Schumann, Andrew and Smarandache, Florentin (2007) Neutrality and Multi-Valued Logics. ARP, USA.

PDF - Published Version

Official URL:


In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. Recall that hypersequents are a natural generalization of Gentzen's style sequents that was introduced independently by Avron and Pottinger. In particular, we consider Hilbert's style, sequent, and hypersequent calculi for infinite-valued logics based on the three fundamental continuous t-norms: Lukasiewicz's, Gödel’s, and Product logics.
We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Gödel’s, Product, and Post's logics).
The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered.
We consider two cases of non-Archimedean multi-valued logics: the first with many-validity in the interval [0,1] of hypernumbers and the second with many-validity in the ring of p-adic integers. Notice that in the second case we set discrete infinite-valued logics. The following logics are investigated:

1. hyperrational valued Lukasiewicz's, Gödel’s, and Product logics,

2. hyperreal valued Lukasiewicz's, Gödel’s, and Product logics,

3. p-adic valued Lukasiewicz's, Gödel’s, and Post's logics.

Hajek proposes basic fuzzy logic BL which has validity in all logics based on continuous t-norms. In this book, for the first time we survey hypervalued and p-adic valued extensions of basic fuzzy logic BL.
On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena. This logic is obtained by adding to the truth valuation a truth triple t, i, f instead of one truth value t, where t is a truth-degree, i is an indeterminacy-degree, and f is a falsity-degree. Each parameter of this triple runs either the unit interval [0,1] of hypernumbers or the ring of p-adic integers.

Item Type:Book
Subjects:B Philosophy. Psychology. Religion > BC Logic
[1] Albeverio, S., Fenstad, J.-E., Høegh-Krohn, R., Lindstr¨om, T., Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic Press, New York, 1986.

[2] Aguzzoli, S., Gerla, B., Finite-valued reductions of infinite-valued logics. Archive for Mathematical Logic, 4 (4):361-399, 2002.

[3] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20:87–96, 1986.

[4] Atanassov, K., More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33:37–46, 1989.

[5] Avron, A., Natural 3-valued logics, characterization and proof theory, J. Symbolic Logic, 56(1):276–294, 1991.

[6] Avron, A., Using hypersequents in proof systems for non classical logics, Annals of mathematics and artificial intelligence, vol. 4:225–248, 1991.

[7] Avron, A., A constructive analysis of RM. J. of Symbolic Logic, 52(4):939- 951, 1987.

[8] Avron, A., Hypersequents, logical consequence and intermediate logics for concurrency. Annals of Mathematics and Artificial Intelligence, 4(34):225- 248, 1991.

[9] Avron, A., Konikowska, B., Decomposition Proof Systems for G¨odel- Dummett Logics. Studia Logica, 69(2):197-219, 2001.

[10] Baaz, M., Ciabattoni, A., Ferm¨uller, C. G., Hypersequent calculi for G¨odel logics: a survey. Journal of Logic and Computation, 13:1-27, 2003.

[11] Baaz, M., Ciabattoni, A., Montagna, F., Analytic calculi for monoidal tnorm based logic. Fundamenta Informaticae, 59(4):315-332, 2004.

[12] Baaz, M., Ferm¨uller, C. G., Analytic calculi for projective logics. Proc. TABLEAUX 99, vol. 1617:36-50, 1999.

[13] Baaz, M., Zach, R., Hypersequents and the proof theory of intuitionistic fuzzy logic. CSL: 14th Workshop on Computer Science Logic, LNCS, Springer-Verlag, 187-201, 2000.

[14] Baaz, M., Ferm¨uller, C. G., Zach, R., Elimination of Cuts in First-order Finite-valued Logics. Journal of Information Processing and Cybernetics, EIK 29(6):333–355, 1994.

[15] Baaz, M., Ferm¨uller, C. G., Zach, R., Systematic Construction of Natural Deduction Systems for Many-valued Logics, 23rd International Symposium on Multiple Valued Logic. Sacramento, CA, May 1993 Proceedings. IEEE Press, Los Alamitos, 208–213, 1993.

[16] Baaz, M., Ferm¨uller, C. G., Zach, R., Systematic construction of natural deduction systems for many-valued logics: Extended report. TUW-E185.2- BFZ.1-93, Technische Universit¨at Wien, 1993.

