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Abstract

Freezing is a phase transition, which challenges the existing view of condensed matter in
nanoscales. In the TGD framework, quantum coherence is possible in all scales and gravita-
tional quantum coherence should characterize hydrodynamics in astrophysical and even shorter
scales. The hydrodynamics at the surface of the planet such as Earth the mass of the planet
and even that of the Sun should characterize gravitational Planck constant hgr assignable
to gravitational flux tubes mediating gravitational interactions. In this framework, quantum
criticality involving heff = nh0 > h phases of ordinary matter located at the magnetic body
(MB) and possibly controlling ordinary matter, could be behind the criticality of also ordinary
phase transitions.

In this article, a model inspired by the finding that the water-air boundary involves an
ice-like layer. The proposal is that also at criticality for the freezing a similar layer exists and
makes possible fluctuations of the size and shape of the ice blob. At criticality the change
of the Gibbs free energy for water would be opposite that for ice and the Gibbs free energy
liberated in the formation of ice layer would transform to the energy of surface tension at
water-ice layer.

This leads to a geometric model for the freezing phase transition involving only the surface
energy proportional to the area of the water-ice boundary and the constraint term fixing the
volume of water. The partial differential equations for the boundary surface are derived and
discussed.

If ∆P = 0 at the critical for the two phases at the boundary layer, the boundary consists
of portions, which are minimal surfaces analogous to soap films and conformal invariance
characterizing 2-D critical systems is obtained. Clearly, 3-D criticality reduces to rather well-
understood 2-D criticality. For ∆P 6= 0, conformal invariance is lost and analogs of soap
bubbles are obtained.

In the TGD framework, the generalization of the model to describe freezing as a dynamical
time evolution of the solid-liquid boundary is suggestive. An interesting question is whether
this boundary could be a light-like 3-surface in M4×CP2 and thus have a vanishing 3-volume.
A huge extension of ordinary conformal symmetries would emerge.
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1 Introduction

Freezing is a phase transition, which challenges the existing view of condensed matter in nanoscales.
For this reason it is interesting to look whether TGD could say something interesting about this
phenomenon.

In the TGD framework, quantum coherence is possible in all scales and gravitational quantum
coherence should characterize hydrodynamics in astrophysical and even in small scales [L9, L15,
L14]. The hydrodynamics at the surface of planet such as Earth should have mass of planet and
even that of Sun should characterize gravitational Planck constant hgr [E1] [K9, K7, K8] [L2]
assignable to gravitational flux tubes mediating gravitational interactions. In this framework,
quantum criticality involving heff = nh0 > h phases of ordinary matter located at the MB
and possibly controlling ordinary matter, could be behind the criticality of also ordinary phase
transitions.

1.1 Freezing inside porous structures

The stimulus for considering freezing phenomenon came from a discussion of what happens in the
freezing of water inside porous structure such as concrete. The freezing of conrete is of high interest
for practical reasons. The ordinary freezing involves a reduction of temperature, which is above
the criticality to the critical value Tcr. In the case of water, the temperatures slightly above Tcr
lead to an increase of the volume that can can destructive effects on a porous material.

The porous structures like concrete have sizes in the size range of nanoparticles between 1 t
100 nm. The freezing is known to occur at considerably lower critical temperature which can be
as low as -70 ◦C than ordinary freezing and to be a very slow process. Somehow this should relate
to surface tension which carries a lot energy and to the small volume of pore implying that the
large volume limit of thermodynamics does not apply as such.

Are the pores filled with water completely or only partially? From [D7, D6] (https://cutt.
ly/cCVWKXx and https://cutt.ly/2C1GZHR) one learns that the pores are partially filled with
water so that there is also a gas phase present.

What motivates the interest on the physics of porous materials, is that the hydrodynamic
phenomena in nano scales are hot topics of the recent condensed matter physics. Since TGD
predicts all kinds of new quantum phenomena in these scales, it is interesting to see whether the
TGD view could provide some new insights on the phenomenon of freezing.

https://cutt.ly/cCVWKXx
https://cutt.ly/cCVWKXx
https://cutt.ly/2C1GZHR
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1.2 The surface of water contains an ice-like layer

There is quite recent evidence that the surface of water bounded by air contains an ice-like layer
consisting of 2-3 molecular layers [D3] (https://cutt.ly/DCVWM6C). Second popular article telling
that the boundary layer is neither water of ice and is conducting [D1] (https://cutt.ly/KC9Q2EA).

Could the water at the surface freeze and liberate free energy as essentially thermal energy of
motion, which is transformed to the energy of surface tension associated with the ice layer? This
would explain what surface tension is at the fundamental level.

The ice layer at the surface would be analogous to a metal foil. Metal foils are unstable
against warping, which means stretching without bending so that the induce metric remains flat
(z = z(x),gxx = 1 + (dz/dx)2, gyy = 1

√
g2 =

√
1 + (dz/dx)2. Could the simplest surface waves

of water be essentially warping waves in which the area increases and involves therefore phase
transition creating more ice at the surface layer.

This would require that the surface of water is at criticality. In the TGD framework, this
would correspond to quantum criticality and I have indeed proposed that at least some boundary
layers involve membrane like structures at quantum criticality at the level of the MB of the system
[L11, L13]. Light-like boundaries of space-time surface define an analogous but not equivalent
proposal to be discussed in this article. The quantum criticality would be essential for the ability
of the water volume to change its shape while preserving its volume (volume preserving flow
combined with a phase transitions occurring at the boundary layers.)

The temperature at the surface layer would be considerably higher than freezing temperature.
Can one regard this phase as super-heated ice or some kind of quantum ice with long range
correlations? Could one think that hydrogen bonds create long range order, which solidifies the
boundary layer above the normal freezing temperatures. Here the notion of ordered water proposed
to be associated with living systems such as DNA strand is suggestive.

The fourth phase of water, proposed by Pollack [I2, L1, I4, I3], is a good candidate for this
phase. This phase is formed in the presence of a gel phase and consists of hexagonal layers with
an effective H1.5O stoichiometry.

TGD leads to a model of this phase in terms of the MB carrying dark protons transferred from
so called exclusion zones (EZs), which are negatively charged [L1] and have properties suggesting
time reversal at the level of the MB of the system. For instance, EZs seem to dissipate in the
reverse time direction [L4, L8].

