearly independent. The reduction of M4 inner product to determinant occurs
because the 2 × 2 matrix can be regarded as a matrix representation of complexified quaternion.
Massless means that the norm of a complexified quaternion defined as the product of q and its
conjugate vanishes. Incidence relation s1 = xs2 relating point of M4 and pair of spinors defining
the corresponding twistor, can be interpreted in terms of product for complexified quaternions.

The generalization to the 8-D situation is straightforward: replace quaternions with octo-
nions.

1. The transition to M8 means the replacement of quaternions with octonions. Masslessness
corresponds to the vanishing norm for complexified octonion (hyper-octonion).

2. One should assign to a massless 8-momentum an 8-dimensional spinor identifiable as octonion
- or more precisely as hyper-octonion obtained by multiplying the imaginary part of ordinary
octonion with commuting imaginary unit j and defining conjugation as a change of sign of j
or that of octonionic imaginar units.

3. This leads to a generalization of the notion of twistor consisting of pair of massless octonion
valued spinors (octonions) related by the incidence relation fixing the point of M8. The
incidence relation for Euclidian octonions says s1 = xs2 and can be interpreted in terms of
triality for SO(8) relating conjugate spinor octet to the product of vector octed and spinor
octet. For Minkowskian subspace of complexified octonions light-like vectors and s1 and s2

can be taken light-like as octonions. Light like x can annihilate s2.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to
define the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of
sigma matrix algebra which is not a matrix representation. The mapping of gamma matrices to
this representation allows to define a notion of hyper-quaternionicity in terms of the Kähler-Dirac
gamma matrices both in M8 and H.

8.4.3 Octonionicity, SO(1, 7), G2, And Non-Associative Malcev Group

The symmetries assignable with octonions are rather intricate. First of all, octonions (their hyper-
variants defining M8) have SO(8) (SO(1, 7)) as isometries. G2 ⊂ SO(7) acts as automorphisms of
octonions and SO(1, 7)→ G2 clearly means breaking of Lorentz invariance.

John Baez has described in a lucid mannerG2 geometrically (http://tinyurl.com/ybd4lcpy
). The basic observation is that that quaternionic sub-space is generated by two linearly indepen-
dent imaginary units and by their product. By adding a fourth linearly independent imaginary
unit, one can generated all octonions. From this and the fact that G2 represents subgroup of SO(7),
one easily deduces that G2 is 14-dimensional. The Lie algebra of G2 corresponds to derivations of
octonionic algebra as follows infinitesimally from the condition that the image of product is the
product of images. The entire algebra SO(8) is direct sum of G2 and linear transformations gener-
ated by right and left multiplication by imaginary octonion: this gives 14 + 14 = 28 = D(SO(8)).
The subgroup SO(7) acting on imaginary octonsions corresponds to the direct sum of derivations
and adjoint transformations defined by commutation with imaginary octonions, and has indeed
dimension 14 + 7 = 21.

One can identify also a non-associative group-like structure.

1. In the case of octonionic spinors this group like structure is defined by the analog of phase
multiplication of spinor generalizing to a multiplication with octonionic unit expressible as
linear combinations of 8 octonionic imaginary units and defining 7-sphere plays appear as
analog of automorphisms o→ uou−1 = uou∗.

One can associate with these transformations a non-associative Lie group and Lie algebra like
structures by defining the commutators just as in the case of matrices that is as [a, b] = ab−ba.
One 7-D non-associative Lie group like structure with topology of 7-sphere S7 whereas G2 is
14-dimensional exceptional Lie group (having S6 as coset space S6 = G2/SU(3)). This group
like object might be useful in the treatment of octonionic twistors. In the case of quaternions
one has genuine group acting as SO(3) rotations.

http://tinyurl.com/ybd4lcpy
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2. Octonionic gamma matrices allow to define as their commutators octonionic sigma matrices:

Σkl =
i

2
[γk, γl] . (8.4.1)

This algebra is 14-dimensional thanks to the fact that octonionic gamma matrices are of
form γ0 = σ1 ⊗ 1, γi = σ2 ⊗ ei. Due to the non-associativity of octonions this algebra does
not satisfy Jacobi identity - as is easy to verify using Fano triangle - and is therefore not a
genuine Lie-algebra. Therefore these sigma matrices do not define a representation of G2 as
I thought first.

This algebra has decomposition g = h + t, [h, t] ⊂ t, [t, t] ⊂ h characterizing for symmetric
spaces. h is the 7-D algebra generated by Σij and identical with the non-associative Malcev
algebra generated by the commutators of octonionic units. The complement t corresponds to
the generators Σ0i. The algebra is clearly an octonionic non-associative analog fo SO(1, 7).

8.4.4 Octonionic Spinors In M8 And Real Complexified-Quaternionic
Spinors In H?

This above observations about the octonionic sigma matrices raise the problem about the octonionic
representation of spinor connection. In M8 = M4 × E4 the spinor connection is trivial but for
M4 × CP2 not. There are two options.

1. Assume that octonionic spinor structure makes sense for M8 only and spinor connection is
trivial.

2. An alternative option is to identify M8 as tangent space of M4×CP2 possessing quaternionic
structure defined in terms of octonionic variants of gamma matrices. Should one replace
sigma matrices appearing in spinor connection with their octonionic analogs to get a sigma
matrix algebra which is pseudo Lie algebra. Or should one map the holonomy algebra of CP2

spinor connection to a sub-algebra of G2 ⊂ SO(7) and define the action of the sigma matrices
as ordinary matrix multiplication of octonions rather than octonionic multiplication? This
seems to be possible formally.

The replacement of sigma matrices with their octonionic counterparts seems to lead to weird
looking results. Octonionic multiplication table implies that the electroweak sigma matrices
associated with CP2 tangent space reduce to M4 sigma matrices so that the spinor connection
is quaternionic. Furthermore, left-handed sigma matrices are mapped to zero so that only
the neutral part of spinor connection is non-vanishing. This supports the view that only
M8 gamma matrices make sense and that Dirac equation in M8 is just free massless Dirac
equation leading naturally also to the octonionic twistorialization.

One might think that distinction between different H-chiralities is difficult to make but it
turns out that quarks and leptons can be identified as different components of 2-component
complexified octonionic spinors.

The natural question is what associativization of octonions gives. This amounts to a con-
dition putting the associator a(bc) − (ab)c to zero. It is enough to consider octonionic imaginary
units which are different. By using the decomposition of the octonionic algebra to quaternionic
sub-algebra and its complement and general structure of structure constants, one finds that quater-
nionic sub-algebra remains as such but the products of all imaginary units in the complement with
different imaginary units vanish. This means that the complement behaves effectively as 4-D flat
space-gamma matrix algebra annihilated by the quaternionic sub-algebra whose imaginary part
acts like Lie algebra of SO(3).
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8.4.5 What The Replacement Of SO(7, 1) Sigma Matrices With Octo-
nionic Sigma Matrices Could Mean?

The basic implication of octonionization is the replacement of SO(7, 1) sigma matrices with octo-
nionic sigma matrices. For M8 this has no consequences since since spinor connection is trivial.

For M4 × CP2 situation would be different since CP2 spinor connection would be replaced
with its octonionic variant. This has some rather unexpected consequences and suggests that one
should not try to octonionize at the level of M4 × CP2 but interpret gamma matrices as tensor
products of quaternionic gamma matrices, which can be replaced with their matrix representations.
There are however some rather intriguing observations which force to keep mind open.

Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (8.4.2)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (8.4.3)

2. The octonionic representation is obtained as

γ0 = 1⊗ σ1 , γi = ei ⊗ σ2 . (8.4.4)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric

comes out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred

octonionic unit and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = jei × σ3 , Σij = jf k
ij ek ⊗ 1 . (8.4.5)

Here j is commuting imaginary unit. These matrices span G2 algebra having dimension 14
and rank 2 and having imaginary octonion units and their conjugates as the fundamental
representation and its conjugate. The Cartan algebra for the sigma matrices can be chosen
to be Σ01 and Σ23 and belong to a quaternionic sub-algebra.

4. The lower dimension D = 14 of the non-associative version of sigma matrix algebra algebra
means that some combinations of sigma matrices vanish. All left or right handed generators
of the algebra are mapped to zero: this explains why the dimension is halved from 28 to
14. From the octonionic triangle expressing the multiplication rules for octonion units [A20]
one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions for the cyclic permutations of
e4, e5, e6, e7. From the expression of the left handed sigma matrix I3

L = σ23 +σ30 representing
left handed weak isospin (see the Appendix about the geometry of CP2 [L2] ) one can conclude
that this particular sigma matrix and left handed sigma matrices in general are mapped to
zero. The quaternionic sub-algebra SU(2)L × SU(2)R is mapped to that for the rotation
group SO(3) since in the case of Lorentz group one cannot speak of a decomposition to left
and right handed subgroups. The elements of the complement of the quaternionic sub-algebra
are expressible in terms of Σij in the quaternionic sub-algebra.
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Some physical implications of the reduction of SO(7, 1) to its octonionic counterpart

The octonization of spinor connection of CP2 has some weird physical implications forcing to keep
mind to the possibility that the octonionic description even at the level of H might have something
to do with reality.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonionization. The right handed part is neutral containing only photon and Z0 so that
the gauge field becomes Abelian. Z0 and photon fields become proportional to each other
(Z0 → sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would
obtain just electrodynamics.

2. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to
fields in SO(2) ⊂ SU(2) × U(1) in quaternionic sub-algebra which in a well-defined sense
corresponds to M4 degrees of freedom and gauge group becomes SO(2) subgroup of rotation
group of E3 ⊂M4. This looks like catastrophe. One might say that electroweak interactions
are transformed to gravimagnetic interactions.

3. In very optimistic frame of mind one might ask whether this might be a deeper reason for
why electrodynamics is an excellent description of low energy physics and of classical physics.
This is consistent with the fact that CP2 coordinates define 4 field degrees of freedom so that
single Abelian gauge field should be enough to describe classical physics. This would remove
also the interpretational problems caused by the transitions changing the charge state of
fermion induced by the classical W boson fields.

4. Interestingly, the condition that electromagnetic charge is well-defined quantum number for
the modes of the induced spinor field for X4 ⊂ H leads to the proposal that the solutions
of the Kähler-Dirac equation are localized to string world sheets in Minkowskian regions of
space-time surface at least. For CP2 type vacuum extremals one has massless Dirac and
this allows only covariantly constant right-handed neutrino as solution. One has however
only a piece of CP2 (wormhole contact) so that holomorphic solutions annihilated by two
complexified gamma matrices are possible in accordance with the conformal symmetries.

Can one assume non-trivial spinor connection in M8?

1. The simplest option encouraged by the requirement of maximal symmetries is that it is
absent. Massless 8-momenta would characterize spinor modes in M8 and this would give
physical justification for the octotwistors.

2. If spinor connection is present at all, it reduces essentially to Kähler connection having
different couplings to quarks and leptons identifiable as components of octonionic 2-spinors.
It should be SO(4) symmetric and since CP2 is instant one might argue that now one has
also instanton that is self-dual U(1) gauge field in E4 ⊂M4×E4 defining Kähler form. One
can loosely say that that one has of constant electric and magnetic fields which are parallel
to each other. The rotational symmetry in E4 would break down to SO(2).

3. Without spinor connection quarks and leptons are in completely symmetric position at the
level of M8: this is somewhat disturbing. The difference between quarks and leptons in H
is made possible by the fact that CP2 does not allow standard spinor structure. Now this
problem is absent. I have also consider the possibility that only leptonic spinor chirality is
allowed and quarks result via a kind of anyonization process allowing them to have fractional
em charges (see http://tinyurl.com/y93aerea ).

4. If the solutions of the Kähler Dirac equation in Minkowskian regions are localized to two
surfaces identifiable as integrable distributions of planes M2(x) and characterized by a local
light-like direction defining the direction of massless momentum, they are holomorphic (in
the sense of hyper-complex numbers) such that the second complexified Kähler-Dirac gamma
matrix annihilates the solution. Same condition makes sense also at the level of M8 for
solutions restricted to string world sheets and the presence or absence of spinor connection
does not affect the situation.

http://tinyurl.com/y93aerea
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Does this mean that the difference between quarks and leptons becomes visible only at the
imbedding space level where ground states of super-conformal representations correspond to
to imbedding space spinor harmonics which in CP2 cm degrees are different for quarks and
leptons?

Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (8.4.6)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in
the space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds
naturally to the two spin states of the right handed neutrino. In quark sector this would mean
that right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3
as representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(8.4.7)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation
is in terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D
type quarks and those with ε = −1 as neutrinos and U type quarks. The interpretation would be
that the states with vanishing color isospin correspond to right handed fermions and the states
with non-vanishing SU(3) isospin (to be not confused with QCD color isospin) and those with
non-vanishing SU(3) isospin to left handed fermions.

The importance of this identification is that it allows a unique map of the candidates for
the solutions of the octonionic Kähler-Dirac equation to those of ordinary one. There are some
delicacies involved due to the possibility to chose the preferred unit e1 so that the preferred subspace
M2 can corresponds to a sub-manifold M2 ⊂M4.

8.4.6 About The Twistorial Description Of Light-Likeness In 8-D Sense
Using Octonionic Spinors

The twistor approach to TGD [K55] require that the expression of light-likeness of M4 momenta
in terms of twistors generalizes to 8-D case. The light-likeness condition for twistors states that
the 2× 2 matrix representing M4 momentum annihilates a 2-spinor defining the second half of the
twistor. The determinant of the matrix reduces to momentum squared and its vanishing implies
the light-likeness. This should be generalized to a situation in one has M4 and CP2 twistor which
are not light-like separately but light-likeness in 8-D sense holds true.

The case of M8 = M4 × E4

M8 −H duality [K53] suggests that it might be useful to consider first the twistorialiation of 8-D
light-likeness first the simpler case of M8 for which CP2 corresponds to E4. It turns out that
octonionic representation of gamma matrices provide the most promising formulation.

In order to obtain quadratic dispersion relation, one must have 2 × 2 matrix unless the
determinant for the 4× 4 matrix reduces to the square of the generalized light-likeness condition.
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1. The first approach relies on the observation that the 2 × 2 matrices characterizing four-
momenta can be regarded as hyper-quaternions with imaginary units multiplied by a com-
muting imaginary unit. Why not identify space-like sigma matrices with hyper-octonion
units?

2. The square of hyper-octonionic norm would be defined as the determinant of 4 × 4 matrix
and reduce to the square of hyper-octonionic momentum. The light-likeness for pairs formed
by M4 and E4 momenta would make sense.

3. One can generalize the sigma matrices representing hyper-quaternion units so that they
become the 8 hyper-octonion units. Hyper-octonionic representation of gamma matrices
exists (γ0 = σz×1, γk = σy×Ik) but the octonionic sigma matrices represented by octonions
span the Lie algebra of G2 rather than that of SO(1, 7). This dramatically modifies the
physical picture and brings in also an additional source of non-associativity. Fortunately, the
flatness of M8 saves the situation.

4. One obtains the square of p2 = 0 condition from the massless octonionic Dirac equation as
vanishing of the determinant much like in the 4-D case. Since the spinor connection is flat
for M8 the hyper-octonionic generalization indeed works.

This is not the only possibility that I have by-passingly considered [K12].

1. Is it enough to allow the four-momentum to be complex? One would still have 2× 2 matrix
and vanishing of complex momentum squared meaning that the squares of real and imaginary
parts are same (light-likeness in 8-D sense) and that real and imaginary parts are orthogonal
to each other. Could E4 momentum correspond to the imaginary part of four-momentum?

2. The signature causes the first problem: M8 must be replaced with complexified Minkowski
space M4

c for to make sense but this is not an attractive idea although M4
c appears as sub-

space of complexified octonions.

3. For the extremals of Kähler action Euclidian regions (wormhole contacts identifiable as defor-
mations of CP2 type vacuum extremals) give imaginary contribution to the four-momentum.
Massless complex momenta and also color quantum numbers appear also in the standard
twistor approach. Also this suggest that complexification occurs also in 8-D situation and is
not the solution of the problem.

The case of M8 = M4 × CP2

What about twistorialization in the case of M4 ×CP2? The introduction of wave functions in the
twistor space of CP2 seems to be enough to generalize Witten’s construction to TGD framework and
that algebraic variant of twistors might be needed only to realize quantum classical correspondence.
It should correspond to tangent space counterpart of the induced twistor structure of space-time
surface, which should reduce effectively to 4-D one by quaternionicity of the space-time surface.

1. For H = M4 × CP2 the spinor connection of CP2 is not trivial and the G2 sigma matrices
are proportional to M4 sigma matrices and act in the normal space of CP2 and to M4 parts
of octonionic imbedding space spinors, which brings in mind co-associativity. The octonionic
charge matrices are also an additional potential source of non-associativity even when one
has associativity for gamma matrices.

Therefore the octonionic representation of gamma matrices in entire H cannot be physical.
It is however equivalent with ordinary one at the boundaries of string world sheets, where
induced gauge fields vanish. Gauge potentials are in general non-vanishing but can be gauge
transformed away. Here one must be of course cautious since it can happen that gauge
fields vanish but gauge potentials cannot be gauge transformed to zero globally: topological
quantum field theories represent basic example of this.

2. Clearly, the vanishing of the induced gauge fields is needed to obtain equivalence with or-
dinary induced Dirac equation. Therefore also string world sheets in Minkowskian regions
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should have 1-D CP2 projection rather than only having vanishing W fields if one requires
that octonionic representation is equivalent with the ordinary one. For CP2 type vacuum
extremals electroweak charge matrices correspond to quaternions, and one might hope that
one can avoid problems due to non-associativity in the octonionic Dirac equation. Unless
this is the case, one must assume that string world sheets are restricted to Minkowskian
regions. Also imbedding space spinors can be regarded as octonionic (possibly quaternionic
or co-quaternionic at space-time surfaces): this might force vanishing 1-D CP2 projection.

(a) Induced spinor fields would be localized at 2-surfaces at which they have no interaction
with weak gauge fields: of course, also this is an interaction albeit very implicit one!
This would not prevent the construction of non-trivial electroweak scattering amplitudes
since boson emission vertices are essentially due to re-groupings of fermions and based
on topology change.

(b) One could even consider the possibility that the projection of string world sheet to
CP2corresponds to CP2 geodesic circle so that one could assign light-like 8-momentum
to entire string world sheet, which would be minimal surface in M4 × S1. This would
mean enormous technical simplification in the structure of the theory. Whether the
spinor harmonics of imbedding space with well-defined M4 and color quantum numbers
can co-incide with the solutions of the induced Dirac operator at string world sheets
defined by minimal surfaces remains an open problem.

(c) String world sheets cannot be present inside wormhole contacts which have 4-D CP2

projection so that string world sheets cannot carry vanishing induced gauge fields.

8.5 What Could Be The Origin Of Preferred P-Adic Primes
And P-Adic Length Scale Hypothesis?

p-Adic mass calculations [K76] allow to conclude that elementary particles correspond to one or
possible several preferred primes assigning p-adic effective topology to the real space-time sheets
in discretization in some length scale range. TGD inspired theory of consciousness leads to the
identification of p-adic physics as physics of cognition. The recent progress leads to the proposal
that quantum TGD is adelic: all p-adic number fields are involved and each gives one particular
view about physics. tgdquantum/tgdquantum Adelic approach [K26, K68] plus the view about
evolution as emergence of increasingly complex extensions of rationals leads to a possible answer
to th question of the title. The algebraic extensions of rationals are characterized by preferred
rational primes, namely those which are ramified when expressed in terms of the primes of the
extensions. These primes would be natural candidates for preferred p-adic primes. An argument
relying on what I call weak form of NMP in turn allows to understand why primes near powers of
2 are preferred: as a matter of fact, also primes near powers of other primes are predicted to be
favoured.

8.5.1 Earlier Attempts

How the preferred primes emerge in TGD framework? I have made several attempts to answer this
question. As a matter fact, the question has been slightly different: what determines the p-adic
prime assigned to elementary particle by p-adic mass calculations [K28]. The recent view assigns
to particle entire adele but some p-adic number fields in it are different.

1. Classical non-determinism at space-time level for real space-time sheets could in some length
scale range involving rational discretization for space-time surface itself or for parameters
characterizing it as a preferred extremal correspond to the non-determinism of p-adic dif-
ferential equations due to the presence of pseudo constants which have vanishing p-adic
derivative. Pseudo- constants are functions depend on finite number of pinary digits of its
arguments.

2. The quantum criticality of TGD [K81] is suggested to be realized in in terms of infinite
hierarchies of super-symplectic symmetry breakings in the sense that only a sub-algebra
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with conformal weights which are n-ples of those for the entire algebra act as conformal
gauge symmetries [K84]. This might be true for all conformal algebras involved. One has
fractal hierarchy since the sub-algebras in question are isomorphic: only the scale of conformal
gauge symmetry increases in the phase transition increasing n. The hierarchies correspond to
sequences of integers n(i) such tht n(i) divides n(i+1). These hierarchies would very naturally
correspond to hierarchies of inclusions of hyper-finite factors and m(i) = n(i+ 1)/n(i) could
correspond to the integer n characterizing the index of inclusion, which has value n ≥ 3.
Possible problem is that m(i) = 2 would not correspond to Jones inclusion. Why the scaling
by power of two would be different? The natural question is whether the primes dividing
n(i) or m(i) could define the preferred primes.

3. Negentropic entanglement corresponds to entanglement for which density matrix is projec-
tor [K30]. For n-dimensional projector any prime p dividing n gives rise to negentropic
entanglement in the sense that the number theoretic entanglement entropy defined by Shan-
non formula by replacing pi in log(pi) = log(1/n) by its p-adic norm Np(1/n) is negative if p
divides n and maximal for the prime for which the dividing power of prime is largest power-
of-prime factor of n. The identification of p-adic primes as factors of n is highly attractive
idea. The obvious question is whether n corresponds to the integer characterizing a level in
the hierarchy of conformal symmetry breakings.

4. The adelic picture about TGD led to the question whether the notion of unitarity could be
generalized. S-matrix would be unitary in adelic sense in the sense that Pm = (SS†)mm = 1
would generalize to adelic context so that one would have product of real norm and p-adic
norms of Pm. In the intersection of the realities and p-adicities Pm for reals would be rational
and if real and p-adic Pm correspond to the same rational, the condition would be satisfied.
The condition that Pm ≤ 1 seems however natural and forces separate unitary in each sector
so that this options seems too tricky.

These are the basic ideas that I have discussed hitherto.

8.5.2 Could Preferred Primes Characterize Algebraic Extensions Of Ra-
tionals?

The intuitive feeling is that the notion of preferred prime is something extremely deep and the
deepest thing I know is number theory. Does one end up with preferred primes in number theory?
This question brought to my mind the notion of ramification of primes (see http://tinyurl.com/

hddljlf) (more precisely, of prime ideals of number field in its extension), which happens only for
special primes in a given extension of number field, say rationals. Could this be the mechanism
assigning preferred prime(s) to a given elementary system, such as elementary particle? I have not
considered their role earlier also their hierarchy is highly relevant in the number theoretical vision
about TGD.

1. Stating it very roughly (I hope that mathematicians tolerate this language): As one goes from
number field K, say rationals Q, to its algebraic extension L, the original prime ideals in the
so called integral closure (see http://tinyurl.com/js6fpvr) over integers of K decompose
to products of prime ideals of L (prime is a more rigorous manner to express primeness).

Integral closure for integers of number field K is defined as the set of elements of K, which
are roots of some monic polynomial with coefficients, which are integers of K and having
the form xn + an−1x

n−1 + ... + a0 . The integral closures of both K and L are considered.
For instance, integral closure of algebraic extension of K over K is the extension itself. The
integral closure of complex numbers over ordinary integers is the set of algebraic numbers.

2. There are two further basic notions related to ramification and characterizing it. Relative
discriminant is the ideal divided by all ramified ideals in K and relative different is the ideal
of L divided by all ramified Pi:s. Note that te general ideal is analog of integer and these
ideas represent the analogous of product of preferred primes P of K and primes Pi of L
dividing them.

http://tinyurl.com/hddljlf
http://tinyurl.com/hddljlf
http://tinyurl.com/js6fpvr
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3. A physical analogy is provided by decomposition of hadrons to valence quarks. Elementary
particles becomes composite of more elementary particles in the extension. The decomposi-

tion to these more elementary primes is of form P =
∏
P
e(i)
i , where ei is the ramification

index - the physical analog would be the number of elementary particles of type i in the state
(see http://tinyurl.com/h9528pl). Could the ramified rational primes could define the
physically preferred primes for a given elementary system?

In TGD framework the extensions of rationals (see http://tinyurl.com/h9528pl) and
p-adic number fields (seehttp://tinyurl.com/zq22tvb) are unavoidable and interpreted as an
evolutionary hierarchy physically and cosmological evolution would have gradually proceeded to
more and more complex extensions. One can say that string world sheets and partonic 2-surfaces
with parameters of defining functions in increasingly complex extensions of prime emerge during
evolution. Therefore ramifications and the preferred primes defined by them are unavoidable. For
p-adic number fields the number of extensions is much smaller for instance for p > 2 there are only
3 quadratic extensions.

1. In p-adic context a proper definition of counterparts of angle variables as phases allowing
definition of the analogs of trigonometric functions requires the introduction of algebraic
extension giving rise to some roots of unity. Their number depends on the angular reso-
lution. These roots allow to define the counterparts of ordinary trigonometric functions -
the naive generalization based on Taylors series is not periodic - and also allows to defined
the counterpart of definite integral in these degrees of freedom as discrete Fourier analysis.
For the simplest algebraic extensions defined by xn − 1 for which Galois group is abelian

are are unramified so that something else is needed. One has decomposition P =
∏
P
e(i)
i ,

e(i) = 1, analogous to n-fermion state so that simplest cyclic extension does not give rise to
a ramification and there are no preferred primes.

2. What kind of polynomials could define preferred algebraic extensions of rationals? Irreducible
polynomials are certainly an attractive candidate since any polynomial reduces to a product
of them. One can say that they define the elementary particles of number theory. Irreducible
polynomials have integer coefficients having the property that they do not decompose to
products of polynomials with rational coefficients. IT would be wrong to say that only these
algebraic extensions can appear but there is a temptation to say that one can reduce the
study of extensions to their study. One can even consider the possibility that string world
sheets associated with products of irreducible polynomials are unstable against decay to those
characterize irreducible polynomials.

3. What can one say about irreducible polynomials? Eisenstein criterion (see http://tinyurl.
com/47kxjz states following. If Q(x) =

∑
k=0,..,n akx

k is n:th order polynomial with integer
coefficients and with the property that there exists at least one prime dividing all coefficients
ai except an and that p2 does not divide a0, then Q is irreducible. Thus one can assign one
or more preferred primes to the algebraic extension defined by an irreducible polynomial Q
of this kind - in fact any polynomial allowing ramification. There are also other kinds of
irreducible polynomials since Eisenstein’s condition is only sufficient but not necessary.

4. Furthermore, in the algebraic extension defined by Q, the prime ideals P having the above
mentioned characteristic property decompose to an n :th power of single prime ideal Pi:
P = Pni . The primes are maximally/completely ramified. The physical analog P = Pn0 is
Bose-Einstein condensate of n bosons. There is a strong temptation to identify the preferred
primes of irreducible polynomials as preferred p-adic primes.

A good illustration is provided by equations x2 + 1 = 0 allowing roots x± = ±i and equation
x2+2px+p = 0 allowing roots x± = −p±√pp− 1. In the first case the ideals associated with
±i are different. In the second case these ideals are one and the same since x+ == −x−+ p:
hence one indeed has ramification. Note that the first example represents also an example of
irreducible polynomial, which does not satisfy Eisenstein criterion. In more general case the
n conditions on defined by symmetric functions of roots imply that the ideals are one and
same when Eisenstein conditions are satisfied.

http://tinyurl.com/h9528pl
http://tinyurl.com/h9528pl
http://tinyurl.com/zq22tvb
http://tinyurl.com/47kxjz
http://tinyurl.com/47kxjz
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5. What does this mean in p-adic context? The identity of the ideals can be stated by saying
P = Pn0 for the ideals defined by the primes satisfying the Eisenstein condition. Very loosely
one can say that the algebraic extension defined by the root involves n:th root of p-adic prime
p. This does not work! Extension would have a number whose n:th power is zero modulo p.
On the other hand, the p-adic numbers of the extension modulo p should be finite field but
this would not be field anymore since there would exist a number whose n:th power vanishes.
The algebraic extension simply does not exist for preferred primes. The physical meaning of
this will be considered later.

6. What is so nice that one could readily construct polynomials giving rise to given preferred
primes. The complex roots of these polymials could correspond to the points of partonic
2-surfaces carrying fermions and defining the ends of boundaries of string world sheet. It
must be however emphasized that the form of the polynomial depends on the choices of the
complex coordinate. For instance, the shift x → x + 1 transforms (xn − 1)/(x − 1) to a
polynomial satisfying the Eisenstein criterion. One should be able to fix allowed coordinate
changes in such a manner that the extension remains irreducible for all allowed coordinate
changes.

Already the integral shift of the complex coordinate affects the situation. It would seem that
only the action of the allowed coordinate changes must reduce to the action of Galois group
permuting the roots of polynomials. A natural assumption is that the complex coordinate
corresponds to a complex coordinate transforming linearly under subgroup of isometries of
the imbedding space.

In the general situation one has P =
∏
P
e(i)
i , e(i) ≥ 1 so that aso now there are prefered

primes so that the appearance of preferred primes is completely general phenomenon.

8.5.3 A Connection With Langlands Program?

In Langlands program (http://tinyurl.com/ycej7s43,RecentAdvancesinLanglandsprogram)
[A48, A47] the great vision is that the n-dimensional representations of Galois groups G char-
acterizing algebraic extensions of rationals or more general number fields define n-dimensional
adelic representations of adelic Lie groups, in particular the adelic linear group Gl(n,A). This
would mean that it is possible to reduce these representations to a number theory for adeles. This
would be highly relevant in the vision about TGD as a generalized number theory. I have specu-
lated with this possibility earlier (http://tinyurl.com/y9ee3lk6) [K26] but the mathematics is
so horribly abstract that it takes decade before one can have even hope of building a rough vision.

One can wonder whether the irreducible polynomials could define the preferred extensions
K of rationals such that the maximal abelian extensions of the fields K would in turn define the
adeles utilized in Langlands program. At least one might hope that everything reduces to the
maximally ramified extensions.

At the level of TGD string world sheets with parameters in an extension defined by an
irreducible polynomial would define an adele containing various p-adic number fields defined by
the primes of the extension. This would define a hierarchy in which the prime ideals of previous
level would decompose to those of the higher level. Each irreducible extension of rationals would
correspond to some physically preferred p-adic primes.

It should be possible to tell what the preferred character means in terms of the adelic
representations. What happens for these representations of Galois group in this case? This is
known.

1. For Galois extensions ramification indices are constant: e(i) = e and Galois group acts
transitively on ideals Pi dividing P . One obtains an n-dimensional representation of Galois
group. Same applies to the subgroup of Galois group G/I where I is subgroup of G leaving
Pi invariant. This group is called inertia group. For the maximally ramified case G maps the
ideal P0 in P = Pn0 to itself so that G = I and the action of Galois group is trivial taking P0

to itself, and one obtains singlet representations.

2. The trivial action of Galois group looks like a technical problem for Langlands program and
also for TGD unless the singletness of Pi under G has some physical interpretation. One

http://tinyurl.com/ycej7s43
Recent Advances in Langlands program
http://tinyurl.com/y9ee3lk6
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possibility is that Galois group acts as like a gauge group and here the hierarchy of sub-
algebras of super-symplectic algebra labelled by integers n is highly suggestive. This raises
obvious questions. Could the integer n characterizing the sub-algebra of super-symplectic
algebra acting as conformal gauge transformations, define the integer defined by the product
of ramified primes? Pn0 brings in mind the n conformal equivalence classes which remain
invariant under the conformal transformations acting as gauge transformations. . Recalling
that relative discriminant is an of K ideal divisible by ramified prime ideals of K, this means
that n would correspond to the relative discriminant for K = Q. Are the preferred primes
those which are “physical” in the sense that one can assign to the states satisfying conformal
gauge conditions?

If the Galois group corresponds to gauge symmetries for these primes, it is physically natural
that the p-adic algebraic extension does not exists and that p-adic variant of the Galois group
is absent. Nothing is lost from cognition since there is nothing to cognize!

8.5.4 What Could Be The Origin Of P-Adic Length Scale Hypothesis?

The argument would explain the existence of preferred p-adic primes. It does not yet explain
p-adic length scale hypothesis [K36, K28] stating that p-adic primes near powers of 2 are fa-
vored. A possible generalization of this hypothesis is that primes near powers of prime are favored.
There indeed exists evidence for the realization of 3-adic time scale hierarchies in living matter [?]
(http://tinyurl.com/jbh9m27) and in music both 2-adicity and 3-adicity could be present, this
is discussed in TGD inspired theory of music harmony and genetic code [K43].

The weak form of NMP might come in rescue here.

1. Entanglement negentropy for a negentropic entanglement [K30] characterized by n-dimensional
projection operator is the log(Np(n) for some p whose power divides n. The maximum ne-
gentropy is obtained if the power of p is the largest power of prime divisor of p, and this
can be taken as definition of number theoretic entanglement negentropy. If the largest di-
visor is pk, one has N = k × log(p). The entanglement negentropy per entangled state is
N/n = klog(p)/n and is maximal for n = pk. Hence powers of prime are favoured which
means that p-adic length scale hierarchies with scales coming as powers of p are negentrop-
ically favored and should be generated by NMP. Note that n = pk would define a hierarchy
of heff/h = pk. During the first years of heff hypothesis I believe that the preferred values
obey heff = rk, r integer not far from r = 211. It seems that this belief was not totally
wrong.

2. If one accepts this argument, the remaining challenge is to explain why primes near powers of
two (or more generally p) are favoured. n = 2k gives large entanglement negentropy for the
final state. Why primes p = n2 = 2k − r would be favored? The reason could be following.
n = 2k corresponds to p = 2, which corresponds to the lowest level in p-adic evolution since
it is the simplest p-adic topology and farthest from the real topology and therefore gives the
poorest cognitive representation of real preferred extremal as p-adic preferred extermal (Note
that p = 1 makes formally sense but for it the topology is discrete).

3. Weak form of NMP [K30, K58] suggests a more convincing explanation. The density matrix
of the state to be reduced is a direct sum over contributions proportional to projection
operators. Suppose that the projection operator with largest dimension has dimension n.
Strong form of NMP would say that final state is characterized by n-dimensional projection
operator. Weak form of NMP allows free will so that all dimensions n− k, k = 0, 1, ...n− 1
for final state projection operator are possible. 1-dimensional case corresponds to vanishing
entanglement negentropy and ordinary state function reduction isolating the measured system
from external world.

4. The negentropy of the final state per state depends on the value of k. It is maximal if
n − k is power of prime. For n = 2k = Mk + 1, where Mk is Mersenne prime n − 1 gives
the maximum negentropy and also maximal p-adic prime available so that this reduction is
favoured by NMP. Mersenne primes would be indeed special. Also the primes n = 2k − r
near 2k produce large entanglement negentropy and would be favored by NMP.

http://tinyurl.com/jbh9m27
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5. This argument suggests a generalization of p-adic length scale hypothesis so that p = 2 can
be replaced by any prime.

This argument together with the hypothesis that preferred prime is ramified would correlate
the character of the irreducible extension and character of super-conformal symmetry breaking.
The integer n characterizing super-symplectic conformal sub-algebra acting as gauge algebra would
depends on the irreducible algebraic extension of rational involved so that the hierarchy of quantum
criticalities would have number theoretical characterization. Ramified primes could appear as
divisors of n and n would be essentially a characteristic of ramification known as discriminant.
An interesting question is whether only the ramified primes allow the continuation of string world
sheet and partonic 2-surface to a 4-D space-time surface. If this is the case, the assumptions behind
p-adic mass calculations would have full first principle justification.

8.5.5 A Connection With Infinite Primes?

Infinite primes are one of the mathematical outcomes of TGD [K51]. There are two kinds of
infinite primes. There are the analogs of free many particle states consisting of fermions and
bosons labelled by primes of the previous level in the hierarchy. They correspond to states of a
supersymmetric arithmetic quantum field theory or actually a hierarchy of them obtained by a
repeated second quantization of this theory. A connection between infinite primes representing
bound statesandirreducible polynomials is highly suggestive.

1. The infinite prime representing free many-particle state decomposes to a sum of infinite part
and finite part having no common finite prime divisors so that prime is obtained. The infinite
part is obtained from “fermionic vacuum” X =

∏
k pk by dividing away some fermionic primes

pi and adding their product so that one has X → X/m+m, where m is square free integer.
Also m = 1 is allowed and is analogous to fermionic vacuum interpreted as Dirac sea without
holes. X is infinite prime and pure many-fermion state physically. One can add bosons
by multiplying X with any integers having no common denominators with m and its prime
decomposition defines the bosonic contents of the state. One can also multiply m by any
integers whose prime factors are prime factors of m.

2. There are also infinite primes, which are analogs of bound states and at the lowest level of the
hierarchy they correspond to irreducible polynomials P (x) with integer coefficients. At the
second levels the bound states would naturally correspond to irreducible polynomials Pn(x)
with coefficients Qk(y), which are infinite integers at the previous level of the hierarchy.

3. What is remarkable that bound state infinite primes at given level of hierarchy would define
maximally ramified algebraic extensions at previous level. One indeed has infinite hierarchy
of infinite primes since the infinite primes at given level are infinite primes in the sense
that they are not divisible by the primes of the previous level. The formal construction
works as such. Infinite primes correspond to polynomials of single variable at the first level,
polynomials of two variables at second level, and so on. Could the Langlands program could
be generalized from the extensions of rationals to polynomials of complex argument and that
one would obtain infinite hierarchy?

4. Infinite integers in turn could correspond to products of irreducible polynomials defining
more general extensions. This raises the conjecture that infinite primes for an extension K
of rationals could code for the algebraic extensions of K quite generally. If infinite primes
correspond to real quantum states they would thus correspond the extensions of rationals
to which the parameters appearing in the functions defining partonic 2-surfaces and string
world sheets.

This would support the view that partonic 2-surfaces associated with algebraic extensions
defined by infinite integers and thus not irreducible are unstable against decay to partonic
2-surfaces which corresponds to extensions assignable to infinite primes. Infinite composite
integer defining intermediate unstable state would decay to its composites. Basic particle
physics phenomenology would have number theoretic analog and even more.
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5. According to Wikipedia, Eisenstein’s criterion (http://tinyurl.com/47kxjz) allows gen-
eralization and what comes in mind is that it applies in exactly the same form also at the
higher levels of the hierarchy. Primes would be only replaced with prime polynomials and
the there would be at least one prime polynomial Q(y) dividing the coefficients of Pn(x)
except the highest one such that its square would not divide P0. Infinite primes would give
rise to an infinite hierarchy of functions of many complex variables. At first level zeros of
function would give discrete points at partonic 2-surface. At second level one would obtain
2-D surface: partonic 2-surfaces or string world sheet. At the next level one would obtain
4-D surfaces. What about higher levels? Does one obtain higher dimensional objects or
something else. The union of n 2-surfaces can be interpreted also as 2n-dimensional surface
and one could think that the hierarchy describes a hierarchy of unions of correlated partonic
2-surfaces. The correlation would be due to the preferred extremal property of Kähler action.

One can ask whether this hierarchy could allow to generalize number theoretical Langlands
to the case of function fields using the notion of prime function assignable to infinite prime.
What this hierarchy of polynomials of arbitrary many complex arguments means physically is
unclear. Do these polynomials describe many-particle states consisting of partonic 2-surface
such that there is a correlation between them as sub-manifolds of the same space-time sheet
representing a preferred extremals of Kähler action?

This would suggest strongly the generalization of the notion of p-adicity so that it applies
to infinite primes.

1. This looks sensible and maybe even practical! Infinite primes can be mapped to prime poly-
nomials so that the generalized p-adic numbers would be power series in prime polynomial -
Taylor expansion in the coordinate variable defined by the infinite prime. Note that infinite
primes (irreducible polynomials) would give rise to a hierarchy of preferred coordinate vari-
ables. In terms of infinite primes this expansion would require that coefficients are smaller
than the infinite prime P used. Are the coefficients lower level primes? Or also infinite
integers at the same level smaller than the infinite prime in question? This criterion makes
sense since one can calculate the ratios of infinite primes as real numbers.

2. I would guess that the definition of infinite-P p-adicity is not a problem since mathematicians
have generalized the number theoretical notions to such a level of abstraction much above
of a layman like me. The basic question is how to define p-adic norm for the infinite primes
(infinite only in real sense, p-adically they have unit norm for all lower level primes) so that
it is finite.

3. There exists an extremely general definition of generalized p-adic number fields (see http:

//tinyurl.com/y5zreeg). One considers Dedekind domain D, which is a generalization
of integers for ordinary number field having the property that ideals factorize uniquely to
prime ideals. Now D would contain infinite integers. One introduces the field Eof fractions
consisting of infinite rationals.

Consider element e of E and a general fractional ideal eD as counterpart of ordinary rational
and decompose it to a ratio of products of powers of ideals defined by prime ideals, now those
defined by infinite primes. The general expression for the p-adic norm of x is x−ord(P ), where
n defines the total number of ideals P appearing in the factorization of a fractional ideal in
E: this number can be also negative for rationals. When the residue field is finite (finite field
G(p,1) for p-adic numbers), one can take c to the number of its elements (c = p for p-adic
numbers.

Now it seems that this number is not finite since the number of ordinary primes smaller than
P is infinite! But this is not a problem since the topology for completion does not depend
on the value of c. The simple infinite primes at the first level (free many-particle states) can
be mapped to ordinary rationals and q-adic norm suggests itself: could it be that infinite-P
p-adicity corresponds to q-adicity discussed by Khrennikov [A33]. Note however that q-adic
numbers are not a field.

Finally a loosely related question. Could the transition from infinite primes ofK to those of L
takes place just by replacing the finite primes appearing in infinite prime with the decompositions?

http://tinyurl.com/47kxjz
http://tinyurl.com/y5zreeg
http://tinyurl.com/y5zreeg
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The resulting entity is infinite prime if the finite and infinite part contain no common prime divisors
in L. This is not the case generally if one can have primes P1 and P2 of K having common divisors
as primes of L: in this case one can include P1 to the infinite part of infinite prime and P2 to finite
part.

8.6 More About Physical Interpretation Of Algebraic Ex-
tensions Of Rationals

The number theoretic vision has begun to show its power. The basic hierarchies of quantum TGD
would reduce to a hierarchy of algebraic extensions of rationals and the parameters - such as the
degrees of the irreducible polynomials characterizing the extension and the set of ramified primes
(see http://tinyurl.com/hddljlf) - would characterize quantum criticality and the physics of
dark matter as large heff phases. The value of heff/h = n would naturally correspond to the
order of the Galois group of the extension.

The conjecture is that preferred p-adic primes correspond to ramified primes for extensions
of rationals for which especially many number theoretic discretizations of the space-time surfaces
allow strong form of holography as an algebraic continuation of string world sheets to space-time
surfaces. The generalization of the p-adic length scale hypothesis as a prediction of NMP is another
conjecture. What remains to be shown that the primes predicted by generalization p-adic length
scale hypothesis indeed are preferred primes in the proposed sense.

By strong form of holography the parameters characterizing string world sheets and partonic
2-surfaces serve as WCW coordinates. By various conformal invariances, one expects that the
parameters correspond to conformal moduli, which means a huge simplification of quantum TGD
since the mathematical apparatus of superstring theories becomes available and number theoretical
vision can be realized. Scattering amplitudes can be constructed for a given algebraic extension
and continued to various number fields by continuing the parameters which are conformal moduli
and group invariants characterizing incoming particles.

There are many un-answered and even un-asked questions.

1. How the new degrees of freedom assigned to the n-fold covering defined by the space-time
surface pop up in the number theoretic picture? How the connection with preferred primes
emerges?

2. What are the precise physical correlates of the parameters characterizing the algebraic ex-
tension of rationals? Note that the most important extension parameters are the degree of
the defining polynomial and ramified primes.

8.6.1 Some Basic Notions

Some basic information about extensions are in order. I emphasize that I am not a specialist.

Basic facts

The algebraic extensions of rationals are determined by roots of polynomials. Polynomials be
decomposed to products of irreducible polynomials, which by definition do not contain factors
which are polynomials with rational coefficients. These polynomials are characterized by their
degree n, which is the most important parameter characterizing the algebraic extension.

One can assign to the extension primes and integers - or more precisely, prime and integer
ideals. Integer ideals correspond to roots of monic polynomials Pn(x) = xn + ..a0 in the extension
with integer coefficients. Clearly, for n = 0 (trivial extension) one obtains ordinary integers.
Primes as such are not a useful concept since roots of unity are possible and primes which differ by
a multiplication by a root of unity are equivalent. It is better to speak about prime ideals rather
than primes.

Rational prime p can be decomposed to product of powers of primes of extension and if
some power is higher than one, the prime is said to be ramified and the exponent is called ramifi-
cation index. Eisenstein’s criterion (see http://tinyurl.com/47kxjz states that any polynomial
Pn(x) = anx

n + an−1x
n−1 + ...a1x + a0 for which the coefficients ai, i < n are divisible by p and

http://tinyurl.com/hddljlf
http://tinyurl.com/47kxjz
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a0 is not divisible by p2 allows p as a maximally ramified prime. The corresponding prime ideal is
n:th power of the prime ideal of the extensions (roughly n:th root of p). This allows to construct
endless variety of algebraic extensions having given primes as ramified primes.

Ramification is analogous to criticality. When the gradient potential function V (x) depend-
ing on parameters has multiple roots, the potential function becomes proportional a higher power
of x − x0. The appearance of power is analogous to appearance of higher power of prime of ex-
tension in ramification. This gives rise to cusp catastrophe. In fact, ramification is expected to be
number theoretical correlate for the quantum criticality in TGD framework. What this precisely
means at the level of space-time surfaces, is the question.

Galois group as symmetry group of algebraic physics

I have proposed long time ago that Galois group (see http://tinyurl.com/h9528pl) acts as
fundamental symmetry group of quantum TGD and even made clumsy attempt to make this idea
more precise in terms of the notion of number theoretic braid. It seems that this notion is too
primitive: the action of Galois group must be realized at more abstract level and WCW provides
this level.

First some facts (I am not a number theory professional, as the professional reader might
have already noticed!).

1. Galois group acting as automorphisms of the field extension (mapping products to products
and sums to sums and preserves norm) characterizes the extension and its elements have
maximal order equal to n by algebraic n-dimensionality. For instance, for complex numbers
Galois group acs as complex conjugation. Galois group has natural action on prime ideals
of extension mapping them to each other and preserving the norm determined by the de-
terminant of the linear map defined by the multiplication with the prime of extension. For
instance, for the quadratic extension Q(

√
5) the norm is N(x +

√
5y) = x2 − 5y2: not that

number theory leads to Minkowkian metric signatures naturally. Prime ideals combine to
form orbits of Galois group.

2. Since Galois group leaves the rational prime p invariant, the action must permute the primes
of extension in the product representation of p. For ramified primes the points of the orbit
of ideal degenerate to single ideal. This means that primes and quite generally, the numbers
of extension, define orbits of the Galois group.

Galois group acts in the space of integers or prime ideals of the algebraic extension of
rationals and it is also physically attractive to consider the orbits defined by ideals as preferred
geometric structures. If the numbers of the extension serve as parameters characterizing string
world sheets and partonic 2-surfaces, then the ideals would naturally define subsets of the parameter
space in which Galois group would act.

The action of Galois group would leave the space-time surface invariant if the sheets co-
incide at ends but permute the sheets. Of course, the space-time sheets permuted by Galois group
need not co-incide at ends. In this case the action need not be gauge action and one could have
non-trivial representations of the Galois group. In Langlands correspondence these representation
relate to the representations of Lie group and something similar might take place in TGD as I have
indeed proposed.

The value of effective Planck constant heff/h = n corresponds to the number of sheets of
some kind of covering space defined by the space-time surface. The discretization of the space-
time surface identified as a monadic manifold [L24] with imbedding space preferred coordinates in
extension of rationals defining the adele has Galois group of extension as a group of symmetries
permuting the sheets of the covering group. Therefore n = heff/h would naturally correspond to
the dimension of the extension dividing the order of its Galois group. Dark matter in TGD sense
would correspond to number theoretic physics.

Remark: Strong form of holography supports also the vision about quaternionic general-
ization of conformal invariance implying that the adelic space-time surface can be constructed from
the data associated with functions of two complex variables, which in turn reduce to functions of
single variable.

http://tinyurl.com/h9528pl
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If this picture is correct, it is possible to talk about quantum amplitudes in the space defined
by the numbers of extension and restrict the consideration to prime ideals or more general integer
ideals.

1. These number theoretical wave functions are physical if the parameters characterizing the
2-surface belong to this space. One could have purely number theoretical quantal degrees
of freedom assignable to the hierarchy of algebraic extensions and these discrete degrees of
freedom could be fundamental for living matter and understanding of consciousness.

2. The simplest assumption that Galois group acts as a gauge group when the ends of sheets
co-incide at boundaries of CD seems however to destroy hopes about non-trivial number
theoretical physics but this need not be the case. Physical intuition suggests that ramification
somehow saves the situation and that the non-trivial number theoretic physics could be
associated with ramified primes assumed to define preferred p-adic primes.

8.6.2 How New Degrees Of Freedom Emerge For Ramified Primes?

How the new discrete degrees of freedom appear for ramified primes?

1. The space-time surfaces defining singular coverings are n-sheeted in the interior. At the ends
of the space-time surface at boundaries of CD however the ends co-incide. This looks very
much like a critical phenomenon.

Hence the idea would be that the end collapse can occur only for the ramified prime ideals of
the parameter space - ramification is also a critical phenomenon - and means that some of the
sheets or all of them co-incide. Thus the sheets would co-incide at ends only for the preferred
p-adic primes and give rise to the singular covering and large heff . End-collapse would be
the essence of criticality! This would occur, when the parameters defining the 2-surfaces are
in a ramified prime ideal.

2. Even for the ramified primes there would be n distinct space-time sheets, which are regarded
as physically distinct. This would support the view that besides the space-like 3-surfaces
at the ends the full 3-surface must include also the light-like portions connecting them so
that one obtains a closed 3-surface. The conformal gauge equivalence classes of the light-like
portions would give rise to additional degrees of freedom. In space-time interior and for
string world sheets they would become visible.

For ramified primes n distint 3-surfaces would collapse to single one but the n discrete
degrees of freedom would be present and particle would obtain them. I have indeed proposed
number theoretical second quantization assigning fermionic Clifford algebra to the sheets
with n oscillator operators. Note that this option does not require Galois group to act as
gauge group in the general case. This number theoretical second quantization might relate
to the realization of Boolean algebra suggested by weak form of NMP [K85].

8.6.3 About The Physical Interpretation Of The Parameters Character-
izing Algebraic Extension Of Rationals In TGD Framework

It seems that Galois group is naturally associated with the hierarchy heff/h = n of effective Planck
constants defined by the hierarchy of quantum criticalities. n would naturally define the maximal
order for the element of Galois group. The analog of singular covering with that of z1/n would
suggest that Galois group is very closely related to the conformal symmetries and its action induces
permutations of the sheets of the covering of space-time surface.

Without any additional assumptions the values of n and ramified primes are completely
independent so that the conjecture that the magnetic flux tube connecting the wormhole contacts
associated with elementary particles would not correspond to very large n having the p-adic prime
p characterizing particle as factor (p = M127 = 2127 − 1 for electron). This would not induce any
catastrophic changes.

TGD based physics could however change the situation and reduce number theoretical de-
grees of freedom: the intuitive hypothesis that p divides n might hold true after all.
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1. The strong form of GCI implies strong form of holography. One implication is that the WCW
Kähler metric can be expressed either in terms of Kähler function or as anti-commutators of
super-symplectic Noether super-charges defining WCW gamma matrices. This realizes what
can be seen as an analog of Ads/CFT correspondence. This duality is much more general.
The following argument supports this view.

(a) Since fermions are localized at string world sheets having ends at partonic 2-surfaces,
one expects that also Kähler action can be expressed as an effective stringy action.
It is natural to assume that string area action is replaced with the area defined by
the effective metric of string world sheet expressible as anti-commutators of Kähler-
Dirac gamma matrices defined by contractions of canonical momentum currents with
imbedding space gamma matrices. It string tension is proportional to h2

eff , string length
scales as heff .

(b) AdS/CFT analogy inspires the view that strings connecting partonic 2-surfaces serve
as correlates for the formation of - at least gravitational - bound states. The distances
between string ends would be of the order of Planck length in string models and one
can argue that gravitational bound states are not possible in string models and this is
the basic reason why one has ended to landscape and multiverse non-sense.

2. In order to obtain reasonable sizes for astrophysical objects (that is sizes larger than Schwartschild
radius rs = 2GM) For ~eff = ~gr = GMm/v0 one obtains reasonable sizes for astrophysical
objects. Gravitation would mean quantum coherence in astrophysical length scales.

3. In elementary particle length scales the value of heff must be such that the geometric size
of elementary particle identified as the Minkowski distance between the wormhole contacts
defining the length of the magnetic flux tube is of order Compton length - that is p-adic length
scale proportional to

√
p. Note that dark physics would be an essential element already at

elementary particle level if one accepts this picture also in elementary particle mass scales.
This requires more precise specification of what darkness in TGD sense really means.

One must however distinguish between two options.

(a) If one assumes n ' √p, one obtains a large contribution to classical string energy as
∆ ∼ m2

CP2
Lp/~2

eff ∼ mCP2
/
√
p, which is of order particle mass. Dark mass of this size

looks un-feasible since p-adic mass calculations assign the mass with the ends wormhole
contacts. One must be however very cautious since the interpretations can change.

(b) Second option allows to understand why the minimal size scale associated with CD
characterizing particle correspond to secondary p-adic length scale. The idea is that
the string can be thought of as being obtained by a random walk so that the distance
between its ends is proportional to the square root of the actual length of the string in the
induced metric. This would give that the actual length of string is proportional to p and
n is also proportional to p and defines minimal size scale of the CD associated with the
particle. The dark contribution to the particle mass would be ∆m ∼ m2

CP2
Lp/~2

eff ∼
mCP2

/p, and completely negligible suggesting that it is not easy to make the dark side
of elementary visible.

4. If the latter interpretation is correct, elementary particles would have huge number of hidden
degrees of freedom assignable to their CDs. For instance, electron would have n = 2127−1 '
1038 hidden discrete degrees of freedom and would be rather intelligent system - 127 bits is
the estimate- and thus far from a point-like idiot of standard physics. Is it a mere accident
that the secondary p-adic time scale of electron is .1 seconds - the fundamental biorhythm -
and the size scale of the minimal CD is slightly large than the circumference of Earth?

Note however, that the conservation option assuming that the magnetic flux tubes connecting
the wormhole contacts representing elementary particle are in heff/h = 1 phase can be
considered as conservative option.
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8.7 p-Adicization and adelic physics

This section is devoted to the challenges related to p-adicization and adelization of physics in
which the correspondence between real and p-adic numbers via canonical identification serves as
the basic building brick. Also the problems associated with p-adic variants of integral, Fourier anal-
ysis, Hilbert space, and Riemann geometry should be solved in a manner respecting fundamental
symmetries and their p-adic variants must be met. The notion of number theoretical universality
(NTU) plays a key role here. One should also answer to questions about the origin of preferred
primes and p-adic length scale hypothesis.

8.7.1 Challenges

The basic challenges encountered are construction of the p-adic variants of real number based
physics, understanding their relationship to real physics, and the fusion of various physics to single
coherent whole.

The p-adicization of real physics is not just a straightforward formal generalization of scat-
tering amplitudes of existing theories but requires a deeper understanding of the physics involved.
The interpretation of p-adic physics as correlate for cognition and imagination is an important
guideline and will be discussed l in more detail in separate section.

Definite integral and Fourier analysis are basic elements of standard physics and their gen-
eralization to the p-adic context defines a highly non-trivial challenge. Also the p-adic variants of
Riemann geometry and Hilbert space are suggestive. There are however problems.

1. There are problems associated with p-adic definite integral. Riemann sum does not make
sense since it approaches zero if the p-adic norm of discretization unit approaches zero. The
problems are basically due to the absence of well-orderedness essential for the definition of
definite integral and differential forms and their integrals.

Residue integration might make sense in finite angle resolution. For algebraic extension
containing eiπ/n the number theoretically universal approximation iπ = n(eiπ/n − 1) could
be used. In twistor approach integrations reduce to multiple residue integrations and since
twistor approach generalizes in TGD framework, this approach to integration is very attrac-
tive.

Positivity is a central notion in twistor Grassmannian approach [B27]. Since canonical iden-
tification maps p-adic numbers to non-negative real numbers, there is a strong temptation
to think that positivity relates to NTU [L19].

2. There are problems with Fourier analysis. The naive generalization of trigonometric functions
by replacing eix with its p-adic counterpart is not physical. Same applies to ex. Algebraic
extensions are needed to get roots of unity ad e as counterparts of the phases and discretiza-
tion is necessary and has interpretation in terms of finite resolution for angle/phase and its
hyperbolic counterpart.

3. The notion of Hilbert space is problematic. The naive generalization of Hilbert space norm
square |x|2 =

∑
xnxn for state (x1, x2, ...) can vanish p-adically. Also here NTU could help.

State would contain as coefficients only roots of e and unity and only the overall factor could
be p-adic number. Coefficients could be restricted to the algebraic numbers generating the
algebraic extension of rational numbers and would not contain powers of p or even ordinary
p-adic numbers expect in the overall normalization factor.

Second challenge relates to the relationship between real and p-adic physics. Canonical
identification (CI)

∑
xnp

n →
∑
xnp

−n or some of its variants should play an important role. CI
is expected to map the invariants appearing in scattering amplitudes to their real counterparts.

1. Real and p-adic variants of space-time surfaces should exist and relate to each other some-
how. Is this relationship local and involve CI at space-time level or imbedding space level?
Or is it only a global and non-local assignment of preferred real extremals to their p-adic
counterparts? Or is between these extreme options and involves algebraic discretization
of the space-time surface weakening the strong form of SH as already proposed? How do
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real and p-adic imbedding spaces relate to each other and can this relationship induce local
correspondence between preferred extremals (PEs) [K86, K6, L23]?

2. NTU in some sense is a highly suggestive approach to these questions and would suggest that
canonical identification applies to isometry invariants whereas angles and hyperbolic angles,
or rather the corresponding “phases” belonging to an extension of p-adics containing roots of
e and roots of unity are mapped to themselves. Note that the roots of e define extensions of
rationals, which induce finite dimensional algebraic extensions of p-adic numbers. This would
make possible to define imbedding space in accordance with NTU. Also the Hilbert space
could be defined by requiring that its points correspond to number theoretically universal
angles expressible in terms of roots of unity.

3. What about real and p-adic variants of WCW? Are they needed at all? Or could their
existence be used as a powerful constraint on real physics? The representability of WCW as
a union of infinite-dimensional symmetric spaces labelled by zero modes suggests that the
same description applies at the level of WCW and imbedding space.

One cannot circumvent the question about how to generalize functional integral from real
WCW to p-adic WCWs. In particular, what is the p-adic variant of the action defining
the dynamics of space-time surfaces. In the case of exponent of action the p-adic variant
could be defined by assuming algebraic universality: again the roots of e and of unity would
be in central role. Also the Kähler structure of WCW implying that Gaussian and metric
determinants cancel each other in functional integral, would be absolutely crucial.

One must remember that the exponents of action for scattering amplitudes for the stationary
phase extremal cancel from the path integral representation of scattering amplitudes. Also
now this mechanism would allow to get rid of the poorly defined exponent for single minimum.
If there is sum over scattering amplitudes assignable to different maxima, normalization sould
give ratios of these exponents for different extrema/maxima and only these ratios should
belong to the extension of rationals.

The zero modes of WCW metric are invariants of supersymplectic group so that canonical
identification could relate their real and p-adic variants. Zero modes could break NTU and
would be behind p-adic thermodynamics and dependence of mass scale on p-adic prime.

The third challenge relates to the fusion of p-adic physics and real physics to a larger
structure. Here a generalization of number concept obtained by glueing reals and various p-adics
together along an extension of rational numbers inducing the extensions of p-adic numbers is highly
suggestive. Adeles associated with the extension of rationals are highly attractive and closely re-
lated notion. Real and various p-adic physics would be correlates for sensory and cognitive aspects
of the same universal physics rather than separate physics in this framework. One important impli-
cation of this view is that real entropy and p-adic negentropies characterize the same entanglement
with coefficients in an extension of rationals.

NTU for hyperbolic and ordinary phases is definetely the central idea. How the invari-
ance of angles under conformal transformations does relate to this? Could one perhaps define a
discretized version of conformal symmetry preserving the phases defined by the angles between
vectors assignable with the tangent spaces of discretized geometric structures and thus respecting
NTU? Of should one apply conformal symmetry at Lie algebra level only?

8.7.2 NTU and the correspondence between real and p-adic physics

p-Adic real correspondence is certainly the basic problem of p-adicization and adelization. One
can make several general questions about p-adic real correspondence and canonical identification
inspired by p-adic mass calculations.

How generally p-adic real correspondence does apply? Could canonical identification for
group invariants combined with direct identification of ordinary and hyperbolic phases identified
as roots of unity and e apply at WCW and imbedding space level having maximally symmetric
geometries? Could this make sense even at space-time level as a correspondence induced from
imbedding space level [L24]? Does canonical identification apply locally for the discretizations
of space-time surface or only globally for the parameters characterizing PEs (string world sheets
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and partonic 2-surfaces by SH), which are general coordinate invariant and Poincare invariant
quantities?

The following vision seems to be the most feasible one found hitherto.