[17] Baaz, M., Ferm¨uller, C. G., Intuitionistic Counterparts of Finite-valued Logics. Logic Colloquium ’95 (Abstracts of Contributed Papers), Haifa, August 1995.

[18] Baaz, M., Ferm¨uller, C. G., Resolution-based theorem proving for manyvalued logics. Journal of Symbolic Computation 19:353–391, 1995.

[19] Baaz, M., Ferm¨uller, C. G., Resolution for many valued logics. Proc. Logic Programming and Automated Reasoning LPAR’92, LNAI 624: 107–118, 1992.

[20] Bachman, G., Introduction to p-adic numbers and valuation theory, Academic Press, 1964.

[21] Bˇehounek, L., Cintula, P., Fuzzy class theory, Fuzzy Sets and Systems, 154 (1):34-55, 2005.

[22] Bˇehounek, L., Cintula, P., General logical formalism for fuzzy mathematics: Methodology and apparatus. Fuzzy Logic, Soft Computing and Computational Intelligence: Eleventh International Fuzzy Systems Association World Congress. Tsinghua University Press Springer, 2:1227-1232, 2005.

[23] Beth, E. W., Semantic entailment and formal derivability. Med. Konink. Nederl. Acad. Wetensch. Aft. Letterkunde, 18(13):309–342, 1955.

[24] Bolc, L., Borowik, P., Many-Valued Logics. Theoretical Foundations. Springer, Berlin, 1992.

[25] Capi´nski, M., Cutland, N. J., Nonstandard Methods for Stochastic Fluid Mechanics. World Scientific, Singapore, 1995.

[26] Carnielli, W. A., The problem of quantificational completeness and the characterization of all perfect quantifiers in 3-valued logics. Z. Math. Logik Grundlag. Math., 33:19–29, 1987.

[27] Carnielli, W. A., Systematization of the finite many valued logics througn the method of tableaux, J. of Symbolic Logic 52(2):473–493, 1987.

[28] Carnielli, W. A., On sequents and tableaux for many valued logics, Journal of Non-Classical Logic 8(1):59–76, 1991.

[29] Chang, C. C., Keisler, J., Continuous Model Theory. Princeton University Press, Princeton, NJ, 1966.

[30] Ciabattoni, A., Ferm¨uller, C. G., Hypersequents as a uniform framework for Urquharts C, MTL and related logics. Proceedings of the 31st IEEE International Symposium on Multiple-Valued Logic, Warsaw, Poland, IEEE Computer Society Press, 227-232, 2001.

[31] Ciabattoni, A., Ferrari, M., Hypersequent calculi for some intermediate logics with bounded Kripke models. Journal of Logic and Computation, 11, 2001.

[32] Ciabattoni, A., Esteva, F., Godo, L., t-norm based logics with ncontraction. Neural Network World, 12(5):441 453, 2002.

[33] Cignoli, R., D‘Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, vol. 7 of Trends in Logic. Kluwer, Dordrecht, 1999.

[34] Cignoli, R., Esteva, F., Godo, L., Torrens, A., Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing, 4(2):106- 112, 2000.

[35] Cintula, P., Advances in the L and L1 2 logics. Archive for Mathematical Logic, 42 (5):449-468, 2003.

[36] Cintula, P., The L and L1 2 propositional and predicate logics, Fuzzy Sets and Systems, 124 (3):21-34, 2001.

[37] Cutland, N. J. (edit.), Nonstandard Analysis and its Applications. Cambridge University Press, Cambridge, 1988.

[38] Davis, M., Applied Nonstandard Analysis, JohnWiley and Sons, New York, 1977.

[39] Dedekind, R., Gesammelte Werke, 1897.

[40] Dezert, J., Smarandache, F., On the generation of hyper-power sets, Proc. of Fusion 2003, Cairns, Australia, July 8–11, 2003.

[41] Dezert, J., Smarandache, F., Partial ordering of hyper power sets and matrix representation of belief functions within DSmT, Proc. of the 6th Int. Conf. on inf. fusion (Fusion 2003), Cairns, Australia, July 8–11, 2003.

[42] Dummett, M., A propositional calculus with denumerable matrix. J. of Symbolic Logic, 24:97106, 1959.

[43] Epstein, G., Multiple-valued Logic Design. Institute of Physics Publishing, Bristol, 1993.