The fourth phase of water would differ from the ordinary water inside the nanopores. For
instance, the freezing temperature would be much lower than for the ordinary water.

1.3 Immersed freezing and contact freezing

Freezing can occur as immersion freezing or contact freezing. In immersion freezing [D5] (https:
//cutt.ly/bCVEPqT), which is the dominating mode for freezing, the growing region of ice is inside
a possibly supercooled water volume. In the contact freezing [D2] (https://cutt.ly/BCVEHZj),
the collision of a volume of possibly supercooled water with another object initiates the freezing.
That is occurs could be understood from criticality.

Why contact freezing occurs much faster than immersion freezing is not well-understood [D4]
(https://cutt.ly/6CVEM9Q). Could the contact freezing start at the entire area of the outer
surface of water blob and proceed to the interior and transform the liberated thermal kinetic
energy to the energy of surface tension of the boundary layer between liquid and solid. If the
boundary layer is and ice-like quantum coherent structure, the coherent freezing would be natural
and occur coherently for the entire boundary layer. In the case of immersion freezing, temperature
fluctuations imply that the ice nuclei can increase or decrease so that the process is less coherent
and therefore slower.

Note that the freezing inside pores should be immersion freezing since collisions or other per-
turbations are not plausible inside pores. If this is the case, then the surface tension would be
associated with the solid-liquid boundary inside pore.

https://cutt.ly/DCVWM6C
https://cutt.ly/KC9Q2EA
https://cutt.ly/bCVEPqT
https://cutt.ly/bCVEPqT
https://cutt.ly/BCVEHZj
https://cutt.ly/6CVEM9Q
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1.4 TGD based model for freezing

In the sequal a model inspired by the finding that the water-air boundary involves an ice-like
layer [D3, D1] (see https://cutt.ly/DCVWM6C and https://cutt.ly/KC9Q2EA). The proposal is
that also at criticality for the freezing a similar layer exists and makes possible fluctuations of the
size and shape of the ice blob. At criticality the change of the Gibbs free energy for water would
be opposite that for ice and the Gibbs free energy liberated in the formation of ice layer would
transform to the energy of surface tension at water-ice layer.

This leads to a geometric model for the freezing phase transition involving only the surface
energy proportional to the area of the water-ice boundary and the constraint term fixing the volume
of water. This reduces freezing as a 3-D critical phenomenon to a 2-D critical phenomenon. The
partial differential equations for the boundary surface are derived and discussed.

If ∆P = 0 at the critical for the two phases at the boundary layer, the boundary consists of
portions, which are minimal surfaces analogous to soap films and conformal invariance character-
izing 2-D critical systems is obtained. For ∆P 6= 0, conformal invariance is lost and analogs of
soap bubbles are obtained.

In the TGD framework, the generalization of the model to describe freezing as a dynamical
time evolution of the solid-liquid boundary is suggestive. An interesting question is whether this
boundary could be a light-like 3-surface in M4×CP2 and thus have a vanishing 3-volume. A huge
extension of ordinary conformal symmetries would emerge.

This leads to a proposal for the space-time description of the phase transition using basic TGD.
If the light-like 3-surface corresponds to the condition det(g4) = 0, the normal isometry currents
appearing in the boundary conditions are finite. Kähler Chern-Simons term is necessary as a
boundary part of the action. In consistency with the original belief given up later, it is possible to
have space-time surfaces with boundaries.

2 TGD based model for freezing

In the following a TGD based model of freezing is developed by posing questions inspired by the
empirical findings.

2.1 Can one assign a surface tension to the boundary between solid and
liquid phase?

Can one assign a surface tension to the boundary layer between water and ice when the the
boundary is at criticality?

If so, the increase of the size of the frozen volume inside (possibly supercooled) water near
criticality increases the area of the boundary of the frozen volume between the two phases. If there
is surface tension involved, energy is needed to increase the area.

The energy could come from the freezing proceeding by an addition of molecular thick boundary
layers liberating the free energy as essentially thermal kinetic energy, which would transform to the
energy assignable to the surface tension. Melting would be opposite to this process. If molecular
layers are added, the liberated free energy (thermal energy) from the layer of water molecules
is proportional to the area of the surface generated in this way as is also the energy of surface
tension. Therefore one can have criticality and the area of of the surface between the two phases
can fluctuate.

The boundary layer between the solid and liquid phases [D3, D1], consisting of few molecule
layers, would be critical. This motivates the proposal that at criticality the liberated Gibbs free
energy (https://cutt.ly/tC3flRn), essentially thermal kinetic energy, identifiable as the heat of
freezing equals the energy assignable to the surface tension.

The situation would be highly unstable due to temperature fluctuations. The volume could
increase at some areas of the surface and decrease at other areas. The volume possessed by either
phase would fluctuate as it indeed does at criticality. The situation is analogous to the interphase
between water and air, which supports the view that the notion of water-ice surface tension indeed
makes sense at criticality.

If the the increments of Gibbs free energy are the same apart at the critical temperature,
temperature fluctuations make the situation highly critical. If the energy liberated in the freezing

https://cutt.ly/DCVWM6C
https://cutt.ly/KC9Q2EA
https://cutt.ly/tC3flRn
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overcomes the energy of surface tension the additional heat tends to induce melting. If the energy
is below that energy of surface tension, freezing is prevented.

2.2 Why the freezing temperature reduced with the decreasing pore
size?

The freezing temperature inside nano pores (down to -70 ◦C) is considerably lower than the freez-
ing temperature for a large volume of fluid. It would be tempting to assume that the freezing
temperature at the ice-water boundary layer determines the freezing temperature Tcr and that for
some reason Tcr is lower than at the limit of large volume.

1. The intuitive idea is that at criticality a layer of ice molecules can be generated as water
molecules freeze [D3, D1]. Also the reverse transition is possible. The freezing would proceed
as new layers would be added. The liberated thermal kinetic energy of liquid molecules would
go to the energy assignable to the layer.

The recent finding that the surface of water is accompanied by few molecule layers behaving
like ice suggests that the additional energy of the layer has an interpretation as surface
tension. At critical temperature Tcr this layer is highly dynamic and its size can vary.