1. Preservation of symmetries and continuity compete. Lorenz transformations do not com-
mute with canonical identification. This suggests that canonical identification applies only
to Lorentz invariants formed from quantum numbers. This is enough in the case of scat-
tering amplitudes. Canonical identification applies only to isometry invariants at the level
of WCW and the phases/exponents of ordinary/hyperbolic angles correspond to numbers in
the algebraic extension common to extensions of rationals and various p-adics.

2. Canonical identification applies at the level of momentum space and maps p-adic Lorentz
invariants of scattering amplitudes to their real counterparts. Phases of angles and their
hyperbolic counterparts should correspond to parameters defining extension and should be
mapped as such to their p-adic counterparts.

3. The constraints coming from GCI and symmetries do not allow local correspondence but
allow to consider its discretized version at space-time leve induced by the correspondence at
the level of imbedding space.

This requires the restriction of isometries and other symmetries to algebraic subgroups de-
fined by the extension of rationals. This would imply reduction of symmetry due to finite
cognitive/measurement resolution and should be acceptable. If one wants to realize the ideas
about imagination, discretization must be applied also for the space-time interior meaning
partial breaking of SH and giving rise to dark matter degrees freedom in TGD sense. SH
could apply in real sector for realizable imaginations only. Note that the number of algebraic
points of space-time surface is expected to be relatively small.

The correspondence must be considered at the level of imbedding space, space-time, and
WCW.

1. At the level of imbedding space p-adic–real correspondence is induced by points in extension
of rationals and is totally discontinuous. This requires that space-time dimension is smaller
than imbedding space dimension.

2. At space-time level the correspondence involves field equations derivable from a local vari-
ational principle make sense also p-adically although the action itself is ill-defined as 4-D
integral. The notion of p-adic PE makes sense by strong form of holography applied to 2-
surfaces in the intersection. p-Adically however only the vanishing of Noether currents for
a sub-algebra of the super-symplectic algebra might make sense. This condition is stronger
than the vanishing of Noether charges defined by 3-D integrals.

3. Correspondence at the level of WCW can make sense and reduces to that for string world
sheets and partonic 2-surfaces by SH. Real and p-adic 4-surfaces would be obtained by alge-
braic continuation as PEs from 2-surfaces by assuming that the space-time surface contains
subset of points of imbedding space belonging to the extension of rationals [?]. p-Adic pseudo
constants make p-adic continuation easy. Real continuation need not exist always. p-Adic
WCW would be considerably larger than real WCW and make possible a predictive quantum
theory of imagination and cognition.

What I have called intersection of realities and p-adicities can be identified as the set of
2-surfaces plus algebraic discretization of space-time interior. Also the values of induced
spinor fields at the points of discretization must be given. The parameters characterizing the
extremals (say coefficients of polynomials) - WCW coordinates - would be in extension of
rationals inducing a finite-D extension of p-adic number fields.

The hierarchy of algebraic extensions induces an evolutionary hierarchy of adeles. The inter-
pretation could be as a mathematical correlate for cosmic evolution realized at the level of
the core of WCW defined by the intersection? 2-surfaces could be called space-time genes.
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4. Also the p-adic variant Kähler action or at least the exponent of Kähler action defining
vacuum functional should be obtainable by algebraic continuation. The weakest condition
states that the ratios of action exponents for the maxima of Kähler function to the sum of
action exponents for maxima belong to the extension. Without this condition the hopes of
satisfying NTU seem rather meager.

8.7.3 NTU at space-time level

What about NTU at space-time level? NTU requires a correspondence between real and p-adic
numbers and the details of this corresponds have been a long standing problem.

1. The recent view about the correspondence between real PEs to their p-adic counterparts does
not demand discrete local correspondence assumed in the earlier proposal [K79]. The most
abstract approach would give up the local correspondence at space-time level altogether, and
restrict the preferred coordinates of WCW (having maximal group of isometries) to numbers
in the extension of rationals considered. WCW would be discretized.

Intuitively a more realistic view is a correspondence at space-time level in the sense that real
and p-adic space-time sheets intersect at points belonging to the extension of rationals and
defining “cognitive representations”. Only some p-adic space-time surfaces would have real
counterpart.

2. The strongest form of NTU would require that the allowed points of imbedding space be-
longing an extension of rationals are mapped as such to corresponding extensions of p-adic
number fields (no canonical identification). At imbedding space level this correspondence
would be extremely discontinuous. The “spines” of space-time surfaces would however con-
tain only a subset of points of extension, and a natural resolution length scale could emerge
and prevent the fluctuation. This could be also seen as a reason for why space-times surfaces
must be 4-D. The fact that the curve xn + yn = zn has no rational points for n > 2, raises
the hope that the resolution scale could emerge spontaneously.

3. The notion of monadic geometry discussed in detail in [L24] would realize this idea. Define
first a number theoretic discretization of imbedding space in terms of points, whose coordi-
nates in group theoretically preferred coordinate system belong to the extension of rationals
considered. One can say that these algebraic points are in the intersection of reality and
various p-adicities. Overlapping open sets assigned with this discretization define in the real
sector a covering by open sets. In p-adic sector compact-open-topology allows to assign with
each point 8th Cartesian power of algebraic extension of p-adic numbers. These compact
open sets define analogs for the monads of Leibniz and p-adic variants of field equations
make sense inside them.

The monadic manifold structure of H is induced to space-time surfaces containing discrete
subset of points in the algebraic discretization with field equations defining a continuation to
space-time surface in given number field, and unique only in finite measurement resolution.
This approach would resolve the tension between continuity and symmetries in p-adic–real
correspondence: isometry groups would be replaced by their sub-groups with parameters in
extension of rationals considered and acting in the intersection of reality and p-adicities.

The Galois group of extension acts non-trivially on the “spines” of space-time surfaces. Hence
the number theoretical symmetries act as physical symmetries and define the orbit of given
space-time surface as a kind of covering space. The coverings assigned to the hierarchy of
Planck constants would naturally correspond to Galois coverings and dark matter would
represent number theoretical physics.

This would give rise to a kind of algebraic hierarchy of adelic 4-surfaces identifiable as evo-
lutionary hierarchy: the higher the dimension of the extension, the higher the evolutionary
level.
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8.7.4 NTU and WCW

p-Adic–real correspondence at the level of WCW

It has not been obvious whether one should perform p-adicization and adelization at the level
of WCW. Minimalist could argue that scattering amplitudes are all we want and that their p-
adicization and adelization by algebraic continuation can be tolerated only if it can give powerful
enough constraints on the amplitudes.

1. The anti-commutations for fermionic oscillator operators are number theoretically universal.
Supersymmetry suggests that also WCW bosonic degrees of freedom satisfy NTU. This could
mean that the coordinates of p-adic WCW consist of super-symplectic invariants mappable
by canonical identification to their real counterparts plus phases and their hyperbolic coun-
terparts expressible as genuinely algebraic numbers common to all number fields. This kind
of coordinates are naturally assignable to symmetric spaces [L24].

2. Kähler structure should be mapped from p-adic to real sector and vice versa. Vacuum
functional identified as exponent of action should be NTU. Algebraic continuation defined
by SH involves p-adic pseudo constants. All p-adic continuations by SH should correspond
to the same value of exponent of action obtained by algebraic continuation from its real
value. The degeneracy associated with p-adic pseudo-constants would be analogous to gauge
invariance - imagination in TGD inspired theory of consciousness.

3. Ist it possible have NTU for WCW functional integration? Or is it enough to realize NTU
for scattering amplitudes only. What seems clear that functional integral must reduce to a
discrete sum. Physical intuition suggests a sum over maxima of Kähler function forming a
subset of PEs representing stationary points. One cannot even exclude the possibility that
the set of PEs is discrete and that one can sum over all of them.

Restriction to maximum/stationary phase approximation gives rise to sum over exponents
multiplied with Gaussian determinants. The determinant of Kähler metric however cancels
the Gaussian determinants, and one obtains only a sum over the exponents of action.

The breaking of strong NTU could happen: consider only p-adic mass calculations. This
breaking is however associated with the parts of quantum states assignable to the boundaries
of CD, not with the vacuum functional.

NTU for functional integral

Number theoretical vision relies on NTU. In fermionic sector NTU is necessary: one cannot speak
about real and p-adic fermions as separate entities and fermionic anti-commutation relations are
indeed number theoretically universal.

What about NTU in case of functional integral? There are two opposite views.

1. One can define p-adic variants of field equations without difficulties if preferred extremals are
minimal surface extremals of Kähler action so that coupling constants do not appear in the
solutions. If the extremal property is determined solely by the analyticity properties as it is
for various conjectures, it makes sense independent of number field. Therefore there would
be no need to continue the functional integral to p-adic sectors. This in accordance with the
philosophy that thought cannot be put in scale. This would be also the option favored by
pragmatist.

2. Consciousness theorist might argue that also cognition and imagination allow quantum de-
scription. The supersymmetry NTU should apply also to functional integral over WCW
(more precisely, its sector defined by CD) involved with the definition of scattering ampli-
tudes.

1. Key observations

The general vision involves some crucial observations.



372 Chapter 8. Unified Number Theoretical Vision

1. Only the expressions for the scatterings amplitudes should should satisfy NTU. This does
not require that the functional integral satisfies NTU.

2. Since the Gaussian and metric determinants cancel in WCW Kähler metric the contributions
form maxima are proportional to action exponentials exp(Sk) divided by the

∑
k exp(Sk).

Loops vanish by quantum criticality.

3. Scattering amplitudes can be defined as sums over the contributions from the maxima, which
would have also stationary phase by the double extremal property made possible by the
complex value of αK . These contributions are normalized by the vacuum amplitude.

It is enough to require NTU for Xi = exp(Si)/
∑
k exp(Sk). This requires that Sk − Sl has

form q1 + q2iπ+ q3log(n). The condition brings in mind homology theory without boundary
operation defined by the difference Sk−Sl. NTU for both Sk and exp(Sk) would only values
of general form Sk = q1 + q2iπ + q3log(n) for Sk and this looks quite too strong a condition.

4. If it is possible to express the 4-D exponentials as single 2-D exponential associated with
union of string world sheets, vacuum functional disappears completely from consideration!
There is only a sum over discretization with the same effective action and one obtains purely
combinatorial expression.

2. What does one mean with functional integral?

The definition of functional integral in WCW is one of the key technical problems of quantum
TGD [K85]. NTU states that the integral should be defined simultaneously in all number fields
in the intersection of real and p-adic worlds defined by string world sheets and partonic 2-surfaces
with WCW coordinates in algebraic extension of rationals and allowing by strong holography
continuation to 4-D space-time surface. NTU is powerful constraint and could help in this respect.

1. Path integral is not in question. Rather, the functional integral is analogous to Wiener
integral and perhaps allows identification as a genuine integral in the real sector. In p-
adic sectors algebraic continuation should give the integral and here number theoretical
universality gives excellent hopes. The integral would have exactly the same form in real and
p-adic sector and expressible solely in terms of algebraic numbers characterizing algebraic
extension and finite roots of e and roots of unity Un = exp(i2π/n) in algebraic extension of
p-adic numbers.

Since vacuum functional exp(S) is exponential of complex action S, the natural idea is that
only rational powers eq and roots of unity and phases exp(i2πq) are involved and there is
no dependence on p-adic prime p! This is true in the integer part of q is smaller than p so
that one does not obtain ekp, which is ordinary p-adic number and would spoil the number
theoretic universality. This condition is not possible to satisfy for all values of p unless the
value of Kähler function is smaller than 2. One might consider the possibility that the allow
primes are above some minimum value.

The minimal solution to NTU conditions is that the ratios of action exponentials for maxima
of Kähler function to the sum of these exponentials belong to the extension of rationals
considered.

2. What does one mean with functional integral? TGD is expected to be an integrable in some
sense. In integrable QFTs functional integral reduces to a sum over stationary points of the
action: typically only single point contributes - at least in good approximation.

For real αK and Λ vacuum functional decomposes to a product of exponents of real contri-
bution from Euclidian regions (

√
g4 real) and imaginary contribution Minkowskian regions

(
√
g4 imaginary). There would be no exchange of momentum between Minkowskian and

Euclidian regions. For complex values of αK [K16] situation changes and Kähler function
as real part of action receives contributions from both Euclidian and Minkowskian regions.
The imaginary part of action has interpretation as analog of Morse function and action as it
appears in QFTs. Now saddle points must be considered.

PEs satisfy extremely strong conditions [K86, L23]. All classical Noether charges for a sub-
algebra associated with super-symplectic algebra and isomorphic to the algebra itself vanish
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at both ends of CD. The conformal weights of this algebra are n > 0-ples of those for
the entire algebra. What is fascinating that the condition that the preferred extremals are
minimal surface extremals of Kähler action could solve these conditions and guarantee also
NTU at the level of space-time surfaces. Supersymplectic boundary conditions at the ends
of CD would however pose number theoretic conditions on the coupling parameters. In p-
adic case the conditions should reduce to purely local conditions since p-adic charges are not
well-defined as integrals.

3. In TGD framework one is constructing zero energy states rather calculating the matrix
elements of S-matrix in terms of path integral. This gives certain liberties but a natural
expectation is that functional integral as a formal tool at least is involved.

Could one define the functional integral as a discrete sum of contributions of standard form
for the preferred extremals, which correspond to maxima in Euclidian regions and associated
stationary phase points in Minkowskian regions? Could one assume that WCW spinor field
is concentrated along single maximum/stationary point.

Quantum classical correspondence suggests that in Cartan algebra isometry charges are equal
to the quantal charges for quantum states expressible in number theoretically universal man-
ner in terms of fermionic oscillator operators or WCW gamma matrices? Even stronger
condition would be that classical correlation functions are identical with quantal ones for
allowed space-time surfaces in the quantum superposition. Could the reduction to a discrete
sum be interpreted in terms of a finite measurement resolution?

4. In QFT Gaussian determinants produce problems because they are often poorly defined. In
the recent case they could also spoil the NTU based on the exceptional properties of e. In the
recent case however Gaussian determinant and metric determinant for Kähler metric cancel
each other and this problem disappears. One could obtain just a sum over products of roots
of e and roots of unity. Thus also Kähler structure seems to be crucial for the dream about
NTU.

8.7.5 Breaking of NTU at the level of scattering amplitudes

NTU in strong sense could be broken at the level of scattering amplitudes. At space-time level the
breaking does not look natural in the recent framework. Consider only p-adic mass calculations
predicting that mass scale depends on p-adic prime. Also for the action strong form of NTU might
fail for small p-adic primes since the value of the real part of action would be larger than than p.
Should one allow this? What does one actually mean with NTU in the case of action?

Canonical identification is an important element of p-adic mass calculations and might
also be needed to map p-adic variants of scattering amplitudes to their real counterparts. The
breaking of NTU would take place, when the canonical real valued image of the p-adic scattering
amplitude differs from the real scattering amplitude. The interpretation would be in terms of finite
measurement resolution. By the finite measurement/cognitive resolution characterized by p one
cannot detect the difference.

The simplest form of the canonical identification is x =
∑
n xnp

n →
∑
xnp

−n. Product
xy and sum x + y do not in general map to product and sum in canonical identification. The
interpretation would be in terms of a finite measurement resolution: (xy)R = xRyR and (x+y)R =
xR + yR only modulo finite measurement resolution. p-Adic scattering amplitudes are obtained
by algebraic continuation from the intersection by replacing algebraic number valued parameters
(such as momenta) by general p-adic numbers. The real images of these amplitudes under canonical
identification are in general not identical with real scattering amplitudes the interpretation being
in terms of a finite measurement resolution.

In p-adic thermodynamics NTU in the strong sense fails since thermal masses depend on
p-adic mass scale. NTU can be broken by the fermionic matrix elements in the functional integral
so that the real scattering amplitudes differ from the canonical images of the p-adic scattering
amplitudes. For instance, the elementary particle vacuum functionals in the space of Teichmueller
parameters for the partonic 2-surfaces and string world sheets should break NTU [K10].
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8.7.6 NTU and the spectrum of Kähler coupling strength

During years I have made several attempts to understand coupling evolution in TGD framework.
The most convincing proposal has emerged rather recently and relates the spectrum of 1/αK to
that for the zeros of Riemann zeta [K16] and to the evolution of the electroweak U(1) couplings
strength.

1. The first idea dates back to the discovery of WCW Kähler geometry defined by Kähler func-
tion defined by Kähler action (this happened around 1990) [K24]. The only free parameter
of the theory is Kähler coupling strength αK analogous to temperature parameter αK postu-
lated to be is analogous to critical temperature. Whether only single value or entire spectrum
of of values αK is possible, remained an open question.

About decade ago I realized that Kähler action is complex receiving a real contribution
from space-time regions of Euclidian signature of metric and imaginary contribution from
the Minkoswkian regions. Euclidian region would give Kähler function and Minkowskian
regions analog of QFT action of path integral approach defining also Morse function. Zero
energy ontology (ZEO) [K80] led to the interpretation of quantum TGD as complex square
root of thermodynamics so that the vacuum functional as exponent of Kähler action could
be identified as a complex square root of the ordinary partition function. Kähler function
would correspond to the real contribution Kähler action from Euclidian space-time regions.
This led to ask whether also Kähler coupling strength might be complex: in analogy with
the complexification of gauge coupling strength in theories allowing magnetic monopoles.
Complex αK could allow to explain CP breaking. I proposed that instanton term also
reducing to Chern-Simons term could be behind CP breaking.

The problem is that the dynamics in Minkowskian and Euclidian regions decouple completely
and if Euclidian regions serve as space-time correlates for physical objects, there would be no
exchanges of classical charges between physical objects. Should one conclude that αK must
be complex?

2. p-Adic mass calculations for 2 decades ago [K28] inspired the idea that length scale evolution
is discretized so that the real version of p-adic coupling constant would have discrete set of
values labelled by p-adic primes. The simple working hypothesis was that Kähler coupling
strength is renormalization group (RG) invariant and only the weak and color coupling
strengths depend on the p-adic length scale. The alternative ad hoc hypothesis considered was
that gravitational constant is RG invariant. I made several number theoretically motivated
ad hoc guesses about coupling constant evolution, in particular a guess for the formula for
gravitational coupling in terms of Kähler coupling strength, action for CP2 type vacuum
extremal, p-adic length scale as dimensional quantity [K3]. Needless to say these attempts
were premature and a hoc.

3. The vision about hierarchy of Planck constants heff = n × h and the connection heff =
hgr = GMm/v0, where v0 < c = 1 has dimensions of velocity [K81] forced to consider
very seriously the hypothesis that Kähler coupling strength has a spectrum of values in
one-one correspondence with p-adic length scales. A separate coupling constant evolution
associated with heff induced by αK ∝ 1/~eff ∝ 1/n looks natural and was motivated by
the idea that Nature is theoretician friendly: when the situation becomes non-perturbative,
Mother Nature comes in rescue and an heff increasing phase transition makes the situation
perturbative again.

Quite recently the number theoretic interpretation of coupling constant evolution [K85] [L17]
in terms of a hierarchy of algebraic extensions of rational numbers inducing those of p-adic
number fields encouraged to think that 1/αK has spectrum labelled by primes and values
of heff . Two coupling constant evolutions suggest themselves: they could be assigned to
length scales and angles which are in p-adic sectors necessarily discretized and describable
using only algebraic extensions involve roots of unity replacing angles with discrete phases.

4. Few years ago the relationship of TGD and GRT was finally understood [K57]. GRT space-
time is obtained as an approximation as the sheets of the many-sheeted space-time of TGD
are replaced with single region of space-time. The gravitational and gauge potential of sheets
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add together so that linear superposition corresponds to set theoretic union geometrically.
This forced to consider the possibility that gauge coupling evolution takes place only at the
level of the QFT approximation and αK has only single value. This is nice but if true, one
does not have much to say about the evolution of gauge coupling strengths.

5. The analogy of Riemann zeta function with the partition function of complex square root of
thermodynamics suggests that the zeros of zeta have interpretation as inverses of complex
temperatures s = 1/β. Also 1/αK is analogous to temperature. This led to a radical idea to
be discussed in detail in the sequel.

Could the spectrum of 1/αK reduce to that for the zeros of Riemann zeta or - more plausibly
- to the spectrum of poles of fermionic zeta ζF (ks) = ζ(ks)/ζ(2ks) giving for k = 1/2 poles
as zeros of zeta and as point s = 2? ζF is motivated by the fact that fermions are the
only fundamental particles in TGD and by the fact that poles of the partition function are
naturally associated with quantum criticality whereas the vanishing of ζ and varying sign
allow no natural physical interpretation.

The poles of ζF (s/2) define the spectrum of 1/αK and correspond to zeros of ζ(s) and to the
pole of ζ(s/2) at s = 2. The trivial poles for s = 2n, n = 1, 2, .. correspond naturally to the
values of 1/αK for different values of heff = n×h with n even integer. Complex poles would
correspond to ordinary QFT coupling constant evolution. The zeros of zeta in increasing
order would correspond to p-adic primes in increasing order and UV limit to smallest value
of poles at critical line. One can distinguish the pole s = 2 as extreme UV limit at which
QFT approximation fails totally. CP2 length scale indeed corresponds to GUT scale.

6. One can test this hypothesis. 1/αKcorresponds to the electroweak U(1) coupling strength
so that the identification 1/αK = 1/αU(1) makes sense. One also knows a lot about the
evolutions of 1/αU(1) and of electromagnetic coupling strength 1/αem = 1/[cos2(θW )αU(1).
What does this predict?

It turns out that at p-adic length scale k = 131 (p ' 2k by p-adic length scale hypothesis,
which now can be understood number theoretically [K85]) fine structure constant is predicted
with .7 per cent accuracy if Weinberg angle is assumed to have its value at atomic scale! It
is difficult to believe that this could be a mere accident because also the prediction evolution
of αU(1) is correct qualitatively. Note however that for k = 127 labelling electron one can
reproduce fine structure constant with Weinberg angle deviating about 10 per cent from the
measured value of Weinberg angle. Both models will be considered.

7. What about the evolution of weak, color and gravitational coupling strengths? Quantum
criticality suggests that the evolution of these couplings strengths is universal and indepen-
dent of the details of the dynamics. Since one must be able to compare various evolutions
and combine them together, the only possibility seems to be that the spectra of gauge cou-
pling strengths are given by the poles of ζF (w) but with argument w = w(s) obtained by
a global conformal transformation of upper half plane - that is Möbius transformation (see
http://tinyurl.com/gwjs85b) with real coefficients (element of GL(2, R)) so that one as
ζF ((as + b)/(cs + d)). Rather general arguments force it to be and element of GL(2, Q),
GL(2, Z) or maybe even SL(2, Z) (ad− bc = 1) satisfying additional constraints. Since TGD
predicts several scaled variants of weak and color interactions, these copies could be perhaps
parameterized by some elements of SL(2, Z) and by a scaling factor K.

Could one understand the general qualitative features of color and weak coupling contant
evolutions from the properties of corresponding Möbius transformation? At the critical line
there can be no poles or zeros but could asymptotic freedom be assigned with a pole of cs+d
and color confinement with the zero of as+ b at real axes? Pole makes sense only if Kähler
action for the preferred extremal vanishes. Vanishing can occur and does so for massless
extremals characterizing conformally invariant phase. For zero of as + b vacuum function
would be equal to one unless Kähler action is allowed to be infinite: does this make sense?.
One can however hope that the values of parameters allow to distinguish between weak and
color interactions. It is certainly possible to get an idea about the values of the parameters of
the transformation and one ends up with a general model predicting the entire electroweak
coupling constant evolution successfully.

http://tinyurl.com/gwjs85b
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To sum up, the big idea is the identification of the spectra of coupling constant strengths
as poles of ζF ((as + b/)(cs + d)) identified as a complex square root of partition function with
motivation coming from ZEO, quantum criticality, and super-conformal symmetry; the discretiza-
tion of the RG flow made possible by the p-adic length scale hypothesis p ' kk, k prime; and the
assignment of complex zeros of ζ with p-adic primes in increasing order. These assumptions reduce
the coupling constant evolution to four real rational or integer valued parameters (a, b, c, d). In the
sequel this vision is discussed in more detail.

8.7.7 Generalization of Riemann zeta to Dedekind zeta and adelic physics

8.7.8 Generalization of Riemann zeta to Dedekind zeta and adelic physics

A further insight to adelic physics comes from the possible physical interpretation of the L-functions
appearing also in Langlands program [K89]. The most important L-function would be generaliza-
tion of Riemann zeta to extension of rationals. I have proposed several roles for ζ, which would be
the simplest L-function assignable to rational primes, and for its zeros.

1. Riemann zeta itself could be identifiable as an analog of partition function for a system with
energies given by logarithms of prime. One can define also the fermionic counterpart of ζ
as ζF . In ZEO this function could be regarded as complex square root of thermodynamical
partition function in accordance with the interpretation of quantum theory as complex square
root of thermodynamics.

2. The zeros of zeta could define the conformal weights for the generators of super-symplectic
algebra so that the number of generators would be infinite. The rough idea - certainly
not correct as such except at the limit of infinitely large CD - is that the scaling operator
L0 = rMd/drM , where rM is light-like coordinate of light-cone boundary (containing upper or
lower boundary of the causal diamond (CD)), has as eigenfunctions the functions (rM/r0)sn

sn = 1/2 + iyn, where sn is the radial conformal weight identified as complex zero of ζ.
Periodic boundary conditions for CD do not allow all possible zeros as conformal weights so
that for given CD only finite subset corresponds to generators of the supersymplectic algebra.
Conformal confinement would hold true in the sense that the sum

∑
n sn for physical states

would be integer. Roots and their conjugates should appear as pairs in physical states.

3. On basis of numerical evidence Dyson [A65] (http://tinyurl.com/hjbfsuv) has conjectured
that the Fourier transform for the set formed by zeros of zeta consists of primes so that one
could regard zeros as one-dimensional quasi-crystal. This hypothesis makes sense if the zeros
of zeta decompose into disjoint sets such that each set corresponds to its own prime (and its
powers) and one has piy = Um/n = exp(i2πm/n) (see the appendix of [L17]). This hypothesis
is also motivated by number theoretical universality [K85, K95].

4. I have considered the possibility [K16] that the discrete values for the inverse of the electro-
weak U(1) coupling constant for a gauge field assignable to the Kähler form of CP2 assignable
to p-adic coupling constant evolution corresponds to poles of the fermionic zeta ζF (s) =
ζ(s)/ζ(2s) coming from sn/2 (denominator) and pole at s = 1 (numerator) zeros of zeta
assignable to rational primes. Note that also odd negative integers at real axis would be
poles.

It is also possible to consider scaling of the argument of ζF (s). More general coupling
constant evolutions could correspond to ζF (m(s)), where m(s) = (as+ b)/(cs+ d) is Möbius
transformation performed for the argument mapping upper complex plane to itself so that
a, b, c, d are real and also rational by number theoretical universality.

Suppose for a moment that more precise formulations of these physics inspired conjectures
make sense and even that their generalization for extensions K/Q of rationals holds true. This
would solve a big part of adelic physics! Not surprisingly, the generalization of zeta function was
proposed already by Dedekind (see http://tinyurl.com/yarwbo6h).

1. The definition of Dedekind zeta function ζK relies on the product representation and analytic
continuation allows to deduce ζK elsewhere. One has a product over prime ideals of K/Q of

http://tinyurl.com/hjbfsuv
http://tinyurl.com/yarwbo6h
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rationals with the factors 1/(1− p−s) associated with the ordinary primes in Riemann zeta
replaced with the factors X(P ) = 1/(1 − NK/Q(P )−s), where P is prime for the integers
O(K) of extension and NK/Q(P ) is the norm of P in the extension. In the region s > 1
where the product converges, ζK is non-vanishing and s = 1 is a pole of ζK . The functional
identifies of ζ hold true for ζK as well. Riemann hypothesis is generalized for ζK .

2. It is possible to understand ζK in terms of a physical picture. By the results of http:

//tinyurl.com/yckfjgpk one has NK/Q(P ) = pr, r > 0 integer. This implies that one can
arrange in ζK all primes P for which the norm is power or given p in the same group. The
prime ideals p of ordinary integers decompose to products of prime ideals P of the extension:
one has p =

∏g
r=1 P

er
r , where er is so called ramification index. One can say that each factor

of ζ decomposes to a product of factors associated with corresponding primes P with norm
power of p. In the language of physics, the particle state represented by p decomposes in
improved resolution to a product of many-particle states consisting of er particles in state
Pr, very much like hadron decomposes to quarks.

The norms of NK/Q(Pr) = pdr satisfy the condition
∑g
r=1 drer = n. Mathematician would

say that the prime ideals of Q modulo p decompose in n-dimensional extension K to products
of prime power ideals P err and that Pr corresponds to a finite field G(p, dr) with algebraic
dimension dr. The formula

∑g
r=1 drer = n reflects the fact the dimension n of extension is

same independent of p even when one has g < n and ramification occurs.

Physicist would say that the number of degrees of freedom is n and is preserved although one
has only g < n different particle types with er particles having dr internal degrees of freedom.
The factor replacing 1/(1− p−s) for the general prime p is given by

∏g
r=1 1/(1− p−erdrs).

3. There are only finite number of ramified primes p having er > 1 for some r and they cor-
respond to primes dividing the so called discriminant D of the irreducible polynomial P
defining the extension. D mod p obviously vanishes if D is divisible by p. For second order
polynomials P = x2 + bx+ c equals to the familiar D = b2−4c and in this case the two roots
indeed co-incide. For quadratic extensions with D = b2 − 4c > 0 the ramified primes divide
D.

Remark: Resultant R(P,Q) and discriminant D(P ) = R(P, dP/dx) are elegant tools used
by number theorists to study extensions of rationals defined by irreducible polynomials (see
http://tinyurl.com/oyumsnk and http://tinyurl.com/p67rdgb). From Wikipedia arti-
cles one finds an elegant proof for the facts that R(P,Q) is proportional to the product of
differences of the roots of P and Q, and D to the product of squares for the differences of
distinct roots. R(P,Q) = 0 tells that two polynomials have a common root. D mod p = 0
tells that polynomial and its derivative have a common root so that there is a degenerate
root modulo p and the prime is indeed ramified. For modulo p reduction of P the vanishing
of D(P ) mod p follows if D is divisible by p. There exists clearly only a finite number of
primes of this kind.

Most primes are unramified and one has maximum number n of factors in the decomposition
and er = 1: maximum splitting of p occurs. The factor 1/(1− p−s) is replaced with its n:th
power 1/(1 − p−s)n. The geometric interpretation is that space-time sheet is replaced with
n-fold covering and each sheet gives one factor in the power. It is also possible to have a
situation in which no splitting occurs and one as er = 1 for one prime Pr = p. The factor is
in this case equal to 1/(1− p−ns).

From Wikipedia (see http://tinyurl.com/yckfjgpk) one learns that for Galois extensions
L/K the ratio ζL/ζK is so called Artin L-function of the regular representation (group algebra) of
Galois group factorizing in terms of irreps of Gal(L/K) is holomorphic (no poles!) so that ζL must
have also the zeros of ζK . This holds in the special case K = Q. Therefore extension of rationals
can only bring new zeros but no new poles!

1. This result is quite far reaching if one accepts the hypothesis about super-symplectic confor-
mal weights as zeros of ζK and the conjecture about coupling constant evolution. In the case
of ζF,K this means new poles meaning new conformal weights due to increased complexity

http://tinyurl.com/yckfjgpk
http://tinyurl.com/yckfjgpk
http://tinyurl.com/oyumsnk
http://tinyurl.com/p67rdgb
http://tinyurl.com/yckfjgpk
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and a modification of the conjecture for the coupling constant evolution due to new primes
in extension. The outcome looks physically sensible.

2. Quadratic field Q(
√
m) serves as example. Quite generally, the factorization of rational

primes to the primes of extension corresponds to the factorization of the minimal polynomial
for the generating element θ for the integers of extension and one has p = P eii , where ei is
ramification index. The norm of pfactorizes to the produce of norms of P eii .

Rational prime can either remain prime in which case x2−m does not factorize mod p, split
when x2 − m factorizes mod P , or ramify when it divides the discriminant of x2 − m =
4m. From this it is clear that for unramfied primes the factors in ζ are replaced by either
1/(1−p−s)2 or 1/(1−p−2s) = 1/(1−p−s)(1+p−s). For a finite number of unramified primes
one can have something different.

For Gaussian primes with m = −1 one has er = 1 for p mod 4 = 3 and er = 2 for p = mod 4 =
1. zK therefore decomposes into two factors corresponding to primes p mod 4 = 3 and
p mod 4 = 3. One can extract out Riemann zeta and the remaining factor

∏
p mod 4=3

1

(1− p−s)
×

∏
p mod 4=1

1

(1 + p−s)

should be holomorphic and without poles but having possibly additional zeros at critical line.
That ζK should possess also the poles of ζ as poles looks therefore highly non-trivial.

8.7.9 Other applications of NTU

NTU in the strongest form says that all numbers involved at “basic level” (whatever this means!)
of adelic TGD are products of roots of unity and of power of a root of e. This is extremely powerful
physics inspired conjecture with a wide range of possible mathematical applications.

1. For instance, vacuum functional defined as an exponent of action for preferred externals
would be number of this kind. One could define functional integral as adelic operation in all
number fields: essentially as sum of exponents of action for stationary preferred extremals
since Gaussian and metric determinants potentially spoiling NTU would cancel each other
leaving only the exponent.

2. The implications of NTU for the zeros of Riemann zeta [L17] will be discussed in more detail
in the Appendix. Suffice it to say that the observations about Fourier transform for the
distribution of loci of non-trivial zeros of zeta together with NTU leads to explicit proposal
for the algebraic for of zeros of zeta. The testable proposal is that zeros decompose to disjoint
classes C(p) labelled by primes p and the condition that piy is root of unity in given class
C(p).

3. NTU generalises to all Lie groups. Exponents exp(iniJi/n) of lie-algebra generators define
generalisations of number theoretically universal group elements and generate a discrete
subgroup of compact Lie group. Also hyperbolic ”phases” based on the roots em/n are
possible and make possible discretized NTU versions of all Lie-groups expected to play a key
role in adelization of TGD.

NTU generalises also to quaternions and octonions and allows to define them as number the-
oretically universal entities. Note that ordinary p-adic variants of quaternions and octonions
do not give rise to a number field: inverse of quaternion can have vanishing p-adic variant of
norm squared satisfying

∑
n x

2
n = 0.

NTU allows to define also the notion of Hilbert space as an adelic notion. The exponents of
angles characterising unit vector of Hilbert space would correspond to roots of unity.

8.7.10 Going to the roots of p-adicity

The basic questions raised by the p-adic mass calculations concern the origin of preferred p-adic
primes and of p-adic length scale hypothesis. One can also ask whether there might be a natural
origin for p-adicity at the level of WCW.
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Preferred primes as ramified primes for extensions of rationals?

Preferred primes as ramified primes for extensions of rationals?

The intuitive feeling is that the notion of preferred prime is something extremely deep and to me
the deepest thing I know is number theory. Does one end up with preferred primes in number
theory? This question brought to my mind the notion of ramification of primes (http://tinyurl.
com/hddljlf) (more precisely, of prime ideals of number field in its extension), which happens only
for special primes in a given extension of number field, say rationals. Ramification is completely
analogous to the degeneracy of some roots of polynomial and corresponds to criticality if the
polynomial corresponds to criticality (catastrophe theory of Thom is one application). Could this
be the mechanism assigning preferred prime(s) to a given elementary system, such as elementary
particle? I have not considered their role earlier also their hierarchy is highly relevant in the number
theoretical vision about TGD.

1. Stating it very roughly (I hope that mathematicians tolerate this sloppy language of physi-
cist): as one goes from number field K, say rationals Q, to its algebraic extension L, the
original prime ideals in the so called integral closure (http://tinyurl.com/js6fpvr) over
integers of K decompose to products of prime ideals of L (prime ideal is a more rigorous
manner to express primeness). Note that the general ideal is analog of integer.

Integral closure for integers of number field K is defined as the set of elements of K, which
are roots of some monic polynomial with coefficients, which are integers of K having the
form xn + an−1x

n−1 + ... + a0. The integral closures of both K and L are considered. For
instance, integral closure of algebraic extension of K over K is the extension itself. The
integral closure of complex numbers over ordinary integers is the set of algebraic numbers.

Prime ideals of K can be decomposed to products of prime ideals of L: P =
∏
P eii , where

ei is the ramification index. If ei > 1 is true for some i, ramification occurs. Pi:s in
question are like co-inciding roots of polynomial, which for in thermodynamics and Thom’s
catastrophe theory corresponds to criticality. Ramification could therefore be a natural aspect
of quantum criticality and ramified primes P are good candidates for preferred primes for
a given extension of rationals. Note that the ramification make sense also for extensions of
given extension of rationals.

2. A physical analogy for the decomposition of ideals to ideals of extension is provided by
decomposition of hadrons to valence quarks. Elementary particles becomes composite of
more elementary particles in the extension. The decomposition to these more elementary

primes is of form P =
∏
P
e(i)
i , the physical analog would be the number of elementary

particles of type i in the state (http://tinyurl.com/h9528pl). Unramified prime P would
be analogous a state with e fermions. Maximally ramified prime would be analogous to Bose-
Einstein condensate of e bosons. General ramified prime would be analogous to an e-particle
state containing both fermions and condensed bosons. This is of course just a formal analogy.

3. There are two further basic notions related to ramification and characterizing it. Relative
discriminant is the ideal divided by all ramified ideals in K (integer of K having no ramified
prime factors) and relative different for P is the ideal of L divided by all ramified Pi:s (product
of prime factors of P in L). These ideals represent the analogs of product of preferred primes
P of K and primes Pi of L dividing them. These two integers ideals would characterize the
ramification.

In TGD framework the extensions of rationals (http://tinyurl.com/h9528pl) and p-adic
number fields (http://tinyurl.com/zq22tvb) are unavoidable and interpreted as an evolution-
ary hierarchy physically and cosmological evolution would gradually proceed to more and more
complex extensions. One can say that string world sheets and partonic 2-surfaces with parameters
of defining functions in increasingly complex extensions of prime emerge during evolution. There-
fore ramifications and the preferred primes defined by them are unavoidable. For p-adic number
fields the number of extensions is much smaller for instance for p > 2 there are only 3 quadratic
extensions.

How could ramification relate to p-adic and adelic physics and could it explain preferred
primes?

http://tinyurl.com/hddljlf
http://tinyurl.com/hddljlf
http://tinyurl.com/js6fpvr
http://tinyurl.com/h9528pl
http://tinyurl.com/h9528pl
http://tinyurl.com/zq22tvb
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1. Ramified p-adic prime P = P ei would be replaced with its e:th root Pi in p-adicization.
Same would apply to general ramified primes. Each un-ramified prime of K is replaced with
e = K : L primes of L and ramified primes P with #{Pi} < e primes of L: the increase of
algebraic dimension is smaller. An interesting question relates to p-adic length scale. What
happens to p-adic length scales. Is p-adic prime effectively replaced with e:th root of p-adic
prime: Lp ∝ p1/2L1 → p1/2eL1? The only physical option is that the p-adic temperature
for P would be scaled down Tp = 1/n → 1/ne for its e:th root (for fermions serving as
fundamental particles in TGD one actually has Tp = 1). Could the lower temperature state
be more stable and select the preferred primes as maximimally ramified ones? What about
general ramified primes?

2. This need not be the whole story. Some algebraic extensions would be more favored than oth-
ers and p-adic view about realizable imaginations could be involved. p-Adic pseudo constants
are expected to allow p-adic continuations of string world sheets and partonic 2-surfaces to
4-D preferred extremals with number theoretic discretization. For real continuations the sit-
uation is more difficult. For preferred extensions - and therefore for corresponding ramified
primes - the number of real continuations - realizable imaginations - would be especially
large.

The challenge would be to understand why primes near powers of 2 and possibly also of other
small primes would be favored. Why for them the number of realizable imaginations would
be especially large so that they would be winners in number theoretical fight for survival?

Can one make this picture more concrete? What kind of algebraic extensions could be
considered?

1. In p-adic context a proper definition of counterparts of angle variables as phases allowing
definition of the analogs of trigonometric functions requires the introduction of algebraic
extension giving rise to some roots of unity. Their number depends on the angular reso-
lution. These roots allow to define the counterparts of ordinary trigonometric functions -
the naive generalization based on Taylors series is not periodic - and also allows to defined
the counterpart of definite integral in these degrees of freedom as discrete Fourier analysis.
For the simplest algebraic extensions defined by xn − 1 for which Galois group is abelian

are are unramified so that something else is needed. One has decomposition P =
∏
P
e(i)
i ,

e(i) = 1, analogous to n-fermion state so that simplest cyclic extension does not give rise to
a ramification and there are no preferred primes.

2. What kind of polynomials could define preferred algebraic extensions of rationals? Irreducible
polynomials are certainly an attractive candidate since any polynomial reduces to a product
of them. One can say that they define the elementary particles of number theory. Irreducible
polynomials have integer coefficients having the property that they do not decompose to
products of polynomials with rational coefficients. It would be wrong to say that only these
algebraic extensions can appear but there is a temptation to say that one can reduce the
study of extensions to their study. One can even consider the possibility that string world
sheets associated with products of irreducible polynomials are unstable against decay to those
characterize irreducible polynomials.

3. What can one say about irreducible polynomials? Eisenstein criterion (http://tinyurl.
com/47kxjz states following. If Q(x) =

∑
k=0,..,n akx

k is n:th order polynomial with integer
coefficients and with the property that there exists at least one prime dividing all coefficients
ai except an and that p2 does not divide a0, then Q is irreducible. Thus one can assign one
or more preferred primes to the algebraic extension defined by an irreducible polynomial Q
of this kind - in fact any polynomial allowing ramification. There are also other kinds of
irreducible polynomials since Eisenstein’s condition is only sufficient but not necessary.

Furthermore, in the algebraic extension defined by Q, the prime ideals P having the above
mentioned characteristic property decompose to an n:th power of single prime ideal Pi:
P = Pni . The primes are maximally/completely ramified.

A good illustration is provided by equations x2 + 1 = 0 allowing roots x± = ±i and equation
x2+2px+p = 0 allowing roots x± = −p±√pp− 1. In the first case the ideals associated with

http://tinyurl.com/47kxjz
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±i are different. In the second case these ideals are one and the same since x+ == −x−+ p:
hence one indeed has ramification. Note that the first example represents also an example of
irreducible polynomial, which does not satisfy Eisenstein criterion. In more general case the
n conditions on defined by symmetric functions of roots imply that the ideals are one and
same when Eisenstein conditions are satisfied.

4. What is so nice that one could readily construct polynomials giving rise to given preferred
primes. The complex roots of these polymials could correspond to the points of partonic
2-surfaces carrying fermions and defining the ends of boundaries of string world sheet. It
must be however emphasized that the form of the polynomial depends on the choices of the
complex coordinate. For instance, the shift x → x + 1 transforms (xn − 1)/(x − 1) to a
polynomial satisfying the Eisenstein criterion. One should be able to fix allowed coordinate
changes in such a manner that the extension remains irreducible for all allowed coordinate
changes.

Already the integral shift of the complex coordinate affects the situation. It would seem that
only the action of the allowed coordinate changes must reduce to the action of Galois group
permuting the roots of polynomials. A natural assumption is that the complex coordinate
corresponds to a complex coordinate transforming linearly under subgroup of isometries of
the imbedding space.

In the general situation one has P =
∏
P
e(i)
i , e(i) ≥ 1 so that aso now there are prefered

primes so that the appearance of preferred primes is completely general phenomenon.

The origin of p-adic length scale hypothesis?

p-Adic length scale hypothesis emerged from p-adic length scale hypothesis. A possible gener-
alization of this hypothesis is that p-adic primes near powers of prime are physically favored.
There indeed exists evidence for the realization of 3-adic time scale hierarchies in living matter [?]
(http://tinyurl.com/jbh9m27) and in music both 2-adicity and 3-adicity could be present: this
is discussed in TGD inspired theory of music harmony and genetic code [K43]. See also [L26, L21].

One explanation would be that for preferred primes the number of p-adic space-time sheets
representable also as real space-time sheets is maximal. Imagined worlds would be maximally
realizable. Preferred p-adic primes would correspond to ramified primes for extensions with the
property that the number of realizable imaginations is especially large for them. Why primes
satisfying p-adic length scale hypothesis or its generalization would appear as ramified primes for
extensions, which are winners in number theoretical evolution?

Also the weak form of NMP (WNMP) applying also to the purely number theoretic form of
NMP [K30] might come in rescue here.

1. Entanglement negentropy for a NE [K30] characterized by n-dimensional projection operator
is the log(Np(n) for some p whose power divides n. The maximum negentropy is obtained if
the power of p is the largest power of prime divisor of p, and this can be taken as definition
of number theoretical entanglement negentropy (NEN). If the largest divisor is pk, one has
N = k × log(p). The entanglement negentropy per entangled state is N/n = klog(p)/n and
is maximal for n = pk. Hence powers of prime are favoured, which means that p-adic length
scale hierarchies with scales coming as powers of p are negentropically favored and should be
generated by NMP. Note that n = pk would define a hierarchy of heff/h = pk. During the
first years of heff hypothesis I believe that the preferred values obey heff = rk, r integer
not far from r = 211. It seems that this belief was not totally wrong.

2. If one accepts this argument, the remaining challenge is to explain why primes near powers of
two (or more generally p) are favoured. n = 2k gives large entanglement negentropy for the
final state. Why primes p = n2 = 2k − r would be favored? The reason could be following.
n = 2k corresponds to p = 2, which corresponds to the lowest level in p-adic evolution since
it is the simplest p-adic topology and farthest from the real topology and therefore gives the
poorest cognitive representation of real PE as p-adic PE (Note that p = 1 makes formally
sense but for it the topology is discrete).

http://tinyurl.com/jbh9m27
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3. WNMP [K30, K58] suggests a more feasible explanation. The density matrix of the state to
be reduced is a direct sum over contributions proportional to projection operators. Suppose
that the projection operator with largest dimension has dimension n. Strong form of NMP
would say that final state is characterized by n-dimensional projection operator. WNMP
allows “free will” so that all dimensions n − k, k = 0, 1, ...n − 1 for final state projection
operator are possible. 1-dimensional case corresponds to vanishing entanglement negentropy
and ordinary state function reduction isolating the measured system from external world.

4. The negentropy of the final state per state depends on the value of k. It is maximal if
n − k is power of prime. For n = 2k = Mk + 1, where Mk is Mersenne prime n − 1 gives
the maximum negentropy and also maximal p-adic prime available so that this reduction is
favoured by NMP. Mersenne primes would be indeed special. Also the primes n = 2k − r
near 2k produce large entanglement negentropy and would be favored by NMP.

5. This argument suggests a generalization of p-adic length scale hypothesis so that p = 2 can
be replaced by any prime.

8.8 What could be the role of complexity theory in TGD?

I have many times wondered what could be the role of chaos theory or better in TGD. In fact,
I would prefer to talk about complexity theory since the chaos in the sense as it is used is only
apparent and very different from thermodynamical chaos.

Wikipedia article (see http://tinyurl.com/qexmowa) gives a nice summary about the his-
tory of chaos theory and I repeat only some main points here. Chaos theory has roots already
at the end of 18the century by the works of Poincare (non-periodic orbits in 3-body system) and
Hadamard (free particle gliding frictionlessly on surface of constant negative curvature, “Hadamard
billiard”. In this case all trajectories are unstable diverging exponentially from each other: this is
characterized by positive Lyapunov exponent.

Chaos theory got is start from ergodic theory (see http://tinyurl.com/pfcrz4c) studying
dynamical systems with the original motivation coming from statistical physics. For instance, spin
glasses are a representative example of non-ergodic system in which the trajectory of point does
not go arbitrary near to every point. The study of non-linear differential equations George David
Birkhoff, Andrey Nikolaevich Kolmogorov, Mary Lucy Cartwright and John Edensor Littlewood,
and Stephen Smale provides was purely mathematical study of chaotic systems. Smale discovered
strange attractor at which periodic orbits form a dense set. Chaos theory was formalized around
1950. At this time it was also discovered that finite-D linear systems do not allow chaos.

The emergence of computers meant breakthrough. Much of chaos theory involves repeated
iteration of simple mathematical formulas. Edward Lorentz was a pioneer of chaos theory working
with weather prediction and accidentally discovered initial value sensitivity. Benard Mandelbrot
discovered fractality and Mitchell Feigenbaum the universality of chaos for iteration of functions
of real variable.

Chaotic systems are as far from integrable systems as one could imagine: all orbits are
cycles in integrable Hamiltonian dynamics. There are good reasons to suspect that TGD Universe is
completely integrable classically. Chaos theory however describes also the emergence of complexity
through phase transition like steps - period n-tupling and most importantly by period doubling
for iteration of maps.

Chaotic (or actually extremely complex and only apparently chaotic) systems seem to be
the diametrical opposite of completely integrable systems about which TGD is a possible example.
There is however also something common: in completely integrable classical systems all orbits are
cyclic and in chaotic systems they form a dense set in the space of orbits. Furthermore, in chaotic
systems the approach to chaos occurs via steps as a control parameter is changed. Same would
take place in adelic TGD fusing the descriptions of matter and cognition.

In TGD Universe the hierarchy of extensions of rationals inducing finite-dimensional exten-
sion of p-adic number fields defines a hierarchy of adelic physics and provides a natural correlate
for evolution. Galois groups and ramified primes appear as characterizers of the extensions. The
sequences of Galois groups could characterize an evolution by phase transitions increasing the di-
mension of the extension associated with the coordinates of “world of classical worlds” (WCW)

http://tinyurl.com/qexmowa
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in turn inducing the extension used at space-time and Hilbert space level. WCW decomposes to
sectors characterized by Galois groups G3 of extensions associated with the 3-surfaces at the ends
of space-time surface at boundaries of causal diamond (CD) and G4 characterizing the space-time
surface itself. G3 (G4) acts on the discretization and induces a covering structure of the 3-surface
(space-time surface). If the state function reduction to the opposite boundary of CD involves
localization into a sector with fixed G3, evolution is indeed mapped to a sequence of G3s.

Also the cognitive representation defined by the intersection of real and p-adic surfaces
with coordinates of points in an extension of rationals evolve. The number of points in this
representation becomes increasingly complex during evolution. Fermions at partonic 2-surfaces
connected by fermionic strings define a tensor network, which also evolves since the number of
fermions can change.

The points of space-time surface invariant under non-trivial subgroup of Galois group define
singularities of the covering, and the positions of fermions at partonic surfaces could correspond
to these singularities - maybe even the maximal ones, in which case the singular points would be
rational. There is a temptation to interpret the p-adic prime characterizing elementary particle as
a ramified prime of extension having a decomposition similar to that of singularity so that category
theoretic view suggests itself.

One also ends up to ask how the number theoretic evolution could select preferred p-adic
primes satisfying the p-adic length scale hypothesis as a survivors in number theoretic evolution,
and ends up to a vision bringing strongly in mind the notion of conserved genes as analogy for
conservation of ramified primes in extensions of extension. heff/h = n has natural interpretation
as divisor of the order of Galois group of extension. The generalization of ~gr = GMm/v0 = ~eff
hypothesis to other interactions is discussed in terms of number theoretic evolution as increase of
G3, and one ends up to surprisingly concrete vision for what might happen in the transition from
prokaryotes to eukaryotes.

8.8.1 Basic notions of chaos theory

It is good to begin by summarizing the basic concepts of chaos theory. Again Wikipedia article
(see http://tinyurl.com/qexmowa) gives a more detailed representation and references. Citing
Wikipedia freely: Within the apparent randomness of chaotic complex systems there are patterns,
constant feedback loops, repetition, self-similarity, fractals, self-organization and there is sensitivity
to initial conditions (butterfly effect) implying the loss of predictability although chaotic systems
as such are deterministic.

Basic prerequisites for chaotic dynamics

Wikipedia article lists three basic conditions for chaotic dynamics. Dynamics must a) be sensitive
to initial conditions, b) allow topological mixing, c) have dense set of periodic orbits.

1. Sensitivity to initial conditions.

Mathematical formulation for the sensitivity to initial conditions can be formulated by per-
turbation theory for differential equations. The rate of separation of images of points initially
near to each other increases exponentially as exp(λt) in initial value sensitive situation and
the approximation fails soon. Lyapunov exponent λ characterizes the time evolution of the
difference. In multi-dimensional case there are several Lyapunov exponents but the largest
one is often enough to characterize the situation.

2. Topological mixing (transitivity).

This notion corresponds to everyday intuition about mixing. For instance, the flow defined
by a vector field mixes the marker completely with the fluid. Iteration of simple scaling
operation is initial value sensitive but does not cause topological mixing. In 1-D case all
points larger than one approach to infinity and smaller than 1 to zero so that the behavior
is extremely simple.

3. Dense set of periodic orbits.

Periodic orbits should form a dense set in the space of orbits: every point of space is ap-
proached arbitrarily closely by a periodic orbit. In completely integrable system all orbits

http://tinyurl.com/qexmowa
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would be periodic orbits so that the difference of these systems is very delicate and one can
wonder whether the conditions a) and b) follow from this delicate difference. One can also
ask whether there might be a deep connection between completely integrable and chaotic
systems.

Sharkovkii’s theorem states that any 1-D system with dynamics determined by iteration
of a continuous function of real argument exhibits a regular cycle of period 3 exhibits all
other cycles. This theorem can be generalized further (see http://tinyurl.com/l7q3rah).
Introduce Sharkovskii ordering of integers as union of sets consisting of odd integers multiplied
by powers of 2. The generalization of the theorem states that if n is a peri89od and precedes
k in Sharkovskii ordering then k is prime period (it is not a multiple of smaller period).

The theorem holds true for reals but not for periodic functions at circle which are encountered
for iterations defined by powers of cyclic group elements. The discrete subgroup of hyperbolic
subgroups of Lie groups do not have not cycles at all.

Strange attractors and Julia sets

Logistic map x→ kx(1− x) is chaotic everywhere but many systems are chaotic only in a subset
of phase space. An interesting situation arises when the chaotic behavior takes place at attractor,
since all initial positions in the basic of the attractor lead to the attractor and to a chaotic be-
havior. Lorentz attractor is a well-known example of strange attractor (see Wikipedia article for
illustration). It contains dense sets of both periodic and aperiodic orbits.

Julia set (see http://tinyurl.com/l8jl5ne) is the boundary of the basin of attraction in
chaotic systems defined by iteration of a rational function of complex argument mapping complex
plane to itself. Both Julia sets and strange attractors have a fractal structure.

Strange attractors can appear only in spaces with dimension D ≥ 3. Poincare-Bendixon
theorem states that 2-D differential equations on Euclidian plane have very regular behavior. In
non-Euclidian geometry situation changes and the hyperbolic character of the geometry implying
initial value sensitivity of geodesic motion is the reason for this. Also infinite-D linear systems can
exhibit chaotic behavior.

8.8.2 How to assign chaos/complexity theory with TGD?

Completely integrable systems can be seen as a diametric opposite of chaotic systems. If classical
TGD indeed represents a completely integrable system meaning that space-time surfaces as pre-
ferred extremals can be constructed explicitly, one might think that chaos theory need not have
much to do with classical TGD. Chaos is however the end product of transitions making the system
more complex, and it might well be that the understanding about the emergence of complexity
in chaotic systems could help to develop the vision about emergence of complexity in TGD. Note
also that periodic orbit are dense in chaotic systems so that diametrical opposites might actually
meet.

The most relevant TGD based ingredients used in the sequel are following: WCW [K84];
strong form of holography (SH) [K62], quantum classical correspondence (QCC), zero energy on-
tology (ZEO) [K66], dark matter as hierarchy of phases with effective Planck constant heff/h = n
[K17, K81, K83], p-Adic physics as physics of cognition [K35, K30, K70] [L31], adelic physics [L31]
fusing the physics of matter and cognition by integrating reals and extensions of various p-adic
number fields induced by an extension of rationals to a larger structure, and the notions of
adelic manifold and associated cognitive representation [L24] , Negentropy Maximization Prin-
ciple (NMP) [K30] satisfied automatically in statistical sense in adelic physics [L31].

Complexity in TGD

Complexity is often taken to mean computational complexity for classical computations. Com-
plexity as it is understood in the sequel relates very closely cognition. Too complex looks chaotic
since our cognitive abilities do not allow to discern too complex patterns. Hence complexity theory
should characterize cognitive representations whatever they are.

Number theoretic vision about TGD serves as the guideline here.

http://tinyurl.com/l7q3rah
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1. In adelic TGD [K90] cognitive representations correspond to the intersections of real space-
time surfaces and their p-adic variants obeying same field equations and representing corre-
lates for cognition. In these intersections the coordinates of points belong to an extension of
rationals defining adele [L24].

One ends up with a generalization of the notion of manifold to adelic manifold. Intersection
defines a common discrete spine consisting of points with coordinates in the extension of
rationals defining the adele. These poins are shared by the real and p-adic variants of the
adelic manifold. I have called this manifold also monadic manifold since there is strong
resemblance with the ideas of Leibniz. In real sector this manifold differs from ordinary
manifold in that the open sets are labelled by a discrete set of points in the intersection.

In TGD framework it is essential that the spine of the space-time surface consists of points
of imbedding space for which it is convenient to use preferred coordinates.

2. Complexity corresponds roughly to the dimension of extension of rationals defining the adeles.
p-Adic differential equations are non-deterministic due to the existence of p-adic pseudo
constants depending on finite number of p-adic digits of the p-adic number. This non-
determinism is identified as a correlate for imagination. p-Adic variants of space-time surfaces
are not uniquely determined this means finite cognitive resolution.

By SH [K74] the data associated with string world sheets, partonic 2-surfaces, and discretiza-
tion allow to construct space-time surfaces as preferred extremals of the action principle
defining classical TGD and to find the Kähler function for WCW geometry. It is quite
well possible that the data allowing to construct p-adic space-time surfaces does not allow
continuation to a preferred extremal: all imaginations are not realizable!

The algebraic dimension of the extension could be relevant for the ability of mathematical
cognition to imagine spaces with dimension higher than that for the real 3-space. Besides
the extensions of p-adics induced by algebraic extensions of rationals also those induced by
some root of e are algebraically finite-dimensional. One can imagine also other extensions
involving transcendentals in real sense but it is not clear whether there are finite dimensional
extensions among them. The finiteness of cognition suggests that only these extensions can
be allowed. All imaginations are not realizable!

3. Extension is characterized partially by Galois group (see http://tinyurl.com/mrvqhz2)
acting as automorphisms meaning that Galois group permutes the roots of the n:th order
polynomials defining extensions of rationals via their non-rational roots. So called ramified
primes (see http://tinyurl.com/m32nvcz and http://tinyurl.com/oh7tgsw) provide ad-
ditional characteristics.

Iteration cycles appearing in complexity theory for iteration of functions and repeated action
of an element Galois group defining a finite Abelian group are mathematically similar no-
tions. Now only cycles are present whereas chaotic systems have aperiodic orbits. The cyclic
subgroups of Galois group do not seem to have an natural realization as iterative dynamics
except in quantum sense meaning that cyclic orbits are replaced with wave functions labelled
by number theoretic integer valued “momenta” for the action of the analog of Cartan sub-
group as maximal commutative subgroup for the Galois group. The maximal Abelian Galois
group is analog of Cartan subgroup for Galois group of algebraic numbers and states are in
its irreducible representations.

Remark: What is interesting that for polynomials with order larger than 4, one cannot
write closed analytic expressions for the roots of the polynomials. This obviously means a
fundamental limitation on symbolic cognitive representations provided by explicit formulas.
The realization of was a huge step in the evolution of mathematics. Could also the emergence
of Galois groups with order larger at space-time level than 5 have meant cognitive revolution
- probably at much lower level in the hierarchy? Could this relate also to the fact that space-
time dimension is D = 4 and thus imaginable using 4-D algebraic extension of rationals?

A possible measure for the cognitive complexity is the dimension of the Galois group of the
extension. One can speak also about the complexity of the Galois group itself - the non-
Abelianity of Galois group brings in additional complexity. The number of generators and
number of relations between them serve as a measure for complexity of Galois group.

http://tinyurl.com/mrvqhz2
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Extension of rationals is also characterized by so called ramified primes and should have a
profound physical meaning. p-Adic length scale hypothesis states that physically preferred
primes are near powers of 2 and perhaps also other small primes. Could they correspond to
ramified primes. Why just these ramified primes would be survivors in the number theoretic
evolution, is the fascinating question to be addressed later.

4. The increase of the dimension of extension or complexity of its Galois group corresponds
naturally to evolution interpreted as emergence of algebraic complexity and evolutionary
paths could be seen as sequences of inclusions for Galois groups. Chaos would correspond to
the limit when the extension of rationals approaches to infinite sub-field of algebraic numbers
- say maximal Abelian extension of rationals - so that the number of points in the cognitive
representation becomes infinite.

The Galois group of algebraic numbers - the magic Absolute Group - would characterize this
limit as a kind of never achievable mathematical enlightenment. A more practical defini-
tion would be that external system is experienced as complex, when its number theoretical
complexity exceeds that of the conscious observer so that it is impossible to form a faithful
cognitive representation about the system. Note that these cognitive representations could
be formulated as homomorphisms between Galois groups. This would suggest a rather nice
category theoretical picture about cognitive representations in the self hierarchy.

5. Galois group acts on the cognitive representation associated with the space-time sheet and
in general gives n-fold covering of the space-time sheet: n is naturally the dimension of the
extension and thus a divisor of the order of Galois group since Galois group acts on the
discretization and implies n-sheeted structure for it and therefore also for the space-time
surface.

The value of the effective Planck constant assigned with dark matter as phases of ordinary
matter heff/h = n was identified from very beginning as number of sheets for some kind of
covering space of imbedding space. n would correspond to a divisor for the order of Galois
group for discretized imbedding space consisting of points with coordinates in extension of
rational. The increase of heff corresponds to the emergence of also cognitive complexity.
Physically it is accompanied by the emergence of quantum coherence and non-locality in
increasingly long scales.

General vision about evolution as emergence of complexity

Evolution would mean emergence of number theoretical complexity. Evolutionary paths would
naturally correspond to sequences of inclusions (note that recent view allows also temporary “de-
evolutions” but in statistical sense evolution occurs). There are infinitely many evolutionary path-
ways of this kind.