[44] Esteva, F., Gispert, J., Godo, L., Montagna, F., On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Studia Logica, 7 (2):199-226, 2002.

[45] Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems, 124:271-288, 2001.

[46] Esteva, F., Godo, L., Garcia-Cerdana, A., On the hierarchy of t-norm based residuated fuzzy logics. Fitting, M., Orlowska, E. (edits.), Beyond two: theory and applications of multiple-valued logic, Physica-Verlag, 251- 272, 2003.

[47] Esteva, F., Godo, L., H´ajek, P., Montagna, F., Hoops and fuzzy logic. Journal of Logic and Computation, 13(4):532-555, 2003.

[48] Ferm¨uller, C. G., Ciabattoni, A., From intuitionistic logics to G¨odel- Dummett logic via parallel dialogue games. Proceedings of the 33rd IEEE International Symposium on Multiple-Valued Logic, Tokyo, May 2003.

[49] Finn, V. K., Some remarks on non-Postian logics, Vth International Congress of Logic, Methodology and Philosophy of Science. Contributed papers. Section 1, 9–10, Ontario, 1975.

[50] Gabbay, D. M., Semantical Investigations in Heyting’s Intuitionistic Logic. Synthese Library 148. Reidel, Dordrecht, 1981.

[51] Gabbay, D. M., Guenther, F. (edits.), Handbook of Philosophical Logic, Reidel, Dordrecht, 1986.

[52] Gentzen, G., Untersuchungen ¨uber das logische Schließen I–II. Math. Z., 39:176–210, 405-431, 1934.

[53] Gill, R., The Craig-Lyndon interpolation theorem in 3 valued logic. J. of Symbolic Logic, 35:230–238, 1970.

[54] Ginsberg, M. L., Multi-valued logics: a uniform approach to reasoning in artificial intelligence. Comput. Intell. 4:265–316, 1988.

[55] Girard, J.–Y., Linear logic. Theoret. Comput. Sci., 50:1–102, 1987.

[56] G¨odel, K., Zum intuitionistischen Aussagenkalk¨ul. Anz. Akad. Wiss. Wien, 69:65–66, 1932.

[57] Gottwald, S., Mehrwertige Logik. Akademie-Verlag, Berlin, 1989.

[58] Gottwald, S., A Treatise on Many-Valued Logics, volume 9 of Studies in Logic and Computation. Research Studies Press, Baldock, 2000.

[59] Gottwald, S., Fuzzy Sets and Fuzzy Logic: Foundations of Application – from A Mathematical Point of View. Vieweg, Wiesbaden, 1993.

[60] Gottwald, S., Set theory for fuzzy sets of higher level, Fuzzy Sets and Systems, 2:25–51, 1979.

[61] Gottwald, S., Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches. Studia Logica, 82:211-244, 2006.

[62] Ja`skowski, S., Propositional calculus for contradictory deductive systems, Studia Logica, 24:143-157, 1969.

[63] Jenei, S., Montagna, F., A proof of standard completeness for Esteva and Godos MTL logic. Studia Logica, 70(2):183-192, 2002.

[64] H¨ahnle, R., Automated Deduction in Multiple-Valued Logics. Oxford University Press, 1993.

[65] H¨ahnle, R., Uniform notation of tableaux rules for multiple-valued logics. Proc. IEEE International Symposium on Multiple-valued Logic, 238–245, 1991.

[66] H¨ahnle, R., Kernig, W., Verification of switch level designs with manyvalued logics. Voronkov, A. (edit.), Logic Programming and Automated Reasoning. Proceedings LPAR’93, 698 in LNAI, Springer, Berlin, 158–169, 1993.

[67] H´ajek, P., Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.

[68] Hanazawa, M., Takano, M., An interpolation theorem in many-valued logic. J. of Symbolic Logic, 51(2):448–452, 1985.

[69] van Heijenoort, J. (edit.), From Frege to G¨odel. A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge, MA, 1967.

[70] Heyting, A., Die formalen Regeln der intuitionistischen Logik. Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. II:42–56, 1930.

[71] Hilbert, D., Ackermann, W., Grundz¨uge der theoretischen Logik. Springer, 1928.

[72] Hilbert, D., Bernays, P., Grundlagen der Mathematik. Springer, 1939.