At the criticality, the liberated energy per molecule equals the energy of surface tension per
molecule. If the liberated energy is higher, it melts the molecular ice layer formed in this
way. If the liberated energy is smaller, the formation of the layer is not possible. Small
fluctuations of T around Tcr affect the shape and volume of the ice region in the ice phase,
which are therefore highly sensitive to fluctuations of T .

2. Tcr should correlate with the pore size L. Gibbs free energy seems to be the correct thermo-
dynamical function if only the change for number of ice molecules matters. Both ∆Gwater
and ∆Gice = ∆Es could depend on T and pore size L. The naive first guess is that in nano
scales the presence of hydrogen bonded regions, analogous to seeds for the formation of ice,
would increase the freezing temperature. However, just the opposite occurs.

One can argue that the increase of the number of hydrogen bonded structures already rep-
resenting ice-like structures in the ice-water boundary layer reduces the size of ∆Gwater
liberated in the formation of a new boundary layer. Therefore ∆Gwater decreases with the
pore size L. Also the reduction of temperature reduces ∆Gwater.

3. For instance, if |∆Gice| = ∆Es < |∆Gwater| is true at the normal critical temperature and is
not appreciably affected by the reduction of the temperature, the lowering of the temperature
to Tcr cannot lead to to ∆Es = ∆Gice = |∆Gwater|. Therefore no freezing would occur. On
the other hand, the criticality at the infinite volume limit also gives ∆Gice = ∆Gwater at the
normal freezing temperature.

A more realistic looking possibility is that ∆Es = ∆Gice is of the form a−b/L with a = ∆s,N

that is ∆s at the normal freezing point at the infinite volume limit. Als a could have weak
dependence on L As L is reduced below some critical value, ∆Gice would decrease faster
than |∆Gwater| and eventually one could have ∆Gice = ∆Es = |∆Gwater| at lowered Tcr.

The core idea is that the freezing is not a 3-D phase transition but 2-D phase transition
at the liquid-solid boundary which is critical. Critical temperature would characterize this
boundary rather than the entire 3-D phase.

4. How could one understand the negative contribution b/L to ∆s? Could one think that
Coulomb energy is in question. Could a charge separation, analogous to that taking place
in the Pollack effect, occur and give rise to a negative Coulomb interaction energy between
dark protons at flux tubes and the negative charges in exclusion zone (EZ)? In short scales L
this contribution would increase. This would mean that the new physics predicted by TGD
would play a key role in freezing and presumably also in other phase transitions.
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2.3 A more precise thermodynamical formulation using Gibbs free en-
ergy

Assume that one has ∆P = 0 and ∆T = 0 for the phase water-ice phase transition at criticality.
If so, only the number of molecules in the two phases change and one has ∆Nwater = −∆Nice.

1. Gibbs free energy G = H − TS = F + pV is the proper thermodynamic function to describe
the situation. One has ∆G = ∆(H − TS) = S∆T +

∑
µi∆Ni + V∆P . Let us assign index

i = 1→ water to liquid phase and i = 2→ ice to ice so that one can define G = Gwater+Gice.

For ∆P = 0 and ∆T = 0, one has ∆G = µwater∆Nwater = µice∆Nice = (µwater −
µice)∆Nwater. One cannot exclude the possibility ∆P 6= 0.

2. At criticality, one has µwater = µice if the new molecular layer assignable to the ice-water
boundary is indeed analogous to that found to accompany the water-air boundary at critical-
ity. This assumption is natural since at criticality the shape of ice regions is highly varying
just like the shape of a water blob.

IfGice decreases with temperature (being analogous to the thermal energy of water molecules),
the chemical potential µwater decreases with the temperature. It is not obvious how the en-
ergy µice per molecule assignable to surface tension depends on T and pore size L The first
guess is that the dependence on T is weak. As proposed, the charge separation occurring in
the Pollack effect could explain dependence on L as being caused by the attractive Coulomb
potential.

3. Criticality at the interface means that water and ice molecules correspond to the same value
of Gibbs free energy G so that their numbers Ni fluctuate but satisfy the condition Nwater +
Nice = constant. This requires that ∆Gwater < 0 for water molecules identifiable as the
thermal energy liberated in the freezing is apart from sign equal to the increase ∆Gice
for ice molecules at criticality, and is identifiable as the increase of energy of the surface
tension assignable to the additional area of the solid-liquid boundary layer. This requires
µwater = µice at criticality. Otherwise the phase transition cannot proceed.

If ∆Gwater = ∆Nwaterµwater and ∆Es = ∆Gice = ∆Niceµice, ∆Nwater = −∆Nice, do not
sum up to zero at the normal freezing temperature inside the pore, the transition does not
occur until the temperature has been reduced to the critical temperature Tcr with ∆Gwater =
−∆Gice so that one has µwater = µice.

If µice > µwater is true at the normal critical temperature at infinite volume limit, the
reduction of the temperature should reduce µice faster than µwater so that eventually µwater =
µice would hold true. This should be due to the finite pore size. This could be due to the
µice = a − b/L type dependence on pore size caused by the charge separation as part of
protons of water molecules are transferred to the magnetic flux tubes in the Pollack effect.

3 A geometrical model for the ice-liquid system

In the following a simple purely geometric model for water-gas system and ice-liquid system in a
finite volume such as pore is developed.

1. For a water-gas system, one assumes that the water phase has a fixed volume V = V0

(incompressible flow) and there is a water-air boundary layer analogous to ice layer giving
rise to surface tension by the proposed model. It is assumed that the boundary is critical in
the sense that its area can increase or decrease without a change in the total free energy of
the 3-D system. This is true if one has ∆Gwater = ∆Gice = ∆Es, where Es is the energy
associated to the surface tension assumed to be assignable to the water-air boundary at
criticality. This assumption involves new physics.

The interesting part of the free energy of the ice-water system is assumed to be associated
with the surface tension at the boundary layer with a constant thickness measured as the
number of water molecule layers. This part of energy is proportional the surface area of the
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layer in the case that the layer has constant thickness measures as number of water molecule
layers.