There is a strong resemblance with the inclusion sequences of hyper-finite factors of type
II1 (HHFs) for von Neumann algebras [K61] also playing a central role in TGD and assignable
to a fractal hierarchy of isomorphic sub-algebras of super-symplectic algebra associated with the
isometries of WCW and related Kac-Moody algebras. It is difficult to believe that this could be
an accident.

Evolution must mean a discrete time evolution of some kind - most naturally by non-
deterministic quantum version of discrete dynamics, which can be deterministic only in statistical
sense. By QCC this evolution should have classical correlates at space-time level. ZEO and TGD
inspired theory of consciousness, which can be regarded as a generalization of quantum measure-
ment theory in ZEO, is essential in attempts to concretize this intuition.

1. Galois group codes for the complexity and evolution means the emergence of increasingly
complex Galois groups assignable to spacetime surface in a sector of WCW for which WCW
coordinates are in corresponding extension of rationals. One can say that evolution defines
a path in the space of sectors of WCW characterized by Galois groups. Although the space-
time dynamics is expected to be integrable, the notion of complexity still has meaning, and
ultimate chaos would emerge at the limit of algebraic numbers as extension of rationals.
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2. One can assign Galois group G5 to space-time surface. Suppose that one an assign Galois
groups G3 ⊂ G4 with the 3-surfaces at the ends of space-time surfaces at boundaries of CD.
This point will be discused below in more detail.

3. At quantum level conscious entities - selves - correspond to sequences off steps consisting
of unitary evolution followed by a localization in the moduli space of CD. State function
reduction to the opposite boundary of CD means death of self and re-incarnation of self
with opposite arrow of time: also this means localization to a definite sector of WCW [L31,
L29]. The sequence of pairs of selves and their time reversals associated with the opposite
boundaries of CD (, which itself increases in size) defines a candidate for the non-deterministic
quantum analog of iteration in complexity theory.

4. There is a temptation to assume that for the passive boundary of CD all 3-surfaces in quantum
superposition have same G3 - the G3 that emerged in the first state function reduction to the
passive boundary when this self was born. G3 so would be automatically measured observable
and sequence of reductions would define a sequence of G3s analogous to iteration sequence
and also to evolution.

But can one assume that G3 is measured automatically in the re-incarnation of self as its
time-reversal [K4, K90]? Could only some charateristics of G3 - say order n = heff/h
- be measured? Also ramified primes characteristize extensions and their measurement is
also possible and proposed to characterize elementary particles: they do not fix G3. These
uncertainties are not relevant for the general vision.

5. For the active boundary one would have a superposition of 3-surfaces with different Galois
groups and the sequence of the steps consisting of unitary evolution followed by a localization
in the moduli space of CDs including also a localization in clock time determined by distance
between the tips of CD. Also this would give to quantal discrete dynamics. Also now one
can wonder whether Galois group is measured or not. If not, one would have a dispersion
like process in the space of Galois groups labelling sectors of WCW.

6. Also the evolution of the tensor net defined by fermionic strings connecting the positions
of fermions at partonic 2-surfaces would define a discrete dynamics in the space of these
networks both at classical and quantum level [L22]. The dynamics of many-fermion states
would determine this evolution.

In the sequel this picture is discussed in more detail.

How can one assign an extension of rationals to WCW, imbedding space, and a region
of space-time surface?

What fixes the extension used at both WCW level, imbedding space level, and space-time level?
The natural assumption is that the extension used for WCW coordinates induces the extension
used at imbedding space level and space-time level. At the level of space-time surfaces WCW
coordinates appear as moduli (parameters) characterizing preferred extremals and would have
values in an extension of rationals characterizing the adele by inducing the extensions of p-adic
sectors.

1. The simplest option is that the extension is dictated by WCW. Preferred WCW coordinates
- made possible by maximal isometries and fixed apart from the isometries of WCW - are
in the extension: this makes the space of allowed 3-surfaces discrete. This in turn induces
a constraint on space-time surfaces: WCW coordinates define parameters characterizing the
space-time surface as a preferred extremal. One could use also other coordinates of WCW
but these would not be optimal as cognitive representations.

This applies also at the level of imbedding space. Contrary to what I first thought, it is not
actually absolutely necessary to use preferred space-time coordinates (subset of imbedding
space coordinates) since cognitive representation depends on coordinates in finite measure-
ment resolution: consider only spherical and Cartesian coordinates with given resolution
defining different discretizations. The preferred coordinates would be preferred because they
are cognitively optimal.
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2. Real imbedding space is replaced with a discrete set of points of H with preferred coordinates
in an extension of rationals. The direct identification of the points of extension as real
numbers with p-adic numbers is extremely discontinuous although it would respect algebraic
symmetries. The situation is saved by the lower dimensionality of space-time surfaces for
which the set of points with coordinates in extension is discrete and even finite in the generic
case. The surface xn + yn = zn has only one rational point for n > 2! D = 4 < 8 for space-
time surfaces automatically brings in finite measurement resolution and cognitive resolution
induced directly from the restriction on WCW parameters.

SH has as data the intersection plus string world sheets (SH). String world sheets are in
the intersection of reality and p-adicities defined by rational functions with coefficients of
polynomials in extension, and makes sense both in real and p-adic sense. To these initial
data one can assign as a preferred extremal of Kähler action a smooth p-adic space-time
surface such that each point is contained in an open set consisting of points with p-adic
coordinates having norm smaller than some power of p. This extremal is not unique in the
p-adic sectors. In real sector it might not exist at all as already discussed.

3. 3-surface is seen as pair of 3-surfaces assigned to the ends of the space-time surface at bound-
aries of CD. WCW coordinates parameterize this pair and correspond to extension in 4-D
sense. These parameters are expected to decompose to sets of parameters characterizing
the 3-D members of pair and parameters characterizing the connecting space-time surface
unless it is unique. If so, one can assign to the initial and final 3-surfaces subsets of WCW
coordinates.

The extensions associated with the ends of CD would be extensions in 3-D sense and sub-
extensions of the extension in 4-D sense. Hence one can say that classical space-time evolution
connecting initial and final 3-surfaces can modify the extension, its Galois group, and there-
fore also heff/h = n. This would be the classical view a about number theoretic evolution
and also about quantum critical fluctuation changing the value of heff/h = n.

4. The extension of rationals for WCW coordinates induces the cognitive representation posing
constraints of p-adic space-time surfaces. Adelic sub-WCW consisting of preferred extremals
inside given CD decomposes to sectors characterized by an extension of rationals and evolu-
tion should correspond number theoretically to a path in the space of WCW sectors.

This is a restriction on p-adic space-time sheets and thus cognition: the larger the number of
points in the intersection, the more precise the cognitive representation is. The increase of the
dimension of extension implies that the number of points of cognitive representation increases
and it becomes more precise. The cognitive abilities of the system evolve. p-Adic pseudo
constants allow imagination but also make the representation imprecise in scales below that
defined by the cognitive representation. The continuation to smooth p-adic surface would
however explain the highly non-trivial fact that we automatically tend to associate continuous
structures with discrete data.

5. The fermions at partonic 2-surfaces are at positions for which preferred space-time coordi-
nates are in extension and can be said to actualize the cognitive representation. It turns out
that these positions could naturally correspond to the singularities of the space-time surfaces
as n-fold covering in the sense that the dimension of the orbit of Galois group would be
reduced at these points.

Can one assign the analog of discrete dynamics to TGD at fundamental level?

Could one assign a discrete symbolic dynamics to classical and quantum TGD?
At classical level the dynamics would correspond to space-time surface connecting the bound-

aries of CD and 3-surfaces at them. As already explained, the WCW coordinates characterizing
space-time surface as a preferred extremal correspond to what might be called Galois group in 4-D
sense. These coordinates decompose to coordinates characterizing the coordinates at the 3-surfaces
at the ends of of space-time at boundaries of CD in extensions characterized by Galois groups in
3-D sense - the initial and final Galois group. The classical evolutionary step would be a step
leading from the initial fo final Galois group serving as classical correlate for quantum evolution.

What about quantum level?



8.8. What could be the role of complexity theory in TGD? 389

1. One expects that zero energy state in general is a superposition of space-time surfaces with
different Galois groups in 4-D sense, G4. The Galois groups in 3-D sense - G3 - assignable to
the ends of space-time surface would be sub-groups of G4. If the first state function reduction
to the opposite boundary of CD involves a localization to a sector of WCW having same G3

at passive boundary for all 3-surfaces in the superposition.

Subsequent reductions at opposite boundaries would define evolutionary pathway in the space
of Galois groups G3 leading in statistical sense to the increase of complexity.

2. The original vision was that Negentropy Maximization Principle (NMP) [K30] is needed as
a separate principle to guarantee evolution but adelic physics implies it in statistical sense
automatically [L31]. There is infinite number of extensions more complex than given one and
only finite number of them less complex.

3. At quantum level the basic notion is self. It corresponds to a discrete sequence steps consisting
of unitary evolution followed by a localization in the moduli space of CDs. This would
correspond to a dispersion in WCW to sectors characterized by different Galois groups G4

and G3 associated with the 3-surface at active boundary. As explained, the state function
reduction to the opposite boundary of CD analogous to a halting of quantum computation
would correspond to a localization to a sector with definite Galois group G3.

4. These time discrete time evolutions are non-deterministic unlike the dynamical evolutions
studied in chaos theory defined by differential equations or iteration of function. The sequence
of unitary time evolutions involving localization in the moduli of CD would however give rise
to a quantum analog of iteration and one can ask whether the quantum counterparts for the
notions of cycle, super-stable cycle etc... could make sense for the quantum superpositions
of 4-surfaces involved. One expects dispersion in the space of Galois groups so that this idea
does not look promising. One can also wonder if the sequence of unitary transformations
could lead to some kind of asymptotic self-organization pattern before the first state function
reduction to the opposite boundary of CD.

It is natural to consider also the evolution of the cognitive representation itself both at the
space-time level and forced by the change of the many-fermion state and at quantum level.

1. For a given preferred extremal cognitive representation defines a discrete set of points in
an extension of rationals and the number of points in the extension increases as it grows.
The positions of fermions at partonic 2-surfaces define the nodes of a graph with strings
connecting fermions at different partonic 2-surfaces serving as edges. Evolution of fermionic
state changes the topology of this network by adding vertices and changing the connection.

One can assign a complexity theory to these graphs. A connection with tensor nets [L22]
emerging in the description of quantum complexity is highly suggestive. The nodes of the
tensor net would correspond to fermions at partonic 2-surfaces. As the number of fermions
increases, the complexity of this network increases and also the space-time surface itself
becomes more complex. The maximum number of fermions increases with the dimension of
extension.

An interesting proposal is that fermion lines are accompanied by magnetic flux tubes tak-
ing the role of wormholes in ER-EPR correspondence (see http://tinyurl.com/hzqlo6r),
which emerged more than half decade after its TGD analog. The discrete evolution of many-
fermion state in state function reductions in the fermionic sector induces the evolution of this
network.

2. In the case of graphs one can speak about various kinds of cycles, in particular Hamilto-
nian cycles going through all points of graph and having no self-intersections. Interestingly,
Hamiltonian cycles for icosahedron (here the isometry group of icosahedron is involved as an
additional structure) lead to a vision about genetic code and music harmonies [L15].

3. An interesting question concerns the extensions of rationals having as Galois group the isom-
etry groups of Platonic solids: they probably exist. One can also consider the counterparts
of Galois groups as discrete subgroups of the Galois group SO(3) of quaternions. They

http://tinyurl.com/hzqlo6r
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emerge naturally for algebraic discretizations of M4 regarded as a subspace of complexified
quaternions with time axis identified as the real axis for quaternions (for M8 − H corre-
spondence [K53, K85] see http://tinyurl.com/mdvazmr). Platonic solids correspond to
finite discretizations with finite isometry groups belonging to a hierarchy of finite discrete
subgroups of SO(3) labelling the hierarchy of inclusions of HFFs: a connection between
HFFs and quaternions is suggestive. For HFFs Platonic solids are in unique role in the sense
that only for them the action of SO(3) is genuinely 3-D. In Mac Kay correspondence they
correspond to exceptional groups.

For this generalization evolution would correspond to evolution in the space of Galois groups
for finite-dimensional extensions of rational valued quaternions. p-Adic quaternions do not
however form a field since p-adic quaternion can have vanishing norm squared.

4. The wave functions in the Galois group G reduce to wave functions in its coset space G/H if
they are invariant under subgroup H. One can also perform the analog of second quantization
for fermions in Galois group labelling the space-time sheets (or those of 3-space). In the
model of harmony based on Hamilton’s cycles the notes of 12-note scale would correspond to
vertices of icosahedron obtained as coset space of I/Z5, where I is icosahedral group with 60
elements. 3-chords of the harmony for a given Hamiltonian cycle would correspond to faces,
which are triangles. Single particle fermion states localized at vertices (points of coset space)
would correspond to notes of the scale and 3-fermion states localized at vertices of triangle
to allowed 3-chords. The observation that one can understand the degeneracies of vertebrate
genetic code by introducing besides icosahedron also tetrahedron suggests that both music
and genetic code could relate directly to cognition described number theoretically.

5. It is also known that graphs can be identified as representations for Boolean statements
(see http://tinyurl.com/myrkhny). Many-fermion states represent in TGD framework
quantum Boolean statements with fermion number taking the role of bit. Could it be that this
graphs indeed represent entanglement many-fermion states having interpretation as quantum
Boolean statements?

Can one imagine a quantum counterpart of iteration cycle? The space-time sheets can be
seen as covering spaces with the number of sheets equal to the order n = heff/h of Galois group.
This gives additional discrete degrees of freedom and one could have wave functions in Galois group
and also in its cyclic subgroup. These might serve as quantum counterparts for iteration cycles.
An open question is whether n is always accompanied by 1/n fractionization of quantum numbers
so that dark elementary particles would have same quantum numbers as ordinary ones but could
be said to decompose to n pieces corresponding to sheets of covering.

One can also imagine that the cycles appear in the statistical description. At this limit one
obtains deterministic kinetic equations and by their non-linearity one expects that they exhibit
chaotic behavior in the usual sense.

Why would primes near powers of two (or small primes) be important?

p-Adic length scale hypothesis states that physically preferred p-adic primes come as primes near
prime powers of two and possibly also other small primes. Does this have some analog to complexity
theory, period doubling, and with the super-stability associated with period doublings?

Also ramified primes characterize the extension of rationals and would define naturally
preferred primes for a given extension.

1. Any rational prime p can be decomposes to a product of powers P ki of primes Pi of extension
given by p =

∏
i P

ki
i ,
∑
ki = n. If one has ki 6= 1 for some i, one has ramified prime. Prime

p is Galois invariant but ramified prime decomposes to lower-dimensional orbits of Galois
group formed by a subset of P kii with the same index ki . One might say that ramified
primes are more structured and informative than un-ramified ones. This could mean also
representative capacity.

2. Ramification has as its analog criticality leading to the degenerate roots of a polynomial
or the lowering of the rank of the matrix defined by the second derivatives of potential

http://tinyurl.com/mdvazmr
http://tinyurl.com/myrkhny
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function depending on parameters. The graph of potential function in the space defined by
its arguments and parameters if n-sheeted singular covering of this space since the potential
has several extrema for given parameters. At boundaries of the n-sheeted structure some
sheets degenerate and the dimension is reduced locally . Cusp catastrophe with 3-sheets in
catastrophe region is standard example about this.

Ramification also brings in mind super-stability of n-cycle for the iteration of functions
meaning that the derivative of n:th iterate f(f(...)(x) ≡ fn)(x) vanishes. Superstability
occurs for the iteration of function f = ax+ bx2 for a = 0.

3. I have considered the possibility that that the n-sheeted coverings of the space-time surface
are singular in that the sheet co-incide at the ends of space-time surface or at some partonic
2-surfaces. One can also consider the possibility that only some sheets or partonic 2-surfaces
co-incide.

The extreme option is that the singularities occur only at the points representing fermions
at partonic 2-surfaces. Fermions could in this case correspond to different ramified primes.
The graph of w = z1/2 defining 2-fold covering of complex plane with singularity at origin
gives an idea about what would be involved. This option looks the most attractive one and
conforms with the idea that singularities of the coverings in general correspond to isolated
points. It also conforms with the hypothesis that fermions are labelled by p-adic primes and
the connection between ramifications and Galois singularities could justify this hypothesis.

4. Category theorists love structural similarities and might ask whether there might be a mor-
phism mapping these singularities of the space-time surfaces as Galois coverings to the ram-
ified primes so that sheets would correspond to primes of extension appearing in the decom-
position of prime to primes of extension.

Could the singularities of the covering correspond to the ramification of primes of extension?
Could this degeneracy for given extension be coded by a ramified prime? Could quantum
criticality of TGD favour ramified primes and singularities at the locations of fermions at
partonic 2-surfaces?

Could the fundamental fermions at the partonic surfaces be quite generally localize at the
singularities of the covering space serving as markings for them? This also conforms with the
assumption that fermions with standard value of Planck constants corresponds to 2-sheeted
coverings.

5. What could the ramification for a point of cognitive representation mean algebraically? The
covering orbit of point is obtained as orbit of Galois group. For maximal singularity the
Galois orbit reduces to single point so that the point is rational. Maximally ramified fermions
would be located at rational points of extension. For non-maximal ramifications the number
of sheets would be reduced but there would be several of them and one can ask whether only
maximally ramified primes are realized. Could this relate at the deeper level to the fact that
only rational numbers can be represented in computers exactly.

6. Can one imagine a physical correlate for the singular points of the space-time sheets at the
ends of the space-time surface? Quantum criticality as analogy of criticality associated with
super-stable cycles in chaos theory could be in question. Could the fusion of the space-time
sheets correspond to a phenomenon analogous to Bose-Einstein condensation? Most naturally
the condensate would correspond to a fractionization of fermion number allowing to put n
fermions to point with same M4 projection? The largest condensate would correspond to a
maximal ramification p = Pni .

Why ramified primes would tend to be primes near powers of two or of small prime? The
attempt to answer this question forces to ask what it means to be a survivor in number theoretical
evolution. One can imagine two kinds of explanations.

1. Some extensions are winners in the number theoretic evolution, and also the ramified primes
assignable to them. These extensions would be especially stable against further evolution
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representing analogs of evolutionary fossils. As proposed earlier, they could also allow ex-
ceptionally large cognitive representations that is large number of points of real space-time
surface in extension.

2. Certain primes as ramified primes are winners in the sense the further extensions conserve
the property of being ramified.

(a) The first possibility is that further evolution could preserve these ramified primes and
only add new ramified primes. The preferred primes would be like genes, which are
conserved during biological evolution. What kind of extensions of existing extension
preserve the already existing ramified primes. One could naively think that extension
of an extension replaces Pi in the extension for Pi = Qkiik so that the ramified primes
would remain ramified primes.

(b) Surviving ramified primes could be associated with a exceptionally large number of
extensions and thus with their Galois groups. In other words, some primes would have
strong tendency to ramify. They would be at criticality with respect to ramification.
They would be critical in the sense that multiple roots appear.

Can one find any support for this purely TGD inspired conjecture from literature? I am
not a number theorist so that I can only go to web and search and try to understand
what I found. Web search led to a thesis (see http://tinyurl.com/mkhrssy) studying
Galois group with prescribed ramified primes.

The thesis contained the statement that not every finite group can appear as Galois
group with prescribed ramification. The second statement was that as the number
and size of ramified primes increases more Galois groups are possible for given pre-
determined ramified primes. This would conform with the conjecture. The number
and size of ramified primes would be a measure for complexity of the system, and both
would increase with the size of the system.

(c) Of course, both mechanisms could be involved.

Why ramified primes near powers of 2 would be winners? Do they correspond to ramified
primes associated with especially many extension and are they conserved in evolution by subsequent
extensions of Galois group. But why? This brings in mind the fact that n = 2k-cycles becomes
super-stable and thus critical at certain critical value of the control parameter. Note also that
ramified primes are analogous to prime cycles in iteration. Analogy with the evolution of genome
is also strongly suggestive.

heff/h = n hypothesis and Galois groups

The natural hypothesis is that heff/h = n equals to dimension of the extension of rationals in the
case that it gives the number of sheets of the covering assignable to the space-time surfaces. The
stronger hypothesis is that heff/h = n is associated with flux tubes and is proportional to the
quantum numbers associated with the ends.

1. The basic idea is that Mother Nature is theoretician friendly. As perturbation theory breaks
down, the interaction strength expressible as a product of appropriate charges divided by
Planck constant, is reduced in the phase transition ~→ ~eff .

2. In the case of gravitation GMm →= GMm(h/heff ). Equivalence Principle is satisfied if
one has ~eff = ~gr = GMm/v0, where v0 is parameter with dimensions of velocity and of
the order of some rotation velocity associated with the system. If the masses move with
relativistic velocities the interaction strength is proportional to the inner product of four-
momenta and therefore to Lorentz boost factors for energies in the rest system of the entire
system. In this case one must assume quantization of energies to satisfy the constraint or
a compensating reduction of v0. Interactions strength becomes equal to β0 = v0/c having
no dependence on the masses: this brings in mind the universality associated with quantum
criticality.

http://tinyurl.com/mkhrssy
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3. The hypothesis applies to all interactions. For electromagnetism one would have the replace-
ments Z1Z2α→ Z1Z2α(h/hem) and ~em = Z1Z2α/β0 giving Universal interaction strength.
In the case of color interactions the phase transition would lead to the emergence of hadron
and it could be that inside hadrons the valence quark have heff/h = n > 1. In this case
one could consider a generalization in which the product of masses is replaced with the in-
ner product of four-momenta. In this case quantization of energy at either or both ends is
required. For astrophysical energies one would have effective energy continuum.

This hypothesis suggests the interpretation of heff/h = n as either the dimension of the
extension or the order of its Galois group. If the extensions have dimensions n1 and n2, then
the composite system would be n2-dimensional extension of n1-dimensional extension and have
dimension n1×n2. This could be also true for the orders of Galois groups. This would be the case
if Galois group of the entire system is free group generated by the G1 and G2. One just takes all
products of elements of G1 and G2 and assumes that they commute to get G1 ×G2.

Consider gravitation as example.

1. The dimension of the extension should coincide with ~eff/~ = n = ~gr/~ = GMm/v0~.
The transition occurs only if the value of ~gr/~ is larger than one. One can say that the
dimension of the extension is proportional the product of masses using as unit Planck mass.
Rather large extensions are involved and the number of sheets in the Galois covering is huge.

Note that it is difficult to say how larger Planck constants are actually involved since by
gravitational binding the classical gravitational forces are additive and by Equivalence prin-
ciple same potential is obtained as sum of potentials for splitting of masses into pieces. Also
the gravitational Compton length λgr = GM/v0 for m does not depend on m at all so that
all particles have same λgr = GM/v0 irrespective of mass (note that v0 is expressed using
units with c = 1).

The maximally incoherent situation would correspond to ordinary Planck constant and the
usual view about gravitational interaction between particles. The extreme quantum coher-
ence would mean that both M and m behave as single quantum unit. In many-sheeted
space-time this could be understood in terms of a picture based on flux tubes. The interpre-
tation for the degree of coherence is discussed in terms of flux tube connections mediating
gravitational flux is discussed in [K81].

2. hgr/h would be the dimension of the extension, and there is a temptation to associate with
the product of masses the product n = n1n2 of dimensions ni associated masses M and m
at least in some situations.

The problem is that the dimension of the extension associated with m would be smaller than
1 for masses m < mP /

√
β0. Planck mass is about 1.3× 1019 proton masses and corresponds

to a blob of water with size scale 10−4 meters - size scale of a large neuron so that only above
these scale gravitational quantum coherence would be possible. For v0 < 1 it would seem that
even in the case of large neurons one must have more than one neurons. Maybe pyramidal
neurons could satisfy the mass constraint and would represent higher level of conscious as
compared to other neurons and cells. The giant neurons discovered by the group led by
Christof Koch in the brain of of mouse having axonal connections distributed over the entire
brain might fulfil the constraint (see http://tinyurl.com/gvwggsc).

3. It is difficult to avoid the idea that macroscopic quantum gravitational coherence for mul-
ticellular objects with mass at least that for the largest neurons could be involved with
biology. Multicellular systems can have mass above this threshold for some critical cell num-
ber. This might explain the dramatic evolutionary step distinguishing between prokaryotes
(mono-cellulars consisting of Archaea and bacteria including also cellular organelles and cells
with sub-critical size) and eukaryotes (multi-cellulars).

4. I have proposed an explanation of the fountain effect appearing in super-fluidity and appar-
ently defying the law of gravity. In this case m was assumed to be the mass of 4He atom in
case of super-fluidity to explain fountain effect [K81]. The above arguments however allow
to ask whether anything changes if one allows the blobs of superfluid to have masses coming

http://tinyurl.com/gvwggsc
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as a multiple of mP /
√
β0. One could check whether fountain effect is possible for super-fluid

volumes with mass below mP /
√
β0.

What about hem? In the case of super-conductivity the interpretation of hem/h as product
of orders of Galois groups would allow to estimate the number N = Q/2e of Cooper pairs of a
minimal blob of super-conducting matter from the condition that the order of its Galois group is
larger than integer. The number N = Q/2e is such that one has 2N

√
α/β0 = n. The condition is

satisfied if one has α/β0 = q2, with q = k/2l such that N is divisible by l. The number of Cooper
pairs would be quantized as multiples of l. What is clear that em interaction would correspond to
a lower level of cognitive consciousness and that the step to gravitation dominated cognition would
be huge if the dark gravitational interaction with size of astrophysical systems is involved [K83].
Many-sheeted space-time allows this in principle.

These arguments support the view that quantum information theory indeed closely relates
not only to gravitation but also other interactions. Speculations revolving around blackhole, en-
tropy, and holography, and emergence of space would be replaced with the number theoretic vision
about cognition providing information theoretic interpretation of basic interactions in terms of
entangled tensor networks [L22]. Negentropic entanglement would have magnetic flux tubes (and
fermionic strings at them) as topological correlates. The increase of the complexity of quantum
states could occur by the “fusion” of Galois groups associated with various nodes of this network as
macroscopic quantum states are formed. Galois groups and their representations would define the
basic information theoretic concepts. The emergence of gravitational quantum coherence identified
as the emergence of multi-cellulars would mean a major step in biological evolution.

8.9 Why The Non-trivial Zeros Of Riemann Zeta Should
Reside At Critical Line?

The following argument shows that the troublesome looking “1/2” in the non-trivial zeros of Rie-
mann zeta can be understood as being necessary to allow a hermitian realization of the radial
scaling generator rd/dr at light-cone boundary, which in the radial light-like radial direction cor-
responds to half-line R+. Its presence allows unitary inner product and reduces the situation to
that for ordinary plane waves on real axis. For preferred extremals strong form of holography
poses extremely strong conditions expected to reduce the scaling momenta s = 1/2 + iy to the
zeros of zeta at critical line. RH could be also seen as a necessary condition for the existence of
super-symplectic representations and thus for the existence of the “World of Classical Worlds” as
a mathematically well-defined object. We can thank the correctness of Riemann’s hypothesis for
our existence!

8.9.1 What Is The Origin Of The Troublesome 1/2 In Non-trivial Zeros
Of Zeta?

Riemann Hypothess (RH) states that the non-trivial (critical) zeros of zeta lie at critical line
s = 1/2. It would be interesting to know how many physical justifications for why this should be
the case has been proposed during years. Probably this number is finite, but very large it certainly
is. In Zero Energy Ontology (ZEO) forming one of the cornerstones of the ontology of quantum
TGD, the following justification emerges naturally.

1. The ”World of Classical Worlds” (WCW) consisting of space-time surfaces having ends at the
boundaries of causal diamond (CD), the intersection of future and past directed light-cones
times CP2 (recall that CDs form a fractal hierarchy). WCW thus decomposes to sub-WCWs
and conscious experience for the self associated with CD is only about space-time surfaces
in the interior of CD: this is a trong restriction to epistemology, would philosopher say.

Also the light-like orbits of the partonic 2-surfaces define boundary like entities but as surfaces
at which the signature of the induced metric changes from Euclidian to Minkowskian. By
holography either kinds of 3-surfaces can be taken as basic objects, and if one accepts strong
form of holography, partonic 2-surfaces defined by their intersections plus string world sheets
become the basic entities.
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2. One must construct tangent space basis for WCW if one wants to define WCW Kähler
metric and gamma matrices. Tangent space consists of allowed deformations of 3-surfaces
at the ends of space-time surface at boundaries of CD, and also at light-like parton orbits
extended by field equations to deformations of the entire space-time surface. By strong form
of holography only very few deformations are allowed since they must respect the vanishing
of the elements of a sub-algebra of the classical symplectic charges isomorphic with the entire
algebra. One has almost 2-dimensionality: most deformations lead outside WCW and have
zero norm in WCW metric.

3. One can express the deformations of the space-like 3-surface at the ends of space-time using a
suitable function basis. For CP2 degrees of freedom color partial waves with well defined color
quantum numbers are natural. For light-cone boundary S2 ×R+, where R+ corresponds to
the light-like radial coordinate, spherical harmonics with well defined spin are natural choice
for S2 and for R+ analogs of plane waves are natural. By scaling invariance in the light-like
radial direction they look like plane waves ψs(r) = rs = exp(us), u = log(r/r0), s = x+ iy.
Clearly, u is the natural coordinate since it replaces R+ with R natural for ordinary plane
waves.

4. One can understand why Re[s] = 1/2 is the only possible option by using a simple argument.
One has super-symplectic symmetry and conformal invariance extended from 2-D Riemann
surface to metrically 2-dimensional light-cone boundary. The natural scaling invariant in-
tegration measure defining inner product for plane waves in R+ is du = dr/r = dlog(r/r0)
with u varying from −∞ to +∞ so that R+ is effectively replaced with R. The inner product
must be same as for the ordinary plane waves and indeed is for ψs(r) with s = 1/2 + iy since
the inner product reads as

〈s1, s2〉 ≡
∫ ∞

0

ψs1ψs2dr =

∫ ∞
0

exp(i(y1 − y2)r−x1−x2dr .

For x1 + x2 = 1 one obtains standard delta function normalization for ordinary plane waves:

〈s1, s2〉
∫ ∫ ∞

−∞
exp[i(y1 − y2)u]du ∝ δ(y1 − y2) .

If one requires that this holds true for all pairs (s1, s2), one obtains xi = 1/2 for all si.
Preferred extremal condition gives extremely powerful additional constraints and leads to a
quantisation of s = −x − iy: the first guess is that non-trivial zeros of zeta are obtained:
s = 1/2 + iy. This identification would be natural by generalised conformal invariance. Thus
RH is physically extremely well motivated but this of course does not prove it.

5. The presence of the real part Re[s] = 1/2 in the eigenvalues of scaling operator apparently
breaks hermiticity of the scaling operator. There is however a compensating breaking of
hermiticity coming from the fact that real axis is replaced with half-line and origin is patho-
logical. What happens that real part 1/2 effectively replaces half-line with real axis and
obtains standard plane wave basis. Note also that the integration measure becomes scaling
invariant - something very essential for the representations of super-symplectic algebra. For
Re[s] = 1/2 the hermicity conditions for the scaling generator rd/dr in R+ reduce to those
for the translation generator d/du in R.

8.9.2 Relation To Number Theoretical Universality And Existence Of
WCW

This relates also to the number theoretical universality and mathematical existence of WCW in
an interesting manner.

1. If one assumes that p-adic primes p correspond to zeros s = 1/2+y of zeta in 1-1 manner in the
sense that piy(p) is root of unity existing in all number fields (algebraic extension of p-adics)
one obtains that the plane wave exists for p at points r = pn. p-Adically wave function
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is discretized to a delta function distribution concentrated at (r/r0) = pn- a logarithmic
lattice. This can be seen as space-time correlate for p-adicity for light-like momenta to
be distinguished from that for massive states where length scales come as powers of p1/2.
Something very similar is obtained from the Fourier transform of the distribution of zeros
at critical line (Dyson’s argument), which led to a the TGD inspired vision about number
theoretical universality [L17] (see http://tinyurl.com/y7gl4huo).

2. My article ”Strategy for Proving Riemann Hypothesis” (http://tinyurl.com/yd7k46ar)
[L1] written for 12 years ago ((for a slightly improved version see http://tinyurl.com/

ydcfkxwr) relies on coherent states instead of eigenstates of Hamiltonian. The above ap-
proach in turn absorbs the problematic 1/2 to the integration measure at light cone boundary
and conformal invariance is also now central.

3. Quite generally, I believe that conformal invariance in the extended form applying at metri-
cally 2-D light-cone boundary (and at light-like orbits of partonic 2-surfaces) could be central
for understanding why physics requires RH and maybe even for proving RH assuming it is
provable at all in existing standard axiomatic system. For instance, the number of gener-
ating elements of the extended supersymplectic algebra is infinite (rather than finite as for
ordinary conformal algebras) and generators are labelled by conformal weights defined by
zeros of zeta (perhaps also the trivial conformal weights). s = 1/2 + iy guarantees that the
real parts of conformal weights for all states are integers. By conformal confinement the sum
of ys vanishes for physical states. If some weight is not at critical line the situation changes.
One obtains as net conformal weights all multiples of x shifted by all half odd integer values.
And of course, the realisation as plane waves at boundary of light-cone fails and the resulting
loss of unitary makes things too pathological and the mathematical existence of WCW is
threatened.

4. The existence of non-trivial zeros outside the critical line could thus spoil the representations
of super-symplectic algebra and destroy WCW geometry. RH would be crucial for the math-
ematical existence of the physical world! And the physical worlds exist only as mathematical
objects in TGD based ontology: there are no physical realities behind the mathematical
objects (WCW spinor fields) representing the quantum states. TGD inspired theory of con-
sciousness tells that quantum jumps between the zero energy states give rise to conscious
experience, and this is in principle all that is needed to understand what we experience.

8.10 Why Mersenne primes are so special?

Mersenne primes are central in TGD based world view. p-Adic thermodynamics combined with p-
adic length scale hypothesis stating that primes near powers of two are physically preferred provides
a nice understanding of elementary particle mass spectrum. Mersenne primes Mk = 2k − 1, where
also k must be prime, seem to be preferred. Mersenne prime labels hadronic mass scale (there is now
evidence from LHC for two new hadronic physics labelled by Mersenne and Gaussian Mersenne),
and weak mass scale. Also electron and tau lepton are labelled by Mersenne prime. Also Gaussian
Mersennes MG,k = (1 + i)k − 1 seem to be important. Muon is labelled by Gaussian Mersenne
and the range of length scales between cell membrane thickness and size of cell nucleus contains 4
Gaussian Mersennes!

What gives Mersenne primes so special physical status? I have considered this problem
many times during years. The key idea is that natural selection is realized in much more general
sense than usually thought, and has chosen them and corresponding p-adic length scales. Particles
characterized by p-adic length scales should be stable in some well-defined sense.

Since evolution in TGD corresponds to generation of information, the obvious guess is that
Mersenne primes are information theoretically special. Could the fact that 2k−1 represents almost
k bits be of significance? Or could Mersenne primes characterize systems, which are information
theoretically especially stable? In the following a more refined TGD inspired quantum informa-
tion theoretic argument based on stability of entanglement against state function reduction, which
would be fundamental process governed by Negentropy Maximization Principle (NMP) and requir-
ing no human observer, will be discussed.

http://tinyurl.com/y7gl4huo
http://tinyurl.com/yd7k46ar
http://tinyurl.com/ydcfkxwr
http://tinyurl.com/ydcfkxwr
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8.10.1 How to achieve stability against state function reductions?

TGD provides actually several ideas about how to achieve stability against state function reduc-
tions. This stability would be of course marvellous fact from the point of view of quantum compu-
tation since it would make possible stable quantum information storage. Also living systems could
apply this kind of storage mechanism.

1. p-Adic physics leads to the notion of negentropic entanglement (NE) for which number
theoretic entanglement entropy is negative and thus measures genuine, possibly conscious
information assignable to entanglement (ordinary entanglement entropy measures the lack
of information about the state of either entangled system). NMP favors the generation of
NE. NE can be however transferred from system to another (stolen using less diplomatically
correct expression!), and this kind of transfer is associated with metabolism. This kind of
transfer would be the most fundamental crime: biology would be basically criminal activity!
Religious thinker might talk about original sin.

In living matter NE would make possible information storage. In fact, TGD inspired theory
of consciousness constructed as a generalization of quantum measurement theory in Zero
Energy Ontology (ZEO) identifies the permanent self of living system (replaced with a more
negentropic one in biological death, which is also a reincarnation) as the boundary of CD,
which is not affected in subsequent state function reductions and carries NE. The changing
part of self - sensory input and cognition - can be assigned with opposite changing boundary
of CD.

2. Also number theoretic stability can be considered. Suppose that one can assign to the system
some extension of algebraic numbers characterizing the WCW coordinates (”world of classical
worlds”) parametrizing the space-time surface (by strong form of holography (SH) the string
world sheets and partonic 2-surfaces continuable to 4-D preferred extremal) associated with
it.

This extension of rationals and corresponding algebraic extensions of p-adic numbers would
define the number fields defining the coefficient fields of Hilbert spaces. Assume that you
have an entangled system with entanglement coefficients in this number field. Suppose you
want to diagonalize the corresponding density matrix. The eigenvalues belong in general case
to a larger algebraic extension since they correspond to roots of a characteristic polynomials
assignable to the density matrix. Could one say, that this kind of entanglement is stable (at
least to some degree) against state function reduction since it means going to an eigenstate
which does not belong to the extension used? Reader can decide!

3. Hilbert spaces are like natural numbers with respect to direct sum and tensor product. The
dimension of the tensor product is product mn of the dimensions of the tensor factors. Hilbert
space with dimension n can be decomposed to a tensor product of prime Hilbert spaces with
dimensions which are prime factors of n. In TGD Universe state function reduction is a
dynamical process, which implies that the states in state spaces with prime valued dimension
are stable against state function reduction since one cannot even speak about tensor product
decomposition, entanglement, or reduction of entanglement. These state spaces are quantum
indecomposable and would be thus ideal for the storage of quantum information!

Interestingly, the system consisting of k qubits have Hilbert space dimension D = 2k and is
thus maximally unstable against decomposition to D = 2-dimensional tensor factors! In TGD
Universe NE might save the situation. Could one imagine a situation in which Hilbert space
with dimension Mk = 2k − 1 stores the information stably? When information is processed
this state space would be mapped isometrically to 2k-dimensional state space making possible
quantum computations using qubits. The outcome of state function reduction halting the
computation would be mapped isometrically back to Mk-D space. Note that isometric maps
generalizing unitary transformations are an essential element in the proposal for the tensor
net realization of holography and error correcting codes [L22]. Can one imagine any concrete
realization for this idea? This question be considered in the sequel.
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8.10.2 How to realize Mk = 2k − 1-dimensional Hilbert space physically?

One can imagine at least three physical realizations of Mk = 2k − 1-dimensional Hilbert space.

1. The set with k elements has 2k subsets. One of them is empty set and cannot be physically
realized. Here the reader might of course argue that if they are realized as empty boxes, one
can realize them. If empty set has no physical realization, the wave functions in the set of
non-empty subsets with 2k − 1 elements define 2k − 1-dimensional Hilbert space. If 2k − 1 is
Mersenne prime, this state state space is stable against state function reductions since one
cannot even speak about entanglement!

To make quantum computation possible one must map this state space to 2k dimensional
state space by isometric imbedding. This is possible by just adding a new element to the set
and considering only wave functions in the set of subsets containing this new element. Now
also the empty set is mapped to a set containing only this new element and thus belongs
to the state space. One has 2k dimensions and quantum computations are possible. When
the computation halts, one just removes this new element from the system, and the data are
stored stably!

2. Second realization relies on k bits represented as spins such that 2k − 1 is Mersenne prime.
Suppose that the ground state is spontaneously magnetized state with k + l parallel spins,
with the l spins in the direction of spontaneous magnetization and stabilizing it. l > 1
is probably needed to stabilize the direction of magnetization: l ≤ k suggests itself as the
first guess. Here thermodynamics and a model for spin-spin interaction would give a better
estimate.

The state with the k spins in direction opposite to that for l spins would be analogous to
empty set. Spontaneous magnetization disappears, when a sufficient number of spins is in
direction opposite to that of magnetization. Suppose that k corresponds to a critical number
of spins in the sense that spontaneous magnetization occurs for this number of parallel spins.
Quantum superpositions of 2k − 1 states for k spins would be stable against state function
reduction also now.

The transformation of the data to a processable form would require an addition of m ≥ 1 spins
in the direction of the magnetization to guarantee that the state with all k spins in direction
opposite to the spontaneous magnetization does not induce spontaneous magnetization in
opposite direction. Note that these additional stabilizing spins are classical and their direction
could be kept fixed by a repeated state function reduction (Zeno effect). One would clearly
have a critical system.

3. Third realization is suggested by TGD inspired view about Boolean consciousness. Boolean
logic is represented by the Fock state basis of many-fermion states. Each fermion mode
defines one bit: fermion in given mode is present or not. One obtains 2k states. These states
have different fermion numbers and in ordinary positive energy ontology their realization is
not possible.

In ZEO situation changes. Fermionic zero energy states are superpositions of pairs of states
at opposite boundaries of CD such that the total quantum numbers are opposite. This
applies to fermion number too. This allows to have time-like entanglement in which one
has superposition of states for which fermion numbers at given boundary are different. This
kind of states might be realized for super-conductors to which one at least formally assigns
coherent state of Cooper pairs having ill-defined fermion number.

Now the non-realizable state would correspond to fermion vacuum analogous to empty set.
Reader can of course argue that the bosonic degrees of freedom assignable to the space-time
surface are still present. I defend this idea by saying that the purely bosonic state might be
unstable or maybe even non-realizable as vacuum state and remind that also bosons in TGD
framework consists of pairs of fundamental fermions.

If this state is effectively decoupled from the rest of the Universe, one has 2k−1-dimensional
state space and states are stable against state function reduction. Information processing
becomes possible by adding some positive energy fermions and corresponding negative energy
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fermions at the opposite boundaries of CD. Note that the added fermions do not have time-
like quantum entanglement and do not change spin direction during time evolution.

The proposal is that Boolean consciousness is realized in this manner and zero energy states
represents quantum Boolean thoughts as superposition of pairs (b1⊗ b2) of positive and neg-
ative energy states and having identification as Boolean statements b1 → b2. The mechanism
would allow both storage of thoughts as memories and their processing by introducing the
additional fermion.

8.10.3 Why Mersenne primes would be so special?

Returning to the original question “Why Mersenne primes are so special?”. A possible explanation
is that elementary particle or hadron characterized by a p-adic length scale p = Mk = 2k − 1
both stores and processes information with maximal effectiveness. This would not be surprising
if p-adic physics defines the physical correlates of cognition assumed to be universal rather than
being restricted to human brain.

In adelic physics p-dimensional Hilbert space could be naturally associated with the p-adic
adelic sector of the system. Information storage could take place in p = Mk = 2k − 1 phase and
information processing (cognition) would take place in 2k-dimensional state space. This state space
would be reached in a phase transition p = 2k − 1 → 2 changing effective p-adic topology in real
sector and genuine p-adic topology in p-adic sector and replacing padic length scale ∝ √p ' 2k/2

with k-nary 2-adic length scale ∝ 2k/2.

Electron is characterized by the largest not completely super-astrophysical Mersenne prime
M127 and corresponds to k = 127 bits. Intriguingly, the secondary p-adic time scale of electron
corresponds to .1 seconds defining the fundamental biorhythm of 10 Hz.

This proposal suffers from deficiencies. It does not explain why Gaussian Mersennes are
also special. Gaussian Mersennes correspond ordinary primes near power of 2 but not so near
as Mersenne primes do. Neither does it explain why also more general primes p ' 2k seem to
be preferred. Furthermore, p-adic length scale hypothesis generalizes and states that primes near
powers of at least small primes q: p ' qk are special at least number theoretically. For instance,
q = 3 seems to be important for music experience and also q = 5 might be important (Golden
Mean)

Could it be that the proposed model relying on criticality generalizes. There would be
p < 2k-dimensional state space allowing isometric imbedding to 2k-dimensional space such that
the bit configurations orthogonal to the image would be unstable in some sense. Say against a
phase transition changing the direction of magnetization. One can imagine the variants of above
described mechanism also now. For q > 2 one should consider pinary digits instead of bits but the
same arguments would apply (except in the case of Boolean logic).

8.10.4 Brain and Mersenne integers

I received a link to an interesting the article “Brain Computation Is Organized via Power-of-Two-
Based Permutation Logic” by Kun Xie, Grace E. Fox, Jun Liu, Cheng Lyu, Jason C. Lee, Hui
Kuang, Stephanie Jacobs, Meng Li, Tianming Liu, Sen Song and Joe Z. Tsien in Frontiers in
Systems Neuroscience [?]see http://tinyurl.com/zfymqrq).

The proposed model is about how brain classifies neuronal inputs. The following represents
my attempt to understand the model of the article.

1. One can consider a situation in which one has n inputs identifiable as bits: bit could corre-
spond to neuron firing or not. The question is however to classify various input combinations.
The obvious criterion is how many bits are equal to 1 (corresponding neuron fires). The in-
put combinations in the same class have same number of firing neurons and the number of
subsets with k elements is given by the binomial coefficient B(n, k) = n!/k!(n − k)!. There
are clearly n− 1 different classes in the classification since no neurons firing is not a possible
observation. The conceptualization would tell how many neurons fire but would not specify
which of them.

http://tinyurl.com/zfymqrq
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2. To represent these bit combinations one needs 2n−1 neuron groups acting as unit representing
one particular firing combination. These subsets with k elements would be mapped to neuron
cliques with k firing neutrons. For given input individual firing neurons (k = 1) would
represent features, lowest level information. The n cliques with k = 2 neurons would represent
a more general classification of input. One obtains Mn = 2n−1 combinations of firing neurons
since the situations in which no neurons are firing is not counted as an input.

3. If all neurons are firing then all the however level cliques are also activated. Set theoretically
the subsets of set partially ordered by the number of elements form an inclusion hierarchy,
which in Boolean algebra corresponds to the hierarchy of implications in opposite direction.
The clique with all neurons firing correspond to the most general statement implying all the
lower level statements. At k:th level of hierarchy the statements are inconsistent so that one
has B(n, k) disjoint classes.

The Mn = 2n − 1 (Mersenne number) labelling the algorithm is more than familiar to me.

1. For instance, electron’s p-adic prime corresponds to Mersenne prime M127 = 2127 − 1, the
largest not completely super-astrophysical Mersenne prime for which the mass of particle
would be extremely small. Hadron physics corresponds to M107 and M89 to weak bosons
and possible scaled up variant of hadron physics with mass scale scaled up by a factor 512
(= 2(107−89)/2). Also Gaussian Mersennes seem to be physically important: for instance,
muon and also nuclear physics corresponds to MG,n = (1 + i)n − 1, n = 113.

2. In biology the Mersenne prime M7 = 27 − 1 is especially interesting. The number of state-
ments in Boolean algebra of 7 bits is 128 and the number of statements that are consistent
with given atomic statement (one bit fixed) is 26 = 64. This is the number of genetic codons
which suggests that the letters of code represent 2 bits. As a matter of fact, the so called
Combinatorial Hierarchy M(n) = MM(n−1) consists of Mersenne primes n = 3, 7, 127, 2127−1
and would have an interpretation as a hierarchy of statements about statements about ...
It is now known whether the hierarchy continues beyond M127 and what it means if it does
not continue. One can ask whether M127 defines a higher level code - memetic code as I
have called it - and realizable in terms of DNA codon sequences of 21 codons [L21] (see
http://tinyurl.com/jukyq6y).

3. The Gaussian Mersennes MG,n n = 151, 157, 163, 167, can be regarded as a number theoret-
ical miracles since the these primes are so near to each other. They correspond to p-adic
length scales varying between cell membrane thickness 10 nm and cell nucleus size 2.5 µm
and should be of fundamental importance in biology. I have proposed that p-adically scaled
down variants of hadron physics and perhaps also weak interaction physics are associated
with them.

I have made attempts to understand why Mersenne primes Mn and more generally primes
near powers of 2 seem to be so important physically in TGD Universe.

1. The states formed from n fermions form a Boolean algebra with 2n elements, but one of the
elements is vacuum state and could be argued to be non-realizable. Hence Mersenne number
Mn = 2n−1. The realization as algebra of subsets contains empty set, which is also physically
non-realizable. Mersenne primes are especially interesting as sine the reduction of statements
to prime nearest to Mn corresponds to the number Mn−1 of physically representable Boolean
statements.

2. Quantum information theory suggests itself as explanation for the importance of Mersenne
primes sinceMn would correspond the number of physically representable Boolean statements
of a Boolean algebra with n-elements. The prime p ≤ Mn could represent the number
of elements of Boolean algebra representable p-adically [L26] (see http://tinyurl.com/

gp9mspa).

3. In TGD Fermion Fock states basis has interpretation as elements of quantum Boolean algebra
and fermionic zero energy states in ZEO expressible as superpositions of pairs of states with

http://tinyurl.com/jukyq6y
http://tinyurl.com/gp9mspa
http://tinyurl.com/gp9mspa
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same net fermion numbers can be interpreted as logical implications. WCW spinor structure
would define quantum Boolean logic as “square root of Kähler geometry”. This Boolean
algebra would be infinite-dimensional and the above classification for the abstractness of
concept by the number of elements in subset would correspond to similar classification by
fermion number. One could say that bosonic degrees of freedom (the geometry of 3-surfaces)
represent sensory world and spinor structure (many-fermion states) represent that logical
thought in quantum sense.

4. Fermion number conservation would seem to represent an obstacle but in ZEO it can circum-
vented since zero energy states can be superpositions of pair of states with opposite fermion
number F at opposite boundaries of causal diamond (CD) in such a manner that F varies.
In state function reduction however localization to single value of F is expected to happen
usually. If superconductors carry coherent states of Cooper pairs, fermion number for them
is ill defined and this makes sense in ZEO but not in standard ontology unless one gives up
the super-selection rule that fermion number of quantum states is well-defined.

One can of course ask whether primes n defining Mersenne primes (see http://tinyurl.

com/l3lxe2n) could define preferred numbers of inputs for subsystems of neurons. This would
predict n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257, .. define favoured numbers of inputs. n = 127 would
correspond to memetic code.

8.11 Number Theoretical Feats and TGD Inspired Theory
of Consciousness

Number theoretical feats of some mathematicians like Ramanujan remain a mystery for those
believing that brain is a classical computer. Also the ability of idiot savants - lacking even the
idea about what prime is - to factorize integers to primes challenges the idea that an algorithm is
involved. In this article I discuss ideas about how various arithmetical feats such as partitioning
integer to a sum of integers and to a product of prime factors might take place. The ideas are
inspired by the number theoretic vision about TGD suggesting that basic arithmetics might be
realized as naturally occurring processes at quantum level and the outcomes might be “sensorily
perceived”. One can also ask whether zero energy ontology (ZEO) could allow to perform quantum
computations in polynomial instead of exponential time.

The indian mathematician Srinivasa Ramanujan is perhaps the most well-known example
about a mathematician with miraculous gifts. He told immediately answers to difficult mathemat-
ical questions - ordinary mortals had to to hard computational work to check that the answer was
right. Many of the extremely intricate mathematical formulas of Ramanujan have been proved
much later by using advanced number theory. Ramanujan told that he got the answers from his
personal Goddess. A possible TGD based explanation of this feat relies on the idea that in zero
energy ontology (ZEO) quantum computation like activity could consist of steps consisting quan-
tum computation and its time reversal with long-lasting part of each step performed in reverse
time direction at opposite boundary of causal diamond so that the net time used would be short
at second boundary.

The adelic picture about state function reduction in ZEO suggests that it might be possible
to have direct sensory experience about prime factorization of integers [L25]. What about partitions
of integers to sums of primes? For years ago I proposed that symplectic QFT is an essential part of
TGD. The basic observation was that one can assign to polygons of partonic 2-surface - say geodesic
triangles - Kähler magnetic fluxes defining symplectic invariance identifiable as zero modes. This
assignment makes sense also for string world sheets and gives rise to what is usually called Abelian
Wilson line. I could not specify at that time how to select these polygons. A very natural manner
to fix the vertices of polygon (or polygons) is to assume that they correspond ends of fermion lines
which appear as boundaries of string world sheets. The polygons would be fixed rather uniquely
by requiring that fermions reside at their vertices.

The number 1 is the only prime for addition so that the analog of prime factorization for sum
is not of much use. Polygons with n = 3, 4, 5 vertices are special in that one cannot decompose them
to non-degenerate polygons. Non-degenerate polygons also represent integers n > 2. This inspires

http://tinyurl.com/l3lxe2n
http://tinyurl.com/l3lxe2n
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the idea about numbers {3, 4, 5} as “additive primes” for integers n > 2 representable as non-
degenerate polygons. These polygons could be associated many-fermion states with negentropic
entanglement (NE) - this notion relate to cognition and conscious information and is something
totally new from standard physics point of view. This inspires also a conjecture about a deep
connection with arithmetic consciousness: polygons would define conscious representations for
integers n > 2. The splicings of polygons to smaller ones could be dynamical quantum processes
behind arithmetic conscious processes involving addition.

8.11.1 How Ramanujan did it?

Lubos Motl wrote recently a blog posting (http://tinyurl.com/zduu72p) about P 6= NP com-
puter in the theory of computation based on Turing’s work. This unproven conjecture relies on a
classical model of computation developed by formulating mathematically what the women doing
the hard computational work in offices at the time of Turing did. Turing’s model is extremely
beautiful mathematical abstraction of something very every-daily but does not involve fundamen-
tal physics in any manner so that it must be taken with caution. The basic notions include those
of algorithm and recursive function, and the mathematics used in the model is mathematics of
integers. Nothing is assumed about what conscious computation is and it is somewhat ironic that
this model has been taken by strong AI people as a model of consciousness!

1. A canonical model for classical computation is in terms of Turing machine, which has bit
sequence as inputs and transforms them to outputs and each step changes its internal state.
A more concrete model is in terms of a network of gates representing basic operations for the
incoming bits: from this basic functions one constructs all recursive functions. The computer
and program actualize the algorithm represented as a computer program and eventually halts
- at least one can hope that it does so. Assuming that the elementary operations require
some minimum time, one can estimate the number of steps required and get an estimate for
the dependence of the computation time as function of the size of computation.

2. If the time required by a computation, whose size is characterized by the numberN of relevant
bits, can be carried in time proportional to some power of N and is thus polynomial, one says
that computation is in class P . Non-polynomial computation in class NP would correspond
to a computation time increasing with N faster than any power of N , say exponentially.
Donald Knuth, whose name is familiar for everyone using Latex to produce mathematical
text, believes on P = NP in the framework of classical computation. Lubos in turn thinks
that the Turing model is probably too primitive and that quantum physics based model is
needed and this might allow P = NP .

What about quantum computation as we understand it in the recent quantum physics: can
it achieve P = NP?

1. Quantum computation is often compared to a superposition of classical computations and
this might encourage to think that this could make it much more effective but this does not
seem to be the case. Note however that the amount of information represents by N qubits is
however exponentially larger than that represented by N classical bits since entanglement is
possible. The prevailing wisdom seems to be that in some situations quantum computation
can be faster than the classical one but that if P = NP holds true for classical computation,
it holds true also for quantum computations. Presumably because the model of quantum
computation begins from the classical model and only (quantum computer scientists must
experience this statement as an insult - apologies!) replaces bits with qubits.

2. In quantum computer one replaces bits with entangled qubits and gates with quantum gates
and computation corresponds to a unitary time evolution with respect to a discretized time
parameter constructed in terms of fundamental simple building bricks. So called tensor net-
works realize the idea of local unitary in a nice manner and has been proposed to defined error
correcting quantum codes. State function reduction halts the computation. The outcome is
non-deterministic but one can perform large number of computations and deduce from the
distribution of outcomes the results of computation.

http://tinyurl.com/zduu72p
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What about conscious computations? Or more generally, conscious information processing.
Could it proceed faster than computation in these sense of Turing? To answer this question one
must first try to understand what conscious information processing might be. TGD inspired theory
of consciousnesss provides one a possible answer to the question involving not only quantum physics
but also new quantum physics.

1. In TGD framework Zero energy ontology (ZEO) replaces ordinary positive energy ontology
and forces to generalize the theory of quantum measurement. This brings in several new
elements. In particular, state function reductions can occur at both boundaries of causal
diamond (CD), which is intersection of future and past direct light-cones and defines a ge-
ometric correlate for self. Selves for a fractal hierarchy - CDs within CDs and maybe also
overlapping. Negentropy Maximization Principle (NMP) is the basic variational principle of
consciousness and tells that the state function reductions generate maximum amount of con-
scious information. The notion of negentropic entanglement (NE) involving p-adic physics
as physics of cognition and hierarchy of Planck constants assigned with dark matter are also
central elements.

2. NMP allows a sequence of state function reductions to occur at given boundary of diamond-
like CD - call it passive boundary. The state function reduction sequence leaving everything
unchanged at the passive boundary of CD defines self as a generalized Zeno effect. Each
step shifts the opposite - active - boundary of CD “upwards” and increases its distance from
the passive boundary. Also the states at it change and one has the counterpart of unitary
time evolution. The shifting of the active boundary gives rise to the experienced time flow
and sensory input generating cognitive mental images - the “Maya” aspect of conscious
experienced. Passive boundary corresponds to permanent unchanging “Self”.

3. Eventually NMP forces the first reduction to the opposite boundary to occur. Self dies and
reincarnates as a time reversed self. The opposite boundary of CD would be now shifting
“downwards” and increasing CD size further. At the next reduction to opposite boundary
re-incarnation of self in the geometric future of the original self would occur. This would be
re-incarnation in the sense of Eastern philosophies. It would make sense to wonder whose
incarnation in geometric past I might represent!

Could this allow to perform fast quantal computations by decomposing the computation
to a sequence in which one proceeds in both directions of time? Could the incredible feats of
some “human computers” rely on this quantum mechanism (see http://tinyurl.com/hk5baty).
The indian mathematician Srinivasa Ramanujan (see http://tinyurl.com/l42q7a2) is the most
well-known example of a mathematician with miraculous gifts. He told immediately answers to
difficult mathematical questions - ordinary mortals had to to hard computational work to check
that the answer was right. Many of the extremely intricate mathematical formulas of Ramanujan
have been proved much later by using advanced number theory. Ramanujan told that he got the
answers from his personal Goddess.

Might it be possible in ZEO to perform quantally computations requiring classically non-
polynomial time much faster - even in polynomial time? If this were the case, one might at least
try to understand how Ramanujan did it although higher levels selves might be involved also (did
his Goddess do the job?).

1. Quantal computation would correspond to a state function reduction sequence at fixed bound-
ary of CD defining a mathematical mental image as sub-self. In the first reduction to the
opposite boundary of CD sub-self representing mathematical mental image would die and
quantum computation would halt. A new computation at opposite boundary proceeding to
opposite direction of geometric time would begin and define a time-reversed mathematical
mental image. This sequence of reincarnations of sub-self as its time reversal could give rise
to a sequence of quantum computation like processes taking less time than usually since one
half of computations would take place at the opposite boundary to opposite time direction
(the size of CD increases as the boundary shifts).

2. If the average computation time is same at both boundaries, the computation time would
be only halved. Not very impressive. However, if the mental images at second boundary

http://tinyurl.com/hk5baty
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- call it A - are short-lived and the selves at opposite boundary B are very long-lived and
represent very long computations, the process could be very fast from the point of view of
A! Could one overcome the P 6= NP constraint by performing computations during time-
reversed re-incarnations?! Short living mental images at this boundary and very long-lived
mental images at the opposite boundary - could this be the secret of Ramanujan?

3. Was the Goddess of Ramanujan - self at higher level of self-hierarchy - nothing but a time re-
versal for some mathematical mental image of Ramanujan (Brahman=Atman!), representing
very long quantal computations! We have night-day cycle of personal consciousness and it
could correspond to a sequence of re-incarnations at some level of our personal self-hierarchy.
Ramanujan tells that he met his Goddess in dreams. Was his Goddess the time reversal
of that part of Ramanujan, which was unconscious when Ramanujan slept? Intriguingly,
Ramanujan was rather short-lived himself - he died at the age of 32! In fact, many geniuses
have been rather short-lived.

4. Why the alter ego of Ramanujan was Goddess? Jung intuited that our psyche has two aspects:
anima and animus. Do they quite universally correspond to self and its time reversal? Do our
mental images have gender?! Could our self-hierarchy be a hierarchical collection of anima
and animi so that gender would be something much deeper than biological sex! And what
about Yin-Yang duality of Chinese philosophy and the ka as the shadow of persona in the
mythology of ancient Egypt?

8.11.2 Symplectic QFT, {3, 4, 5} as Additive Primes, and Arithmetic
Consciousness

For years ago I proposed that symplectic QFT is an essential part of TGD [K9, K53]. The basic
observation was that one can assign to polygons of partonic 2-surface - say geodesic triangles -
Kähler magnetic fluxes defining symplectic invariance identifiable as zero modes. This assignment
makes sense also for string world sheets and gives rise to what is usually called Abelian Wilson line.
I could not specify at that time how to select these polygons in the case of partonic 2-surfaces.

The recent proposal of Maldacena and Arkani-Hamed [B43] (see http://tinyurl.com/

ych26gcm) that CMB might contain signature of inflationary cosmology as triangles and polygons
for which the magnitude of n-point correlation function is enhanced led to a progress in this
respect. In the proposal of Maldacena and Arkani-Hamed the polygons are defined by momentum
conservation. Now the polygons would be fixed rather uniquely by requiring that fermions reside
at their vertices and momentum conservation is not involved.

This inspires the idea about numbers {3, 4, 5} as “additive primes” for integers n > 2 repre-
sentable as non-degenerate polygons. Geometrically one could speak of prime polygons not decom-
posable to lower non-degenerate polygons. These polygons are different from those of Maldacena
and Arkani-Hamed and would be associated many-fermion states with negentropic entanglement
(NE) - this notion relates to cognition and conscious information and is something totally new
from standard physics point of view. This inspires also a conjecture about a deep connection with
arithmetic consciousness: polygons would define representations for integers n > 2. The splicings
of polygons to smaller ones could be dynamical quantum processes behind arithmetic conscious
processes involving addition. I have already earlier considered a possible counterpart for conscious
prime factorization in the adelic framework [L25].