[73] H¨ohle, U., Klement, E. P. (edits.), Non-Classical Logics and their Applications to Fuzzy Subsets, Kluwer, Dordrecht, 1995.

[74] Hurd, A., Loeb, P. A., An Introduction to Nonstandard Real Analysis, Academic Press, New York.

[75] Itturioz, L., Lukasiewicz and symmetrical Heyting algebras, Zeitschrift f¨ur mathemarische Logik und Grundlagen der Mathematik. 23:131–136.

[76] Karpenko, A., Characterization of prime numbers in Lukasiewicz logical matrix, Studia Logica. Vol. 48, 4:465–478, 1994.

[77] Karpenko, A., The class of precomplete Lukasiewicz’s many-volued logics and the law of prime number generation, Bulletin of the Section of Logic. Vol. 25, 1:52–57, 1996.

[78] Khrennikov, A. Yu., p-adic valued distributions in mathematical physics, Kluwer Academic Publishers, Dordrecht, 1994.

[79] Khrennikov, A. Yu., Interpretations of Probability, VSP Int. Sc. Publishers, Utrecht/Tokyo, 1999.

[80] Khrennikov, A. Yu., Van Rooij, A., Yamada, Sh., The measure-theoretical approach to p-adic probability theory, Annales Math, Blaise Pascal, 1, 2000.

[81] Khrennikov, A. Yu., Schumann, A., Logical Approach to p-adic Probabilities, Bulletin of the Section of Logic, 35/1:49–57 2006.

[82] Kirin, V. G., Gentzen’s method for the many-valued propositional calculi. Z. Math. Logik Grundlag. Math., 12:317–332, 1966.

[83] Kirin, V. G., Post algebras as semantic bases of some many-valued logics. Fund. Math., 63:278–294, 1968.

[84] Kleene, S. C., Introduction to Metamathematics. North-Holland, Amsterdam, 1952.

[85] Klement, E. P., Mesiar, R., Pap, E., Triangular Norms, volume 8 of Trends in Logic. Kluwer, Dordrecht, 2000.

[86] Koblitz, N., p-adic numbers, p-adic analysis and zeta functions, second edition, Springer-Verlag, 1984.

[87] Kripke, S., Semantical analysis of intuitionistic logics, Crossley, J., Dummett, M. (edits.), Formal Systems and Recursive Functions, North-Holland, Amsterdam, 92–129, 1963.

[88] Levin, V.I., Infinite-valued logic in the tasks of cybernetics. - Moscow, Radio and Svjaz, 1982. (In Russian).

[89] Lukasiewicz, J., Tarski, A., Untersuchungen ¨uber den Aussagenkalk¨ul, Comptes rendus des s´eances de la Soci´et´e des Sciences et des Lettres de Varsovie Cl. III, 23:1-121, 1930.

[90] Lukasiewicz, J., O logice tr`ojwarto´sciowej, Ruch Filozoficzny, 5:169–171, 1920

[91] Mahler, K., Introduction to p-adic numbers and their functions, Second edition, Cambridge University Press, 1981.

[92] Malinowski, G., Many-valued Logics, Oxford Logic Guides 25, Oxford University Press, 1993.

[93] Metcalfe, G., Proof Theory for Propositional Fuzzy Logics. PhD thesis, Kings College London, 2003.

[94] Metcalfe, G., Olivetti, N., Gabbay, D., Goal-directed calculi for G¨odel- Dummett logics, Baaz, M., Makowsky, J. A. (edits.), Proceedings of CSL 2003, 2803 of LNCS, Springer, 413-426, 2003.

[95] Metcalfe, G., Olivetti, N., Gabbay, D., Analytic proof calculi for product logics. Archive for Mathematical Logic, 43(7):859-889, 2004.

[96] Metcalfe, G., Olivetti, N., Gabbay, D., Sequent and hypersequent calculi for abelian and Lukasiewicz logics, ACM Trans. Comput. Log. 6, 3. 2005. P. 578 – 613.

[97] von Mises, R., Probability, Statistics and Truth, Macmillan, London, 1957.

[98] Morgan, C. G., A resolution principle for a class of many-valued logics. Logique et Analyse, 311–339, 1976.

[99] Mostowski, A., The Hilbert epsilon function in many-valued logics. Acta Philos. Fenn., 16:169–188, 1963.