The relevant part of the Gibss free energy of the system in this case is given by

Gs = σS + Λ(V − V0) , (3.1)

where Λ isz Lagrange multiplier guaranteeing that the volume V of the entire system is fixed:
V = V0. The shape of the water blob can however vary. Without the volume constraing the
variation would give as a solution minimal surface, which cannot be closed.

Note that Λ does not depend on the coordinates of X2 and its value is chosen in such a
manner that the volume enclosed by X2 equals to V0.

2. The second model is for water-ice system inside a pore with volume Vtot. In this case, one
can have several volumes Vi of ice phase and one can assume that the total volume of liquid
is fixed

∑
Vi = V (water) = V (total)− V (gas). If only the boundary layers matter, one can

treat each volume Vi separately and has

Gs = σS + Λ(V − Vi) . (3.2)

Now the surface tension is assigned with the ice-water layer and it is assumed that it is at
criticality also now so that one obtains large number of shapes for Vi.

The variation of Gs reduces to a variation of S and V to determine possible boundary solid-
liquid boundary surfaces X2.

1. The induced metric at X2 is given by gαβ = gkl∂αx
k∂βx

l. It is convenient to use Cartesian
coordinates since in these coordinates one has gkl = δkl. One can always select the local rep-
resentation of the surface in such a manner that two coordinate, say x, y serve as coordinates
xα (x1 = x, y1 = y) for the surface and the third coordinate z is given by z = z(x, y). For a
closed surface such as a sphere z is two-valued.

2. The use of Cartesian coordinates for 3-space implies that the formulas are not completely
general: in particular, the expression of second fundamental form lacks terms coming from
Riemann connection od 3-space E3, which is non-vanishing for a general coordinate choice
(such as spherical or cylindrical coordinates). The general formulas are obtained by replacing
ordinary derivatives by covariant ones in appropriate places. The vector xk appearing in
the Gauss formula, is a vector field of E3 and has a simple expression only in Cartesian
coordinates. The index raising for xk is performed using the flat metric gkl = δkl of E3.

In Cartesian coordinates for E3 index raising is a trivial operation Xk = xk. A distinction
is however made between these indices since this allows us to use Einstein’s summation
convention for repeated indices meaning that AkBk therefore involves summation over k.

3.1 Derivation of the variational equations

The deduction of the equations for X2 from the variational principle is rather straightforward but
due to the non-linearity rather tedious.

3.1.1 Variation of the area

The variation of the area term S gives the following expression

δS =
∫
X2 δx

kTr(Hk)
√
g2dA ,

Hk ≡ gαβHk
αβ ,

Hk
αβ = Dβ(∂αx

k) = ∂α∂βx
rP kr ,

P kr = gkr − gµν∂µxk∂µxr .

(3.3)
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Here Hk
αβ is the second fundamental form defined as covariant derivatives of tangent vectors ∂αx

k.

Hk
αβ is orthogonal to the surface as the projection operator P kr projects to the normal space of the

surface. dA is the coordinate area in the local coordinates of X2, say dA = dxdy.
This gives the term Hk = gαβHk

αβ

√
g2 to the left hand side of equations for X2. If the constraint

term is absent, one obtains the equation of minimal surface:

Hk = Dβ(∂αx
k) = gαβHk

αβ = 0 . (3.4)

The equation states the conservation of momentum currents jαk = ∂αx
k√g2.

The first interpretation is that the analog of acceleration for 2-D particle vanishes so that an
analog of a geodesic line is in question. The second interpretation is as a non-linear geometrization
of Laplace equation giving an analogy with electrostatics. The contribution from the volume
consraint would give a non-line source term analogous to a density of electric charge.

As explained, closed minimal surfaces are not possible. It is however possible to have local
regions which are minimal surfaces, say, the planar surface of a water blob. Physically the surface
identifiable as pieces of crystal having planar faces and edges which meet at vertices are expected.
These would correspond to surfaces, which possibly fail to be minimal surfaces at the edges serving
as analogs of line charges. If the normal component of the conserverd current jαk is continuous at
the edge, one can say that the minimal surface equations hold true also at the edge.

3.1.2 Variation of the constraint term

The variation with respect to Λ (no dependence on the coordinates of X2) gives rise to the con-
straint V = V0. The variation of the volume V in the constraint term gives a source term to the
right hand side of the minimal surface equation.

1. Gauss theorem allows to express the volume V as a surface integral

V = xknk
√
g2dA . (3.5)

Here nk is a unit normal vector for X2 and expressible in terms of Hk

nk =
Hk

√
HrHr

≡ Hk

H
. (3.6)

The unavoidable presence of the normal vector implies that the constraint term contains
second derivatives. The naive expectation that the constraint terms give rise to third order
partial differential equations. This expectation is in conflict with the intuitive expectations
and is indeed wrong.

One can calculate nk explicitly by taking two planar coordinates of E3 as coordinates of X2

so that one has (x1 = x, x2 = y, x3 = z(x, y)). In these coordinates one has

Hk = (gkz − gµν∂µxk∂νz)gαβ∂α∂βz . (3.7)

All components of Hk are proportional to (∂α∂βz), which completely disappears from the
expression for the second fundamental form so that nk reduces to the form

nk = hk
√
hrhr

≡ hk

h = hk√
hkhk

, hk = P kz . (3.8)

This makes manifest the fact that only the equation for m3 = z is needed: this is implied by
general coordinate invariance.
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2. The variation δV can be written as

δV = δV1 + δV2 + δV3,

δV1 =
∫
X2 δx

knk
√
g2dA ,

δV2 =
∫
X2 x

kδnk
√
g2dA ,

δV3 =
∫
X2 x

knkδ(
√
g2)dA .

(3.9)

3. δV1 gives to the source term a contribution

Xk
1 = nk

√
g2 . (3.10)

having a direction normal to the surface.

4. The calculation of δV2 requires the calculation of δnk

δnk = Bkl δh
l ,

Bkl ≡
∂(hk/h)
∂hl

=
gkl
h −

hkhl

h3 ,

δhl = δ(P ls) = −δ[gµν∂µxl∂νxs] = 2gµρgνσgmn∂σx
nδ(∂ρx

m)∂µx
l∂νxs

−gµν [δ(∂µx
l)∂νxs + ∂µxlδ(∂νxs)] .