Basic ideas of TGD inspired theory of conscious very briefly

Negentropy Maximization Principle (NMP) is the variational principle of consciousness in TGD
framework. It says that negentropy gain in state function reduction (quantum jump re-creating
Universe) is maximal. State function reduction is basically quantum measurement in standard
QM and sensory qualia (for instance) could be perhaps understood as quantum numbers of state
resulting in state function reduction. NMP poses conditions on whether this reduction can occur.
In standard ontology it would occur always when the state is entangled: reduction would destroy
the entanglement and minimize entanglement entropy. When cognition is brought in, the situation
changes.

http://tinyurl.com/ych26gcm
http://tinyurl.com/ych26gcm


8.11. Number Theoretical Feats and TGD Inspired Theory of Consciousness 405

The first challenge is to define what negentropic entanglement (NE) and negentropy could
mean.

1. In real physics without cognition one does not have any definition of negentropy: on must
define negentropy as reduction of entropy resulting as conscious entity gains information.
This kind of definition is circular in consciousness theory.

2. In p-adic physics one can define number theoretic entanglement entropy with same basic
properties as ordinary Shannon entropy. For some p-adic number fields this entropy can be
negative and this motivates an interpretation as conscious information related to entangle-
ment - rather to the ignorance of external observer about entangled state. The prerequisite is
that the entanglement probabilities belong to an an extension of rationals inducing a finite-
dimensional extension of rationals. Algebraic extensions are such extensions as also those
generate by a root of e (ep is p-adic number in Qp).

A crucial step is to fuse together sensory and cognitive worlds as different aspects of existence.

1. One must replace real universe with adelic one so that one has real space-time surfaces and
their p-adic variants for various primes p satisfying identical field equations. These are related
by strong form of holography (SH) in which 2-D surfaces (string world sheets and partonic
2-surfaces) serve as “space-time genes” and obey equations which make sense both p-adically
in real sense so that one can identify them as points of “world of classical worlds” (WCW).

2. One can say that these 2-surfaces belong to intersection of realities and p-adicities - intersec-
tion of sensory and cognitive. This demands that the parameters appearing in the equations
for 2-surface belong algebraic extension of rational numbers: the interpretation is that this
hierarchy of extensions corresponds to evolutionary hierarchy. This also explains imagination
in terms of the p-adic space-time surfaces which are not so unique as the real one because of
inherent non-determinism of p-adic differental equations. What can be imagined cannot be
necessarily realized. You can continued p-adic 2-surface to 4-D surface but not to real one.

There is also second key assumption involved.

1. Hilbert space of quantum states is same for real and p-adic sectors of adelic world: for
instance, tensor product would lead to total nonsense since there would be both real and
p-adic fermions. This means same quantum state and same entanglement but seen from
sensory and various cognitive perspectives. This is the basic idea of adelicity: the p-adic
norms of rational number characterize the norm of rational number. Now various p-adic
conscious experiences characterize the quantum state.

2. Real perspective sees entanglement always as entropic. For some finite number number
of primes p p-adic entanglement is however negentropic. For instance, for entanglement
probabilities pi = 1/N , the primes appearing as factors of N are such information carrying
primes. The presence of these primes can make the entanglement stable. The total entropy
equal to the sum of negative real negentropy + various p-adic negentropies can be positive
and cannot be reduced in the reduction so that reduction does not occur at all! Entanglement
is stabilized by cognition and the randomness of state function reduction tamed: matter has
power over matter!

3. There is analogy with the reductionism-holism dichotomy. Real number based view is reduc-
tionistic: information is obtained when the entangled state is split into un-entangled part.
p-Adic number based view is holistic: information is inthe negentropic entanglement and
can be seen as abstraction or rule. The superposition of state pairs represents a rule with
state pairs (ai, bi) representing the instance of the rule A↔B. Maximal entanglement defined
by entanglement probabilities pi = 1/N makes clear the profound distinction between these
views. In real sector the negentropy is negative and smallest possible. In p-adic sector the
negentropy is maximum for p-adic primes appearing as factors of N and total negentropy as
their sum is large. NE allows to select unique state basis if the probabilities pi are different.

For pi = 1/N one can choose any unitary related state basis since unit matrix is invariant
under unitary transformations. From the real point of view the ignorance is maximal and
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entanglement entropy is indeed maximal. For instance, in case of Schrödinger cat one could
choose the cat’s state basis to be any superposition of dead and alive cat and a state orthogo-
nal to it. From p-adic view information is maximal. The reports of meditators, in particular
Zen buddhists, support this interpretation. In “enlightened state” all discriminations disap-
pear: it does not make sense to speak about dead or alive cat or anything between these two
options. The state contains information about entire state - not about its parts. It is not
information expressible using language relying on making of distinctions but silent wisdom.

How do polygons emerge in TGD framework?

The duality defined by strong form of holography (SH) has 2 sides. Space-time side (bulk) and
boundary side (string world sheets and partonic 2-surfaces). 2-D half of SH would suggest a de-
scription based on string world sheets and partonic 2-surfaces. This description should be especially
simple for the quantum states realized as spinor fields in WCW (“world of classical worlds”). The
spinors (as opposed to spinor fields) are now fermionic Fock states assignable to space-time surface
defining a point of WCW. TGD extends ordinary 2-D conformal invariance to super-symplectic
symmetry applying at the boundary of light-cone: note that given boundary of causal diamond
(CD) is contained by light-cone boundary.

1. The correlation functions at imbedding space level for fundamental objects, which are fermions
at partonic 2-surfaces could be calculated by applying super-symplectic invariance having
conformal structure. I have made rather concrete proposals in this respect. For instance,
I have suggested that the conformal weights for the generators of supersymplectic algebra
are given by poles of fermionic zeta ζF (s) = ζ(s)/ζ(2s) and thus include zeros of zeta scaled
down by factor 1/2 [K16]. A related proposal is conformal confinement guaranteeing the
reality of net conformal weights.

2. The conformally invariant correlation functions are those of super-symplectic CFT at light-
cone boundary or its extension to CD. There would be the analog of conformal invariance
associated with the light-like radial coordinate rM and symplectic invariance associated with
CP2 and sphere S2 localized with respect to rM analogous to the complex coordinate in
ordinary conformal invariance and naturally continued to hypercomplex coordinate at string
world sheets carrying the fermionic modes and together with partonic 2-surfaces defining the
boundary part of SH.

Symplectic invariants emerge in the following manner. Positive and negative energy parts
of zero energy states would also depend on zero modes defined by super-symplectic invariants and
this brings in polygons. Polygons emerge also from four-momentum conservation. These of course
are also now present and involve the product of Lorentz group and color group assignable to CD
near its either boundary. It seems that the extension of Poincare translations to Kac-Moody type
symmetry allows to have full Poincare invariance (in its interior CD looks locally like M4 ×CP2).

1. One can define the symplectic invariants as magnetic fluxes associated with S2 and CP2

Kähler forms. For string world sheets one would obtain non-integrable phase factors. The
vertices of polygons defined by string world sheets would correspond to the intersections of
the string world sheets with partonic 2-surfaces at the boundaries of CD and at partonic
2-surfaces defining generalized vertices at which 3 light-like 3-surfaces meet along their ends.

2. Any polygon at partonic 2-surface would also allow to define such invariants. A physically
natural assumption is that the vertices of these polygons are realized physically by adding
fermions or antifermions at them. Kähler fluxes can be expressed in terms of non-integrable
phase factors associated with the edges. This assumption would give the desired connection
with quantum physics and fix highly uniquely but not completely the invariants appearing
in physical states.

The correlated polygons would be thus naturally associated with fundamental fermions and
a better analogy would be negentropically entangled n-fermion state rather than corresponding to
maximum of the modulus of n-point correlation function. Hierarchy of Planck constants makes
these states possible even in cosmological scales. The point would be that negentropic entanglement
assignable to the p-adic sectors of WCW would be in key role.
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Symplectic invariants and Abelian non-integrable phase factors

Consider now the polygons assignable to many-fermion states at partonic 2-surfaces.

1. The polygon associated with a given set of vertices defined by the position of fermions is far
from unique and different polygons correspond to different physical situations. Certainly one
must require that the geodesic polygon is not self-intersecting and defines a polygon or set
of polygons.

2. Geometrically the polygon is not unique unless it is convex. For instance, one can take
regular n-gon and add one vertex to its interior. The polygon can be also constructed in
several manners. From this one obtains a non-convex n+ 1-gon in n+ 1 manners.

3. Given polygon is analogous with Hamiltonian cycle connecting all points of given graph. Now
one does not have graph structure with edges and vertices unless one defines it by nearest
neighbor property. Platonic solids provide an example of this kind of situation. Hamiltonian
cycles [A13, A29] are key element in the TGD inspired model for music harmony leading also
to a model of genetic code [K43] [L15].

4. One should somehow fix the edges of the polygon. For string world sheets the edges would
be boundaries of string world sheet. For partonic 2-surfaces the simplest option is that the
edges are geodesic lines and thus have shortest possible length. This would bring in metric
so that the idea about TGD as almost topological QFT would be realized.

One can distinguish between two cases: single polygon or several polygons.

1. One has maximal entanglement between fundamental fermions, when the vertices define
single polygon. One can however have several polygons for a given set of vertices and in this
case the coherence is reduced. Minimal correlations correspond to maximal number of 3-gons
and minimal number of 4-gons and 5-gons.

2. For large heff = n× h the partonic 2-surfaces can have macroscopic and even astrophysical
size and one can consider assigning many-fermion states with them. For instance, anyonic
states could be interpreted in this manner. In this case it would be natural to consider various
decompositions of the state to polygons representing entangled fermions.

The definition of symplectic invariant depends on whether one has single polygon or several
polygons.

1. In the case that there are several polygons not containing polygons inside them (if this the
case,then the complement of polygon must satisfy the condition) one can uniquely identify
the interior of each polygon and assign a flux with it. Non-integrable phase factor is well-
defined now. If there is only single polygon then also the complement of polygon could define
the flux. Polygon and its complement define fluxes Φ and Φtot − Φ.

2. If partonic 2-surface carries monopole Kähler charge Φtot is essentially nπ, where n is mag-
netic monopole flux through the partonic 2-surface. This is half integer - not integer: this is
key feature of TGD and forces the coupling of Kähler gauge potential to the spinors leading
to the quantum number spectrum of standard model. The exponent can be equal to -1 for
half-odd integer.

This problem disappears if both throats of the wormhole contact connecting the space-time
sheets with Minkowski signature give their contribution so that two minus-signs give one plus
sign. Elementary particles necessarily consist of wormhole contacts through which monopole
flux flows and runs along second space-time sheet to another contact and returns along second
space-time sheet so that closed monopole flux tube is obtained. The function of the flux must
be single valued. This demands that it must reduce to the cosine of the integer multiple of
the flux and identifiable as as the real part of the integer power of magnetic flux through the
polygon.

The number theoretically deepest point is geometrically completely trivial.
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1. Only n > 2-gons are non-degenerate and 3-, 4- and 5-gons are prime polygons in the sense
that they cannot be sliced to lower polygons. Already 6-gon decomposes to 2 triangles.

2. One can wonder whether the appearance of 3 prime polygons might relate to family replica-
tion phenomenon for which TGD suggests an explanation in terms of genus of the partonic
2-surface [K10]. This does not seem to be the case. There is however other three special
integers: namely 0,1, and 2.

The connection with family replication phenomenon could be following. When the number of
handles at the parton surface exceeds 2, the system forms entangled/bound states describable
in terms of polygons with handles at vertices. This would be kind of phase transition.
Fundamental fermion families with handle number 0,1,2 would be analogous to integers 0,1,2
and the anyonic many-handle states with NE would be analogous to partitions of integers
n > 2 represented by the prime polygons. They would correspond to the emergence of p-
adic cognition. One could not assign NE and cognition with elementary particles but only
to more complex objects such as anyonic states associated with large partonic 2-surfaces
(perhaps large because they have large Planck constant heff = n× h) [K39].

Integers (3, 4, 5) as “additive primes” for integers n ≥ 3: a connection with arithmetic
consciousness

The above observations encourage a more detailed study of the decomposition of polygons to
smaller polygons as a geometric representation for the partition of integers to a sum of smaller
integers. The idea about integers (3, 4, 5) as “additive primes” represented by prime polygons is
especially attractive. This leads to a conjecture about NE associated with polygons as quantum
correlates of arithmetic consciousness.

1. Motivations

The key idea is to look whether the notion of divisibility and primeness could have practical
value in additive arithmetics. 1 is the only prime for addition in general case. n = 1 + 1 + ... is
analogous to pn and all integers are “additive powers” of 1.

What happens if one considers integers n ≥ 3? The basic motivation is that n ≥ 3 is
represented as a non-degenerate n-gon for n ≥ 3. Therefore geometric representation of these
primes is used in the following. One cannot split triangles from 4-gon and 5-gon. But already
for 6-gon one can and obtains 2 triangles. Thus {3, 4, 5} would be the additive primes for n ≥ 3
represented as prime polygons.

The n-gons with n ∈ {3, 4, 5} appear as faces of the Platonic solids! The inclusions of
von Neumann algebras known as hyperfinite factors of type II1 central in TGDs correspond to
quantum phases exp(π/n) n = 3, 4, 5.... Platonic solids correspond to particular finite subgroups
of 3-D rotation group, which are in one-one correspondence with simply laced Lie-groups (ADE).
There is also a direct connection with the classification of N = 2 super-conformal theories, which
seem to be relevant for TGD.

I cannot resist the temptation to mention also a personal reminiscence about a long lasting
altered state of consciousness about 3 decades ago. I called it Great Experience and it boosted
among other things serious work in order to understand consciousness in terms of quantum physics.
One of the mathematical visions was that number 3 is in some sense fundamental for physics and
mathematics. I also precognized infinite primes and much later indeed discovered them. I have
repeatedly returned to the precognition about number 3 but found no really convincing reason for
its unique role although it pops up again and again in physics and mathematics: 3 particle families,
3 colors for quarks, 3 spatial dimensions, 3 quaternionic imaginaryunits, triality for octonions, to
say nothing about the role of trinity in mystics and religions. The following provides the first
argument for the special role of number 3 that I can take seriously.

2. Partition of integer to additive primes

The problem is to find a partition of an integer to additive primes 3, 4, 5. The problem
can be solved using a representation in terms of n > 2-gons as a geometrical visualization. Some
general aspects of the representation.
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1. The detailed shape of n-gons in the geometric representation of partitions does not matter:
they just represent geometrically a partition of integer to a sum. The partition can be
regarded as a dynamical process. n-gons splits to smaller n-gons producing a representation
for a partition n =

∑
i ni. What this means is easiest to grasp by imagining how polygon

can be decomposed to smaller ones. Interestingly, the decompositions of polytopes to smaller
ones - triangulations - appear also in Grassmannian twistor approach to N = 4 super Yang
Mills theory.

2. For a given partition the decomposition to n-gons is not unique. For instance, integer 12
can be represented by 3 4-gons or 4 3-gons. Integers n ∈ {3, 4, 5} are special and partitions
to these n-gons are in some sense maximal leading to a maximal decoherence as quantum
physicist might say.

The partitions are not unique and there is large number of partitions involving 3-gons,4-
gons, 5-gons. The reason is that one can split from n-gons any n1-gon with n1 < n except
for n = 3, 4, 5.

3. The daydream of non-mathematician not knowing that everything has been very probably
done for aeons ago is that one could chose n1 to be indivisible by 4 and 5, n2 indivisible
by 3 and 5 and n3 indivisible by 3 and 4 so that one might even hope for having a unique
partition. For instance, double modding by 4 and 5 would reduce to double modding of n1×3
giving a non-vanishing result, and one might hope that n1, n2 and n3 could be determined
from the double modded values of ni uniquely. Note that for ni ∈ {1, 2} the number n =
24 = 2× 3 + 2× 4 + 2× 5 playing key role in string model related mathematics is the largest
integer having this kind of representation. One should numerically check whether any general
orbit characterized by the above formulas contains a point satisfying the additional number
theoretic conditions.

Therefore the task is to find partitions satisfying these indivisibility conditions. It is however
reasonable to consider first general partitions.

4. By linearity the task of finding general partitions (forgetting divisibility conditions) is anal-
ogous to that of finding of solutions of non-homogenous linear equations. Suppose that one
has found a partition

n = n1 × 3 + n2 × 4 + n3 × 5↔ (n1, n2, n3) . (8.11.1)

This serves as the analog for the special solution of non-homogenous equation. One obtains
a general solutions of equation as the sum (n1 + k1, n2 + k1, n3 + k3) of the special solution
and general solution of homogenous equation

k1 × 3 + k2 × 4 + k3 × 5 = 0 . (8.11.2)

This is equation of plane in N3 - 3-D integer lattice.

Using 4 = 3 + 1 and 5 = 3 + 2 this gives equations

k2 + 2× k3 = 3×m , k1 − k3 + 4×m = 0 , m = 0, 1, 2, ... (8.11.3)

5. There is periodicity of 3× 4× 5 = 60. If (k1, k2, k3,m) is allowed deformation, one obtains a
new one with same divisibility properties as the original one as (k1 +60, k2−120, k3 +60,m).
If one does not require divisibility properties for all solutions, one obtains much larger set of
solutions. For instance (k1, k2, k3) = m× (1,−2, 1) defines a line in the plane containing the
solutions. Also other elementary moves than (1,-2,1) are possible.
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One can identify very simple partitions deserving to be called standard partitions and involve
mostly triangles and minimal number of 4- and 5-gons. The physical interpretation is that the
coherence is minimal for them since mostly the quantum coherent negentropically entangled units
are minimal triangles.

1. One starts from n vertices and constructs n-gon. For number theoretic purposes the shape
does not matter and the polygon can be chosen to be convex. One slices from it 3-gons one
by one so that eventually one is left with k ≡ n mod 3 == 0, 1 or 2 vertices. For k = 0 no
further operations are needed. For k = 1 resp. k = 2 one combines one of the triangles and
edge associated with 1 resp. 2 vertices to 4-gon resp. 5-gon and is done. The outcome is one
of the partitions

n = n1 × 3 , n = n1 × 3 + 4, n = n1 × 3 + 5 (8.11.4)

These partitions are very simple, and one can easily calculate similar partitions for products
and powers. It is easy to write a computer program for the products and powers of integers
in terms of these partitions.

2. There is however a uniqueness problem. If n1 is divisible by 4 or 5 - n1 = 4 × m1 or
n1 = 5 × m1 - one can interpret n1 × 3 as a collection of m1 4-gons or 5-gons. Thus the
geometric representation of the partition is not unique. Similar uniqueness condition must
apply to n2 and n3 and is trivially true in above partitions.

To overcome this problem one can pose a further requirement. If one wants n1 to be indivisible
by 4 and 5 one can transform 2 or or 4 triangles and existing 4-gon or 5-gon or 3 or 6 triangles
to 4-gons and 5-gons.

(a) Suppose n = n1×3 + 4. If n1 divisible by 4 resp. 5 or both, n1−2 is not and 4-gon and
2 3-gons can be transformed to 2 5-gons: (n1, 1, 0)→ (n1− 2, 0, 2). If n1− 2 is divisible
by 5, n1− 3 is not divisible by either 4 or 5 and 3 triangles can be transformed to 4-gon
and 5-gon: (n1, 1, 0)→ (n1 − 3, 2, 1).

(b) Suppose n = n1 × 3 + 5. If n1 divisible by 4 resp. 5 or both, n1 − 1 is not and triangle
and 5-gon can be transformed to 2 4-gons: (n1, 0, 1)→ (n1−1, 2, 0). If n1−1 is divisible
by 4 or 5, n1 − 3 is not and 3 triangles and 5-gon can be transformed to 2 5-gons and
4-gon: (n1, 0, 1)→ (n1 − 3, 1, 2).

(c) For n = n1 × 3 divisible by 4 or 5 or both one can remove only m × 3 triangles,
m ∈ {1, 2} since only in these case the resulting m× 3 (9 or 18) vertices can partitioned
to a union of 4-gon and 5-gon or of 2 4-gons and 2 5-gons: (n1, 0, 0)→ (n1 − 3, 1, 1) or
(n1, 0, 0)→ (n1 − 6, 2, 2).

These transformations seem to be the minimal transformations allowing to achieve indi-
visibility by starting from the partition with maximum number of triangles and minimal
coherence.

Some further remarks about the partitions satisfying the divisibility conditions are in order.

1. The multiplication of n with partition (n1, n2, n3) satisfying indivisibility conditions by an
integer m not divisible by k ∈ {3, 4, 5} gives integer with partition m×(n1, n2, n3). Note also
that if n is not divisible by k ∈ {3, 4, 5} the powers of n, nk has partition nk−1 × (n1, n2, n3)
and this could help to solve Diophantine equations.

2. Concerning the uniqueness of the partition satisfying the indivisibility conditions, the answer
is negative. 8 = 3 + 5 = 4 + 4 is the simplest counter example. Also the m-multiples of 8
such that m is indivisible by 2,3,4,5 serve as counter examples. 60-periodicity implies that
for sufficiently large values of n the indivisibility conditions do not fix the partition uniquely.
(n1, n2, n3) can be replaced with (n1 + 60 + n2 − 120, n3 + 60) without affecting divisibility
properties.
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3. Intriguing observations related to 60-periodicity

60-periodicity seems to have deep connections with both music consciousness and genetic
code if the TGD inspired model of genetic code is taken seriously code [K43] [L15].

1. The TGD inspired model for musical harmony and genetic involves icosahedron with 20
triangular faces and tetrahedron with 4 triangular faces. The 12 vertices of icosahedron
correspond to the 12 notes. The model leads to the number 60. One can say that there
are 60 +4 DNA codons and each 20 codon group is 60=20+20+20 corresponds to a subset
of aminoacids and 20 DNAs assignable to the triangles of icosahedron and representing also
3-chords of the associated harmony. The remaining 4 DNAs are associated with tetrahedron.

Geometrically the identification of harmonies is reduced to the construction of Hamiltonian
cycles - closed isometrically non-equivalent non-self-intersecting paths at icosahedron going
through all 12 vertices. The symmetries of the Hamiltonian cycles defined by subgroups of
the icosahedral isometry group provide a classification of harmonies and suggest that also
genetic code carries additional information assignable to what I call bio-harmony perhaps
related to the expression of emotions - even at the level of biomolecules - in terms of “music”
defined as sequences 3-chords realized in terms of triplets of dark photons (or notes) in 1-1
correspondence with DNA codons in given harmony.

2. Also the structure of time units and angle units involves number 60. Hour consists of 60 min-
utes, which consists of 60 seconds. Could this accident somehow reflect fundamental aspects
of cognition? Could we be performing sub-conscious additive arithmetics using partitions of
n-gons? Could it be possible to “see” the partitions if they correspond to NE?

4. Could additive primes be useful in Diophantine mathematics?

The natural question is whether it could be number theoretically practical to use “additive
primes” {3, 4, 5} in the construction of natural numbers n ≥ 3 rather than number 1 and successor
axiom. This might even provide a practical tool for solving Diophantine equations (it might well
be that mathematicians have long ago discovered the additive primes).

The most famous Diophantine equation is xn + yn = zn and Fermat’s theorem - proved by
Wiles - states that for n > 2 it has no solutions. Non-mathematician can naively ask whether the
proposed partition to additive primes could provide an elementary proof for Fermat’s theorem and
continue to test the patience of a real mathematician by wondering whether the parition for a sum
of powers n > 2 could be always different from that for single power n > 2 perhaps because of
some other constraints on the integers involved?

5. Could one identify quantum physical correlates for arithmetic consciousness?

Even animals and idiot savants can do arithmetics. How this is possible? Could one imagine
physical correlates for arithmetic consciousness for which product and addition are the fundamental
aspects? Is elementary arithmetic cognition universal and analogous to direct sensory experience.
Could it reduce at quantum level to a kind of quantum measurement process quite generally giving
rise to mental images as outcomes of quantum measurement by repeated state function reduction
lasting as long as the corresponding sub-self (mental image) lives?

Consider a partition of integer to a product of primes first. I have proposed a general model
for how partition of integer to primes could be experienced directly [L25]. For negentropically
entangled state with maximal possible negentropy having entanglement probabilities pi = 1/N ,
the negentropic primes are factors of N and they could be directly “seen” as negentropic p-adic
factors in the adelic decomposition (reals and extensions of various p-adic number fields defined by
extension of rationals defined the factors of adele and space-time surfaces as preferred extremals
of Kähler action decompose to real and p-adic sectors).

What about additive arithmetics?

1. The physical motivation for n-gons is provided symplectic QFT [K9, K53], which is one
aspect of TGD forced by super symplectic conformal invariance having structure of conformal
symmetry. Symplectic QFT would be analogous to conformal QFT. The key challenge is to
identify symplectic invariants on which the positive and negative energy parts of zero energy
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states can depend. The magnetic flux through a given area of 2-surface is key invariant of this
kind. String world sheet and partonic 2-surfaces are possible identifications for the surface
containing the polygon.

Both the Kähler form associated with the light-cone boundary, which is metrically sphere
with constant radius rM (defining light-like radial coordinate) and the induced Kähler form
of CP2 define these kind of fluxes.

2. One can assign fluxes with string world sheets. In this case one has analog of magnetic flux
but over a surface with metric signature (1,-1). Fluxes can be also assigned as magnetic fluxes
with partonic 2-surfaces at which fundamental fermions can be said to reside. n fermions
defining the vertices at partonic 2-surface define naturally an n-gon or several of them. The
interpretation would be as Abelian Wilson loop or equvalently non-integrable phase factor.

3. The polygons are not completely unique but this reflect the possibility of several physical
states. n-gon could correspond to NE. The imaginary exponent of Kähler magnetic flux
Φ through n-gon is symplectic invariant defining a non-integrable phase factor and defines
a multiplicative factor of wave function. When the state decomposes to several polygons,
one can uniquely identify the interior of the polygon and thus also the non-integrable phase
factor.

There is however non-uniqueness, when one has only single n-gon since also the complement of
n-gon at partonic 2-surface containing now now polygons defines n-gon and the corresponding
flux is Φtot − Φ. The flux Φtot is quantized and equal to the integer valued magnetic charge
times 2π. The total flux disappears in the imaginary exponent and the non-integrable phase
factor for the complementary polygon reduces to complex conjugate of that for polygon.
Uniqueness allows only the cosine for an integer multiple of the flux.

The non-integrable phase factor assignable to fermionic polygon would give rise to a corre-
lation between fermions in zero modes invariant under symplectic group. The correlations
defined by the n-gons at partonic 2-surfaces would be analogous to that in momentum space
implied by the momentum conservation forcing the momenta to form a closed polygon but
having totally different origin.

Could it be that the wave functions representing collections of n-gons representing partition
of integer to a sum could be experienced directly by people capable of perplexing mathematical
feats. The partition to a sum would correspond to a geometric partition of polygon representing
partition of positive integer n ≥ 3 to a sum of integers. Quantum physically it would correspond
to NE as a representation of integer.

This might explain number theoretic miracles related to addition of integers in terms of
direct “seeing”. The arithmetic feats could be dynamical quantum processes in which polygons
would decompose to smaller polygons, which would be directly “seen”. This would require at
least two representations: the original polygon and the decomposed polygon resulting in the state
function reduction to the opposite boundary of CD. An ensemble of arithmetic sub-selves would
seem to be needed. NMP does not seem to favour this kind of partition since negentropy is reduced
but if its time reversal occurs in geometric time direction opposite to that of self it might look like
partition for the self having sub-self as mental image.

8.12 p-Adicizable discrete variants of classical Lie groups
and coset spaces in TGD framework

In TGD framework p-adicization and adelization are carried out at all levels of geometry: imbed-
ding space, space-time and WCW. Adelization at the level of state spaces requires that it is common
from all sectors of the adele and has as coefficient field an extension of rationals allowing both real
and p-adic interpretations: the sectors of adele give only different views about the same quantum
state.

In the sequel the recent view about the p-adic variants of imbedding space, space-time and
WCW is discussed. The notion of finite measurement resolution reducing to number theoretic
existence in p-adic sense is the fundamental notion. p-Adic geometries replace discrete points of
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discretization with p-adic analogs of monads of Leibniz making possible to construct differential
calculus and formulate p-adic variants of field equations allowing to construct p-adic cognitive
representations for real space-time surfaces.

This leads to a beautiful construction for the hierarchy of p-adic variants of imbedding space
inducing in turn the construction of p-adic variants of space-time surfaces. Number theoretical
existence reduces to conditions demanding that all ordinary (hyperbolic) phases assignable to
(hyperbolic) angles are expressible in terms of roots of unity (roots of e).

For SU(2) one obtains as a special case Platonic solids and regular polygons as preferred
p-adic geometries assignable also to the inclusions of hyperfinite factors [K61, K20]. Platonic
solids represent idealized geometric objects ofthe p-adic world serving as a correlate for cognition
as contrast to the geometric objects of the sensory world relying on real continuum.

In the case of causal diamonds (CDs) - the construction leads to the discrete variants of
Lorentz group SO(1, 3) and hyperbolic spaces SO(1, 3)/SO(3). The construction gives not only
the p-adicizable discrete subgroups of SU(2) and SU(3) but applies iteratively for all classical
Lie groups meaning that the counterparts of Platonic solids are countered also for their p-adic
coset spaces. Even the p-adic variants of WCW might be constructed if the general recipe for the
construction of finite-dimensional symplectic groups applies also to the symplectic group assignable
to ∆CD × CP2.

The emergence of Platonic solids is very remarkable also from the point of view of TGD
inspired theory of consciousness and quantum biology. For a couple of years ago I developed a model
of music harmony [K43] [L15] relying on the geometries of icosahedron and tetrahedron. The basic
observation is that 12-note scale can be represented as a closed curve connecting nearest number
points (Hamiltonian cycle) at icosahedron going through all 12 vertices without self intersections.
Icosahedron has also 20 triangles as faces. The idea is that the faces represent 3-chords for a given
harmony characterized by Hamiltonian cycle. Also the interpretation terms of 20 amino-acids
identifiable and genetic code with 3-chords identifiable as DNA codons consisting of three letters
is highly suggestive.

One ends up with a model of music harmony predicting correctly the numbers of DNA
codons coding for a given amino-acid. This however requires the inclusion of also tetrahedron.
Why icosahedron should relate to music experience and genetic code? Icosahedral geometry and
its dodecahedral dual as well as tetrahedral geometry appear frequently in molecular biology but
its appearance as a preferred p-adic geometry is what provides an intuitive justification for the
model of genetic code. Music experience involves both emotion and cognition. Musical notes could
code for the points of p-adic geometries of the cognitive world. The model of harmony in fact
generalizes. One can assign Hamiltonian cycles to any graph in any dimension and assign chords
and harmonies with them. Hence one can ask whether music experience could be a form of p-adic
geometric cognition in much more general sense.

The geometries of biomolecules brings strongly in mind the geometry p-adic space-time
sheets. p-Adic space-time sheets can be regarded as collections of p-adic monad like objects at
algebraic space-time points common to real and p-adic space-time sheets. Monad corresponds to
p-adic units with norm smaller than unit. The collections of algebraic points defining the positions
of monads and also intersections with real space-time sheets are highly symmetric and determined
by the discrete p-adicizable subgroups of Lorentz group and color group. When the subgroup of the
rotation group is finite one obtains polygons and Platonic solids. Bio-molecules typically consists
of this kind of structures - such as regular hexagons and pentagons - and could be seen as cognitive
representations of these geometries often called sacred! I have proposed this idea long time ago
and the discovery of the recipe for the construction of p-adic geometries gave a justification for
this idea.

8.12.1 p-Adic variants of causal diamonds

To construct p-adic variants of space-time surfaces one must construct p-adic variants of the
imbedding space. The assumption that the p-adic geometry for the imbedding space induces p-
adic geometry for sub-manifolds implies a huge simplification in the definition of p-adic variants of
preferred extremals. The natural guess is that real and p-adic space-time surfaces gave algebraic
points as common: so that the first challenge is to pick the algebraic points of the real space-time
surface. To define p-adic space-time surface one needs field equations and the notion of p-adic
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continuum and by assigning to each algebraic point a p-adic continuum to make it monad, one can
solve p-adic field equations inside these monads.

The idea of finite measurement resolution suggests that the solutions of p-adic field equations
inside monads are arbitrary. Whether this is consistent with the idea that same solutions of field
equations can be interpreted either p-adically or in real sense is not quite clear. This would be
guaranteed if the p-adic solution has same formal representation as the real solution in the vicinity
of given discrete point - say in terms of polynomials with rational coefficients and coordinate
variables which vanish for the algebraic point.

Real and p-adic space-time surfaces would intersect at points common to all number fields
for given adele: cognition and sensory worlds intersect not only at the level of WCW but also at
the level of space-time. I had already considered giving up the latter assumption but it seems to
be necessary at least for string world sheets and partonic 2-surfaces if not for entire space-time
surfaces.

General recipe

The recipe would be following.

1. One starts from a discrete variant of CD×CP2 defined by an appropriate discrete symmetry
groups and their subgroups using coset space construction. This discretization consists of
points in finite-dimensional extension of p-adics induced by an extension of rationals. These
points are assumed to be in the intersection of reality and p-adicities at space-time level -
that is common for real and p-adic space-time surfaces. Cognitive representations in the real
world are thus discrete and induced by the intersection. This is the original idea which I
was ready to give up as the vision about discretization at WCW level allowing to solve all
problems related to symmetries emerged. At space-time level the p-adic discretization reduces
symmetry groups to their discrete subgroups: cognitive representations unavoidably break
the symmetries. What is important the distance between discrete p-adic points labelling
monads is naturally their real distance. This fixes metrically real-p-adic/sensory-cognitive
correspondence.

2. One replaces each point of this discrete variant CD × CP2 with p-adic continuum defined
by an algebraic extension of p-adics for the adele considered so that differentiation and
therefore also p-adic field equations make sense. The continuum for given discrete point
of CDd × CP2,d defines kind of Leibnizian monad representing field equations p-adically.
The solution decomposes to p-adically differentiable pieces and the global solution of field
equations makes sense since it can be interpreted in terms of pseudo-constants. p-Adicization
means discretization but with discrete points replaced with p-adic monads preserving also
the information about local behavior. The loss of well-ordering inside p-adic monad reflects
its loss due to the finiteness of measurement resolution.

3. The distances between monads correspond to their distances for real variant of CD × CP2.
Are there natural restrictions on the p-adic sizes of monads? Since p-adic units are in question
that size in suitable units is p−N < 1. It would look natural that the p-adic size of the is
smaller than the distance to the nearest monad. The denser the discretization is, the larger
the value of N would be. The size of the monad decreases at least like 1/p and for large primes
assignable to elementary particles (M127 = 2127 − 1) is rather small. The discretizations of
the subgroups share the properties of the group invariant geometry of groups so that they
are to form a regular lattice like structure with constant distance to nearest neighbors. At
the imbedding level therefore p-adic geometries are extremely symmetric. At the level of
space-time geometries only a subset of algebraic points is picked and the symmetry tends to
be lost.

CD degrees of freedom

Consider first CD degrees of freedom.

1. For M4 one has 4 linear coordinates. Should one p-adicize these or should one discretize
CDs defined as intersections of future and past directed light-cones and strongly suggested
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by ZEO. CD seems to represent the more natural option. The construction of a given CD
suggests that one should replace the usual representation of manifold as a union of overlapping
regions with intersection of two light-cones with coordinates related in the intersection as in
the case of ordinary manifold: ∪ → ∩.

2. For a given light-cone one must introduce light-cone proper time a, hyperbolic angle η and
two angle coordinates (θ, φ). Light-cone proper time a is Lorentz invariant and corresponds
naturally to an ordinary p-adic number of more generally to a p-adic number in algebraic
extension which does not involve phases.

The two angle coordinates (θ, φ) parameterizing S2 can be represented in terms of phases
and discretized. The hyperbolic coordinate can be also discretized since ep exists p-adically,
and one obtains a finite-dimensional extension of p-adic numbers by adding roots of e and
its powers. e is completely exceptional in that it is p-adically an algebraic number.

3. This procedure gives a discretization in angle coordinates. By replacing each discrete value
of angle by p-adic continuum one obtains also now the monad structure. The replacement
with continuum means the replacement

Um,n ≡ exp(i2πm/n)→ Um,n × exp(iφ) , (8.12.1)

where φ is p-adic number with norm p−N < 1 It can also belong to an algebraic extension of p-
adic numbers. Building the monad is like replacing in finite measurement the representative
point of measurement resolution interval with the entire interval. By finite measurement
resolution one cannot fix the order inside the interval. Note that one obtains a hierarchy of
subgroups depending on the upper bound p−n for the modulus. For p mod 4 = 1 imaginary
unit exist as ordinary p-adic number and for p mod 4 = 3 in an extension including

√
−1.

4. For the hyperbolic angle one has

Em,n ≡ exp(m/n)→ Em,n × exp(η) (8.12.2)

with the ordinary p-adic number η having norm p−N < 1. Lorentz symmetry is broken to a
discrete subgroup: this could be interpreted in terms of finite cognitive resolution. Since ep

is p-adic number also hyperbolic angle has finite number of values and one has compactness
in well-defined sense although in real context one has non-compactness.

In cosmology this discretization means quantization of redshift and thus recession velocities.
A concise manner to express the discretization to say that the cosmic time constant hy-
perboloids are discrete variants of Lobatchevski spaces SO(3, 1)/SO(3). The spaces appear
naturally in TGD inspired cosmology.

5. The coordinate transformation relating the coordinates in the two intersecting coordinate
patches maps hyperbolic and ordinary phases to each other as such. Light-cone proper time
coordinates are related in more complex manner. a2

+ = t2 − r2 and a2
− = (t − T )2 − r2 are

related by a2
+ − a2

− = 2tT − T 2 = 2a+cosh(η)T − T 2.

This leads to a problem unless one allows a+ and a− to belong to an algebraic extension
containing the roots of e making possible to define hyperbolic angle. The coordinates a± can
also belong to a larger extension of p-adic numbers. The expectation is that one obtains an
infinite hierarchy of algebraic extensions of rationals involving besides the phases also other
non-Abelian extension parameters. It would seem that the Abelian extension for phases and
the extension for a must factorize somehow. Note also that the expression of a+ in terms of
a− given by

a+ = −cosh(η)T ±
√
sinh2(η)T 2 + a2

− . (8.12.3)
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This expression makes sense p-adically for all values of a− if one can expand the square root
as a converning power series with respect to a−. This is true if a−/sinh(η)T has p-adic norm
smaller than 1.

6. What about the boundary of CD which corresponds to a coordinate singularity? It seems that
this must be treated separately. The boundary has topology S2×R+ and S2 can be p-adicized
as already explained. The light-like radial coordinate r = asinh(η) vanishes identically for
finite values of sinh(η). Should one regard r as ordinary p-adic number? Or should one
think that entire light-one boundary corresponds to single point r = 0? The discretization of
r is in powers of a roots of e is very natural so that each power Em,n corresponds to a p-adic
monad. If now powers Em,n are involved, one obtains just the monad at r = 0.

The construction of quantum TGD leads to the introduction of powers exp(log(r/r0)s), where
s is zero of Riemann Zeta [K16]. These make sense p-adically if u = log(r/r0) has p-adic
norm smaller than unity and s makes sense p-adically. The latter condition demanding that
the zeros are algebraic numbers is quite strong.

8.12.2 Construction for SU(2), SU(3), and classical Lie groups

In the following the detailed construction for SU(2), SU(3), and classical Lie groups will be
sketched.

Subgroups of SU(2) having p-adic counterparts

In the case U(1) the subgroups defined by roots of unity reduce to a finite group Zn. What can
one say about p-adicizable discrete subgroups of SU(2)?

1. To see what happens in the case of SU(2) one can write SU(2) element explicitly in quater-
nionic matrix representation

(θ, n) ≡ cos(θ)Id+ sin(θ)
∑
i

niIi . (8.12.4)

Here Id is quaternionic real unit and Ii are quaternionic imaginary units. n = (n1, n2, n2) is a
unit vector representable as (cos(φ), sin(φ)cos(ψ), sin(φ)sin(ψ)). This representation exists
p-adically if the phases exp(iθ), exp(i(φ) and exp(iψ) exist p-adically so that they must be
roots of unity.

The geometric interpretation is that n defines the direction of rotation axis and θ defines the
rotation angle.

2. This representation is not the most general one in p-adic context. Suppose that one has two
elements of this kind characterized by (θi, ni)such that the rotation axes are different. From
the multiplication table of quaternions one has for the product (θ12, n12) of these

cos(θ12) = cos(θ1)cos(θ2)− sin(θ1)sin(θ2)n1 · n2 . (8.12.5)

This makes sense p-adically if the inner product cos(χ) ≡ n1 ·n2 corresponds to root of unity
in the extension of rationals used. Therefore the angle between the rotation axes is number
theoretically quantized in order that p-adicization works.

One can solve θ12 from the above equation in real context but in the general case it does not
correspond to Um,n. This is not however a problem from p-adic point of view. The reduction
to a root of unity is true only in some special cases. For n1 = n2 the group generated by
the products reduces a discrete Zn ⊂ U(1) generated by a root of unity. If n1 and n2 are
orthogonal the angle between rotation axes corresponds trivially to a root of unity. In this
case one has the isometries of cube. For other Platonic solids the angles between rotation
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axes associated with various U(1) subgroups generating the entire sub-group are fixed by
their geometries. The rotation angles correspond to n = 3 for tetrahedron and icosahedron
and n = 5 dodecahedron and for n = 3. There is also duality between cube and octahedron
and icosahedron and dodecahedron.

3. Platonic solids can be geometrically seen as discretized variants of SU(2) and it seems that
they correspond to finite discrete subgroups of SU(2) defining SU(2)d. Platonic sub-groups
appear in the hierarchy of Jones inclusions. The other finite subgroups of SU(2) appearing
in this hierarchy act on polygons of plane and being generated by Zn and rotations around
the axes of plane and would naturally correspond to discrete U(1) sub-groups of SU(2) and
in a well-defined sense to a degenerate situation. By Mc-Kay correspondence all these groups
correspond to ADE type Lie groups. These subgroups define finite discretizations of SU(2)
and S2. p-Adicization would lead directly to the hierarchy of inclusions assigned also with
the hierarchy of sub-algebras of super-symplectic algebra characterized by the hierarchy of
Planck constants.

4. There are also p-adicizable discrete subgroups, which are infinite. By taking two rotations
with angles which correspond to root of unity with rotation axes, whose mutual angle corre-
sponds to root of unity one can generate an infinite discrete subgroup of SU(2) existing in
p-adic sense. More general discrete U(1) subgroups are obtained by taking n rotation axes
with mutual angles corresponding to roots of unity and generating the subgroup from these.
In case of Platonic solids this gives a finite subgroup.

Construction of p-adicizable discrete subgroups of CP2

The construction of p-adic CP2 proceeds along similar lines.

1. In the original ultra-naive approach the local p-adic metric of CP2 is obtained by a purely
formal replacement of the ordinary metric of CP2 with its p-adic counterpart and it defines
the CP2 contribution to induced metric. This makes sense since Kähler function is rational
function and components of CP2 metric and spinor connection are rational functions. This
allows to formulate p-adic variants of field equations. This description is however only local.
It says nothing about global aspects of CP2 related to the introduction of algebraic extension
of p-adic numbers.

One should be able to realize the angle coordinates of CP2 in a physically acceptable manner.
The coordinates of CP2 can be expressed by compactness in terms of trigonometric functions,
which suggests a realization of them as phases for the roots of unity. The number of points
depends on the Abelian extension of rationals inducing that of p-adics which is chosen. This
gives however only discrete version of p-adic CP2 serving as a kind of spine. Also the flesh
replacing points with monads is needed.

2. A more profound approach constructs the algebraic variants of CP2 as discrete versions of the
coset space CP2 = SU(3)/U(2). One restricts the consideration to an algebraic subgroup
of SU(3)d with elements, which are 3 × 3 matrices with components, which are algebraic
numbers in the extension of rationals. Since they are expressible in terms of phases one can
express them in terms of roots of unity. In the same manner one identifies U(2)d ⊂ SU(3)d.
CP2,d is the coset space SU(3)D/U(2)d of these. The representative of a given coset is a
point in the coset and expressible in terms of roots of unity.

3. The construction of the p-adicizable subgroups of SU(3) suggests a generalization. Since
SU(3) is 8-D and Cartan algebra is 2-D the coset space is 6-dimensional flag-manifold F =
SU(3)/U(1)×U(1) with coset consisting of elements related by automorphism g ≡ hgh−1. F
defines the twistor space of CP2 characerizing the choices for the quantization axes of color
quantum numbers. The points of F should be expressible in terms of phase angles analogous
to the angle defining rotation axis in the case of SU(2).

In the case of SU(2) n U(1) subgroups with specified rotation axes with p-adically existing
mutual angles are considered. The construction as such generates only SU(2)d subgroup
which can be trivially extended to U(2)d. The challenge is to proceed further.
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Cartan decomposition of the Lie algebra (see http://tinyurl.com/y7cjbm4c) seems to pro-
vide a solution to the problem. In the case of SU(3) it corresponds to the decomposition to
U(2) sub-algebra and its complement. One could use the decomposition G = KAK where
K is maximal compact subgroup. A is exponentiation of the maximal Abelian subalgebra,
which is 3-dimensional for CP2. By Abelianity the p-adicization of A in terms of roots of
unity simple. The image of A in G/K is totally geodesic sub-manifold. In the recent case one
has G/Ki = CP2 so that the image of A is geodesic sphere S2. This decomposition implies
the representation using roots of unity. The construction of discrete p-adicizable subgroups
of SU(n) for n > 3 would continue iteratively.

4. Since the construction starts from SU(2), U(1), and Abelian groups, and proceeds iteratively
it seems that Platonic solids have counterparts for all classical Lie groups containing SU(2).
Also level p-adicizable discrete coset spaces have analogous of Platonic solids.

The results imply that CD × CP2 is replaced by a discrete set of p-adic monads at a given
level of hierarchy corresponding to the finite cognitive resolution.

Generalization to other groups

The above argument demonstrates that p-adicization works iteratively for SU(n) and thus for U(n).
For finite-dimensional symplectic group Sp(n,R) the maximal compact sub-group is U(n) so that
that KAK construction should work also now. SO(n) can be regarded as subgroup of SU(n) so
that the p-adiced discretrized variants of maximal compact subgroups should be constructible and
KAK give the groups. The inspection of the table of the Wikipedia article (see http://tinyurl.

com/j44639q) encourages the conjecture that the construction of SU(n) and U(n) generalizes to
all classical Lie groups.

This construction could simplify enormously also the p-adicization of WCW and the theory
would discretize even in non-compact degrees of freedom. The non-zero modes of WCW correspond
to the symplectic group for δM4 × CP2, and one might hope that the p-adicization works also at
the limit of infinite-dimensional symplectic group with U(∞) taking the role of K.

8.13 Some layman considerations related to the fundamen-
tals of mathematics

I am not a mathematician and therefore should refrain from consideration of anything related
to fundamentals of mathematics. In the discussions with Santeri Satama I could not avoid the
temptation to break this rule. I however feel that I must confess my sins and in the following I
will do this.

1. Gödel’s problematics is shown to have a topological analog in real topology, which however
disappears in p-adic topology which raises the question whether the replacement of the
arithmetics of natural numbers with that of p-adic integers could allow to avoid Gödel’s
problematics.

2. Number theory looks from the point of view of TGD more fundamental than set theory
and inspires the question whether the notion of algebraic number could emerge naturally
from TGD. There are two ways to understand the emergence of algebraic numbers: the
hierarchy of infinite primes in which ordinary primes are starting point and the arithmetics of
Hilbert spaces with tensor product and direct sum replacing the usual arithmetic operations.
Extensions of rationals give also rise to cognitive variants of n-D spaces.

3. The notion of empty set looks artificial from the point of view of physicist and a possible
cure is to take arithmetics as a model. Natural numbers would be analogous to nonempty
sets and integers would correspond to pairs of sets (A,B), A ⊂ B or B ⊂ A with equivalence
A,B) ≡ (A∪C,B∪C). Empty set would correspond to pairs (A,A). In quantum context the
generalization of the notion of being member of set a ∈ A suggests a generalization: being an
element in set would generalize to being single particle state which in general is de-localized

http://tinyurl.com/y7cjbm4c
http://tinyurl.com/j44639q
http://tinyurl.com/j44639q
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to the set. Subsets would correspond to many-particle states. The basic operation would
be addition or removal of element represented in terms of oscillator operator. The order of
elements of set does not matter: this would generalize to bosonic and fermionic many particle
states and even braid statistics can be considered. In bosonic case one can have multiple
points - kind of Bose-Einstein condensate.

4. One can also start from finite-D Hilbert space and identify set as the collection of labels
for the states. In infinite-D case there are two cases corresponding to separable and non-
separable Hilbert spaces. The condition that the norm of the state is finite without infinite
normalization constants forces selection of de-localized discrete basis in the case of a contin-
uous set like reals. This inspires the question whether the axiom of choice should be given
up. One possibility is that one can have only states localized to finite or at least discrete set
of points which correspond points with coordinates in an extension of rationals.

8.13.1 Geometric analog for Gödel’s problematics

Godel’s problematics involves statements which cannot be proved to be true or false or are si-
multaneously true and false. This problematics has also a purely geometric analog in terms of
set theoretic representation of Boolean algebras when real topology is used but not when p-adic
topology is used.

The natural idea is that Boolean algebra is realized in terms of open sets such that the
negation of statement corresponds to the complement of the set. In p-adic topologies open sets
are simultaneously also closed and there are no boundaries: this makes them and - more generally
Stone spaces - ideal for realizing Boolean algebra set theoretically. In real topology the complement
of open set is closed and therefore not open and one has a problem.

Could one circumvent the problem somehow?

1. If one replaces open sets with their closures (the closure of open set includes also its boundary,
which does not belong to the open set) and closed complements of open sets, the analog of
Boolean algebra would consist of closed sets. Closure of an open set and the closure of its
open complement - stament and its negation - share the common boundary. Statement and
its negation would be simultaneously true at the boundary. This strange situation reminds
of Russell’s paradox but in geometric form.

2. If one replaces the closed complements of open sets with their open interiors, one has only
open sets. Now the sphere would represent statement about which one cannot say whether
it is true or false. This would look like Gödelian sentence but represented geometrically.

This leads to an already familiar conclusion: p-adic topology is natural for the geometric
correlates of cognition, in particular Boolean cognition. Real topology is natural for the
geometric correlates of sensory experience.

3. Gödelian problematics is encountered already for arithmetics of natural numbers although
naturals have no boundary in the discrete topology. Discrete topology does not however
allow well-ordering of natural numbers crucial for the definition of natural number. In the
induced real topology one can order them and can speak of boundaries of subsets of naturals.
The ordering of natural numbers by size reflects the ordering of reals: it is very difficult to
think about discrete without implicitly bringing in the continuum.

For p-adic integers the induced topology is p-adic. Is Gödelian problematics is absent in
p-adic Boolean logic in which set and its complement are both open and closed. If this
view is correct, p-adic integers might replace naturals in the axiomatics of arithmetics. The
new element would be that most p-adic integers are of infinite size in real sense. One has a
natural division of them to cognitively representable ones finite also in real sense and non-
representable ones infinite in real sense. Note however that rationals have periodic pinary
expansion and can be represented as pairs of finite natural numbers.

In algebraic geometry Zariski topology in which closed sets correspond to algebraic surfaces
of various dimensions, is natural. Open sets correspond to their complements and are of same
dimension as the imbedding space. Also now one encounters asymmetry. Could one say that
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algebraic surfaces characterize “representable” (=“geometrically provable”?) statements as ele-
ments of Boolean algebra and their complements the non-representable ones? 4-D space-time (as
possibly associative/co-associative ) algebraic variety in 8-D octonionic space would be example of
representable statement. Finite unions and intersections of algebraic surfaces would form the set
of representable statements. This new-to-me notion of representability is somehow analogous to
provability or demonstrability.

8.13.2 Number theory from quantum theory

Could one define or at least represent the notion of number using the notions of quantum physics?
A natural starting point is hierarchy of extensions of rationals defining hierarchy of adeles. Could
one obtain rationals and their extensions from simplest possible quantum theory in which one just
constructs many particle states by adding or removing particles using creation and annihilation
operators?

How to obtain rationals and their extensions?

Rationals and their extensions are fundamental in TGD. Can one have quantal construction for
them?

1. One should construct rationals first. Suppose one starts from the notion of finite prime as
something God-given. At the first step one constructs infinite primes as analogs for many-
particle states in super-symmetric arithmetic quantum field theory [K51]. Ordinary primes
label states of fermions and bosons. Infinite primes as the analogs of free many-particle states
correspond to rationals in a natural manner.

2. One obtains also analogs of bound states which are mappable to irreducible polynomials,
whose roots define algebraic numbers. This would give hierarchy of algebraic extensions of
rationals. At higher levels of the hierarchy one obtains also analogs of prime polynomials
with number of variables larger than 1. One might say that algebraic geometry has quan-
tal representation. This might be very relevant for the physical representability of basic
mathematical structures.

Arithmetics of Hilbert spaces

The notions of prime and divisibility and even basic arithmetics emerge also from the tensor product
and direct sum for Hilbert spaces. Hilbert spaces with prime dimension do not decompose to tensor
products of lower-dimensional Hilbert spaces. One can even perform a formal generalization of the
dimension of Hilbert space so that it becomes rational and even algebraic number.

For some years ago I indeed played with this thought but at that time I did not have in
mind reduction of number theory to the arithemetics of Hilbert spaces. If this really makes sense,
numbers could be replaced by Hilbert spaces with product and sum identified as tensor product
and direct sum!

Finite-dimensional Hilbert space represent the analogs of natural numbers. The analogs of
integers could be defined as pairs (m,n) of Hilbert spaces with spaces (m,n) and (m + r, n + r)
identified (this space would have dimension m− n. This identification would hold true also at the
level of states. Hilbert spaces with negative dimension would correspond to pairs with (m−n) < 0:
the canonical representives for m and −m would be (m, 0) and (0,m). Rationals can be defined
as pairs (m,n) of Hilbert spaces with pairs (m,n) and (km, kn) identified. These identifications
would give rise to kind of gauge conditions and canonical representatives for m and 1/m are (m, 1)
and (1,m).

What about Hilbert spaces for which the dimension is algebraic number? Algebraic numbers
allow a description in terms of partial fractions and Stern-Brocot (S-B) tree (see http://tinyurl.
com/yb6ldekq and http://tinyurl.com/yc6hhboo) containing given rational number once. S-B
tree allows to see information about algebraic numbers as constructible by using an algorithm with
finite number of steps, which is allowed if one accepts abstraction as basic aspect of cognition.
Algebraic number could be seen as a periodic partial fraction defining an infinite path in S-B tree.
Each node along this path would correspond to a rational having Hilbert space analog. Hilbert

http://tinyurl.com/yb6ldekq
http://tinyurl.com/yb6ldekq
http://tinyurl.com/yc6hhboo
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space with algebraic dimension would correspond to this kind of path in the space of Hilbert spaces
with rational dimension. Transcendentals allow identification as non-pediodic partial fraction and
could correspond to non-periodic paths so that also they could have Hilbert spaces counterparts.

How to obtain the analogs higher-D spaces?

Algebraic extensions of rationals allow cognitive realization of spaces with arbitrary dimension
identified as algebraic dimension of extension of rationals.

1. One can obtain n-dimensional spaces (in algebraic sense) with integer valued coordinates from
n-D extensions of rationals. Now the n-tuples defining numbers of extension and differing
by permutations are not equivalent so that one obtains n-D space rather than n-D space
divided by permutation group Sn. This is enough at the level of cognitive representations
and could explain why we are able to imagine spaces of arbitrary dimension although we
cannot represent them cognitively.

2. One obtains also Galois group and orbits of set A of points of extension under Galois group
as G(A). One obtains also discrete coset spaces G/H and alike. These do not have any
direct analog in the set theory. The hierarchy of Galois groups would bring in discrete
group theory automatically. The basic machinery of quantum theory emerges elegantly from
number theoretic vision.

3. In octonionic approach to quantum TGD one obtains also hierarchy of extensions of ratio-
nals since space-time surface correspond zero loci for RE or IM for octonionic polynomials
obtained by algebraic continuation from real polynomials with coeffficients in extension of
rationals [K94].

8.13.3 Could quantum set theory make sense?

In the following my view point is that of quantum physicist fascinated by number theory and
willing to reduce set theory to what could be called called quantum set theory. It would follow
from physics as generalised number theory (adelic physics) and have ordinary set theory as classical
correlate.

1. From the point of quantum physics set theory and the notion of number based on set theory
look somewhat artificial constructs. Nonempty set is a natural concept but empty set and
set having empty set as element used as basic building brick in the construction of natural
numbers looks weird to me.

2. From TGD point of view it would seem that number theory plus some basic pieces of quantum
theory might be more fundamental than set theory. Could set theory emerge as a classical
correlate for quantum number theory already considered and could quantal set theory make
sense?

Quantum set theory

What quantum set theory could mean? Suppose that number theory-quantum theory connection
really works. What about set theory? Or perhaps its quantum counterpart having ordinary set
theory as a classical correlate?

1. A purely quantal input to the notion of set would be replacement of points delocalized states
in the set. A generic single particle quantum state as analog of element of set would not be
localized to a single element of set. The condition that the state has finite norm implies in
the case of continuous set like reals that one cannot have completely localized states. This
would give quantal limitation to the axiom of choice. One can have any discrete basis of
state functions in the set but one cannot pick up just one point since this state would have
infinite norm.

The idea about allowing only say rationals is not needed since there is infinite number of dif-
ferent choices of basis. Finite measurement resolution is however unvoidable. An alternative
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option is restriction of the domains of wave functions to a discrete set of points. This set can
be chosen in very many manners and points with coordinates in extension of rationals are
very natural and would define cognitive representation.

2. One can construct also the analogs of subsets as many-particle states. The basic operation
would be addition/removal of a particle from quantum state represented by the action of
creation/annihilation operator.

Bosonic states would be invariant under permutations of single particle states just like set is
the equivalence class for a collection of elements (a1, ..., an) such that any two permutations
are equivalent. Quantum set theory would however bring in something new: the possibility
of both bosonic and fermionic statistics. Permutation would change the state by phase factor
-1. One would have fermionic and bosonic sets. For bosonic sets one could have multiplet
elements (“Bose-Einstein condensation”): in the theory of surfaces this could allow multiple
copies of the same surface. Even braid statistics is possible. The phase factor in permutation
could be complex. Even non-commutative statistics can be considered.

Many particle states formed from particles, which are not identical are also possible and now
the different particle types can be ordered. On obtains n-ples decomposing to ordered K-ple
of ni-ples, which are consist of identical particles and are quantum sets. One could talk about
K-sets as a generalization of set as analogs of classical sets with K-colored elements. Group
theory would enter into the picture via permutation groups and braid groups would bring in
braid statistics. Braids strands would have K colors.

How to obtain classical set theory?

How could one obtain classical set theory?

1. Many-particle states represented algebraically are detected in lab as sets: this is quantum
classical correspondence. This remains to me one of the really mysterious looking aspects in
the interpretation of quantum field theory. For some reason it is usually not mentioned at
all in popularizations. The reason is probably that popularization deals typically with wave
mechanics but not quantum field theory unless it is about Higgs mechanism, which is the
weakest part of quantum field theory!

2. From the point of quantum theory empty set would correspond to vacuum. It is not observ-
able as such. Could the situation change in the presence of second state representing the
environment? Could the fundamental sets be always non-empty and correspond to states
with non-vanishing particle number. Natural numbers would correspond to eigenvalues of an
observable telling the cardinality of set. Could representable sets be like natural numbers?

3. Usually integers are identified as pairs of natural numbers (m,n) such that integer corre-
sponds to m− n. Could the set theoretic analog of integer be a pair (A,B) of sets such that
A is subset of B or vice versa? Note that this does not allow pairs with disjoint members.
(A,A) would correspond to empty set. This would give rise to sets (A,B) and their “antisets”
(B,A) as analogs of positive and negative integers.

One can argue that antisets are not physically realizable. Sets and antisets would have
as analogs two quantizations in which the roles of oscillator operators and their hermitian
conjugates are changed. The operators annihilating the ground state are called annilation
operators. Only either of these realization is possible but not both simultaneously.

In ZEO one can ask whether these two options correspond to positive and negative energy
parts of zero energy states or to the states with state function reduction at either boundary
of CD identified as correlates for conscious entities with opposite arrows of geometric time
(generalized Zeno effect).

4. The cardinality of set, the number of elements in the set, could correspond to eigenvalue of
observable measuring particle number. Many-particle states consisting of bosons or fermions
would be analogs for sets since the ordering does not matter. Also braid statistics would be
possible.
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What about cardinality as a p-adic integer? In p-adic context one can assign to integer m,
integer −m as m × (p − 1) × (1 + p + p2 + ...). This is infinite as real integer but finite as
p-adic integer. Could one say that the antiset of m-element as analog of negative integer has
cardinality −m = m(p−1)(1+p+p2+..). This number does not have cognitive representation
since it is not finite as real number but is cognizable.

One could argue that negative numbers are cognizable but not cognitively representable as
cardinality of set? This representation must be distinguished from cognitive representations
as a point of imbedding space with coordinates in extension of rationals. Could one say
that antisets and empty set as its own antiset can be cognized but cannot be cognitively
represented?

Nasty mathematician would ask whether I can really start from Hilbert space of state func-
tions and deduce from this the underlying set. The elements of set itself should emerge from this
as analogs of completely localized single particle states labelled by points of set. In the case of
finite-dimensional Hilbert space this is trivial. The number of points in the set would be equal to
the dimension of Hilbert space. In the case of infinite-D Hilbert space the set would have infinite
number of points.