[100] Mundici, D., Satisfiability in many-valued sentential logic is NP-complete. Theoret. Comput. Sci., 52:145–153, 1987.

[101] Nov´ak, V., On fuzzy type theory, Fuzzy Sets and Systems, 149:235–273, 2004.

[102] Nov´ak, V., Perfilieva I., Moˇckoˇr J., Mathematical Principles of Fuzzy Logic. Kluwer, Boston Dordrecht, 1999.

[103] Ohya, T., Many valued logics extended to simply type theory. Sci. Rep. Tokyo Kyoiku Daigaku Sect A., 9:84–94, 1967.

[104] Pearl, J., Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers, San Mateo, CA, 1988.

[105] Post, E. L., Introduction to a general theory of propositions. Amer. J. Math., 43:163–185, 1921.

[106] Pottinger, G., Uniform, cut-free formulations of T, S4 and S5 (abstract), J. of Symbolic Logic, 48(3):900, 1983.

[107] Prijatelj, A., Bounded contraction and Gentzen-style formulation of Lukasiewicz logics, Studia Logica, 57, 2/3:437–456, 1996.

[108] Prijatelj, A., Connectification for n-contraction, Studia Logica, 54, 2:149– 171, 1995.

[109] Prijatelj, A., Bounded contraction and Gentzen-style formulation of Lukasiewicz logic, Studia logica. Vol. 57:437–456.

[110] Przymusi´nska, H., Gentzen-type semantics for -valued infinitary predicate calculi, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 28(5- 6):203–206, 1980.

[111] Przymusi´nska, H., Craig interpolation theorem and Hanf number for - valued infinitary predicate calculi, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 28(5-6):207–211, 1980.

[112] Rasiowa, H., The Craig interpolation theorem for m-valued predicate calculi, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 20(5):341– 346, 1972.

[113] Rasiowa, H., An Algebraic Approach to Non-classical Logics. Studies in Logic 78. North Holland, Amsterdam, 1974.

[114] Rescher, N., Many-valued Logic. McGraw-Hill, New York, 1969.

[115] Restall, G., An Introduction to Substructural Logics. Routledge, London, 1999.

[116] Robert, A. M., A course in p-adic analysis, Springer-Verlag, 2000.

[117] Robinson, A., Non-Standard Analysis, North-Holland Publ. Co., 1966.

[118] Rosser, J. B., Turquette, A. R., Many-Valued Logics. Studies in Logic. North-Holland, Amsterdam, 1952.

[119] Rousseau, G., Sequents in many valued logic, J. Fund. Math., 60:23–33, 1967.

[120] Saloni, Z., Gentzen rules for the m-valued logic, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 20(10):819–826, 1972.

[121] Schr¨oter, K., Methoden zur Axiomatisierung beliebiger Aussagen- und Pr¨adikatenkalk¨ule. Z. Math. Logik Grundlag. Math., 1:241–251, 1955.

[122] Schumann, A., Non-Archimedean Fuzzy Reasoning, Fuzzy Systems and Knowledge Discovery (FSKD’07), IEEE Press, 2007.

[123] Schumann, A., Non-Archimedean Valued Predicate Logic, Bulletin of the Section of Logic, 36/1, 2007.

[124] Schumann, A., Non-Archimedean Valued Sequent Logic, Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’06), IEEE Press, 89–92, 2006.

[125] Schumann, A., DSm Models and non-Archimedean Reasoning, Smarandache, F., Dezert, J. (edits.), Advances and Applications of DSmT (Collected works), Vol. 2, American Research Press, Rehoboth, 183–204, 2006.

[126] Schumann, A., A Lattice for the Language of Aristotle’s Syllogistic and a Lattice for the Language of Vasil’ev’s Syllogistic, Logic and Logical Philosophy, 15:17–37, 2006.

[127] Schumann, A., Quasi-solvability of !-order Predicate Calculus, Second St. Petersburg Days of Logic and Computability. Short abstracts of the international meeting held on August 24 - 26, 2003, St. Petersburg, 50–51, 2003.

[128] Schumann, A., Non-Archimedean Foundations of Mathematics, Studies in Logic, Grammar and Rhetoric, 2007.

[129] Schumann, A., p-Adic Multiple-Validity and p-Adic Valued Logical Calculi, Journal of Multiple-Valued Logic and Soft Computing, 13 (1–2):29–60, 2007.