(3.11)

The outcome of partial integrations transforming variations of the partial derivatives of xk to
xk can be expressed as operator action in which partial derivatives and from left to the part of the
integrand multiplying the variation.

1. The δV2 is proportional to δP ls. The contribution of a given term in the partial differential
equations is written after →:

δP lz = −δ[gµν∂µxl∂νz] = 2gµρ[gνσgmn∂σx
nδ(∂ρx

m)∂µx
l∂νz]− gµν [δ(∂µxl)∂νz + ∂µx

lδ(∂νz)]

→ −2ΛδxkDα[gµαgνσgkn∂σx
n∂µx

l∂νzO
z
l ] + δxkDα[gαν∂νzO

z
k] ,

Ozl = xkB
kl√g2 .

(3.12)

2. The third term δV3 =
∫
X2 x

knkδ(
√
g2)dA involves the variation of

√
g2.

δ
√
g2 = − 1

2g
αβδgαβ

√
g2 = −gαβ [grs∂αx

rδ(∂βx
s)]
√
g2

→ ΛδxkDα[gαβgrs∂βx
rBrlhl]

√
g2 ,

(3.13)

Combining various terms one obtains the following equations for X2.
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Dβ(gαβ∂βx
k) = Λ

σX
k ,

Xk = Xk
1 +Xk

2 +Xk
3 ,

Xk
1 = nk ,

Xk
i = Dα(Xkα

i ), for i = 2, 3 ,

Xkα
2 = −2[gµαgνσgkn∂σx

n∂µxl∂νzO
zl + gαν∂νzO

zk] ,

Xkα
3 = gαβ∂βx

kxsBslh
l√g2 ,

Ozl = xkB
kl√g2 .

(3.14)

3.1.3 Explicit form of equations

The equations can be written in two alternative forms

Dα(gαβ∂βx
k) = Λ

σ (nk +DαX
kα) ,

Dα[gαβ∂βx
k − Λ

σX
kα] = Λ

σn
k .

(3.15)

One can argue that by the general coordinate invariance of equations at the level of X2, only
the equation for x3 = z is needed. The objection is that the nice form of equations is due to a
choice of linear coordinates at both X2 and E3. Also the presence of nkm

k and nk in the equations
might mean that all 3 equations are necessary.

3.2 Various solution types

For Λ = 0 the equations reduce to minimal surface equations (https://cutt.ly/eC3aQYM). Note
that in the TGD framework space-time surfaces in H = M4×CP2 as preferred extremals of action
are conjectured to be minimal surfaces [L11]. The fact that the second derivative terms vanish
from the expression of nk means that this limit involves no singular terms.

1. This option is favoured by the connection of the conformal invariance with 2-D criticality,
which led to a very detailed understanding of the 2-D critical systems leading to the classi-
fication of critical systems in terms of criticality and conformal field theories [B2]. Minimal
surface equations for z indeed allow solutions as real or imaginary parts of analytic functions
of complex coordinate z for X2.

2. Minimal surface equations cannot hold everywhere since minimal surfaces are not closed.
One can however consider gluing portions of minimal surfaces together along their boundaries
serving as singularities. A natural condition is that the normal components of the currents
Jαk = gαβDβx

k are continuous at the discontinuity line. This could pose conditions to the
angles between faces meeting at the edges, which could be somewhat analogous to the frames
of soap films. These discontinuities would be analogous to cuts of analytic functions. The
edges of planar faces of an ice crystal would provide an example of this kind of discontinuities.

3. The simplest solutions for the minimal surface equations would have interpretation as planar
boundaries of crystals. More general crystals would be obtained by gluing together portions
of curved minimal surfaces along edges. This could be perhaps tested experimentally.

4. One can criticize this picture. The value of Λ should determine the volume. For genuine
minimal surfaces Λ = 0 means infinite volume. For piece-wise minimal surfaces the volume is
finite and not determined by Λ but by the boundary conditions expressing the continuity of
the normal component of Jαk along edges. A possible interpretation is that Λ = 0 corresponds
to the thermodynamic infinite volume limit.

https://cutt.ly/eC3aQYM
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The second option is just the general equation and gives up the conformal invariance.

1. The equation Dα[gαβ∂βx
k−(Λ/σ)Xkα] = (Λ/σ)nk contains right-hand side as a source term

and is analogous to the equation Dα[gαβ∂βx
k] = (∆P/σ)nk for a soap bubble, where ∆P is

pressure difference and σ is surface tension. Λ is analogous to a constant pressure difference
∆P .

This kind of surface is highly analogous to a soap bubble and could for instance correspond
to a spherical region of ice phase. Note that if soap bubbles and films involve an ice-like
critical layer, they could be seen as solutions to the proposed equations.

2. For the conformally invariant option Λ = ∆P = 0 would hold true at criticality since ∆P
is a dimensional parameter and dimensional parameters should vanish at criticality and for
conformal invariance. One might think that these solutions, in particular the surfaces X2

consisting of planar faces, are some kind of limiting solutions when ∆P approaches zero.

3. The warped solutions were already mentioned. For them z depends on a single linear coor-
dinate and they have a flat metric. The equations reduce to ordinary differential equations
for z and Λ and are therefore easy to solve numerically. These solutions are not minimal
surfaces. They could represent surface waves in water.

Concerning the model, it seems that the crucial thermodynamic question is whether ∆P = 0
is true at criticality as the associated conformal invariance, requiring the absence of dimensional
parameters, suggests.

4 What about phase transitions as dynamical phenomena
describable using TGD proper?

Could one generalize the proposed thermodynamic model, which is actually a static model, to a
genuinely thermodynamic model for the freezing or its reversal?

4.1 The first guess does not quite work

The first naive guess, inspired by TGD in which space-time is 4-D surface in H = M4xCP2, would
be the replacement of X2 with its orbit X3 in 4-D Minkowski space M4 and a generalization of
free energy to what one might call a thermodynamic action.

1. The four-volume V4 of the system would be fixed by a Lagrange multiplier term Λ(V4−V4,0)
and a generalization of 3-D Gauss law to 4-D situation would be used to express the 4-volume
as integral

∫
xknkdV over X3. The ends X2

i and X2
f of the 3-surface at times ti and tf would

be fixed and not subject to variation whereas space-like boundaries would be varied.