Here one has two views about infinite set. One has both separable (infinite-D in discrete
sense: particle in box with discrete momentum spectrum) and non-separable (infinite-D in real
sense: free particle with continuous momentum spectrum) Hilbert spaces. In the latter case the
completely localized single particle states would be represented by delta functions divided by
infinite normalization factors. They are routinely used in Dirac’s bra-ket formalism but problems
emerge in quantum field theory.

A possible solution is that one weakens the axiom of choice and accepts that only discrete
points set (possibly finite) are cognitively representable and one has wave functions localized to
discrete set of points. A stronger assumption is that these points have coordinates in extension of
rationals so that one obtains number theoretical universality and adeles. This is TGD view and
conforms also with the identification of hyper-finite factors of type II1 as basic algebraic objects
in TGD based quantum theory as opposed to wave mechanics (type I) and quantum field theory
(type III). They are infinite-D but allow excellent approximation as finite-D objects.

This picture could relate to the notion of non-commutative geometry, where set emerges as
spectrum of algebra: the points of spectrum label the ideals of the integer elements of algebra.

8.14 Abelian Class Field Theory And TGD

The context leading to the discovery of adeles (http://tinyurl.com/64pgerm ) was so called
Abelian class field theory. Typically the extension of rationals means that the ordinary primes
decompose to the primes of the extension just like ordinary integers decompose to ordinary primes.
Some primes can appear several times in the decomposition of ordinary non-square-free integers
and similar phenomenon takes place for the integers of extension. If this takes place one says that
the original prime is ramified. The simplest example is provided Gaussian integers Q(i). All odd
primes are unramified and primes p mod 4 = 1 they decompose as p = (a + ib)(a − ib) whereas
primes p mos 4 = 3 do not decompose at all. For p = 2 the decomposition is 2 = (1 + i)(1− i) =
−i(1 + i)2 = i(1 − i)2 and is not unique {±1,±i} are the units of the extension. Hence p = 2 is
ramified.

There goal of Abelian class field theory (see http://tinyurl.com/y8aefmg2 ) is to under-
stand the complexities related to the factorization of primes of the original field. The existence
of the isomorphism between ideles modulo rationals - briefly ideles - and maximal Abelian Galois
Group of rationals (MAGG) is one of the great discoveries of Abelian class field theory. Also the
maximal - necessarily Abelian - extension of finite field Gp has Galois group isomorphic to the
ideles. The Galois group of Gp(n) with pn elements is actually the cyclic group Zn. The isomor-
phism opens up the way to study the representations of Abelian Galois group and also those of
the AGG. One can indeed see these representations as special kind of representations for which
the commutator group of AGG is represented trivially playing a role analogous to that of gauge
group.

http://tinyurl.com/64pgerm
http://tinyurl.com/y8aefmg2
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This framework is extremely general. One can replace rationals with any algebraic extension
of rationals and study the maximal Abelian extension or algebraic numbers as its extension. One
can consider the maximal algebraic extension of finite fields consisting of union of all all finite fields
associated with given prime and corresponding adele. One can study function fields defined by the
rational functions on algebraic curve defined in finite field and its maximal extension to include
Taylor series. The isomorphisms applies in al these cases. One ends up with the idea that one can
represent maximal Abelian Galois group in function space of complex valued functions in GLe(A)
right invariant under the action of GLe(Q). A denotes here adeles.

In the following I will introduce basic facts about adeles and ideles and then consider a
possible realization of the number theoretical vision about quantum TGD as a Galois theory for
the algebraic extensions of classical number fields with associativity defining the dynamics. This
picture leads automatically to the adele defined by p-adic variants of quaternions and octonions,
which can be defined by posing a suitable restriction consistent with the basic physical picture
provide by TGD.

8.14.1 Adeles And Ideles

Adeles and ideles are structures obtained as products of real and p-adic number fields. The formula
expressing the real norm of rational numbers as the product of inverses of its p-adic norms inspires
the idea about a structure defined as produc of reals and various p-adic number fields.

Class field theory (http://tinyurl.com/y8aefmg2 ) studies Abelian extensions of global
fields (classical number fields or functions on curves over finite fields), which by definition have
Abelian Galois group acting as automorphisms. The basic result of class field theory is one-one
correspondence between Abelian extensions and appropriate classes of ideals of the global field
or open subgroups of the ideal class group of the field. For instance, Hilbert class field, which is
maximal unramied extension of global field corresponds to a unique class of ideals of the number
field. More precisely, reciprocity homomorphism generalizes the quadratic resiprocity for quadratic
extensions of rationals. It maps the idele class group of the global field defined as the quotient of
the ideles by the multiplicative group of the field - to the Galois group of the maximal Abelian
extension of the global field. Each open subgroup of the idele class group of a global field is the
image with respect to the norm map from the corresponding class field extension down to the
global field.

The idea of number theoretic Langlands correspondence, [A18, A48, A47]. is that n-
dimensional representations of Absolute Galois group correspond to infinite-D unitary representa-
tions of group Gln(A). Obviously this correspondence is extremely general but might be highly
relevant for TGD, where imbedding space is replaced with Cartesian product of real imbedding
space and its p-adic variants - something which might be related to octonionic and quaternionic
variants of adeles. It seems however that the TGD analogs for finite-D matrix groups are analogs
of local gauge groups or Kac-Moody groups (in particular symplectic group of δM4

+×CP2) so that
quite heavy generalization of already extremely abstract formalism is expected.

The following gives some more precise definitions for the basic notions.

1. Prime ideals of global field, say that of rationals, are defined as ideals which do not decompose
to a product of ideals: this notion generalizes the notion of prime. For instance, for p-adic
numbers integers vanishing mod pn define an ideal and ideals can be multiplied. For Abelian
extensions of a global field the prime ideals in general decompose to prime ideals of the
extension, and the decompostion need not be unique: one speaks of ramification. One of the
challenges of tjhe class field theory is to provide information about the ramification. Hilbert
class field is define as the maximal unramified extension of global field.

2. The ring of integral adeles (see http://tinyurl.com/64pgerm ) is defined as AZ = R × Ẑ,
where Ẑ =

∏
p Zp is Cartesian product of rings of p-adic integers for all primes (prime

ideals) p of assignable to the global field. Multiplication of element of AZ by integer means
multiplication in all factors so that the structure is like direct sum from the point of view of
physicist.

3. The ring of rational adeles can be defined as the tensor product AQ = Q ⊗Z AZ . Z means
that in the multiplication by element of Z the factors of the integer can be distributed freely

http://tinyurl.com/y8aefmg2
http://tinyurl.com/64pgerm
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among the factors Ẑ. Using quantum physics language, the tensor product makes possible
entanglement between Q and AZ .

4. Another definition for rational adeles is as R ×
∏′
pQp: the rationals in tensor factor Q

have been absorbed to p-adic number fields: given prime power in Q has been absorbed to
corresponding Qp. Here all but finite number of Qp elements ar p-adic integers. Note that
one can take out negative powers of pi and if their number is not finite the resulting number
vanishes.The multiplication by integer makes sense but the multiplication by a rational does
not smake sense since all factors Qp would be multiplied.

5. Ideles are defined as invertible adeles (http://tinyurl.com/yc3yrcxxIdele class group ).
The basic result of the class field theory is that the quotient of the multiplicative group of
ideles by number field is homomorphic to the maximal Abelian Galois group!

8.14.2 Questions About Adeles, Ideles And Quantum TGD

The intriguing general result of class field theory (http://tinyurl.com/y8aefmg2 ) is that the the
maximal Abelian extension for rationals is homomorphic with the multiplicative group of ideles.
This correspondence plays a key role in Langlands correspondence.

Does this mean that it is not absolutely necessary to introduce p-adic numbers? This is
actually not so. The Galois group of the maximal abelian extension is rather complex objects (ab-
solute Galois group, AGG, defines as the Galois group of algebraic numbers is even more complex!).
The ring Ẑ of adeles defining the group of ideles as its invertible elements homeomorphic to the
Galois group of maximal Abelian extension is profinite group (http://tinyurl.com/y9d8vro7 ).
This means that it is totally disconnected space as also p-adic integers and numbers are. What
is intriguing that p-dic integers are however a continuous structure in the sense that differential
calculus is possible. A concrete example is provided by 2-adic units consisting of bit sequences
which can have literally infinite non-vanishing bits. This space is formally discrete but one can
construct differential calculus since the situation is not democratic. The higher the pinary digit
in the expansion is, the less significant it is, and p-adic norm approaching to zero expresses the
reduction of the insignificance.

1. Could TGD based physics reduce to a representation theory for the Galois groups of
quaternions and octonions?

Number theoretical vision about TGD raises questions about whether adeles and ideles could
be helpful in the formulation of TGD. I have already earlier considered the idea that quantum TGD
could reduce to a representation theory of appropriate Galois groups. I proceed to make questions.

1. Could real physics and various p-adic physics on one hand, and number theoretic physics
based on maximal Abelian extension of rational octonions and quaternions on one hand,
define equivalent formulations of physics?

2. Besides various p-adic physics all classical number fields (reals, complex numbers, quater-
nions, and octonions) are central in the number theoretical vision about TGD. The technical
problem is that p-adic quaternions and octonions exist only as a ring unless one poses some
additional conditions. Is it possible to pose such conditions so that one could define what
might be called quaternionic and octonionic adeles and ideles?

It will be found that this is the case: p-adic quaternions/octonions would be products of
rational quaternions/octonions with a p-adic unit. This definition applies also to algebraic
extensions of rationals and makes it possible to define the notion of derivative for correspond-
ing adeles. Furthermore, the rational quaternions define non-commutative automorphisms of
quaternions and rational octonions at least formally define a non-associative analog of group
of octonionic automorphisms [K53, K85].

3. I have already earlier considered the idea about Galois group as the ultimate symmetry group
of physics. The representations of Galois group of maximal Abelian extension (or even that
for algebraic numbers) would define the quantum states. The representation space could be
group algebra of the Galois group and in Abelian case equivalently the group algebra of ideles
or adeles. One would have wave functions in the space of ideles.

http://tinyurl.com/yc3yrcxx
http://tinyurl.com/y8aefmg2
http://tinyurl.com/y9d8vro7
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The Galois group of maximal Abelian extension would be the Cartan subgroup of the absolute
Galois group of algebraic numbers associated with given extension of rationals and it would
be natural to classify the quantum states by the corresponding quantum numbers (number
theoretic observables).

If octonionic and quaternionic (associative) adeles make sense, the associativity condition
would reduce the analogs of wave functions to those at 4-dimensional associative sub-manifolds
of octonionic adeles identifiable as space-time surfaces so that also space-time physics in var-
ious number fields would result as representations of Galois group in the maximal Abelian
Galois group of rational octonions/quaternions. TGD would reduce to classical number the-
ory! One can hope that WCW spinor fields assignable to the associative and co-associative
space-time surfaces provide the adelic representations for super-conformal algebras replacing
symmetries for point like objects.

This of course involves huge challenges: one should find an adelic formulation for WCW
in terms octonionic and quaternionic adeles, similar formulation for WCW spinor fields in
terms of adelic induced spinor fields or their octonionic variants is needed. Also zero energy
ontology, causal diamonds, light-like 3-surfaces at which the signature of the induced metric
changes, space-like 3-surfaces and partonic 2-surfaces at the boundaries of CDs, M8 − H
duality, possible representation of space-time surfaces in terms of of Oc-real analytic functions
(Oc denotes for complexified octonions), etc. should be generalized to adelic framework.

4. Absolute Galois group is the Galois group of the maximal algebraic extension and as such
a poorly defined concept. One can however consider the hierarchy of all finite-dimensional
algebraic extensions (including non-Abelian ones) and maximal Abelian extensions associated
with these and obtain in this manner a hierarchy of physics defined as representations of these
Galois groups homomorphic with the corresponding idele groups.

5. In this approach the symmetries of the theory would have automatically adelic representations
and one might hope about connection with Langlands program [K26], [A18, A48, A47].

2. Adelic variant of space-time dynamics and spinorial dynamics?

As an innocent novice I can continue to pose stupid questions. Now about adelic variant
of the space-time dynamics based on the generalization of Kähler action discussed already earlier
but without mentioning adeles ( [K79] ).

1. Could one think that adeles or ideles could extend reals in the formulation of the theory: note
that reals are included as Cartesian factor to adeles. Could one speak about adelic space-time
surfaces endowed with adelic coordinates? Could one formulate variational principle in terms
of adeles so that exponent of action would be product of actions exponents associated with
various factors with Neper number replaced by p for Zp. The minimal interpretation would
be that in adelic picture one collects under the same umbrella real physics and various p-adic
physics.

2. Number theoretic vision suggests that 4: th/8: th Cartesian powers of adeles have inter-
pretation as adelic variants of quaternions/ octonions. If so, one can ask whether adelic
quaternions and octonions could have some number theoretical meaning. Adelic quater-
nions and octonions are not number fields without additional assumptions since the moduli
squared for a p-adic analog of quaternion and octonion can vanish so that the inverse fails
to exist at the light-cone boundary which is 17-dimensional for complexified octonions and
7-dimensional for complexified quaternions. The reason is that norm squared is difference
N(o1) − N(o2) for o1 ⊕ io2. This allows to define differential calculus for Taylor series and
one can consider even rational functions. Hence the restriction is not fatal.

If one can pose a condition guaranteeing the existence of inverse for octonionic adel, one could
define the multiplicative group of ideles for quaternions. For octonions one would obtain
non-associative analog of the multiplicative group. If this kind of structures exist then four-
dimensional associative/co-associative sub-manifolds in the space of non-associative ideles
define associative/co-associative adeles in which ideles act. It is easy to find that octonionic
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ideles form 1-dimensional objects so that one must accept octonions with arbitrary real or
p-adic components.

3. What about equations for space-time surfaces. Do field equations reduce to separate field
equations for each factor? Can one pose as an additional condition the constraint that p-adic
surfaces provide in some sense cognitive representations of real space-time surfaces: this idea
is formulated more precisely in terms of p-adic manifold concept [K79] (see the appendix of
the book). Or is this correspondence an outcome of evolution?

Physical intuition would suggest that in most p-adic factors space-time surface corresponds
to a point, or at least to a vacuum extremal. One can consider also the possibility that same
algebraic equation describes the surface in various factors of the adele. Could this hold true
in the intersection of real and p-adic worlds for which rationals appear in the polynomials
defining the preferred extremals.

4. To define field equations one must have the notion of derivative. Derivative is an operation
involving division and can be tricky since adeles are not number field. The above argument
suggests this is not actually a problem. Of course, if one can guarantee that the p-adic
variants of octonions and quaternions are number fields, there are good hopes about well-
defined derivative. Derivative as limiting value df/dx = lim(f(x + dx) − f(x))/dx for a
function decomposing to Cartesian product of real function f(x) and p-adic valued functions
fp(xp) would require that fp(x) is non-constant only for a finite number of primes: this is
in accordance with the physical picture that only finite number of p-adic primes are active
and define “cognitive representations” of real space-time surface. The second condition is
that dx is proportional to product dx×

∏
dxp of differentials dx and dxp, which are rational

numbers. dx goes to xero as a real number but not p-adically for any of the primes involved.
dxp in turn goes to zero p-adically only for Qp.

5. The idea about rationals as points common to all number fields is central in number theoret-
ical vision. This vision is realized for adeles in the minimal sense that the action of rationals
is well-defined in all Cartesian factors of the adeles. Number theoretical vision allows also to
talk about common rational points of real and various p-adic space-time surfaces in preferred
coordinate choices made possible by symmetries of the imbedding space, and one ends up
to the vision about life as something residing in the intersection of real and p-adic number
fields. It is not clear whether and how adeles could allow to formulate this idea.

6. For adelic variants of imbedding space spinors Cartesian product of real and p-adc variants of
imbedding spaces is mapped to their tensor product. This gives justification for the physical
vision that various p-adic physics appear as tensor factors. Does this mean that the general-
ized induced spinors are infinite tensor products of real and various p-adic spinors and Clifford
algebra generated by induced gamma matrices is obtained by tensor product construction?
Does the generalization of massless Dirac equation reduce to a sum of d’Alembertians for
the factors? Does each of them annihilate the appropriate spinor? If only finite number of
Cartesian factors corresponds to a space-time surface which is not vacuum extremal vanish-
ing induced Kähler form, Kähler Dirac equation is non-trivial only in finite number of adelic
factors.

3. Objections leading to the identification of octonionic adeles and ideles

The basic idea is that appropriately defined invertible quaternionic/octonionic adeles can
be regarded as elements of Galois group assignable to quaternions/octonions. The best manner to
proceed is to invent objections against this idea.

1. The first objection is that p-adic quaternions and octonions do not make sense since p-adic
variants of quaternions and octonions do not exist in general. The reason is that the p-adic
norm squared

∑
x2
i for p-adic variant of quaternion, octonion, or even complex number can

vanish so that its inverse does not exist.

2. Second objection is that automorphisms of the ring of quaternions (octonions) in the maximal
Abelian extension are products of transformations of the subgroup of SO(3) (G2) represented
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by matrices with elements in the extension and in the Galois group of the extension itself.
Ideles separate out as 1-dimensional Cartesian factor from this group so that one does not
obtain 4-field (8-fold) Cartesian power of this Galois group.

One can define quaternionic/octonionic ideles in terms of rational quaternions/octonions
multiplied by p-adic number. For adeles this condition produces non-sensical results.

1. This condition indeed allows to construct the inverse of p-adic quaternion/octonion as a
product of inverses for rational quaternion/octonion and p-adic number. The reason is that
the solutions to

∑
x2
i = 0 involve always p-adic numbers with an infinite number of pinary

digits - at least one and the identification excludes this possibility. The ideles form also a
group as required.

2. One can interpret also the quaternionicity/octonionicity in terms of Galois group. The 7-
dimensional non-associative counterparts for octonionic automorphisms act as transforma-
tions x → gxg−1. Therefore octonions represent this group like structure and the p-adic
octonions would have interpretation as combination of octonionic automorphisms with those
of rationals.

3. One cannot assign to ideles 4-D idelic surfaces. The reason is that the non-constant part
of all 8-coordinates is proportional to the same p-adic valued function of space-time point
so that space-time surface would be a disjoint union of effectively 1-dimensional structures
labelled by a subset of rational points of M8. Induced metric would be 1-dimensional and
induced Kähler and spinor curvature would vanish identically.

4. One must allow p-adic octonions to have arbitrary p-adic components. The action of ideles
representing Galois group on these surfaces is well-defined. Number field property is lost
but this feature comes in play as poles only when one considers rational functions. Already
the Minkowskian signature forces to consider complexified octonions and quaternions leading
to the loss of field property. It would not be surprising if p-adic poles would be associated
with the light-like orbits of partonic 2-surfaces. Both p-adic and Minkowskian poles might
therefore be highly relevant physically and analogous to the poles of ordinary analytic func-
tions. For instance, n-point functions could have poles at the light-like boundaries of causal
diamonds and at light-like partonic orbits and explain their special physical role.

The action of ideles in the quaternionic tangent space of space-time surface would be analo-
gous to the action of of adelic linear group Gln(A) in n-dimensional space.

5. Adelic variants of octonions would be Cartesian products of ordinary and various p-adic
octonions and would define a ring. Quaternionic 4-surfaces would define associative local
sub-rings of octonion-adelic ring.



Chapter 9

Knots and TGD

9.1 Introduction

Witten has highly inspiring popular lecture about knots and quantum physics [A28] mentioning
also his recent work with knots related to an attempt to understand Khovanov homology. Witten
manages to explain in rather comprehensible manner both the construction recipe of Jones polyno-
mial and the idea about how Jones polynomial emerges from topological quantum field theory as a
vacuum expectation of so called Wilson loop defined by path integral with weighting coming from
Chern-Simons action [A49]. Witten also tells that during the last year he has been working with an
attempt to understand in terms of quantum theory the so called Khovanov polynomial associated
with a much more abstract link invariant whose interpretation and real understanding remains
still open. In particular, he mentions the approach of Gukov, Schwartz, and Vafa [A61, A61] as an
attempt to understand Khovanov polynomial.

This kind of talks are extremely inspiring and lead to a series of questions unavoidably
culminating to the frustrating “Why I do not have the brain of Witten making perhaps possible to
answer these questions?”. This one must just accept. In the following I summarize some thoughts
inspired by the associations of the talk of Witten with quantum TGD and with the model of DNA
as topological quantum computer. In my own childish manner I dare believe that these associations
are interesting and dare also hope that some more brainy individual might take them seriously.

An idea inspired by TGD approach which also main streamer might find interesting is
that the Jones invariant defined as vacuum expectation for a Wilson loop in 2+1-D space-time
generalizes to a vacuum expectation for a collection of Wilson loops in 2+2-D space-time and
could define an invariant for 2-D knots and for cobordisms of braids analogous to Jones polynomial.
As a matter fact, it turns out that a generalization of gauge field known as gerbe is needed and
that in TGD framework classical color gauge fields defined the gauge potentials of this field. Also
topological string theory in 4-D space-time could define this kind of invariants. Of course, it might
well be that this kind of ideas have been already discussed in literature.

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is
to find a quantum physical construction of Khovanov homology analous to the topological QFT
defined by Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation
value of Wilson loop in non-Abelian gauge theory.

Witten’s approach to Khovanov homology relies on fivebranes as is natural if one tries to
define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the
difference in approaches it is very useful to try to find the counterparts of this approach in quantum
TGD since this would allow to gain new insights to quantum TGD itself as almost topological QFT
identified as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns
out to be extremely useful from TGD point of view.

1. A highly unique identification of string world sheets and therefore also of the braids whose
ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one
identifies the string word sheets as singular surfaces in the same manner as is done in Witten’s
approach.
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This identification need not of course be correct and in TGD framework the localization of
the modes of the induced spinor fields at 2-D surfaces carrying vanishing induced W boson
fields guaranteeing that the em charge of spinor modes is well-defined for a generic preferred
extremal is natural. Besides string world sheets partonic 2-surfaces are good candidates for
this kind of surfaces. It is not clear whether one can have continuous slicing of this kind by
string world sheets and partonic 2-surfaces orthogonal to them or whether only discrete set
of these surfaces is possible.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges.
P would correspond to instanton number and F to the fermion number assignable to right
handed neutrinos. The breaking of M4 chiral invariance makes possible to realize Q physi-
cally. The finding that the generalizations of Wilson loops can be identified in terms of the
gerbe fluxes

∫
HAJ supports the conjecture that TGD as almost topological QFT corresponds

essentially to a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of general-
ization Feynman diagram and the reduction to braids of some kind is very attractive possibility
inspired by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands
are needed if bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduced and the possibility that it could
be applied to generalized Feynman diagrams is discussed. The algebraic structrures kei,
quandle, rack, and biquandle and their algebraic modifications as such are not enough. The
lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute.
This poses several challenges: the crossing associated with braiding and crossing occurring
in non-planar Feynman diagrams should be integrated to a more general notion; braids are
replaced with sub-manifold braids; braids of braids....of braids are possible; the redistribution
of braid strands in vertices should be algebraized. In the following I try to abstract the basic
operations which should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of
Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak
form of electric-magnetic duality. The latter option turns out to be more plausible. This
identification - if correct - would solve quantum TGD explicitly at string world sheet level
which corresponds to finite measurement resolution.

3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This
requires the identification of vertices, propagators, and prescription for integrating over al
3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are
well-defined.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://tgdtheory.fi/cmaphtml.
html [L13].

9.2 Some TGD Background

What makes quantum TGD [L4, L5, L8, L9, L6, L3, L7, L10] interesting concerning the description
of braids and braid cobordisms is that braids and braid cobordisms emerge both at the level of
generalized Feynman diagrams and in the model of DNA as a topological quantum computer [K15].

http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/cmaphtml.html
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9.2.1 Time-Like And Space-Like Braidings For Generalized Feynman
Diagrams

1. In TGD framework space-times are 4-D surfaces in 8-D imbedding space. Basic objects
are partonic 2-surfaces at the two ends of causal diamonds CD (intersections of future and
past directed light-cones of 4-D Minkowski space with each point replaced with CP2 ). The
light-like orbits of partonic 2-surfaces define 3-D light-like 3-surfaces identifiable as lines of
generalized Feynman diagrams. At the vertices of generalized Feynman diagrams incoming
and outgoing light-like 3-surfaces meet. These diagrams are not direct generalizations of
string diagrams since they are singular as 4-D manifolds just like the ordinary Feynman
diagrams.

By strong form of holography one can assign to the partonic 2-surfaces and their tangent
space data space-time surfaces as preferred extremals of Kähler action. This guarantees
also general coordinate invariance and allows to interpret the extremals as generalized Bohr
orbits.

2. One can assign to the partonic 2-surfaces discrete sets of points carrying quantum numbers.
These sets of points emerge from the solutions of of the Kähler-Dirac equation, which are
localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - carrying
vanishing induced W fields and also Z0 fields above weak scale. These points and their orbits
identifiable as boundaries of string world sheets define braid strands at the light-like orbits
of partonic 2-surfaces. In the generic case the strands get tangled in time direction and one
has linking and knotting giving rise to a time-like braiding. String world sheets and also
partonic surfaces define 2-braids and 2-knots at 4-D space-time surface so that knot theory
generalizes.

3. Also space-like braidings are possible. One can imagine that the partonic 2-surfaces are
connected by space-like curves defining TGD counterparts for strings and that in the initial
state these curves define space-like braids whose ends belong to different partonic 2-surfaces.
Quite generally, the basic conjecture is that the preferred extremals define orbits of string-
like objects with their ends at the partonic 2-surfaces. One would have slicing of space-time
surfaces by string world sheets one one hand and by partonic 2-surface on one hand. This
string model is very special due to the fact that the string orbits define what could be called
braid cobordisms representing which could represent unknotting of braids. String orbits in
higher dimensional space-times do not allow this topological interpretation.

9.2.2 Dance Metaphor

Time like braidings induces space-like braidings and one can speak of time-like or dynamical
braiding and even duality of time-like and space-like braiding. What happens can be understood
in terms of dance metaphor.

1. One can imagine that the points carrying quantum numbers are like dancers at parquettes
defined by partonic 2-surfaces. These parquettes are somewhat special in that it is moving
and changing its shape.

2. Space-like braidings means that the feet of the dancers at different parquettes are connected
by threads. As the dance continues, the threads connecting the feet of different dancers at
different parquettes get tangled so that the dance is coded to the braiding of the threads.
Time-like braiding induce space-like braiding. One has what might be called a cobordism for
space-like braiding transforming it to a new one.

9.2.3 DNA As Topological Quantum Computer

The model for topological quantum computation is based on the idea that time-like braidings
defining topological quantum computer programs. These programs are robust since the topology
of braiding is not affected by small deformations.
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1. The first key idea in the model of DNA as topological quantum computer is based on the
observation that the lipids of cell membrane form a 2-D liquid whose flow defines the dance
in which dancers are lipids which define a flow pattern defining a topological quantum com-
putation. Lipid layers assignable to cellular and nuclear membranes are the parquettes. This
2-D flow pattern can be induced by the liquid flow near the cell membrane or in case of nerve
pulse transmission by the nerve pulses flowing along the axon. This alone defines topological
quantum computation.

2. In DNA as topological quantum computer model one however makes a stronger assumption
motivated by the vision that DNA is the brain of cell and that information must be com-
municated to DNA level wherefrom it is communicated to what I call magnetic body. It is
assumed that the lipids of the cell membrane are connected to DNA nucleotides by magnetic
flux tubes defining a space-like braiding. It is also possible to connect lipids of cell membrane
to the lipids of other cell membranes, to the tubulins at the surfaces of microtubules, and
also to the aminoadics of proteins. The spectrum of possibilities is really wide.

The space-like braid strands would correspond to magnetic flux tubes connecting DNA nu-
cleotides to lipids of nuclear or cell membrane. The running of the topological quantum
computer program defined by the time-like braiding induced by the lipid flow would be coded
to a space-like braiding of the magnetic flux tubes. The braiding of the flux tubes would
define a universal memory storage mechanism and combined with 4-D view about memory
provides a very simple view about how memories are stored and how they are recalled.

9.3 Could Braid Cobordisms Define More General Braid
Invariants?

Witten says that one should somehow generalize the notion of knot invariant. The above described
framework indeed suggests a very natural generalization of braid invariants to those of braid
cobordisms reducing to braid invariants when the braid at the other end is trivial. This description
is especially natural in TGD but allows a generalization in which Wilson loops in 4-D sense describe
invariants of braid cobordisms.

9.3.1 Difference Between Knotting And Linking

Before my modest proposal of a more general invariant some comments about knotting and linking
are in order.

1. One must distinguish between internal knotting of each braid strand and linking of 2 strands.
They look the same in the 3-D case but in higher dimensions knotting and linking are not
the same thing. Codimension 2 surfaces get knotted in the generic case, in particular the 2-D
orbits of the braid strands can get knotted so that this gives additional topological flavor to
the theory of strings in 4-D space-time. Linking occurs for two surfaces whose dimension d1

and d2 satisfying d1 + d2 = D − 1, where D is the dimension of the imbedding space.

2. 2-D orbits of strings do not link in 4-D space-time but do something more radical since
the sum of their dimensions is D = 4 rather than only D − 1 = 3. They intersect and it is
impossible to eliminate the intersection without a change of topology of the stringy 2-surfaces:
a hole is generated in either string world sheet. With a slight deformation intersection can
be made to occur generically at discrete points.

9.3.2 Topological Strings In 4-D Space-Time Define Knot Cobordisms

What makes the 4-D braid cobordisms interesting is following.

1. The opening of knot by using brute force by forcing the strands to go through each other
induces this kind of intersection point for the corresponding 2-surfaces. From 3-D perspective
this looks like a temporary cutting of second string, drawing the string ends to some distance
and bringing them back and gluing together as one approaches the moment when the strings
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would go through each other. This surgical operation for either string produces a pair of non-
intersecting 2-surfaces with the price that the second string world sheet becomes topologically
non-trivial carrying a hole in the region were intersection would occur. This operation relates
a given crossing of braid strands to its dual crossing in the construction of Jones polynomial
in given step (string 1 above string 2 is transformed to string 2 above string 1).

2. One can also cut both strings temporarily and glue them back together in such a manner
that end a/b of string 1 is glued to the end c/d of string 2. This gives two possibilities
corresponding to two kinds of reconnections. Reconnections appears as the second operation
in the construction of Jones invariant besides the operation putting the string above the sec-
ond one below it or vice versa. Jones polynomial (see http://tinyurl.com/2jctzy) relates
in a simple manner to Kauffman bracket (see http://tinyurl.com/yc2wu47x) allowing a
recursive construction. At a given step a crossing is replaced with a weighted sum of the two
reconnected terms [A1, A14]. Reconnection represents the analog of trouser vertex for closed
strings replaced with braid strands.

3. These observations suggest that stringy diagrams describe the braid cobordisms and a kind of
topological open string model in 4-D space-time could be used to construct invariants of braid
cobordisms. The dynamics of strand ends at the partonic 2-surfaces would partially induce
the dynamics of the space-like braiding. This dynamics need not induce the un-knotting of
space-like braids and simple string diagrams for open strings are enough to define a cobordism
leading to un-knotting. The holes needed to realize the crossover for braid strands would
contribute to the Wilson loop an additional factor corresponding to the rotation of the gauge
potential around the boundary of the hole (non-integrable phase factor). In abelian case this
gives simple commuting phase factor.

Note that braids are actually much more closer to the real world than knots since a useful
strand of knotted structure must end somewhere. The abstract closed loops of mathematician
floating in empty space are not very useful in real life albeit mathematically very convenient as
Witten notices. Also the braid cobordisms with ends of a collection of space-like braids at the ends
of causal diamond are more practical than 2-knots in 4-D space. Mathematician would see these
objects as analogous to surfaces in relative homology allowed to have boundaries if they located at
fixed sub-manifolds. Homology for curves with ends fixed to be on some surfaces is a good example
of this. Now these fixed sub-manifolds would correspond to space-like 3-surfaces at the ends CDs
and light-like wormhole throats at which the signature of the induced metric changes and which
are carriers of elementary particle quantum numbers.

9.4 Invariants 2-Knots As Vacuum Expectations Of Wilson
Loops In 4-D Space-Time?

The interpretation of string world sheets in terms of Wilson loops in 4-dimensional space-time
is very natural. This raises the question whether Witten’s a original identification of the Jones
polynomial as vacuum expectation for a Wilson loop in 2+1-D space might be replaced with a
vacuum expectation for a collection of Wilson loops in 3+1-D space-time and would characterize
in the general case (multi-)braid cobordism rather than braid. If the braid at the lower or upped
boundary is trivial, braid invariant is obtained. The intersections of the Wilson loops would
correspond to the violent un-knotting operations and the boundaries of the resulting holes give an
additional Wilson loop. An alternative interpretation would be as the analog of Jones polynomial
for 2-D knots in 4-D space-time generalizing Witten’s theory. This description looks completely
general and does not require TGD at all.

The following considerations suggest that Wilson loops are not enough for the description
of general 2-knots and that that Wilson loops must be replaced with 2-D fluxes. This requires a
generalization of gauge field concept so that it corresponds to a 3-form instead of 2-form is needed.
In TGD framework this kind of generalized gauge fields exist and their gauge potentials correspond
to classical color gauge fields.

http://tinyurl.com/2jctzy
http://tinyurl.com/yc2wu47x
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9.4.1 What 2-Knottedness Means Concretely?

It is easy to imagine what ordinary knottedness means. One has circle imbedded in 3-space. One
projects it in some plane and looks for crossings. If there are no crossings one knows that un-knot
is in question. One can modify a given crossing by forcing the strands to go through each other
and this either generates or removes knottedness. One can also destroy crossing by reconnection
and this always reduces knottedness. Since knotting reduces to linking in 3-D case, one can find a
simple interpretation for knottedness in terms of linking of two circles. For 2-knots linking is not
what gives rise to knotting.

One might hope to find something similar in the case of 2-knots. Can one imagine some
simple local operations which either increase of reduce 2-knottedness?

1. To proceed let us consider as simple situation as possible. Put sphere in 3-D time= con-
stant section E3 of 4-space. Add a another sphere to the same section E3 such that the
corresponding balls do not intersect. How could one build from these two spheres a knotted
2-sphere?

2. From two spheres one can build a single sphere in topological sense by connecting them with
a small cylindrical tube connecting the boundaries of disks (circles) removed from the two
spheres. If this is done in E3, a trivial 2-knot results. One can however do the gluing of
the cylinder in a more exotic manner by going temporarily to “hyper-space”, in other words
making a time travel. Let the cylinder leave the second sphere from the outer surface, let
it go to future or past and return back to recent but through the interior. This is a good
candidate for a knotted sphere since the attempts to deform it to self-non-intersecting sphere
in E3 are expected to fail since the cylinder starting from interior necessarily goes through
the surface of sphere if wants to the exterior of the sphere.

3. One has actually 2 × 2 manners to perform the connected sum of 2-spheres depending on
whether the cylinders leave the spheres through exterior or interior. At least one of them
(exterior-exterior) gives an un-knotted sphere and intuition suggests that all the three re-
maining options requiring getting out from the interior of sphere give a knotted 2-sphere.
One can add to the resulting knotted sphere new spheres in the same manner and obtain
an infinite number of them. As a matter fact, the proposed 1+3 possibilities correspond to
different versions of connected sum and one could speak of knotting and non-knotting con-
nected sums. If the addition of knotted spheres is performed by non-knotting connected sum,
one obtains composites of already existing 2-knots. Connected sum composition is analogous
to the composition of integer to a product of primes. One indeed speaks of prime knots and
the number of prime knots is infinite. Of course, it is far from clear whether the connected
sum operation is enough to build all knots. For instance it might well be that cobordisms
of 1-braids produces knots not producible in this manner. In particular, the effects of time-
like braiding induce braiding of space-like strands and this looks totally different from local
knotting.

9.4.2 Are All Possible 2-Knots Possible For Stringy WorldSheets?

Whether all possible 2-knots are allowed for stringy world sheets, is not clear. In particular, if they
are dynamically determined it might happen that many possibilities are not realized. For instance,
the condition that the signature of the induced metric is Minkowskian could be an effective killer
of 2-knottedness not reducing to braid cobordism.

1. One must start from string world sheets with Minkowskian signature of the induced metric.
In other words, in the previous construction one must E3 with 3-dimensional Minkowski
space M3 with metric signature 1+2 containing the spheres used in the construction. Time
travel is replaced with a travel in space-like hyper dimension. This is not a problem as
such. The spheres however have at least one two special points corresponding to extrema at
which the time coordinate has a local minimum or maximum. At these points the induced
metric is necessarily degenerate meaning that its determinant vanishes. If one allows this
kind of singular points one can have elementary knotted spheres. This liberal attitude is
encouraged by the fact that the light-like 3-surfaces defining the basic dynamical objects of
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quantum TGD correspond to surfaces at which 4-D induced metric is degenerate. Otherwise
2-knotting reduces to that induced by cobordisms of 1-braids. If one allows only the 2-knots
assignable to the slicings of the space-time surface by string world sheets and even restricts
the consideration to those suggested by the duality of 2-D generalization of Wilson loops
for string world sheets and partonic 2-surfaces, it could happen that the string world sheets
reduce to braidings.

2. The time=constant intersections define a representation of 2-knots as a continuous sequence
of 1-braids. For critical times the character of the 1-braids changes. In the case of braiding
this corresponds to the basic operations for 1-knots having interpretation as string diagrams
(reconnection and analog of trouser vertex). The possibility of genuine 2-knottedness brings
in also the possibility that strings pop up from vacuum as points, expand to closed strings,
are fused to stringy words sheet temporarily by the analog of trouser vertex, and eventually
return to the vacuum. Essentially trouser diagram but second string open and second string
closed and beginning from vacuum and ending to it is in question. Vacuum bubble interacting
with open string would be in question. The believer in string model might be eager to accept
this picture but one must be cautious.

9.4.3 Are Wilson Loops Enough For 2-Knots?

Suppose that the space-like braid strands connecting partonic 2-surfaces at given boundary of CD
and light-like braids connecting partonic 2-surfaces belonging to opposite boundaries of CD form
connected closed strands. The collection of closed loops can be identified as boundaries of Wilson
loops and the expectation value is defined as the product of traces assignable to the loops. The
definition is exactly the same as in 2+1-D case [A49].

Is this generalization of Wilson loops enough to describe 2-knots? In the spirit of the
proposed philosophy one could ask whether there exist two-knots not reducible to cobordisms of
1-knots whose knot invariants require cobordisms of 2-knots and therefore 2-braids in 5-D space-
time. Could it be that dimension D = 4 is somehow very special so that there is no need to go to
D = 5? This might be the case since for ordinary knots Jones polynomial is very faithful invariant.

Innocent novice could try to answer the question in the following manner. Let us study
what happens locally as the 2-D closed surface in 4-D space gets knotted.

1. In 1-D case knotting reduces to linking and means that the first homotopy group of the knot
complement is changed so that the imbedding of first circle implies that the there exists
imbedding of the second circle that cannot be transformed to each other without cutting the
first circle temporarily. This phenomenon occurs also for single circle as the connected sum
operation for two linked circles producing single knotted circle demonstrates.

2. In 2-D case the complement of knotted 2-sphere has a non-trivial second homotopy group so
that 2-balls have homotopically non- equivalent imbeddings, which cannot be transformed to
each other without intersection of the 2-balls taking place during the process. Therefore the
description of 2-knotting in the proposed manner would require cobordisms of 2-knots and
thus 5-D space-time surfaces. However, since 3-D description for ordinary knots works so
well, one could hope that the generalization the notion of Wilson loop could allow to avoid
5-D description altogether. The generalized Wilson loops would be assigned to 2-D surfaces
and gauge potential A would be replaced with 2-gauge potential B defining a three-form
F = dB as the analog of gauge field.

3. This generalization of bundle structure known as gerbe structure has been introduced in
algebraic geometry [A9, A78] and studied also in theoretical physics [A68]. 3-forms appear
as analogs of gauge fields also in the QFT limit of string model. Algebraic geometer would
see gerbe as a generalization of bundle structure in which gauge group is replaced with a
gauge groupoid. Essentially a structure of structures seems to be in question. For instance,
the principal bundles with given structure group for given space defines a gerbe. In the
recent case the space of gauge fields in space-time could be seen as a gerbe. Gerbes have
been also assigned to loop spaces and WCW can be seen as a generalization of loop space.
Lie groups define a much more mundane example about gerbe. The 3-form F is given by
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F (X,Y, Z) = B(X, [Y,Z]), where B is Killing form and for U(n) reduces to (g−1dg)3. It will
be found that classical color gauge fields define gerbe gauge potentials in TGD framework in
a natural manner.

9.5 TGD Inspired Theory Of Braid Cobordisms And 2-
Knots

In the sequel the considerations are restricted to TGD and to a comparison of Witten’s ideas with
those emerging in TGD framework.

9.5.1 Weak Form Of Electric-Magnetic Duality And Duality Of Space-
Like And Time-Like Braidings

Witten notices that much of his work in physics relies on the assumption that magnetic charges exist
and that rather frustratingly, cosmic inflation implies that all traces of them disappear. In TGD
Universe the non-trivial topology of CP2 makes possible Kähler magnetic charge and inflation
is replaced with quantum criticality. The recent view about elementary particles is that they
correspond to string like objects with length of order electro-weak scale with Kähler magnetically
charged wormhole throats at their ends. Therefore magnetic charges would be there and LHC
might be able to detect their signatures if LHC would get the idea of trying to do this.

Witten mentions also electric-magnetic duality. If I understood correctly, Witten believes
that it might provide interesting new insights to the knot invariants. In TGD framework one
speaks about weak form of electric magnetic duality. This duality states that Kähler electric fluxes
at space-like ends of the space-time sheets inside CDs and at wormhole throats are proportional
to Kähler magneic fluxes so that the quantization of Kähler electric charge quantization reduces
to purely homological quantization of Kähler magnetic charge.

The weak form of electric-magnetic duality fixes the boundary conditions of field equations
at the light-like and space-like 3-surfaces. Together with the conjecture that the Kähler current
is proportional to the corresponding instanton current this implies that Kähler action for the
preferred extremal sof Kähler action reduces to 3-D Chern-Simons term so that TGD reduces to
almost topological QFT. This means an enormous mathematical simplification of the theory and
gives hopes about the solvability of the theory. Since knot invariants are defined in terms of Abelian
Chern-Simons action for induced Kähler gauge potential, one might hope that TGD could as a
by-product define invariants of braid cobordisms in terms of the unitary U-matrix of the theory
between zero energy states. The detailed construction of U-matrix is discussed in [K66].

Electric magnetic duality is 4-D phenomenon as is also the duality between space-like and
time like braidings essential also for the model of topological quantum computation. Also this
suggests that some kind of topological string theory for the space-time sheets inside CDs could
allow to define the braid cobordism invariants.

9.5.2 Could Kähler Magnetic Fluxes Define Invariants Of Braid Cobor-
disms?

Can one imagine of defining knot invariants or more generally, invariants of knot cobordism in
this framework? As a matter fact, also Jones polynomial describes the process of unknotting and
the replacement of unknotting with a general cobordism would define a more general invariant.
Whether the Khovanov invariants might be understood in this more general framework is an
interesting question.

1. One can assign to the 2-dimensional stringy surfaces defined by the orbits of space-like braid
strands Kähler magnetic fluxes as flux integrals over these surfaces and these integrals depend
only on the end points of the space-like strands so that one deform the space-like strands in
an arbitrarily manner. One can in fact assign these kind of invariants to pairs of knots and
these invariants define the dancing operation transforming these knots to each other. In the
special case that the second knot is un-knot one obtains a knot-invariant (or link- or braid-
invariant).
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2. The objection is that these invariants depend on the orbits of the end points of the space-like
braid strands. Does this mean that one should perform an averaging over the ends with the
condition that space-like braid is not affected topologically by the allowed deformations for
the positions of the end points?

3. Under what conditions on deformation the magnetic fluxes are not affect in the deformation
of the braid strands at 3-D surfaces? The change of the Kähler magnetic flux is magnetic flux
over the closed 2-surface defined by initial non-deformed and deformed stringy two-surfaces
minus flux over the 2-surfaces defined by the original time-like and space-like braid strands
connected by a thin 2-surface to their small deformations. This is the case if the deformation
corresponds to a U(1) gauge transformation for a Kähler flux. That is diffeomorphism of M4

and symplectic transformation of CP2 inducing the U(1) gauge transformation.

Hence a natural equivalence for braids is defined by these transformations. This is quite not a
topological equivalence but quite a general one. Symplectic transformations of CP2 at light-
like and space-like 3-surfaces define isometries of the world of classical worlds so that also
in this sense the equivalence is natural. Note that the deformations of space-time surfaces
correspond to this kind of transformations only at space-like 3-surfaces at the ends of CDs
and at the light-like wormhole throats where the signature of the induced metric changes.
In fact, in quantum TGD the sub-spaces of world of classical worlds with constant values of
zero modes (non-quantum fluctuating degrees of freedom) correspond to orbits of 3-surfaces
under symplectic transformations so that the symplectic restriction looks rather natural also
from the point of view of quantum dynamics and the vacuum expectation defined by Kähler
function be defined for physical states.

4. A further possibility is that the light-like and space-like 3-surfaces carry vanishing induced
Kähler fields and represent surfaces in M4×Y 2, where Y 2 is Lagrangian sub-manifold of CP2

carrying vanishing Kähler form. The interior of space-time surface could in principle carry
a non-vanishing Kähler form. In this case weak form of self-duality cannot hold true. This
however implies that the Kähler magnetic fluxes vanish identically as circulations of Kähler
gauge potential. The non-integrable phase factors defined by electroweak gauge potentials
would however define non-trivial classical Wilson loops. Also electromagnetic field would do
so. It would be therefore possible to imagine vacuum expectation value of Wilson loop for
given quantum state. Exponent of Kähler action would define for non-vacuum extremals the
weighting. For 4-D vacuum extremals this exponent is trivial and one might imagine of using
imaginary exponent of electroweak Chern-Simons action. Whether the restriction to vacuum
extremals in the definition of vacuum expectations of electroweak Wilson loops could define
general enough invariants for braid cobordisms remains an open question.

5. The quantum expectation values for Wilson loops are non-Abelian generalizations of expo-
nentials for the expectation values of Kähler magnetic fluxes. The classical color field is
proportional to the induced Kähler form and its holonomy is Abelian which raises the ques-
tion whether the non-Abelian Wilson loops for classical color gauge field could be expressible
in terms of Kähler magnetic fluxes.

9.5.3 Classical Color Gauge Fields And Their Generalizations Define
Gerbe Gauge Potentials Allowing To Replace Wilson Loops With
Wilson Sheets

As already noticed, the description of 2-knots seems to necessitate the generalization of gauge field
to 3-form and the introduction of a gerbe structure. This seems to be possible in TGD framework.

1. Classical color gauge fields are proportional to the products BA = HAJ of the Hamiltonians
of color isometries and of Kähler form and the closed 3-form FA = dBA = dHA∧J could serve
as a colored 3-form defining the analog of U(1) gauge field. What would be interesting that
color would make F non-vanishing. The “circulation” hA =

∮
HAJ over a closed partonic 2-

surface transforms covariantly under symplectic transformations of CP2, whose Hamiltonians
can be assigned to irreps of SU(3): just the commutator of Hamiltonians defined by Poisson
bracket appears in the infinitesimal transformation. One could hope that the expectation
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values for the exponents of the fluxes of BA over 2-knots could define the covariants able
to catch 2-knotted-ness in TGD framework. The exponent defining Wilson loop would be
replaced with exp(iQAhA), where QA denote color charges acting as operators on particles
involved.

2. Since the symplectic group acting on partonic 2-surfaces at the boundary of CD replaces color
group as a gauge group in TGD, one can ask whether symplectic SU(3) should be actually
replaced with the entire symplectic group of ∪±δM4

± × CP2 with Hamiltonians carrying
both spin and color quantum numbers. The symplectic fluxes

∮
HAJ are indeed used in the

construction of both quantum states and of WCW geometry. This generalization is indeed
possible for the gauge potentials BAJ so that one would have infinite number of classical
gauge fields having also interpretation as gerbe gauge potentials.

3. The objection is that symplectic transformations are not symmetries of Kähler action. There-
fore the action of symplectic transformation induced on the space-time surface reduces to a
symplectic transformation only at the partonic 2-surfaces. This spoils the covariant trans-
formation law for the 2-fluxes over stringy world sheets unless there exist preferred stringy
world sheets for which the action is covariant. The proposed duality between the descrip-
tions based on partonic 2-surfaces and stringy world sheets realized in terms of slicings of
space-time surface by string world sheets and partonic 2-surfaces suggests that this might be
the case.

This would mean that one can attach to a given partonic 2-surface a unique collection string
world sheets. The duality suggests even stronger condition stating that the total exponents
exp(iQAhA) of fluxes are the same irrespective whether hA evaluated for partonic 2-surfaces
or for string world sheets defining the analog of 2-knot. This would mean an immense
calculational simplification! This duality would correspond very closely to the weak form of
electric magnetic duality whose various forms I have pondered as a must for the geometry of
WCW . Partonic 2-surfaces indeed correspond to magnetic monopoles at least for elementary
particles and stringy world sheets to surfaces carrying electric flux (note that in the exponent
magnetic charges do not make themselves visible so that the identity can make sense also for
HA = 1).

4. Quantum expectation means in TGD framework a functional integral over the symplectic
orbits of partonic 2-surfaces plus 4-D tangent space data assigned to the upper and lower
boundaries of CD. Suppose that holography fixes the space-like 3-surfaces at the ends of
CD and light-like orbits of partonic 2-surfaces. In completely general case the braids and
the stringy space-time sheets could be fixed using a representation in terms of space-time
coordinates so that the representation would be always the same but the imbedding varies
as also the values of the exponent of Kähler function, of the Wilson loop, and of its 2-D
generalization. The functional integral over symplectic transforms of 3-surfaces implies that
Wilson loop and its 2-D generalization varies.

The proposed duality however suggests that both Wilson loop and its 2-D generalization
are actually fixed by the dynamics of quantum TGD. One can ask whether the presence of
2-D analog of Wilson loop has a direct physical meaning bringing into almost topological
stringy dynamics associated with color quantum numbers and coding explicit information
about space-time interior and topology of field lines so that color dynamics would also have
interpretation as a theory of 2-knots. If the proposed duality suggested by holography holds
true, only the data at partonic 2-surfaces would be needed to calculate the generalized Wilson
loops.

In TGD framework the localization of the modes of the induced spinor fields at 2-D surfaces
carrying vanishing induced W boson fields guaranteeing that the em charge of spinor modes
is well-defined for a generic preferred extremal is natural [K62]. Besides string world sheets
partonic 2-surfaces are good candidates for this kind of surfaces. It is not clear whether
one can have a continuous slicing of this kind by string world sheets and partonic 2-surfaces
orthogonal to them or whether only discrete set of these surfaces is possible.

This picture is very speculative and sounds too good to be true but follows if one consistently
applies holography.
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9.5.4 Summing Sup The Basic Ideas

Let us summarize the ideas discussed above.

1. Instead of knots, links, and braids one could study knot and link cobordisms, that is their
dynamical evolutions concretizable in terms of dance metaphor and in terms of interacting
string world sheets. Each space-like braid strand can have purely internal knotting and braid
strands can be linked. TGD could allow to identify uniquely both space-like and time-like
braid strands and thus also the stringy world sheets more or less uniquely and it could be
that the dynamics induces automatically the temporary cutting of braid strands when knot is
opened violently so that a hole is generated. Gerbe gauge potentials defined by classical color
gauge fields could make also possible to characterize 2-knottedness in symplectic invariant
manner in terms of color gauge fluxes over 2-surfaces.

The weak form of electric-magnetic duality would reduce the situation to almost topological
QFT in general case with topological invariance replaced with symplectic one which corre-
sponds to the fixing of the values of non-quantum fluctuating zero modes in quantum TGD.
In the vacuum sector it would be possible to have the counterparts of Wilson loops weighted
by 3-D electroweak Chern-Simons action defined by the induced spinor connection.

2. One could also leave TGD framework and define invariants of braid cobordisms and 2-D
analogs of braids as vacuum expectations of Wilson loops using Chern-Simons action assigned
to 3-surfaces at which space-like and time-like braid strands end. The presence of light-like
and space-like 3-surfaces assignable to causal diamonds could be assumed also now.

I checked whether the article of Gukov, Scwhartz, and Vafa entitled “Khovanov-Rozansky
Homology and Topological Strings” [A61, A61] relies on the primitive topological observations
made above. This does not seem to be the case. The topological strings in this case are strings in
6-D space rather than 4-D space-time.

There is also an article by Dror Bar-Natan with title “Khovanov’s homology for tangles and
cobordisms” [A43]. The article states that the Khovanov homology theory for knots and links
generalizes to tangles, cobordisms and 2-knots. The article does not say anything explicit about
Wilson loops but talks about topological QFTs.

An article of Witten about his physical approach to Khovanov homology has appeared in
arXiv [A50]. The article is more or less abracadabra for anyone not working with M-theory but the
basic idea is simple. Witten reformulates 3-D Chern-Simons theory as a path integral for N = 4
SYM in the 4-D half space W×;R. This allows him to use dualities and bring in the machinery of
M-theory and 6-branes. The basic structure of TGD forces a highly analogous approach: replace
3-surfaces with 4-surfaces, consider knot cobordisms and also 2-knots, introduce gerbes, and be
happy with symplectic instead of topological QFT, which might more or less be synonymous with
TGD as almost topological QFT. Symplectic QFT would obviously make possible much more
refined description of knots.

9.6 Witten’s Approach To Khovanov Homology From TGD
Point Of View

Witten’s approach to Khovanov comohology [A50] relies on fivebranes as is natural if one tries to
define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the
difference in approaches it is very useful to try to find the counterparts of this approach in quantum
TGD since this would allow to gain new insights to quantum TGD itself as almost topological QFT
identified as symplectic theory for 2-knots, braids and braid cobordisms.

An essentially unique identification of string world sheets and therefore also of the braids
whose ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one
identifies the string word sheets as singular surfaces in the same manner as is done in Witten’s
approach [A50].

Also a physical interpretation of the operators Q, F , and P of Khovanov homology emerges.
P would correspond to instanton number and F to the fermion number assignable to right handed
neutrinos. The breaking of M4 chiral invariance makes possible to realize Q physically. The
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finding that the generalizations of Wilson loops can be identified in terms of the gerbe fluxes∫
HAJ supports the conjecture that TGD as almost topological QFT corresponds essentially to a

symplectic theory for braids and 2-knots.

9.6.1 Intersection Form And Space-Time Topology

The violent unknotting corresponds to a sequence of steps in which braid or knot becomes trivial
and this very process defines braid invariants in TGD approach in nice concordance with the
basic recipe for the construction of Jones polynomial. The topological invariant characterizing this
process as a dynamics of 2-D string like objects defined by braid strands becomes knot invariant
or more generally, invariant depending on the initial and final braids.

The process is describable in terms of string interaction vertices and also involves crossings of
braid strands identifiable as self-intersections of the string world sheet. Hence the intersection form
for the 2-surfaces defining braid strand orbits becomes a braid invariant. This intersection form is
also a central invariant of 4-D manifolds and Donaldson’s theorem [A6] says that for this invariant
characterizes simply connected smooth 4-manifold completely. Rank, signature, and parity of this
form in the basis defined by the generators of 2-homology (excluding torsion elements) characterize
smooth closed and orientable 4-manifold. It is possible to diagonalize this form for smoothable
4-surfaces. Although the situation in the recent case differs from that in Donaldson theory in that
the 4-surfaces have boundary and even fail to be manifolds, there are reasons to believe that the
theory of braid cobordisms and 2-knots becomes part of the theory of topological invariants of
4-surfaces just as knot theory becomes part of the theory of 3-manifolds. The representation of
4-manifolds as space-time surfaces might also bring in physical insights.

This picture leads to ideas about string theory in 4-D space-time as a topological QFT. The
string world sheets define the generators of second relative homology group. “Relative” means
that closed surfaces are replaced with surfaces with boundaries at wormhole throats and ends
of CD. These string world sheets, if one can fix them uniquely, would define a natural basis for
homology group defining the intersection form in terms of violent unbraiding operations (note that
also reconnections are involved).

Quantum classical correspondence encourages to ask whether also physical states must be
restricted in such a manner that only this minimum number of strings carrying quantum numbers
at their ends ending to wormhole throats should be allowed. One might hope that there exists a
unique identification of the topological strings implying the same for braids and allowing to identify
various symplectic invariants as Hamiltonian fluxes for the string world sheets.

9.6.2 Framing Anomaly

In 3-D approach to knot theory the framing of links and knots represents an unavoidable technical
problem [A50]. Framing means a slight shift of the link so that one can define self-linking number
as a linking number for the link and its shift. The problem is that this framing of the link -
or trivialization of its normal bundle in more technical terms- is not topological invariant and
one obtains a large number of framings. For links in S3 the framing giving vanishing self-linking
number is the unique option and Atyiah has shown that also in more general case it is possible to
identify a unique framing.

For 2-D surfaces self-linking is replaced with self-intersection. This is well-defined notion
even without framing and indeed a key invariant. One might hope that framing is not needed also
for string world sheets. If needed, this framing would induce the framing at the space-like and
light-like 3-surfaces. The restriction of the section of the normal bundle of string world sheet to
the 3-surfaces must lie in the tangent space of 3-surfaces. It is not clear whether this is enough to
resolve the non-uniqueness problem.

9.6.3 Khovanov Homology Briefly

Khovanov homology involves three charges Q, F , and P . Q is analogous to super charge and
satisfies Q2 = 0 for the elements of homology. The basic commutation relations between the
charges are [F,Q] = Q and [P,Q] = 0. One can show that the Khovanov homology κ(L) for
link can be expressed as a bi-graded direct sum of the eigen-spaces Vm,n of F and P , which have
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integer valued spectra. Obviously Q increases the eigenvalue of F and maps Vm,n to Vm+1,n just
as exterior derivative in de-Rham comology increases the degree of differential form. P acts as a
symmetry allowing to label the elements of the homology by an integer valued charge n.

Jones polynomial can be expressed as an index assignable to Khovanov homology:

J (q|L) = Tr((−1)F qP . (9.6.1)

Here q defining the argument of Jones polynomial is root of unity in Chern-Simons theory but can
be extended to complex numbers by extending the positive integer valued Chern-Simons coupling k
to a complex number. The coefficients of the resulting Laurent polynomial are integers: this result
does not follow from Chern-Simons approach alone. Jones polynomial depends on the spectrum
of F only modulo 2 so that a lot of information is lost as the homology is replaced with the
polynomial.

Both the need to have a more detailed characterization of links and the need to under-
stand why the Wilson loop expectation is Laurent polynomial with integer coefficients serve as
motivations of Witten for searching a physical approach to Khovanov polynomial.

The replacement of D = 2 in braid group approach to Jones polynomial with D = 3 for
Chern-Simons approach replaced by something new in D = 4 would naturally correspond to the
dimensional hierarchy of TGD in which partonic 2-surfaces plus their 2-D tangent space data fix the
physics. One cannot quite do with partonic 2-surfaces and the inclusion of 2-D tangent space-data
leads to holography and unique space time surfaces and perhaps also unique string world sheets
serving as duals for partonic 2-surfaces. This would realize the weak form of electric magnetic
duality at the level of homology much like Poincare duality relates cohomology and homology.

9.6.4 Surface Operators And The Choice Of The Preferred 2-Surfaces

The choice of preferred 2-surfaces and the identification of surface operators in N = 4 YM theory
is discussed in [A44]. The intuitive picture is that preferred 2-surfaces- now string world sheets
defining braid cobordisms and 2-knots- correspond to singularities of classical gauge fields. Surface
operator can be said to create this singularity. In functional integral this means the presence of
the exponent defining the analog of Wilson loop.

1. In [A44] the 2-D singular surfaces are identified as poles for the magnitude r of the Higgs
field. One can assign to the 2-surface fractional magnetic charges defined for the Cartan
algebra part AC of the gauge connection as circulations

∮
AC around a small circle around

the axis of singularity at r =∞. What happens that 3-D r = constant surface reduces to a
2-D surface at r =∞ whereas AC and entire gauge potential behaves as A = AC = αdφ near
singularity. Here φ is coordinate analogous to angle of cylindrical coordinates when t-z plane
represents the singular 2-surface. α is a linear combination of Cartan algebra generators.

2. The phase factor assignable to the circulation is essentially exp(i2πα) and for non-fractional
magnetic charges it differs from unity. One might perhaps say that string word sheets corre-
spond to singularities for the slicing of space-time surface with 3-surfaces at which 3-surfaces
reduce to 2-surfaces.

Consider now the situation in TGD framwork.

1. The gauge group is color gauge group and gauge color gauge potentials correspond to the
quantities HAJ . One can also consider a generalization by allowing all Hamiltonians gen-
erating symplectic transformations of CP2. Kähler gauge potential is in essential role since
color gauge field is proportional to Kähler form.

2. The singularities of color gauge fields can be identified by studing the theory locally as a
field theory from CP2 to M4. It is quite possible to have space-time surfaces for which
M4 coordinates are many-valued functions of CP2 coordinates so that one has a covering
of CP2 locally. For singular 2-surfaces this covering becomes singular in the sense that
separate sheets coincide. These coverings do not seem to correspond to those assignable to
the hierarchy of Planck constants implied by the many-valuedness of the time derivatives of
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the imbedding space coordinates as functions of canonical momentum densities but one must
be very cautious in making too strong conclusions here.