[130] Sentz, K., Ferson, S., Combination of evidence in Dempster-Shafer Theory, SANDIA Tech. Report, SAND2002-0835, 96 pages, April 2002.

[131] Shafer, G., A Mathematical Theory of Evidence, Princeton Univ. Press, Princeton, NJ, 1976.

[132] Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Probability, and Statistics, Amer. Research Press, Rehoboth, 2000.

[133] Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic, Multiple-valued logic, An international journal, Vol. 8, 3:385–438, 2002.

[134] Smarandache, F., Neutrosophy: A new branch of philosophy, Multiplevalued logic, An international journal, Vol. 8, 3:297–384, 2002.

[135] Smarandache, F., Dezert, J. (edits.), Applications and Advances of DSmT for Information Fusion, Collected Works, American Research Press, Rehoboth, June 2004,

[136] Smarandache, F., Dezert, J. (edits.), Advances and Applications of DSmT (Collected works), Vol. 2, American Research Press, Rehoboth, 2006.

[137] Smets, Ph., Mamdani, E. H., Dubois, D., Prade, H. (edits.), Non-Standard Logics for Automated Reasoning, Academic Press, 1988.

[138] Stachniak, Z., O’Hearn, P., Resolution in the domain of strongly finite logics. Fund. Inform., 8:333–351, 1990.

[139] Sucho´n, W., La m´ethode de Smullyan de construire le calcul n-valent de Lukasiewicz avec implication et n´egation. Rep. Math. Logic, 2:37–42, 1974.

[140] Surma, S. J. (edit.), Studies in the History of Mathematical Logic, Wroclaw, 1973.

[141] Surma, S. J., An algorithm for axiomatizing every finite logic. D. C. Rine (edit.) Computer Science and Multiple-valued Logic: Theory and Applications, North-Holland, Amsterdam, 137–143, 1977.

[142] Takahashi, M., Many-valued logics of extended Gentzen style II. J. of Symbolic Logic, 35:493–528, 1970.

[143] Takeuti, G., Proof Theory. Studies in Logic 81. North-Holland, Amsterdam, 2nd edition, 1987.

[144] Trz¸esicki, K., Many-Valued Tense Logic and the Problem of Determinism, ISMVL 1990, IEEE Press, 228–236, 2006.

[145] Turksen, I., Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20:191–210, 1986.

[146] Tuziak, R., An axiomatization of the finite-valued Lukasiewicz calculus, Studia Logica, vol. 47:149–55.

[147] Ungar, A. M., Normalization, Cut-Elimination and the Theory of Proofs, CSLI Lecture Notes 28. CSLI, Stanford, CA, 1992.

[148] Urquhart, A., Decidability and the finite model property. J. Philos. Logic, 10:367–370, 1981.

[149] Vasil’´ev N. A. [On particular propositions, the triangle of oppositions, and the law of excluded fourth]. Ucenie zapiski Kazan’skogo Universiteta, 1910.

[150] Vasil’´ev N. A. [Imaginary non-Aristotelian Logic]. Z Ministerstva Narodnogo Prosvescenia 1912.

[151] Wang, W., Smarandache, F., Zhang, Y.-Q., Sunderraman, R., Interval Neutrosophic Sets and Logic: Theory and Aplications in Computing, Hexis, Arizona, 2005.

[152] White, R. B., Natural deduction in the Lukasiewicz logics. Proc. 10th International Symposium on Multiple-valued Logic, 226–232, 1980.

[153] Zadeh, L., Fuzzy sets, Inform. and Control 8:338–353, 1965.

[154] Zadeh, L., Fuzzy Logic and Approximate Reasoning, Synthese, 30:407– 428, 1975.

[155] Zadeh, L., Review of Mathematical theory of evidence, by Glenn Shafer, AI Magazine, Vol. 5, 3:81–83, 1984.

[156] Zadeh, L., A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination, AI Magazine 7, 2:85–90, 1986.

[157] Zinov’ev, A. A., Philosophical Problems of Many-valued Logic. Reidel, Dordrecht, 1963. 14–18.

ID Code:86
Deposited By:Dr. Florentin Smarandache
Deposited On:10 Mar 2010 08:38
Last Modified:10 Mar 2010 09:27

Repository Staff Only: item control page