Also now the surface tension would appear as the coefficient of 3-volume of X3 and the
Lagrange multiplier Λ would have an interpretation as ∆p. The thermodynamic action has
dimensions of ~ as required. Stationary solutions would correspond to the extrema of Gibbs
free energy. One would obtain the 2-D criticality and conformal invariance for these solutions.

2. What makes this so interesting is that for 3-surfaces X3, which are light-like, and there-
fore have vanishing (and indeed minimal!) volume V3, the induced metric is metrically 2-
dimensional. This implies a huge extension of conformal symmetries and even the isometries
form an infinite-dimensional group [L10, L18]. Could these light-like 3-surfaces represent
phase transitions as dynamical phenomena?

This raises the question whether there any need for the 3-D volume action if light-likeness
implies minimal surface property in the strongest possible form? This implies also that the
mere light-likeness of X3 might be enough. Could-likeness follow from some deeper principle.
One can also ask, whether there any need for the 4-D volume constraint either.

3. What about extended conformal invariance? The effective 2-dimensionality plus the fact that
2-D surface X2 as a spacelike section of X3 always allows Kähler ” structure with complex
coordinate W suggests that extended conformal invariance is possible.
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Consider now the objections against the naivest proposal.

1. There is a strong mathematical objection related to light-likeness. By a suitable choice of
coordinates 3-D metric can be always made diagonal. Now this metric would be of the
form (guu, gw,W ) since transversal degrees of freedom allow always Kähler metric. By light-

likeness, one would have guu = 0 so that guuHkuu
√
g3 would in general diverge and could be

non-vanishing or ill-defined even if Hk
uu = 0 holds true. Therefore the 3-D volume term as

thermodynamic action is not a promising idea.

2. The physical objection is that the light-like 3-surfaces X3 of M4 are unrealistic as evolutions
of solid-liquid boundary: X3 would represent an expanding light front.

3. The stability of light-like 3-surfaces is questionable. This suggests that they are such that
their small variations cannot affect the light-likeness.

4.2 Could the phase transition have a space-time description at the level
of basic TGD?

These objections suggest a modification of the naive proposal.

1. The basic observation, natural in the TGD framework, is that if one allows X3 to be a surface
of H = M4×CP2, the situation changes since light-likeness as 3-surface of H does not imply
that the M4 projection of X3 expands with light-velocity. One could also have 3-D minimal
surfaces in M4§1 ⊂ M4 × CP2, where S1 is rotating geodesic circle, with an E3 projection,
which is closed and has a finite size [L11] so that the problem due to the infinite size of
minimal surfaces might be solved.

For instance, one might think that the light-like coordinate varies along a light-like geodesic in
M4xS1 involving a rotation along the geodesic circle S1. If the lightlike geodesic of M2×S1

has the form (t, z, RΦ) = K(w,w)× (ω, k, ω1)U ω2 − k2 − ω2
1) = 0 its Minkowski projection

corresponds to a sub-luminal velocity. The 2-surface in E3 corresponds to z = K(w,w) and
can be closed if K is two-valued.

2. One should add to the action a 4-D part, say volume term or a more general term. If
the description is a fundamental quantum description for the phase transition, one can ask
whether one should give up the interpretation as a thermodynamic action and use the action
defining classical TGD. This action contains a 4-D volume term and the Kähler action.
This action would give rise to a boundary term representing a normal flow of isometry
currents through the boundary. The boundary conditions would replace the minimal surface
equations.

3. There could also be a 3-D part in the action but by light-likeness it cannot depend on induced
metric. The Chern-Simons term for the Kähler action is the natural choice. Twistor lift
suggests that it is present also in M4 degrees of freedom. Topological field theories utilizing
Chern-Simons type actions are standard in condensed matter physics, in particular in the
description of anyonic systems, so that the proposal is not so radical as one might think.
One might even argue that in anyonic systems, the fundamental dynamics of the space-time
surface is not masked by the information loss caused by the approximations leading to the
field theory limit of TGD.

Boundary conditions would state that the normal components of the isometry currents are
equal to the divergences of Chern-Simons currents and in this way guarantee conservation
laws. In CP2 degrees of freedom the conditions would be for color currents and in M4 degrees
of freedom for 4-momentum currents.

4. This picture would conform with the general view of TGD. In zero energy ontology (ZEO)
[L4, L8] phase transitions would be induced by macroscopic quantum jumps at the level of
the magnetic body (MB) of the system. In ZEO, they would have as geometric correlates
classical deterministic time evolutions of space-time surface leading from the initial to the
final state [L3]. The findings of Minev et al provide [L3] lend support for this picture.
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4.3 Light-like 3-surfaces from det(g4) = 0 condition

How the light-like 3- surfaces could be realized?

1. A very general condition considered already earlier is the condition det(g4) = 0 at the light-
like 4-surface. This condition means that the tangent space of X4 becomes metrically 3-D
and the tangent space of X3 becomes metrically 2-D. In the local light-like coordinates,
(u, v,W,W ) guv = gvu) would vanish (guu and gvv vanish by definition.

Could det(g4) = 0 and det(g3) = 0 condition implied by it allow a universal solution of the
boundary conditions? Could the vanishing of these dimensional quantities be enough for the
extended conformal invariance?

2. 3-surfaces with det(g4) = 0 could represent boundaries between space-time regions with
Minkowskian and Euclidean signatures or genuine boundaries of Minkowskian regions.

A highly attractive option is that what we identify the boundaries of physical objects are
indeed genuine space-time boundaries so that we would directly see the space-time topology.
This was the original vision. Later I became cautious with this interpretation since it seemed
difficult to realize, or rather to understand, the boundary conditions.

The proposal that the outer boundaries of different phases and even molecules make sense
and correspond to 3-D membrane like entities [L11], served as a partial inspiration for this
article but this proposal is not equivalent with the proposal that light-like boundaries defining
genuine space-time boundaries can carry isometry charges and fermions.

3. How does this relate to M8 − H duality [L5, L6]? At the level of rational polynomials P
determined 4-surfaces at the level of M8 as their ”roots” and the roots are mass shells. The
points of M4 have interpretation as momenta and would have values, which are algebraic
integers in the extension of rationals defined by P .