3. To proceed introduce the Eguchi-Hanson coordinates

(ξ1, ξ2) = [rcos(θ/2)exp(i(Ψ + Φ)/2), rsin(θ/2)exp(i(−Ψ + Φ)/2]

for CP2 with the defining property that the coordinates transform linearly under U(2) ⊂
SU(3). In QFT context these coordinates would be identified as Higgs fields. The choice
of these coordinates is unique apart from the choice of the U(2) subgroup and rotation by
element of U(2) once this choice has been made. In TGD framework the definition of CD
involves the fixing of these coordinates and the interpretation is in terms of quantum classical
correspondence realizing the choice of quantization axes of color at the level of the WCW
geometry.

r has a natural identification as the magnitude of Higgs field invariant under U(2) ⊂ SU(3).
The SU(2)×U(1) invariant 3-sphere reduces to a homologically non-trivial geodesic 2-sphere
at r = ∞ so that for this choice of coordinates this surface defines in very natural manner
the counterpart of singular 2-surface in CP2 geometry. At this sphere the second phase
associated with CP2 coordinates- Φ - becomes a redundant coordinate just like the angle
Φ at the poles of sphere. There are two other similar spheres and these three spheres are
completely analogous to North and South poles of 2-sphere.

4. One possibility is that the singular surfaces correspond to the inverse images for the pro-
jection of the imbedding map to r = ∞ geodesic sphere of CP2 for a CD corresponding to
a given choice of quantization axes. Also the inverse images of all homological non-trivial
geodesic spheres defining the three poles of CP2 can be considered. The inverse images of
this geodesic 2-sphere under the imbedding-projection map would naturally correspond to
2-D string world sheets for the preferred extremals for a generic space-time surface. For
cosmic strings and massless extremals the inverse image would be 4-dimensional but this
problem can be circumvented easily. The identification turned out to be somewhat ad hoc
and later a much more convincing unique identification of string world sheets emerged and
will be discussed in the sequel. Despite this the general aspects of the proposal deserves a
discussion.

5. The existence of dual slicings of space-time surface by 3-surfaces and lines on one hand and
by string world sheets Y 2 and 2-surfaces X2 with Euclidian signature of metric on one hand,
is one of the basic conjectures about the properties of preferred extremals of Kähler action.
A stronger conjecture is that partonic 2-surfaces represent particular instances of X2. The
proposed picture suggests an amazingly simple and physically attractive identification of
these slicings.

(a) The slicing induced by the slicing of CP2 by r = constant surfaces defines an excellent
candidate for the slicing by 3-surfaces. Physical the slices would correspond to equiv-
alence classes of choices of the quantization axes for color group related by U(2). In
gauge theory context they would correspond to different breakings of SU(3) symmetry
labelled by the vacuum expectation of the Higgs field r which would be dynamical for
CP2 projections and play the role of time coordinate.

(b) The slicing by string world sheets would naturally correspond to the slicing induced by
the 2-D space of homologically non-trivial geodesic spheres (or triplets of them) and
could be called “CP2/S

2”. One has clearly bundle structure with S2 as base space and
“CP2/S

2” as fiber. Partonic 2-surfaces could be seen locally as sections of this bundle
like structure assigning a point of “CP2/S

2” to each point of S2. Globally this does not
make sense for partonic 2-surfaces with genus larger than g = 0.

6. In TGD framework the Cartan algebra of color gauge group is the natural identification for
the Cartan algebra involved and the fluxes defining surface operators would be the classical
fluxes

∫
HAJ over the 2-surfaces in question restricted to Cartan algebra. What would be
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new is the interpretation as gerbe gauge potentials so that flux becomes completely analogous
to Abelian circulation.

If one accepts the extension of the gauge algebra to a symplectic algebra, one would have the
Cartan algebra of the symplectic algebra. This algebra is defined by generators which depend
on the second half Pi or Qi of Darboux coordinates. If Pi are chosen to be functions of the
coordinates (r, θ) of CP2 coordinates whose Poisson brackets with color isospin and hyper
charge generators inducing rotations of phases (Ψ,Φ) of CP2 complex coordinates vanish, the
symplectic Cartan algebra would correspond to color neutral Hamiltonians. The spherical
harmonics with non-vanishing angular momentum vanish at poles and one expects that same
happens for CP2 spherical harmonics at the three poles of CP2. Therefore Cartan algebra is
selected automatically for gauge fluxes.

This subgroup leaves the ends of the points of braids at partonic 2-surfaces invariant so that
symplectic transformations do not induce braiding.

If this picture -resulting as a rather straightforward translation of the picture applied in
QFT context- is correct, TGD would predict uniquely the preferred 2-surfaces and therefore also
the braids as inverse images of CP2 geodesic sphere for the imbedding of space-time surface to
CD × CP2. Also the conjecture slicings by 3-surfaces and string world sheets could be identified.
The identification of braids and slicings has been indeed one of the basic challenges in quantum
TGD since in quantum theory one does not have anymore the luxury of topological invariance and
I have proposed several identifications. If one accepts only these space-time sheets then the stringy
content for a given space-time surface would be uniquely fixed.

The assignment of singularities to the homologically non-trivial geodesic sphere suggests
that the homologically non-trivial space-time sheets could be seen as 1-dimensional idealizations of
magnetic flux tubes carrying Kähler magnetic flux playing key role also in applications of TGD, in
particular biological applications such as DNA as topological quantum computer and bio-control
and catalysis.

9.6.5 The Identification Of Charges Q, P And F Of Khovanov Homology

The challenge is to identify physically the three operators Q, F , and P appearing in Khovanov
homology. Taking seriously the proposal of Witten [A50] and looking for its direct counterpart in
TGD leads to the identification and physical interpretation of these charges in TGD framework.

1. In Witten’s approach P corresponds to instanton number assignable to the classical gauge
field configuration in space-time. In TGD framework the instanton number would naturally
correspond to that assignable to CP2 Kähler form. One could consider the possibility of
assigning this charge to the deformed CP2 type vacuum extremals assigned to the space-
like regions of space-time representing the lines of generalized Feynman diagrams having
elementary particle interpretation. P would be or at least contain the sum of unit instanton
numbers assignable to the lines of generalized Feynman diagrams with sign of the instanton
number depending on the orientation of CP2 type vacuum extremal and perhaps telling
whether the line corresponds to positive or negative energy state. Note that only pieces
of vacuum extremals defined by the wormhole contacts are in question and it is somewhat
questionable whether the rest of them in Minkowskian regions is included.

2. F corresponds to U(1) charge assignable to R-symmetry of N = 4 SUSY in Witten’s theory.
The proposed generalization of twistorial approach in TGD framework suggests strongly
that this identification generalizes to TGD. In TGD framework all solutions of Kähler-Dirac
equation at wormhole throats define super-symmetry generators but the supersymmetry is
badly broken. The covariantly constant right handed neutrino defines the minimally broken
supersymmetry since there are no direct couplings to gauge fields. This symmetry is however
broken by the mixing of right and left handed M4 chiralities present for both Dirac actions
for induced gamma matrices and for Kähler-Dirac equations defined by Kähler action and
Chern-Simons action at parton orbits. It is caused by the fact that both the induced and
Kähler-Dirac gamma matrices are combinations of M4 and CP2 gamma matrices. F would
therefore correspond to the net fermion number assignable to right handed neutrinos and
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antineutrinos. F is not conserved because of the chirality mixing and electroweak interactions
respecting only the conservation of lepton number.

Note that the mixing of M4 chiralities in sub-manifold geometry is a phenomenon charac-
teristic for TGD and also a direct signature of particle massivation and SUSY breaking. It
would be nice if it would allow the physical realization of Q operator of Khovanov homology.

3. Witten proposes an explicit formula for Q in terms of 5-dimensional time evolutions inter-
polating between two 4-D instantons and involving sum of sign factors assignable to Dirac
determinants. In TGD framework the operator Q should increase the right handed neutrino
number by one unit and therefore transform one right-handed neutrino to a left handed one
in the minimal situation. In zero energy ontology Q should relate to a time evolution either
between ends of CD or between the ends of single line of generalized Feynman diagram. If
instanton number can be assigned solely to the wormhole contacts, this evolution should
increase the number of CP2 type extremals by one unit. 3-particle vertex in which right
handed neutrino assignable to a partonic 2-surface transforms to a left handed one is thus a
natural candidate for defining the action of Q.

4. Note that the almost topological QFT property of TGD together with the weak form of
electric-magnetic duality implies that Kähler action reduces to Abelian Chern-Simons term.
Ordinary Chern-Simons theory involves imaginary exponent of this term but in TGD the
exponent would be real. Should one replace the real exponent of Kähler function with
imaginary exponent? If so, TGD would be very near to topological QFT also in this respect.
This would also force the quantization of the coupling parameter k in Chern-Simons action.
On the other hand, the Chern-Simons theory makes sense also for purely imaginary k [A50].

9.6.6 What Does The Replacement Of Topological Invariance With Sym-
plectic Invariance Mean?

One interpretation for the symplectic invariance is as an analog of diffeo-invariance. This would
imply color confinement. Another interpretation would be based on the identification of symplectic
group as a color group. Maybe the first interpretation is the proper restriction when one calculates
invariants of braids and 2-knots.

The replacement of topological symmetry with symplectic invariance means that TGD based
invariants for braids carry much more refined information than topological invariants. In TGD
approach M4 diffeomorphisms act freely on partonic 2-surfaces and 4-D tangent space data but
the action in CP2 degrees of freedom reduces to symplectic transformations. One could of course
consider also the restriction to symplectic transformations of the light-cone boundary and this
would give additional refinements.

It is is easy to see what symplectic invariance means by looking what it means for the ends
of braids at a given partonic 2-surface.

1. Symplectic transformations respect the Kähler magnetic fluxes assignable to the triangles
defined by the finite number of braid points so that these fluxes defining symplectic areas de-
fine some minimum number of coordinates parametrizing the moduli space in question. For
topological invariance all n-point configurations obtained by continuous or smooth trans-
formations are equivalent braid end configurations. These finite-dimensional moduli spaces
would be contracted with point in topological QFT.

2. This picture led to a proposal of what I call symplectic QFT [K9] in which the associativity
condition for symplectic fusion rules leads the hierarchy of algebras assigned with symplectic
triangulations and forming a structures known as operad in category theory. The ends of
braids at partonic 2-surfaces would would define unique triangulation of this kind if one
accepts the identification of string like 2-surfaces as inverse images of homologically non-
trivial geodesic sphere.

Note that both diffeomorphisms and symplectic transformations can in principle induce
braiding of the braid strands connecting two partonic 2-surfaces. Should one consider the possibility
that the allow transformations are restricted so that they do not induce braiding?
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1. These transformations induce a transformation of the space-time surface which however is
not a symplectic transformation in the interior in general. An attractive conjecture is that
for the preferred extremals this is the case at the inverse images of the homologically non-
trivial geodesic sphere. This would conform with the proposed duality between partonic
2-surfaces and string world sheets inspired by holography and also with quantum classical
correspondence suggesting that at string world sheets the transformations induced by sym-
plectic transformations at partonic 2-surfaces act like symplectic transformations.

2. If one allows only the symplectic transformations in Cartan algebra leaving the homologically
non-trivial geodesic sphere invariant, the infinitesimal symplectic transformations would af-
fect neither the string word sheets nor braidings but would modify the partonic 2-surfaces at
all points except at the intersections with string world sheets.

9.7 Algebraic Braids, Sub-Manifold Braid Theory, And Gen-
eralized Feynman Diagrams

Ulla send me a link to an article by Sam Nelson about very interesting new-to-me notion known as
algebraic knots (see http://tinyurl.com/yauy7asy) [A82, A72], which has initiated a revolution
in knot theory. This notion was introduced 1996 by Louis Kauffmann [A74] so that it is already
15 year old concept. While reading the article I realized that this notion fits perfectly the needs of
TGD and leads to a progress in attempts to articulate more precisely what generalized Feynman
diagrams are.

In the following I will summarize briefly the vision about generalized Feynman diagrams,
introduce the notion of algebraic knot, and after than discuss in more detail how the notion of
algebraic knot could be applied to generalized Feynman diagrams. The algebraic structrures kei,
quandle, rack, and biquandle and their algebraic modifications as such are not enough. The lines
of Feynman graphs are replaced by braids and in vertices braid strands redistribute. This poses
several challenges: the crossing associated with braiding and crossing occurring in non-planar
Feynman diagrams should be integrated to a more general notion; braids are replaced with sub-
manifold braids; braids of braids....of braids are possible; the redistribution of braid strands in
vertices should be algebraized. In the following I try to abstract the basic operations which should
be algebraized in the case of generalized Feynman diagrams.

One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years. Legendrian
braids turn out to be very natural candidates for braids and their duals for the partonic 2-surfaces.
String world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds or to
minimal surfaces of space-time surface satisfying the weak form of electric-magnetic duality. The
latter option turns out to be more plausible. Finite measurement resolution would be realized as
symplectic invariance with respect to the subgroup of the symplectic group leaving the end points
of braid strands invariant. In accordance with the general vision TGD as almost topological QFT
would mean symplectic QFT. The identification of braids, partonic 2-surfaces and string world
sheets - if correct - would solve quantum TGD explicitly at string world sheet level in other words
in finite measurement resolution.

Irrespective of whether the algebraic knots are needed, the natural question is what gen-
eralized Feynman diagrams are. It seems that the basic building bricks can be identified so that
one can write rather explicit Feynman rules already now. Of course, the rules are still far from
something to be burned into the spine of the first year graduate student.

9.7.1 Generalized Feynman Diagrams, Feynman Diagrams, And Braid
Diagrams

How knots and braids a la TGD differ from standard knots and braids?

TGD approach to knots and braids differs from the knot and braid theories in given abstract
3-manifold (4-manifold in case of 2-knots and 2-braids) is that space-time is in TGD framework
identified as 4-D surface in M4 × CP2 and preferred 3-surfaces correspond to light-like 3-surfaces

http://tinyurl.com/yauy7asy
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defined by wormhole throats and space-like 3-surfaces defined by the ends of space-time sheets at
the two light-like boundaries of causal diamond CD.

The notion of finite measurement resolution effectively replaces 3-surfaces of both kinds
with braids and space-time surface with string world sheets having braids strands as their ends.
The 4-dimensionality of space-time implies that string world sheets can be knotted and intersect
at discrete points (counterpart of linking for ordinary knots). Also space-time surface can have
self-intersections consisting of discrete points.

The ordinary knot theory in E3 involves projection to a preferred 2-plane E2 and one
assigns to the crossing points of the projection an index distinguishing between two cases which
are transformed to each other by violently taking the first piece of strand through another piece of
strand. In TGD one must identify some physically preferred 2-dimensional manifold in imbedding
space to which the braid strands are projected. There are many possibilities even when one requires
maximal symmetries. An obvious requirement is however that this 2-manifold is large enough.

1. For the braids at the ends of space-time surface the 2-manifold could be large enough sphere
S2 of light-cone boundary in coordinates in which the line connecting the tips of CD defines
a preferred time direction and therefore unique light-like radial coordinate. In very small
knots it could be also the geodesic sphere of CP2 (apart from the action of isometries there
are two geodesic spheres in CP2).

2. For light-like braids the preferred plane would be naturally M2 for which time direction
corresponds to the line connecting the tips of CD and spatial direction to the quantization
axis of spin. Note that these axes are fixed uniquely and the choices of M2 are labelled by
the points of projective sphere P 2 telling the direction of space-like axis. Preferred plane M2

emerges naturally also from number theoretic vision and corresponds in octonionic pictures
to hyper-complex plane of hyper-octonions. It is also forced by the condition that the choice
of quantization axes has a geometric correlate both at the level of imbedding space geometry
and the geometry of the “world of classical worlds”.

The braid theory in TGD framework could be called sub-manifold braid theory and certainly
differs from the standard one.

1. If the first homology group of the 3-surface is non-trivial as it when the light-like 3-surfaces
represents an orbit of partonic 2-surface with genus larger than zero, the winding of the
braid strand (wrapping of branes in M-theory) meaning that it represents a homologically
non-trivial curve brings in new effects not described by the ordinary knot theory. A typical
new situation is the one in which 3-surface is locally a product of higher genus 2-surface and
line segment so that knot strand can wind around the 2-surface. This gives rise to what are
called non-planar braid diagrams for which the projection to plane produces non-standard
crossings.

2. In the case of 2-knots similar exotic effects could be due to the non-trivial 2-homology of
space-time surface. Wormhole throats assigned with elementary particle wormhole throats
are homologically non-trivial 2-surfaces and might make this kind of effects possible for 2-
knots if they are possible.

The challenge is to find a generalization of the usual knot and braid theories so that they ap-
ply in the case of braids (2-braids) imbedded in 3-D (4-D) surfaces with preferred highly symmetry
sub-manifold of M4×CP2 defining the analog of plane to which the knots are projected. A proper
description of exotic crossings due to non-trivial homology of 3-surface (4-surface) is needed.

Basic questions

The questions are following.

1. How the mathematical framework of standard knot theory should be modified in order to
cope with the situation encountered in TGD? To my surprise I found that this kind of
mathematical framework exists: so called algebraic knots [A82, A72] define a generalization
of knot theory very probably able to cope with this kind of situation.
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2. Second question is whether the generalized Feynman diagrams could be regarded as braid
diagrams in generalized sense. Generalized Feynman diagrams are generalizations of ordinary
Feynman diagrams. The lines of generalized Feynman diagrams correspond to the orbits
of wormhole throats and of wormhole contacts with throats carrying elementary particle
quantum numbers.

The lines meet at vertices which are partonic 2-surfaces. Single wormhole throat can describe
fermion whereas bosons have wormhole contacts with fermion and anti-fermion at the op-
posite throats as building bricks. It seems however that all fermions carry Kähler magnetic
charge so that physical particles are string like objects with magnetic charges at their ends.

The short range of weak interactions results from the screening of the axial isospin by neu-
trinos at the other end of string like object and also color confinement could be understood
in this manner. One cannot exclude the possibility that the length of magnetic flux tube is
of order Compton length.

3. Vertices of the generalized Feynman diagrams correspond to the partonic 2-surfaces along
which light-like 3-surfaces meet and this is certainly a challenge for the required generalization
of braid theory. The basic objection against the reduction to algebraic braid diagrams is that
reaction vertices for particles cannot be described by ordinary braid theory: the splitting of
braid strands is needed.

The notion of bosonic emergence however suggests that 3-vertex and possible higher vertices
correspond to the splitting of braids rather than braid strands. By allowing braids which
come from both past and future and identifying free fermions as wormhole throats and
bosons as wormhole contacts consisting of a pair of wormhole throats carrying fermion and
anti-fermion number, one can understand boson excanges as recombinations without anyneed
to have splitting of braid strands. Strictly and technically speaking, one would have tangles
like objects instead of braids. This would be an enormous simplification since n > 2-vertices
which are the source of divergences in QFT: s would be absent.

4. Non-planar Feynman diagrams are the curse of the twistor approach and I have already earlier
proposed that the generalized Feynman amplitudes and perhaps even twistorial amplitudes
could be constructed as analogs of knot invariants by recursively transforming non-planar
Feynman diagrams to planar ones for which one can write twistor amplitudes. This forces to
answer two questions.

(a) Does the non-nonplanarity of Feynman diagrams - completely combinatorial objects
identified as diagrams in plane - have anything to do with the non-planarity of algebraic
knot diagrams and with the non-planarity of generalized Feynman diagrams which are
purely geometric objects?

(b) Could these two kind of non-planarities be fused to together by identifying the projection
2-plane as preferred M2 ⊂ M4. This would mean that non-planarity in QFT sense is
defined for entire braids: braid A can have virtual crossing with B. Non-planarity in the
sense of knot theory would be defined for braid strands inside the braids. At vertices
braid strands are redistributed between incoming lines and the analog of virtual crossing
be identifiable as an exchange of braid strand between braids. Several kinds of non-
planarities would be present and the idea about gradual unknotting of a non-planar
diagram so that a planar diagram results as the final outcome might make sense and
allow to generalize the recursion recipe for the twistorial amplitudes.

(c) This approach could be combined with the number theoretic vision that amplitudes
correspond to sequences of computations with vertices identified as product and co-
product for a Yangian variant of super-symplectic algebra [A30] [B29, B23, B24]. When
incoming and outgoing algebraic objects are specified there would be unique smallest
diagram leading from input to output. This diagram would be tree diagram in ordinary
Feynman diagrammatics. This would mean huge generalization of the duality symmetry
of string models if all diagrams connecting initial and final collections of algebraic objects
correspond to the same amplitude.
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Non-planar diagrams of quantum field theories should have natural counterpart and
linking and knotting for braids defines it naturally. This suggests that the amplitudes
can be interpreted as generalizations of braid diagrams defining braid invariants: braid
strands would appear as legs of 3-vertices representing product and co-product. Am-
plitudes could be constructed as generalized braid invariants transforming recursively
braided tree diagram to an un-braided diagram using same operations as for braids.
In [L18] I considered a possible breaking of associativity occurring in weak sense for
conformal field theories and was led to the vision that there is a fractal hierarchy of
braids such that braid strands themselves correspond to braids. This hierarchy would
define an operad with subgroups of permutation group in key role. Hence it seems that
various approaches to the construction of amplitudes converge.

(d) One might consider the possibility that inside orbits of wormhole throats defining the
lines of Feynman diagrams the R-matrix for integrable QFT in M2 (only permutations
of momenta are allowed) describes the dynamics so that one obtains just a permutation
of momenta assigned to the braid strands. Ordinary braiding would be described by
existing braid theories. The core problem would be the representation of the exchange
of a strand between braids algebraically.

One can consider different and much simpler general approach to the non-planarity problem.
In twistor Grassmannian approach [K55] generalized Feynman diagrams correspond to TGD
variants of stringy diagrams. In stringy approach one gets rid of non-planarity problem
altogether.

9.7.2 Brief Summary Of Algebraic Knot Theory

Basic ideas of algebraic knot theory

In ordinary knot theory one takes as a starting point the representation of knots of E3 by
their plane plane projections to which one attach a “color” to each crossing telling whether
the strand goes over or under the strand it crosses in planar projection. These numbers are
fixed uniquely as one traverses through the entire knot in given direction.

The so called Reidermeister moves are the fundamental modifications of knot leaving its
isotopy equivalence class unchanged and correspond to continuous deformations of the knot.
Any algebraic invariant assignable to the knot must remain unaffected under these moves.
Reidermeister moves as such look completely trivial and the non-trivial point is that they
represent the minimum number of independent moves which are represented algebraically.

In algebraic knot theory topological knots are replaced by typographical knots resulting as
planar projections. This is a mapping of topology to algebra. It turns out that the existing
knot invariants generalize and ordinary knot theory can be seen as a special case of the
algebraic knot theory. In a loose sense one can say that the algebraic knots are to the
classical knot theory what algebraic numbers are to rational numbers.

Virtual crossing is the key notion of the algebraic knot theory. Virtual crossing and their rules
of interaction were introduced 1996 by Louis Kauffman as basic notions [A1]. For instance, a
strand with only virtual crossings should be replaceable by any strand with the same number
of virtual crossings and same end points. Reidermeister moves generalize to virtual moves.
One can say that in this case crossing is self-intersection rather than going under or above. I
cannot be eliminated by a small deformation of the knot. There are actually several kinds of
non-standard crossings: examples listed in figure 7 of [A82] ) are virtual, flat, singular, and
twist bar crossings.

Algebraic knots have a concrete geometric interpretation.

(a) Virtual knots are obtained if one replaces E3 as imbedding space with a space which has
non-trivial first homology group. This implies that knot can represent a homologically
non-trivial curve giving an additional flavor to the unknottedness since homologically
non-trivial curve cannot be transformed to a curve which is homologically non-trivial
by any continuous deformation.
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(b) The violent projection to plane leads to the emergence of virtual crossings. The product
(S1 × S1)×D, where (S1 × S1) is torus D is finite line segment, provides the simplest
example. Torus can be identified as a rectangle with opposite sides identified and homo-
logically non-trivial knots correspond to curves winding n1 times around the first S1 and
n2 times around the second S1. These curves are not continuous in the representation
where S1 × S1 is rectangle in plane.

(c) A simple geometric visualization of virtual crossing is obtained by adding to the plane a
handle along which the second strand traverses and in this manner avoids intersection.
This visualization allows to understand the geometric motivation for the virtual moves.

This geometric interpretation is natural in TGD framework where the plane to which the
projection occurs corresponds to M2 ⊂ M4 or is replaced with the sphere at the boundary
of S2 and 3-surfaces can have arbitrary topology and partonic 2-surfaces defining as their
orbits light-like 3-surfaces can have arbitrary genus.

In TGD framework the situation is however more general than represented by sub-manifold
braid theory. Single braid represents the line of generalized Feynman diagram. Vertices
represent something new: in the vertex the lines meet and the braid strands are redistributed
but do not disappear or pop up from anywhere. That the braid strands can come both
from the future and past is also an important generalization. There are physical argments
suggesting that there are only 3-vertices for braids but not higher ones [K10]. The challenge
is to represent algebraically the vertices of generalized Feynman diagrams.

Algebraic knots

The basic idea in the algebraization of knots is rather simple. If x and y are the crossing
portions of knot, the basic algebraic operation is binary operation giving “the result of x
going under y”, call it x . y telling what happens to x. “Portion of knot” means the piece of
knot between two crossings and x . y denotes the portion of knot next to x. The definition
is asymmetrical in x and y and the dual of the operation would be y / x would be “the result
of y going above x”. One can of course ask, why not to define the outcome of the operation
as a pair (x / y, y . x). This operation would be bi-local in a well-defined sense. One can of
course do this: in this case one has binary operation from X ×X → X ×X mapping pairs
of portions to pairs of portions. In the first case one has binary operation X ×X → X.

The idea is to abstract this basic idea and replace X with a set endowed with operation .
or / or both and formukate the Reidermeister conditions given as conditions satisfied by the
algebra. One ends up to four basic algebraic structures kei, quandle, rack, and biquandle.

(a) In the case of non-oriented knots the kei is the algebraic structure. Kei - or invontary
quandle-is a set X with a map X ×X → X satisfying the conditions

i. x . x = x (idenpotency, one of the Reidemeister moves)

ii. (x . y) . y =x (operation is its own right inverse having also interpretation as
Reidemeister move)

iii. (x . y) . z = (x . z) . (y . z) (self-distributivity)

Z([t])/(t2) module with x . y = tx+ (1− t)y is a kei.

(b) For orientable knot diagram there is preferred direction of travel along knot and one
can distinguish between . and its right inverse .−1. This gives quandle satisfying the
axios

i. x . x = x

ii. (x . y) .−1 y = (x .−1 y) . y = x

iii. (x . y) . z = (x . z) . (y . z)

Z[t±1] nodule with x . y = tx+ (1− t)y is a quandle.

(c) One can also introduce framed knots: intuitively one attaches to a knot very near
to it. More precise formulation in terms of a section of normal bundle of the knot.
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This makes possible to speak about self-linking. Reidermeister moves must be modified
appropriately. In this case rack is the appropriate structure. It satisfied the axioms of
quandle except the first axiom since corresponding operation is not a move anymore.
Rack axioms are eqivalent with the requirement that functions fy : X → X defined by
fy(x)x.y) are automorphisms of the structure. Therefore the elements of rack represent
its morphisms. The modules over Z[t±1, s]/s(t + s − 1) are racks. Coxeter racks are
inner product spaces with x . y obtained by reflecting x across y.

(d) Biquandle consists of arcs connecting the subsequent crossings (both under- and over-)
of oriented knot diagram. Biquandle operation is a map B : X ×X → X ×X of order
pairs satisfying certain invertibility conditions together with set theoretic Yang-Baxter
equation:

(B × I)(I ×B)(B × I) = (I ×B)(B × I)(I ×B) .

Here I : X → X is the identity map. The three conditions to which Yang-Baxter
equation decomposes gives the counterparts of the above discussed axioms. Alexander
biquandle is the module Z(t±1, s±1 with B(x, y) = (ty + (1 − ts)x, sx) where one has
s 6= 1. If one includes virtual, flat and singular crossings one obtains virtual/singular
aundles and semiquandles.

9.7.3 Generalized Feynman Diagrams As Generalized Braid Dia-
grams?

Zero energy ontology suggests the interpretation of the generalized Feynman diagrams as
generalized braid diagrams so that there would be no need for vertices at the fundamental
braid strand level. The notion of algebraic braid (or tangle) might allow to formulate this
idea more precisely.

Could one fuse the notions of braid diagram and Feynman diagram?

The challenge is to fuse the notions of braid diagram and Feynman diagram having quite
different origin.

(a) All generalized Feynman diagrams are reduced to sub-manifold braid diagrams at mi-
croscopic level by bosonic emergence (bosons as pairs of fermionic wormhole throats).
Three-vertices appear only for entire braids and are purely topological whereas braid
strands carrying quantum numbers are just re-distributed in vertices. No 3-vertices at
the really microscopic level! This is an additional nail to the coffin of divergences in
TGD Universe.

(b) By projecting the braid strands of generalized Feynman diagrams to preferred plane
M2 ⊂M4 (or rather 2-D causal diamond), one could achieve a unified description of non-
planar Feynman diagrams and braid diagrams. For Feynman diagrams the intersections
have a purely combinatorial origin coming from representations as 2-D diagrams.

For braid diagrams the intersections have different origin and non-planarity has different
meaning. The crossings of entire braids analogous to those appearing in non-planar
Feynman diagrams should define one particular exotic crossing besides virtual crossings
of braid strands due to non-trivial first homology of 3-surfaces.

(c) The necessity to choose preferred plane M2 looks strange from QFT point of view. In
TGD framework it is forced by the number theoretic vision in which M2 represents
hyper-complex plane of sub-space of hyper-octonions which is subspace of complexified
octonions. The choice of M2 is also forced by the condition that the choice of quantiza-
tion axes has a geometric correlate both at the level of imbedding space geometry and
the geometry of the “world of classical worlds”.
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(d) Also 2-braid diagrams defined as projections of string world sheets are suggestive and
would be defined by a projections to the 3-D boundary of CD or to M3 ⊂ M4. They
would provide a more concrete stringy illustration about generalized Feynman dia-
gram as analog of string diagram. Another attractive illustration is in terms of dance
metaphor with the boundary of CD defining the 3-D space-like parquette. The duality
between space-like and light-like braids is expected to be of importance.

The obvious conjecture is that Feynman amplitudes are a analogous to knot invariants con-
structible by gradually reducing non-planar Feynman diagrams to planar ones after which
the already existing twistor theoretical machinery of N = 4 SYMs would apply [K60].

Does 2-D integrable QFT dictate the scattering inside the lines of generalized
Feynman diagrams

The preferred plane M2 (more precisely, 2-D causal diamond having also interpretation as
Penrose diagram) plays a key role as also the preferred sphere S2 at the boundary of CD. It is
perhaps not accident that a generalization of braiding was discovered in integrable quantum
field theories in M2. The S-matrix of this theory is rather trivial looking: particle moving
with different velocities cross each other and suffer a phase lag and permutation of 2-momenta
which has physical effects only in the case of non-identical particles. The R-matrix describing
this process reduces to the R-matrix describing the basic braiding operation in braid theories
at the static limit.

I have already earler conjectured that this kind of integrable QFT is part of quantum TGD
[K12]. The natural guess is that it describes what happens for the projections of 4-momenta in
M2 in scattering process inside lines of generalized Feynman diagrams. If integrable theories
in M2 control this scattering, it would cause only phase changes and permutation of the M2

projections of the 4-momenta. The most plausible guess is that M2 QFT characterized by
R-matrix describes what happens to the braid momenta during the free propagation and the
remaining challenge would be to understand what happens in the vertices defined by 2-D
partonic surfaces at which re-distribution of braid strands takes place.

How quantum TGD as almost topological QFT differs from topological QFT for
braids and 3-manifolds

One must distinguish between two topological QFTs. These correspond to topological QFT
defining braid invariants and invariants of 3-manifolds respectively. The reason is that knots
are an essential element in the procedure yielding 3-manifolds. Both 3-manifold invariants
and knot invariants would be defined as Wilson loops involving path integral over gauge
connections for a given 3-manifold with exponent o non-Abelkian f Chern-Simons action
defining the weight.

(a) In TGD framework the topological QFT producing braid invariants for a given 3-
manifold is replaced with sub-manifold braid theory. Kähler action reduces Chern-
Simons terms for preferred extremals and only these contribute to the functional inte-
gral. What is the counterpart of topological invariance in this framework? Are general
isotopies allowed or should one allow only sub-group of symplectic group of CD bound-
ary leaving the end points of braids invariant? For this option Reidermeister moves
are undetectable in the finite measurement resolution defined by the subgroup of the
symplectic group. Symplectic transformations would not affect 3-surfaces as the analogs
of abstract contact manifold since induced Kähler form would not be affected and only
the imbedding would be changed.

In the approach based on inclusions of HFFs gauge invariance or its generalizations
would represent finite measurement resolution (the action of included algebra would
generate states not distiguishable from the original one).
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(b) There is also ordinary topological QFT allowing to construct topological invariants for
3-manifold. In TGD framework the analog of topological QFT is defined by Chern-
Simons-Kähler action in the space of preferred 3-surfaces. Now one sums over small
deformations of 3-surface instead of gauge potentials. If extremals of Chern-Simons-
Kähler action are in question, symplectic invariance is the most that one can hope for
and this might be the situation quite generally. If all light-like 3-surfaces are allowed so
that only weak form of electric-magnetic duality at them would bring metric into the
theory, it might be possible to have topological invariance at 3-D level but not at 4-D
level. It however seems that symplectic invariance with respect to subgroup leaving end
points of braids invariant is the realistic expectation.

Could the allowed braids define Legendrian sub-manifolds of contact manifolds?

The basic questions concern the identification of braids and 2-braids. In quantum TGD
they cannot be arbitrary but determined by dynamics providing space-time correlates for
quantum dynamics. The deformations of braids should mean also deformations of 3-surfaces
which as topological manifolds would however remain as such. Therefore topological QFT
for given 3-manifold with path integral over gauge connections would in TGD correspond to
functional integral of 3-surfaces corresponding to same topology even symplectic structure.
The quantum fluctuating degrees of freedom indeed correspond to symplectic group divided
by its subgroup defining measurement resolution.

What is the dynamics defining the braids strands? What selects them? I have considered
this problem several times. Just two examples is enough here.

(a) Could they be some special light-like curves? Could the condition that the end points
of the curves correspond to rational points in some preferred coordinates allow to select
these light-like curves? But what about light-like curves associated with the ends of the
space-time surface?

(b) The solutions of Kähler-Dirac equation [K62] are localized to curves by using the analog
of periodic boundary conditions: the length of the curve is quantized in the effective
metric defined by the Kähler-Dirac gamma matrices. Here one however introcuced a
coordinate along light-like 3-surface and it is not clear how one should fix this preferred
coordinate.

1. Legendrian and Lagrangian sub-manifolds

A hint about what is missing comes from the observation that a non-vanishing Chern-Simons-
Kähler form A defines a contact structure (see http://tinyurl.com/yblj4hlq) [A5] at light-
like 3-surfaces if one has A∧ dA 6= 0. This condition states complete non-intebrability of the
distribution of 2-planes defined by the condition Aµt

µ = 0, where t is tangent vector in the
tangent bundle of light-like 3-surface. It also states that the flow lines of A do not define
global coordinate varying along them.

(a) It is however possible to have 1-dimensional curves for which Aµt
µ = 0 holds true at each

point. These curves are known as Legendrian sub-manifolds to be distinguished from
Lagrangian manifolds for which the projection of symplectic form expressible locally as
J = dA vanishes. The set of this curves is discrete so that one obtains braids. Legendrian
knots are the simplest example of Legendrian sub-manifolds and the question is whether
braid strands could be identified as Legendrian knots. For Legendrian braids symplectic
invariance replaces topological invariance and Legendrian knots and braids can be trivial
in topological sense. In some situations the property of being Legendrian implies un-
knottedness.

(b) For Legendrian braid strands the Kähler gauge potential vanishes. Since the solutions of
the Kähler-Dirac equation are localized to braid strands, this means that the coupling
to Kähler gauge potential vanishes. From physics point of view a generalization of
Legendre braid strand by allowing gauge transformations A → A + dΦ looks natural

http://tinyurl.com/yblj4hlq
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since it means that the coupling of induced spinors is pure gauge terms and can be
eliminated by a gauge transformation.

2. 2-D duals of Legendrian sub-manifolds

One can consider also what might be called 2-dimensional duals of Legendrian sub-manifolds.

(a) Also the one-form obtained from the dual of Kähler magnetic field defined as Bµ =
εµνγJνν defines a distribution of 2-planes. This vector field is ill-defined for light-like
surfaces since contravariant metric is ill-defined. One can however multiply B with the
square root of metric determining formally so that metric would disappear completely
just as it disappears from Chern-Simons action. This looks however somewhat tricky
mathematically. At the 3-D space-like ends of space-time sheets at boundaries of CD
Bµ is however well-defined as such.

(b) The distribution of 2-planes is integrable if one has B ∧ dB = 0 stating that one has
Beltrami field: physically the conditions states that the current dB feels no Lorentz force.
The geometric content is that B defines a global coordinate varying along its flow lines.
For the preferred extremals of Kähler action Beltrami condition is satisfied by isometry
currents and Kähler current in the interior of space-time sheets. If this condition holds
at 3-surfaces, one would have an global time coordinate and integrable distribution
of 2-planes defining a slicing of the 2-surface. This would realize the conjecture that
space-time surface has a slicing by partonic 2-surfaces. One could say that the 2-surfaces
defined by the distribution are orthogonal to B. This need not however mean that the
projection of J to these 2-surfaces vanishes. The condition B ∧ dB = 0 on the space-
like 3-surfaces could be interpreted in terms of effective 2-dimensionality. The simplest
option posing no additional conditions would allow two types of braids at space-like
3-surfaces and only Legendrian braids at light-like 3-surfaces.

These observations inspire a question. Could it be that the conjectured dual slicings of space-
time sheets by space-like partonic 2-surfaces and by string world sheets are defined by Aµ
and Bµ respectively associated with slicings by light-like 3-surfaces and space-like 3-surfaces?
Could partonic 2-surfaces be identified as 2-D duals of 1-D Legendrian sub-manifolds?

The identification of braids as Legendrian braids for light-like 3-surfaces and with Legendrian
braids or their duals for space-like 3-surfaces would in turn imply that topological braid
theory is replaced with a symplectic braid theory in accordance with the view about TGD
as almost topological QFT. If finite measurement resolution corresponds to the replacement
of symplectic group with the coset space obtained by dividing by a subgroup, symplectic
subgroup would take the role of isotopies in knot theory. This symplectic subgroup could be
simply the symplectic group leaving the end points of braids invariant.

An attempt to identify the constraints on the braid algebra

The basic problems in understanding of quantum TGD are conceptual. One must proceed by
trying to define various concepts precisely to remove the many possible sources of confusion.
With this in mind I try collect essential points about generalized Feynman diagrams and
their relation to braid diagrams and Feynman diagrams and discuss also the most obvious
constraints on algebraization.

Let us first summarize what generalized Feynman diagrams are.

(a) Generalized Feynman diagrams are 3-D (or 4-D, depends on taste) objects inside CD×
CP2. Ordinary Feynman diagrams are in plane. If finite measurement resolution has as
a space-time correlate discretization at the level of partonic 2-surfaces, both space-like
and light-like 3-surfaces reduce to braids and the lines of generalized Feynman diagrams
correspond to braids. It is possible to obtain the analogs of ordinary Feynman diagrams
by projection to M2 ⊂ M4 defined uniquely for given CD. The resulting apparent
intersections would represent ne particular kind of exotic intersection.
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(b) Light-like 3-surfaces define the lines of generalized Feynman diagrams and the braiding
results naturally. Non-trivial first homology for the orbits of partonic 2-surfaces with
genus g > 0 could be called homological virtual intersections.

(c) It zero energy ontology braids must be characterized by time orientation. Also it seems
that one must distinguish in zero energy ontology between on mass shell braids and off
mass shell braid pairs which decompose to pairs of braids with positive and negative
energy massless on mass shell states. In order to avoid confusion one should perhaps
speak about tangles insie CD rather than braids. The operations of the algebra are same
except that the braids can end either to the upper or lower light-like boundary of CD.
The projection to M2 effectively reduces the CD to a 2-dimensional causal diamond.

(d) The vertices of generalized Feynman diagrams are partonic 2-surfaces at which the
light-like 3-surfaces meet. This is a new element. If the notion of bosonic emergence
is accepted no n > 2-vertices are needed so that braid strands are redistributed in the
reaction vertices. The redistribution of braid strands in vertices must be introduced as
an additional operation somewhat analogous to . and the challenge is to reduce this
operation to something simple. Perhaps the basic operation reduces to an exchange
of braid strand between braids. The process can be seen as a decay of of braid with
the conservation of braid strands with strands from future and past having opposite
strand numbers. Also for this operation the analogs of Reidermeister moves should be
identified. In dance metaphor this operation corresponds to a situation in which the
dancer leaves the group to which it belongs and goes to a new one.

(e) A fusion of Feynman diagrammatic non-planarity and braid theoretic non-planarity is
needed and the projection to M2 could provide this fusion when at least two kinds of
virtual crossings are allowed. The choice of M2 could be global. An open question is
whether the choice of M2 could characterize separately each line of generalized Feynman
diagram characterized by the four-momentum associated with it in the rest system
defined by the tips of CD. Somehow the theory should be able to fuse the braiding
matrix for integrable QFT in M2 applying to entire braids with the braiding matrix for
braid theory applying at the level of single braid.

Both integral QFTs in M2 and braid theories suggest that biquandle structure is the structure
that one should try to generalized.

(a) The representations of resulting bi-quandle like structure could allow abstract interest-
ing information about generalized Feynman diagrams themselves but the dream is to
construct generalized Feynman diagrams as analogs of knot invariants by a recursive
procedure analogous to un-knotting of a knot.

(b) The analog of bi-quandle algebra should have a hierarchical structure containing braid
strands at the lowest level, braids at next level, and braids of braids...of braids at
higher levels. The notion of operad would be ideal for formulating this hierarchy and I
have already proposed that this notion must be essential for the generalized Feynman
diagrammatics. An essential element is the vanishing of total strand number in the
vertex (completely analogous to conserved charged such as fermion number). Again
a convenient visualization is in terms of dancers forming dynamical groups, forming
groups of groups forming .....

I have already earlier suggested [K12] that the notion of operad [A21] relying on per-
mutation group and its subgroups acting in tensor products of linear spaces is central
for understanding generalized Feynman diagrams. n→ n1 +n2 decay vertex for n-braid
would correspond to “symmetry breaking” Sn → Sn1

× Sn2
. Braid group represents

the covering of permutation group so that braid group and its subgroups permuting
braids would suggest itself as the basic group theoretical notion. One could assign to
each strand of n-braid decaying to n1 and n2 braids a two-valued color telling whether
it becomes a strand of n1-braid or n2-braid. Could also this “color” be interpreted as a
particular kind of exotic crossing?

(c) What could be the analogs of Reidermaster moves for braid strands?
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i. If the braid strands are dynamically determined, arbitrary deformations are not
possible. If however all isotopy classes are allowed, the interpretation would be that
a kind of gauge choice selecting one preferred representation of strand among all
possible ones obtained by continuous deformations is in question.

ii. Second option is that braid strands are dynamically determined within finite mea-
surement resolution so that one would have braid theory in given length scale res-
olution.

iii. Third option is that topological QFT is replaced with symplectic QFT: this option
is suggested by the possibility to identify braid strands as Legendrian knots or their
duals. Subgroup of the symplectic group leaving the end points of braids invariant
would act as the analog of continous transformations and play also the role of
gauge group. The new element is that symplectic transformations affect partonic
2-surfaces and space-time surfaces except at the end points of braid.

(d) Also 2-braids and perhaps also 2-knots could be useful and would provide string theory
like approach to TGD. In this case the projections could be performed to the ends of
CD or to M3, which can be identified uniquely for a given CD.

(e) There are of course many additional subtleties involved. One should not forget loop
corrections, which naturally correspond to sub-CDs. The hierarchy of Planck constants
and number theoretical universality bring in additional complexities.

All this looks perhaps hopelessly complex but the Universe around is complex even if the
basic principles could be very simple.

9.7.4 About String World Sheets, Partonic 2-Surfaces, And Two-
Knots

String world sheets and partonic 2-surfaces provide a beatiful visualization of generalized
Feynman diagrams as braids and also support for the duality of string world sheets and
partonic 2-surfaces as duality of light-like and space-like braids. Dance metaphor is very
helpful here.

(a) The projection of string world sheets and partonic 2-surfaces to 3-D space replaces knot
projection. In TGD context this 3-D of space could correspond to the 3-D light-like
boundary of CD and 2-knot projection would correspond to the projection of the braids
associated with the lines of generalized Feynman diagram. Another identification would
be as M1 ×E2, where M1 is the line connecting the tips of CD and E2 the orthogonal
complement of M2.

(b) Using dance metaphor for light-like braiding, braids assignable to the lines of general-
ized Feynman diagrams would correspond to groups of dancers. At vertices the dancing
groups would exchange members and completely new groups would be formed by the
dancers. The number of dancers (negative for those dancing in the reverse time direc-
tion) would be conserved. Dancers would be connected by threads representing strings
having braid points at their ends. During the dance the light-like braiding would in-
duce space-like braiding as the threads connecting the dancers would get entangled.
This would suggest that the light-like braids and space-like braidings are equivalent
in accordance with the conjectured duality between string-world sheets and partonic
2-surfaces. The presence of genuine 2-knottedness could spoil this equivalence unless it
is completely local.

Can string world sheets and partonic 2-surfaces get knotted?

(a) Since partonic 2-surfaces (wormhole throats) are imbedded in light-cone boundary, the
preferred 3-D manifolds to which one can project them is light-cone boundary (boundary
of CD). Since the projection reduces to inclusion these surfaces cannot get knotted. Only
if the partonic 2-surfaces contains in its interior the tip of the light-cone something non-
trivial identifiable as virtual 2-knottedness is obtained.
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(b) One might argue that the conjectured duality between the descriptions provided by par-
tonic 2-surfaces and string world sheets requires that also string world sheets represent
trivial 2-braids. I have shown earlier that nontrivial local knots glued to the string
world sheet require that M4 time coordinate has a local maximum. Does this mean
that 2-knots are excluded? This is not obvious: TGD allows also regions of space-time
surface with Euclidian signature and generalized Feynman graphs as 4-D space-time
regions are indeed Euclidian. In these regions string world sheets could get knotted.

What happens for knot diagrams when the dimension of knot is increased to two? According
to the articles of Nelson (see http://tinyurl.com/yauy7asy) [A82] and Carter (see http://
tinyurl.com/yclgj739) [A72] the crossings for the projections of braid strands are replaced
with more complex singularities for the projections of 2-knots. One can decompose the 2-
knots to regions surrounded by boxes. Box can contain just single piece of 2-D surface; it can
contain two intersection pieces of 2-surfaces as the counterpart of intersecting knot strands
and one can tell which of them is above which; the box can contain also a discrete point
in the intersection of projections of three disjoint regions of knot which consists of discrete
points; and there is also a box containing so called cone point. Unfortunately, I failed to
understand the meaning of the cone point.

For 2-knots Reidemeister moves are replaced with Roseman moves. The generalization would
allow virtual self intersections for the projection and induced by the non-trivial second ho-
mology of 4-D imbedding space. In TGD framework elementary particles have homologically
non-trivial partonic 2-surfaces (magnetic monpoles) as their building bricks so that even if
2-knotting in standard sense might be not allowed, virtual 2-knotting would be possible. In
TGD framework one works with a subgroup of symplectic transformations defining measure-
ment resolution instead of isotopies and this might reduce the number of allowed mov

The dynamics of string world sheets and the expression for Kähler action

The dynamics of string world sheets is an open question. Effective 2-dimensionality suggests
that Kähler action for the preferred extremal should be expressible using 2-D data but there
are several guesses for what the explicit expression could be, and one can only make only
guesses at this moment and apply internal consistency conditions in attempts to kill various
options.

1. Could weak form of electric-magnetic duality hold true for string world sheets?

If one believes on duality between string world sheets and partonic 2-surfaces, one can argue
that string world sheets are most naturally 2-surfaces at which the weak form of electric
magnetic duality holds true. One can even consider the possibility that the weak form of
electric-magnetic duality holds true only at the string world sheets and partonic 2-surfaces
but not at the preferred 3-surfaces.

(a) The weak form of electric magnetic duality would mean that induced Kähler form is
non-vanishing at them and Kähler magnetic flux over string world sheet is proportional
to Kähler electric flux.

(b) The flux of the induced Kähler form of CP2 over string world sheet would define a
dimensionless “area”. Could Kähler action for preferred extremals reduces to this flux
apart from a proportionality constant. This “area” would have trivially extremum with
respect to symplectic variations if the braid strands are Legendrian sub-manifolds since
in this case the projection of Kähler gauge potential on them vanishes. This is a highly
non-trivial point and favors weak form of electric-magnetic duality and the identification
of Kähler action as Kähler magnetic flux. This option is also in spirit with the vision
about TGD as almost topological QFT meaning that induced metric appears in the
theory only via electric-magnetic duality.

(c) Kähler magnetic flux over string world sheet has a continuous spectrum so that the
identification as Kähler action could make sense. For partonic 2-surfaces the magnetic

http://tinyurl.com/yauy7asy
http://tinyurl.com/yclgj739
http://tinyurl.com/yclgj739
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flux would be quantized and give constant term to the action perhaps identifiable as the
contribution of CP2 type vacuum extremals giving this kind of contribution.

The change of space-time orientation by changing the sign of permutation symbol would
change the sign in electric-magnetic duality condition and would not be a symmetry. For a
given magnetic charge the sign of electric charge changes when orientation is changed. The
value of Kähler action does not depend on space-time orientation but weak form of electric-
magnetic duality as boundary condition implies dependence of the Kähler action on space-
time orientation. The change of the sign of Kähler electric charge suggests the interpretation
of orientation change as one aspect of charge conjugation. Could this orientation dependence
be responsible for matter antimatter asymmetry?

2. Could string world sheets be Lagrangian sub-manifolds in generalized sense?

Legendrian sub-manifolds (see http://tinyurl.com/yblj4hlq) can be lifted to Lagrangian
sub-manifolds [A5] Could one generalize this by replacing Lagrangian sub-manifold with 2-
D sub-manifold of space-times surface for which the projection of the induced Kähler form
vanishes? Could string world sheets be Lagrangian sub-manifolds?

I have also proposed that the inverse image of homologically non-trivial sphere of CP2 under
imbedding map could define counterparts of string world sheets or partonic 2-surfaces. This
conjecture does not work as such for cosmic strings, massless extremals having 2-D projection
since the inverse image is in this case 4-dimensional. The option based on homologically
non-trivial geodesic sphere is not consistent with the identification as analog of Lagrangian
manifold but the identification as the inverse image of homologically trivial geodesic sphere
is.

The most general option suggested is that string world sheet is mapped to 2-D Lagrangian
sub-manifold of CP2 in the imbedding map. This would mean that theory is exactly solvable
at string world sheet level. Vacuum extremals with a vanishing induced Kähler form would
be exceptional in this framework since they would be mapped as a whole to Lagrangian
sub-manifolds of CP2. The boundary condition would be that the boundaries of string
world sheets defined by braids at preferred 3-surfaces are Legendrian sub-manifolds. The
generalization would mean that Legendrian braid strands could be continued to Lagrangian
string world sheets for which induced Kähler form vanishes. The physical interpretation
would be that if particle moves along this kind of string world sheet, it feels no covariant
Lorentz-Kähler force and contra variant Lorentz forces is orthogonal to the string world sheet.

There are however serious objections.

(a) This proposal does not respect the proposed duality between string world sheets and
partonic 2-surfaces which as carries of Kähler magnetic charges cannot be Lagrangian
2-manifolds.

(b) One loses the elegant identification of Kähler action as Kähler magnetic flux since Kähler
magnetic flux vanishes. Apart from proportionality constant Kähler electric flux∫

Y 2

∗J

is as a dimensionless scaling invariant a natural candidate for Kähler action but need
not be extremum if braids are Legendrian sub-manifolds whereas for Kähler magnetic
flux this is the case. There is however an explicit dependence on metric which does not
conform with the idea that almost topological QFT is symplectic QFT.

(c) The sign factor of the dual flux which depends on the orientation of the string world
sheet and thus changes sign when the orientation of space-time sheet is changed by
changing that of the string world sheet. This is in conflict with the independence of
Kähler action on orientation. One can however argue that the orientation makes itself
actually physically visible via the weak form of electric-magnetic duality. If the above
discussed duality holds true, the net contribution to Kähler action would vanish as the

http://tinyurl.com/yblj4hlq
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total Kähler magnetic flux for partonic 2-surfaces. Therefore the duality cannot hold
true if Kähler action reduces to dual flux.

(d) There is also a purely formal counter argument. The inverse images of Lagrangian sub-
manifolds of CP2 can be 4-dimensional (cosmic strings and massless extremals) whereas
string world sheets are 2-dimensonal.

String world sheets as minimal surfaces

Effective 2-dimensionality suggests a reduction of Kähler action to Chern-Simons terms to
thearea of minimal surfaces defined by string world sheets holds true [K24]. Skeptic could
argue that the expressibility of Kähler action involving no dimensional parameters except
CP2 scaled does not favor this proposal. The connection of minimal surface property with
holomorphy and conformal invariance however forces to take the proposal seriously and it is
easy to imagine how string tension emerges since the size scale of CP2 appears in the induced
metric [K24].

One can ask whether the mimimal surface property conforms with the proposal that string
worlds sheets obey the weak form of electric-magnetic duality and with the proposal that
they are generalized Lagrangian sub-manifolds.

(a) The basic answer is simple: minimal surface property and possible additional conditions
(Lagrangian sub-manifold property or the weak form of electric magnetic duality) poses
only additional conditions forcing the space-time sheet to be such that the imbedded
string world sheet is a minimal surface of space-time surface: minimal surface property
is a condition on space-time sheet rather than string world sheet. The weak form of
electric-magnetic duality is favored because it poses conditions on the first derivatives
in the normal direction unlike Lagrangian sub-manifold property.

(b) Any proposal for 2-D expression of Kähler action should be consistent with the proposed
real-octonion analytic solution ansatz for the preferred extremals [K6]. The ansatz is
based on real-octonion analytic map of imbedding space to itself obtained by alge-
braically continuing real-complex analytic map of 2-D sub-manifold of imbedding space
to another such 2-D sub-manifold. Space-time surface is obtained by requiring that the
“imaginary” part of the map vanishes so that image point is hyper-quaternion valued.
Wick rotation allows to formulate the conditions using octonions and quaternions. Min-
imal surfaces (of space-time surface) are indeed objects for which the imbedding maps
are holomorphic and the real-octonion analyticity could be perhaps seen as algebraic
continuation of this property.

(c) Does Kähler action for the preferred exremals reduce to the area of the string world
sheet or to Kähler magnetic flux or are the representations equivalent so that the induced
Kähler form would effectively define area form? If the Kähler form form associated with
the induced metric on string world sheet is proportional to the induced Kähler form the
Kähler magnetic flux is proportional to the area and Kähler action reduces to genuine
area. Could one pose this condition as an additional constraint on string world sheets?
For Lagrangian sub-manifolds Kähler electric field should be proportional to the area
form and the condition involves information about space-time surface and is therefore
more complex and does not look plausible.

Explicit conditions expressing the minimal surface property of the string world
sheet

It is instructive to write explicitly the condition for the minimal surface property of the string
world sheet and for the reduction of the area Kähler form to the induced Kähler form. For
string world sheets with Minkowskian signature of the induced metric Kähler structure must
be replaced by its hyper-complex analog involving hyper-complex unit e satisfying e2 = 1
but replaced with real unit at the level hyper-complex coordinates. e can be represented as
antisymmetric Kähler form Jg associated with the induced metric but now one has J2

g = g
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instead of J2
g = −g. The condition that the signed area reduces to Kähler electric flux means

that Jg must be proportional to the induced Kähler form: Jg = kJ , k = constant in a given
space-time region.

One should make an educated guess for the imbedding of the string world sheet into a
preferred extremal of Kähler action. To achieve this it is natural to interpret the minimal
surface property as a condition for the preferred Kähler extremal in the vicinity of the string
world sheet guaranteeing that the sheet is a minimal surface satisfying Jg = kJ . By the weak
form of electric-magnetic duality partonic 2-surfaces represent both electric and magnetic
monopoles. The weak form of electric-magnetic duality requires for string world sheets that
the Kähler magnetic field at string world sheet is proportional to the component of the
Kähler electric field parallel to the string world sheet. Kähler electric field is assumed to
have component only in the direction of string world sheet.

1. Minkowskian string world sheets

Let us try to formulate explicitly the conditions for the reduction of the signed area to Kähler
electric flux in the case of Minkowskian string world sheets.

(a) Let us assume that the space-time surface in Minkowskian regions has coordinates coor-
dinates (u, v, w,w) [K6]. The pair (u, v) defines light-like coordinates at the string world
sheet having identification as hyper-complex coordinates with hyper-complex unit sat-
isfying e = 1. u and v need not - nor cannot as it turns out - be light-like with respect
to the metric of the space-time surface. One can use (u, v) as coordinates for string
world sheet and assume that w = x1 + ix2 and w are constant for the string world sheet.
Without a loss of generality one can assume w = w = 0 at string world sheet.

(b) The induced Kähler structure must be consistent with the metric. This implies that the
induced metric satisfies the conditions

guu = gvv = 0 . (9.7.1)

The analogs of these conditions in regions with Euclidian signature would be gzz =
gzz = 0.

(c) Assume that the imbedding map for space-time surface has the form

sm = sm(u, v) + fm(u, v, xm)klx
kxl , (9.7.2)

so that the conditions

∂lks
m = 0 , ∂k∂us

m = 0, ∂k∂vs
m = 0 (9.7.3)

are satisfies at string world sheet. These conditions imply that the only non-vanishing
components of the induced CP2 Kähler form at string world sheet are Juv and Jww.
Same applies to the induced metric if the metric of M4 satisfies these conditions (no
non-vanishing components of form muk or mvk).

(d) Also the following conditions hold true for the induced metric of the space-time surface

∂kguv = 0 , ∂ugkv = 0 , ∂vgku = 0 . (9.7.4)

at string world sheet as is easy to see by using the ansatz.

Consider now the minimal surface conditions stating that the trace of the four components
of the second fundamental form whose components are labelled by the coordinates {xα} ≡
(u, v, w,w) vanish for string world sheet.
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(a) Since only guv is non-vanishing, only the components Hk
uv of the second fundamental

form appear in the minimal surface equations. They are given by the general formula

Hα
uv = HγPαγ ,

Hα = (∂u∂vx
α +

(
α

β γ

)
∂ux

β∂vx
γ) . (9.7.5)

Here Pαγ is the projector to the normal space of the string world sheet. Formula contains
also Christoffel symbols ( α

β γ ).

(b) Since the imbedding map is simply (u, v) → (u, v, 0, 0) all second derivatives in the
formula vanish. Also Hk = 0, k ∈ {w,w} holds true. One has also ∂ux

α = δαu and
∂vx

β = δβv . This gives

Hα = ( α
u v ) . (9.7.6)

All these Christoffel symbols however vanish if the assumption guu = gvv = 0 and the
assumptions about imbedding ansatz hold true. Hence a minimal surface is in question.

Consider now the conditions on the induced metric of the string world sheet

(a) The conditions reduce to

guu = gvv = 0 . (9.7.7)

The conditions on the diagonal components of the metric are the analogs of Virasoro
conditions fixing the coordinate choices in string models. The conditions state that the
coordinate lines for u and v are light-like curves in the induced metric.

(b) The conditions can be expressed directly in terms of the induced metric and read

muu + skl∂us
k∂us

l = 0 ,

mvv + skl∂vs
k∂vs

l = 0 . (9.7.8)

The CP2 contribution is negative for both equations. The conditions make sense only
for (muu > 0,mvv > 0). Note that the determinant condition muumvv −muvmvu < 0
expresses the Minkowskian signature of the (u, v) coordinate plane in M4.

The additional condition states

Jguv = kJuv . (9.7.9)

It reduces signed area to Kähler electric flux. If the weak form of electric-magnetic duality
holds true one can interpret the area as magnetic flux defined as the flux of the dual of
induced Kähler form over space-like surface and defining electric charge. A further condition
is that the boundary of string world sheet is Legendrean manifold so that the flux and thus
area is extremized also at the boundaries.

2.Conditions for the Euclidian string world sheets

One can do the same calculation for string world sheet with Euclidian signature. The only
difference is that (u, v) is replaced with (z, z). The imbedding map has the same form
assuming that space-time sheet with Euclidian signature allows coordinates (z, z, w,w) and
the local conditions on the imbedding are a direct generalization of the above described
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conditions. In this case the vanishing for the diagonal components of the string world sheet
metric reads as

hkl∂zs
k∂zs

l = 0 ,

hkl∂zs
k∂zs

l = 0 . (9.7.10)

The natural ansatz is that complex CP2 coordinates are holomorphic functions of the complex
coordinates of the space-time sheet.

3. Wick rotation for Minkowskian string world sheets leads to a more detailed solution ansatz

Wick rotation is a standard trick used in string models to map Minkowskian string world
sheets to Euclidian ones. Wick rotation indeed allows to define what one means with real-
octonion analyticity. Could one identify string world sheets in Minkowskian regions by using
Wick rotation and does this give the same result as the direct approach?

Wick rotation transforms space-time surfaces in M4×CP2 to those in E4×CP2. In E4×CP2

octonion real-analyticity is a well-defined notion and one can identify the space-time surfaces
surfaces at which the imaginary part of of octonion real-analytic function vanishes: imaginary
part is defined via the decomposition of octonion to two quaternions as o = q1 + Iq2 where I
is a preferred octonion unit. The reverse of the Wick rotation maps the quaternionic surfaces
to what might be called hyper-quaternionic surfaces in M4 × CP2.

In this picture string world sheets would be hyper-complex surfaces defined as inverse imag-
ines of complex surfaces of quaternionic space-time surface obtained by the inverse of Wick
rotation. For this approach to be equivalent with the above one it seems necessary to re-
quire that the treatment of the conditions on metric should be equivalent to that for which
hyper-complex unit e is not put equal to 1. This would mean that the conditions reduce to
independent conditions for the real and imaginary parts of the real number formally repre-
sented as hyper-complex number with e = 1.

