Smarandache, Florentin and Rabounski, Dmitri (2006) *Сущность нейтрософии; Смарадаке Ф.(перевод Д. Рабунского)[Russian].* Hexis.

| PDF - Published Version 174Kb |

Official URL: http://fs.gallup.unm.edu//eBooks-otherformats.htm

Item Type: | Book |
---|---|

Subjects: | B Philosophy. Psychology. Religion > B Philosophy (General) |

References: | 1. Smarandache F. and Liu F. Neutrosophic dialogues. Xiquan Publishing House, Phoenix, 2004.
2. Smarandache F. Private letter to D. Rabounski, 2005. 3. Smarandache F. Neutrosophy/neutrosophic probability, set and logic. American Research Press, Rehoboth, 1998. 4. Smarandache F. A unifying field in logic: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. 3rd ed. (Preface by C. T. Le), American Research Press, Rehoboth, 2003. 5. Smarandache F. Neutrosophy, a new branch of philosophy. Multiple- Valued Logic / An International Journal, 2002, v. 8, no. 3, 297–384. 6. Smarandache F. A unifying field in logics: neutrosophic logic. Multiple- Valued Logic / An International Journal, 2002, v. 8, no. 3, 385–438. 7. Smarandache F. Paradoxist mathematics. Collected papers, v. II, Kishinev University Press, Kishinev, 1997, 5–29. 8. Weisstein E. Smarandache paradox. CRC Concise Encyclopedia of Mathematics, 2nd edition, CRC Press LLC, Boca Raton (FL) 2003. See also there: Smarandache Ceil Function; Smarandache Constants; Smarandache Function; Smarandache-Kurepa Function; Smarandache Near-to-Primordiality; Smarandache Sequences; Smarandache-Wagstaff Functions; Smarandache-Wellin Numbers. 9. Ashbacher C. Smarandache geometries. Smarandache Notions, book series, v. 8 (ed. by C. Dumitrescu and V. Seleacu), American Research Press, Rehoboth, 1997, 212–215. 10. Chimienti S. P., Bencze M. Smarandache paradoxist geometry. Bulletin of Pure and Applied Sciences, 1998, v. 17E, No. 1, 123–124. See also Smarandache Notions, book series, v. 9 (ed. by C. Dumitrescu and V. Seleacu), American Research Press, Rehoboth, 1998, 42–43. 11. Kuciuk L. and Antholy M. An introduction to Smarandache geometries. Mathematics Magazine for Grades, v. 12/2003 and v. 1/2004 (online http://www.mathematicsmagazine.com). New Zealand Mathematical Colloquium, Massey Univ., Palmerston North, New Zealand, Dec 3– 6, 2001 (on-line http://atlas-conferences.com/c/a/h/f/09.htm). Intern. Congress of Mathematicians, Beijing, China, Aug 20–28, 2002 (on-line http://www.icm2002.org.cn/B/Schedule_Section04.htm). 12. Iseri H. Smarandache manifolds. American Research Press, Rehoboth, 2002. 13. Iseri H. Partially paradoxist Smarandache geometry. Smarandache Notions, book series, v. 13 (ed. by J. Allen, F. Liu, D. Costantinescu), American Research Press, Rehoboth, 2002, 5–12. 14. Iseri H. A finitely hyperbolic point in a smooth manifold. JP Journal on Geometry and Topology, 2002, v. 2 (3), 245–257. 15. Le C. T. The Smarandache class of paradoxes. Journal of Indian Academy of Mathematics, Bombay, 1996, no. 18, 53–55. 16. Le C. T. Preamble to neutrosophy and neutrosophic logic. Multiple-Valued Logic / An International Journal, 2002, v. 8, no. 3, 285–295. Bombay, 1996, no. 18, 53–55. 17. Popescu T. The aesthetics of paradoxism. Almarom Publ. Hse., Bucharest, 2002 18. Robinson A. Non-standard analysis. Princeton University Press, Princeton, NJ, 1996. 19. Dezert J. Open questions to neutrosophic inference. Multiple-Valued Logic / An International Journal, 2002, vol. 8, no. 3, 439–472. 20. Quine W.V. What price bivalence? Journal of Philosophy, 1981, v. 77, 90–95. 90–95. 21. Halld´an S. The logic of nonsense. Uppsala Universitets Arsskrift, 1949. 22. K¨ orner S. The philosophy of mathematics. Hutchinson, London, 1960. 23. Tye M. Sorites paradoxes and the semantics of vagueness. Philosophical Perspectives: Logic and Language, Ed. by J. Tomberlin, Ridgeview, Atascadero, USA, 1994. 24. Dunn J. M. Intuitive semantics for first degree entailment and coupled trees. Philosophical Studies, 1976, vol. XXIX, 149–68. 25. Goguen J. A. The logic of inexact concepts. Synthese, 1969, v. 19, 325– 375. 26. Zadeh, Lotfi A. Fuzzy logic and approximate reasoning. Synthese, 1975, v. 30, 407–428. 27. Zadeh, Lotfi A. Reviews of books (A mathematical theory of evidence. Glenn Shafer, Princeton University Press, Princeton, NJ, 1976), The AI Magazine, 1984, 81–83. 28. Dempster A. P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, v. 38, 325–339. 29. Shafer G. A mathematical theory of evidence. Princeton University Press, NJ, 1976. 30. Shafer G. The combination of evidence. International Journal of Intelligent Systems, 1986, v. I, 155 179. 31. Van Fraassen B. C. The scientific image. Clarendon Press, 1980. 32. Dummett M. Wang’s paradox. Synthese, 1975, v. 30, 301–324. 33. Fine K. Vagueness, truth and logic. Synthese, 1975, v. 30, 265–300. 34. Narinyani A. Indefinite sets — a new type of data for knowledge representation. Preprint 232, Computer Center of the USSR Academy of Sciences, Novosibirsk, 1980 (in Russian). 35. Atanassov K., Stoyanova D. Remarks on the intuitionistic fuzzy sets. II. Notes on Intuitionistic Fuzzy Sets, 1995, v. 1, No. 2, 85–86. 36. Rabounki D., Borissova L., Smarandache F. Entangled particles and quantum causality threshold in the General Theory of Relativity. Progress in Physics, 2005, v.2, 101–107. 37. Smarandache F. and Rabounski D. Unmatter entities inside nuclei, predicred by the Brightsen Nucleon Cluster Model. Progress in Physics, 2006, v.1, 14–18. |

ID Code: | 88 |

Deposited By: | Dr. Florentin Smarandache |

Deposited On: | 10 Mar 2010 08:28 |

Last Modified: | 10 Mar 2010 09:35 |

Repository Staff Only: item control page