Nothing prevents from posing the additional condition that the region of H3 ⊂ M4 ⊂ M8

is finite and has a boundary. For instance, fundamental regions of tessellations defining
hyperbolic manifolds (one of them appears in the model of the genetic code [L7]) could be
considered. M8 − H duality would give rise to holography associating to these 3-surfaces
space-time surfaces in H as minimal surfaces with singularities as 4-D analogies to soap films
with frames.

The generalization of the Fermi torus and its boundary (usually called Fermi sphere) as the
counterpart of unit cell for a condensed matter cubic lattice to a fundamental region of a
tessellation of hyperbolic space H3 acting is discussed is discussed in [L12]. The number of
tessellations is infinite and the properties of the hyperbolic manifolds of the ”unit cells” are
fascinating. For instance, their volumes define topological invariants and hyperbolic volumes
for knot complements serve as knot invariants.

This picture resonates with an old guiding vision about TGD as an almost topological quantum
field theory (QFT) [K2, K5, K3], which I have even regarded as a third strand in the 3-braid formed
by the basic ideas of TGD based on geometry-number theory-topology trinity.

1. Kähler Chern-Simons form, also identifiable as a boundary term to which the instanton
density of Kähler form reduces, defines an analog of topological QFT.

2. In the recent case the metric is however present via boundary conditions and in the dynamics
in the interior of the space-time surface. However, the preferred extremal property essential
for geometry-number theory duality transforms geometric invariants to topological invariants.
Minimal surface property means that the dynamics of volume and Kähler action decouple
outside the singularities, where minimal surface property fails. Coupling constants are present
in the dynamics only at these lower-D singularities defining the analogs of frames of a 4-D
soap film.

Singularities also include string worlds sheets and partonic 2-surfaces. Partonic two-surfaces
play the role of topological vertices and string world sheets couple partonic 2-orbits to a
network. It is indeed known that the volume of a minimal surface can be regarded as a
homological invariant.
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3. If the 3-surfaces assignable to the mass shells H3 define unit cells of hyperbolic tessellations
and therefore hyperbolic manifolds, they also define topological invariants. Whether also
string world sheets could define topological invariants is an interesting question.

Chern-Simons term appears also in the topological quantum field theories (TQFTs) used to
model topological quantum computation (TQC). The TGD picture would be that fermions form
braids at light-like 3-surfaces of mesoscopic or even macroscopic size and time-like braiding induces
space-like braiding of the strings (defining string world sheets) connecting fermions at different
light-like 3-surfaces. Anyons would correspond to irreps of a non-Abelian Galois group [L16, L17].

A second model considers magnetic flux tubes as counterparts of space-like braid strands. These
two pictures are consistent if the strings are associated with magnetic flux tubes. If the flux tubes
are monopole flux tubes, the light-like boundaries represent light-like orbits of Kähler magnetic
monopoles. Whether this is allowed by boundary conditions, is not clear. Monopole property is
consistent with the boundary condition Juv = 0, where u, v are light-like coordinates of X4.

Mopoles can be avoided if the light-like 3-surface is not a genuine boundary but a boundary
between a Minkowskian region and an Euclidean space-time region representing wormhole contact
with mesoscopic or even larger size. The monopole flux would flow through the wormhole contact
to the second Minkowskian space-time sheet and closed flux lines would be possible. Elementary
particles would be topologically these kinds of entities. A very large deformation of CP2 type
vacuum extremal in M4 directions would be in question.

4.4 Can one allow macroscopic Euclidean space-time regions

Euclidean space-time regions are not allowed in General Relativity. Can one allow them in TGD?

1. CP2 extremals with a Euclidean induced metric and serving as correlates of elementary
particles are basic pieces of TGD vision. The quantum numbers of fundamental fermions
would reside at the light-like orbit of 2-D wormhole throat forming a boundary between
Minkowskian space-time sheet and Euclidean wormhole contact- parton as I have called it.
More precisely, fermionic quantum numbers would flow at the 1-D ends of 2-D string world
sheets connecting the orbits of partonic 2-surfaces. The signature of the 4-metric would
change at it.

2. It is difficult to invent any mathematical reason for excluding even macroscopic surfaces with
Euclidean signature or even deformations of CP2 type extremals with a macroscopic size.
The simplest deformation of Minkowski space is to a flat Euclidean space as a warping of the
canonical embedding M4 ⊂M4 × S1 changing its signature.

3. I have wondered whether space-time sheets with an Euclidean signature could give rise to
black-hole like entities. One possibility is that the TGD variants of blackhole-like objects
have a space-time sheet which has, besides the counterpart of the ordinary horizon, an
additional inner horizon at which the signature changes to the Euclidean one. This could
take place already at Schwarzschild radius if grr component of the metric does not change
its sign.

4.5 Conformal confinement at the level of H

The proposal of [L19], inspired by p-adic thermodynamics, is that all states are massless in the
sense that the sum of mass squared values vanishes for physical states. Conformal weight, as
essentially mass squared value, is naturally additive and conformal confinement as a realization
of conformal invariance would indeed mean that the sum of mass squared values vanishes. Since
complex mass squared values with a negative real part are allowed as roots of polynomials, the
condition is highly non-trivial.

M8−H duality [L5, L6] would make it natural to assign time-like masses with time-like space-
time regions and tachyonic masses with CP2 type extremals and the Euclidean regions of the
space-time surface. What looks like a problem is that the regions with Euclidean signature look
Minkowskian to the outsider since the M4 projection is time-like. The resolution of the problem
could be simple: the light-like momenta assignable with the light-like boundaries of the Euclidean
regions would make them look like Minkowskian regions.
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4.6 But are the normal components of isometry currents finite?

Whether this scenario works depends on whether the normal components for the isometry currents
are finite.

1. det(g4) = 0 condition gives boundaries of Euclidean and Minkowskian regions as 3-D light-
like minimal surfaces. There would be no scales in accordance with generalized conformal
invariance. guv in light-cone coordinates for M2 vanishes and implies the vanishing of det(g4)
and light-likeness of the 3-surface.

What is important is that the formation of these regions would be unavoidable and they
would be stable against perturbations.