Wick rotation allows to guess the form of the ansatz for CP2 coordinates as functions of space-
time coordinates In Euclidian context holomorphich functions of space-time coordinates are
the natural ansatz. Therefore the natural guess is that one can map the hypercomplex
number t ± ez to complex coordinate t ± iz by the analog of Wick rotation and assume
that CP2 complex coordinates are analytic functions of the complex space-time coordinates
obtained in this manner.

The resulting induced metric could be obtained directly using real coordinates (t, z) for
string world sheet or by calculating the induced metric in complex coordinates t± iz and by
mapping the expressions to hyper-complex numbers by Wick rotation (by replacing i with
e = 1). If the diagonal components of the induced metric vanish for t ± iz they vanish also
for hyper-complex coordinates so that this approach seem to make sense.

Electric-magnetic duality for flux Hamiltonians and the existence of Wilson
sheets

One must distinguish between two conjectured dualities. The weak form of electric-magnetic
duality and the duality between string world sheets and partonic 2-surfaces. Could the first
duality imply equivalence of not only electric and magnetic flux Hamiltonians but also electric
and magnetic Wilson sheets? Could the latter duality allow two different representations of
flux Hamiltonians?

(a) For electric-magnetic duality holding true at string world sheets one would have non-
vanishing Kähler form and the fluxes would be non-vanishing. The Hamiltonian fluxes
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Qm,A =

∫
X2

JHAdx
1dx2 =

∫
X2

HAJαβdx
α ∧ dxβ (9.7.11)

for partonic 2-surfaces X2 define WCW Hamiltonians playing a key role in the definition
of WCW Kähler geometry. They have also interpretation as a generalization of Wilson
loops to Wilson 2-surfaces.

(b) Weak form of electric magnetic duality would imply both at partonic 2-surfaces and
string world sheets the proportionality

Qm,A =

∫
X2

JHAdx
1 ∧ dx2 ∝ Q∗m,A =

∫
X2

HA ∗ Jαβdxα ∧ dxβ . (9.7.12)

Therefore the electric-magnetic duality would have a concrete meaning also at the level
of WCW geometry.

(c) If string world sheets are Lagrangian sub-manifolds Hamiltonian fluxes would vanish
identically so that the identification as Wilson sheets does not make sense. One would
lose electric-magnetic duality for flux sheets. The dual fluxes

∗QA =

∫
Y 2

∗JHAdx
1 ∧ dx2 =

∫
Y 2

ε γδ
αβ Jγδ =

∫
Y 2

√
det(g4)

det(g⊥2 )
J⊥34dx

1 ∧ dx2

for string world sheets Y 2 are however non-vanishing. Unlike fluxes, the dual fluxes
depend on the induced metric although they are scaling invariant.

Under what conditions the conjectured duality between partonic 2-surface and string world
sheets hold true at the level of WCW Hamiltonians?

(a) For the weak form of electric-magnetic duality at string world sheets the duality would
mean that the sum of the fluxes for partonic 2-surfaces and sum of the fluxes for string
world sheets are identical apart from a proportionality constant:

∑
i

QA(X2
i ) ∝

∑
i

QA(Y 2
i ) . (9.7.13)

Note that in zero ontology it seems necessary to sum over all the partonic surfaces (at
both ends of the space-time sheet) and over all string world sheets.

(b) For Lagrangian sub-manifold option the duality can hold true only in the form

∑
i

QA(X2
i ) ∝

∑
i

Q∗A(Y 2
i ) . (9.7.14)

Obviously this option is less symmetric and elegant.

Summary

There are several arguments favoring weak form of electric-magnetic duality for both string
world sheets and partonic 2-surfaces. Legendrian sub-manifold property for braid strands
follows from the assumption that Kähler action for preferred extremals is proportional to the
Kähler magnetic flux associated with preferred 2-surfaces and is stationary with respect to the
variations of the boundary. What is especially nice is that Legendrian sub-manifold property
implies automatically unique braids. The minimal option favored by the idea that 3-surfaces
are basic dynamical objects is the one for which weak form of electric-magnetic duality holds
true only at partonic 2-surfaces and string world sheets. A stronger option assumes it at
preferred 3-surfaces. Duality between string world sheets and partonic 2-surfaces suggests
that WCW Hamiltonians can be defined as sums of Kähler magnetic fluxes for either partonic
2-surfaces or string world sheets.



9.7. Algebraic Braids, Sub-Manifold Braid Theory, And Generalized Feynman
Diagrams 463

9.7.5 What Generalized Feynman Rules Could Be?

After all these explanations the skeptic reader might ask whether this lengthy discussion
gives any idea about what the generalized Feynman rules might look like. The attempt to
answer this question is a good manner to make a map about what is understood and what is
not understood. The basic questions are simple. What constraints does zero energy ontology
(ZEO) pose? What does the necessity to projecti the four-momenta to a preferred plane
M2 mean? What mathematical expressions one should assign to the propagator lines and
vertices? How does one perform the functional integral over 3-surfaces in finite measurement
resolution? The following represents tentatative answers to these questions but does not say
much about exact role of algebraic knots.

Zero energy ontology

Zero energy ontology (ZEO) poses very powerful constraints on generalized Feynman dia-
grams and gives hopes that both UV and IR divergences cancel.

(a) ZEO predicts that the fermions assigned with braid strands associated with the virtual
particles are on mass shell massless particles for which the sign of energy can be also
negative: in the case of wormhole throats this can give rise to a tachyonic exchange.

(b) The on mass shell conditions for each wormhole throat in the diagram involving loops are
very stringent and expected to eliminate very large classes of diagrams. If however given
diagonal diagram leading from n-particle state to the same n-particle state -completely
analogous to self energy diagram- is possible then the ladders form by these diagrams
are also possible and one one obtains infinite of this kind of diagrams as generalized self
energy correction and is excellent hopes that geometric series gives a closed algebraic
function.

(c) IR divergences plaguing massless theories are cancelled if the incoming and outgoing
particles are massive bound states of massless on mass shell particles. In the simplest
manner this is achieved when the 3-momenta are in opposite direction. For internal lines
the massive on-mass shell-condition is not needed at all. Therefore there is an almost
complete separation of the problem how bound state masses are determined from the
problem of constructing the scattering amplitudes.

(d) What looks like a problematic aspect ZEO is that the massless on-mass-shell propa-
gators would diverge for wormhole throats. The solution comes from the projection
of 4-momenta to M2. In the generic the projection is time-like and one avoids the
singularity. The study of solutions of the Kähler-Dirac equation [K62] and number
theoretic vision [K51] indeed suggests that the four-momenta are obtained by rotating
massless M2 momenta and their projections to M2 are in general integer multiples of
hyper-complex primes or light-like. The light-like momenta would be treated like in the
case of ordinary Feynman diagrams using iε-prescription of the propagator and would
also give a finite contributions corresponding to integral over physical on mass shell
states. This guarantees also the vanishing of the possible IR divergences coming from
the summation over different M2 momenta.

There is a strong temptation to identify - or at least relate - the M2 momenta label-
ing the solutions of the Kähler-Dirac equation with the region momenta of twistor ap-
proach [K55]. The reduction of the region momenta to M2 momenta could dramatically
simplify the twistorial description. It does not seem however plausible thatN = 4 super-
symmetric gauge theory could allow the identification of M2 projections of 4-momenta
as region momenta. On the other hand, there is no reason to expect the reduction of
TGD certainly to a gauge theory containing QCD as part. For instance, color magnetic
flux tubes in many-sheeted space-time are central for understanding jets, quark gluon
plasma, hadronization and fragmentation [L11] but cannot be deduced from QCD. Note
also that the splitting of parton momenta to their M2 projections and transversal parts
is an ad hoc assumption motivated by parton model rather than first principle implica-
tion of QCD: in TGD framework this splitting would emerge from first principles.
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(e) ZEO strongly suggests that all particles (including photons, gluons, and gravitons) have
mass which can be arbitrarily small and could be perhaps seen as being due to the
fact that particle “eats” Higgs like states giving it the otherwise lacking polarization
states. This would mean a generalization of the notion of Higgs particle to a Higgs like
particle with spin. It would also mean rearrangmenet of massless states at wormhole
throat level to massives physical states. The slight massication of photon by p-adic
thermodynamics does not however mean disappearance of Higgs from spectrum, and
one can indeed construct a model for Higgs like states [K67].

The projection of the momenta to M2 is consistent with this vision. The natural
generalization of the gauge condition p · ε = 0 is obtained by replacing p with the
projection of the total momentum of the boson to M2 and ε with its polarization so
that one has p|| · ε. If the projection to M2 is light-like, three polarization states are
possible in the generic case, so that massivation is required by internal consistency.
Note that if intermediate states in the unitary condition were states with light-like
M2-momentum one could have a problematic situation.

(f) A further assumption vulnerable to criticism is that the M2 projections of all momenta
assignable to braid strands are parallel. Only the projections of the momenta to the
orthogonal complement E2 of M2 can be non-parallel and for massive wormhole throats
they must be non-parallel. This assumption does not break Lorentz invariance since in
the full amplitude one must integrate over possible choices of M2. It also interpret the
gauge conditions either at the level of braid strands or of partons. Quantum classical
correspondence in strong form would actually suggests that quantum 4-momenta should
co-incide with the classical ones. The restriction to M2 projections is however necessary
and seems also natural. For instance, for massless extremals only M2 projection of wave-
vector can be well-defined: in transversal degrees of freedom there is a superposition over
Fourier components with diffrent transversal wave-vectors. Also the partonic description
of hadrons gives for the M2 projections of the parton momenta a preferred role. It is
highly encouraging that this picture emerged first from the Kähler-Dirac equation and
purely number theoretic vision based on the identification of M2 momenta in terms of
hyper-complex primes.

The number theoretical approach also suggests a number theoretical quantization of the
transversal parts of the momenta [K51]: four-momenta would be obtained by rotating
massless M2 momenta in M4 in such a manner that the components of the resulting
3-momenta are integer valued. This leads to a classical problem of number theory which
is to deduce the number of 3-vectors of fixed length with integer valued components.
One encounters the n-dimensional generalization of this problem in the construction
of discrete analogs of quantum groups (these “classical” groups are analogous to Bohr
orbits) and emerge in quantum arithmetics [K65], which is a deformation of ordinary
arithmetics characterized by p-adic prime and giving rigorous justification for the notion
of canonical identification mapping p-adic numbers to reals.

(g) The real beauty of Feynman rules is that they guarantee unitarity automatically. In fact,
unitarity reduces to Cutkosky rules which can be formulated in terms of cut obtained
by putting certain subset of interal lines on mass shell so that it represents on mass
shell state. Cut analyticity implies the usual iDisc(T ) = TT †. In the recent context
the cutting of the internal lines by putting them on-mass-shell requires a generalization.

i. The first guess is that on mass shell property means that M2 projection for the
momenta is light-like. This would mean that also these momenta contribute to
the amplitude but the contribution is finite just like in the usual case. In this
formulation the real particles would be the massless wormhole throats.

ii. Second possibility is that the internal lines on on mass shell states corresponding
to massive on mass-shell-particles. This would correspond to the experimental
meaning of the unitary conditions if real particles are the massive on mass shell
particles. Mathematically it seems possible to pick up from the amplitude the
states which correspond to massive on mass shell states but one should understand
why the discontinuity should be associated with physical net masses for wormhole
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contacts or many-particle states formed by them. General connection with unitarity
and analyticity might allow to understand this.

(h) CDs are labelled by various moduli and one must integrate over them. Once the tips
of the CD and therefore a preferred M1 is selected, the choice of angular momentum
quantization axis orthogonal to M1 remains: this choice means fixing M2. These choices
are parameterized by sphere S2. It seems that an integration over different choices of
M2 is needed to achieve Poincare invariance.

How the propagators are determined?

In accordance with previous sections it will be assumed that the braid are Legendrian braids
and therefore completely well-defined. One should assign propagator to the braid. A good
guess is that the propagator reduces to a product of three terms.

(a) A multi-particle propagator which is a product of collinear massless propagators for
braid strands with fermionin number F = 0, 1 − 1. The constraint on the momenta is
pi = λip with

∑
i λi = 1. So that the fermionic propagator is 1∏

i λi
pkγk. If one gas

p = nP , where P is hyper-complex prime, one must sum over combinations of λi = ni
satisfying

∑
i ni = n.

(b) A unitary S-matrix for integrable QFT in M2 in which the velocities of particles
assignable to braid strands appear for which fixed by R-matrix defines the basic 2-
vertex representing the process in which a particle passes through another one. For this
S-matrix braids are the basic units. To each crossing appearing in non-planar Feynman
diagram one would have an R-matrix representing the effect of a reconnection the ends
of the lines coming to the crossing point. In this manner one could gradually transform
the non-planar diagram to a planar diagram. One can ask whether a formulation in
terms of a suitable R-matrix could allow to generalize twistor program to apply in the
case of non-planar diagrams.

(c) An S-matrix predicted by topological QFT for a given braid. This S-matrix should be
constructible in terms of Chern-Simons term defining a sympletic QFT.

There are several questions about quantum numbers assignable to the braid strands.

(a) Can braid strands be only fermionic or can they also carry purely bosonic quantum num-
bers corresponding to WCW Hamiltonians and therefore to Hamiltonians of δM4

±×CP2?
Nothing is lost if one assumes that both purely bosonic and purely fermionic lines are
possible and looks whether this leads to inconsistencies. If virtual fermions correspond to
single wormhole throat they can have only time-like M2-momenta. If virtual fermions
correspond to pairs of wormhole throats with second throat carrying purely bosonic
quantum numbers, also fermionic can have space-like net momenta. The interpreta-
tion would be in terms of topological condensation. This is however not possible if all
strands are fermionic. Situation changes if one identifies physical fermions wormhole
throats at the ends of Kähler magnetic flux tube as one indeed does: in this case virtual
net momentum can be space-like if the sign of energy is opposite for the ends of the flux
tube.

(b) Are the 3-momenta associated with the wormholes of wormhole contact parallel so that
only the sign of energy could distinguish between them for space-like total momentum
and M2 mass squared would be the same? This assumption simplifies the situation but
is not absolutely necessary.

(c) What about the momentum components orthogonal to M2? Are they restricted only
by the massless mass shell conditions on internal lines and quantization of the M2

projection of 4-momentum?

(d) What kind of braids do elementary particles correspond? The braids assigned to the
wormhole throat lines can have arbitrary number n of strands and for n = 1, 2 the
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treatment of braiding is almost trivial. A natural assumption is that propagator is sim-
ply a product of massless collinear propagators for M2 projection of momentum [K19].
Collinearity means that propagator is product of a multifermion propagator 1

λipkγk
, znd

multiboson propagator 1
µipkγk

,
∑
λi+

∑
i µi = 1. There are also quantization conditions

on M2 projections of momenta from Kähler-Dirac equation implying that multiplies of
hyper-complex prime are in question in suitable units. Note however that it is not clear
whether purely bosonic strands are present.

(e) For ordinary elementary particles with propagators behaving like
∏
i λ
−1
i 1p−n, only

n ≤ 2 is possible. The topologically really interesting states with more than two braid
strands are something else than what we have used to call elementary particles. The
proposed interpretation is in terms of anyonic states [K39]. One important implication
is that N = 1 SUSY generated by right-handed neutrino or its antineutrino is SUSY for
which all members of the multiplet assigned to a wormhole throat have braid number
smaller than 3. ForN = 2 SUSY generated by right-handed neutrino and its antiparticle
the states containing fermion and neutrino-antineutrino pair have three braid strands
and SUSY breaking is expected to be strong.

Vertices

Conformal invariance raises the hope that vertices can be deduced from super-conformal
invariance as n-point functions. Therefore lines would come from integrable QFT in M2

and topological braid theory and vertices from confofmal field theory: both theories are
integrable.

The basic questions is how the vertices are defined by the 2-D partonic surfaces at which
the ends of lines meet. Finite measurement resolution reduces the lines to braids so that the
vertices reduces to the intersection of braid strands with the partonic 2-surface.

(a) Conformal invariance is the basic symmetry of quantum TGD. Does this mean that the
vertices can be identified as n-point functions for points of the partonic 2-surface defined
by the incoming and outgoing braid strands? How strong constraints can one pose on
this conformal field theory? Is this field theory free and fixed by anti-commutation
relations of induced spinor fields so that correlation function would reduce to product
of fermionic two points functions with standard operator in the vertices represented
by strand ends. If purely bosonic vertices are present, their correlation functions must
result from the functional integral over WCW .

(b) For the fermionic fields associated with each incoming braid the anti-commutators of
fermions and anti-fermions are trivial just as the usual equal time anti-commutation
relations. This means that the vertex reduces to sum of products of fermionic correlation
functions with arguments belonging to different incoming and outgoing lines. How can
one calculate the correlators?

i. Should one perform standard second quantization of fermions at light-like 3-surface
allowing infinite number of spinor modes, apply a finite measurement resolution to
obtain braids, for each partonic 2-surface, and use the full fermion fields to calculate
the correlators? In this case braid strands would be discontinuous in vertices. A
possible problem might be that the cutoff in spinor modes seems to come from the
theory itself: finite measurement resolution is a property of quantum state itself.

ii. Could finite measurement resolution allow to approximate the braid strands with
continuous ones so that the correlators between strands belonging to different lines
are given by anti-commutation relations? This would simplify enormously the sit-
uation and would conform with the idea of finite measurement resolution and the
vision that interaction vertices reduce to braids. This vision is encouraged by the
previous considerations and would mean that replication of braid strands analogous
to replication of DNA strands can be seen as a fundamental process of Nature. This
of course represents an important deviation from the standard picture.
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(c) Suppose that one accepts the latter option. What can happen in the vertex, where line
goes from one braid to another one?

i. Can the direction of momentum changed as visual intuition suggests? Is the total
braid momentum conservation the only constraint so that the velocities assignable
braid strands in each line would be constrained by the total momentum of the line.

ii. What kind of operators appear in the vertex? To get some idea about this one can
look for the simplest possible vertex, namely FFB vertex which could in fact be
the only fundamental vertex as the arguments of [K10] suggest. The propagator of
spin one boson decomposes to product of a projection operator to the polarization
states divited by p2 factor. The projection operator sum over products εki γk at both
ends where γk acts in the spinor space defined by fermions. Also fermion lines have
spinor and its conjugate at their ends. This gives rise to pkγk/p

2. pkγk is the analog
of the bosonic polarization tensor factorizing into a sum over products of fermionic
spinors and their conjugates. This gives the BFF vertex εki γk slashed between the
fermionic propagators which are effectively 2-dimensional.

iii. Note that if H-chiralities are same at the throats of the wormhole contact, only spin
one states are possible. Scalars would be leptoquarks in accordance with general
view about lepton and quark number conservation. One particular implication is
that Higgs in the standard sense is not possible in TGD framework. It can appear
only as a state with a polarization which is in CP2 direction. In any case, Higgs
like states would be eaten by massless state so that all particles would have at least
a small mass.

Functional integral over 3-surfaces

The basic question is how one can functionally integrate over light-like 3-surfaces or space-like
3-surfaces.

(a) Does effective 2-dimensionality allow to reduce the functional integration to that over
partonic 2-surfaces assigned with space-time sheet inside CD plus radiative corrections
from the hierarchy of sub-CDs?

(b) Does finite measurement resolution reduce the functional integral to a ordinary integral
over the positions of the end points of braids and could this integral reduce to a sum?
Symplectic group of δM4

±×CP2 basically parametrizes the quantum fluctuating degrees
of freedom in WCW . Could finite measurement resolution reduce the symplectic group
of δM4

± × CP2 to a coset space obtained by dividing with symplectic transformations
leaving the end points invariant and could the outcome be a discrete group as proposed?
Functional integral would reduce to sum.

(c) If Kähler action reduces to Chern-Simons-Kähler terms to surface area terms in the
proposed manner, the integration over WCW would be very much analogous to a func-
tional integral over string world sheets and the wisdom gained in string models might
be of considerable help.

Summary

What can one conclude from these argument? To my view the situation gives rise to a
considerable optimism. I believe that on basis of the proposed picture it should be possible
to build a concrete mathematical models for the generalized Feynman graphics and the idea
about reduction to generalized braid diagrams having algebraic representations could pose
additional powerful constraints on the construction. Braid invariants could also be building
bricks of the generalized Feynman diagrams. In particular, the treatment of the non-planarity
of Feynman diagrams in terms of M2 braiding matrix would be something new and therefore
can be questioned.

Few years after writing these lines a view about generalized Feynman diagrams as a stringy
generalization of twistor Grassmannian diagrams has emerged [K55]. This approach relies
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heavily on the localization of spinor modes on 2-D string world sheets (covariantly constant
right-handed neutrino is an exception) [K62]. This approach can be regarded as an effective
QFT (or rather, effective string theory) approach: all information about the microscopic
character of the fundamental particle like entities has been integrated out so that a string
model type description at the level of imbdding space emerges. The presence of gigantic
symmetries, in particular, the Yangian generalization of super-conformal symmetries, raises
hopes that this approach could work. The approach to generalized Feynman diagrams con-
sidered above is obviously microscopic.

9.8 Electron As A Trefoil Or Something More General?

The possibility that electron, and also other elementary particles could correspond to knot
is very interesting. The video model (see http://tinyurl.com/ycz4jm48) [B46] was so
fascinating (I admire the skills of the programmers) that I started to question my belief that
all related to knots and braids represents new physics (say anyons, see http://tinyurl.com/
y89xp4bu) [K39] and that it is hopeless to try to reduce standard model quantum numbers
with purely group theoretical explanation (except family replication) to topological quantum
numbers.

Electroweak and color quantum numbers should by quantum classical correspondence have
geometric correlates in space-time geometry. Could these correlates be topological? As a
matter of fact, the correlates existing if the present understanding of the situation is correct
but they are not topological.

Despite this, I played with various options and found that in TGD Universe knot invariants
do not provide plausible space-time correlates for electroweak quantum numbers. The knot
invariants and many other topological invariants are however present and mean new physics.
As following arguments try to show, elementary particles in TGD Universe are characterized
by extremely rich spectrum of topological quantum numbers, in particular those associated
with knotting and linking: this is basically due to the 3-dimensionality of 3-space.

For a representation of trefoil knot by R.W. Gray see http://tinyurl.com/ycz4jm48. The
homepage of Louis Kauffman (see http://tinyurl.com/y7r3w5jq) [A10] is a treasure trove
for anyone interested in ideas related to possible applications of knots to physics. One partic-
ular knotty idea is discussed in the article “Emergent Braided Matter of Quantum Geometry”
(see http://tinyurl.com/y7lnn3wa) by Bilson-Thompson, Hackett, and Kauffman [B16].

9.8.1 Space-Time As 4-Surface And The Basic Argument

Space-time as a 4-surface in M4 × CP2 is the key postulate. The dynamics of space-time
surfaces is determined by so called Kähler action - essentially Maxwell action for the Kähler
form of CP2 induced to X4 in induced metric. Only so called preferred extremals are accepted
and one can in very loose sense say that general coordinate invariance is realized by assigning
to a given 3-surface a unique 4-surface as a preferred extremal analogous to Bohr orbit for a
particle identified as 3-D surface rather than point-like object.

One ends up with a radical generalization of space-time concept to what I call many-sheeted
space-time. The sheets of many-sheeted space-time are at distance of CP2 size scale (104

Planck lengths as it turns out) and can touch each other which means formation of wormhole
contact with wormhole throats as its ends. At throats the signature of the induced metric
changes from Minkowskian to Euclidian. Euclidian regions are identified as 4-D analogs of
lines of generalized Feynman diagrams and the M4 projection of wormhole contact can be
arbitrarily large: macroscopic, even astrophysical. Macroscopic object as particle like entity
means that it is accompanied by Euclidian region of its size.

Elementary particles are identified as wormhole contacts. The wormhole contacts born in
mere touching are not expected to be stable. The situation changes if there is a monopole
magnetic flux (CP2 carries self dual purely homological monopole Kähler form defining

http://tinyurl.com/ycz4jm48
http://tinyurl.com/y89xp4bu
http://tinyurl.com/y89xp4bu
http://tinyurl.com/ycz4jm48
http://tinyurl.com/y7r3w5jq
http://tinyurl.com/y7lnn3wa
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Maxwell field, this is not Dirac monopole) since one cannot split the contact. The lines
of the Kähler magnetic field must be closed, and this requires that there is another wormhole
contact nearby. The magnetic flux from the upper throat of contact A travels to the upper
throat of contact B along “upper” space-time sheet, goes to “lower” space-time sheet along
contact B and returns back to the wormhole contact A so that closed loop results.

In principle, wormhole throat can have arbitrary orientable topology characterized by the
number g of handles attached to sphere and known as genus. The closed flux tube corre-
sponds to topology X2

g × S1, g=0, 1, 2, ... Genus-generation correspondence (see http:

//tinyurl.com/ybowqm5v) [K10] states that electron, muon, and tau lepton and similarly
quark generations correspond to g = 0, 1, 2 in TGD Universe and CKM mixing is induced by
topological mixing.

Suppose that one can assign to this flux tube a closed string: this is indeed possible but I
will not bother reader with details yet. What one can say about the topology of this string?

(a) X2
g has homology Z2g and S1 homology S1. The entire homology is Z2g+1 so that there

are 2g+ 1 additional integer valued topological quantum numbers besides genus. Z2g+1

obviously breaks topologically universality stating that fermion generations are exact
copies of each other apart from mass. This would be new physics. If the size of the flux
loop is of order Compton length, the topological excitations need not be too heavy. One
should however know how to excite them.

(b) The circle S1 is imbedded in 3-surface and can get knotted. This means that all possible
knots characterize the topological states of the fermion. Also this means extremely rich
spectrum of new physics.

9.8.2 What Is The Origin Of Strings Going Around The Magnetic
Flux Tube?

What is then the origin of these knotted strings? The study of the Kähler-Dirac equa-
tion [K62] determining the dynamics of induced spinor fields at space-time surface led to a
considerable insight here. This requires however additional notions such as zero energy on-
tology (ZEO), and causal diamond (CD) defined as intersection of future and past directed
light-cones (double 4-pyramid is the M4 projection. Note that CD has CP2 as Cartesian
factor and is analogous to Penrose diagram.

(a) ZEO means the assumption that space-time surfaces for a particular sub- WCW (“world
of classical worlds” ) are contained inside given CD identifiable as a the correlate for the
“spotlight of consciousness” in TGD inspired theory of consciousness. The space-time
surface has ends at the upper and lower light-like boundaries of CD. The 3-surfaces at
the ends define space-time correlates for the initial and final states in positive energy
ordinary ontology. In ZEO they carry opposite total quantum numbers.

(b) General coordinate invariance (GCI) requires that once the 3-D ends are known, space-
time surface connecting the ends is fixed (there is not path integral since it simply
fails). This reduces ordinary holography to GCI and makes classical physics defined
by preferred extremals an exact part of quantum theory, actually a key element in the
definition of Kähler geometry of WCW .

Strong form of GCI is also possible. One can require that 3-D light-like orbits of worm-
hole throats at which the induced metric changes its signature, and space-like 3-surfaces
at the ends of CD give equivalent descriptions. This implies that quantum physics is
coded by the their intersections which I call partonic 2-surfaces - wormhole throats - plus
the 4-D tangent spaces of X4 associated with them. One has strong form of holography.
Physics is almost 2-D but not quite: 4-D tangent space data is needed.

(c) The study of the Kähler-Dirac equation [K62] leads to further results. The mere con-
servation of electromagnetic charge defined group theoretically for the induced spinors
of M4×CP2 carrying spin and electroweak quantum numbers implies that for all other

http://tinyurl.com/ybowqm5v
http://tinyurl.com/ybowqm5v
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fermion states except right handed neutrino (, which does not couple at all all to elec-
troweak fields), are localized at 2-D string world sheets and partonic 2-surfaces.

String world sheets intersect the light-like orbits of wormhole throats along 1-D curves
having interpretation as time-like braid strands (a convenient metaphor: braiding in
time direction si created by dancers in the parquette).

One can say that dynamics automatically implies effective discretization: the ends of
time like braid strands at partonic 2-surfaces at the ends of CD define a collection of
discrete points to each of which one can assign fermionic quantum numbers.

(d) Both throats of the wormhole contact can carry many fermion state and known fermions
correspond to states for which either throat carries single braid strand. Known bosons
correspond to states for which throats carry fermion and anti-fermion number.

(e) Partonic 2-surface is replaced with discrete set of points effectively. The interpretation is
in terms of a space-time correlate for finite measurement resolution. Quantum correlate
would be the inclusion of hyperfinite factors of type II1.

This interpretation brings in even more topology!

(a) String world sheets - present both in Euclidian and Minkowskian regions - intersect the
3-surfaces at the ends of CD along curves - one could speak of strings. These strings
give rise to the closed curves that I discussed above. These strings can be homologically
non-trivial - in string models this corresponds to wrapping of branes.

(b) For known bosons one has two closed loop but these loops could fuse to single. Space-like
2-braiding (including linking) becomes possible besides knotting.

(c) When the partonic 2-surface contains several fermionic braid ends one obtains even more
complex situation than above when one has only single braid end. The loops associated
with the braid ends and going around the monopole flux tube can form space-like N-
braids. The states containing several braid ends at either throat correspond to exotic
particles not identifiable as ordinary elementary particles.

9.8.3 How Elementary Particles Interact As Knots?

Elementary particles could reveal their knotted and even braided character via the topological
interactions of knots. There are two basic interactions.

(a) The basic interaction for single string is by self-touching and this can give to a local
connected sum or a reconnection. In both cases the knot invariants can change and it
is possible to achieve knotting or unknotting of the string by this mechanism. String
can also split into two pieces but this might well be excluded in the recent case.

The space-time dynamics for these interactions is that of closed string model with 4-D
target space. The first guess would be topological string model describing only the
dynamics of knots. Note that string world sheets define 2-knots and braids.

(b) The basic interaction vertex for generalized Feynman diagrams (lines are 4-D space-time
regions with Euclidian signature) is join along 3-D boundaries for the three particles
involved: this is just like ordinary 3-vertex for Feynman diagrams and is not encountered
in string models. The ends of lines must have same genus g. In this interaction vertex
the homology charges in Z2g+1 is conserved so that these charges are analogous to U(1)
gauge charges. The strings associated with the two particles can touch each other and
connected sum or reconnection is the outcome.

Consider now in more detail connected sum and reconnection vertices responsible for knotting
and un-knotting.

(a) The first interaction is connected sum (see http://tinyurl.com/lye7pvp) of knots
[A4]. A little mental exercise demonstrates that a local connected sum for the pieces
of knot for which planar projections cross, can lead to a change in knotted-ness. Local
connected sum is actually used to un-knot the knot in the construction of knot invariants.

http://tinyurl.com/lye7pvp
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In dimension 3 knots form a module with respect to the connected sum. One can identify
unique prime knots and construct all knots as products of prime knots with product
defined as a connected sum of knots. In particular, one cannot have a situation on
which a product of two non-trivial knots is un-knot so that one could speak about the
inverse of a knot (indeed, the inverse of ordinary prime is not an integer!). For higher-
dimensional knots the situation changes (string world sheets at space-time surface could
form 2-knots but instead of linking they intersect at discrete points).

Connected sum in the vertex of generalized Feynman graph (as described above) can
lead to a decay of particle to two particles, which correspond to the summands in the
connected sum as knots. Could one consider a situation in which un-knotted particle
decomposes via the time inverse of the connected sum to a pair of knotted particles such
that the knots are inverses of each other? This is not possible since knots do not have
inverse.

(b) Touching knots can also reconnect. For braids the strands A → B and C → D touch
and one obtains strands A → D and C → B. If this reaction takes place for strands
whose planar projections cross, it can also change the character of the knot. One one
can transform knot to un-knot by repeatedly applying connected sum and reconnection
for crossing strands (the Alexandrian way).

(c) In the evolution of knots as string world sheets these two vertices corresponds to closed
string vertices. These vertices can lead to topological mixing of knots leading to a
quantum superposition of different knots for a given elementary particle. This mixing
would be analogous to CKM mixing understood to result from the topological mixing
of fermion genera in TGD framework. It could also imply that knotted particles decay
rapidly to un-knots and make the un-knot the only long-lived state.

A naive application of Uncertainty Principle suggests that the size scale of string deter-
mines the life time of particular knot configuration. The dependence on the length scale
would however suggest that purely topological string theory cannot be in question. Zero
energy ontology suggests that the size scale of the causal diamond assignable to elemen-
tary particle determines the time scale for the rates as secondary p-adic time scale: in
the case of electron the time scale would be.1 seconds corresponding to Mersenne prime
M127 = 2127 − 1 so that knotting and unknotting would be very slow processes. For
electron the estimate for the scale of mass differences between different knotted states
would be about 10−19me: electron mass is known for certain for 9 decimals so that there
is no hope of detecting these mass differences. The pessimistic estimate generalizes to
all other elementary particles: for weak bosons characterized by M89 the mass difference
would be of order 10−13mW .

(d) A natural guess is that p-adic thermodynamics can be applied to the knotting. In
p-adic thermodynamics Boltzmann weights in are of form pH/T (p-adic number) and
the allowed values of the Hamiltonian H are non-negative integer powers of p. Clearly,
H representing a contribution to p-adic valued mass squared must be a non-negative
integer valued invariant additive under connected sum. This guarantees extremely rapid
convergence of the partition function and mass squared expectation value as the number
of prime knots in the decomposition increases.

An example of an knot invariant (see http://tinyurl.com/ya6pdykc) [A17] additive
under connected sum is knot genus (see http://tinyurl.com/y8nfykh3) [A16] defined
as the minimal genus of 2-surface having the knot as boundary (Seifert surface). For
trefoil and figure eight knot one has g = 1. For torus knot (p, q) ≡ (q, p) one has
g = (p − 1)(q − 1)/2. Genus vanishes for un-knot so that it gives the dominating
contribution to the partition function but a vanishing contribution to the p-adic mass
squared.

p-Adic mass scale could be assumed to correspond to the primary p-adic mass scale
just as in the ordinary p-adic mass calculations. If the p-adic temperature is T = 1 in
natural units (highest possible), and if one has H = 2g, the lowest order contribution
corresponds to the value H = 2 of the knot Hamiltonian, and is obtained for trefoil
and figure eight knot so that the lowest order contribution to the mass would indeed be

http://tinyurl.com/ya6pdykc
http://tinyurl.com/y8nfykh3
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about 10−19me for electron. An equivalent interpretation is that H = g and T = 1/2
as assumed for gauge bosons in p-adic mass calculations.

There is a slight technical complication involved. When the string has a non-trivial
homology in X2

g × S1 (it always has by construction), it does not allow Seifert surface
in the ordinary sense. One can however modify the definition of Seifert surface so that
it isolates knottedness from homology. One can express the string as connected sum of
homologically non-trivial un-knot carrying all the homology and of homologically trivial
knot carrying all knottedness and in accordance with the additivity of genus define the
genus of the original knot as that for the homologically trivial knot.

(e) If the knots assigned with the elementary particles have large enough size, both con-
nected sum and reconnection could take place for the knots associated with different
elementary particles and make the many particle system a single connected structure.
TGD based model for quantum biology is indeed based on this kind of picture. In this
case the braid strands are magnetic flux tubes and connect bio-molecules to single coher-
ent whole. Could electrons form this kind of stable connected structures in condensed
matter systems? Could this relate to super-conductivity and Cooper pairs somehow? If
one takes p-adic thermodynamics for knots seriously then knotted and braided magnetic
flux tubes are more attractive alternative in this respect.

What if the thermalization of knot degrees of freedom does not take place? One can also
consider the possibility that knotting contributes only to the vacuum conformal weight and
thus to the mass squared but that no thermalization of ground states takes place. If the
increment ∆m of inertial mass squared associated with knotting is of from kgp2, where k is
positive integer and g the above described knot genus, one would have ∆m/m ' 1/p. This
is of order M−1

127 ' 10−38 for electron.

Could the knotting and linking of elementary particles allow topological quantum computa-
tion at elementary particle level? The huge number of different knottings would give electron
a huge ground state degeneracy making possible negentropic entanglement. For negentropic
entanglement probabilities must belong to an algebraic extension of rationals: this would be
the case in the intersection of p-adic and real worlds and there is a temptation to assign
living matter to this intersection. Negentropy Maximization Principle could stabilize negen-
tropic entanglement and therefore allow to circumvent the problems due to the fact that the
energies involved are extremely tiny and far below thus thermal energy. In this situation bit
would generalize to “nit” corresponding to N different ground states of particle differing by
knotting.

A very naive dimensional analysis using Uncertainty Principle would suggest that the number
changes of electron state identifiable as quantum computation acting on q-nits is of order
1/∆t = ∆m/hbar. More concretely, the minimum duration of the quantum computation
would be of order ∆t = ~/∆m. Single quantum computation would take an immense amount
time: for electron single operation would take time of order 1017 s, which is of the order of the
recent age of the Universe. Therefore this quantum computation would be of rather limited
practical value!



Chapter i

Appendix

Originally this appendix was meant to be a purely technical summary of basic facts but in
its recent form it tries to briefly summarize those basic visions about TGD which I dare to
regarded stabilized. I have added illustrations making it easier to build mental images about
what is involved and represented briefly the key arguments. This chapter is hoped to help
the reader to get fast grasp about the concepts of TGD.

The basic properties of imbedding space and related spaces are discussed and the relationship
of CP2 to standard model is summarized. The notions of induction of metric and spinor
connection, and of spinor structure are discussed. Many-sheeted space-time and related
notions such as topological field quantization and the relationship many-sheeted space-time
to that of GRT space-time are discussed as well as the recent view about induced spinor
fields and the emergence of fermionic strings. Various topics related to p-adic numbers are
summarized with a brief definition of p-adic manifold and the idea about generalization of
the number concept by gluing real and p-adic number fields to a larger book like structure.
Hierarchy of Planck constants can be now understood in terms of the non-determinism of
Kähler action and the recent vision about connections to other key ideas is summarized.

A-1 Imbedding Space M 4 × CP2 And Related Notions

Space-times are regarded as 4-surfaces in H = M4 × CP2 the Cartesian product of empty
Minkowski space - the space-time of special relativity - and compact 4-D space CP2 with
size scale of order 104 Planck lengths. One can say that imbedding space is obtained by
replacing each point m of empty Minkowski space with 4-D tiny CP2. The space-time of
general relativity is replaced by a 4-D surface in H which has very complex topology. The
notion of many-sheeted space-time gives an idea about what is involved.

Fig. 1. Imbedding space H = M4 × CP2 as Cartesian product of Minkowski space M4 and
complex projective space CP2. http://tgdtheory.fi/appfigures/Hoo.jpg

Denote by M4
+ and M4

− the future and past directed lightcones of M4. Denote their inter-
section, which is not unique, by CD. In zero energy ontology (ZEO) causal diamond (CD)
is defined as cartesian product CD × CP2. Often I use CD to refer just to CD × CP2 since
CP2 factor is relevant from the point of view of ZEO.

Fig. 2. Future and past light-cones M4
+ and M4

−. Causal diamonds (CD) are defined as
their intersections. http://tgdtheory.fi/appfigures/futurepast.jpg

Fig. 3. Causal diamond (CD) is highly analogous to Penrose diagram but simpler. http:

//tgdtheory.fi/appfigures/penrose.jpg

A rather recent discovery was that CP2 is the only compact 4-manifold with Euclidian sig-
nature of metric allowing twistor space with Kähler structure. M4 is in turn is the only 4-D
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space with Minkowskian signature of metric allowing twistor space with Kähler structure so
that H = M4 × CP2 is twistorially unique.

One can loosely say that quantum states in a given sector of “world of classical worlds”
(WCW) are superpositions of space-time surfaces inside CDs and that positive and negative
energy parts of zero energy states are localized and past and future boundaries of CDs. CDs
form a hierarchy. One can have CDs within CDs and CDs can also overlap. The size of CD
is characterized by the proper time distance between its two tips. One can perform both
translations and also Lorentz boosts of CD leaving either boundary invariant. Therefore one
can assign to CDs a moduli space and speak about wave function in this moduli space.

In number theoretic approach it is natural to restrict the allowed Lorentz boosts to some
discrete subgroup of Lorentz group and also the distances between the tips of CDs to multiples
of CP2 radius defined by the length of its geodesic. Therefore the moduli space of CDs
discretizes. The quantization of cosmic recession velocities for which there are indications,
could relate to this quantization.

A-2 Basic Facts About CP2

CP2 as a four-manifold is very special. The following arguments demonstrates that it codes
for the symmetries of standard models via its isometries and holonomies.

A-2.1 CP2 As A Manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the
points of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-2.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset
space SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart
for CP2. As j runs from 1 to 3 one obtains an atlas of three coordinate charts covering CP2,
the charts being holomorphically related to each other (e.g. CP2 is a complex manifold).
The points z3 6= 0 form a subset of CP2 homoeomorphic to R4 and the points with z3 = 0
a set homeomorphic to S2. Therefore CP2 is obtained by “adding the 2-sphere at infinity to
R4”.

Besides the standard complex coordinates ξi = zi/z3, i = 1, 2 the coordinates of Eguchi and
Freund [A52] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-2.2)

These are related to the “spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-2.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.
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Considered as a real four-manifold CP2 is compact and simply connected, with Euler number
Euler number 3, Pontryagin number 3 and second b = 1.

Fig. 4. CP2 as manifold. http://tgdtheory.fi/appfigures/cp2.jpg

A-2.2 Metric And Kähler Structure Of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of
the orbits of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of

CP2 is obtained by projecting the metric of S5 orthogonally to the orbits of the isometries.
Therefore the distance between the points of CP2 is that between the representative orbits
on S5.

The line element has the following form in the complex coordinates

ds2 = gab̄dξ
adξ̄b , (A-2.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-2.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-2.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 re-
lated to its standard form in spherical coordinates by the coordinate transformation (r, φ) =
(tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting the
angle coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-2.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-2.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the
defining relation

skl = R2
∑
A

eAk e
A
l , (A-2.9)

http://tgdtheory.fi/appfigures/cp2.jpg
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are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-2.10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-2.11)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-2.12)

The vierbein connection satisfying the defining relation

deA = −V AB ∧ eB , (A-2.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-2.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-2.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (A-2.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it
satisfies the condition

JkrJ
rl = −skl . (A-2.17)
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The form J is integer valued and by its covariant constancy satisfies free Maxwell equations.
Hence it can be regarded as a curvature form of a U(1) gauge potential B carrying a magnetic
charge of unit 1/2g (g denotes the gauge coupling). Locally one has therefore

J = dB , (A-2.18)

where B is the so called Kähler potential, which is not defined globally since J describes
homological magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is proportional
to its homology equivalence class, which is integer valued. The explicit representations of J
and B are given by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(A-2.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the com-
plex coordinates only components of type (1, 1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler potential
and Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-2.20)

The relationship of the canonical coordinates to the “spherical” coordinates is given by the
equations

P1 = − 1

1 + r2
,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-2.21)

A-2.3 Spinors In CP2

CP2 doesn’t allow spinor structure in the conventional sense [A42]. However, the coupling of
the spinors to a half odd multiple of the Kähler potential leads to a respectable spinor struc-
ture. Because the delicacies associated with the spinor structure of CP2 play a fundamental
role in TGD, the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel
transport of the vierbein in a simply connected space M . The parallel propagation around
a closed curve with a base point x leads to a rotated vierbein at x: eA = RABe

B and one can
associate to each closed path an element of SO(4).
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Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base
point x and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the
element RAB(v) defines a closed path in SO(4). When the sphere S2 is contractible to a point
e.g., homologically trivial, the path in SO(4) is also contractible to a point and therefore
represents a trivial element of the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homotopi-
cally nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4)
(leading from the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also
spinors and by the above construction associate a closed path of Spin(4) to the surface S2.
Now, however this path corresponds to a lift of the corresponding SO(4) path and cannot be
closed. Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1- factor
associated with the parallel transport of the spinor around the sphere S2 by coupling it to a
gauge potential in such a way that in the parallel transport the gauge potential introduces a
compensating −1-factor. For a U(1) gauge potential this factor is given by the exponential
exp(i2Φ), where Φ is the magnetic flux through the surface. This factor has the value −1
provided the U(1) potential carries half odd multiple of Dirac charge 1/2g. In case of CP2

the required gauge potential is half odd multiple of the Kähler potential B defined previously.
In the case of M4 × CP2 one can in addition couple the spinor components with different
chiralities independently to an odd multiple of B/2.

A-2.4 Geodesic Sub-Manifolds Of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the
imbedding space. As a consequence the second fundamental form of the geodesic manifold
vanishes, which means that the tangent vectors hkα (understood as vectors of H) are covari-
antly constant quantities with respect to the covariant derivative taking into account that
the tangent vectors are vectors both with respect to H and X4.

In [A81] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric
space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie
triple systems of the Lie-algebra g of the group G. The Lie triple system t is defined as a
subspace of g characterized by the closedness property with respect to double commutation

[X, [Y,Z]] ∈ t for X,Y, Z ∈ t . (A-2.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic
spheres. This is understood by observing that SU(3) allows two nonequivalent SU(2) al-
gebras corresponding to subgroups SO(3) (orthogonal 3× 3 matrices) and the usual isospin
group SU(2). By taking any subset of two generators from these algebras, one obtains a
Lie triple system and by exponentiating this system, one obtains a 2-dimensional geodesic
sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as
holomorphic transformations in CP2. The vanishing of the second fundamental form is also
easy to verify. The first geodesic manifold is homologically trivial: in fact, the induced Kähler
form vanishes identically for S2

I . S2
II is homologically nontrivial and the flux of the Kähler

form gives its homology equivalence class.
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A-3 CP2 Geometry And Standard Model Symmetries

A-3.1 Identification Of The Electro-Weak Couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First,
the coupling of the spinors to the U(1) gauge potential defined by the Kähler structure
provides the missing U(1) factor in the gauge group. Secondly, it is possible to couple
different H-chiralities independently to a half odd multiple of the Kähler potential. Thus
the hopes of obtaining a correct spectrum for the electromagnetic charge are considerable.
In the following it will be demonstrated that the couplings of the induced spinor connection
are indeed those of the GWS model [B39] and in particular that the right handed neutrinos
decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors.
Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined
by the condition

ΓΨ = eΨ ,

e = ±1 , (A-3.1)

where Γ denotes the matrix Γ9 = γ5 × γ5, 1× γ5 and γ5 × 1 respectively. Clearly, for a fixed
H-chirality CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be understood as
a consequence of generalized chiral invariance if this identification is accepted. For the spinors
with a definite H-chirality one can identify the vielbein group of CP2 as the electro-weak
group: SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-3.2)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respec-
tively and 1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the
requirement of a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-3.3)

and

B = 2re3 , (A-3.4)

respectively. The explicit representation of the vielbein is not needed here.

Let us first show that the charged part of the spinor connection couples purely left handedly.
Identifying Σ0

3 and Σ1
2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds

that the charged part of the spinor connection is given by
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Ach = 2V23I
1
L + 2V13I

2
L , (A-3.5)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-3.6)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (A-3.7)

where W± denotes the charged intermediate vector boson.

Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear
combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-3.8)

appearing in the neutral part of the spinor connection. We show first that the mere require-
ment that photon couples vectorially implies the basic coupling structure of the GWS model
leaving only the value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-3.9)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization
factors.

Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-3.10)

Identifying Σ12 and Σ03 = 1×γ5Σ12 as vectorial and axial Lie-algebra generators, respectively,
the requirement that γ couples vectorially leads to the condition



A-3. CP2 Geometry And Standard Model Symmetries 481

c = −d . (A-3.11)

Using this result plus previous equations, one obtains for the neutral part of the connection
the expression

Anc = γQem + Z0(I3
L − sin2θWQem) . (A-3.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-3.13)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-3.14)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-3.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from
the electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is
completely fixed once the YM action is fixed by requiring that action contains no cross term
of type γZ0. Pure symmetry non-broken electro-weak YM action leads to a definite value
for the Weinberg angle. One can however add a symmetry breaking term proportional to
Kähler action and this changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-3.16)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-3.17)
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in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-3.18)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (A-3.19)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-3.20)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-3.21)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the
coefficient X of the γZ0 cross term (this coefficient must vanish) the expression

X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-3.22)

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-3.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is
the integer describing the coupling of the spinor field to the Kähler potential. The cross term
vanishes provided the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-3.24)

In the scenario where both leptons and quarks are elementary fermions the value of the
Weinberg angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-3.25)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to the
typical value 9/24 of GUTs [B10] .
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A-3.2 Discrete Symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

(a) Symmetries must be realized as purely geometric transformations.

(b) Transformation properties of the field variables should be essentially the same as in the
conventional quantum field theories [B17] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-3.26)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed
that W and Z0 bosons break parity symmetry as they should since their charge matrices do
not commute with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the
physicist turns out to be correct. One can verify by a direct calculation that pure Dirac
action is invariant under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-3.27)

The operation bearing closest resemblance to the ordinary charge conjugation corresponds
geometrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-3.28)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac
action.

A-4 The Relationship Of TGD To QFT And String Mod-
els

TGD could be seen as a generalization of quantum field theory (string models) obtained by
replacing pointlike particles (strings) as fundamental objects with 3-surfaces.

Fig. 5. TGD replaces point-like particles with 3-surfaces. http://tgdtheory.fi/appfigures/
particletgd.jpg

The fact that light-like 3-surfaces are effectively metrically 2-dimensional and thus possess
generalization of 2-dimensional conformal symmetries with light-like radial coordinate defin-
ing the analog of second complex coordinate suggests that this generalization could work and
extend the super-conformal symmetries to their 4-D analogs.

The boundary δM4
+ = S2 × R+- of 4-D light-cone M4

+ is also metrically 2-dimensional and
allows extended conformal invariance. Also the group of isometries of light-cone boundary
and of light-like 3-surfaces is infinite-dimensional since the conformal scalings of S2 can be
compensated by S2-local scaling of the light-like radial coordinate of R+. These simple

http://tgdtheory.fi/appfigures/particletgd.jpg
http://tgdtheory.fi/appfigures/particletgd.jpg
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facts mean that 4-dimensional Minkowski space and 4-dimensional space-time surfaces are
in completely unique position as far as symmetries are considered.

String like objects obtained as deformations of cosmic strings X2×Y 2, where X2 is minimal
surface in M4 and Y 2 a holomorphic surface of CP2 are fundamental extremals of Kähler
action having string world sheet as M4 projections. Cosmic strings dominate the primordial
cosmology of TGD Universe and inflationary period corresponds to the transition to radiation
dominated cosmology for which space-time sheets with 4-D M4 projection dominate.

Also genuine string like objects emerge from TGD. The conditions that the em charge of
modes of induces spinor fields is well-defined requires in the generic case the localization of
the modes at 2-D surfaces -string world sheets and possibly also partonic 2-surfaces. This in
Minkowskian space-time regions.

Fig. 6. Well-definedness of em charge forces the localization of induced spinor modes to
2-D surfaces in generic situtation in Minkowskian regions of space-time surface. http://

tgdtheory.fi/appfigures/fermistring.jpg

TGD based view about elementary particles has two aspects.

(a) The space-time correlates of elementary particles are identified as pairs of wormhole
contacts with Euclidian signature of metric and having 4-D CP2 projection. Their
throats behave effectively as Kähler magnetic monopoles so that wormhole throats must
be connected by Kähler magnetic flux tubes with monopole flux so that closed flux tubes
are obtained.

(b) Fermion number is carried by the modes of the induced spinor field. In Minkowskian
space-time regions the modes are localized at string world sheets connecting the worm-
hole contacts.

Fig. 7. TGD view about elementary particles. a) Particle corresponds 4-D generalization of
world line or b) with its light-like 3-D boundary (holography). c) Particle world lines have
Euclidian signature of the induced metric. d) They can be identified as wormhole contacts. e)
The throats of wormhole contacts carry effective Kähler magnetic charges so that wormhole
contacts must appear as pairs in order to obtain closed flux tubes. f) Wormhole contacts are
accompnied by fermionic strings connecting the throats at same sheet: the strings do not
extend inside the wormhole contacts. http://tgdtheory.fi/appfigures/elparticletgd.
jpg

Particle interactions involve both stringy and QFT aspects.

(a) The boundaries of string world sheets correspond to fundamental fermions. This gives
rise to massless propagator lines in generalized Feynman diagrammatics. One can speak
of “long” string connecting wormhole contacts and having hadronic string as physical
counterpart. Long strings should be distinguished from wormhole contacts which due
to their super-conformal invariance behave like “short” strings with length scale given
by CP2 size, which is 104 times longer than Planck scale characterizing strings in string
models.

(b) Wormhole contact defines basic stringy interaction vertex for fermion-fermion scattering.
The propagator is essentially the inverse of the superconformal scaling generator L0.
Wormhole contacts containing fermion and antifermion at its opposite throats beheave
like virtual bosons so that one has BFF type vertices typically.

(c) In topological sense one has 3-vertices serving as generalizations of 3-vertices of Feynman
diagrams. In these vertices 4-D “lines” of generalized Feynman diagrams meet along
their 3-D ends. One obtains also the analogs of stringy diagrams but stringy vertices do
not have the usual interpretation in terms of particle decays but in terms of propagation
of particle along two different routes.

Fig. 8. a) TGD analogs of Feynman and string diagrammatics at the level of space-
time topology. b) The 4-D analogs of both string diagrams and QFT diagrams appear
but the interpretation of the analogs stringy diagrams is different. http://tgdtheory.fi/

appfigures/tgdgraphs.jpg

http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/tgdgraphs.jpg
http://tgdtheory.fi/appfigures/tgdgraphs.jpg
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A-5 Induction Procedure And Many-Sheeted Space-Time

Since the classical gauge fields are closely related in TGD framework, it is not possible to
have space-time sheets carrying only single kind of gauge field. For instance, em fields are
accompanied by Z0 fields for extremals of Kähler action.

Classical em fields are always accompanied by Z0 field and some components of color gauge
field. For extremals having homologically non-trivial sphere as a CP2 projection em and Z0

fields are the only non-vanishing electroweak gauge fields. For homologically trivial sphere
only W fields are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although the
net gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge
field has U(1) holonomy for all space-time surfaces and quantum classical correspondence
suggest a weak form of color confinement meaning that physical states correspond to color
neutral members of color multiplets.

Induction procedure for gauge fields and spinor connection

Induction procedure for gauge potentials and spinor structure is a standard procedure of
bundle theory. If one has imbedding of some manifold to the base space of a bundle, the
bundle structure can be induced so that it has as a base space the imbedded manifold, whose
points have as fiber the fiber if imbedding space at their image points. In the recent case the
imbedding of space-time surface to imbedding space defines the induction procedure. The
induced gauge potentials and gauge fields are projections of the spinor connection of the
imbedding space to the space-time surface (see Fig. ??).

Induction procedure makes sense also for the spinor fields of imbedding space and one obtains
geometrization of both electroweak gauge potentials and of spinors. The new element is
induction of gamma matrices which gives their projections at space-time surface.

As a matter fact, the induced gamma matrices cannot appear in the counterpart of massless
Dirac equation. To achieve super-symmetry, Dirac action must be replaced with Kähler-Dirac
action for which gamma matrices are contractions of the canonical momentum currents of
Kähler action with imbedding space gamma matrices. Induced gamma matrices in Dirac
action would correspond to 4-volume as action.

Fig. 9. Induction of spinor connection and metric as projection to the space-time surface.
http://tgdtheory.fi/appfigures/induct.jpg

Induced gauge fields for space-times for which CP2 projection is a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional
CP2 projection, only vacuum extremals and space-time surfaces for which CP2 projection is
a geodesic sphere, are allowed. Homologically non-trivial geodesic sphere correspond to van-
ishing W fields and homologically non-trivial sphere to non-vanishing W fields but vanishing
γ and Z0. This can be verified by explicit examples.

r = ∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3

vanish imply the vanishing of W field. For space-time sheets for which CP2 projection is
r =∞ homologically non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained
by SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates
constant values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields

http://tgdtheory.fi/appfigures/induct.jpg
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vanish but induced W fields are non-vanishing. This holds also for surfaces obtained by color
rotation. Hence one can say that for non-vacuum extremals with 2-D CP2 projection color
rotations and weak symmetries commute.

A-5.1 Many-Sheeted Space-Time

TGD space-time is many-sheeted: in other words, there are in general several space-sheets
which have projection to the same M4 region. Second manner to say this is that CP2 coor-
dinates are many-valued functions of M4 coordinates. The original physical interpretation of
many-sheeted space-time time was not correct: it was assumed that single sheet corresponds
to GRT space-time and this obviously leads to difficulties since the induced gauge fields are
expressible in terms of only four imbedding space coordinates.

Fig. 10. Illustration of many-sheeted space-time of TGD. http://tgdtheory.fi/appfigures/
manysheeted.jpg

Superposition of effects instead of superposition of fields

The first objection against TGD is that superposition is not possible for induced gauge
fields and induced metric. The resolution of the problem is that it is effects which need to
superpose, not the fields.

Test particle topologically condenses simultaneously to all space-time sheets having a pro-
jection to same region of M4 (that is touches them). The superposition of effects of fields
at various space-time sheets replaces the superposition of fields.This is crucial for the under-
standing also how GRT space-time relates to TGD space-time, which is also in the appendix
of this book).

Wormhole contacts

Wormhole contacts are key element of many-sheeted space-time. One does not expect them
to be stable unless there is non-trivial Kähler magnetic flux flowing through then so that the
throats look like Kähler magnetic monopoles.

Fig. 11. Wormhole contact. http://tgdtheory.fi/appfigures/wormholecontact.jpg

Since the flow lines of Kähler magnetic field must be closed this requires the presence of
another wormhole contact so that one obtains closed monopole flux tube decomposing to
two Minkowskian pieces at the two space-time sheets involved and two wormhole contacts
with Euclidian signature of the induced metric. These objects are identified as space-time
correlates of elementary particles and are clearly analogous to string like objects.

The relationship between the many-sheeted space-time of TGD and of GRT
space-time

The space-time of general relativity is single-sheeted and there is no need to regard it as
surface in H although the assumption about representability as vacuum extremal gives very
powerful constraints in cosmology and astrophysics and might make sense in simple situations.

The space-time of GRT can be regarded as a long length scale approximation obtained by
lumping together the sheets of the many-sheeted space-time to a region of M4 and providing
it with an effective metric obtained as sum of M4 metric and deviations of the induced metrics
of various space-time sheets from M4 metric. Also induced gauge potentials sum up in the
similar manner so that also the gauge fields of gauge theories would not be fundamental
fields.

Fig. 12. The superposition of fields is replaced with the superposition of their effects in
many-sheeted space-time. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/wormholecontact.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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Space-time surfaces of TGD are considerably simpler objects that the space-times of general
relativity and relate to GRT space-time like elementary particles to systems of condensed
matter physics. Same can be said about fields since all fields are expressible in terms of
imbedding space coordinates and their gradients, and general coordinate invariance means
that the number of bosonic field degrees is reduced locally to 4. TGD space-time can be said
to be a microscopic description whereas GRT space-time a macroscopic description. In TGD
complexity of space-time topology replaces the complexity due to large number of fields in
quantum field theory.

Topological field quantization and the notion of magnetic body

Topological field quantization also TGD from Maxwell’s theory. TGD predicts topological
light rays (“massless extremals (MEs)”) as space-time sheets carrying waves or arbitrary
shape propagating with maximal signal velocity in single direction only and analogous to
laser beams and carrying light-like gauge currents in the generi case. There are also magnetic
flux quanta and electric flux quanta. The deformations of cosmic strings with 2-D string orbit
as M4 projection gives rise to magnetic flux tubes carrying monopole flux made possible by
CP2 topology allowing homological Kähler magnetic monopoles.

Fig. 13. Topological quantization for magnetic fields replaces magnetic fields with bundles
of them defining flux tubes as topological field quanta. http://tgdtheory.fi/appfigures/
field.jpg

The imbeddability condition for say magnetic field means that the region containing constant
magnetic field splits into flux quanta, say tubes and sheets carrying constant magnetic field.
Unless one assumes a separate boundary term in Kähler action, boundaries in the usual sense
are forbidden except as ends of space-time surfaces at the boundaries of causal diamonds.
One obtains typically pairs of sheets glued together along their boundaries giving rise to flux
tubes with closed cross section possibly carrying monopole flux.

These kind of flux tubes might make possible magnetic fields in cosmic scales already during
primordial period of cosmology since no currents are needed to generate these magnetic
fields: cosmic string would be indeed this kind of objects and would dominated during the
primordial period. Even superconductors and maybe even ferromagnets could involve this
kind of monopole flux tubes.

A-5.2 Imbedding Space Spinors And Induced Spinors

One can geometrize also fermionic degrees of freedom by inducing the spinor structure of
M4 × CP2.

CP2 does not allow spinor structure in the ordinary sense but one can couple the opposite
H-chiralities of H-spinors to an n = 1 (n = 3) integer multiple of Kähler gauge potential
to obtain a respectable modified spinor structure. The em charges of resulting spinors are
fractional (integer valued) and the interpretation as quarks (leptons) makes sense since the
couplings to the induced spinor connection having interpretation in terms electro-weak gauge
potential are identical to those assumed in standard model.

The notion of quark color differs from that of standard model.

(a) Spinors do not couple to color gauge potential although the identification of color gauge
potential as projection of SU(3) Killing vector fields is possible. This coupling must
emerge only at the effective gauge theory limit of TGD.

(b) Spinor harmonics of imbedding space correspond to triality t = 1 (t = 0) partial waves.
The detailed correspondence between color and electroweak quantum numbers is how-
ever not correct as such and the interpretation of spinor harmonics of imbedding space
is as representations for ground states of super-conformal representations. The worm-
hole pairs associated with physical quarks and leptons must carry also neutrino pair
to neutralize weak quantum numbers above the length scale of flux tube (weak scale

http://tgdtheory.fi/appfigures/field.jpg
http://tgdtheory.fi/appfigures/field.jpg
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or Compton length). The total color quantum numbers or these states must be those
of standard model. For instance, the color quantum numbers of fundamental left-hand
neutrino and lepton can compensate each other for the physical lepton. For fundamental
quark-lepton pair they could sum up to those of physical quark.