2. guv
√
|g4| is finite if det(g4) = 0 condition is satisfied, otherwise it diverges. The terms

gui∂ih
k
√
|g4| must be finite. gui = cof(giu)/det(g4) is finite since guvgvu in the cofactor

cancels it from the determinant in the expression of gui. The presence of
√
|g4| implies that

the these contributions to the boundary conditions vanish. Therefore only the condition
boundary condition for guv remains.

3. If also Kähler action is present, the conditions are modified by replacing Tuk = guα∂αh
k
√
|g4|

with a more general expression containing also the contribution of Kähler action. I have
discussed the details of the variational problem in [K6, K5].

The Kähler contribution involves the analogy of Maxwell’s energy momentum tensor, which
comes from the variation of the induced metric and involves sum of terms proportional to
JαµJ

beta
µ and gαβJµνJµν .

In the first term, the dangerous index raisings by guv appear 3 times. The most dangerous
term is given by JuvJvv

√
|g| = guµgvνJαβg

vuJvu
√
|g|. The divergent part is guvgvuJuvg

vuJvu
√
|g|.

The diverging guv appears 3 times and Juv = 0 condition eliminates two of these. gvu
√
|g|

is finite by
√
|g| = 0 condition. Juv = 0 guarantees also the finiteness of the most dangerous

part in gαβJµνJµν
√
|g|.

There is also an additional term coming from the variation of the induced Kähler form.
This to the normal component of the isometry current is proportional to the quantity
JnαJkl ∂βh

l
√
|g|. Also now, the most singular term in Juβ = guµgβνJµν corresponds to

Juv giving guvgvuJuv
√
|g|. This term is finite by Juv = 0 condition.

Therefore the boundary conditions are well-defined but only because det(g4) = 0 condition
is assumed.

4. Twistor lift strongly suggests that the assignment of the analogy of Kähler action also to M4

and also this would contribute. All terms are finite if det(g4) = 0 condition is satisfied.

5. The isometry currents in the normal direction must be equal to the divergences of the cor-
responding currents assignable to the Chern-Simons action at the boundary so that the flow
of isometry charges to the boundary would go to the Chern-Simons isometry charges at the
boundary.

If the Chern-Simons term is absent, one expects that the boundary condition reduces to
∂vh

k = 0. This would make X3 2-dimensional so that Chern-Simons term is necessary. Note
that light-likeness does not force the M4 projection to be light-like so that the expansion of
X2 need not take with light-velocity. If CP2 complex coordinates are holomorphic functions
of W depending also on U = v as a parameter, extended conformal invariance is obtained.

4.7 det(g4) = 0 condition as a realization of quantum criticality

Quantum criticality is the basic dynamical principle of quantum TGD. What led to its discovery
was the question ”How to make TGD unique?”. TGD has a single coupling constant, Kähler
couplings strength, which is analogous to a critical temperature. The idea was obvious: require
quantum criticality. This predicts a spectrum of critical values for the Kähler coupling strength.
Quantum criticality would make the TGD Universe maximally complex. Concerning living matter,
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quantum critical dynamics is ideal since it makes the system maximally sensitive and maximallt
reactive.

Concerning the realization of quantum criticality, it became gradually clear that the conformal
invariance accompanying 2-D criticality, must be generalized. This led to the proposal that
super symplectic symmetries, extended isometries and conformal symmetries of the metrically 2-D
boundary of lightcone of M4, and the extension of the Kac-Moody symmetries associated with the
light-like boundaries of deformed CP2 type extremals should act as symmetries of TGD extending
the conformal symmetries of 2-D conformal symmetries. These huge infinite-D symmetries are also
required by the existence of the Kähler geometry of WCW [K2, K1, K4] [L10, L18].

However, the question whether light-like boundaries of 3-surfaces with scale larger than CP2

are possible, remained an open question. On the basis of preceding arguments, the answer seems
to be affirmative and one can ask for the implications.

1. At M8 level, the concrete realization of holography would involve two ingredients. The
intersections of the space-time surface with the mass shells H3 with mass squared value
determined as the roots of polynomials P and the tlight-like 3-surfaces as det(g4) = 0
surfaces as boundaries (genuine or between Minkowskian and Euclidean regions) associated
by M8 − H duality to 4-surface of M8 having associative normal space, which contains
commutative 2-D subspace at each point. This would make possible both holography and
M8 −H duality.

Note that the identification of the algebraic geometric characteristics of the counterpart of
det(g4) = 0 surface at the level of H remains still open.

Since holography determines the dynamics in the interior of the space-time surface from the
boundary conditions, the classical dynamics can be said to be critical also in the interior.

2. Quantum criticality means ability to self-organize. Number theoretical evolution allows us
to identify evolution as an increase of the algebraic complexity. The increase of the degree n
of polynomial P serves as a measure for this. n = heff/h0 also serves as a measure for the
scale of quantum coherence, and dark matter as phases of matter would be characterized by
the value of n.

3. The 3-D boundaries would be places where quantum criticality prevails. Therefore they
would be ideal seats for the development of life. The proposal that the phase boundaries
between water and ice serve as seats for the evolution of prebiotic life, is discussed from
the point of TGD based view of quantum gravitation involving huge value of gravitational
Planck constant ~eff = ~gr = GMm/v0 making possible quantum coherence in astrophysical
scales [L14]. Density fluctuations would play an essential role, and this would mean that the
volume enclosed by the 2-D M4 projection of the space-time boundary would fluctuate. Note
that these fluctuations are possible also at the level of the field body and magnetic body.

4. It has been said that boundaries, where the nervous system is located, distinguishes living
systems from inanimate ones. One might even say that holography based on det(g4) = 0
condition realizes nervous systems in a universal manner.

5. I have considered several variants for the holography in the TGD framework, in particular
strong form of holography (SH). SH would mean that either the light-like 3-surfaces or the
3-surfaces at the ends of the causal diamond (CD) determine the space-time surface so that
the 2-D intersections of the 3-D ends of the space-time surface with its light-like boundaries
would determine the physics.

This condition is perhaps too strong but a fascinating, weaker, possibility is that the inter-
nal consistency requires that the intersections of the 3-surface with the mass shells H3 are
identifiable as fundamental domains for the coset spaces SO(1, 3)/Γ defining tessellations
of H3 and hyperbolic manifolds. This would conform nicely with the TGD inspired model
of genetic code [L7].
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