The well-definedness of em charge is crucial condition.

(a) Although the imbedding space spinor connection carries W gauge potentials one can say
that the imbedding space spinor modes have well-defined em charge. One expects that
this is true for induced spinor fields inside wormhole contacts with 4-D CP2 projection
and Euclidian signature of the induced metric.

(b) The situation is not the same for the modes of induced spinor fields inside Minkowskian
region and one must require that the CP2 projection of the regions carrying induced
spinor field is such that the induced W fields and above weak scale also the induced Z0

fields vanish in order to avoid large parity breaking effects. This condition forces the
CP2 projection to be 2-dimensional. For a generic Minkowskian space-time region this
is achieved only if the spinor modes are localized at 2-D surfaces of space-time surface
- string world sheets and possibly also partonic 2-surfaces.

(c) Also the Kähler-Dirac gamma matrices appearing in the modified Dirac equation must
vanish in the directions normal to the 2-D surface in order that Kähler-Dirac equation
can be satisfied. This does not seem plausible for space-time regions with 4-D CP2

projection.

(d) One can thus say that strings emerge from TGD in Minkowskian space-time regions.
In particular, elementary particles are accompanied by a pair of fermionic strings at
the opposite space-time sheets and connecting wormhole contacts. Quite generally, fun-
damental fermions would propagate at the boundaries of string world sheets as mass-
less particles and wormhole contacts would define the stringy vertices of generalized
Feynman diagrams. One obtains geometrized diagrammatics, which brings looks like a
combination of stringy and Feynman diagrammatics.

(e) This is what happens in the the generic situation. Cosmic strings could serve as exam-
ples about surfaces with 2-D CP2 projection and carrying only em fields and allowing
delocalization of spinor modes to the entire space-time surfaces.

A-5.3 Space-Time Surfaces With Vanishing Em, Z0, Or Kähler Fields

In the following the induced gauge fields are studied for general space-time surface without
assuming the extremal property. In fact, extremal property reduces the study to the study
of vacuum extremals and surfaces having geodesic sphere as a CP2 projection and in this
sense the following arguments are somewhat obsolete in their generality.

Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically
trivial geodesic sphere and extremal property are not assumed. It must be emphasized that
this case is possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-5.1)

The general expression of electromagnetic field reads as
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Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-5.2)

where ΘW denotes Weinberg angle.

(a) The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-5.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral
space-time is 2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-5.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r.
r = 0 would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞
to X = 1 giving |u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.

The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-5.5)

The components of the electromagnetic field generated by varying vacuum parameters
are proportional to the components of the Kähler field: in particular, the magnetic field
is parallel to the Kähler magnetic field. The generation of a long range Z0 vacuum field
is a purely TGD based feature not encountered in the standard gauge theories.

(b) The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically.

Also the relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.

(c) The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral
space-times. In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-5.6)
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For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field
remains as a long range gauge field. Vacuum extremals for which long range Z0 field
vanishes but em field is non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler
field is of practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-5.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions charac-
terized by six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency
type parameters, two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum
numbers (n1 and n2) are integers. The parameters ωi and ni will be referred as electric and
magnetic quantum numbers. The existence of these quantum numbers is not a feature of
these solutions alone but represents a much more general phenomenon differentiating in a
clear cut manner between TGD and Maxwell’s electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the
derivatives of CP2 coordinates on the common boundary of two neighboring regions with dif-
ferent vacuum quantum numbers is topological field quantization, 3-space decomposes into
disjoint topological field quanta, 3-surfaces having outer boundaries with possibly macro-
scopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-5.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one
has k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values
of the vacuum parameters ωi,ki and ni and m and C are bounded by the surfaces at which
space-time surface becomes ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the vac-
uum parameters r0 and Θ0. At r = ∞ surfaces n2,ω2 and m can change since all values of
Ψ correspond to the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since
all values of Φ correspond to same point of CP2, too. If r = 0 or r =∞ is not in the allowed
range space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not possible to
find a smooth global imbedding for, say a constant magnetic field. Although global imbedding
exists it decomposes into regions with different values of the vacuum parameters and the
coordinate u in general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A
possible manner to avoid edges of space-time is to allow field quantization so that 3-space
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(and field) decomposes into disjoint quanta, which can be regarded as structurally stable
units a 3-space (and of the gauge field). This doesn’t exclude partial join along boundaries
for neighboring field quanta provided some additional conditions guaranteeing the absence
of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-5.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically
neutral regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in
general generates magnetic field and therefore these integers will be referred to as magnetic
(electric) quantum numbers.

A-6 P-Adic Numbers And TGD

A-6.1 P-Adic Number Fields

p-Adic numbers (p is prime: 2, 3, 5, ...) can be regarded as a completion of the rational
numbers using a norm, which is different from the ordinary norm of real numbers [A40].
p-Adic numbers are representable as power expansion of the prime number p of form

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-6.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-6.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs
drastically from the norm of the ordinary real numbers since it depends on the lowest pinary
digit of the p-adic number only. Arbitrarily high powers in the expansion are possible since
the norm of the p-adic number is finite also for numbers, which are infinite with respect to
the ordinary norm. A convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (A-6.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the
phase factor exp(iφ) of a complex number.

The distance function d(x, y) = |x− y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-6.4)

The properties of the distance function make it possible to decompose Rp into a union of
disjoint sets using the criterion that x and y belong to same class if the distance between x
and y satisfies the condition
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d(x, y) ≤ D . (A-6.5)

This division of the metric space into classes has following properties:

(a) Distances between the members of two different classes X and Y do not depend on the
choice of points x and y inside classes. One can therefore speak about distance function
between classes.

(b) Distances of points x and y inside single class are smaller than distances between dif-
ferent classes.

(c) Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin
glasses and is believed to have also applications in biology [B33]. The emergence of p-adic
topology as the topology of the effective space-time would make ultra-metricity property
basic feature of physics.

A-6.2 Canonical Correspondence Between P-Adic And Real Num-
bers

The basic challenge encountered by p-adic physicist is how to map the predictions of the
p-adic physics to real numbers. p-Adic probabilities provide a basic example in this respect.
Identification via common rationals and canonical identification and its variants have turned
out to play a key role in this respect.

Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative
real numbers given by the “pinary” expansion of the real number for x ∈ R and y ∈ Rp this
correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-6.6)

This map is continuous as one easily finds out. There is however a little difficulty associated
with the definition of the inverse map since the pinary expansion like also decimal expansion
is not unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite
number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-6.7)

The p-adic images associated with these expansions are different



A-6. P-Adic Numbers And TGD 493

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-6.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with fi-
nite pinary digits or single valued and discontinuous and non-surjective if one makes pinary
expansion unique by choosing the one with finite pinary digits. The finite pinary digit ex-
pansion is a natural choice since in the numerical work one always must use a pinary cutoff
on the real axis.

The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers
differs from the ordinary topology. The difference is easily understood by interpreting the
p-adic norm as a norm in the set of the real numbers. The norm is constant in each interval
[pk, pk+1) (see Fig. A-6.2 ) and is equal to the usual real norm at the points x = pk:
the usual linear norm is replaced with a piecewise constant norm. This means that p-adic
topology is coarser than the usual real topology and the higher the value of p is, the coarser
the resulting topology is above a given length scale. This hierarchical ordering of the p-adic
topologies will be a central feature as far as the proposed applications of the p-adic numbers
are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topol-
ogy is rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from
right as is clear already from the properties of the p-adic norm (the graph of the norm is
indeed continuous from right). This feature is one clear signature of the p-adic topology.

Fig. 14. The real norm induced by canonical identification from 2-adic norm. http:

//tgdtheory.fi/appfigures/norm.png

The linear structure of the p-adic numbers induces a corresponding structure in the set of the
non-negative real numbers and p-adic linearity in general differs from the ordinary concept
of linearity. For example, p-adic sum is equal to real sum only provided the summands
have no common pinary digits. Furthermore, the condition x +p y < max{x, y} holds in
general for the p-adic sum of the real numbers. p-Adic multiplication is equivalent with the
ordinary multiplication only provided that either of the members of the product is power of p.
Moreover one has x×p y < x× y in general. The p-Adic negative −1p associated with p-adic
unit 1 is given by (−1)p =

∑
k(p− 1)pk and defines p-adic negative for each real number x.

An interesting possibility is that p-adic linearity might replace the ordinary linearity in some
strongly nonlinear systems so these systems would look simple in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-6.9)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n

(a linear vector space over the p-adic numbers).

http://tgdtheory.fi/appfigures/norm.png
http://tgdtheory.fi/appfigures/norm.png
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(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-6.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space
suggests the definition

(xR)2 = (
∑
n

x2
n)R . (A-6.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the
failure of linearity in the sense that the norm of a scaled vector is not obtained by scaling
the norm of the original vector. Ordinary situation prevails only if the scaling corresponds
to a power of p.

These observations suggests that the concept of a normed space or Banach space might have
a generalization and physically the generalization might apply to the description of some
non-linear systems. The nonlinearity would be concentrated in the nonlinear behavior of the
norm under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symmetries
even approximately. This led to a search of variants which would do better in this respect.
The modification of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-6.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under
exchange of target and domain. This map reduces to a direct identification of rationals for
0 ≤ r < p and 0 ≤ s < p. It has turned out that it is this map which most naturally
appears in the applications. The map is obviously continuous locally since p-adically small
modifications of r and s mean small modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy
same for I and IQ but IQ is theoretically preferred since the real probabilities obtained from
p-adic ones by IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic
number fields along common rationals is in question. This induces a similar fusion of real
and p-adic imbedding spaces. Since finite p-adic numbers correspond always to non-negative
reals n-dimensional space Rn must be covered by 2n copies of the p-adic variant Rnp of Rn

each of which projects to a copy of Rn+ (four quadrants in the case of plane). The common
points of p-adic and real imbedding spaces are rational points and most p-adic points are at
real infinity.

Real numbers and various algebraic extensions of p-adic number fields are thus glued together
along common rationals and also numbers in algebraic extension of rationals whose number
belong to the algebraic extension of p-adic numbers. This gives rise to a book like structure
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with rationals and various algebraic extensions of rationals taking the role of the back of the
book. Note that Neper number is exceptional in the sense that it is algebraic number in
p-adic number field Qp satisfying ep mod p = 1.

Fig. 15. Various number fields combine to form a book like structure. http://tgdtheory.
fi/appfigures/book.jpg

For a given p-adic space-time sheet most points are literally infinite as real points and the
projection to the real imbedding space consists of a discrete set of rational points: the
interpretation in terms of the unavoidable discreteness of the physical representations of
cognition is natural. Purely local p-adic physics implies real p-adic fractality and thus long
range correlations for the real space-time surfaces having enough common points with this
projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface X4

are related by a direct identification whereas CP2 coordinates of X4 at these points are related
by I, IQ or some of its variants implying long range correlates for CP2 coordinates. Since only
a discrete set of points are related in this manner, both real and p-adic field equations can be
satisfied and there are no problems with symmetries. p-Adic effective topology is expected
to be a good approximation only within some length scale range which means infrared and
UV cutoffs. Also multi-p-fractality is possible.

A-6.3 The Notion Of P-Adic Manifold

The notion of p-adic manifold is needed in order to fuse real physics and various p-adic
physics to a larger structure which suggests that real and p-adic number fields should be
glued together along common rationals bringing in mind adeles. The notion is problematic
because p-adic topology is totally disconnected implying that p-adic balls are either disjoint
or nested so that ordinary definition of manifold using p-adic chart maps fails. A cure is
suggested to be based on chart maps from p-adics to reals rather than to p-adics (see the
appendix of the book)

The chart maps are interpreted as cognitive maps, “thought bubbles”.

Fig. 16. The basic idea between p-adic manifold. http://tgdtheory.fi/appfigures/

padmanifold.jpg

There are some problems.

(a) Canonical identification does not respect symmetries since it does not commute with
second pinary cutoff so that only a discrete set of rational points is mapped to their real
counterparts by chart map arithmetic operations which requires pinary cutoff below
which chart map takes rationals to rationals so that commutativity with arithmetics
and symmetries is achieved in finite resolution: above the cutoff canonical identification
is used

(b) Canonical identification is continuous but does not map smooth p-adic surfaces to
smooth real surfaces requiring second pinary cutoff so that only a discrete set of ra-
tional points is mapped to their real counterparts by chart map requiring completion
of the image to smooth preferred extremal of Kähler action so that chart map is not
unique in accordance with finite measurement resolution

(c) Canonical identification vreaks general coordinate invariance of chart map: (cognition-
induced symmetry breaking) minimized if p-adic manifold structure is induced from that
for p-adic imbedding space with chart maps to real imbedding space and assuming pre-
ferred coordinates made possible by isometries of imbedding space: one however obtains
several inequivalent p-adic manifold structures depending on the choice of coordinates:
these cognitive representations are not equivalent.

http://tgdtheory.fi/appfigures/book.jpg
http://tgdtheory.fi/appfigures/book.jpg
http://tgdtheory.fi/appfigures/padmanifold.jpg
http://tgdtheory.fi/appfigures/padmanifold.jpg
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A-7 Hierarchy Of Planck Constants And Dark Matter
Hierarchy

Hierarchy of Planck constants was motivated by the “impossible” quantal effects of ELF
em fields on vertebrate cyclotron energies E = hf = ~ × eB/m are above thermal energy
is possible only if ~ has value much larger than its standard value. Also Nottale’s finding
that planetary orbits migh be understood as Bohr orbits for a gigantic gravitational Planck
constant.

Hierachy of Planck constant would mean that the values of Planck constant come as integer
multiples of ordinary Planck constant: heff = n × h. The particles at magnetic flux tubes
characterized by heff would correspond to dark matter which would be invisible in the sense
that only particle with same value of heff appear in the same vertex of Feynman diagram.

Hierarchy of Planck constants would be due to the non-determism of the Kähler action
predicting huge vacuum degeneracy allowing all space-time surfaces which are sub-manfolds
of any M4 × Y 2, where Y 2 is Lagrangian sub-manifold of CP2. For agiven Y 2 one obtains
new manifolds Y 2 by applying symplectic transformations of CP2.

Non-determinism would mean that the 3-surface at the ends of causal diamond (CD) can be
connected by several space-time surfaces carrying same conserved Kähler charges and having
same values of Kähler action. Conformal symmetries defined by Kac-Moody algebra associ-
ated with the imbedding space isometries could act as gauge transformations and respect the
light-likeness property of partonic orbits at which the signature of the induced metric changes
from Minkowskian to Euclidian (Minkowskianb space-time region transforms to wormhole
contact say). The number of conformal equivalence classes of these surfaces could be finite
number n and define discrete physical degree of freedom and one would have heff = n× h.
This degeneracy would mean “second quantization” for the sheets of n-furcation: not only
one but several sheets can be realized.

This relates also to quantum criticality postulated to be the basic characteristics of the
dynamics of quantum TGD. Quantum criticalities would correspond to an infinite fractal
hierarchy of broken conformal symmetries defined by sub-algebras of conformal algebra with
conformal weights coming as integer multiples of n. This leads also to connections with
quantum criticality and hierarchy of broken conformal symmetries, p-adicity, and negentropic
entanglement which by consistency with standard quantum measurement theory would be
described in terms of density matrix proportional n × n identity matrix and being due to
unitary entanglement coefficients (typical for quantum computing systems).

Formally the situation could be described by regarding space-time surfaces as surfaces in
singular n-fold singular coverings of imbedding space. A stronger assumption would be that
they are expressible as as products of n1 -fold covering of M4 and n2-fold covering of CP2

meaning analogy with multi-sheeted Riemann surfaces and thatM4 coordinates are n1-valued
functions and CP2 coordinates n2 -valued functions of space-time coordinates for n = n1×n2.
These singular coverings of imbedding space form a book like structure with singularities of
the coverings localizable at the boundaries of causal diamonds defining the back of the book
like structure.

Fig. 17. Hierarchy of Planck constants. http://tgdtheory.fi/appfigures/planckhierarchy.
jpg

A-8 Some Notions Relevant To TGD Inspired Conscious-
ness And Quantum Biology

Below some notions relevant to TGD inspired theory of consciousness and quantum biology.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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A-8.1 The Notion Of Magnetic Body

Topological field quantization inspires the notion of field body about which magnetic body
is especially important example and plays key role in TGD inspired quantum biology and
consciousness theory. This is a crucial departure fromt the Maxwellian view. Magnetic body
brings in third level to the description of living system as a system interacting strongly with
environment. Magnetic body would serve as an intentional agent using biological body as
a motor instrument and sensory receptor. EEG would communicated the information from
biological body to magnetic body and Libet’s findings from time delays of consciousness
support this view.

The following pictures illustrate the notion of magnetic body and its dynamics relevant for
quantum biology in TGD Universe.

Fig. 18. Magnetic body associated with dipole field. http://tgdtheory.fi/appfigures/

fluxquant.jpg

Fig. 19. Illustration of the reconnection by magnetic flux loops. http://tgdtheory.fi/

appfigures/reconnect1.jpg

Fig. 20. Illustration of the reconnection by flux tubes connecting pairs of molecules. http:
//tgdtheory.fi/appfigures/reconect2.jpg

Fig. 21. Flux tube dynamics. a) Reconnection making possible magnetic body to “recog-
nize” the presence of another magnetic body, b) braiding, knotting and linking of flux tubes
making possible topological quantum computation, c) contraction of flux tube in phase tran-
sition reducing the value of heff allowing two molecules to find each other in dense molecular
soup. http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg

A-8.2 Number Theoretic Entropy And Negentropic Entanglement

TGD inspired theory of consciousness relies heavily p-Adic norm allows an to define the no-
tion of Shannon entropy for rational probabilities (and even those in algebraic extension of
rationals) by replacing the argument of logarithm of probability with its p-adic norm. The
resulting entropy can be negative and the interpretation is that number theoretic entangle-
ment entropy defined by this formula for the p-adic prime minimizing its value serves as a
measure for conscious information. This negentropy characterizes two-particle system and
has nothing to do with the formal negative negentropy assignable to thermodynamic entropy
characterizing single particle. Negentropy Maximization Principle (NMP) implies that num-
ber theoretic negentropy increases during evolution by quantum jumps. The condition that
NMP is consistent with the standard quantum measurement theory requires that negentropic
entanglement has a density matrix proportional to unit matrix so that in 2-particle case the
entanglement matrix is unitary.

Fig. 22. Schrödinger cat is neither dead or alive. For negentropic entanglement this state
would be stable. http://tgdtheory.fi/appfigures/cat.jpg

A-8.3 Life As Something Residing In The Intersection Of Reality
And P-Adicities

In TGD inspired theory of consciousness p-adic space-time sheets correspond to space-time
correlates for thoughts and intentions. The intersections of real and p-adic preferred ex-
tremals consist of points whose coordinates are rational or belong to some extension of
rational numbers in preferred imbedding space coordinates. They would correspond to the
intersection of reality and various p-adicities representing the “mind stuff” of Descartes.

http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg
http://tgdtheory.fi/appfigures/cat.jpg
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There is temptation to assign life to the intersection of realities and p-adicities. The dis-
cretization of the chart map assigning to real space-time surface its p-adic counterpart would
reflect finite cognitive resolution.

At the level of “world of classical worlds” ( WCW ) the intersection of reality and various
p-adicities would correspond to space-time surfaces (or possibly partonic 2-surfaces) repre-
sentable in terms of rational functions with polynomial coefficients with are rational or belong
to algebraic extension of rationals.

The quantum jump replacing real space-time sheet with p-adic one (vice versa) would corre-
spond to a buildup of cognitive representation (realization of intentional action).

Fig. 23. The quantum jump replacing real space-time surface with corresponding p-adic
manifold can be interpreted as formation of though, cognitive representation. Its rever-
sal would correspond to a transformation of intention to action. http://tgdtheory.fi/

appfigures/padictoreal.jpg

A-8.4 Sharing Of Mental Images

The 3-surfaces serving as correlates for sub-selves can topologically condense to disjoint large
space-time sheets representing selves. These 3-surfaces can also have flux tube connections
and this makes possible entanglement of sub-selves, which unentangled in the resolution
defined by the size of sub-selves. The interpretation for this negentropic entanglement would
be in terms of sharing of mental images. This would mean that contents of consciousness are
not completely private as assumed in neuroscience.

Fig. 24. Sharing of mental images by entanglement of subselves made possible by flux
tube connections between topologically condensed space-time sheets associated with mental
images. http://tgdtheory.fi/appfigures/sharing.jpg

A-8.5 Time Mirror Mechanism

Zero energy ontology (ZEO) is crucial part of both TGD and TGD inspired consciousness
and leads to the understanding of the relationship between geometric time and experience
time and how the arrow of psychological time emerges. One of the basic predictions is the
possibiity of negative energy signals propagating backwards in geometric time and having the
property that entropy basically associated with subjective time grows in reversed direction
of geometric time. Negative energy signals inspire time mirror mechanism (see Fig. http:

//tgdtheory.fi/appfigures/timemirror.jpg or Fig. 24 in the appendix of this book)
providing mechanisms of both memory recall, realization of intentational action initiating
action already in geometric past, and remote metabolism. What happens that negative
energy signal travels to past and is reflected as positive energy signal and returns to the
sender. This process works also in the reverse time direction.

Fig. 25. Zero energy ontology allows time mirror mechanism as a mechanism of mem-
ory recall. Essentially “seeing” in time direction is in question. http://tgdtheory.fi/

appfigures/timemirror.jpg

http://tgdtheory.fi/appfigures/padictoreal.jpg
http://tgdtheory.fi/appfigures/padictoreal.jpg
http://tgdtheory.fi/appfigures/sharing.jpg
http://tgdtheory.fi/appfigures/timemirror.jpg
http://tgdtheory.fi/appfigures/timemirror.jpg
http://tgdtheory.fi/appfigures/timemirror.jpg
http://tgdtheory.fi/appfigures/timemirror.jpg
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A-9 Could N = 4 Super-Conformal Symmetry Be Real-
ized In TGD?

Both N = 4 and possible N = 2 super-conformal symmetry would be symmetries generated
by the solutions of the Kähler-Dirac equation for the second quantized induced spinor fields at
string world sheets. N = 2 SUSY at space-time level would follow from corresponding super-
conformal algebra and would be naturally realized in terms of right handed neutrino and
antineurino. It is however far from obvious whether large N = 4 super-conformal symmetry
makes sense.

(a) One has two conserved fermionic numbers (quarks and leptons) and this allows 4-super
generators but they SUSY generated by right-handed neutrino does not have any coun-
terpart in quark sector so that one can hope only N = 4 SCA broken down to N = 2
realized by adding to quark or lepton state right-handed neutrino or antineutrino.

(b) In the case of N = 2 one has inherent SU(2)− × U(1) symmetry assignable to CP2

naturally. For N = 4 one has inherent SU(2)+×SU(2)−×U(1) Kac-Moody symmetry,
which should correspond to a fundamental partonic super-conformal symmetry in TGD
framework.

The assignment of both SU(2) with CP2 degrees of freedom is highly questionable since
the holonomy group in these degrees of freedom reduces to electro-weak group. The
assignment of the second SU(2) with M4 spin is questionable since M4 has trivial
holonomy group. In zero energy ontology (ZEO) positive and negative energy parts of
zero energy states are assigned to the light-like boundaries of causal diamond (CD) and
having SU(2) as holonomy group. Could one assign the second SU(2) with it? One
does not however have induced spinor connection in M4 degrees of freedom that this
identification is questionable.

The conservative conclusion would be that one has N = ∈ SCA with quarks and leptons
defining separate irreducible representations of SCA. Despite this the N = 4 alternative
deserves a separate study.

Needless to say, a lot remains to be understood. One of the problems is that my under-
standing of N = 4 super-conformal symmetry at technical level is rather modest. There are
also profound differences between these two kinds of super conformal symmetries. In TGD
framework super generators carry quark or lepton number, super-symplectic and super Kac-
Moody generators are identified as Hamiltonians rather than vector fields, and symplectic
group is infinite-dimensional whereas the Lie groups associated with Kac-Moody algebras
are finite-dimensional. On the other hand, finite measurement resolution implies discretiza-
tion and cutoff in conformal weight. Therefore the naive attempt to re-interpret results of
standard super-conformal symmetry to TGD framework might lead to erratic conclusions.

N > 0 super-conformal algebras contain besides super Virasoro generators also other types
of generators and this raises the question whether it might be possible to find an algebra
coding the basic quantum numbers of the induced spinor fields.

There are several variants of N = 4 SCAs and they correspond to the Kac-Moody algebras
SU(2) (small SCA), SU(2) × SU(2) × U(1) (large SCA) and SU(2) × U(1)4. Rasmussen
has found also a fourth variant based on SU(2)× U(1) Kac-Moody algebra [A70]. It seems
that only minimal and maximal N = 4 SCAs can represent realistic options. The reduction
to almost topological string theory in critical phase is probably lost for other than minimal
SCA but could result as an appropriate limit for other variants.

A-9.1 Large N = 4 SCA

Large N = 4 SCA is described in the following in detail since it might be a natural algebra
in TGD framework.
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The structure of large N = 4 SCA algebra

A concise discussion of this symmetry with explicit expressions of commutation and anti-
commutation relations can be found in [A70]. The representations of SCA are characterized
by three central extension parameters for Kac-Moody algebras but only two of them are
independent and given by

k± ≡ k(SU(2)±) ,

k1 ≡ k(U(1)) = k+ + k− . (A-9.1)

The central extension parameter c is given as

c =
6k+k−
k+ + k−

. (A-9.2)

and is rational valued as required.

A much studied N = 4 SCA corresponds to the special case

k− = 1 , k+ = k + 1 , k1 = k + 2 ,

c =
6(k + 1)

k + 2
. (A-9.3)

c = 0 would correspond to k+ = 0, k− = 1, k1 = 1. For k+ > 0 one has k1 = k+ + k− 6= k+.

About unitary representations of large N = 4 SCA

The unitary representations of large N = 4 SCA are briefly discussed in [A54]. The rep-
resentations are labeled by the ground state conformal weigh h, SU(2) spins l+, l−, and
U(1) charge u. Besides the inherent Kac-Moody algebra there is also “external” Kac-Moody
group G involved and could correspond in TGD framework to the symplectic algebra associ-
ated with δH± = δM4

± × CP2 or to Kac-Moody group respecting light-likeness of light-like
3-surfaces. External Kac-Moody algebra can be also assigned with color degrees of freedom.

Unitarity constraints apply completely generally irrespective of G so that one can apply them
also in TGD framework. There are two kinds of unitary representations.

(a) Generic/long/massive representations which are generated from vacuum state as usual.
In this case there are no null vectors.

(b) Short or massless representations have a null vector. The expression for the conformal
weigt hshort of the null vector reads in terms of l+, l− and k+, k− as

hshort =
1

k+ + k−
(k−l+ + k+l− + (l+ − l−)2 + u2) . (A-9.4)

Unitarity demands that both short and long representations lie at or above h ≥ hshort
and that spins lie in the range l± = 0, 1/2, ..., (k± − 1)/2.

(c) Interesting examples of N = 4 SCA are provided by WZW coset models W × U(1),
where W is WZW model associated with a quaternionic (Wolf) space. Examples based
on classical groups areW = G/H = SU(n)/SU(n−1)×U(1), SO(n)/SO(n−4)×SU(2),
and Sp(2n)/Sp(2n− 2). For n = 3 first series gives CP2 whereas second series gives for
N = 4 SO(4)/SU(2) = SU(2). In this case one has k+ = κ+ 1, and k− = ĉG, where κ
is the level of the bosonic current algebra for G and ĉG is its dual Coxeter number.

WZW coset modelW = G/H = CP2 is of special interest in TGD framework and could
allow to bring in the color Kac-Moody algebra. The U(1) algebra might be however
problematic since the standard model U(1) is already contained in the SCA.
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A-9.2 Overall View About How Different N = 4 SCAs Could Emerge
In TGD Framework

The basic idea is simple N = 4 fermion states obtained as different combinations of spin and
isospin for given H-chirality of imbedding space spinor correspond to N = 4 multiplet. In the
case of leptons the holonomy group of S2×CP2 for given spinor chirality is SU(2)R×SU(2)R
or SU(2)L × SU(2)R depending on M4 chirality of the spinor. In case of quark one has
SU(2)L × SU(2)L or SU(2)R × SU(2)R. The coupling to Kähler gauge potential adds to
the group U(1) factor so that large N = 4 SCA is obtained. For covariantly constant right
handed neutrino electro-weak part of holonomy group drops away as also U(1) factor so that
one obtains SU(2)L or SU(2)R and small N = 4 SCA.

How maximal N = 4 SCA could emerge in TGD framework?

Consider the Kac-Moody algebra SU(2)×SU(2)×U(1) associated with the maximal N = 4
SCA. Besides Kac-Moody currents it contains 4 spin 1/2 fermionic generators having an
identification as quantum counterparts of leptonic spinor fields. The interpretation of the
first SU(2) is as rotations as rotations leaving invariant the sphere S2 ⊂ δM4

±.

Here it is essential to notice that the holonomy of light-cone boundary is non-trivial unlike
the holonomy of M4. In zero energy ontology (ZEO) assigning positive and negative energy
parts of zero energy states to the boundaries of causal diamond (CD) this holonomy group
would emerge naturally.

U(2) has interpretation as electro-weak gauge group and as maximal linearly realized sub-
group of SU(3). This algebra acts naturally as symmetries of the 8-component spinors
representing super partners of quaternions.

The algebra involves the integer value central extension parameters k+ and k− associated
with the two SU(2) algebras as parameters. The value of U(1) central extension parameter
k is given by k = k+ + k−. The value of central extension parameter c is given by

c = 6k−
x

1 + x
< 6k+ , x =

k+

k−
.

c can have all non-negative rational values m/n for positive values of k± given by k+ =
rm, k− = (6nr − 1)m. Unitarity might pose further restrictions on the values of c. At the
limit k− = k, k+ → ∞ the algebra reduces to the minimal N = 4 SCA with c = 6k since
the contributions from the second SU(2) and U(1) to super Virasoro currents vanish at this
limit.

How small N = 4 SCA could emerge in TGD framework?

Consider the TGD based interpretation of the small N = 4 SCA.

(a) The group SU(2) associated with the small N = 4 SCA and acting as rotations of
covariantly constant right-handed neutrino spinors allows also an interpretation as a
group SO(3) leaving invariant the sphere S2 of the light-cone boundary identified as
rM = m0=constant surface defining generalized Kähler and symplectic structures in
δM4
±. Electro-weak degrees of freedom are obviously completely frozen so that SU(2)−×

U1 factor indeed drops out.

(b) The choice of the preferred coordinate system should have a physical justification. The
interpretation of SO(3) as the isotropy group of the rest system defined by the total
four-momentum assignable to the 3-surface containing partonic 2-surfaces is supported
by the quantum classical correspondence. The subgroup U(1) of SU(2) acts naturally
as rotations around the axis defined by the light ray from the tip of M4

± orthogonal
to S2. For c = 0, k = 0 case these groups define local gauge symmetries. In the more
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general case local gauge invariance is broken whereas global invariance remains as it
should.

In M2 ×E2 decomposition E2 corresponds to the tangent space of S2 at a given point
and M2 to the plane orthogonal to it. The natural assumption is that the right handed
neutrino spinor is annihilated by the momentum space Dirac operator corresponding to
the light-like momentum defining M2 × E2 decomposition.

(c) For covariantly constant right handed neutrinos the dynamics would be essentially that
defined by a topological quantum field theory and this kind of almost trivial dynamics
is indeed associated with small N = 4 SCA.

1. Why N = 4 SUSY

N = 2 super-conformal invariance has been claimed to imply the vanishing of all amplitudes
with more than 3 external legs for closed critical N = 2 strings having c = 6, k = 1 which
is proposed to correspond to n → ∞ limit [A39, A73]. Only the partition function and
2 ≤ N ≤ 3 scattering amplitudes would be non-vanishing. The argument of [A39] relies on
the imbedding of N = 2 super-conformal field theory to N = 4 topological string theory
whereas in [A73] the Ward identities for additional unbroken symmetries associated with
the chiral ring accompanying N = 2 super-symmetry [A60] are utilized. In fact, N = 4
topological string theory allows also imbeddings of N = 1 super strings [A39].

The properties of c = 6 critical theory allowing only integral valued U(1) charges and fermion
numbers would conform nicely with what we know about the perturbative electro-weak
physics of leptons and gauge bosons. c = 1, k = 1 sector with N = 2 super-conformal
symmetry would involve genuinely stringy physics since all N-point functions would be non-
vanishing and the earlier hypothesis that strong interactions can be identified as electro-weak
interactions which have become strong inspired by HO-H duality [K53] could find a concrete
realization.

In c = 6 phase N = 2-vertices the loop corrections coming from the presence of higher
lepton genera in amplitude could be interpreted as topological mixing forced by unitarity
implying in turn leptonic CKM mixing for leptons. The non-triviality of 3-point amplitudes
would in turn be enough to have a stringy description of particle number changing reactions,
such as single photon brehmstrahlung. The amplitude for the emission of more than one
brehmstrahlung photons from a given lepton would vanish. Obviously the connection with
quantum field theory picture would be extremely tight and imbeddability to a topological
N = 4 quantum field theory could make the theory to a high degree exactly solvable.

2. Objections

There are also several reasons for why one must take the idea about the usefulness of c = 6
super-conformal strings from the point of view of TGD with an extreme caution.

(a) Stringy diagrams have quite different interpretation in TGD framework. The target
space for these theories has dimension four and metric signature (2, 2) or (0, 4) and
the vanishing theorems hold only for (2, 2) signature. In lepton sector one might regard
the covariantly constant complex right-handed neutrino spinors as generators of N = 2
super-symmetries but in quark sector there are no super-symmetries.

(b) The spectrum looks unrealistic: all degrees of freedom are eliminated by symmetries
except single massless scalar field so that one can wonder what is achieved by introducing
the extremely heavy computational machinery of string theories. This argument relies
on the assumption that time-like modes correspond to negative norm so that the target
space reduces effectively to a 2-dimensional Euclidian sub-space E2 so that only the
vibrations in directions orthogonal to the string in E2 remain. The situation changes if
one assigns negative conformal weights and negative energies to the time like excitations.
In the generalized coset representation used to construct physical states this is indeed
assumed.
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(c) The central charge has only values c = 6k, where k is the central extension parameter of
SU(2) algebra [A32] so that it seems impossible to realize the genuinely rational values of
c which should correspond to the series of Jones inclusions. One manner to circumvent
the problem would be the reduction to N = 2 super-conformal symmetry.

(d) SU(2) Kac-Moody algebra allows to introduce only 2-component spinors naturally whereas
super-quaternions allow quantum counterparts of 8-component spinors.

The N = 2 super-conformal algebra automatically extends to the so called small N = 4
algebra with four super-generators G± and their conjugates [A39]. In TGD framework G±
degeneracy corresponds to the two spin directions of the covariantly constant right handed
neutrinos and the conjugate ofG± is obtained by charge conjugation of right handed neutrino.
From these generators one can build up a right-handed SU(2) algebra.

Hence the SU(2) Kac-Moody of the small N = 4 algebra corresponds to the three imaginary
quaternionic units and the U(1) of N = 2 algebra to ordinary imaginary unit. Energy
momentum tensor T and SU(2) generators would correspond to quaternionic units. G± to
their super counterparts and their conjugates would define their “square roots”.

What about N = 4 SCA with SU(2)× U(1) Kac-Moody algebra?

Rasmussen [A70] has discovered an N = 4 super-conformal algebra containing besides Vira-
soro generators and 4 Super-Virasoro generators SU(2)×U(1) Kac-Moody algebra and two
spin 1/2 fermions and a scalar.

The first identification of SU(2) × U(1) is as electro-weak algebra for a given spin state.
Second identification is as the algebra defined by rotation group and electromagnetic or
Kähler charge acting on given charge state of fermion and naturally resulting in electro-weak
symmetry breaking. Scalar might relate to Higgs field which is M4 scalar but CP2 vector.

There are actually two versions about Rasmussen’s article [A70]: in the first version the
author talks about SU(2)× U(1) Kac-Moody algebra and in the second one about SL(2)×
U(1) Kac-Moody algebra.

.9.3 How Large N = 4 SCA Could Emerge In Quantum TGD?

The formulation of TGD as an almost topological super-conformal QFT with light-like partonic
3-surfaces identified as basic dynamical objects has increased considerably the understanding of
super-conformal symmetries and their breaking in TGD framework. N = 4 super-conformal alge-
bra would correspond to the maximal algebra with SU(2)× U(2) Kac-Moody algebra as inherent
fermionic Kac-Moody algebra.

Concerning the interpretation the first guess would be that SU(2)+ and SU(2)− correspond
to vectorial spinor rotations in M4 and CP2 and U(1) to Kähler charge or electromagnetic charge.
For given imbedding space chirality (lepton/quark) and M4 chirality SU(2) groups are completely
fixed.

There are many kinds of fermionic super generators and the role of these algebras is not yet
well-understood.

Well-definedness of electromagnetic charge implies stringiness

There is also a new element not present in the original speculations. The condition that em
charge is well defined for spinor modes implies that the space-time region in which spinor mode is
non-vanishing has 2-D CP2 projection such that the induced W boson fields are vanishing. The
vanishing of classical Z0 field can be poses as additional condition - at least in scales above weak
scale. In the generic case this requires that the spinor mode is restricted to 2-D surface: string
world sheet or possibly also partonic 2-surface. This implies that TGD reduces to string model
in fermionic sector. Even for preferred extremals with 2-D projecting the modes are expected to
allow restriction to 2-surfaces. This localization is possible only for Kähler-Dirac action.
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Identification of super generators associated with WCW metric

The definition of the metric of “world of classical worlds” ( WCW ) is as anticommutators of WCW
gamma matrices carrying fermion number and in one-one correspondence with the infinitesimal
isometries of WCW . WCW gamma matrices can be interpreted as supergenerators but do not seem
to be identifiable as super counterparts of Noether charges. Fermionic generators can be divided
into those associated with symplectic transformations, isometries, or symplectic isometries.

1. Generators of the symplectic algebra of δM4
± ×CP2 defined in terms of covariantly constant

right-handed neutrino and second quantized induced spinor field. The form of current is
νRj

k
AγkΨ and only leptonic Ψ contributes.

2. Fermionic generators defined in terms of all spinor modes for the symplectic isometries by the
same formulas as in the case of symplectic algebra. This algebra is Kac-Moody type algebra
with radial light-like coordinate rM of δM4

± playing the role of complex coordinate. There is
conformal weight associated with rM but also with the fermionic modes since the fermions
are localized to 2-D string world sheets and labelle by integer valued conformal weight. The
form of the fermionic current is Ψnj

k
AγkΨ and both quark-like anbd leptonic Ψ contribute.

3. One can also consider fermionic generators assignable as a Noether super charges to the
isometries of δM4

± = S2 × R+, which are in 1-1 correspondence with the conformal trans-
formations of S2. The conformal scaling of S2 is compensated by the S2 dependent scaling
of the light-like radial coordinate rM . It is not completely clear whether these should be
included. If not, it would be a slight dis-appointment since the metric 2-dimensionality of
the δM4

± makes 4-D Minkowski space unique. Same applies to 4-D space-time since light-like
3-surfaces representing partonic 2-surfaces allow also 2-D conformal symmetries as isometries.

Supercharges accompanying conserved fermion numbers

There are also fermionic super-charges defined as super-currents serving as super counter-parts of
conserved fermion number in quark-like and leptonic sector.

1. Assume that the Kähler-Dirac operator decomposition D = D(Y 2) + D(X2) reflecting the
dual slicings of space-time surfaces to string world sheets Y 2 and partonic 2-surfaces X2. If
the conditions guaranteing well-defined em charge hold true, when can forget the presence
of X2 and the parameters λk labelling spinor modes in these degrees of freedom. The highly
non-trivial consistency condition possible for Kähler-Dirac action is that D(X2) vanishes at
string world sheets and thus allows the localization.

2. Y 1 represents light-like direction and also string connecting braid strands at same component
of X3

l or at two different components of X3
l . Kähler-Dirac equation implies that the charges

∫
X3
l

ΨnΓ̂vΨ (.9.5)

define conserved super charges in time direction associated with Y 1 and carrying quark or
lepton number. Here Ψn corresponds to n: th conformal excitation of Ψ and has conformal
weight n (plus possible ground state conformal weight). In the case of ordinary Dirac equation
essentially fermionic oscillator operators would be in question.

3. The zero modes of D(X2) define a sub-algebra which is a good candidate for representing
super gauge symmetries. If localizations to 2-D string world sheets takes place, only these
transformations are present.

In particular, covariantly constant right handed neutrinos define this kind of super gauge
super-symmetries. N = 2 super-conformal symmetry would correspond in TGD framework to
covariantly constant complex right handed neutrino spinors with two spin directions forming
a right handed doublet and would be exact and act only in the leptonic sector relating WCW
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Hamiltonians and super-Hamiltonians. This algebra extends to the so called small N = 4
algebra if one introduces the conjugates of the right handed neutrino spinors. This symmetry
is exact if only leptonic chirality is present in theory or if free quarks carry leptonic charges.

A physically attractive realization of the braids - and more generally- of slicings of space-
time surface by 3-surfaces and string world sheets, is discussed in [K25] by starting from the
observation that TGD defines an almost topological QFT of braids, braid cobordisms, and 2-
knots. The boundaries of the string world sheets at the space-like 3-surfaces at boundaries of CDs
and wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A50] to TGD framework. It leads to the
identification of slicing by three-surfaces as that induced by the inverse images of r = constant
surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the role of Higgs field
vacuum expectation value in gauge theories. r = ∞ surfaces correspond to geodesic spheres and
define analogs of fractionally magnetically charged Dirac strings identifiable as preferred string
world sheets. The union of these sheets labelled by subgroups U(2) ⊂ SU(3) would define the
slicing of space-time surface by string world sheets. The choice of U(2) relates directly to the
choice of quantization axes for color quantum numbers characterizing CD and would have the
choice of braids and string world sheets as a space-time correlate.

Identification of Kac-Moody generators

Consider next the generators of inherent Kac-Moody algebras for SU(2)×SU(2)×U(1) and freely
chosen group G.

1. Generators of Kac-Moody algebra associated with isometries correspond Noether currents
associated with the infinitesimal action of Kac-Moody algebra to the induced spinor fields.
Local SO(3)× SU(3) algebra is in question and excitations should have dependence on the
coordinate u in direction of Y 1. The most natural guess is that this algebra corresponds to
the Kac-Moody algebra for group G.

2. The natural candidate for the inherent Kac-Moody algebra is the holonomy algebra associated
with S2 × CP2. This algebra should correspond to a broken symmetry.

The generalized eigen modes of D(X2) labeled by λk should from the representation space
in this case: if localization to 2-D string world sheets occurs, this space is 1-D. If Kac-Moody
symmetry were not broken these representations would correspond a degeneracy associated
with given value of λk. Electro-weak symmetry breaking is however present and coded already
into the geometry of CP2. Also SO(3) symmetry is broken due to the presence of classical
electro-weak magnetic fields. The broken symmetries could be formulated in terms of initial
values of generalized eigen modes at X2 defining either end of X3

l . One can rotate these
initial values by spinor rotations. Symmetry breaking would mean that the modes obtained
by a rotation by angle φ = π from a mode with fixed eigenvalue λk have different eigenvalues.
Four states would be obtained for a given imbedding space chirality (quark or lepton). One
expects that an analog of cyclotron spectrum with cutoff results with each cyclotron state
split to four states with different eigenvalues λk. Kac-Moody generators could be expressed
as matrices acting in the space spanned by the eigen modes.

Consistency with p-adic mass calculations

The consistency with p-adic mass calculations provides a strong guide line in attempts to interpret
N = 4 SCA. The basis ideas of p-adic mass calculations are following.

1. Fermionic partons move in color partial waves in their cm degrees of freedom. This gives to
conformal weight a vacuum contribution equal to the CP2 contribution to mass squared. The
contribution depends on electro-weak isospin and equals (hc(U), hc(D)) = (2, 3) for quarks
and one has (hc(ν), hc(L)) = (1, 2).
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2. The ground state can correspond also to non-negative value of L0 for SKMV algebra, which
gives rise to a thermal degeneracy of massless states. p-Adic mass calculations require
(hgr(U), hgr(D)) = (1, 0) and (hgr(ν), hgr(L)) = (2, 1) so that the super-symplectic oper-
ator Oc screening the anomalous color charge has conformal weight hc = −3 for all fermions.

The simplest interpretation is that the free parameter h appearing in the representations of
the SCA corresponds to the conformal weight due to the color partial wave so that the correlation
with electromagnetic charge would indeed emerge but from the correlation of color partial waves
and electro-weak quantum numbers.

The requirement that ground states are null states with respect to the SCV associated with
the radial light-like coordinate of δM4

± gives an additional consistency condition and hc = −3
should satisfy this condition. p-Adic mass calculations do not pose non-trivial conditions on h for
option 1) if one makes the identification u = Qem since one has hshort < 1 for all values of k+ +k−.
Therefore both options 1) and 2) can be considered.

About symmetry breaking for large N = 4 SCA

Partonic formulation predicts that large N = 4 SCA is a broken symmetry, and the first guess
is that breaking occurs via several steps. First a “small” N = 4 SCA with Kac-Moody group
SU(2)+ × U(1), where SU(2)+ corresponds to ordinary rotations on spinor with fixed helicity,
would result in electro-weak symmetry breaking. The next step in breaking of the spin symmetry
would lead to N = 2 SCA and the final step to N = 0 SCA. Several symmetry breaking scenarios
are possible.

1. The interpretation of SU(2)+ in terms of right- or left- handed spin rotations and U(1) as
electromagnetic gauge group conforms with the general vision about electro-weak symme-
try breaking in non-stringy phase. The interpretation certainly makes sense for covariantly
constant right handed neutrinos for which spin direction is free. For left handed charged
electro-weak bosons the action of right-handed spinor rotations is trivial so that the inter-
pretation would make sense also now.

2. The next step in the symmetry breaking sequence would be N = 2 SCA with electromagnetic
Kac-Moody algebra as inherent Kac-Moody algebra U(1).

.9.4 Relationship To Super String Models, M-theory And WZW Model

In hope of achieving more precise understanding one can try to understand the relationship of
N = 4 super conformal symmetry as it might appear in TGD to super strings, M theory and
WZW model.

Relationship to super-strings and M-theory

The (4, 4) signature characterizing N = 4 SCA topological field theory is not a problem since
in TGD framework the target space becomes a fictive concept defined by the Cartan algebra.
Both M4 × CP2 decomposition of the imbedding space and space-time dimension are crucial for
the 2 + 2 + 2 + 2 structure of the Cartan algebra, which together with the notions of WCW
and generalized coset representation formed from super Kac-Moody and super-symplectic algebras
guarantees N = 4 super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M2 factor of M4 = M2 × E2

the critical dimension becomes D = 10 andincluding the radial degree of light-cone boundary the
critical dimension becomes D = 11 of M-theory. Hence the fictive target space associated with
the vertex operator construction corresponds to a flat background of super-string theory and flat
background of M-theory with one light-like direction. From TGD point view the difficulties of
these approaches are due to the un-necessary assumption that the fictive target space defined by
the Cartan algebra corresponds to the physical imbedding space. The flatness of the fictive target
space forces to introduce the notion of spontaneous compactification and dynamical imbedding
space and this in turn leads to the notion of landscape.
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Consistency with critical dimension of super-string models and M-theory

Mass squared is identified as the conformal weight of the positive energy component of the state
rather than as a contribution to the conformal weight canceling the total conformal weight. Also
the Lorentz invariance of the p-adic thermodynamics requires this. As a consequence, the pseudo
4-momentum p assignable to M4 super Kac-Moody algebra could be always light-like or even
tachyonic.

Super-symplectic algebra would generate the negative conformal weight of the ground state
required by the p-adic mass calculations and super-Kac Moody algebra would generate the non-
negative net conformal weight identified as mass squared. In this interpretation SKM and SC
degrees of freedom are independent and correspond to opposite signs for conformal weights.

The construction is consistent with p-adic mass calculations [K28, K33] and the critical
dimension of super-string models.

1. Five Super Virasoro sectors are predicted as required by the p-adic mass calculations (the
predicted mass spectrum depends only on the number of tensor factors). Super-symplectic
algebra gives Can(CP2) and Can(S2). In SKM sector one has SU(2)L, U(1), local SU(3),
SO(2) and E2 orthogonal to strong world sheets so that 5 sectors indeed result.

2. The Cartan algebras involved of SC is 2-dimensional and that of SKM is 7-dimensional so
that 10-dimensional Cartan algebra results. This means that vertex operator construction
implies generation of 10-dimensional target space which in super-string framework would be
identified as imbedding space. Note however that these dimensions have Euclidian signature
unlike in superstring models. SKM algebra allows also the option SO(3) × E(3) in M4

degrees of freedom: this would mean that SKM Cartan algebra is 10-dimensional and the
whole algebra 11-dimensional.

N = 4 super-conformal symmetry and WZW models

One can question the naive idea that the basic structure Gint = SU(2)×U(2) structure of N = 4
SCA generalizes as such to the recent framework.

1. N = 4 SCA is originally associated with Majorana spinors. N = 4 algebra can be trans-
formed from a real form to complex form with 2 complex fermions and their conjugates
corresponding to complex H-spinors of definite chirality having spin and weak isospin. At
least at formal level the complexification of N = 4 SCA algebra seems to make sense and
might be interpreted as a direct sum of two N = 4 SCAs and complexified quaternions.
Central charge would remain c = 6k+k−/(k+ +k−) if naive complexification works. The fact
that Kac-Moody algebra of spinor rotations is Gint = SO(4) × SO(4) × U(1) is naturally
assignable naturally to spinors of H suggests that it represents a natural generalization of
SO(4)× U(1) algebra to inherent Kac-Moody algebra.

2. One might wonder whether the complex form of N = 4 algebra could result from N = 8
SCA by posing the associativity condition.

3. The article of Gunaydin [A76] about the representations of N = 4 super-conformal algebras
realized in terms of Goddard-Kent-Olive construction and using gauged Wess-Zumino-Witten
models forces however to question the straightforward translation of results about N = 4
SCA to TGD framework and it must be admitted that the situation is something confusing.
Of course, there is no deep reason to believe that WZW models are appropriate in TGD
framework.

(a) Gauged WZW models are constructed using super-space formalism which is not natural
in TGD framework. The coset space CP2×U(2) where U(2), could be identified as sub-
algebra of color algebra or possibly as electro-weak algebra provides one such realization.
Also the complexifixation of the N = 4 algebra is something new.

(b) The representation involves 5-grading by the values of color isospin for SU(3) and makes
sense as a coset space realization for G/H × U(1) if H is chosen in such a manner that
G/H×SU(2) is quaternionic space. For SU(3) one has H = U(1) identifiable in terms of
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color hyper charge CP2 is indeed quaternionic space. For SU(2) 5-grading degenerates
since spin 1/2 Lie-algebra generators are absent and H is trivial group. In M4 degrees
of gauged WZW model would be trivial.

(c) N = 4 SCA results as an extension of N = 2 SCA using so called Freudenthal triple
system. N = 2 SCA has realization in terms of G/H × U(1) gauged WZW theory
whereas the extension to N = 4 SCA gives G×U(1)/H gauged WZW model: note that
SU(3)×U(1)/H does not have an obvious interpretation in TGD framework. The Kac-
Moody central extension parameters satisfy the constraint k+ = k + 1 and k− = ĝ − 1,
where k is the central extension parameter for G. For G = SU(3) one obtains k− = 1
and c = 6(k + 1)/(k + 2). H = U(1) corresponding to color hyper-charge and U(1) for
N = 2 algebra corresponds to color isospin. The group U(1) appearing in SU(3)×U(1)
might be interpreted in terms of fermion number or Kähler charge.

(d) What looks somewhat puzzling is that the generators of second SU(2) algebra carry
fermion number F = 4I3. Note however that the sigma matrices of WCW with fermion
number ±2 are non-vanishing since corresponding gamma matrices anti-commute. Sec-
ond strange feature is that fermionic generators correspond to 3+3 super-coordinates of
the flag-manifold SU(3)/U(1)×U(1) plus 2 fermions and their conjugates. Perhaps the
coset realization in CP2 degrees of freedom is not appropriate in TGD framework and
that one should work directly with the realization based on second quantized induced
spinor fields.

.9.5 The Interpretation Of The Critical Dimension D = 4 And The Ob-
jection Related To The Signature Of The Space-Time Metric

The first task is to show that D = 4 (D = 8) as critical dimension of target space for N = 2
(N = 4) super-conformal symmetry makes sense in TGD framework and that the signature (2, 2)
((4, 4) of the metric of the target space is not a fatal flaw. The lifting of TGD to twistor space
seems the most promising manner to bring in (2, 2) signature. One must of course remember that
super-conformal symmetry in TGD sense differs from that in the standard sense so that one must
be very cautious with comparisons at this level.

Space-time as a target space for partonic string world sheets?

Since partonic 2-surfaces are sub-manifolds of 4-D space-time surface, it would be natural to
interpret space-time surface as the target space for N = 2 super-conformal string theory so that
space-time dimension would find a natural explanation. Different Bohr orbit like solutions of the
classical field equations could be the TGD counterpart for the dynamic target space metric of M-
theory. Since partonic two-surfaces belong to 3-surface X3

V , the correlations caused by the vacuum
functional would imply non-trivial scattering amplitudes with CP2 type extremals as pieces of X3

V

providing the correlate for virtual particles. Hence the theory could be physically realistic in TGD
framework and would conform with perturbative character for the interactions of leptons. N = 2
super-conformal theory would of course not describe everything. This algebra seems to be still too
small and the question remains how the functional integral over the configuration space degrees of
freedom is carried out. It will be found that N = 4 super-conformal algebra results neatly when
super Kac-Moody and super-symplectic degrees of freedom are combined.

The interpretation of the critical signature

The basic problem with this interpretation is that the signature of the induced metric cannot be
(2, 2) which is essential for obtaining the cancelation for N = 2 SCA imbedded to N = 4 SCA
with critical dimension D = 8 and signature (4, 4). When super-generators carry fermion number
and do not reduce to ordinary gamma matrices for vanishing conformal weights, there is no need
to pose the condition of the metric signature. The (4, 4) signature of the target space metric is
not so serious limitation as it looks if one is ready to consider the target space appearing in the
calculation of N-point functions as a fictive notion.

The resolution of the problems relies on two observations.
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1. The super Kac-Moody and super-symplectic Cartan algebras have dimension D = 2 in both
M4 and CP2 degrees of freedom giving total effective dimension D = 8.

2. The generalized coset construction to be discussed in the sequel allows to assign opposite
signatures of metric to super Kac-Moody Cartan algebra and corresponding super-symplectic
Cartan algebra so that the desired signature (4, 4) results. Altogether one has 8-D effective
target space with signature (4, 4) characterizing N = 4 super-conformal topological strings.
Hence the number of physical degrees of freedom is Dphys = 8 as in super-string theory.
Including the non-physical M2 degrees of freedom, one has critical dimension D = 10. If also
the radial degree of freedom associated with δM4

± is taken into account, one obtains D = 11
as in M-theory.

Small N = 4 SCA as sub-algebra of N = 8 SCA in TGD framework?

A possible interpretation of the small N = 4 super-conformal algebra would be quaternionic sub-
SCA of the non-associative octonionic SCA. The N = 4 algebra associated with a fixed fermionic
chirality would represent the fermionic counterpart for the restriction to the hyper-quaternionic
sub-manifold of HO and N = 2 algebra in the further restriction to commutative sub-manifold
of HO so that this algebra would naturally appear at the parton level. Super-affine version of
the quaternion algebra can be constructed straightforwardly as a special case of corresponding
octonionic algebra [A31]. The construction implies 4 fermion spin doublets corresponding and unit
quaternion naturally corresponds to right handed neutrino spin doublet. The interpretation is as
leptonic spinor fields appearing in Sugawara representation of Super Virasoro algebra.

A possible octonionic generalization of Super Virasoro algebra would involve 4 doublets G
i)
±,

i = 1, ..., 4 of super-generators and their conjugates having interpretation as SO(8) spinor and its

its conjugate. G
i)
± and their conjugates G

i)

± would anti-commute to SO(8) vector octet having an
interpretation as a super-affine algebra defined by the octonionic units: this would conform nicely
with SO(8) triality.

One could say that the energy momentum tensor T extends to an octonionic energy mo-
mentum tensor T as real component and affine generators as imaginary components: the real part
would have conformal weight h = 2 and imaginary parts conformal weight h = 1 in the proposed
constructions reflecting the special role of real numbers. The ordinary gamma matrices appearing
in the expression of G in Sugawara construction should be represented by units of complexified
octonions to achieve non-associativity. This construction would differ from that of [A31] in that
G fields would define an SO(8) octet in the proposed construction: HO-H duality would however
suggest that these constructions are equivalent.

One can consider two possible interpretations for G
i)
± and corresponding analogs of super

Kac-Moody generators in TGD framework.

1. Leptonic right handed neutrino spinors correspond to G
i)
± generating quaternionic units and

quark like left-handed neutrino spinors with leptonic charges to the remaining non-associative
octonionic units. The interpretation in terms of so called mirror symmetry would be natural.
What is is clear the direct sum of N = 4 SCAs corresponding to the Kac-Moody group
SU(2) × SU(2) would be exact symmetry if free quarks and leptons carry integer charges.
One might however hope of getting also N = 8 super-conformal algebra. The problem with
this interpretation is that SO(8) transformations would in general mix states with different
fermion numbers. The only way out would be the allowance of mixtures of right-handed
neutrinos of both chiralities and also of their conjugates which looks an ugly option.

In any case, the well-definedness of the fermion number would require the restriction toN = 4
algebra. Obviously this restriction would be a super-symmetric version for the restriction to
4-D quaternionic- or co-quaternionic sub-manifold of H.

2. One can ask whether G
i)
± and their conjugates could be interpreted as components of leptonic

H-spinor field. This would give 4 doublets plus their conjugates and mean N = 16 super-
symmetry by generalizing the interpretation of N = 4 super-symmetry. In this case fermion
number conservation would not forbid the realization of SO(8) rotations. Super-conformal
variant of complexified octonionic algebra obtained by adding a commuting imaginary unit



would result. This option cannot be excluded since in TGD framework complexified octo-
nions and quaternions play a key role. The fact that only right handed neutrinos generate

associative super-symmetries would mean that the remaining components G
i)
± and their con-

jugates could be used to construct physical states. N = 8 super-symmetry would thus break
down to small N = 4 symmetry for purely number theoretic reasons and the geometry of
CP2 would reflect this breaking.

The objection is that the remaining fermion doublets do not allow covariantly constant modes
at the level of imbedding space. They could however allow these modes as induced H-spinors
in some special cases which is however not enough and this option can be considered only
if one accepts breaking of the super-conformal symmetry from beginning. The conclusion
is that the N = 8 or even N = 16 algebra might appear as a spectrum generating algebra
allowing elegant coding of the primary fermionic fields of the theory.

.9.6 How Could Exotic Kac-Moody Algebras Emerge From Jones In-
clusions?

Also other Kac-Moody algebras than those associated with the basic symmetries of quantum TGD
could emerge from Jones inclusions. The interpretation would be the TGD is able to mimic various
conformal field theories. The discussion is restricted to Jones inclusions defined by discrete groups
acting in CP2 degrees of freedom in TGD framework but the generalization to the case of M4

degrees of freedom is straightforward.

M : N = β < 4 case

The first situation corresponds to M : N = β < 4 for which a finite subgroup G ⊂ SU(2)L
defines Jones inclusion NG ⊂MG, with G commuting with the Clifford algebra elements creating
physical states. N corresponds to a subalgebra of the entire infinite-dimensional Clifford algebra
Cl for which one 8-D Clifford algebra factor identifiable as Clifford algebra of the imbedding space
is replaced with Clifford algebra of M4.

Each M4 point corresponds to G orbit in CP2 and the order of maximal cyclic subgroup
of G defines the integer n defining the quantum phase q = exp(iπ/n). In this case the points
in the covering give rise to a representation of G defining multiplets for Kac-Moody group Ĝ
assignable to G via the ADE diagram characterizing G using McKay correspondence. Partonic
boundary component defines the Riemann surface in which the conformal field theory with Kac
Moody symmetry is defined. The formula n = k + hĜ would determine the value of Kac-Moody
central extension parameter k. The singletness of fermionic oscillator operators with respect to G
would be compensated by the emergence of representations of G realized in the covering of M4.

M : N = β = 4 case

Second situation corresponds to β = 4. In this case the inclusions are classified by extended
ADE diagrams assignable to Kac Moody algebras. The interpretation n = k + hG assigning the

quantum phase to SU(2) Kac Moody algebra corresponds to the Jones inclusion N Ĝ ⊂ MĜ of
WCW spinor s for Ĝ = SU(2)L with index M : N = 4 and trivial quantum phase q = 1. The
Clifford algebra elements in question would be products of fermionic oscillator operators having
vanishing SU(2)L quantum numbers but arbitrary U(1)R quantum numbers if the identification
Ĝ = SU(2)L is correct. Thus only right handed fermions carrying homological magnetic charge
would be allowed and obviously these fermions must behave like massless particles so that β < 4
could be interpreted in terms of massivation. The ends of cosmic strings X2 × S2 ⊂ M4 × CP2

would represent an example of this phase having only Abelian electro-weak interactions.
According to the proposal of [K61] the finite subgroup G ⊂ SU(2) defining the quantum

phase emerges from the effective decomposition of the geodesic sphere S2 ⊂ CP2 to a lattice having
S2/G as the unit cell. The discrete wave functions in the lattice would give rise to SU(2)L ⊃ G-
multiplets defining the Kac Moody representations and S2/G would represent the 2-dimensional
Riemann surface in which the conformal theory in question would be defined. Quantum phases
would correspond to the holonomy of S2/G. Therefore the singletness in fermionic degrees of
freedom would be compensated by the emergence of G- multiplets in lattice degrees of freedom.
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